Science.gov

Sample records for gras proteins form

  1. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms

    PubMed Central

    Zhang, Dapeng; Iyer, Lakshminarayan M.; Aravind, L.

    2012-01-01

    Summary: Gibberellic acids (GAs) are key plant hormones, regulating various aspects of growth and development, which have been at the center of the ‘green revolution’. GRAS family proteins, the primary players in GA signaling pathways, remain poorly understood. Using sequence-profile searches, structural comparisons and phylogenetic analysis, we establish that the GRAS family first emerged in bacteria and belongs to the Rossmann fold methyltransferase superfamily. All bacterial and a subset of plant GRAS proteins are likely to function as small-molecule methylases. The remaining plant versions have lost one or more AdoMet (SAM)-binding residues while preserving their substrate-binding residues. We predict that GRAS proteins might either modify or bind small molecules such as GAs or their derivatives. Contact: aravind@ncbi.nlm.nih.gov Supplementary Information: Supplementary Material for this article is available at Bioinformatics online. PMID:22829623

  2. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses

    PubMed Central

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T.; Martinez-Zapater, Jose M.; Fortes, Ana M.

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  3. Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses.

    PubMed

    Grimplet, Jérôme; Agudelo-Romero, Patricia; Teixeira, Rita T; Martinez-Zapater, Jose M; Fortes, Ana M

    2016-01-01

    GRAS transcription factors are involved in many processes of plant growth and development (e.g., axillary shoot meristem formation, root radial patterning, nodule morphogenesis, arbuscular development) as well as in plant disease resistance and abiotic stress responses. However, little information is available concerning this gene family in grapevine (Vitis vinifera L.), an economically important woody crop. We performed a model curation of GRAS genes identified in the latest genome annotation leading to the identification of 52 genes. Gene models were improved and three new genes were identified that could be grapevine- or woody-plant specific. Phylogenetic analysis showed that GRAS genes could be classified into 13 groups that mapped on the 19 V. vinifera chromosomes. Five new subfamilies, previously not characterized in other species, were identified. Multiple sequence alignment showed typical GRAS domain in the proteins and new motifs were also described. As observed in other species, both segmental and tandem duplications contributed significantly to the expansion and evolution of the GRAS gene family in grapevine. Expression patterns across a variety of tissues and upon abiotic and biotic conditions revealed possible divergent functions of GRAS genes in grapevine development and stress responses. By comparing the information available for tomato and grapevine GRAS genes, we identified candidate genes that might constitute conserved transcriptional regulators of both climacteric and non-climacteric fruit ripening. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming at improving the quality of fleshy fruits. PMID:27065316

  4. More than Mardi Gras

    ERIC Educational Resources Information Center

    Wilson, Kathy

    2012-01-01

    Telling art students to do anything they want can be dangerous. It's not something teachers often do, but this is a project where anything goes. In this article, the author describes how her students created a Mardi Gras type mask, then incorporated it into a mixed-media composition.

  5. Genome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera)

    PubMed Central

    Zhou, Ying; Zhou, Yu; Yang, Jie

    2016-01-01

    The GRAS gene family is one of the most important plant-specific gene families, which encodes transcriptional regulators and plays an essential role in plant development and physiological processes. The GRAS gene family has been well characterized in many higher plants such as Arabidopsis, rice, Chinese cabbage, tomato and tobacco. In this study, we identified 38 GRAS genes in sacred lotus (Nelumbo nucifera), analyzed their physical and chemical characteristics and performed phylogenetic analysis using the GRAS genes from eight representative plant species to show the evolution of GRAS genes in Planta. In addition, the gene structures and motifs of the sacred lotus GRAS proteins were characterized in detail. Comparative analysis identified 42 orthologous and 9 co-orthologous gene pairs between sacred lotus and Arabidopsis, and 35 orthologous and 22 co-orthologous gene pairs between sacred lotus and rice. Based on publically available RNA-seq data generated from leaf, petiole, rhizome and root, we found that most of the sacred lotus GRAS genes exhibited a tissue-specific expression pattern. Eight of the ten PAT1-clade GRAS genes, particularly NnuGRAS-05, NnuGRAS-10 and NnuGRAS-25, were preferentially expressed in rhizome and root. In summary, this is the first in silico analysis of the GRAS gene family in sacred lotus, which will provide valuable information for further molecular and biological analyses of this important gene family.

  6. Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.).

    PubMed

    Wu, Z Y; Wu, P Z; Chen, Y P; Li, M R; Wu, G J; Jiang, H W

    2015-01-01

    GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut. PMID:26782574

  7. The Arabidopsis GRAS Protein SCL14 Interacts with Class II TGA Transcription Factors and Is Essential for the Activation of Stress-Inducible Promoters[C][W

    PubMed Central

    Fode, Benjamin; Siemsen, Tanja; Thurow, Corinna; Weigel, Ralf; Gatz, Christiane

    2008-01-01

    The plant signaling molecule salicylic acid (SA) and/or xenobiotic chemicals like the auxin mimic 2,4-D induce transcriptional activation of defense- and stress-related genes that contain activation sequence-1 (as-1)–like cis-elements in their promoters. as-1–like sequences are recognized by basic/leucine zipper transcription factors of the TGA family. Expression of genes related to the SA-dependent defense program systemic acquired resistance requires the TGA-interacting protein NPR1. However, a number of as-1–containing promoters can be activated independently from NPR1. Here, we report the identification of Arabidopsis thaliana SCARECROW-like 14 (SCL14), a member of the GRAS family of regulatory proteins, as a TGA-interacting protein that is required for the activation of TGA-dependent but NPR1-independent SA- and 2,4-D–inducible promoters. Chromatin immunoprecipitation experiments revealed that class II TGA factors TGA2, TGA5, and/or TGA6 are needed to recruit SCL14 to promoters of selected SCL14 target genes identified by whole-genome transcript profiling experiments. The coding regions and the expression profiles of the SCL14-dependent genes imply that they might be involved in the detoxification of xenobiotics and possibly endogenous harmful metabolites. Consistently, plants ectopically expressing SCL14 showed increased tolerance to toxic doses of the chemicals isonicotinic acid and 2,4,6-triiodobenzoic acid, whereas the scl14 and the tga2 tga5 tga6 mutants were more susceptible. Hence, the TGA/SCL14 complex seems to be involved in the activation of a general broad-spectrum detoxification network upon challenge of plants with xenobiotics. PMID:18984675

  8. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23.

    PubMed

    Tanabe, Shigeru; Onodera, Haruko; Hara, Naho; Ishii-Minami, Naoko; Day, Brad; Fujisawa, Yukiko; Hagio, Takashi; Toki, Seiichi; Shibuya, Naoto; Nishizawa, Yoko; Minami, Eiichi

    2015-01-01

    We show that a rice GRAS family protein, CIGR2, is a bonafide transcriptional activator, and through this function, targets the B-type heat shock protein-encoding gene OsHsf23 (Os09g0456800). CIGR2 (Os07g0583600) is an N-acetylchitooligosaccharide elicitor-responsive gene whose activity, through the direct transcriptional control of OsHsf23, is required for mediating hypersensitive cell death activation during pathogen infection. RNAi lines of CIGR2 and OsHsf23 similarly exhibited the higher level of granulation in the epidermal cells of leaf sheath inoculated with an avirulent isolate of rice blast fungus. Interestingly, we did not observe altered levels of resistance, suggesting that CIGR2 suppresses excessive cell death in the incompatible interaction with blast fungus via activation of OsHsf23. PMID:26287768

  9. Network of GRAS Transcription Factors Involved in the Control of Arbuscule Development in Lotus japonicus1[OPEN

    PubMed Central

    Xue, Li; Cui, Haitao; Buer, Benjamin; Vijayakumar, Vinod; Delaux, Pierre-Marc; Junkermann, Stefanie; Bucher, Marcel

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host’s response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development. PMID:25560877

  10. Studying how protein crystals form

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Watching molecules of the iron-storing protein apoferritin come together to form a nucleus reveals some interesting behavior. In this series of images, researchers observed clusters of four molecules at the corners of a diamond shape (top). As more molecules attach to the cluster, they arrange themselves into rods (second from top), and a raft-like configuration of molecules forms the critical nucleus (third from top), suggesting that crystal growth is much slower than it could be were the molecules arranged in a more compact formation. In the final image, a crystallite consisting of three layers containing approximately 60 to 70 molecules each is formed. Atomic force microscopy made visualizing the process of nucleation possible for the first time. The principal investigator is Peter Vekilov, of the University of Alabama in Huntsville. Vekilov's team at UAH studies protein solutions as they change phases from liquids to crystalline solids. They want to know if the molecules in the solution interact with one another, and if so, how, from the perspectives of thermodynamics and kinetics. They want to understand which forces -- electrical, electrostatic, hydrodynamic, or other kinds of forces -- are responsible for the interactions. They also study nucleation, the begirning stage of crystallization. This process is important to understand because it sets the stage for crystal growth in all kinds of solutions and liquid melts that are important in such diverse fields as agriculture, medicine, and the fabrication of metal components. Nucleation can determine the rate of crystal growth, the number of crystals that will be formed, and the quality and size of the crystals.

  11. Knockdown of a JmjC domain-containing gene JMJ524 confers altered gibberellin responses by transcriptional regulation of GRAS protein lacking the DELLA domain genes in tomato

    PubMed Central

    Li, Jinhua; Yu, Chuying; Wu, Hua; Luo, Zhidan; Ouyang, Bo; Cui, Long; Zhang, Junhong; Ye, Zhibiao

    2015-01-01

    Plants integrate responses to independent hormonal and environmental signals to survive adversity. In particular, the phytohormone gibberellin (GA) regulates a variety of developmental processes and stress responses. In this study, the Jumonji-C (JmjC) domain-containing gene JMJ524 was characterized in tomato. JMJ524 responded to circadian rhythms and was upregulated by GA treatment. Knockdown of JMJ524 by RNAi caused a GA-insensitive dwarf phenotype with shrunken leaves and shortened internodes. However, in these transgenic plants, higher levels of endogenous GAs were detected. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two DELLA-like genes, SlGLD1 (‘GRAS protein Lacking the DELLA domain’) and SlGLD2, were increased in JMJ524-RNAi transgenic plants. Nevertheless, only the overexpression of SlGLD1 in tomato resulted in a GA-insensitive dwarf phenotype, suggesting that SlGLD1 acts as a repressor of GA signalling. This study proposes that JMJ524 is required for stem elongation by altering GA responses, at least partially by regulating SlGLD1. PMID:25680796

  12. GRAS NRT Precise Orbit Determination: Operational Experience

    NASA Technical Reports Server (NTRS)

    MartinezFadrique, Francisco M.; Mate, Alberto Agueda; Rodriquez-Portugal, Francisco Sancho

    2007-01-01

    EUMETSAT launched the meteorological satellite MetOp-A in October 2006; it is the first of the three satellites that constitute the EUMETSAT Polar System (EPS) space segment. This satellite carries a challenging and innovative instrument, the GNSS Receiver for Atmospheric Sounding (GRAS). The goal of the GRAS instrument is to support the production of atmospheric profiles of temperature and humidity with high accuracy, in an operational context, based on the bending of the GPS signals traversing the atmosphere during the so-called occultation periods. One of the key aspects associated to the data processing of the GRAS instrument is the necessity to describe the satellite motion and GPS receiver clock behaviour with high accuracy and within very strict timeliness limitations. In addition to these severe requirements, the GRAS Product Processing Facility (PPF) must be integrated in the EPS core ground segment, which introduces additional complexity from the data integration and operational procedure points of view. This paper sets out the rationale for algorithm selection and the conclusions from operational experience. It describes in detail the rationale and conclusions derived from the selection and implementation of the algorithms leading to the final orbit determination requirements (0.1 mm/s in velocity and 1 ns in receiver clock error at 1 Hz). Then it describes the operational approach and extracts the ideas and conclusions derived from the operational experience.

  13. Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans

    PubMed Central

    Xu, Wei; Chen, Zexi; Ahmed, Naeem; Han, Bing; Cui, Qinghua; Liu, Aizhong

    2016-01-01

    Plant-specific GRAS transcription factors play important roles in regulating growth, development, and stress responses. Castor beans (Ricinus communis) are important non-edible oilseed plants, cultivated worldwide for its seed oils and its adaptability to growth conditions. In this study, we identified and characterized a total of 48 GRAS genes based on the castor bean genome. Combined with phylogenetic analysis, the castor bean GRAS members were divided into 13 distinct groups. Functional divergence analysis revealed the presence of mostly Type-I functional divergence. The gene structures and conserved motifs, both within and outside the GRAS domain, were characterized. Gene expression analysis, performed in various tissues and under a range of abiotic stress conditions, uncovered the potential functions of GRAS members in regulating plant growth development and stress responses. The results obtained from this study provide valuable information toward understanding the potential molecular mechanisms of GRAS proteins in castor beans. These findings also serve as a resource for identifying the genes that allow castor beans to grow in stressful conditions and to enable further breeding and genetic improvements in agriculture. PMID:27347937

  14. Genome-Wide Identification, Evolutionary Analysis, and Stress Responses of the GRAS Gene Family in Castor Beans.

    PubMed

    Xu, Wei; Chen, Zexi; Ahmed, Naeem; Han, Bing; Cui, Qinghua; Liu, Aizhong

    2016-01-01

    Plant-specific GRAS transcription factors play important roles in regulating growth, development, and stress responses. Castor beans (Ricinus communis) are important non-edible oilseed plants, cultivated worldwide for its seed oils and its adaptability to growth conditions. In this study, we identified and characterized a total of 48 GRAS genes based on the castor bean genome. Combined with phylogenetic analysis, the castor bean GRAS members were divided into 13 distinct groups. Functional divergence analysis revealed the presence of mostly Type-I functional divergence. The gene structures and conserved motifs, both within and outside the GRAS domain, were characterized. Gene expression analysis, performed in various tissues and under a range of abiotic stress conditions, uncovered the potential functions of GRAS members in regulating plant growth development and stress responses. The results obtained from this study provide valuable information toward understanding the potential molecular mechanisms of GRAS proteins in castor beans. These findings also serve as a resource for identifying the genes that allow castor beans to grow in stressful conditions and to enable further breeding and genetic improvements in agriculture. PMID:27347937

  15. Bacterial pore-forming proteins as anthelmintics

    PubMed Central

    2013-01-01

    Crystal (Cry) proteins are made by the Gram-positive bacterium Bacillus thuringiensis (Bt). Cry proteins are pore-forming proteins and are the most widely used biological insecticides in the world. Our laboratory found some Cry proteins are highly effective against a broad range of nematodes (roundworms). Here, we discuss our results of Cry protein activity against intestinal roundworms. Both Cry5B and Cry21A have therapeutic activities against infections of the roundworm Heligmosomoides polygyrus bakeri in mice. Cry5B also shows highly therapeutic activity against Ancylostoma ceylanicum infection in hamsters. A. ceylanicum is a minor hookworm parasite of humans, and it is closely related to the more prevalent Ancylostoma duodenale. In addition, Cry proteins show excellent combinatorial therapeutic properties with nicotinic acetylcholine receptor (nAChR) agonists, one of the two classes of compounds approved by the World Health Organization for the treatment for intestinal roundworms in humans. Given their non-toxicity to humans and their broad spectrum of nematicidal action, Cry proteins show great potential as next-generation anthelmintics. PMID:22562659

  16. GRAS radio occultation on-board of Metop

    NASA Astrophysics Data System (ADS)

    von Engeln, A.; Andres, Y.; Marquardt, C.; Sancho, F.

    2011-01-01

    The GRAS radio occultation instrument is flying on Metop-A and belongs to the EPS (EUMETSAT Polar System). GRAS observes GPS satellites in occultation. Within this work, validation of GRAS closed-loop bending angle data against co-located ECMWF profiles extracted from model fields and occultations from the COSMIC constellation of radio occultation instruments is shown. Results confirm the high data quality and robustness, where GRAS shows lower bending angle noise against ECMWF than COSMIC and in terms of occultations per day, one GRAS ≈ two COSMIC satellites. This is partly due to the operational setup of EPS. For the investigation we focus on two observation periods where updates in the ECMWF (March 2009) and COSMIC processing (October 2009) have improved the statistics further. Bending angles biases agree to within 0.5% against ECMWF and to within 0.1% against COSMIC after the updates for altitudes between 8 and 40 km. In addition, we also analyze the impact of the Metop orbit processing on the derived GRAS bending angle data, where different GPS and Metop orbit solutions are analyzed. Results show that a batch based orbit processing would improve in particular the bending angle bias behavior at higher altitudes. Requirements for the operational processing of GRAS data are briefly outlined, options to ease the use of other positioning system satellites in the near future are discussed. A simplified analysis on the observation of several of these systems, e.g. GPS and Galileo, from one platform shows that about 16% of occultations are found within 300 km, ±3 h, thus providing similar information. A constellation of 2 GRAS like instruments would have only about 10% close-by.

  17. 60 FR 54505 - Amoco Bioproducts Corp.; Filing of Petition for Affirmation of GRAS Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    1995-10-24

    ... 25-hydroxyvitamin D 3 be affirmed as generally recognized as safe (GRAS) as a source of vitamin D 3... GRAS as a source of vitamin D 3 activity in broiler chicken feed. -The petition has been placed...

  18. Risk assessment of proteolytic Clostridium botulinum in canned foie gras.

    PubMed

    Membré, Jeanne-Marie; Diao, Moctar; Thorin, Chantal; Cordier, Grégoire; Zuber, François; André, Stéphane

    2015-10-01

    In this study, a risk assessment of proteolytic Clostridium botulinum in canned foie gras was performed, the number of illnesses per year in France due to C. botulinum in foie gras was estimated. Data on initial level in raw materials were collected at manufacturers and analysed using a Negative Binomial distribution. The effect of the usual foie gras heat treatment (equivalent time at 121 °C: F0=0.5 min) was considered at two levels: first, it led to an inactivation (estimated to 2.3 log); second it led to a spore injury and then to a spore inhibition. This latter effect was assessed by analysing data from a challenge test study carried out with Clostridium sporogenes spores in the foie gras product. The probability of spore recovering after thermal inhibition was estimated to 9.5×10(-8) (corresponding to 7.0 log). The data on the consumption pattern were collected on the French market. The Quantitative Microbiological Risk Assessment (QMRA) model and all the assumptions are reported in detail in the study. The initial contamination of raw materials, effect of thermal treatment on microbial inactivation and spore inhibition were handled mathematically using a probabilistic framework, considering only the variability dimension. The model was implemented in Excel and run through Monte Carlo simulation, using @Risk software. In parallel, epidemiological data collected from the French Institute for Public Health Surveillance during the period 2001-2012 were used to estimate an Appropriate Level Of Protection (ALOP) and then a Food Safety Objective (FSO): ALOP equalled to 2.5×10(-3) illnesses per million inhabitant per year, FSO equalled to 1.4×10(-9) foie gras portions containing C. botulinum spore (expressed in decimal logarithm, FSO=-8.9). The QMRA model output values were smaller, but on the same order of magnitude as these two figures: 8.0×10(-4) illnesses per million inhabitants per year, and, 4.5×10(-10) (-9.3 log) foie gras portions containing C

  19. Acides gras oméga-3 et dyslexie

    PubMed Central

    Zelcer, Michal; Goldman, Ran D.

    2015-01-01

    Résumé Question À la lumière de la hausse du nombre d’enfants d’âge scolaire ayant reçu un diagnostic de dyslexie, quel est le rôle des suppléments d’acides gras oméga-3 dans la prise en charge de cette affection? Réponse La dyslexie est le trouble d’apprentissage le plus répandu et elle est connue pour ses causes multifactorielles. De récentes données probantes pointent vers une corrélation entre le métabolisme défectueux des acides gras polyinsaturés et les troubles de neurodéveloppement, tels que la dyslexie. Bien que l’administration de suppléments d’acides gras oméga-3 aux enfants dyslexiques ait fait l’objet d’études, les données probantes sont limitées. Les critères diagnostiques homogènes de dyslexie, les mesures objectives de carence en acides gras et la surveillance étroite de l’apport alimentaire ne sont que quelques-uns des facteurs pouvant améliorer la qualité de la recherche dans ce domaine.

  20. Analytical applications for pore-forming proteins.

    PubMed

    Kasianowicz, John J; Balijepalli, Arvind K; Ettedgui, Jessica; Forstater, Jacob H; Wang, Haiyan; Zhang, Huisheng; Robertson, Joseph W F

    2016-03-01

    Proteinaceous nanometer-scale pores are ubiquitous in biology. The canonical ionic channels (e.g., those that transport Na(+), K(+), Ca(2+), and Cl(-) across cell membranes) play key roles in many cellular processes, including nerve and muscle activity. Another class of channels includes bacterial pore-forming toxins, which disrupt cell function, and can lead to cell death. We describe here the recent development of these toxins for a wide range of biological sensing applications. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. PMID:26431785

  1. Antifreeze Proteins in Winter Rye Leaves Form Oligomeric Complexes1

    PubMed Central

    Yu, Xiao-Ming; Griffith, Marilyn

    1999-01-01

    Antifreeze proteins (AFPs) similar to three pathogenesis-related proteins, a glucanase-like protein (GLP), a chitinase-like protein (CLP), and a thaumatin-like protein (TLP), accumulate during cold acclimation in winter rye (Secale cereale) leaves, where they are thought to modify the growth of intercellular ice during freezing. The objective of this study was to characterize the rye AFPs in their native forms, and our results show that these proteins form oligomeric complexes in vivo. Nine proteins were separated by native-polyacrylamide gel electrophoresis from apoplastic extracts of cold-acclimated winter rye leaves. Seven of these proteins exhibited multiple polypeptides when denatured and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After isolation of the individual proteins, six were shown by immunoblotting to contain various combinations of GLP, CLP, and TLP in addition to other unidentified proteins. Antisera produced against individual cold-induced winter rye GLP, CLP, and TLP all dramatically inhibited glucanase activity in apoplastic extracts from cold-acclimated winter rye leaves, and each antiserum precipitated all three proteins. These results indicate that each of the polypeptides may be exposed on the surface of the protein complexes. By forming oligomeric complexes, AFPs may form larger surfaces to interact with ice, or they may simply increase the mass of the protein bound to ice. In either case, the complexes of AFPs may inhibit ice growth and recrystallization more effectively than the individual polypeptides. PMID:10198095

  2. The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    PubMed Central

    2010-01-01

    Background Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia. Methods For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected. Results The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail. Conclusions The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes. PMID:21067598

  3. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants.

    PubMed

    Fambrini, M; Mariotti, L; Parlanti, S; Salvini, M; Pugliesi, C

    2015-11-01

    The GRAS proteins belong to a plant transcriptional regulator family that function in the regulation of plant growth and development. Despite their important roles, in sunflower only one GRAS gene (HaDella1) with the DELLA domain has been reported. Here, we provide a functional characterisation of a GRAS-like gene from Helianthus annuus (Ha-GRASL) lacking the DELLA motif. The Ha-GRASL gene contains an intronless open reading frame of 1,743 bp encoding 580 amino acids. Conserved motifs in the GRAS domain are detected, including VHIID, PFYRE, SAW and two LHR motifs. Within the VHII motif, the P-H-N-D-Q-L residues are entirely maintained. Phylogenetic analysis reveals that Ha-GRASL belongs to the SCARECROW LIKE4/7 (SCL4/7) subfamily of the GRAS consensus tree. Accumulation of Ha-GRASL mRNA at the adaxial boundaries from P6/P7 leaf primordia suggests a role of Ha-GRASL in the initiation of median and basal axillary meristems (AMs) of sunflower. When Ha-GRASL is over-expressed in Arabidopsis wild-type plants, the number of lateral bolts increases differently from untransformed plants. However, Ha-GRASL slightly affects the lateral suppressor (las-4-) mutation. Therefore, we hypothesise that Ha-GRASL and LAS are not functionally equivalent. The over-expression of Ha-GRASL reduces metabolic flow of gibberellins (GAs) in Arabidopsis and this modification could be relevant in AM development. Phylogenetic analysis includes LAS and SCL4/7 in the same major clade, suggesting a more recent separation of these genes with respect to other GRAS members. We propose that some features of their ancestor, as well as AM initiation and outgrowth, are partially retained in both LAS and SCL4/7. PMID:26081041

  4. Magnetic Resonance Access to Transiently Formed Protein Complexes**

    PubMed Central

    Sára, Tomáš; Schwarz, Thomas C; Kurzbach, Dennis; Wunderlich, Christoph H; Kreutz, Christoph; Konrat, Robert

    2014-01-01

    Protein–protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein–protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins. PMID:25050230

  5. Neighborhood Walkable Urban Form and C-Reactive Protein

    EPA Science Inventory

    Background: Walkable urban form predicts physical activity and lower body mass index, which lower C-reactive protein (CRP). However, urban form is also related to pollution, noise, social and health behavior, crowding, and other stressors, which may complement or contravene walka...

  6. 21 CFR 170.30 - Eligibility for classification as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Eligibility for classification as generally recognized as safe (GRAS). 170.30 Section 170.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... classification as generally recognized as safe (GRAS). (a) General recognition of safety may be based only on...

  7. 21 CFR 570.30 - Eligibility for classification as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Eligibility for classification as generally recognized as safe (GRAS). 570.30 Section 570.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Additive Safety § 570.30 Eligibility for classification as generally recognized as safe (GRAS). (a)...

  8. Polyamide Nanogels from GRAS Components and Their Toxicity in Mouse Pre-implantation Embryos

    PubMed Central

    Prasad, Priyaa; Molla, Mijanur Rahaman; Cui, Wei; Canakci, Mine; Osborne, Barbara; Mager, Jesse; Thayumanavan, S.

    2016-01-01

    Safe delivery systems that can not only encapsulate hydrophobic drug molecules, but also release them in response to specific triggers, are important in several therapeutic and biomedical applications. In this paper, we have designed a nanogel based on molecules that are generally recognized as safe (GRAS). We have shown that the resultant polymeric nanogels exhibit responsive molecular release, and also show high in vitro cellular viability on HEK 293T, HeLa, MCF 7 and A549 cell lines. The toxicity of these nanogels was further evaluated with a highly sensitive assay using mouse preimplantation embryo development, where blastocysts were formed after four days of in vitro culture and live pups were born when morulae/early blastocysts were transferred to the uteri of surrogate recipients. Our results indicate that these nanogels are non-toxic during mammalian development and do not alter normal growth or early embryo success rate. PMID:26367020

  9. Inclusion bodies and purification of proteins in biologically active forms.

    PubMed

    Mukhopadhyay, A

    1997-01-01

    Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved. PMID:8939059

  10. The PIN-FORMED (PIN) protein family of auxin transporters

    PubMed Central

    2009-01-01

    Summary The PIN-FORMED (PIN) proteins are secondary transporters acting in the efflux of the plant signal molecule auxin from cells. They are asymmetrically localized within cells and their polarity determines the directionality of intercellular auxin flow. PIN genes are found exclusively in the genomes of multicellular plants and play an important role in regulating asymmetric auxin distribution in multiple developmental processes, including embryogenesis, organogenesis, tissue differentiation and tropic responses. All PIN proteins have a similar structure with amino- and carboxy-terminal hydrophobic, membrane-spanning domains separated by a central hydrophilic domain. The structure of the hydrophobic domains is well conserved. The hydrophilic domain is more divergent and it determines eight groups within the protein family. The activity of PIN proteins is regulated at multiple levels, including transcription, protein stability, subcellular localization and transport activity. Different endogenous and environmental signals can modulate PIN activity and thus modulate auxin-distribution-dependent development. A large group of PIN proteins, including the most ancient members known from mosses, localize to the endoplasmic reticulum and they regulate the subcellular compartmentalization of auxin and thus auxin metabolism. Further work is needed to establish the physiological importance of this unexpected mode of auxin homeostasis regulation. Furthermore, the evolution of PIN-based transport, PIN protein structure and more detailed biochemical characterization of the transport function are important topics for further studies. PMID:20053306

  11. Hydrophobic Surfactant Proteins Induce a Phosphatidylethanolamine to Form Cubic Phases

    PubMed Central

    Chavarha, Mariya; Khoojinian, Hamed; Schulwitz, Leonard E.; Biswas, Samares C.; Rananavare, Shankar B.; Hall, Stephen B.

    2010-01-01

    Abstract The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71°C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57°C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62°C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption. PMID:20409474

  12. Oligomeric forms of G protein-coupled receptors (GPCRs)

    PubMed Central

    Palczewski, Krzysztof

    2010-01-01

    Oligomerization is a general characteristic of cell membrane receptors that is shared by G protein-coupled receptors (GPCRs) together with their G protein partners. Recent studies of these complexes, both in vivo and in purified reconstituted forms, unequivocally support this contention for GPCRs, perhaps with only rare exceptions. As evidence has evolved from experimental cell lines to more relevant in vivo studies and from indirect biophysical approaches to well defined isolated complexes of dimeric receptors alone and complexed with G proteins, there is an expectation that the structural basis of oligomerization and the functional consequences for membrane signaling will be elucidated. Oligomerization of cell membrane receptors is fully supported by both thermodynamic calculations and the selectivity and duration of signaling required to reach targets located in various cellular compartments. PMID:20538466

  13. Four crystal forms of a Bence-Jones protein

    SciTech Connect

    Makino, Debora L.; Henschen-Edman, Agnes H.; McPherson, Alexander

    2005-01-01

    Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 y ago. The trigonal crystal form may shed some light on the formation of fibrils common to certain storage diseases. Four crystal forms have been grown and characterized by X-ray diffraction of a Bence-Jones protein collected from the urine of a multiple myeloma patient more than 40 years ago. Closely related tetragonal and orthorhombic forms belonging to space groups P4{sub 3}2{sub 1}2 and P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = b = 68.7, c = 182.1 and a = 67.7, b = 69.4, c = 87.3 Å, diffract to 1.5 and 1.9 Å, respectively. Two closely related trigonal forms, both belonging to space group P3{sub 1}21 with unit-cell parameters a = b = 154.3 Å but differing by a doubling of the c axis, one 46.9 Å and the other 94.0 Å, diffract to 2.9 and 2.6 Å resolution, respectively. The trigonal crystal of short c-axis length shows a positive indication of twinning. The trigonal crystal of longer c axis, which appeared only after eight months of incubation at room temperature, is likely to be composed of proteolytically degraded molecules and unlike the other crystal forms contains two entire Bence-Jones dimers in the asymmetric unit. This latter crystal form may shed some light on the formation of fibrils common to certain storage diseases.

  14. Chromatographic resolution of altered forms of protein kinase C

    SciTech Connect

    Ashendel, C.L.; Minor, P.L.; Baudoin, P.A.; Carlos, M.

    1987-05-01

    Rapid chromatographic resolution of protein kinase C (PKC) in extracts of rat brain on DEAE-cellulose yielded two major peaks of activity. These fractions bound phorbol esters with identical affinity and specificity and had similar ratios of PKC to phorbol ester-binding activities. Chicken egg yolk antibodies raised to PKC in the first fraction reacted with 74 to 76 kilodalton peptides in the second fraction. Chromatography of each fraction on hydroxylapatite yielded similar distributions of three PKC isozymes. Rechromatography of the DEAE-cellulose fractions on DEAE-cellulose confirmed that these forms of PKC were not rapidly interconvertible. Results of experiments in which extracts or fractions were incubated with MgATP and phosphatase inhibitors were consistent with elution of dephospho-PKC in the first fraction while the second fraction contained phospho-PKC. If confirmed, this suggests that a substantial fraction of PKC in rat and mouse tissues exists in the phosphorylated form.

  15. Pore-forming protein toxins: from structure to function.

    PubMed

    Parker, Michael W; Feil, Susanne C

    2005-05-01

    Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class. PMID:15561302

  16. Ordered nanoparticle arrays formed on engineered chaperonin protein templates.

    SciTech Connect

    McMillan, R. A.; Paavola, C. D.; Howard, J.; Chan, S. L.; Zaluzec, N. J.; Trent, J. D.; Materials Science Division; NASA Ames Research Center; SETI Inst.

    2002-12-01

    Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 m in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe-ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.

  17. Ordered nanoparticle arrays formed on engineered chaperonin protein templates

    NASA Technical Reports Server (NTRS)

    McMillan, R. Andrew; Paavola, Chad D.; Howard, Jeanie; Chan, Suzanne L.; Zaluzec, Nestor J.; Trent, Jonathan D.

    2002-01-01

    Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 microm in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe-ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.

  18. Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins?

    PubMed

    Ota, Katja; Butala, Matej; Viero, Gabriella; Dalla Serra, Mauro; Sepčić, Kristina; Maček, Peter

    2014-01-01

    Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents. Representative proteins here include pleurotolysin B, which has a MACPF domain, and the aegerolysin-like protein pleurotolysin A, and the very similar ostreolysin A, which have been purified from oyster mushroom (Pleurotus ostreatus). These have been shown to act in concert to perforate natural and artificial lipid membranes with high cholesterol and sphingomyelin content. The aegerolysin-like proteins provide the membrane cholesterol/sphingomyelin selectivity and recruit oligomerised pleurotolysin B molecules, to create a membrane-inserted pore complex. The resulting protein structure has been imaged with electron microscopy, and it has a 13-meric rosette-like structure, with a central lumen that is ~4-5 nm in diameter. The opened transmembrane pore is non-selectively permeable for ions and smaller neutral solutes, and is a cause of cytolysis of a colloid-osmotic type. The biological significance of these proteins for the fungal life-style is discussed. PMID:24798017

  19. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.

    PubMed

    Chen, Kunmei; Li, Hongwei; Chen, Yaofeng; Zheng, Qi; Li, Bin; Li, Zhensheng

    2015-01-20

    Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles in plant growth and development as well as in plant responses to biotic and abiotic stresses. So far few GRAS genes in wheat (Triticum aestivum L.) have been characterized. A previous transcriptome analysis indicated that the expression of a GRAS gene (TaSCL14) was induced by high-light stress in Xiaoyan 54 (XY54), a common wheat cultivar with strong tolerance to high-light stress. In this study, TaSCL14 gene was isolated from XY54 and mapped on chromosome 4A. TaSCL14 was expressed in various wheat organs, with high levels in stems and roots. Our results confirmed that TaSCL14 expression was indeed responsive to high-light stress. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) of TaSCL14 in wheat was performed to help characterize its potential functions. Silencing of TaSCL14 resulted in inhibited plant growth, decreased photosynthetic capacity, and reduced tolerance to photooxidative stress. In addition, silencing of TaSCL14 in wheat promoted leaf senescence induced by darkness. These results suggest that TaSCL14 may act as a multifunctional regulator involved in plant growth, photosynthesis, tolerance to photooxidative stress, and senescence. PMID:25619599

  20. Long-lived reactive species formed on proteins induce changes in protein and lipid turnover.

    PubMed

    Davies, Michael

    2014-10-01

    Proteins are major targets for oxidative damage in vivo due to their high abundance and rapid rates of reaction with both one-electron (radical) and two-electron oxidants (e.g. singlet oxygen, hypochlorous acid, peroxynitrous acid, reactive aldehydes). The turnover of both native and modified proteins is critical for maintenance of cell homeostasis, with this occurring via multiple pathways including proteasomes (for cytosolic species), the Lon protease (in mitochondria), and the endo-lysosomal systems (both extra- and intra-cellular species). Evidence has been presented for both enhanced and diminished rates of catabolism of modified proteins, as well as altered turnover of native (unmodified) proteins as a result of damage to these systems, potentially as a result of the accumulation of damaged proteins. In recent studies we have shown that long-lived reactive species forms on proteins (hydroperoxides, chloramines and aldehydes) can modify the activity of proteasomal and lysosomal enzymes. Some of the above species are efficient inhibitors of the tryptic and chymotryptic activities of the 26S proteasome, as well as lysosomal cathepsin and acid lipase activities. These are key species in the turnover of both proteins and lipoproteins. The loss of enzyme activity is accompanied in many cases, by oxidation of critical thiol residues via molecular reactions. For reactive aldehydes (either free or protein-bound) direct enzyme inhibition can occur as well as modulation of protein levels and, in the case of lysosomes, changes in lysosomal numbers. Overall, these data indicate that the formation of reactive species on proteins can modulate cell function by multiple pathways including interference with the turnover of native proteins (including critical cell signalling molecules) and alterations in the rate of clearance of modified proteins. Both pathways may contribute to the development of a number of human pathologies associated with oxidative damage. PMID:26461411

  1. Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins.

    PubMed

    Marangon, Matteo; Van Sluyter, Steven C; Waters, Elizabeth J; Menz, Robert I

    2014-01-01

    Grape thaumatin-like proteins (TLPs) play roles in plant-pathogen interactions and can cause protein haze in white wine unless removed prior to bottling. Different isoforms of TLPs have different hazing potential and aggregation behavior. Here we present the elucidation of the molecular structures of three grape TLPs that display different hazing potential. The three TLPs have very similar structures despite belonging to two different classes (F2/4JRU is a thaumatin-like protein while I/4L5H and H2/4MBT are VVTL1), and having different unfolding temperatures (56 vs. 62°C), with protein F2/4JRU being heat unstable and forming haze, while I/4L5H does not. These differences in properties are attributable to the conformation of a single loop and the amino acid composition of its flanking regions. PMID:25463627

  2. Structure of Haze Forming Proteins in White Wines: Vitis vinifera Thaumatin-Like Proteins

    PubMed Central

    Marangon, Matteo; Van Sluyter, Steven C.; Waters, Elizabeth J.; Menz, Robert I.

    2014-01-01

    Grape thaumatin-like proteins (TLPs) play roles in plant-pathogen interactions and can cause protein haze in white wine unless removed prior to bottling. Different isoforms of TLPs have different hazing potential and aggregation behavior. Here we present the elucidation of the molecular structures of three grape TLPs that display different hazing potential. The three TLPs have very similar structures despite belonging to two different classes (F2/4JRU is a thaumatin-like protein while I/4L5H and H2/4MBT are VVTL1), and having different unfolding temperatures (56 vs. 62°C), with protein F2/4JRU being heat unstable and forming haze, while I/4L5H does not. These differences in properties are attributable to the conformation of a single loop and the amino acid composition of its flanking regions. PMID:25463627

  3. 21 CFR 170.35 - Affirmation of generally recognized as safe (GRAS) status.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.35 Affirmation of generally recognized as... convincing evidence that the substance is GRAS and that it should be considered a food additive subject to... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Affirmation of generally recognized as safe...

  4. 21 CFR 170.30 - Eligibility for classification as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Eligibility for classification as generally recognized as safe (GRAS). 170.30 Section 170.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.30 Eligibility...

  5. 21 CFR 170.35 - Affirmation of generally recognized as safe (GRAS) status.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Affirmation of generally recognized as safe (GRAS) status. 170.35 Section 170.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.35 Affirmation of generally recognized...

  6. 21 CFR 170.30 - Eligibility for classification as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Eligibility for classification as generally recognized as safe (GRAS). 170.30 Section 170.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.30 Eligibility...

  7. 21 CFR 170.35 - Affirmation of generally recognized as safe (GRAS) status.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Affirmation of generally recognized as safe (GRAS) status. 170.35 Section 170.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES Food Additive Safety § 170.35 Affirmation of generally recognized...

  8. A characterization of grapevine of GRAS domain transcription factor gene family.

    PubMed

    Sun, Xin; Xie, Zhengqiang; Zhang, Cheng; Mu, Qian; Wu, Weimin; Wang, Baoju; Fang, Jinggui

    2016-07-01

    GRAS domain genes are a group of important plant-specific transcription factors that have been reported to be involved in plant development. In order to know the roles of GRAS genes in grapevine, a widely cultivated fruit crop, the study on grapevine GRAS (VvGRAS) was carried out, and from which, 43 were identified from 12× assemble grapevine genomic sequences. Further, the genomic structures, synteny, phylogeny, expression profiles in different tissues of these genes, and their roles in response to stress were investigated. Among the genes, two potential target genes (VvSCL15 and VvSCL22) for VvmiR171 were experimentally verified by PPM-RACE and RLM-RACE, in that not only the cleavage sites of miR171 on the target mRNA were mapped but also the cleaved fragments and their expressing patterns were detected. Transgenic Arabidopsis plants over expression VvSCL15 showed lower tolerance to drought and salt treatments. PMID:26842940

  9. 76 FR 7701 - Special Local Regulations; Krewe of Charleston Mardi Gras Boat Parade, Charleston Harbor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... consist of a series of buffer zones around vessels participating in the Krewe of Charleston Mardi Gras Boat Parade. These buffer zones are as follows: (1) All waters within 500 yards in front of the lead... from entering, transiting through, anchoring, or remaining within the buffer zones unless...

  10. Unfolded Protein Response Pathways in Bloodstream-Form Trypanosoma brucei?

    PubMed

    Tiengwe, Calvin; Brown, Abigail E N A; Bangs, James D

    2015-11-01

    The unfolded protein response (UPR) is a stress mechanism to cope with misfolded proteins in the early secretory pathway, the hallmark being transcriptional upregulation of endoplasmic reticulum (ER) molecular chaperones such as BiP and protein disulfide isomerase. Despite the lack of transcriptional regulation and the absence of the classical UPR machinery, African trypanosomes apparently respond to persistent ER stress by a UPR-like response, including upregulation of BiP, and a related spliced leader silencing (SLS) response whereby SL RNA transcription is shut down. Initially observed by knockdown of the secretory protein translocation machinery, both responses are also induced by chemical agents known to elicit UPR in mammalian cells (H. Goldshmidt, D. Matas, A. Kabi, A. Carmi, R. Hope, S. Michaeli, PLoS Pathog 6:e1000731, 2010, http://dx.doi.org/10.1371/journal.ppat.1000731). As these findings were generated primarily in procyclic-stage trypanosomes, we have investigated both responses in pathogenic bloodstream-stage parasites. RNA interference (RNAi) silencing of the core translocon subunit Trypanosoma brucei Sec61α (TbSec61α) failed to induce either response. Interestingly, cell growth halted within 16 h of silencing, but sufficient TbSec61α remained to allow full competence for translocation of nascent secretory proteins for up to 24 h, indicating that replication is finely coupled with the capacity to synthesize and transport secretory cargo. Tunicamycin and thapsigargin at concentrations compatible with short-term (4 h) and long-term (24 h) viability also failed to induce any of the indicators of UPR-like or SLS responses. Dithiothreitol (DTT) was lethal at all concentrations tested. These results indicate that UPR-like and SLS responses to persistent ER stress do not occur in bloodstream-stage trypanosomes. PMID:26318397

  11. Unfolded Protein Response Pathways in Bloodstream-Form Trypanosoma brucei?

    PubMed Central

    Tiengwe, Calvin; Brown, Abigail E. N. A.

    2015-01-01

    The unfolded protein response (UPR) is a stress mechanism to cope with misfolded proteins in the early secretory pathway, the hallmark being transcriptional upregulation of endoplasmic reticulum (ER) molecular chaperones such as BiP and protein disulfide isomerase. Despite the lack of transcriptional regulation and the absence of the classical UPR machinery, African trypanosomes apparently respond to persistent ER stress by a UPR-like response, including upregulation of BiP, and a related spliced leader silencing (SLS) response whereby SL RNA transcription is shut down. Initially observed by knockdown of the secretory protein translocation machinery, both responses are also induced by chemical agents known to elicit UPR in mammalian cells (H. Goldshmidt, D. Matas, A. Kabi, A. Carmi, R. Hope, S. Michaeli, PLoS Pathog 6:e1000731, 2010, http://dx.doi.org/10.1371/journal.ppat.1000731). As these findings were generated primarily in procyclic-stage trypanosomes, we have investigated both responses in pathogenic bloodstream-stage parasites. RNA interference (RNAi) silencing of the core translocon subunit Trypanosoma brucei Sec61α (TbSec61α) failed to induce either response. Interestingly, cell growth halted within 16 h of silencing, but sufficient TbSec61α remained to allow full competence for translocation of nascent secretory proteins for up to 24 h, indicating that replication is finely coupled with the capacity to synthesize and transport secretory cargo. Tunicamycin and thapsigargin at concentrations compatible with short-term (4 h) and long-term (24 h) viability also failed to induce any of the indicators of UPR-like or SLS responses. Dithiothreitol (DTT) was lethal at all concentrations tested. These results indicate that UPR-like and SLS responses to persistent ER stress do not occur in bloodstream-stage trypanosomes. PMID:26318397

  12. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins

    PubMed Central

    2012-01-01

    Background Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question “What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?” Results A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex. Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our

  13. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    PubMed Central

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês CR; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the—in many cells—asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. DOI: http://dx.doi.org/10.7554/eLife.02860.001 PMID:24948515

  14. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID.

    PubMed

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês C R; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the--in many cells--asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant. PMID:24948515

  15. Origins and Evolution of the HET-s Prion-Forming Protein: Searching for Other Amyloid-Forming Solenoids

    PubMed Central

    Gendoo, Deena M. A.; Harrison, Paul M.

    2011-01-01

    The HET-s prion-forming domain from the filamentous fungus Podospora anserina is gaining considerable interest since it yielded the first well-defined atomic structure of a functional amyloid fibril. This structure has been identified as a left-handed beta solenoid with a triangular hydrophobic core. To delineate the origins of the HET-s prion-forming protein and to discover other amyloid-forming proteins, we searched for all homologs of the HET-s protein in a database of protein domains and fungal genomes, using a combined application of HMM, psi-blast and pGenThreader techniques, and performed a comparative evolutionary analysis of the N-terminal alpha-helical domain and the C-terminal prion-forming domain of HET-s. By assessing the tandem evolution of both domains, we observed that the prion-forming domain is restricted to Sordariomycetes, with a marginal additional sequence homolog in Arthroderma otae as a likely case of horizontal transfer. This suggests innovation and rapid evolution of the solenoid fold in the Sordariomycetes clade. In contrast, the N-terminal domain evolves at a slower rate (in Sordariomycetes) and spans many diverse clades of fungi. We performed a full three-dimensional protein threading analysis on all identified HET-s homologs against the HET-s solenoid fold, and present detailed structural annotations for identified structural homologs to the prion-forming domain. An analysis of the physicochemical characteristics in our set of structural models indicates that the HET-s solenoid shape can be readily adopted in these homologs, but that they are all less optimized for fibril formation than the P. anserina HET-s sequence itself, due chiefly to the presence of fewer asparagine ladders and salt bridges. Our combined structural and evolutionary analysis suggests that the HET-s shape has “limited scope” for amyloidosis across the wider protein universe, compared to the ‘generic’ left-handed beta helix. We discuss the implications of

  16. Integral and differential form of the protein folding problem

    NASA Astrophysics Data System (ADS)

    Tramontano, Anna

    2004-07-01

    The availability of the complete genomic sequences of many species, including human, has raised enormous expectations in medicine, pharmacology, ecology, biotechnology and forensic sciences. However, knowledge is only a first step toward understanding, and we are only at the early stage of a scientific process that might lead us to satisfy all the expectations raised by the genomic projects. In this review I will discuss the present status of computational methods that attempt to infer the unique three-dimensional structure of proteins from their amino acid sequences. Although this problem has been defined as the “holy grail” of biology, it represents only one of the many hurdles in our path towards the understanding of life at a molecular level.

  17. Diarylthiophenes as inhibitors of the pore-forming protein perforin

    PubMed Central

    Miller, Christian K.; Huttunen, Kristiina M.; Denny, William A.; Jaiswal, Jagdish K.; Ciccone, Annette; Browne, Kylie A.; Trapani, Joseph A.; Spicer, Julie A.

    2016-01-01

    Evolution from a furan-containing high-throughput screen (HTS) hit (1) resulted in isobenzofuran-1(3H)-one (2) as a potent inhibitor of the function of both isolated perforin protein and perforin delivered in situ by intact KHYG-1 NK cells. In the current study, structure–activity relationship (SAR) development towards a novel series of diarylthiophene analogues has continued through the use of substituted-benzene and -pyridyl moieties as bioisosteres for 2-thioxoimidazolidin-4-one (A) on a thiophene (B) -isobenzofuranone (C) scaffold. The resulting compounds were tested for their ability to inhibit perforin lytic activity in vitro. Carboxamide (23) shows a 4-fold increase over (2) in lytic activity against isolated perforin and provides good rationale for continued development within this class. PMID:26711151

  18. Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins.

    PubMed

    Ali, Neserin; Mattsson, Karin; Rissler, Jenny; Karlsson, Helen Marg; Svensson, Christian R; Gudmundsson, Anders; Lindh, Christian H; Jönsson, Bo A G; Cedervall, Tommy; Kåredal, Monica

    2016-01-01

    Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona. PMID:26186033

  19. Analysis of nanoparticle–protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins

    PubMed Central

    Ali, Neserin; Mattsson, Karin; Rissler, Jenny; Karlsson, Helen Marg; Svensson, Christian R.; Gudmundsson, Anders; Lindh, Christian H.; Jönsson, Bo A. G.; Cedervall, Tommy; Kåredal, Monica

    2016-01-01

    Abstract Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona. PMID:26186033

  20. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, G.D.; Glass, R.; Rupp, B.

    1997-01-28

    A method is disclosed for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10{sup 6}V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved. 2 figs.

  1. System and method for forming synthetic protein crystals to determine the conformational structure by crystallography

    DOEpatents

    Craig, George D.; Glass, Robert; Rupp, Bernhard

    1997-01-01

    A method for forming synthetic crystals of proteins in a carrier fluid by use of the dipole moments of protein macromolecules that self-align in the Helmholtz layer adjacent to an electrode. The voltage gradients of such layers easily exceed 10.sup.6 V/m. The synthetic protein crystals are subjected to x-ray crystallography to determine the conformational structure of the protein involved.

  2. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    SciTech Connect

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin; Sacchettini, James C.

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.

  3. PLACENTAL EXPRESSION OF THE MEMBRANE FORM OF FOLATE BINDING PROTEIN DURING PREGNANCY IN SWINE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous experiments indicated that secreted (s) and membrane (m) forms of folate binding protein (FBP) are present in the intrauterine environment of the pig. Our studies indicated that the two forms were produced sequentially; the secreted form was present in the intrauterine glands until Day 20 o...

  4. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants. PMID:26260516

  5. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  6. Just a Spoonful of Sugar Will Land You Six Feet Underground: Should the Food and Drug Administration Revoke Added Sugar's GRAS Status?

    PubMed

    Card, Melissa Marie; Abela, John Francis

    2015-01-01

    This article assesses whether added sugar meets FDA's standard to be generally recognized as safe ("GRAS"). If added sugar is not GRAS, then manufacturers are subject to premarket approval prior to using added sugar in their products. This article advocates that FDA should issue a Federal Register notice determining that added sugar is not GRAS, allowing FDA to regulate the amount of added sugar used in processed foods, decreasing the health adversities that stem from added sugar consumption. PMID:26630822

  7. SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.

    PubMed

    Wang, Jingjing; Hou, Chuanming; Huang, Jianqin; Wang, Zhengjia; Xu, Yingwu

    2015-03-01

    To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development. PMID:25602439

  8. Pore-forming ability of major outer membrane proteins from Wolinella recta ATCC 33238.

    PubMed Central

    Kennell, W L; Egli, C; Hancock, R E; Holt, S C

    1992-01-01

    Three major outer membrane proteins with apparent molecular masses of 43, 45, and 51 kDa were purified from Wolinella recta ATCC 33238, and their pore-forming abilities were determined by the black lipid bilayer method. The non-heat-modifiable 45-kDa protein (Omp 45) showed no pore-forming activity even at high KCl concentrations. The single-channel conductances in 1 M KCl of the heat-modifiable proteins with apparent molecular masses of 43 kDa (Omp 43) and 51 kDa (Omp 51) were 0.49 and 0.60 nS, respectively. The proteins formed nonselective channels and, as determined by experiments of ion selectivity and zero-current potential, were weakly anion selective. Images PMID:1370429

  9. Purification and characterization of coacervate-forming cuticular proteins from Papilio xuthus pupae.

    PubMed

    Yamanaka, Masahiro; Ishizaki, Yumi; Nakagawa, Taro; Taoka, Azuma; Fukumori, Yoshihiro

    2013-07-01

    The Papilio xuthus (Lepidoptera: Papilionidae) pupa expresses novel soluble proteins that undergo reversible temperature-dependent coacervate-formation. We purified two coacervate-forming proteins, PX-1 and PX-4, from the wings of pharate adults. PX-1 and PX-4 form coacervates upon warming. Transmission electron microscopy analysis revealed that these proteins assemble ordered bead-like ultrastructures. We cloned and sequenced PX-1 and PX-4 cDNAs. The PX-1 and PX-4 amino acid sequences contain many hydrophobic residues and show homologies to insect cuticular proteins. Moreover, when recombinant PX-1 and PX-4 were overexpressed in Escherichia coli, both recombinant proteins exhibited temperature-dependent coacervation. Furthermore, analyses of truncated mutants of PX-1 suggest that both the Val/Pro-rich region and Gly/lle-rich regions of PX-1 are involved in such coacervation. PMID:23829213

  10. Large Proteins Have a Great Tendency to Aggregate but a Low Propensity to Form Amyloid Fibrils

    PubMed Central

    Ramshini, Hassan; Parrini, Claudia; Relini, Annalisa; Zampagni, Mariagioia; Mannini, Benedetta; Pesce, Alessandra; Saboury, Ali Akbar; Nemat-Gorgani, Mohsen; Chiti, Fabrizio

    2011-01-01

    The assembly of soluble proteins into ordered fibrillar aggregates with cross-β structure is an essential event of many human diseases. The polypeptides undergoing aggregation are generally small in size. To explore if the small size is a primary determinant for the formation of amyloids under pathological conditions we have created two databases of proteins, forming amyloid-related and non-amyloid deposits in human diseases, respectively. The size distributions of the two protein populations are well separated, with the systems forming non-amyloid deposits appearing significantly larger. We have then investigated the propensity of the 486-residue hexokinase-B from Saccharomyces cerevisiae (YHKB) to form amyloid-like fibrils in vitro. This size is intermediate between the size distributions of amyloid and non-amyloid forming proteins. Aggregation was induced under conditions known to be most effective for amyloid formation by normally globular proteins: (i) low pH with salts, (ii) pH 5.5 with trifluoroethanol. In both situations YHKB aggregated very rapidly into species with significant β-sheet structure, as detected using circular dichroism and X-ray diffraction, but a weak Thioflavin T and Congo red binding. Moreover, atomic force microscopy indicated a morphology distinct from typical amyloid fibrils. Both types of aggregates were cytotoxic to human neuroblastoma cells, as indicated by the MTT assay. This analysis indicates that large proteins have a high tendency to form toxic aggregates, but low propensity to form regular amyloid in vivo and that such a behavior is intrinsically determined by the size of the protein, as suggested by the in vitro analysis of our sample protein. PMID:21249193

  11. The Native Form and Maturation Process of Hepatitis C Virus Core Protein

    PubMed Central

    Yasui, Kohichiroh; Wakita, Takaji; Tsukiyama-Kohara, Kyoko; Funahashi, Shin-Ichi; Ichikawa, Masumi; Kajita, Tadahiro; Moradpour, Darius; Wands, Jack R.; Kohara, Michinori

    1998-01-01

    The maturation and subcellular localization of hepatitis C virus (HCV) core protein were investigated with both a vaccinia virus expression system and CHO cell lines stably transformed with HCV cDNA. Two HCV core proteins, with molecular sizes of 21 kDa (p21) and 23 kDa (p23), were identified. The C-terminal end of p23 is amino acid 191 of the HCV polyprotein, and p21 is produced as a result of processing between amino acids 174 and 191. The subcellular localization of the HCV core protein was examined by confocal laser scanning microscopy. Although HCV core protein resided predominantly in the cytoplasm, it was also found in the nucleus and had the same molecular size as p21 in both locations, as determined by subcellular fractionation. The HCV core proteins had different immunoreactivities to a panel of monoclonal antibodies. Antibody 5E3 stained core protein in both the cytoplasm and the nucleus, C7-50 stained core protein only in the cytoplasm, and 499S stained core protein only in the nucleus. These results clearly indicate that the p23 form of HCV core protein is processed to p21 in the cytoplasm and that the core protein in the nucleus has a higher-order structure different from that of p21 in the cytoplasm. HCV core protein in sera of patients with HCV infection was analyzed in order to determine the molecular size of genuinely processed HCV core protein. HCV core protein in sera was found to have exactly the same molecular weight as the p21 protein. These results suggest that p21 core protein is a component of native viral particles. PMID:9621068

  12. Changes in protein profiles of guinea pig sclera during development of form deprivation myopia and recovery

    PubMed Central

    Zhou, Xiangtian; Ye, Juxiu; Willcox, Mark D.P.; Xie, Ruozhong; Jiang, Liqin; Lu, Runxia; Shi, Jianzhen; Bai, Yan

    2010-01-01

    Purpose To investigate changes in protein profiles of posterior sclera in guinea pigs during development of form deprivation myopia and recovery. Methods Three groups of guinea pigs (developing form deprivation myopia, recovering from the myopia and normal control) were evaluated for protein profiles of the posterior sclera using two-dimensional gel electrophoresis. Protein spots with a different intensity of at least threefold among the 3 groups were further identified with mass spectrometry. Key proteins associated with ocular growth (crystallins) were examined at mRNA levels using RT–PCR. Results Moderate myopia was induced at 7 weeks of monocular deprivation and then more gradually recovered toward the previous refractive status 4 days after re-exposure of the eye to normal visual conditions. The profile of all protein spots at the posterior sclera was similar for both the deprived and the recovery eyes but distinct between either of the 2 experimental eyes and the normal control eyes. Twenty-six and 33 protein spots were differentially expressed in the deprived and the recovery eyes, respectively, compared to the normal control eyes. In contrast, the number of proteins differentially expressed between the deprived and the recovery eyes was only 5. Among the different subtypes of crystallins, βB2-crystallin was down-regulated and βA4-crystallin was upregulated in the deprived eyes at both protein and mRNA levels compared to the normal control eyes. The trend of expression for βA3/A1-crystallin was also similar at both mRNA and protein levels for the deprived eyes. However, αA-crystallin mRNA in the recovery eyes was upregulated while αA-crystallin itself was down-regulated. A similar inconsistency in expression of βA3/A1-, βA4-, and βB2-crystallins between the protein and mRNA levels also occurred in the recovery eyes. Conclusions Proteomic analysis provides a useful survey of the number of proteins whose levels change during form deprivation myopia

  13. A minichaperone-based fusion system for producing insoluble proteins in soluble stable forms.

    PubMed

    Sharapova, Olga A; Yurkova, Maria S; Fedorov, Alexey N

    2016-02-01

    We have developed a fusion system for reliable production of insoluble hydrophobic proteins in soluble stable forms. A carrier is thermophilic minichaperone, GroEL apical domain (GrAD), a 15 kDa monomer able to bind diverse protein substrates. The Met-less variant of GrAD has been made for further convenient use of Met-specific CNBr chemical cleavage, if desired. The Met-less GrAD retained stability and solubility of the original protein. Target polypeptides can be fused to either C-terminus or N-terminus of GrAD. The system has been tested with two unrelated insoluble proteins fused to the C-terminus of GrAD. One of the proteins was also fused to GrAD N-terminus. The fusions formed inclusion bodies at 25°C and above and were partly soluble only at lower expression temperatures. Most importantly, however, after denaturation in urea, all fusions without exception were completely renatured in soluble stable forms that safely survived freezing-thawing as well as lyophilization. All fusions for both tested target proteins retained solubility at high concentrations for days. Functional analysis revealed that a target protein may retain functionality in the fusion. Convenience features include potential thermostability of GrAD fusions, capacity for chemical and enzymatic cleavage of a target and His6 tag for purification. PMID:26612097

  14. Non-targeted Identification of Prions and Amyloid-forming Proteins from Yeast and Mammalian Cells*

    PubMed Central

    Kryndushkin, Dmitry; Pripuzova, Natalia; Burnett, Barrington G.; Shewmaker, Frank

    2013-01-01

    The formation of amyloid aggregates is implicated both as a primary cause of cellular degeneration in multiple human diseases and as a functional mechanism for providing extraordinary strength to large protein assemblies. The recent identification and characterization of several amyloid proteins from diverse organisms argues that the amyloid phenomenon is widespread in nature. Yet identifying new amyloid-forming proteins usually requires a priori knowledge of specific candidates. Amyloid fibers can resist heat, pressure, proteolysis, and denaturation by reagents such as urea or sodium dodecyl sulfate. Here we show that these properties can be exploited to identify naturally occurring amyloid-forming proteins directly from cell lysates. This proteomic-based approach utilizes a novel purification of amyloid aggregates followed by identification by mass spectrometry without the requirement for special genetic tools. We have validated this technique by blind identification of three amyloid-based yeast prions from laboratory and wild strains and disease-related polyglutamine proteins expressed in both yeast and mammalian cells. Furthermore, we found that polyglutamine aggregates specifically recruit some stress granule components, revealing a possible mechanism of toxicity. Therefore, core amyloid-forming proteins as well as strongly associated proteins can be identified directly from cells of diverse origin. PMID:23926098

  15. Viral channel forming proteins - How to assemble and depolarize lipid membranes in silico.

    PubMed

    Fischer, Wolfgang B; Kalita, Monoj Mon; Heermann, Dieter

    2016-07-01

    Viral channel forming proteins (VCPs) have been discovered in the late 70s and are found in many viruses to date. Usually they are small and have to assemble to form channels which depolarize the lipid membrane of the host cells. Structural information is just about to emerge for just some of them. Thus, computational methods play a pivotal role in generating plausible structures which can be used in the drug development process. In this review the accumulation of structural data is introduced from a historical perspective. Computational performances and their predictive power are reported guided by biological questions such as the assembly, mechanism of function and drug-protein interaction of VCPs. An outlook of how coarse grained simulations can contribute to yet unexplored issues of these proteins is given. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26806161

  16. Supramolecular Ensembles Formed between Charged Conjugated Polymers and Glycoprobes for the Fluorogenic Recognition of Receptor Proteins.

    PubMed

    Dou, Wei-Tao; Zeng, Ya-Li; Lv, Ying; Wu, Jiatao; He, Xiao-Peng; Chen, Guo-Rong; Tan, Chunyan

    2016-06-01

    This paper describes the simple construction of a unique class of supramolecular ensembles formed by electrostatic self-assembly between charged conjugated polymers and fluorophore-coupled glycoligands (glycoprobes) for the selective fluorogenic detection of receptor proteins at both the molecular and cellular levels. We show that positively and negatively charged diazobenzene-containing poly(p-phenylethynylenes) (PPEs) can be used to form stable fluorogenic probes with fluorescein-based (negatively charged) and rhodamine B based (positively charged) glycoprobes by electrostatic interaction. The structures of the ensembles have been characterized by spectroscopic and microscopic techniques. The supramolecular probes formed show quenched fluorescence in an aqueous buffer solution, which can be specifically recovered, in a concentration-dependent manner, through competitive complexation with a selective protein receptor, over a range of other unselective proteins. The ensembles also show selective fluorescence enhancement with a live cell that expresses the glycoligand receptor but not a control cell without receptor expression. PMID:27159586

  17. Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group.

    PubMed

    Lim, Woon Ki; Rösgen, Jörg; Englander, S Walter

    2009-02-24

    The mechanism by which urea and guanidinium destabilize protein structure is controversial. We tested the possibility that these denaturants form hydrogen bonds with peptide groups by measuring their ability to block acid- and base-catalyzed peptide hydrogen exchange. The peptide hydrogen bonding found appears sufficient to explain the thermodynamic denaturing effect of urea. Results for guanidinium, however, are contrary to the expectation that it might H-bond. Evidently, urea and guanidinium, although structurally similar, denature proteins by different mechanisms. PMID:19196963

  18. The archaeal feast/famine regulatory protein: Potential roles of its assembly forms for regulating transcription

    PubMed Central

    Koike, Hideaki; Ishijima, Sanae A.; Clowney, Lester; Suzuki, Masashi

    2004-01-01

    The classification feast/famine regulatory proteins (FFRPs) encompasses archaeal DNA-binding proteins with Escherichia coli transcription factors, the leucine-responsive regulatory protein and the asparagine synthase C gene product. In this paper, we describe two forms of the archaeal FFRP FL11 (pot0434017), both assembled from dimers. When crystallized, a helical cylinder is formed with six dimers per turn. In contrast, in solution, disks are formed, most likely consisting of four dimers each; an observation by cryoelectron microscopy. Whereas each dimer binds a 13-bp sequence, different forms will discriminate between promoters, based on the numbers of repeating 13-bp sequences, and types of linkers inserted between them, which are either of 7-8 or ≈18 bp. The amino acid sequences of these FFRPs are designed to form the same type of 3D structures, and the transition between their assembly forms is regulated by interaction with small molecules. These considerations lead us to propose a possible mechanism for regulating a number of genes by varying assembly forms and by combining different FFRPs into these assemblies, responding to environmental changes. PMID:14976242

  19. The archaeal feast/famine regulatory protein: Potential roles of its assembly forms for regulating transcription

    NASA Astrophysics Data System (ADS)

    Koike, Hideaki; Ishijima, Sanae A.; Clowney, Lester; Suzuki, Masashi

    2004-03-01

    The classification feast/famine regulatory proteins (FFRPs) encompasses archaeal DNA-binding proteins with Escherichia coli transcription factors, the leucine-responsive regulatory protein and the asparagine synthase C gene product. In this paper, we describe two forms of the archaeal FFRP FL11 (pot0434017), both assembled from dimers. When crystallized, a helical cylinder is formed with six dimers per turn. In contrast, in solution, disks are formed, most likely consisting of four dimers each; an observation by cryoelectron microscopy. Whereas each dimer binds a 13-bp sequence, different forms will discriminate between promoters, based on the numbers of repeating 13-bp sequences, and types of linkers inserted between them, which are either of 7-8 or 18 bp. The amino acid sequences of these FFRPs are designed to form the same type of 3D structures, and the transition between their assembly forms is regulated by interaction with small molecules. These considerations lead us to propose a possible mechanism for regulating a number of genes by varying assembly forms and by combining different FFRPs into these assemblies, responding to environmental changes.

  20. Mechanistic insights into the first Lygus-active β-pore forming protein.

    PubMed

    Jerga, Agoston; Chen, Danqi; Zhang, Chunfen; Fu, Jinping; Kouadio, Jean-Louis K; Wang, Yanfei; Duff, Stephen M G; Howard, Jennifer E; Rydel, Timothy J; Evdokimov, Artem G; Ramaseshadri, Parthasarathy; Evans, Adam; Bolognesi, Renata; Park, Yoonseong; Haas, Jeffrey A

    2016-06-15

    The cotton pests Lygus hesperus and Lygus lineolaris can be controlled by expressing Cry51Aa2.834_16 in cotton. Insecticidal activity of pore-forming proteins is generally associated with damage to the midgut epithelium due to pores, and their biological specificity results from a set of key determinants including proteolytic activation and receptor binding. We conducted mechanistic studies to gain insight into how the first Lygus-active β-pore forming protein variant functions. Biophysical characterization revealed that the full-length Cry51Aa2.834_16 was a stable dimer in solution, and when exposed to Lygus saliva or to trypsin, the protein underwent proteolytic cleavage at the C-terminus of each of the subunits, resulting in dissociation of the dimer to two separate monomers. The monomer showed tight binding to a specific protein in Lygus brush border membranes, and also formed a membrane-associated oligomeric complex both in vitro and in vivo. Chemically cross-linking the β-hairpin to the Cry51Aa2.834_16 body rendered the protein inactive, but still competent to compete for binding sites with the native protein in vivo. Our study suggests that disassociation of the Cry51Aa2.834_16 dimer into monomeric units with unoccupied head-region and sterically unhindered β-hairpin is required for brush border membrane binding, oligomerization, and the subsequent steps leading to insect mortality. PMID:27001423

  1. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels.

    PubMed

    Jain, Gaurav; Pendola, Martin; Rao, Ashit; Cölfen, Helmut; Evans, John Spencer

    2016-08-01

    In the purple sea urchin Strongylocentrotus purpuratus, the formation and mineralization of fracture-resistant skeletal elements such as the embryonic spicule require the combinatorial participation of numerous spicule matrix proteins such as the SpSM30A-F isoforms. However, because of limited abundance, it has been difficult to pursue extensive biochemical studies of the SpSM30 proteins and deduce their role in spicule formation and mineralization. To circumvent these problems, we expressed a model recombinant spicule matrix protein, rSpSM30B/C, which possesses the key sequence attributes of isoforms "B" and "C". Our findings indicate that rSpSM30B/C is expressed in insect cells as a single polypeptide containing variations in glycosylation that create microheterogeneity in rSpSM30B/C molecular masses. These post-translational modifications incorporate O- and N-glycans and anionic mono- and bisialylated and mono- and bisulfated monosaccharides on the protein molecules and enhance its aggregation propensity. Bioinformatics and biophysical experiments confirm that rSpSM30B/C is an intrinsically disordered, aggregation-prone protein that forms porous protein hydrogels that control the in vitro mineralization process in three ways: (1) increase the time interval for prenucleation cluster formation and transiently stabilize an ACC polymorph, (2) promote and organize single-crystal calcite nanoparticles, and (3) promote faceted growth and create surface texturing of calcite crystals. These features are also common to mollusk shell nacre proteins, and we conclude that rSpSM30B/C is a spiculogenesis protein that exhibits traits found in other calcium carbonate mineral modification proteins. PMID:27426695

  2. Asymmetric dynamics of ion channel forming proteins - Hepatitis C virus (HCV) p7 bundles.

    PubMed

    Kalita, Monoj Mon; Fischer, Wolfgang B

    2016-07-01

    Protein p7 of hepatitis C virus (HCV) is a short 63 amino acid membrane protein which homo-oligomerises in the lipid membrane to form ion and proton conducting bundles. Two different genotypes (GTs) of p7, 1a and 5a, are used to simulate hexameric bundles of the protein embedded in a fully hydrated lipid bilayer during 400ns molecular dynamics (MD) simulations. Whilst the bundle of GT 1a is based on a fully computational derived structure, the bundle of GT 5a is based on NMR spectroscopic data. Results of a full correlation analysis (FCA) reveal that albeit structural differences both bundles screen local minima during the simulation. The collective motion of the protein domains is asymmetric. No 'breathing-mode'-like dynamics is observed. The presence of divalent ions, such as Ca-ions affects the dynamics of especially solvent exposed parts of the protein, but leaves the asymmetric domain motion unaffected. PMID:27079148

  3. Barriers to diffusion of plasma membrane proteins form early during guinea pig spermiogenesis.

    PubMed Central

    Cowan, A E; Nakhimovsky, L; Myles, D G; Koppel, D E

    1997-01-01

    The plasma membrane of the mature guinea pig sperm is segregated into at least four domains of different composition. Previous studies have shown that some proteins localized within these domains are free to diffuse laterally, suggesting that barriers to protein diffusion are responsible for maintaining the nonuniform distribution of at least some surface proteins in mature sperm. The different membrane domains appear sequentially during sperm morphogenesis in the testis and during later passage through the epididymis. To determine when diffusion barriers become functional during sperm development, we examined the diffusion of two proteins that are expressed on the cell surface of developing spermatids and become segregated to different plasma membrane domains during the course of spermiogenesis. Both proteins exhibited rapid lateral diffusion throughout spermiogenesis, even after they become localized to specific regions of the surface membrane. These results suggest that barriers to membrane diffusion form concomitantly with membrane domains during spermiogenesis. Images FIGURE 1 FIGURE 2 PMID:9199813

  4. 21 CFR 184.1498 - Microparticulated protein product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Microparticulated protein product. 184.1498... Affirmed as GRAS § 184.1498 Microparticulated protein product. (a) Microparticulated protein product is prepared from egg whites or milk protein or a combination of egg whites and milk protein. These...

  5. Protein composition of 6K2-induced membrane structures formed during Potato virus A infection.

    PubMed

    Lõhmus, Andres; Varjosalo, Markku; Mäkinen, Kristiina

    2016-08-01

    The definition of the precise molecular composition of membranous replication compartments is a key to understanding the mechanisms of virus multiplication. Here, we set out to investigate the protein composition of the potyviral replication complexes. We purified the potyviral 6K2 protein-induced membranous structures from Potato virus A (PVA)-infected Nicotiana benthamiana plants. For this purpose, the 6K2 protein, which is the main inducer of potyviral membrane rearrangements, was expressed in fusion with an N-terminal Twin-Strep-tag and Cerulean fluorescent protein (SC6K) from the infectious PVA cDNA. A non-tagged Cerulean-6K2 (C6K) virus and the SC6K protein alone in the absence of infection were used as controls. A purification scheme exploiting discontinuous sucrose gradient centrifugation followed by Strep-tag-based affinity chromatography was developed. Both (+)- and (-)-strand PVA RNA and viral protein VPg were co-purified specifically with the affinity tagged PVA-SC6K. The purified samples, which contained individual vesicles and membrane clusters, were subjected to mass spectrometry analysis. Data analysis revealed that many of the detected viral and host proteins were either significantly enriched or fully specifically present in PVA-SC6K samples when compared with the controls. Eight of eleven potyviral proteins were identified with high confidence from the purified membrane structures formed during PVA infection. Ribosomal proteins were identified from the 6K2-induced membranes only in the presence of a replicating virus, reinforcing the tight coupling between replication and translation. A substantial number of proteins associating with chloroplasts and several host proteins previously linked with potyvirus replication complexes were co-purified with PVA-derived SC6K, supporting the conclusion that the host proteins identified in this study may have relevance in PVA replication. PMID:26574906

  6. Contact rearrangements form coupled networks from local motions in allosteric proteins.

    PubMed

    Daily, Michael D; Upadhyaya, Tarak J; Gray, Jeffrey J

    2008-04-01

    Allosteric proteins bind an effector molecule at one site resulting in a functional change at a second site. We hypothesize that networks of contacts altered, formed, or broken are a significant contributor to allosteric communication in proteins. In this work, we identify which interactions change significantly between the residue-residue contact networks of two allosteric structures, and then organize these changes into graphs. We perform the analysis on 15 pairs of allosteric structures with effector and substrate each present in at least one of the two structures. Most proteins exhibit large, dense regions of contact rearrangement, and the graphs form connected paths between allosteric effector and substrate sites in five of these proteins. In the remaining 10 proteins, large-scale conformational changes such as rigid-body motions are likely required in addition to contact rearrangement networks to account for substrate-effector communication. On average, clusters which contain at least one substrate or effector molecule comprise 20% of the protein. These allosteric graphs are small worlds; that is, they typically have mean shortest path lengths comparable to those of corresponding random graphs and average clustering coefficients enhanced relative to those of random graphs. The networks capture 60-80% of known allostery-perturbing mutants in three proteins, and the metrics degree and closeness are statistically good discriminators of mutant residues from nonmutant residues within the networks in two of these three proteins. For two proteins, coevolving clusters of residues which have been hypothesized to be allosterically important differ from the regions with the most contact rearrangement. Residues and contacts which modulate normal mode fluctuations also often participate in the contact rearrangement networks. In summary, residue-residue contact rearrangement networks provide useful representations of the portions of allosteric pathways resulting from

  7. PROTEIN ADDUCT FORMING CHEMICALS FOR EXPOSURE MONITORING: CHEMICALS SELECTED FOR FURTHER STUDY

    EPA Science Inventory

    The present report is an in-depth characterization of twenty-two chemicals and the protein (primarily hemoglobin) adducts that are formed following exposure to these compounds. These chemicals were recommended for further study in a recent internal report which described the stat...

  8. Detection of the disease associated form of the prion protein in biological samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are neurodegenerative diseases that occur in a variety of mammals. In these diseases, a chromosomally encoded protein (PrP**c) undergoes a conformational change to the disease associated form (PrP**d), and PrP**d is capable inducing ...

  9. Plasmodium falciparum Merozoite Surface Protein 2 is Unstructured and Forms Amyloid-Like Fibrils

    PubMed Central

    Adda, Christopher G.; Murphy, Vince J.; Sunde, Margaret; Waddington, Lynne J.; Jesse, Schloegel; Talbo, Gert H.; Vingas, Kleo; Kienzle, Vivian; Masciantonio, Rosella; Howlett, Geoffrey J.; Hodder, Anthony N.; Foley, Michael; Anders, Robin F.

    2009-01-01

    Several merozoite surface proteins are being assessed as potential components of a vaccine against Plasmodium falciparum, the cause of the most serious form of human malaria. One of these proteins, merozoite surface protein 2 (MSP2), is unusually hydrophilic and contains tandem sequence repeats, characteristics of intrinsically unstructured proteins. A range of physicochemical studies have confirmed that recombinant forms of MSP2 are largely unstructured. Both dimorphic types of MSP2 (3D7 and FC27) are equivalently extended in solution and form amyloid-like fibrils although with different kinetics and structural characteristics. These fibrils have a regular underlying β-sheet structure and both fibril types stain with Congo Red, but only the FC27 fibrils stain with Thioflavin T. 3D7 MSP2 fibrils seeded the growth of fibrils from 3D7 or FC27 MSP2 monomer indicating the involvement of a conserved region of MSP2 in fibril formation. Consistent with this, digestion of fibrils with proteinase K generated resistant peptides, which included the N-terminal conserved region of MSP2. A monoclonal antibody that reacted preferentially with monomeric recombinant MSP2 did not react with the antigen in situ on the merozoite surface. Glutaraldehyde cross-linking of infected erythrocytes generated MSP2 oligomers similar to those formed by polymeric recombinant MSP2. We conclude that MSP2 oligomers containing intermolecular β-strand interactions similar to those in amyloid fibrils may be a component of the fibrillar surface coat on P. falciparum merozoites. PMID:19450733

  10. Soluble Proteins Form Film by the Treatment of Low Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Ikehara, Sanae; Sakakita, Hajime; Ishikawa, Kenji; Akimoto, Yoshihiro; Nakanishi, Hayao; Shimizu, Nobuyuki; Hori, Masaru; Ikehara, Yuzuru

    2015-09-01

    It has been pointed out that low temperature plasma in atmosphere was feasible to use for hemostasis without heat injury. Indeed, earlier studies demonstrated that low temperature plasma played an important role to stimulate platelets to aggregate and turned on the proteolytic activities of coagulation factors, resulting in the acceleration of the natural blood coagulation process. On the other hands, our developed equips could immediately form clots upon the contact with plasma flair, while the histological appearance was different from natural coagulation. Based on these findings in formed clots, we sought to determine if plasma flair supplied by our devices was capable of forming film using a series of soluble proteins Following plasma treatment, films were formed from bovine serum albumin, and the other plasma proteins at physiological concentration. Analysis of trans-electron microscope demonstrated that plasma treatment generated small protein particles and made them fuse to be larger aggregations The combined results demonstrated that plasma are capable of aggregating soluble proteins and that platelets and coagulation factors are not necessary for plasma induced blood coagulation. Supported in part by Grants-in-Aid for Scientific Research on Priority Area (21590454, 24590498, and 24108006 to Y. I.).

  11. Plasmodium falciparum merozoite surface protein 2 is unstructured and forms amyloid-like fibrils.

    PubMed

    Adda, Christopher G; Murphy, Vince J; Sunde, Margaret; Waddington, Lynne J; Schloegel, Jesse; Talbo, Gert H; Vingas, Kleo; Kienzle, Vivian; Masciantonio, Rosella; Howlett, Geoffrey J; Hodder, Anthony N; Foley, Michael; Anders, Robin F

    2009-08-01

    Several merozoite surface proteins are being assessed as potential components of a vaccine against Plasmodium falciparum, the cause of the most serious form of human malaria. One of these proteins, merozoite surface protein 2 (MSP2), is unusually hydrophilic and contains tandem sequence repeats, characteristics of intrinsically unstructured proteins. A range of physicochemical studies has confirmed that recombinant forms of MSP2 are largely unstructured. Both dimorphic types of MSP2 (3D7 and FC27) are equivalently extended in solution and form amyloid-like fibrils although with different kinetics and structural characteristics. These fibrils have a regular underlying beta-sheet structure and both fibril types stain with Congo Red, but only the FC27 fibrils stain with Thioflavin T. 3D7 MSP2 fibrils seeded the growth of fibrils from 3D7 or FC27 MSP2 monomer indicating the involvement of a conserved region of MSP2 in fibril formation. Consistent with this, digestion of fibrils with proteinase K generated resistant peptides, which included the N-terminal conserved region of MSP2. A monoclonal antibody that reacted preferentially with monomeric recombinant MSP2 did not react with the antigen in situ on the merozoite surface. Glutaraldehyde cross-linking of infected erythrocytes generated MSP2 oligomers similar to those formed by polymeric recombinant MSP2. We conclude that MSP2 oligomers containing intermolecular beta-strand interactions similar to those in amyloid fibrils may be a component of the fibrillar surface coat on P. falciparum merozoites. PMID:19450733

  12. Characterization of fiber-forming peptides and proteins by means of atomic force microscopy.

    PubMed

    Creasey, Rhiannon G; Gibson, Christopher T; Voelcker, Nicolas H

    2012-05-01

    The atomic force microscope (AFM) is widely used in biological sciences due to its ability to perform imaging experiments at high resolution in a physiological environment, without special sample preparation such as fixation or staining. AFM is unique, in that it allows single molecule information of mechanical properties and molecular recognition to be gathered. This review sets out to identify methodological applications of AFM for characterization of fiber-forming proteins and peptides. The basics of AFM operation are detailed, with in-depth information for any life scientist to get a grasp on AFM capabilities. It also briefly describes antibody recognition imaging and mapping of nanomechanical properties on biological samples. Subsequently, examples of AFM application to fiber-forming natural proteins, and fiber-forming synthetic peptides are given. Here, AFM is used primarily for structural characterization of fibers in combination with other techniques, such as circular dichroism and fluorescence spectroscopy. More recent developments in antibody recognition imaging to identify constituents of protein fibers formed in human disease are explored. This review, as a whole, seeks to encourage the life scientists dealing with protein aggregation phenomena to consider AFM as a part of their research toolkit, by highlighting the manifold capabilities of this technique. PMID:22612782

  13. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease.

    PubMed

    Sadler, Kirsten C; Amsterdam, Adam; Soroka, Carol; Boyer, James; Hopkins, Nancy

    2005-08-01

    Hepatomegaly is a sign of many liver disorders. To identify zebrafish mutants to serve as models for hepatic pathologies, we screened for hepatomegaly at day 5 of embryogenesis in 297 zebrafish lines bearing mutations in genes that are essential for embryonic development. Seven mutants were identified, and three have phenotypes resembling different liver diseases. Mutation of the class C vacuolar protein sorting gene vps18 results in hepatomegaly associated with large, vesicle-filled hepatocytes, which we attribute to the failure of endosomal-lysosomal trafficking. Additionally, these mutants develop defects in the bile canaliculi and have marked biliary paucity, suggesting that vps18 also functions to traffic vesicles to the hepatocyte apical membrane and may play a role in the development of the intrahepatic biliary tree. Similar findings have been reported for individuals with arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, which is due to mutation of another class C vps gene. A second mutant, resulting from disruption of the tumor suppressor gene nf2, develops extrahepatic choledochal cysts in the common bile duct, suggesting that this gene regulates division of biliary cells during development and that nf2 may play a role in the hyperplastic tendencies observed in biliary cells in individuals with choledochal cysts. The third mutant is in the novel gene foie gras, which develops large, lipid-filled hepatocytes, resembling those in individuals with fatty liver disease. These mutants illustrate the utility of zebrafish as a model for studying liver development and disease, and provide valuable tools for investigating the molecular pathogenesis of congenital biliary disorders and fatty liver disease. PMID:16000385

  14. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation.

    PubMed Central

    Gishizky, M L; Cortez, D; Pendergast, A M

    1995-01-01

    Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479904

  15. Data on structural transitions in domains of hordeivirus TGB1 protein forming ribonucleoprotein complex.

    PubMed

    Makarov, Valentin V; Makarova, Svetlana S; Kalinina, Natalia O

    2016-09-01

    This data article is related to the research article entitled "in vitro properties of hordeivirus TGB1 protein forming ribonucleoprotein complexes" (Makarov et al., 2015 [1]), demonstrating that upon incubation with viral RNA the poa semilatent hordeivirus (PSLV) TGB1 protein (the movement 63 K protein encoded by the first gene of the triple gene block) in vitro forms RNP structures resembling filamentous virus-like particles and its internal domain (ID) performs a major structural role in this process. This article reports the additional results on the structural lability of ID and the structural transitions in the C-terminal NTPase/helicase domain (HELD) induced by interaction with tRNA and phosphorylation. PMID:27331098

  16. RNA binding by Hfq and ring-forming (L)Sm proteins

    PubMed Central

    Weichenrieder, Oliver

    2014-01-01

    The eukaryotic Sm and the Sm-like (LSm) proteins form a large family that includes LSm proteins in archaea and the Hfq proteins in bacteria. Commonly referred to as the (L)Sm protein family, the various members play important roles in RNA processing, decay, and riboregulation. Particularly interesting from a structural point of view is their ability to assemble into doughnut-shaped rings, which allows them to bind preferentially the uridine-rich 3′-end of RNA oligonucleotides. With an emphasis on Hfq, this review compares the RNA-binding properties of the various (L)Sm rings that were recently co-crystallized with RNA substrates, and it discusses how these properties relate to physiological function. PMID:24828406

  17. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition

    PubMed Central

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-01-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in “Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation” [1]. PMID:27104213

  18. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-06-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis - based on cellular components and biological process GO terms - was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in "Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation" [1]. PMID:27104213

  19. Assembling the puzzle: Oligomerization of α-pore forming proteins in membranes☆

    PubMed Central

    García-Sáez, Ana J.

    2016-01-01

    Pore forming proteins (PFPs) share the ability of creating pores that allow the passage of ions, proteins or other constituents through a wide variety of target membranes, ranging from bacteria to humans. They often cause cell death, as pore formation disrupts the membrane permeability barrier required for maintaining cell homeostasis. The organization into supramolecular complexes or oligomers that pierce the membrane is a common feature of PFPs. However, the molecular pathway of self-assembly and pore opening remains unclear. Here, we review the most recent discoveries in the mechanism of membrane oligomerization and pore formation of a subset of PFPs, the α-PFPs, whose pore-forming domains are formed by helical segments. Only now we are starting to grasp the molecular details of their function, mainly thanks to the introduction of single molecule microscopy and nanoscopy techniques. PMID:26375417

  20. 21 CFR 186.1 - Substances added indirectly to human food affirmed as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Substances added indirectly to human food affirmed as generally recognized as safe (GRAS). 186.1 Section 186.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD SUBSTANCES AFFIRMED AS...

  1. 21 CFR 184.1 - Substances added directly to human food affirmed as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Substances added directly to human food affirmed as generally recognized as safe (GRAS). 184.1 Section 184.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY...

  2. 21 CFR 184.1 - Substances added directly to human food affirmed as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Substances added directly to human food affirmed as..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD... human food affirmed as generally recognized as safe (GRAS). (a) The direct human food ingredients...

  3. 21 CFR 186.1 - Substances added indirectly to human food affirmed as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Substances added indirectly to human food affirmed... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED... added indirectly to human food affirmed as generally recognized as safe (GRAS). (a) The indirect...

  4. Comprehensive analysis of multi-tissue transcriptome data and the genome-wide investigation of GRAS family in Phyllostachys edulis

    PubMed Central

    Zhao, Hansheng; Dong, Lili; Sun, Huayu; Li, Lichao; Lou, Yongfeng; Wang, Lili; Li, Zuyao; Gao, Zhimin

    2016-01-01

    GRAS family is one of plant specific transcription factors and plays diverse roles in the regulation of plant growth and development as well as in the plant disease resistance and abiotic stress responses. However, the investigation of GRAS family and multi-tissue gene expression profiles still remains unavailable in bamboo (Phyllostachys edulis). Here, we applied RNA-Seq analysis to monitor global transcriptional changes and investigate expression patterns in the five tissues of Ph. edulis, and analyzed a large-scale transcriptional events and patterns. Moreover, the tissue-specific genes and DEGs in different tissues were detected. For example, DEGs in panicle and leaf tissues were abundant in photosynthesis, glutathione, porphyrin and chlorophyll metabolism, whereas those in shoot and rhizome were majority in glycerophospholipid metabolism. In the portion of Ph. edulis GRAS (PeGRAS) analyses, we performed the analysis of phylogenetic, gene structure, conserved motifs, and analyzed the expression profiles of PeGRASs in response to high light and made a co-expression analysis. Additionally, the expression profiles of PeGRASs were validated using quantitative real-time PCR. Thus, PeGRASs based on dynamics profiles of gene expression is helpful in uncovering the specific biological functions which might be of critical values for bioengineering to improve bamboo breeding in future. PMID:27325361

  5. 21 CFR 186.1 - Substances added indirectly to human food affirmed as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Substances added indirectly to human food affirmed... added indirectly to human food affirmed as generally recognized as safe (GRAS). (a) The indirect human... ingredient in this part does not authorize the use of such substance for the purpose of adding the...

  6. 21 CFR 186.1 - Substances added indirectly to human food affirmed as generally recognized as safe (GRAS).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Substances added indirectly to human food affirmed... added indirectly to human food affirmed as generally recognized as safe (GRAS). (a) The indirect human... ingredient in this part does not authorize the use of such substance for the purpose of adding the...

  7. Comprehensive analysis of multi-tissue transcriptome data and the genome-wide investigation of GRAS family in Phyllostachys edulis.

    PubMed

    Zhao, Hansheng; Dong, Lili; Sun, Huayu; Li, Lichao; Lou, Yongfeng; Wang, Lili; Li, Zuyao; Gao, Zhimin

    2016-01-01

    GRAS family is one of plant specific transcription factors and plays diverse roles in the regulation of plant growth and development as well as in the plant disease resistance and abiotic stress responses. However, the investigation of GRAS family and multi-tissue gene expression profiles still remains unavailable in bamboo (Phyllostachys edulis). Here, we applied RNA-Seq analysis to monitor global transcriptional changes and investigate expression patterns in the five tissues of Ph. edulis, and analyzed a large-scale transcriptional events and patterns. Moreover, the tissue-specific genes and DEGs in different tissues were detected. For example, DEGs in panicle and leaf tissues were abundant in photosynthesis, glutathione, porphyrin and chlorophyll metabolism, whereas those in shoot and rhizome were majority in glycerophospholipid metabolism. In the portion of Ph. edulis GRAS (PeGRAS) analyses, we performed the analysis of phylogenetic, gene structure, conserved motifs, and analyzed the expression profiles of PeGRASs in response to high light and made a co-expression analysis. Additionally, the expression profiles of PeGRASs were validated using quantitative real-time PCR. Thus, PeGRASs based on dynamics profiles of gene expression is helpful in uncovering the specific biological functions which might be of critical values for bioengineering to improve bamboo breeding in future. PMID:27325361

  8. Fractionation of different PEGylated forms of a protein by chromatography using environment-responsive membranes.

    PubMed

    Yu, Deqiang; Shang, Xiaojiao; Ghosh, Raja

    2010-08-27

    PEGylation of therapeutic proteins can enhance their efficacy as biopharmaceuticals through increased stability and hydrophilicity, and decreased immunogenicity. A site-specific PEGylated protein (e.g. mono-PEGylated at N-terminus) is frequently desirable as a product. However, multiple-PEGylated forms are frequently produced as byproducts. In this paper we discuss the fractionation of the different PEGylated forms of a protein by hydrophobic interaction chromatography using a stack of hydrophilized PVDF membrane, which has been shown to be environment responsive, as stationary phase. With the model protein examined in this study (i.e. lysozyme), the apparent hydrophobicity in the presence of a lyotropic salt increased with the degree of PEGylation. Based on this, unmodified lysozyme and its mono-, di- and tri-PEGylated forms could each be resolved into separate chromatographic peaks. Such fractionation was not feasible using conventional hydrophobic interaction chromatography using a butyl column. The use of membrane chromatography also ensured that the fractionation was fast and hence suitable for analytical applications such as product purity determination and monitoring of the extent of PEGylation reactions. PMID:20638664

  9. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery

    PubMed Central

    Wang, Yan; Meriin, Anatoli B.; Zaarur, Nava; Romanova, Nina V.; Chernoff, Yury O.; Costello, Catherine E.; Sherman, Michael Y.

    2009-01-01

    In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.—Wang, Y., Meriin, A. B., Zaarur, N., Romanova, N. V., Chernoff, Y. O., Costello, C. E., Sherman, M. Y. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. PMID:18854435

  10. β-hairpin-forming peptides; models of early stages of protein folding

    PubMed Central

    Lewandowska, Agnieszka; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.

    2010-01-01

    Formation of β-hairpins is considered the initial step of folding of many proteins and, consequently, peptides constituting the β-hairpin sequence of proteins (the β-hairpin-forming peptides) are considered as models of early stages of protein folding. In this article, we discuss the results of experimental studies (circular-dichroism, infrared and nuclear magnetic resonance spectroscopy, and differential scanning calorimetry) of the structure of β-hairpin-forming peptides excised from the B1 domain of protein G, which are known to fold on their own. We demonstrate that local interactions at the turn sequence and hydrophobic interactions between nonpolar residues are the dominant structure-determining factors, while there is no convincing evidence that stable backbone hydrogen bonds are formed in these peptides in aqueous solution. Consequently, the most plausible mechanism for folding of the β-hairpin sequence appears to be the broken-zipper mechanism consisting of the following three steps: (i) bending the chain at the turn sequence owing to favorable local interactions, (ii) formation of loose hydrophobic contacts between nonpolar residues, which occur close to the contacts in the native structure of the protein but not exactly in the same position and, finally, (iii) formation of backbone hydrogen bonds and locking the hydrophobic contacts in the native positions as a hydrophobic core develops, sufficient to dehydrate the backbone peptide groups. This mechanism provides sufficient uniqueness (contacts form between residues that become close together because the chain is bent at the turn position) and robustness (contacts need not occur at once in the native positions) for folding a β-hairpin sequence. PMID:20494507

  11. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  12. 21 CFR 184.1498 - Microparticulated protein product.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Microparticulated protein product. 184.1498 Section... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1498 Microparticulated protein product. (a) Microparticulated protein product is prepared from egg whites or milk protein or a combination of egg whites...

  13. 21 CFR 184.1498 - Microparticulated protein product.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Microparticulated protein product. 184.1498... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1498 Microparticulated protein product. (a) Microparticulated protein product is prepared from egg whites or milk protein or a combination of egg whites...

  14. 21 CFR 184.1498 - Microparticulated protein product.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Microparticulated protein product. 184.1498... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1498 Microparticulated protein product. (a) Microparticulated protein product is prepared from egg whites or milk protein or a combination of egg whites...

  15. 21 CFR 184.1498 - Microparticulated protein product.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Microparticulated protein product. 184.1498... SAFE Listing of Specific Substances Affirmed as GRAS § 184.1498 Microparticulated protein product. (a) Microparticulated protein product is prepared from egg whites or milk protein or a combination of egg whites...

  16. Gadd45a Protein Promotes Skeletal Muscle Atrophy by Forming a Complex with the Protein Kinase MEKK4.

    PubMed

    Bullard, Steven A; Seo, Seongjin; Schilling, Birgit; Dyle, Michael C; Dierdorff, Jason M; Ebert, Scott M; DeLau, Austin D; Gibson, Bradford W; Adams, Christopher M

    2016-08-19

    Skeletal muscle atrophy is a serious and highly prevalent condition that remains poorly understood at the molecular level. Previous work found that skeletal muscle atrophy involves an increase in skeletal muscle Gadd45a expression, which is necessary and sufficient for skeletal muscle fiber atrophy. However, the direct mechanism by which Gadd45a promotes skeletal muscle atrophy was unknown. To address this question, we biochemically isolated skeletal muscle proteins that associate with Gadd45a as it induces atrophy in mouse skeletal muscle fibers in vivo We found that Gadd45a interacts with multiple proteins in skeletal muscle fibers, including, most prominently, MEKK4, a mitogen-activated protein kinase kinase kinase that was not previously known to play a role in skeletal muscle atrophy. Furthermore, we found that, by forming a complex with MEKK4 in skeletal muscle fibers, Gadd45a increases MEKK4 protein kinase activity, which is both sufficient to induce skeletal muscle fiber atrophy and required for Gadd45a-mediated skeletal muscle fiber atrophy. Together, these results identify a direct biochemical mechanism by which Gadd45a induces skeletal muscle atrophy and provide new insight into the way that skeletal muscle atrophy occurs at the molecular level. PMID:27358404

  17. Perforin-2/Mpeg1 and other pore-forming proteins throughout evolution.

    PubMed

    McCormack, Ryan; Podack, Eckhard R

    2015-11-01

    Development of the ancient innate immune system required not only a mechanism to recognize foreign organisms from self but also to destroy them. Pore-forming proteins containing the membrane attack complex Perforin domain were one of the first triumphs of an innate immune system needing to eliminate microbes and virally infected cells. Membrane attack complex of complement and Perforin domain proteins is unique from other immune effector molecules in that the mechanism of attack is strictly physical and unspecific. The large water-filled holes created by membrane attack complex of complement and Perforin domain pore formation allow access for additional effectors to complete the destruction of the foreign organism via chemical or enzymatic attack. Perforin-2/macrophage-expressed protein 1 is one of the oldest membrane attack complexes of complement and Perforin domain protein involved in immune defense, and it is still functional today in vertebrates. Here, we trace the impact of Perforin-2/macrophage-expressed protein 1 from the earliest multicellular organisms to modern vertebrates, as well as review the development of other membrane attack complexes of complement and Perforin domain member proteins. PMID:26307549

  18. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers

    PubMed Central

    Younan, Nadine D.; Sarell, Claire J.; Davies, Paul; Brown, David R.; Viles, John H.

    2013-01-01

    There is now strong evidence to show that the presence of the cellular prion protein (PrPC) mediates amyloid-β (Aβ) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrPC and Aβ and discover that substoichiometric amounts of PrPC, as little as 1/20, relative to Aβ will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrPC. Electron microscopy indicates PrPC is able to trap Aβ in an oligomeric form. Unlike fibers, this oligomeric Aβ contains antiparallel β sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrPC, notably residues 95–113, binds to Aβ oligomers, but only once Aβ misfolds. The ability of PrPC to trap and concentrate Aβ in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrPC might confer Aβ toxicity in AD, as oligomers are thought to be the toxic form of Aβ. Identification of a specific recognition site on PrPC that traps Aβ in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.—Younan, N. D., Sarell, C. J., Davies, P., Brown, D. R., Viles, J. H. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. PMID:23335053

  19. Cryptic clues as to how water-soluble protein toxins form pores in membranes.

    PubMed

    Parker, Michael W

    2003-07-01

    Pore-forming protein toxins possess the remarkable property that they can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. Recent work on a class of pore-forming toxins that are rich in beta-sheet content suggests a common mechanism of membrane insertion may exist despite these toxins possessing very different primary, tertiary and quaternary structures. PMID:12893054

  20. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush

    SciTech Connect

    McQuarrie, I.G.; Jacob, J.M. )

    1991-03-01

    To examine the relationship between axonal outgrowth and the delivery of cytoskeletal proteins to the growing axon tip, outgrowth was accelerated by using a conditioning nerve crush. Because slow component b (SCb) of axonal transport is the most rapid vehicle for carrying cytoskeletal proteins to the axon tip, the rate of SCb was measured in conditioned vs. sham-conditioned sprouts. In young Sprague-Dawley rats, the conditioning crush was made to sciatic nerve branches at the knee; 14 days later, the test crush was made where the L4 and L5 spinal nerves join to form the sciatic nerve in the flank. Newly synthesized proteins were labeled in motor neurons by injecting {sup 35}S-methionine into the lumbar spinal cord 7 days before the test crush. The wave of pulse-labeled SCb proteins reached the crush by the time it was made and subsequently entered sprouts. The nerve was removed and sectioned for SDS-PAGE and fluorography 4-12 days after the crush. Tubulins, neurofilament proteins, and representative 'cytomatrix' proteins (actin, calmodulin, and putative microtubule-associated proteins) were removed from gels for liquid scintillation counting. Labeled SCb proteins entered sprouts without first accumulating in parent axon stumps, presumably because sprouts begin to grow within hours after axotomy. The peak of SCb moved 11% faster in conditioned than in sham-conditioned sprouts: 3.0 vs. 2.7 mm/d (p less than 0.05). To confirm that sprouts elongate more rapidly when a test crush is preceded by a conditioning crush, outgrowth distances were measured in a separate group of rats by labeling fast axonal transport with {sup 3}H-proline 24 hours before nerve retrieval.

  1. Structure of struthiocalcin-1, an intramineral protein from Struthio camelus eggshell, in two crystal forms.

    PubMed

    Ruiz-Arellano, Rayana R; Medrano, Francisco J; Moreno, Abel; Romero, Antonio

    2015-04-01

    Biomineralization is the process by which living organisms produce minerals. One remarkable example is the formation of eggshells in birds. Struthiocalcins present in the ostrich (Struthio camellus) eggshell matrix act as biosensors of calcite growth during eggshell formation. Here, the crystal structure of struthiocalcin-1 (SCA-1) is reported in two different crystal forms. The structure is a compact single domain with an α/β fold characteristic of the C-type lectin family. In contrast to the related avian ovocleidin OC17, the electrostatic potential on the molecular surface is dominated by an acidic patch. Scanning electron microscopy combined with Raman spectroscopy indicates that these intramineral proteins (SCA-1 and SCA-2) induce calcium carbonate precipitation, leading to the formation of a stable form of calcite in the mature eggshell. Finally, the implications of these two intramineral proteins SCA-1 and SCA-2 in the nucleation of calcite during the formation of eggshells in ratite birds are discussed. PMID:25849392

  2. Purification, Crystallization and Preliminary Diffraction Studies of the Sulfolobus solfataricu PCNA Proteins in Different Oligomeric Forms

    SciTech Connect

    Guangxin,X.; Vladena, H.; Hong, L.

    2007-01-01

    PCNA is a ring-shaped protein that encircles DNA and is essential for DNA metabolism, including DNA replication and repair. PCNA is either a homotrimer in eukaryotes and euryarchaeotes or a heterotrimer in some crenarchaeotes. The crenarchaeon Sulfolobus solfataricus encodes three PCNA homologues (PCNA1, PCNA2, and PCNA3). PCNA1 and PCNA2 form a stable dimer. The dimer then recruits PCNA3 to form the trimeric ring-shaped molecule that is typical for all PCNA proteins. We crystallized the PCNA3 monomer, the PCNA1-PCNA2 heterodimer, and the PCNA1-PCNA2-PCNA3 heterotrimer. The crystals diffract X-ray to 1.9, 2.6, and 2.5 Angstroms resolutions, respectively. SAD phasing and molecular replacement solutions have confirmed that the crystals do contain the corresponding monomer, dimer, and trimer.

  3. Purification, Crystallization and Preliminary Diffraction Studies of the Sulfolobus solfataricus PCNA Proteins in Different Oligomeric Forms

    SciTech Connect

    Xing,G.; Hlinkova, V.; Ling, H.

    2007-01-01

    PCNA is a ring-shaped protein that encircles DNA and is essential for DNA metabolism, including DNA replication and repair. PCNA is either a homotrimer in eukaryotes and euryarchaeotes or a heterotrimer in some crenarchaeotes. The crenarchaeon Sulfolobus solfataricus encodes three PCNA homologues (PCNA1, PCNA2, and PCNA3). PCNA1 and PCNA2 form a stable dimer. The dimer then recruits PCNA3 to form the trimeric ring-shaped molecule that is typical for all PCNA proteins. We crystallized the PCNA3 monomer, the PCNA1-PCNA2 heterodimer, and the PCNA1-PCNA2-PCNA3 heterotrimer. The crystals diffract X-ray to 1.9, 2.6, and 2.5 Angstroms resolutions, respectively. SAD phasing and molecular replacement solutions have confirmed that the crystals do contain the corresponding monomer, dimer, and trimer.

  4. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  5. The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins.

    PubMed

    Lukoyanova, Natalya; Hoogenboom, Bart W; Saibil, Helen R

    2016-06-01

    The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane β-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation. PMID:27179071

  6. Rapamycin-binding FKBP25 associates with diverse proteins that form large intracellular entities

    SciTech Connect

    Galat, Andrzej Thai, Robert

    2014-08-08

    Highlights: • The hFKBP25 interacts with diverse components of macromolecular entities. • We show that the endogenous human FKBP25 is bound to polyribosomes. • The endogenous hFKBP25 co-immunoprecipitated with nucleosomal proteins. • FKBP25 could induce conformational switch in macromolecular complexes. - Abstract: In this paper, we show some evidence that a member of the FK506-binding proteins, FKBP25 is associated to diverse components that are part of several different intracellular large-molecular mass entities. The FKBP25 is a high-affinity rapamycin-binding immunophilin, which has nuclear translocation signals present in its PPIase domain but it was detected both in the cytoplasm compartment and in the nuclear proteome. Analyses of antiFKBP25-immunoprecipitated proteins have revealed that the endogenous FKBP25 is associated to the core histones of the nucleosome, and with several proteins forming spliceosomal complexes and ribosomal subunits. Using polyclonal antiFKBP25 we have detected FKBP25 associated with polyribosomes. Added RNAs or 0.5 M NaCl release FKBP25 that was associated with the polyribosomes indicating that the immunophilin has an intrinsic capacity to form complexes with polyribonucleotides via its charged surface patches. Rapamycin or FK506 treatments of the polyribosomes isolated from porcine brain, HeLa and K568 cells caused a residual release of the endogenous FKBP25, which suggests that the immunophilin also binds to some proteins via its PPIase cavity. Our proteomics study indicates that the nuclear pool of the FKBP25 targets various nuclear proteins that are crucial for packaging of DNA, chromatin remodeling and pre-mRNA splicing whereas the cytosolic pool of this immunophilin is bound to some components of the ribosome.

  7. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    DOE PAGESBeta

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K.; Jedrzejczak, Robert P.; Missiakas, Dominique; Joachimiak, Andrzej

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for twomore » alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.« less

  8. Crystal Structures of Protein Glutaminase and Its Pro Forms Converted into Enzyme-Substrate Complex*

    PubMed Central

    Hashizume, Ryota; Maki, Yukiko; Mizutani, Kimihiko; Takahashi, Nobuyuki; Matsubara, Hiroyuki; Sugita, Akiko; Sato, Kimihiko; Yamaguchi, Shotaro; Mikami, Bunzo

    2011-01-01

    Protein glutaminase, which converts a protein glutamine residue to a glutamate residue, is expected to be useful as a new food-processing enzyme. The crystal structures of the mature and pro forms of the enzyme were refined at 1.15 and 1.73 Å resolution, respectively. The overall structure of the mature enzyme has a weak homology to the core domain of human transglutaminase-2. The catalytic triad (Cys-His-Asp) common to transglutaminases and cysteine proteases is located in the bottom of the active site pocket. The structure of the recombinant pro form shows that a short loop between S2 and S3 in the proregion covers and interacts with the active site of the mature region, mimicking the protein substrate of the enzyme. Ala-47 is located just above the pocket of the active site. Two mutant structures (A47Q-1 and A47Q-2) refined at 1.5 Å resolution were found to correspond to the enzyme-substrate complex and an S-acyl intermediate. Based on these structures, the catalytic mechanism of protein glutaminase is proposed. PMID:21926168

  9. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    PubMed Central

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K; Jedrzejczak, Robert P; Missiakas, Dominique; Joachimiak, Andrzej

    2015-01-01

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (∼10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for two alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown. PMID:26032645

  10. Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms.

    PubMed

    Stepanenko, Olga V; Roginskii, Denis O; Stepanenko, Olesya V; Kuznetsova, Irina M; Uversky, Vladimir N; Turoverov, Konstantin K

    2016-01-01

    In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located. PMID:27114857

  11. Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms

    PubMed Central

    Stepanenko, Olga V.; Roginskii, Denis O.; Stepanenko, Olesya V.; Kuznetsova, Irina M.

    2016-01-01

    In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located. PMID:27114857

  12. Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids.

    PubMed

    Peng, Hsin-Hsin; Wu, Cheng-Yeu; Young, David; Martel, Jan; Young, Andrew; Ojcius, David M; Lee, Yu-Hsiu; Young, John D

    2013-07-01

    Recent studies indicate that mineral nanoparticles (NPs) form spontaneously in human body fluids. These biological NPs represent mineral precursors that are associated with ectopic calcifications seen in various human diseases. However, the parameters that control the formation of mineral NPs and their possible effects on human cells remain poorly understood. Here a nanomaterial approach to study the formation of biomimetic calcium phosphate NPs comparable to their physiological counterparts is described. Particle sizing using dynamic light scattering reveals that serum and ion concentrations within the physiological range yield NPs below 100 nm in diameter. While the particles are phagocytosed by macrophages in a size-independent manner, only large particles or NP aggregates in the micrometer range induce cellular responses that include production of mitochondrial reactive oxygen species, caspase-1 activation, and secretion of interleukin-1β (IL-1β). A comprehensive proteomic analysis reveals that the particle-bound proteins are similar in terms of their identity and number, regardless of particle size, suggesting that protein adsorption is independent of particle size and curvature. In conclusion, the conditions underlying the formation of mineralo-protein particles are similar to the ones that form in vivo. While mineral NPs do not activate immune cells, they may become pro-inflammatory and contribute to pathological processes once they aggregate and form larger mineral particles. PMID:23255529

  13. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-05-01

    Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. Biotechnol. Bioeng. 2016;113: 953-960. © 2015 Wiley Periodicals, Inc. PMID:26479855

  14. Non-gluten proteins as structure forming agents in gluten free bread.

    PubMed

    Ziobro, Rafał; Juszczak, Lesław; Witczak, Mariusz; Korus, Jarosław

    2016-01-01

    The study aimed to evaluate the effects of selected protein isolates and concentrates on quality and staling of gluten-free bread, in the absence of other structure-forming agents such as guar gum and pectin. The applied preparations included albumin, collagen, pea, lupine and soy. Their addition had various effects on rheological properties of the dough and volume of the bread. Volumes of the loaves baked with soy and pea protein were smaller, while those with albumin significantly larger than control. Presence of non-gluten protein caused changes in crumb structure (higher porosity, decrease in cell density, higher number of pores with a diameter above 5 mm) and its color, which was usually darker than of unsupplemented starch-based bread. The least consumer's acceptance was found for bread baked with soy protein. The presence of pea and lupine preparations improved sensory parameters of the final product, providing more acceptable color and smell in comparison to control, while soy caused a decrease of all analyzed consumer's scores. The addition of protein caused an increase in bread hardness and in enthalpy of retrograded amylopectin, during bread storage. PMID:26787976

  15. A mass weighted chemical elastic network model elucidates closed form domain motions in proteins

    PubMed Central

    Kim, Min Hyeok; Seo, Sangjae; Jeong, Jay Il; Kim, Bum Joon; Liu, Wing Kam; Lim, Byeong Soo; Choi, Jae Boong; Kim, Moon Ki

    2013-01-01

    An elastic network model (ENM), usually Cα coarse-grained one, has been widely used to study protein dynamics as an alternative to classical molecular dynamics simulation. This simple approach dramatically saves the computational cost, but sometimes fails to describe a feasible conformational change due to unrealistically excessive spring connections. To overcome this limitation, we propose a mass-weighted chemical elastic network model (MWCENM) in which the total mass of each residue is assumed to be concentrated on the representative alpha carbon atom and various stiffness values are precisely assigned according to the types of chemical interactions. We test MWCENM on several well-known proteins of which both closed and open conformations are available as well as three α-helix rich proteins. Their normal mode analysis reveals that MWCENM not only generates more plausible conformational changes, especially for closed forms of proteins, but also preserves protein secondary structures thus distinguishing MWCENM from traditional ENMs. In addition, MWCENM also reduces computational burden by using a more sparse stiffness matrix. PMID:23456820

  16. Correlation between persistent forms of zeaxanthin-dependent energy dissipation and thylakoid protein phosphorylation.

    PubMed

    Ebbert, V; Demmig-Adams, B; Adams, W W; Mueh, K E; Staehelin, L A

    2001-01-01

    High light stress induced not only a sustained form of xanthophyll cycle-dependent energy dissipation but also sustained thylakoid protein phosphorylation. The effect of protein phosphatase inhibitors (fluoride and molybdate ions) on recovery from a 1-h exposure to a high PFD was examined in leaf discs of Parthenocissus quinquefolia (Virginia creeper). Inhibition of protein dephosphorylation induced zeaxanthin retention and sustained energy dissipation (NPQ) upon return to low PFD for recovery, but had no significant effects on pigment and Chl fluorescence characteristics under high light exposure. In addition, whole plants of Monstera deliciosa and spinach grown at low to moderate PFDs were transferred to high PFDs, and thylakoid protein phosphorylation pattern (assessed with anti-phosphothreonine antibody) as well as pigment and Chl fluorescence characteristics were examined over several days. A correlation was obtained between dark-sustained D1/D2 phosphorylation and dark-sustained zeaxanthin retention and maintenance of PS II in a state primed for energy dissipation in both species. The degree of these dark-sustained phenomena was more pronounced in M. deliciosa compared with spinach. Moreover, M. deliciosa but not spinach plants showed unusual phosphorylation patterns of Lhcb proteins with pronounced dark-sustained Lhcb phosphorylation even under low PFD growth conditions. Subsequent to the transfer to a high PFD, dark-sustained Lhcb protein phosphorylation was further enhanced. Thus, phosphorylation patterns of D1/D2 and Lhcb proteins differed from each other as well as among plant species. The results presented here suggest an association between dark-sustained D1/D2 phosphorylation and sustained retention of zeaxanthin and energy dissipation (NPQ) in light-stressed, and particularly 'photoinhibited', leaves. Functional implications of these observations are discussed. PMID:16228317

  17. Thymidylate synthase protein and p53 mRNA form an in vivo ribonucleoprotein complex.

    PubMed

    Chu, E; Copur, S M; Ju, J; Chen, T M; Khleif, S; Voeller, D M; Mizunuma, N; Patel, M; Maley, G F; Maley, F; Allegra, C J

    1999-02-01

    A thymidylate synthase (TS)-ribonucleoprotein (RNP) complex composed of TS protein and the mRNA of the tumor suppressor gene p53 was isolated from cultured human colon cancer cells. RNA gel shift assays confirmed a specific interaction between TS protein and the protein-coding region of p53 mRNA, and in vitro translation studies demonstrated that this interaction resulted in the specific repression of p53 mRNA translation. To demonstrate the potential biological role of the TS protein-p53 mRNA interaction, Western immunoblot analysis revealed nearly undetectable levels of p53 protein in TS-overexpressing human colon cancer H630-R10 and rat hepatoma H35(F/F) cell lines compared to the levels in their respective parent H630 and H35 cell lines. Polysome analysis revealed that the p53 mRNA was associated with higher-molecular-weight polysomes in H35 cells compared to H35(F/F) cells. While the level of p53 mRNA expression was identical in parent and TS-overexpressing cell lines, the level of p53 RNA bound to TS in the form of RNP complexes was significantly higher in TS-overexpressing cells. The effect of TS on p53 expression was also investigated with human colon cancer RKO cells by use of a tetracycline-inducible system. Treatment of RKO cells with a tetracycline derivative, doxycycline, resulted in 15-fold-induced expression of TS protein and nearly complete suppression of p53 protein expression. However, p53 mRNA levels were identical in transfected RKO cells in the absence and presence of doxycycline. Taken together, these findings suggest that TS regulates the expression of p53 at the translational level. This study identifies a novel pathway for regulating p53 gene expression and expands current understanding of the potential role of TS as a regulator of cellular gene expression. PMID:9891091

  18. Thymidylate Synthase Protein and p53 mRNA Form an In Vivo Ribonucleoprotein Complex

    PubMed Central

    Chu, Edward; Copur, Sitki M.; Ju, Jingfang; Chen, Tian-men; Khleif, Samir; Voeller, Donna M.; Mizunuma, Nobuyuki; Patel, Mahendra; Maley, Gladys F.; Maley, Frank; Allegra, Carmen J.

    1999-01-01

    A thymidylate synthase (TS)-ribonucleoprotein (RNP) complex composed of TS protein and the mRNA of the tumor suppressor gene p53 was isolated from cultured human colon cancer cells. RNA gel shift assays confirmed a specific interaction between TS protein and the protein-coding region of p53 mRNA, and in vitro translation studies demonstrated that this interaction resulted in the specific repression of p53 mRNA translation. To demonstrate the potential biological role of the TS protein-p53 mRNA interaction, Western immunoblot analysis revealed nearly undetectable levels of p53 protein in TS-overexpressing human colon cancer H630-R10 and rat hepatoma H35(F/F) cell lines compared to the levels in their respective parent H630 and H35 cell lines. Polysome analysis revealed that the p53 mRNA was associated with higher-molecular-weight polysomes in H35 cells compared to H35(F/F) cells. While the level of p53 mRNA expression was identical in parent and TS-overexpressing cell lines, the level of p53 RNA bound to TS in the form of RNP complexes was significantly higher in TS-overexpressing cells. The effect of TS on p53 expression was also investigated with human colon cancer RKO cells by use of a tetracycline-inducible system. Treatment of RKO cells with a tetracycline derivative, doxycycline, resulted in 15-fold-induced expression of TS protein and nearly complete suppression of p53 protein expression. However, p53 mRNA levels were identical in transfected RKO cells in the absence and presence of doxycycline. Taken together, these findings suggest that TS regulates the expression of p53 at the translational level. This study identifies a novel pathway for regulating p53 gene expression and expands current understanding of the potential role of TS as a regulator of cellular gene expression. PMID:9891091

  19. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome

    PubMed Central

    Schulz, Danae; Mugnier, Monica R.; Paulsen, Eda-Margaret; Kim, Hee-Sook; Chung, Chun-wa W.; Tough, David F.; Rioja, Inmaculada; Prinjha, Rab K.; Papavasiliou, F. Nina; Debler, Erik W.

    2015-01-01

    Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite’s surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design. PMID:26646171

  20. Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome.

    PubMed

    Schulz, Danae; Mugnier, Monica R; Paulsen, Eda-Margaret; Kim, Hee-Sook; Chung, Chun-wa W; Tough, David F; Rioja, Inmaculada; Prinjha, Rab K; Papavasiliou, F Nina; Debler, Erik W

    2015-12-01

    Trypanosoma brucei, the causative agent of African sleeping sickness, is transmitted to its mammalian host by the tsetse. In the fly, the parasite's surface is covered with invariant procyclin, while in the mammal it resides extracellularly in its bloodstream form (BF) and is densely covered with highly immunogenic Variant Surface Glycoprotein (VSG). In the BF, the parasite varies this highly immunogenic surface VSG using a repertoire of ~2500 distinct VSG genes. Recent reports in mammalian systems point to a role for histone acetyl-lysine recognizing bromodomain proteins in the maintenance of stem cell fate, leading us to hypothesize that bromodomain proteins may maintain the BF cell fate in trypanosomes. Using small-molecule inhibitors and genetic mutants for individual bromodomain proteins, we performed RNA-seq experiments that revealed changes in the transcriptome similar to those seen in cells differentiating from the BF to the insect stage. This was recapitulated at the protein level by the appearance of insect-stage proteins on the cell surface. Furthermore, bromodomain inhibition disrupts two major BF-specific immune evasion mechanisms that trypanosomes harness to evade mammalian host antibody responses. First, monoallelic expression of the antigenically varied VSG is disrupted. Second, rapid internalization of antibodies bound to VSG on the surface of the trypanosome is blocked. Thus, our studies reveal a role for trypanosome bromodomain proteins in maintaining bloodstream stage identity and immune evasion. Importantly, bromodomain inhibition leads to a decrease in virulence in a mouse model of infection, establishing these proteins as potential therapeutic drug targets for trypanosomiasis. Our 1.25Å resolution crystal structure of a trypanosome bromodomain in complex with I-BET151 reveals a novel binding mode of the inhibitor, which serves as a promising starting point for rational drug design. PMID:26646171

  1. The 29-kDa proteins phosphorylated ion thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein

    SciTech Connect

    Mendelsohn, M.E.; Yan Zhu; O'Neill, S. )

    1991-12-15

    Thrombin plays a critical role in platelet activation, hemostasis, and thrombosis. Cellular activation by thrombin leads to the phosphorylation of multiple proteins, most of which are unidentified. The authors have characterized several 29-kDa proteins that are rapidly phosphorylated following exposure of intact human platelets to thrombin. A murine monoclonal antibody raised to an unidentified estrogen receptor-related 29-kDa protein selectively recognized these proteins as well as a more basic, unphosphorylated 27-kDa protein. Cellular activation by thrombin led to a marked shift in the proportion of protein from the 27-kDa unphosphorylated form to the 29-kDa phosphoprotein species. Using this antibody, they isolated and sequenced a human cDNA clone encoding a protein that was identical to the mammalian 27-kDa heat shock protein (HSP27), a protein of uncertain function that is known to be phosphorylated to several forms and to be transcriptionally induced by estrogen. The 29-kDa proteins were confirmed to be phosphorylated forms of HSP27 by immunoprecipitation studies. Thus, the estrogen receptor-related protein is HSP27, and the three major 20-kDa proteins phosphorylated in thrombin-activated platelets are forms of HSP27. These data suggest a role for HSP27 in the signal transduction events of platelet activation.

  2. Transthyretin suppresses the toxicity of oligomers formed by misfolded proteins in vitro.

    PubMed

    Cascella, Roberta; Conti, Simona; Mannini, Benedetta; Li, Xinyi; Buxbaum, Joel N; Tiribilli, Bruno; Chiti, Fabrizio; Cecchi, Cristina

    2013-12-01

    Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aβ fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aβ42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aβ42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability. PMID:24075940

  3. Abacavir forms novel cross-linking abacavir protein adducts in patients.

    PubMed

    Meng, Xiaoli; Lawrenson, Alexandre S; Berry, Neil G; Maggs, James L; French, Neil S; Back, David J; Khoo, Saye H; Naisbitt, Dean J; Park, B Kevin

    2014-04-21

    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and in vitro via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione S-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the in vitro models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC. PMID:24571427

  4. Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels.

    PubMed

    Mindthoff, Sabrina; Grunau, Silke; Steinfort, Laura L; Girzalsky, Wolfgang; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D

    2016-02-01

    More than 30 proteins (Pex proteins) are known to participate in the biogenesis of peroxisomes-ubiquitous oxidative organelles involved in lipid and ROS metabolism. The Pex11 family of homologous proteins is responsible for division and proliferation of peroxisomes. We show that yeast Pex11 is a pore-forming protein sharing sequence similarity with TRPM cation-selective channels. The Pex11 channel with a conductance of Λ=4.1 nS in 1.0M KCl is moderately cation-selective (PK(+)/PCl(-)=1.85) and resistant to voltage-dependent closing. The estimated size of the channel's pore (r~0.6 nm) supports the notion that Pex11 conducts solutes with molecular mass below 300-400 Da. We localized the channel's selectivity determining sequence. Overexpression of Pex11 resulted in acceleration of fatty acids β-oxidation in intact cells but not in the corresponding lysates. The β-oxidation was affected in cells by expression of the Pex11 protein carrying point mutations in the selectivity determining sequence. These data suggest that the Pex11-dependent transmembrane traffic of metabolites may be a rate-limiting step in the β-oxidation of fatty acids. This conclusion was corroborated by analysis of the rate of β-oxidation in yeast strains expressing Pex11 with mutations mimicking constitutively phosphorylated (S165D, S167D) or unphosphorylated (S165A, S167A) protein. The results suggest that phosphorylation of Pex11 is a mechanism that can control the peroxisomal β-oxidation rate. Our results disclose an unexpected function of Pex11 as a non-selective channel responsible for transfer of metabolites across peroxisomal membrane. The data indicate that peroxins may be involved in peroxisomal metabolic processes in addition to their role in peroxisome biogenesis. PMID:26597702

  5. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes.

    PubMed

    Crofts, Naoko; Abe, Natsuko; Oitome, Naoko F; Matsushima, Ryo; Hayashi, Mari; Tetlow, Ian J; Emes, Michael J; Nakamura, Yasunori; Fujita, Naoko

    2015-08-01

    Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein-protein interactions in maize and wheat amyloplasts. This study investigated whether protein-protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200-400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs-BEs, and, among BE isozymes, BEIIa-Pho1, and pullulanase-type DBE-BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch. PMID:25979995

  6. Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins.

    PubMed

    Siroy, Axel; Mailaender, Claudia; Harder, Daniel; Koerber, Stephanie; Wolschendorf, Frank; Danilchanka, Olga; Wang, Ying; Heinz, Christian; Niederweis, Michael

    2008-06-27

    Mycobacteria contain an outer membrane composed of mycolic acids and a large variety of other lipids. Its protective function is an essential virulence factor of Mycobacterium tuberculosis. Only OmpA, which has numerous homologs in Gram-negative bacteria, is known to form channels in the outer membrane of M. tuberculosis so far. Rv1698 was predicted to be an outer membrane protein of unknown function. Expression of rv1698 restored the sensitivity to ampicillin and chloramphenicol of a Mycobacterium smegmatis mutant lacking the main porin MspA. Uptake experiments showed that Rv1698 partially complemented the permeability defect of the M. smegmatis porin mutant for glucose. These results indicated that Rv1698 provides an unspecific pore that can partially substitute for MspA. Lipid bilayer experiments demonstrated that purified Rv1698 is an integral membrane protein that indeed produces channels. The main single channel conductance is 4.5 +/- 0.3 nanosiemens in 1 M KCl. Zero current potential measurements revealed a weak preference for cations. Whole cell digestion of recombinant M. smegmatis with proteinase K showed that Rv1698 is surface-accessible. Taken together, these experiments demonstrated that Rv1698 is a channel protein that is likely involved in transport processes across the outer membrane of M. tuberculosis. Rv1698 has single homologs of unknown functions in Corynebacterineae and thus represents the first member of a new class of channel proteins specific for mycolic acid-containing outer membranes. PMID:18434314

  7. Diverse supramolecular structures formed by self‐assembling proteins of the B acillus subtilis spore coat

    PubMed Central

    Jiang, Shuo; Wan, Qiang; Krajcikova, Daniela; Tang, Jilin; Tzokov, Svetomir B.; Barak, Imrich

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange intracellularly into highly stable macro‐structures through processes of self‐assembly. Using electron microscopy, we demonstrate the capacity of these proteins to generate ordered one‐dimensional fibres, two‐dimensional sheets and three‐dimensional stacks. In one case (CotY), the high degree of order favours strong, cooperative intracellular disulfide cross‐linking. Assemblies of this kind could form exquisitely adapted building blocks for higher‐order assembly across all spore‐formers. These physically robust arrayed units could also have novel applications in nano‐biotechnology processes. PMID:25872412

  8. Electron crystallography of PhoE porin, an outer membrane, channel- forming protein from E. coli

    SciTech Connect

    Walian, P.J.

    1989-11-01

    One approach to studying the structure of membrane proteins is the use of electron crystallography. Dr. Bing Jap has crystallized PhoE pore-forming protein (porin) from the outer membrane of escherichia coli (E. coli) into monolayer crystals. The findings of this research and those of Jap (1988, 1989) have determined these crystals to be highly ordered, yielding structural information to a resolution of better than 2.8 angstroms. The task of this thesis has been to collect and process the electron diffraction patterns necessary to generate a complete three-dimensional set of high resolution structure factor amplitudes of PhoE porin. Fourier processing of these amplitudes when combined with the corresponding phase data is expected to yield the three-dimensional structure of PhoE porin at better than 3.5 angstroms resolution. 92 refs., 33 figs., 3 tabs. (CBS)

  9. Pressure effects on structures formed by entropically driven self-assembly: Illustration for denaturation of proteins

    NASA Astrophysics Data System (ADS)

    Yoshidome, Takashi; Harano, Yuichi; Kinoshita, Masahiro

    2009-01-01

    We propose a general framework of pressure effects on the structures formed by the self-assembly of solute molecules immersed in solvent. The integral equation theory combined with the morphometric approach is employed for a hard-body model system. Our picture is that protein folding and ordered association of proteins are driven by the solvent entropy: At low pressures, the structures almost minimizing the excluded volume (EV) generated for solvent particles are stabilized. Such structures appear to be even more stabilized at high pressures. However, it is experimentally known that the native structure of a protein is unfolded, and ordered aggregates such as amyloid fibrils and actin filaments are dissociated by applying high pressures. This initially puzzling result can also be elucidated in terms of the solvent entropy. A clue to the basic mechanism is in the phenomenon that, when a large hard-sphere solute is immersed in small hard spheres forming the solvent, the small hard spheres are enriched near the solute and this enrichment becomes greater as the pressure increases. We argue that “attraction” is entropically provided between the solute surface and solvent particles, and the attraction becomes higher with rising pressure. Due to this effect, at high pressures, the structures possessing the largest possible solvent-accessible surface area together with sufficiently small EV become more stable in terms of the solvent entropy. To illustrate this concept, we perform an analysis of pressure denaturation of three different proteins. It is shown that only the structures that have the characteristics described above exhibit interesting behavior. They first become more destabilized relative to the native structure as the pressure increases, but beyond a threshold pressure the relative instability begins to decrease and they eventually become more stable than the native structure.

  10. Treatments with gras compounds to keep fig fruit (Ficus carica L.) quality during cold storage.

    PubMed

    Venditti, T; Molinu, M G; Dore, A; D'Hallewin, G; Fiori, P; Tedde, M; Agabbio, M

    2005-01-01

    The trade of fresh fig fruit is restricted by its high perishability and numerous attempts have been done to extend the postharvest life. The main difficulties can be found in the fast ripening and the easiness of pathogen spread. Although the ripening can be slowed by low storage temperatures (close to 0 degrees C) the control of pathogens remains still unsolved since no pesticide treatments are allowed. Generally Recognized As Save Compounds (G.R.A.S.) are possible candidates to fulfil this void. Sodium carbonate (SC) solutions (0.5, 1, 2 and 3%) and acetic acid (AAC) vapours (25, 50 and 100 ppm) have been used as postharvest treatments to control Botrytis cinerea on black (Craxiou de Porcu) and white (Rampelina) fig varieties. Fruit was subsequently stored at 2 or 8 degrees C and 90% relative humidity for two weeks. At the end of the experiment decay, weight loss, pH, acidity, total soluble solids and visual assessment were performed. SC treatment at 1% reduced significantly the decay while, lower and higher concentrations did not. Between the two studied varieties the lowest decay percentage (9.8%) was found for the Craxiou de Porcu. Using AAC a good efficacy was achieved only with 100 ppm, this treatment decrease to 2.4% the incidence of decay irrespective to storage temperature. Lower concentrations were lesser effective and the efficacy was strictly dependent on the storage temperature, being higher at 2 degrees C. No treatment damages were observed following SC or AAC applications. Regarding fruit weight loss all treatments did not affect this parameter that was 10.1% and 16.9% at 2 and 8 degrees C, respectively. Chemical analyses performed at the end of the storage period did not evidenced differences among the treatments and slight ones if compared to initial values. Visual score of the fruit at the end of storage evidenced a better keeping quality for Craxiou de Porcu especially when stored at 2 degrees C. Both G.R.A.S. compounds are promising, but in

  11. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical products.

    PubMed

    Czarnocka, Justyna K; Alhnan, Mohamed A

    2015-01-01

    The use of naturally derived excipients to develop enteric coatings offers significant advantages over conventional synthetic polymers. Unlike synthetic polymers, they are biodegradable, relatively abundant, have no daily intake limits or restrictions on use for dietary and nutraceutical products. However, little information is available on their dissolution properties under different gastrointestinal conditions and in comparison to each other. This work investigated the gastric resistance properties of commercially available GRAS-based coating technologies. Three coating systems were evaluated: ethyl cellulose+carboxymethyl cellulose (EC-CMC), ethyl cellulose+sodium alginate (EC-Alg) and shellac+sodium alginate (Sh-Alg) combinations. The minimum coating levels were optimized to meet USP pharmacopoeial criteria for delayed release formulations (<10% release after 2h in pH 1.2 followed by >80% release after 45 min of pH change). Theophylline 150 mg tablets were coated with 6.5%, 7%, and 2.75% coating levels of formulations EC-CMC, EC-Alg and Sh-Alg, respectively. In vitro dissolution test revealed a fast release in pH 6.8 for ethyl cellulose based coatings: t80% value of 65 and 45 min for EC-CMC and EC-Alg respectively, while a prolonged drug release from Sh-Alg coating was observed in both pH 6.8 and 7.4 phosphate buffers. However, when more biologically relevant bicarbonate buffer was used, all coatings showed slower drug release. Disintegration test, carried out in both simulated gastric and intestinal fluid, confirmed good mechanical resistance of EC-CMC and EC-Alg coating, and revealed poor durability of the thinner Sh-Alg. Under elevated gastric pH conditions (pH 2, 3 and 4), EC-CMC and EC-Alg coatings were broken after 70, 30, 55 min and after 30, 15, 15 min, respectively, while Sh-Alg coated tablets demonstrated gastric resistance at all pH values. In conclusion, none of the GRAS-grade coatings fully complied with the different biological demands of delayed

  12. Heat Shock Proteins Regulate Activation-induced Proteasomal Degradation of the Mature Phosphorylated Form of Protein Kinase C*

    PubMed Central

    Lum, Michelle A.; Balaburski, Gregor M.; Murphy, Maureen E.; Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells. PMID:23900841

  13. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    PubMed Central

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  14. Toxicity and oxidative stress of different forms of organic selenium and dietary protein in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; LeCaptain, L.J.; Eisemann, J.D.; Pendleton, G.W.

    1996-01-01

    Concentrations of over 100 ppm (mg/kg) selenium (Se) have been found in aquatic plants and insects associated with irrigation drainwater and toxicity to fish and wildlife. Composition of diet for wild ducklings may vary in selenium-contaminated environments. Earlier studies have compared toxicities and oxidative stress of Se as selenite to those of seleno-DL-methionine (DL) in mallards (Anas platyrhynchos). This study compares DL, seleno-L-methionine (L), selenized yeast (Y) and selenized wheat (W). Day-old mallard ducklings received an untreated diet (controls) containing 75% wheat (22% protein) or the same diet containing 15 or 30 ppm Se in the above forms except for 30 ppm Se as W. After 2 weeks blood and liver samples were collected for biochemical assays and Se analysis. All forms of selenium caused significant increases in plasma and hepatic glutathione peroxidase activities. Se as L at 30 ppm in the diet was the most toxic form, resulting in high mortality (64%) and impaired growth (>50%) in survivors and the greatest increase in ratio of oxidized to reduced hepatic glutathione (GSH). Se as both L and DL decreased the concentrations of hepatic GSH and total thiols. Se as Y accumulated the least in liver (approximately 50% of other forms) and had less effect on GSH and total thiols. In a second experiment, in which the basal diet was a commercial duck feed (22 % protein), survival was not affected by 30 ppm Se as DL, L, or Y and oxidative effects on GSH metabolism were less pronounced than with the wheat diet.

  15. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1.

    PubMed

    Perdomo, Doranda; Bonhivers, Mélanie; Robinson, Derrick R

    2016-01-01

    Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton. PMID:26950156

  16. Bone Morphogenetic Protein 15 in the Pro-Mature Complex Form Enhances Bovine Oocyte Developmental Competence

    PubMed Central

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; White, Melissa A.; Mottershead, David G.; Thompson, Jeremy G.; Gilchrist, Robert B.

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies. PMID:25058588

  17. Sexual risk behavior in men attending Mardi Gras celebrations in New Orleans, Louisiana.

    PubMed

    Benotsch, Eric G; Nettles, Christopher D; Wong, Felicia; Redmann, Jean; Boschini, Jill; Pinkerton, Steven D; Ragsdale, Kathleen; Mikytuck, John J

    2007-10-01

    Previous research with travelers points to higher risk behaviors during vacations. Relative to their day-to-day lives, leisure travelers have more free time to pursue sexual activities and are likely to engage in higher rates of substance use than when at home. Risk behaviors during vacation have not been thoroughly examined in men who have sex with men (MSM), a key group at risk for HIV. The present investigation examined substance use, sexual risk behaviors, and components of the Information-Motivation-Behavioral Skills (IMB) Model in MSM attending Mardi Gras celebrations in New Orleans. Almost half of the sexually active men reported having sex with a partner of unknown HIV status while in New Orleans and a similar number did not disclose their own HIV status to all of their sexual partners. Drug use and excessive alcohol use were associated with unprotected sex (ps < .05). Components of the IMB model also predicted sexual risk behavior: individuals with more accurate HIV transmission information reported fewer unprotected sex acts, and motivation to engage in sexual activity on vacation was associated with more unprotected sex (ps < .05). Findings suggest that some MSM on vacation are placing themselves at risk for HIV. Traditional HIV prevention interventions do not readily lend themselves for use with transient populations. New intervention approaches are needed to reduce sexual risk behaviors in persons traveling for leisure. PMID:17922205

  18. The FEMA GRAS assessment of furfural used as a flavour ingredient. Flavor and Extract Manufacturers' Association.

    PubMed

    Adams, T B; Doull, J; Goodman, J I; Munro, I C; Newberne, P; Portoghese, P S; Smith, R L; Wagner, B M; Weil, C S; Woods, L A; Ford, R A

    1997-08-01

    The Expert Panel of the Flavor and Extract Manufacturers' Association (FEMA) has assessed the safety of furfural for its continued use as a flavour ingredient. The safety assessment takes into account the current scientific information on exposure, metabolism, pharmacokinetics, toxicology, carcinogenicity and genotoxicity. Furfural was reaffirmed as GRAS (GRASr) as a flavour ingredient under conditions of intended use based on: (1) its mode of metabolic detoxication in humans; (2) its low level of flavour use compared with higher intake levels as a naturally occurring component of food; (3) the safety factor calculated from results of subchronic and chronic studies, (4) the lack of reactivity with DNA; and (5) the conclusion that the only statistically significant finding in the 2-year NTP bioassays, an increased incidence of hepatocellular adenomas and carcinomas in the high-dose group of male mice, was secondary to pronounced hepatotoxicity. Taken together, these data do not indicate any risk to human health under conditions of use as a flavour ingredient. This evidence of safety is supported by the occurrence of furfural as a natural component of traditional foods, at concentrations in the diet resulting in a 'natural intake' that is at least 100 times higher than the intake of furfural from use as a flavour ingredient. PMID:9350219

  19. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens.

    PubMed

    Yang, Taowei; Rao, Zhiming; Zhang, Xian; Lin, Qing; Xia, Haifeng; Xu, Zhenghong; Yang, Shangtian

    2011-12-01

    In the current study, a GRAS (Generally Recognized As Safe) strain of Bacillus amyloliquefaciens producing 2,3-butanediol (2,3-BD) designated as B10-127 was isolated in our lab. The strain B10-127 produced 2,3-BD effectively under the condition of 20% glucose (quality concentration), showed a high-glucose tolerance. The effects of initial glucose concentration, temperature, pH and agitation on 2,3-BD production were investigated in this work and the proper parameters were identified. Accordingly, the fed-batch culture of B10-127 in larger scales (5 l) showed a remarkable 2,3-BD producing potency. The maximum 2,3-BD concentration reached 92.3 g/l at 96 h with a 2,3-BD productivity of 0.96 g/l h. To our knowledge, the results were new records on 2,3-BD fermentation by Bacillus, which shown an excellent candidate for the microbial fermentation of 2,3-BD on an industrial scale. PMID:21780143

  20. Killing machines: three pore-forming proteins of the immune system.

    PubMed

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki; Podack, Eckhard R

    2013-12-01

    The evolution of early multicellular eukaryotes 400-500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  1. Protein imprinting and recognition via forming nanofilms on microbeads surfaces in aqueous media

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yan, Chang-Ling; Wang, Xue-Jing; Wang, Gong-Ke

    2009-12-01

    In this paler, we present a technique of forming nanofilms of poly-3-aminophenylboronic acid (pAPBA) on the surfaces of polystyrene (PS) microbeads for proteins (papain and trypsin) in aqueous. Papain was chosen as a model to study the feasibility of the technique and trypsin as an extension. Obtained core-shell microbeads were characterized using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and BET methods. The results show that pAPBA formed nanofilms (60-100 nm in thickness) on the surfaces of PS microbeads. The specific surface area of the papain-imprinted beads was about 180 m 2 g -1 and its pore size was 31 nm. These imprinted microbeads exhibit high recognition specificity and fast mass transfer kinetics. The specificity of these imprinted beads mainly originates from the spatial effect of imprinted sites. Because the protein-imprinted sites were located at, or close to, the surface, the imprinted beads have good site accessibility toward the template molecules. The facility of the imprinting protocol and the high recognition properties of imprinted microbeads make the approach an attractive solution to problems in the field of biotechnology.

  2. Using Ion Channel-Forming Peptides to Quantify Protein-Ligand Interactions

    PubMed Central

    Mayer, Michael; Semetey, Vincent; Gitlin, Irina; Yang, Jerry; Whitesides, George M.

    2008-01-01

    This paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW ~30 kD) to the ion channel-forming peptides (MW ~2.5 kD) either reduced the tendency of these peptides to self-assemble into a pore, or extracted them from the bilayer altogether. In both outcomes, the interactions between the protein and the ligand lead to a disruption of self-assembled pores. Addition of a competitive inhibitor – 4-carboxybenzenesulfonamide – to the solution released CA II from the alamethicin-sulfonamide conjugate and restored the current flow across the bilayer by allowing reassembly of the ion channels in the bilayer. Time-averaged recordings of the current over discrete time intervals made it possible to quantify this monovalent ligand binding interaction. This method gave a dissociation constant of ~2 µM for the binding of CA II to alamethicin-sulfonamide in the bilayer recording chamber: this value is consistent with a value obtained independently with CA II and a related sulfonamide derivative by isothermal titration calorimetry. PMID:18179217

  3. The effects of non-lamellar forming lipids on membrane protein-lipid interactions.

    PubMed

    Stubbs, C D; Slater, S J

    1996-07-15

    The role of lipid polymorphism in the regulation of membrane-associated protein function is examined, based on recent studies which showed that changes in the levels of phosphatidylethanolamine (PE), cholesterol and phospholipid unsaturation, modulate the activity of the key signal transduction enzyme, protein kinase C (PKC). It is shown that effects of membrane compositional changes on PKC activity involve a perturbation of protein-lipid interactions with the head group region rather than with the hydrophobic interior of the bilayer. A key determinant in the perturbation of these interactions is suggested to be an elastic curvature energy, termed curvature stress, which results from the unfavorable packing of non-lamellar forming lipids in a planar bilayer. PKC activity is shown to be a biphasic function of curvature stress, with an optimum value of this parameter corresponding to an optimally active PKC conformation. Thus, it is shown that the maximal activity of conformationally distinct PKC isoforms may require a different optimum value of curvature stress. Furthermore, it is hypothesized that curvature stress may have differing effects on the conformation of membrane-associated PKC activity induced by diacylglycerols, phorbol esters or other activators, based on recent studies showing that these agents induce the formation of disparate active conformers of the enzyme. PMID:8810048

  4. A unique tool to selectively detect the chondrogenic IIB form of human type II procollagen protein.

    PubMed

    Aubert-Foucher, Elisabeth; Mayer, Nathalie; Pasdeloup, Marielle; Pagnon, Aurélie; Hartmann, Daniel; Mallein-Gerin, Frédéric

    2014-02-01

    Type II collagen, the major fibrillar collagen of cartilage, is synthesized as precursor forms (procollagens) containing N- and C-terminal propeptides. Three splice variants are thought to be translated to produce procollagen II isoforms (IIA/D and IIB) which differ in their amino propeptide parts. The IIA and IID are transient embryonic isoforms that include an additional cysteine-rich domain encoded by exon 2. The IIA and IID transcripts are co-expressed during chondrogenesis then decline and the IIB isoform is the only one expressed and synthesized in fully differentiated chondrocytes. Additionally, procollagens IIA/D can be re-expressed by dedifferentiating chondrocytes and in osteoarthritic cartilage. Therefore, it is an important point to determine which isoform(s) is (are) synthesized in vivo in normal and pathological situations and in vitro, to fully assess the phenotype of cells producing type II collagen protein. Antibodies directed against the cysteine-rich extra domain found in procollagens IIA and IID are already available but antibodies detecting only the chondrogenic IIB form of type II procollagen were missing so far. A synthetic peptide encompassing the junction between exon 1 and exon 3 of the human sequence was used as immunogen to produce rabbit polyclonal antibodies to procollagen IIB. After affinity purification on immobilized peptide their absence of crossreaction with procollagens IIA/D and with the fibrillar procollagens I, III and V was demonstrated by Western blotting. These antibodies were used to reveal at the protein level that the treatment of dedifferentiated human chondrocytes by bone morphogenic protein (BMP)-2 induces the synthesis of the IIB (chondrocytic) isoform of procollagen II. In addition, immunohistochemical staining of bovine cartilage demonstrates the potential of these antibodies in the analysis of the differential spatiotemporal distribution of N-propeptides of procollagens IIA/D and IIB during normal development and

  5. ALS-associated peripherin spliced transcripts form distinct protein inclusions that are neuroprotective against oxidative stress.

    PubMed

    McLean, Jesse R; Smith, Gaynor A; Rocha, Emily M; Osborn, Teresia M; Dib, Samar; Hayes, Melissa A; Beagan, Jonathan A; Brown, Tana B; Lawson, Tristan F S; Hallett, Penelope J; Robertson, Janice; Isacson, Ole

    2014-11-01

    Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (<10μM), or large inclusions (≥10μM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS. PMID:24907400

  6. Dynamically-expressed prion-like proteins form a cuticle in the pharynx of Caenorhabditis elegans

    PubMed Central

    George-Raizen, Julia B.; Shockley, Keith R.; Trojanowski, Nicholas F.; Lamb, Annesia L.; Raizen, David M.

    2014-01-01

    ABSTRACT In molting animals, a cuticular extracellular matrix forms the first barrier to infection and other environmental insults. In the nematode Caenorhabditis elegans there are two types of cuticle: a well-studied collagenous cuticle lines the body, and a poorly-understood chitinous cuticle lines the pharynx. In the posterior end of the pharynx is the grinder, a tooth-like cuticular specialization that crushes food prior to transport to the intestine for digestion. We here show that the grinder increases in size only during the molt. To gain molecular insight into the structure of the grinder and pharyngeal cuticle, we performed a microarray analysis to identify mRNAs increased during the molt. We found strong transcriptional induction during the molt of 12 of 15 previously identified abu genes encoding Prion-like (P) glutamine (Q) and asparagine (N) rich PQN proteins, as well as 15 additional genes encoding closely related PQN proteins. abu/pqn genes, which we name the abu/pqn paralog group (APPG) genes, were expressed in pharyngeal cells and the proteins encoded by two APPG genes we tested localized to the pharyngeal cuticle. Deleting the APPG gene abu-14 caused abnormal pharyngeal cuticular structures and knocking down other APPG genes resulted in abnormal cuticular function. We propose that APPG proteins promote the assembly and function of a unique cuticular structure. The strong developmental regulation of the APPG genes raises the possibility that such genes would be identified in transcriptional profiling experiments in which the animals' developmental stage is not precisely staged. PMID:25361578

  7. Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly.

    PubMed

    McKee, Karen K; Capizzi, Stephanie; Yurchenco, Peter D

    2009-03-27

    Laminins that possess three short arms contribute to basement membrane assembly by anchoring to cell surfaces, polymerizing, and binding to nidogen and collagen IV. Although laminins containing the alpha4 and alpha5 subunits are expressed in alpha2-deficient congenital muscular dystrophy, they may be ineffective substitutes because they bind weakly to cell surfaces and/or because they lack the third arm needed for polymerization. We asked whether linker proteins engineered to bind to deficient laminins that provide such missing activities would promote basement membrane assembly in a Schwann cell model. A chimeric fusion protein (alphaLNNd) that adds a short arm terminus to laminin through the nidogen binding locus was generated and compared with the dystrophy-ameliorating protein miniagrin (mAgrin) that binds to the laminin coiled-coil dystroglycan and sulfatides. alphaLNNd was found to mediate laminin binding to collagen IV, to bind to galactosyl sulfatide, and to selectively convert alpha-short arm deletion-mutant laminins LmDeltaalphaLN and LmDeltaalphaLN-L4b into polymerizing laminins. This protein enabled polymerization-deficient laminin but not an adhesion-deficient laminin lacking LG domains (LmDeltaLG) to assemble an extracellular matrix on Schwann cell surfaces. mAgrin, on the other hand, enabled LmDeltaLG to form an extracellular matrix on cell surfaces without increasing accumulation of non-polymerizing laminins. These gain-of-function studies reveal distinct polymerization and anchorage contributions to basement membrane assembly in which the three different LN domains mediate the former, and the LG domains provide primary anchorage with secondary contributions from the alphaLN domain. These findings may be relevant for an understanding of the pathogenesis and treatment of laminin deficiency states. PMID:19189961

  8. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes

    PubMed Central

    Crofts, Naoko; Abe, Natsuko; Oitome, Naoko F.; Matsushima, Ryo; Hayashi, Mari; Tetlow, Ian J.; Emes, Michael J.; Nakamura, Yasunori; Fujita, Naoko

    2015-01-01

    Amylopectin is a highly branched, organized cluster of glucose polymers, and the major component of rice starch. Synthesis of amylopectin requires fine co-ordination between elongation of glucose polymers by soluble starch synthases (SSs), generation of branches by branching enzymes (BEs), and removal of misplaced branches by debranching enzymes (DBEs). Among the various isozymes having a role in amylopectin biosynthesis, limited numbers of SS and BE isozymes have been demonstrated to interact via protein–protein interactions in maize and wheat amyloplasts. This study investigated whether protein–protein interactions are also found in rice endosperm, as well as exploring differences between species. Gel permeation chromatography of developing rice endosperm extracts revealed that all 10 starch biosynthetic enzymes analysed were present at larger molecular weights than their respective monomeric sizes. SSIIa, SSIIIa, SSIVb, BEI, BEIIb, and PUL co-eluted at mass sizes >700kDa, and SSI, SSIIa, BEIIb, ISA1, PUL, and Pho1 co-eluted at 200–400kDa. Zymogram analyses showed that SSI, SSIIIa, BEI, BEIIa, BEIIb, ISA1, PUL, and Pho1 eluted in high molecular weight fractions were active. Comprehensive co-immunoprecipitation analyses revealed associations of SSs–BEs, and, among BE isozymes, BEIIa–Pho1, and pullulanase-type DBE–BEI interactions. Blue-native-PAGE zymogram analyses confirmed the glucan-synthesizing activity of protein complexes. These results suggest that some rice starch biosynthetic isozymes are physically associated with each other and form active protein complexes. Detailed analyses of these complexes will shed light on the mechanisms controlling the unique branch and cluster structure of amylopectin, and the physicochemical properties of starch. PMID:25979995

  9. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli.

    PubMed

    Johnson, Brant R; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  10. SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release.

    PubMed

    Raghava, Smita; Giorda, Kristina M; Romano, Fabian B; Heuck, Alejandro P; Hebert, Daniel N

    2013-06-01

    Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis. To investigate the role of VP4 in viral release and its mechanism of action, VP4 was expressed and purified from bacteria as a fusion protein for use in membrane disruption assays. Purified VP4 perforated membranes as demonstrated by the release of fluorescent markers encapsulated within large unilamellar vesicles or liposomes. Dynamic light scattering results revealed that VP4 treatment did not cause membrane lysis or change the size of the liposomes. Liposomes encapsulated with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-3-indacene-labeled streptavidin were used to show that VP4 formed stable pores in membranes. These VP4 pores had an inner diameter of 1-5 nm. Asymmetrical liposomes containing pyrene-labeled lipids in the outer monolayer were employed to monitor transbilayer lipid diffusion. Consistent with VP4 forming toroidal pore structures in membranes, VP4 induced transbilayer lipid diffusion or lipid flip-flop. Altogether, these studies support a central role for VP4 acting as a viroporin in the disruption of cellular membranes to trigger SV40 viral release by forming toroidal pores that unite the outer and inner leaflets of membrane bilayers. PMID:23651212

  11. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  12. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics.

    PubMed

    Ishii, Shiro; Kaneko, Junya; Nagasaki, Yukio

    2016-04-01

    Although cancer immunotherapies are attracting much attention, it is difficult to develop bioactive proteins owing to the severe systemic toxicity. To overcome the issue, we designed new local protein delivery system by using a protein-loaded, redox-active, injectable gel (RIG), which is formed by a polyion complex (PIC) comprising three components, viz., cationic polyamine-poly(ethylene glycol)-polyamine triblock copolymer possessing ROS-scavenging moieties as side chains; anionic poly(acrylic acid); and a protein. The mixture formed the protein-loaded PIC flower micelles at room temperature, which immediately converted to a gel with high mechanical strength upon exposure to physiological conditions. Because the protein electrostatically interacts with the PIC gel network, RIG provided a sustained release of the protein without a significant initial burst, regardless of the types of proteins in vitro, and much longer retention of the protein at the local injection site in mice than that of the naked protein. Subcutaneous injections of IL-12@RIG in the vicinity of tumor tissue showed remarkable tumor growth inhibition in tumor-bearing mice, compared to that observed with injection of IL-12 alone, suppressing adverse events caused by IL-12-induced ROS. Our results indicate that RIG has potential as a platform technology for an injectable sustained-release carrier for proteins. PMID:26828685

  13. Isolation of a biologically active soluble form of the hemagglutinin-neuraminidase protein of Sendai virus.

    PubMed Central

    Thompson, S D; Laver, W G; Murti, K G; Portner, A

    1988-01-01

    As a first step in establishing the three-dimensional structure of the Sendai virus hemagglutinin-neuraminidase (HN), we have isolated and characterized a potentially crystallizable form of the molecule. The sequence of HN, a surface glycoprotein, predicts a protein with an uncharged hydrophobic region near the amino terminus which is responsible for anchorage in the viral envelope. To avoid rosette formation (aggregation), which would preclude crystallization, this hydrophobic tail was removed from a membrane-free form of HN by proteolytic digestion. This digestion resulted in a single product with a molecular weight of about 10,000 less than native HN. N-terminal amino acid sequence analysis of cleaved HN (C-HN) indicated a single cleavage site at amino acid residue 131, resulting in a product consisting of the carboxyl-terminal 444 amino acids of HN. Functional analyses revealed that C-HN retained full neuraminidase activity and was able to bind erythrocytes, indicating that the N-terminal 131 residues were not necessary for these biological activities. Furthermore, this cleavage product retained the antigenic structure of intact HN, since monoclonal antibodies still bound to C-HN in enzyme-linked immunosorbent assay and Western (immuno-) blot analysis. Viewed by electron microscopy, the dimeric and tetrameric forms of intact HN form rosettes while C-HN maintains the oligomeric structure but no longer aggregates. Furthermore, the electron micrographs revealed a C-HN tetramer strikingly similar to the influenza virus neuraminidase in both size and gross structural features. Images PMID:2846877

  14. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation

    PubMed Central

    Rogala, Kacper B; Dynes, Nicola J; Hatzopoulos, Georgios N; Yan, Jun; Pong, Sheng Kai; Robinson, Carol V; Deane, Charlotte M; Gönczy, Pierre; Vakonakis, Ioannis

    2015-01-01

    Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo. DOI: http://dx.doi.org/10.7554/eLife.07410.001 PMID:26023830

  15. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    PubMed Central

    Schwede, Angela; Macleod, Olivia J. S.; MacGregor, Paula; Carrington, Mark

    2015-01-01

    Abstract Variations on the statement “the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier” appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG. PMID:26719972

  16. Crystal structure of the fluorescent protein from Dendronephthya sp. in both green and photoconverted red forms.

    PubMed

    Pletneva, Nadya V; Pletnev, Sergei; Pakhomov, Alexey A; Chertkova, Rita V; Martynov, Vladimir I; Muslinkina, Liya; Dauter, Zbigniew; Pletnev, Vladimir Z

    2016-08-01

    The fluorescent protein from Dendronephthya sp. (DendFP) is a member of the Kaede-like group of photoconvertible fluorescent proteins with a His62-Tyr63-Gly64 chromophore-forming sequence. Upon irradiation with UV and blue light, the fluorescence of DendFP irreversibly changes from green (506 nm) to red (578 nm). The photoconversion is accompanied by cleavage of the peptide backbone at the C(α)-N bond of His62 and the formation of a terminal carboxamide group at the preceding Leu61. The resulting double C(α)=C(β) bond in His62 extends the conjugation of the chromophore π system to include imidazole, providing the red fluorescence. Here, the three-dimensional structures of native green and photoconverted red forms of DendFP determined at 1.81 and 2.14 Å resolution, respectively, are reported. This is the first structure of photoconverted red DendFP to be reported to date. The structure-based mutagenesis of DendFP revealed an important role of positions 142 and 193: replacement of the original Ser142 and His193 caused a moderate red shift in the fluorescence and a considerable increase in the photoconversion rate. It was demonstrated that hydrogen bonding of the chromophore to the Gln116 and Ser105 cluster is crucial for variation of the photoconversion rate. The single replacement Gln116Asn disrupts the hydrogen bonding of Gln116 to the chromophore, resulting in a 30-fold decrease in the photoconversion rate, which was partially restored by a further Ser105Asn replacement. PMID:27487823

  17. Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex

    PubMed Central

    Rust, René C.; Landmann, Lukas; Gosert, Rainer; Tang, Bor Luen; Hong, Wanjin; Hauri, Hans-Peter; Egger, Denise; Bienz, Kurt

    2001-01-01

    Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway. PMID:11559814

  18. T-lymphocyte activation and the cellular form of the prion protein.

    PubMed Central

    Mabbott, N A; Brown, K L; Manson, J; Bruce, M E

    1997-01-01

    The transmissible spongiform encephalopathies are neurodegenerative disorders which include Creutzfeldt-Jakob disease in humans, and scrapie and bovine spongiform encephalopathy in animals. A major component of the infectious agent responsible for these diseases is considered to be a post-translationally modified form of a host-encoded glycoprotein PrPc, termed PrPSc. While PrPc is abundantly expressed in tissues of the central nervous system (CNS), little is known about its normal function. The expression of PrPc is not restricted to the CNS, as this protein can also be detected in the lymphoid tissues of mice and sheep. In this report we demonstrate that resting murine splenic lymphocytes express PrPc protein on their cell membranes. Furthermore, expression of PrPc was significantly enhanced following in vitro stimulation with the non-specific T-cell mitogen concanavalin A (Con A). Genetically engineered mice with an inactive PrPc gene (PrP-/- mice), were utilized to investigate the involvement of PrPc in lymphocyte activation. Experiments revealed that the Con A-induced proliferation of lymphocytes from PrP-/- mice was significantly reduced to approximately 50-80% that of wild-type (PrP+/+) mice 48 hr post-stimulation. These findings demonstrate an important role for PrPc in extra-neuronal tissues and suggest that PrPc is a lymphocyte surface molecule that participates in T-cell activation. PMID:9415021

  19. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    PubMed Central

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  20. A Highly Toxic Cellular Prion Protein Induces a Novel, Nonapoptotic Form of Neuronal Death

    PubMed Central

    Christensen, Heather M.; Dikranian, Krikor; Li, Aimin; Baysac, Kathleen C.; Walls, Ken C.; Olney, John W.; Roth, Kevin A.; Harris, David A.

    2010-01-01

    Several different deletions within the N-terminal tail of the prion protein (PrP) induce massive neuronal death when expressed in transgenic mice. This toxicity is dose-dependently suppressed by coexpression of full-length PrP, suggesting that it results from subversion of a normal physiological activity of cellular PrP. We performed a combined biochemical and morphological analysis of Tg(ΔCR) mice, which express PrP carrying a 21-aa deletion (residues 105-125) within a highly conserved region of the protein. Death of cerebellar granule neurons in Tg(ΔCR) mice is not accompanied by activation of either caspase-3 or caspase-8 or by increased levels of the autophagy marker, LC3-II. In electron micrographs, degenerating granule neurons displayed a unique morphology characterized by heterogeneous condensation of the nuclear matrix without formation of discrete chromatin masses typical of neuronal apoptosis. Our data demonstrate that perturbations in PrP functional activity induce a novel, nonapoptotic, nonautophagic form of neuronal death whose morphological features are reminiscent of those associated with excitotoxic stress. PMID:20472884

  1. Structural Studies of Truncated Forms of the Prion Protein PrP

    PubMed Central

    Wan, William; Wille, Holger; Stöhr, Jan; Kendall, Amy; Bian, Wen; McDonald, Michele; Tiggelaar, Sarah; Watts, Joel C.; Prusiner, Stanley B.; Stubbs, Gerald

    2015-01-01

    Prions are proteins that adopt self-propagating aberrant folds. The self-propagating properties of prions are a direct consequence of their distinct structures, making the understanding of these structures and their biophysical interactions fundamental to understanding prions and their related diseases. The insolubility and inherent disorder of prions have made their structures difficult to study, particularly in the case of the infectious form of the mammalian prion protein PrP. Many investigators have therefore preferred to work with peptide fragments of PrP, suggesting that these peptides might serve as structural and functional models for biologically active prions. We have used x-ray fiber diffraction to compare a series of different-sized fragments of PrP, to determine the structural commonalities among the fragments and the biologically active, self-propagating prions. Although all of the peptides studied adopted amyloid conformations, only the larger fragments demonstrated a degree of structural complexity approaching that of PrP. Even these larger fragments did not adopt the prion structure itself with detailed fidelity, and in some cases their structures were radically different from that of pathogenic PrPSc. PMID:25809267

  2. Elaborate color patterns of individual chicken feathers may be formed by the agouti signaling protein.

    PubMed

    Yoshihara, Chihiro; Fukao, Ayaka; Ando, Keita; Tashiro, Yuichi; Taniuchi, Shusuke; Takahashi, Sumio; Takeuchi, Sakae

    2012-02-01

    Hair and feather pigmentation is mainly determined by the distribution of two kinds of melanin, eumelanin and pheomelanin, which produce brown to black and yellow to red colorations, respectively. The agouti signaling protein (ASIP) acts as an antagonist or an inverse agonist of the melanocortin 1 receptor (MC1R), a G protein-coupled receptor for α-melanocyte-stimulating hormone (α-MSH). This antagonism of the MC1R by ASIP on melanocytes initiates a switch of melanin synthesis from eumelanogenesis to pheomelanogenesis in mammals. In the present study, we isolated multiple ASIP mRNA variants generated by alternative splicing and promoters in chicken feather follicles. The mRNA variants showed a discrete tissue distribution. However, mRNAs were expressed predominantly in the feather pulp of follicles. Paralleling mRNA distribution, ASIP immunoreactivity was observed in feather pulp. Interestingly, ASIP was stained with pheomelanin but not eumelanin in pulp areas that face developing barbs. We suggest that the elaborate color pattern of individual feathers is formed in part by the antagonistic action of ASIP that is produced by multiple mRNA variants in chicken feather follicles. PMID:22202606

  3. Structures of Lysenin Reveal a Shared Evolutionary Origin for Pore-Forming Proteins And Its Mode of Sphingomyelin Recognition

    PubMed Central

    De Colibus, Luigi; Sonnen, Andreas F.-P.; Morris, Keith J.; Siebert, C. Alistair; Abrusci, Patrizia; Plitzko, Jürgen; Hodnik, Vesna; Leippe, Matthias; Volpi, Emanuela; Anderluh, Gregor; Gilbert, Robert J.C.

    2012-01-01

    Summary Pore-forming proteins insert from solution into membranes to create lesions, undergoing a structural rearrangement often accompanied by oligomerization. Lysenin, a pore-forming toxin from the earthworm Eisenia fetida, specifically interacts with sphingomyelin (SM) and may confer innate immunity against parasites by attacking their membranes to form pores. SM has important roles in cell membranes and lysenin is a popular SM-labeling reagent. The structure of lysenin suggests common ancestry with other pore-forming proteins from a diverse set of eukaryotes and prokaryotes. The complex with SM shows the mode of its recognition by a protein in which both the phosphocholine headgroup and one acyl tail are specifically bound. Lipid interaction studies and assays using viable target cells confirm the functional reliance of lysenin on this form of SM recognition. PMID:22819216

  4. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus

    SciTech Connect

    Montrose, Kristopher; Krissansen, Geoffrey W.

    2014-10-31

    Highlights: • A novel proteolysis targeting chimeric molecule (PROTAC) to treat hepatitis B. • The PROTAC antagonizes and destroys the X-protein of the hepatitis B virus. • The PROTAC is a fusion of the X-protein oligomerization and instability domains. • The oligomerization domain is a dominant-negative inhibitor of X-protein function. • X-protein-targeting PROTACs have potential to prevent hepatocellular carcinoma. - Abstract: The X-protein of the hepatitis B virus (HBV) is essential for virus infection and contributes to the development of HBV-induced hepatocellular carcinoma (HCC), a disease which causes more than one million deaths each year. Here we describe the design of a novel PROTAC (proteolysis targeting chimeric molecule) capable of simultaneously inducing the degradation of the X-protein, and antagonizing its function. The PROTAC was constructed by fusing the N-terminal oligomerization and C-terminal instability domains of the X-protein to each other, and rendering them cell-permeable by the inclusion of a polyarginine cell-penetrating peptide (CPP). It was predicted that the oligomerization domain would bind the X-protein, and that the instability domain would cause the X-protein to be targeted for proteasomal degradation. Addition of the PROTAC to HepG2 liver cancer cells, engineered to express full-length and C-terminally truncated forms of the X-protein, resulted in the degradation of both forms of the X-protein. A cell-permeable stand-alone form of the oligomerization domain was taken up by HepG2 cells, and acted as a dominant-negative inhibitor, causing inhibition of X-protein-induced apoptosis. In summary, the PROTAC described here induces the degradation of the X-protein, and antagonizes its function, and warrants investigation in a preclinical study for its ability to prevent or treat HBV infection and/or the development of HCC.

  5. '2A-Like' Signal Sequences Mediating Translational Recoding: A Novel Form of Dual Protein Targeting.

    PubMed

    Roulston, Claire; Luke, Garry A; de Felipe, Pablo; Ruan, Lin; Cope, Jonathan; Nicholson, John; Sukhodub, Andriy; Tilsner, Jens; Ryan, Martin D

    2016-08-01

    We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting. PMID:27161495

  6. LRRC8 Proteins Form Volume-Regulated Anion Channels that Sense Ionic Strength.

    PubMed

    Syeda, Ruhma; Qiu, Zhaozhu; Dubin, Adrienne E; Murthy, Swetha E; Florendo, Maria N; Mason, Daniel E; Mathur, Jayanti; Cahalan, Stuart M; Peters, Eric C; Montal, Mauricio; Patapoutian, Ardem

    2016-01-28

    The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ. PMID:26824658

  7. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle

    PubMed Central

    Mackinder, Luke C. M.; Meyer, Moritz T.; Mettler-Altmann, Tabea; Chen, Vivian K.; Mitchell, Madeline C.; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S.; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C.

    2016-01-01

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2. Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2. We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1’s four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency. PMID:27166422

  8. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.

    PubMed

    Mackinder, Luke C M; Meyer, Moritz T; Mettler-Altmann, Tabea; Chen, Vivian K; Mitchell, Madeline C; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C

    2016-05-24

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency. PMID:27166422

  9. The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools.

    PubMed

    Figueroa, Maximiliano; Sleutel, Mike; Vandevenne, Marylene; Parvizi, Gregory; Attout, Sophie; Jacquin, Olivier; Vandenameele, Julie; Fischer, Axel W; Damblon, Christian; Goormaghtigh, Erik; Valerio-Lepiniec, Marie; Urvoas, Agathe; Durand, Dominique; Pardon, Els; Steyaert, Jan; Minard, Philippe; Maes, Dominique; Meiler, Jens; Matagne, André; Martial, Joseph A; Van de Weerdt, Cécile

    2016-07-01

    Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αβα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features. PMID:27181418

  10. POLYPHENOLS AND MECHANICAL MACERATION SHIFT PROTEIN FRACTIONS IN LEGUME HAYS FROM RAPIDLY TO SLOWLY DEGRADED FORMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid proteolysis of forage protein during rumen fermentation can impair protein use by dairy cattle. The severity of conditioning at harvest may influence protein degradability in forages, particularly if protein-binding polyphenols are present. In 2002 and 2003, first and second cuttings of alfalf...

  11. Polymer-Induced Heteronucleation for Protein Single Crystal Growth: Structural Elucidation of Bovine Liver Catalase and Concanavalin A Forms

    SciTech Connect

    Foroughi, Leila M.; Kang, You-Na; Matzger, Adam J.

    2012-05-09

    Obtaining single crystals for X-ray diffraction remains a major bottleneck in structural biology; when existing crystal growth methods fail to yield suitable crystals, often the target rather than the crystallization approach is reconsidered. Here we demonstrate that polymer-induced heteronucleation, a powerful technique that has been used for small molecule crystallization form discovery, can be applied to protein crystallization by optimizing the heteronucleant composition and crystallization formats for crystallizing a wide range of protein targets. Applying these advances to two benchmark proteins resulted in dramatically increased crystal size, enabling structure determination, for a half century old form of bovine liver catalase (BLC) that had previously only been characterized by electron microscopy, and the discovery of two new forms of concanavalin A (conA) from the Jack bean and accompanying structural elucidation of one of these forms.

  12. Protein kinase Calpha mediates a novel form of plasticity in the accessory olfactory bulb.

    PubMed

    Dong, C; Godwin, D W; Brennan, P A; Hegde, A N

    2009-10-20

    Modification of synapses in the accessory olfactory bulb (AOB) is believed to underlie pheromonal memory that enables mate recognition in mice. The memory, which is acquired with single-trial learning, forms only with coincident noradrenergic and glutamatergic inputs to the AOB. The mechanisms by which glutamate and norepinephrine (NE) alter the AOB synapses are not well understood. Here we present results that not only reconcile the earlier, seemingly contradictory, observations on the role of glutamate and NE in changing the AOB synapses, but also reveal novel mechanisms of plasticity. Our studies suggest that initially, glutamate acting at Group II metabotropic receptors and NE acting at alpha(2)-adrenergic receptors inhibit N-type and R-type Ca(2+) channels in mitral cells via a G-protein. The N-type and R-type Ca(2+) channel inhibition is reversed by activation of alpha(1)-adrenergic receptors and protein kinase Calpha (PKCalpha). Based on these results, we propose a hypothetical model for a new kind of synaptic plasticity in the AOB that accounts for the previous behavioral data on pheromonal memory. According to this model, initial inhibition of the Ca(2+) channels suppresses the GABAergic inhibitory feedback to mitral cells, causing disinhibition and Ca(2+) influx. NE also activates phospholipase C (PLC) through alpha(1)-adrenergic receptors generating inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Calcium and DAG together activate PKCalpha which switches the disinhibition to increased inhibition of mitral cells. Thus, PKCalpha is likely to be a coincidence detector integrating glutamate and NE input in the AOB and bridging the short-term signaling to long-term structural changes resulting in enhanced inhibition of mitral cells that is thought to underlie memory formation. PMID:19580852

  13. Alternative Forms of Y-Box Binding Protein 1 and YB-1 mRNA

    PubMed Central

    Lyabin, Dmitry N.; Doronin, Alexander N.; Eliseeva, Irina A.; Guens, Gelena P.; Kulakovskiy, Ivan V.; Ovchinnikov, Lev P.

    2014-01-01

    The multifunctional eukaryotic protein YB-1 (Y-box binding protein 1) plays a role in DNA reparation, transcription regulation, splicing, and mRNA translation, thereby participating in many crucial events in cells. Its effect is dependent mostly on its amount, and hence, on regulation of its synthesis. Published data on regulation of synthesis of YB-1 mediated by its mRNA 5′ UTR, and specifically on the 5′ UTR length and the presence of TOP-like motifs in this region, are contradictory. Here we report that 5′ UTRs of major forms of human, rabbit, and mouse YB-1 mRNAs are about 140 nucleotides long and contain no TOP-like motifs mentioned in the literature. Also, we have found that YB-1 specifically interacts with the 5′ UTR of its own mRNA within a region of about 100 nucleotides upstream from the start codon. Apart from YB-1, translation of YB-1 mRNA in a cell free system gives an additional product with an extended N-terminus and lower electrophoretic mobility. The start codon for synthesis of the additional product is AUC at position –(60–58) of the same open reading frame as that for the major product. Also, in the cell there is an alternative YB-1 mRNA with exon 1 replaced by a part of intron 1; YB-1 synthesized in vitro from this mRNA contains, instead of its N-terminal A/P domain, 10–11 amino acids encoded by intron 1. PMID:25116735

  14. DNA Recombinase Proteins, their Function and Structure in the Active Form, a Computational Study

    NASA Technical Reports Server (NTRS)

    Carra, Claudio; Cucinotta, Francis A.

    2007-01-01

    Homologous recombination is a crucial sequence of reactions in all cells for the repair of double strand DNA (dsDNA) breaks. While it was traditionally considered as a means for generating genetic diversity, it is now known to be essential for restart of collapsed replication forks that have met a lesion on the DNA template (Cox et al., 2000). The central stage of this process requires the presence of the DNA recombinase protein, RecA in bacteria, RadA in archaea, or Rad51 in eukaryotes, which leads to an ATP-mediated DNA strand-exchange process. Despite many years of intense study, some aspects of the biochemical mechanism, and structure of the active form of recombinase proteins are not well understood. Our theoretical study is an attempt to shed light on the main structural and mechanistic issues encountered on the RecA of the e-coli, the RecA of the extremely radio resistant Deinococcus Radiodurans (promoting an inverse DNA strand-exchange repair), and the homolog human Rad51. The conformational changes are analyzed for the naked enzymes, and when they are linked to ATP and ADP. The average structures are determined over 2ns time scale of Langevian dynamics using a collision frequency of 1.0 ps(sup -1). The systems are inserted in an octahedron periodic box with a 10 Angstrom buffer of water molecules explicitly described by the TIP3P model. The corresponding binding free energies are calculated in an implicit solvent using the Poisson-Boltzmann solvent accessible surface area, MM-PBSA model. The role of the ATP is not only in stabilizing the interaction RecA-DNA, but its hydrolysis is required to allow the DNA strand-exchange to proceed. Furthermore, we extended our study, using the hybrid QM/MM method, on the mechanism of this chemical process. All the calculations were performed using the commercial code Amber 9.

  15. Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein.

    PubMed

    Yoo, S; Dynan, W S

    1999-12-15

    Ku protein and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are essential components of the double-strand break repair machinery in higher eukaryotic cells. Ku protein binds to broken DNA ends and recruits DNA-PKcs to form an enzymatically active complex. To characterize the arrangement of proteins in this complex, we developed a set of photocross-linking probes, each with a single free end. We have previously used this approach to characterize the contacts in an initial Ku-DNA complex, and we have now applied the same technology to define the events that occur when Ku recruits DNA-PKcs. The new probes allow the binding of one molecule of Ku protein and one molecule of DNA-PKcs in a defined position and orientation. Photocross-linking reveals that DNA-PKcs makes direct contact with the DNA termini, occupying an approximately 10 bp region proximal to the free end. Characterization of the Ku protein cross-linking pattern in the presence and absence of DNA-PKcs suggests that Ku binds to form an initial complex at the DNA ends, and that recruitment of DNA-PKcs induces an inward translocation of this Ku molecule by about one helical turn. The presence of ATP had no effect on protein-DNA contacts, suggesting that neither DNA-PK-mediated phosphorylation nor a putative Ku helicase activity plays a role in modulating protein conformation under the conditions tested. PMID:10572166

  16. Generally recognized as safe (GRAS) evaluation of 4-hexylresorcinol for use as a processing aid for prevention of melanosis in shrimp.

    PubMed

    Frankos, V H; Schmitt, D F; Haws, L C; McEvily, A J; Iyengar, R; Miller, S A; Munro, I C; Clydesdale, F M; Forbes, A L; Sauer, R M

    1991-10-01

    4-Hexylresorcinol (C12H18O2) is proposed for use as a processing aid for prevention of melanosis ("black spot") in shrimp and as an alternative to the currently approved sulfites. A safety evaluation was conducted to affirm, based upon scientific procedures, the generally recognized as safe ("GRAS") status of 4-hexylresorcinol for proposed use. The GRAS safety evaluation compiled, reviewed, and analyzed data on the following areas: chemical identity, analytical methodology, historical and proposed uses, functionality, and safety. The publicly available safety data on 4-hexylresorcinol cover a broad range of potential toxicity concerns including acute and subacute toxicity, subchronic toxicity, carcinogenicity, mutagenicity, and allergenicity. These studies, along with the aforementioned data, demonstrate that 4-hexylresorcinol presents no risk of toxicity at the levels proposed for treatment of shrimp, and the use of 4-hexylresorcinol as a processing aid to prevent melanosis in shrimp is GRAS. PMID:1792354

  17. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils

    PubMed Central

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L. P.; Tattum, M. Howard; Panico, Silvia; Clare, Daniel K.; Collinge, John; Saibil, Helen R.

    2016-01-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  18. Comparison of Replica Exchange Simulations of a Kinetically Trapped Protein Conformational State and its Native Form.

    PubMed

    Olson, Mark A; Legler, Patricia M; Goldman, Ellen R

    2016-03-10

    Recently an X-ray crystallographic structure of a single-domain antibody was reported with the protein chain trapped in a rare homodimeric form. One of the conformers appears to exhibit a misfolded region, and thus presumably the configurational stability is less favorable. To investigate whether simulation methods can detect any difference between the conformers and buttress the notion that one conformation is trapped on a pathway that incurs lower activation energy to unfold, adaptive temperature-based replica exchange simulations were applied to each chain to model conformational transitions. Simulation results found that the observed crystallographic difference between the two chains in the complementarity determining region CDR2 induces a stark distinction in conformational populations on the energy landscape. An appraisal of the energetic difference between the CDR2 conformations at 300 K revealed a localized order-disorder free-energy transition of roughly equivalent to two peptide hydrogen bonds in solution. It was also found that interconversion between the conformers is slower than the rate to unfold and that near an unfolding transition temperature one conformer retained a greater fraction of native-like contacts and energy over a longer time span before fully populating the denatured state, thus verifying the coexistence of a metastable conformation in the crystallographic assembly. PMID:26886055

  19. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    PubMed

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  20. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells

    PubMed Central

    HOU, HUIGE; CHEN, LIN; ZHA, ZHENGANG; CAI, SHAOHUI; TAN, MINGHUI; GUO, GUOQING; LIU, NING; SHE, GUORONG; XUN, SONGWEI

    2016-01-01

    It has been reported that long form collapsin response mediator protein-1 (LCRMP-1) promotes the metastasis of non-small cell lung cancer. Osteosarcoma (OS) is a human cancer with a high potential for metastasis. The present study aimed to investigate the role of LCRMP-1 in OS metastasis. The expression of LCRMP-1 in OS specimens and cell lines was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Furthermore, the migration and invasion of OS cells with LCRMP-1-knockdown was investigated to examine the role of LCRMP-1 in OS metastasis. In addition, the expression of N-cadherin and matrix metalloproteinases (MMPs), which are involved in cell migration, was evaluated using RT-qPCR. Increased expression of LCRMP-1 was observed in the OS tissues and cell lines, accompanied by the enhanced migration and invasion of the OS cells. LCRMP-1-knockdown resulted in a significant decrease in the expression of N-cadherin and MMPs, as well as inhibition of the migration and invasion of the OS cells. Overexpression of LCRMP-1 promoted OS metastasis. Therefore, LCRMP-1 may be a promising target for the effective treatment of OS. PMID:27347094

  1. Creation and expression of myristylated forms of Rous sarcoma virus gag protein in mammalian cells.

    PubMed Central

    Wills, J W; Craven, R C; Achacoso, J A

    1989-01-01

    Rous sarcoma virus (RSV), a member of the avian sarcoma and leukosis family of retroviruses, has long been known to be capable of infecting and transforming mammalian cells; however, such transformed cells do not release virus particles. The RSV gag product (Pr76gag) produced in these cells is not released into the culture medium or proteolytically processed to release mature products. Thus, the behavior of Pr76gag in mammalian cells is much like that of mammalian retroviral Gag proteins which have been altered so as to block the addition of myristic acid at residue 2 (Gly). Because the RSV gag product does not possess a myristic acid addition site, we hypothesized that the creation of one by oligonucleotide-directed mutagenesis might permit particles to be released from mammalian cells. Two myristylated forms of Pr76 were created. In Pr76myr1, the first 10 amino acids have been exchanged for those of p60v-src, which are known to be sufficient for myristylation. In Pr76myr2, the Glu at the second residue has been substituted with Gly. The alleles encoding the modified and wild-type forms of Pr76 have been expressed at high levels in mammalian (CV-1) cells by using an SV40-based vector. Surprisingly, we have found that expression of high levels of the unmodified (wild-type) product, Pr76myr0, results in low levels of particle formation and precursor processing. This indicates that myristic acid is not the sole determinant for targeting. However, the addition of myristic acid to Pr76myr1 or Pr76myr2 resulted in a fivefold enhancement in Gag function. In all aspects examined, the behavior of myristylated Pr76 was identical to that of the authentic product produced in avian cells. We also show that processing is mediated by the gag-encoded protease and that removal of the amino terminus to create Pr76gagX results in an inability to form particles or be processed. This suggests that proper targeting is prerequisite for activation of the RSV protease in mammalian cells

  2. Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology

    NASA Astrophysics Data System (ADS)

    Sarkar, Chiranjeeb; Heaman, Larry M.; Pearson, D. G.

    2015-03-01

    Establishing the emplacement ages and distribution pattern of Central Slave kimberlites has played a key role in diamond exploration within the Lac de Gras kimberlite field. Nonetheless, emplacement age information is lacking for approximately 80% of the known kimberlites in this field making the assessment of emplacement age patterns difficult. This study expands the number and geographic coverage of kimberlite emplacement ages within the Lac de Gras field to re-assess the absolute timing, duration, and possible number of pulses of kimberlite eruption. U-Pb perovskite ages for eight previously undated kimberlites and an additional thirteen kimberlites, which were previously dated by either the Rb-Sr or U-Pb methods, fall within the age range of 75-45 Ma, as previously suggested for kimberlite magmatism in this area. We report the first Carboniferous age kimberlite in the Central Lac de Gras field - the Eddie kimberlite - with a U-Pb perovskite age of 321.0 ± 3.0 Ma. A compilation of 57 kimberlite emplacement ages from the central Lac de Gras field was evaluated using probability density and mixture modeling methods. Five short-duration (4-5 Ma) periods of kimberlite magmatism are recognized at 48, 54, 61, 66 and 72 Ma; the three younger pulses have been previously recognized and remain relatively unchanged. The 54 Ma pulse represents the major kimberlite eruption event containing ~ 40% of the currently dated kimberlites in Lac de Gras field. A detailed evaluation of the temporal-spatial evolution of Lac de Gras kimberlites reveals that the oldest diamond-poor kimberlites (75-60 Ma) were emplaced in the northern and eastern parts of the field whereas the younger (55-48 Ma) economic kimberlites are concentrated in the center of the field.

  3. Immunological and Chemical Identification of Intracellular Forms of Adenovirus Type 2 Terminal Protein

    PubMed Central

    Green, Maurice; Symington, Janey; Brackmann, Karl H.; Cartas, Maria A.; Thornton, Helen; Young, Leann

    1981-01-01

    Highly purified adenovirus type 2 terminal protein (TP) with an apparent Mr of 55,000 (55K) was prepared in quantities of 10 to 30 μg from guanidine hydrochloride- or sodium dodecyl sulfate-disrupted virions (60 to 120 mg). Guinea pigs were immunized with 14 to 20 injections of TP in amounts of 1 to 2 μg. Antiserum to TP was used to study the intracellular polypeptides related to adenovirus type 2 TP. By immunoprecipitation with anti-TP serum, we identified 80K and 76K polypeptides in the nucleoplasmic and cytoplasmic S100 fractions of [35S]methionine-labeled cells early and late after infection with Ad2. By immunoautoradiographic analysis which eliminates coprecipitation of unrelated proteins, we identified an 80K polypeptide (probably an 80K-76K doublet) in unlabeled, late infected cells, using anti-TP serum and 125I-labeled staphylococcal protein A. About two- to threefold-higher levels of the 80K and 76K polypeptides were present in the nucleoplasm than in the S100 fraction, and two- to threefold-higher levels were found in late infected cells than in early infected cells (cycloheximide enhanced, arabinofuranosylcytosine treated). We did not detect the 80K or 76K polypeptide in uninfected cells, indicating that these polypeptides are virus coded. Tryptic peptide map analysis showed that the 80K and 76K polypeptides are very closely related and that they share peptides with the DNA-bound 55K TP. Our data provide the first direct demonstration of intracellular 80K and 76K forms of TP. The intracellular 80K and 76K polypeptides are closely related or identical to the 80K polypeptide that Challberg and co-workers (Proc. Natl. Acad. Sci. U.S.A. 77:5105-5109, 1980) detected at the termini of adenovirus DNA synthesized in vitro and to the 87K polypeptide that Stillman and co-workers (Cell 23:497-508, 1981) translated in vitro. We did not detect the 55K TP in early or late infected cells, consistent with the proposal by Challberg and co-workers that the 80K

  4. PROTEIN III, A NEURON-SPECIFIC PHOSPHOPROTEIN: VARIANT FORMS FOUND IN HUMAN BRAIN

    EPA Science Inventory

    Recent work in the laboratory has shown the presence of many neuron-specific phosphoproteins in the mammalian nervous system. Two of these proteins, Protein III and Synapsin I, are specifically associated with synaptic vesicles in neurons throughout the brain. Protein III consist...

  5. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA.

    PubMed Central

    Alexandrov, Andrei; Martzen, Mark R; Phizicky, Eric M

    2002-01-01

    7-methylguanosine (m7G) modification of tRNA occurs widely in eukaryotes and bacteria, is nearly always found at position 46, and is one of the few modifications that confers a positive charge to the base. Screening of a Saccharomyces cerevisiae genomic library of purified GST-ORF fusion proteins reveals two previously uncharacterized proteins that copurify with m7G methyltransferase activity on pre-tRNA(Phe). ORF YDL201w encodes Trm8, a protein that is highly conserved in prokaryotes and eukaryotes and that contains an S-adenosylmethionine binding domain. ORF YDR165w encodes Trm82, a less highly conserved protein containing putative WD40 repeats, which are often implicated in macromolecular interactions. Neither protein has significant sequence similarity to yeast Abd1, which catalyzes m7G modification of the 5' cap of mRNA, other than the methyltransferase motif shared by Trm8 and Abd1. Several lines of evidence indicate that both Trm8 and Trm82 proteins are required for tRNA m7G-methyltransferase activity: Extracts derived from strains lacking either gene have undetectable m7G methyltransferase activity, RNA from strains lacking either gene have much reduced m7G, and coexpression of both proteins is required to overproduce activity. Aniline cleavage mapping shows that Trm8/Trm82 proteins modify pre-tRNAPhe at G46, the site that is modified in vivo. Trm8 and Trm82 proteins form a complex, as affinity purification of Trm8 protein causes copurification of Trm82 protein in approximate equimolar yield. This functional two-protein family appears to be retained in eukaryotes, as expression of both corresponding human proteins, METTL1 and WDR4, is required for m7G-methyltransferase activity. PMID:12403464

  6. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein.

    PubMed

    Tayou, Junior; Wang, Qiang; Jang, Geeng-Fu; Pronin, Alexey N; Orlandi, Cesare; Martemyanov, Kirill A; Crabb, John W; Slepak, Vladlen Z

    2016-04-22

    RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners. PMID:26895961

  7. Screening and Characterization of Hydrate Forms of T-3256336, a Novel Inhibitor of Apoptosis (IAP) Protein Antagonist.

    PubMed

    Takeuchi, Shoko; Kojima, Takashi; Hashimoto, Kentaro; Saito, Bunnai; Sumi, Hiroyuki; Ishikawa, Tomoyasu; Ikeda, Yukihiro

    2015-01-01

    Different crystal packing of hydrates from anhydrate crystals leads to different physical properties, such as solubility and stability. Investigation of the potential of varied hydrate formation, and understanding the stability in an anhydrous/hydrate system, are crucial to prevent an undesired transition during the manufacturing process and storage. Only one anhydrous form of T-3256336, a novel inhibitor of apoptosis (IAP) protein antagonist, was discovered during synthesis, and no hydrate form has been identified. In this study, we conducted hydrate screening such as dynamic water vapor sorption/desorption (DVS), and the slurry experiment, and characterized the solid-state properties of anhydrous/hydrate forms to determine the most desirable crystalline form for development. New hydrate forms, both mono-hydrate and hemi-hydrate forms, were discovered as a result of this hydrate screening. The characterization of two new hydrate forms was conducted, and the anhydrous form was determined to be the most desirable development form of T-3256336 in terms of solid-state stability. In addition, the stability of the anhydrous form was investigated using the water content and temperature controlled slurry experiment to obtain the desirable crystal form in the crystallization process. The water content regions of the stable phase of the desired form, the anhydrous form, were identified for the cooling crystallization process. PMID:26521850

  8. Dissociation of membrane binding and lytic activities of the lymphocyte pore-forming protein (perforin).

    PubMed

    Young, J D; Damiano, A; DiNome, M A; Leong, L G; Cohn, Z A

    1987-05-01

    Granules isolated from CTL and NK cells contain a cytolytic pore-forming protein (PFP/perforin). At low temperatures (on ice), PFP binds to erythrocyte membranes without producing hemolysis. Hemolysis occurs when the PFP-bound erythrocytes are warmed up to 37 degrees C, which defines a temperature-dependent, lytic (pore-formation) step distinct from the membrane-binding event. Ca2+ and neutral pH are required for both membrane binding and pore formation by PFP. Serum, LDL, HDL, and heparin inhibit the hemolytic activity of PFP by blocking its binding to lipid membranes. Lysis by PFP that has bound to erythrocyte membranes is no longer susceptible to the effect of these inhibitors. The hemolytic activities associated with intact granules and solubilized PFP show different requirements for Ca2+ and pH, indicating that cytolysis produced by isolated granules may involve an additional step, possibly fusion of granules with membranes. It is suggested that three distinct Ca2+- and pH-dependent events may be involved during cell killing by CTL and NK cells: fusion of cytoplasmic granules of effector cells with their plasma membrane, releasing PFP from cells; binding of the released PFP to target membranes; and insertion of monomers and the subsequent formation of lytic pores in the target membrane. The serum-mediated inhibition of membrane binding by PFP could prevent the accidental injury of bystander cells by cell-released PFP, but would allow cytolysis to proceed to completion once PFP has bound to the target membrane. PMID:3494808

  9. The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Bussweiler, Y.; Stone, R. S.; Pearson, D. G.; Luth, R. W.; Stachel, T.; Kjarsgaard, B. A.; Menzies, A.

    2016-07-01

    Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These `polymineralic inclusions' have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside → forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical

  10. A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins.

    PubMed

    Suzuki, Tatsuo; Li, Weidong; Zhang, Jing-Ping; Tian, Qing-Bao; Sakagami, Hiroyuki; Usuda, Nobuteru; Usada, Nobuteru; Kondo, Hisatake; Fujii, Toshihiro; Endo, Shogo

    2005-01-01

    We cloned from the rat brain a novel gene, tanc (GenBank Accession No. AB098072), which encoded a protein containing three tetratricopeptide repeats (TPRs), ten ankyrin repeats and a coiled-coil region, and is possibly a rat homolog of Drosophila rolling pebbles (rols). The tanc gene was expressed widely in the adult rat brain. Subcellular distribution, immunohistochemical study of the brain and immunocytochemical studies of cultured neuronal cells indicated the postsynaptic localization of TANC protein of 200 kDa. Pull-down experiments showed that TANC protein bound PSD-95, SAP97, and Homer via its C-terminal PDZ-binding motif, -ESNV, and fodrin via both its ankyrin repeats and the TPRs together with the coiled-coil domain. TANC also bound the alpha subunit of Ca2+/calmodulin-dependent protein kinase II. An immunoprecipitation study showed TANC association with various postsynaptic proteins, including guanylate kinase-associated protein (GKAP), alpha-internexin, and N-methyl-D-aspartate (NMDA)-type glutamate receptor 2B and AMPA-type glutamate receptor (GluR1) subunits. These results suggest that TANC protein may work as a postsynaptic scaffold component by forming a multiprotein complex with various postsynaptic density proteins. PMID:15673434

  11. Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes.

    PubMed Central

    Flores, Francisco J; Martín, Juan F

    2004-01-01

    In high G+C Gram-positive bacteria, the control of expression of genes involved in iron metabolism is exerted by a DmdR [divalent (bivalent) metal-dependent regulatory protein] in the presence of Fe2+ or other bivalent ions. The dmdR1 and dmdR2 genes of Streptomyces coelicolor were overexpressed in Escherichia coli and the DmdR1 and DmdR2 proteins were purified to homogeneity. Electrophoretic mobility-shift assays showed that both DmdR1 and DmdR2 bind to the 19-nt tox and desA iron boxes forming two different complexes in each case. Increasing the concentrations of DmdR1 or DmdR2 protein shifted these complexes from their low-molecular-mass form to the high-molecular-mass complexes. Formation of the DNA-protein complexes was prevented by the bivalent metal chelating agent 2,2'-dipyridyl and by antibodies specific against the DmdR proteins. Cross-linking with glutaraldehyde of pure DmdR1 or DmdR2 proteins showed that DmdR1 forms dimers, whereas DmdR2 is capable of forming dimers and probably tetramers. Ten different iron boxes were found in a search for iron boxes in the genome of S. coelicolor. Most of them correspond to putative genes involved in siderophore biosynthesis. Since the nucleotide sequence of these ten boxes is identical (or slightly different) with the synthetic DNA fragment containing the desA box used in the present study, it is proposed that DmdR1 and DmdR2 bind to the iron boxes upstream of at least ten different genes in S. coelicolor. PMID:14960152

  12. The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin.

    PubMed

    de Virgilio, Maddalena; De Marchis, Francesca; Bellucci, Michele; Mainieri, Davide; Rossi, Marika; Benvenuto, Eugenio; Arcioni, Sergio; Vitale, Alessandro

    2008-01-01

    Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein gamma-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of gamma-zein). Protein blots and pulse-chase indicate that fusions between Nef and the same gamma-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin-Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its gamma-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants. PMID:18540021

  13. The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin

    PubMed Central

    de Virgilio, Maddalena; Bellucci, Michele; Mainieri, Davide; Rossi, Marika; Benvenuto, Eugenio; Arcioni, Sergio; Vitale, Alessandro

    2008-01-01

    Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein γ-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of γ-zein). Protein blots and pulse–chase indicate that fusions between Nef and the same γ-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin–Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its γ-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants. PMID:18540021

  14. Relating sequence encoded information to form and function of intrinsically disordered proteins

    PubMed Central

    Das, Rahul K.; Ruff, Kiersten M.; Pappu, Rohit V.

    2015-01-01

    Intrinsically disordered proteins (IDPs) showcase the importance of conformational plasticity and heterogeneity in protein function. We summarize recent advances that connect information encoded in IDP sequences to their conformational properties and functions. We focus on insights obtained through a combination of atomistic simulations and biophysical measurements that are synthesized into a coherent framework using polymer physics theories. PMID:25863585

  15. BHMP39 PROTEINS OF B. HYODYSENTERIAE FORM HIGH MOLECULAR WEIGHT COMPLEXES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brachyspira hyodysenteriae is the aetiological agent of swine dysentery, a severe mucohaemorrhagic diarrhoeal disease of pigs, with economic significance for the global pork industry. The most abundant outer membrane proteins of B. hyodysenteriae are from the Bhmp39 family of proteins. Eight bhmp39 ...

  16. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed).

    PubMed Central

    Barbieri, L; Aron, G M; Irvin, J D; Stirpe, F

    1982-01-01

    1. The pokeweed antiviral protein, previously identified in two forms (PAP and PAP II) in the leaves of Phytolacca americana (pokeweed) [Obrig. Irvin & Hardesty (1973) Arch. Biochem. Biophys. 155, 278-289; Irvin, Kelly & Robertus (1980) Arch. Biochem. Biophys. 200, 418-425] is a protein that prevents replication of several viruses and inactivates ribosomes, thus inhibiting protein synthesis. 2. PAP is present in several forms in the seeds of pokeweed. One of them, which we propose to call 'pokeweed antiviral protein from seeds' (PAP-S) was purified in high yield (180 mg per 100 g of seeds) by chromatography on CM-cellulose, has mol.wt. 30 000, and is similar to, but not identical with. PAP and PAP II. 3. PAP-S inhibits protein synthesis in a rabbit reticulocyte lysate with an ID50 (concentration giving 50% inhibition) of 1.1 ng/ml (3.6 x 10(-11) M), but has much less effect on protein synthesis by whole cells, with an ID50 of 1 mg/ml (3.3 x 10(-5) M), and inhibits replication of herpes simplex virus type 1. PMID:7103950

  17. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties.

    PubMed

    Rivera-Najera, Lucero Y; Saab-Rincón, Gloria; Battaglia, Marina; Amero, Carlos; Pulido, Nancy O; García-Hernández, Enrique; Solórzano, Rosa M; Reyes, José L; Covarrubias, Alejandra A

    2014-11-14

    Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association. PMID:25271167

  18. A Group 6 Late Embryogenesis Abundant Protein from Common Bean Is a Disordered Protein with Extended Helical Structure and Oligomer-forming Properties*

    PubMed Central

    Rivera-Najera, Lucero Y.; Saab-Rincón, Gloria; Battaglia, Marina; Amero, Carlos; Pulido, Nancy O.; García-Hernández, Enrique; Solórzano, Rosa M.; Reyes, José L.; Covarrubias, Alejandra A.

    2014-01-01

    Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association. PMID:25271167

  19. Multiplicity of the beta form of the cAMP-dependent protein kinase inhibitor protein generated by post-translational modification and alternate translational initiation.

    PubMed

    Kumar, P; Van Patten, S M; Walsh, D A

    1997-08-01

    Two distinct species of the thermostable inhibitor of the cAMP-dependent protein kinase, PKIalpha and PKIbeta, exist that are the products of separate genes. The PKIbeta form, as first isolated from rat testis, is a 70-amino acid protein, but the genomic sequence suggested that an alternate form might exist, arising as a consequence of alternate translational initiation. This species, now termed PKIbeta-78, has been synthesized by bacterial expression, demonstrated to be equipotent with PKIbeta-70, and also now demonstrated to occur in vivo. By Western blot analyses, six additional species of PKIbeta are also evident in tissues. Two of these represent the phospho forms of PKIbeta-78 and PKIbeta-70. The other four represent phospho and dephospho forms of two higher molecular mass PKIbeta species. These latter forms are currently termed PKIbeta-X and PKIbeta-Y, awaiting the full elucidation of their molecular identity. In adult rat testis and cerebellum, PKIbeta-70, PKIbeta-X, and PKIbeta-Y constitute 39, 23, and 32% and 15, 29, and 54% of the total tissue levels, respectively. In adult rat testis, 35-42% of each of these three species is present as a monophospho form, whereas no phosphorylation of them is evident in cerebellum. PKIbeta-78 is present at much lower levels in both rat testis and cerebellum (approximately 6 and 2% of the total, respectively) and almost entirely as a monophospho species. PKIbeta-78, like PKIbeta-70, is a high affinity and specific inhibitor of the cAMP-dependent protein kinase. PKIbeta-Y and PKIbeta-X, in contrast, also significantly inhibit the cGMP-dependent protein kinase. PMID:9242671

  20. Drosophila Torsin Protein Regulates Motor Control and Stress Sensitivity and Forms a Complex with Fragile-X Mental Retardation Protein

    PubMed Central

    Ahn, Hyo-Min; Koh, Young Ho

    2016-01-01

    We investigated unknown in vivo functions of Torsin by using Drosophila as a model. Downregulation of Drosophila Torsin (DTor) by DTor-specific inhibitory double-stranded RNA (RNAi) induced abnormal locomotor behavior and increased susceptibility to H2O2. In addition, altered expression of DTor significantly increased the numbers of synaptic boutons. One important biochemical consequence of DTor-RNAi expression in fly brains was upregulation of alcohol dehydrogenase (ADH). Altered expression of ADH has also been reported in Drosophila Fragile-X mental retardation protein (DFMRP) mutant flies. Interestingly, expression of DFMRP was altered in DTor mutant flies, and DTor and DFMRP were present in the same protein complexes. In addition, DTor and DFMRP immunoreactivities were partially colocalized in several cellular organelles in larval muscles. Furthermore, there were no significant differences between synaptic morphologies of dfmrp null mutants and dfmrp mutants expressing DTor-RNAi. Taken together, our evidences suggested that DTor and DFMRP might be present in the same signaling pathway regulating synaptic plasticity. In addition, we also found that human Torsin1A and human FMRP were present in the same protein complexes, suggesting that this phenomenon is evolutionarily conserved. PMID:27313903

  1. Functional domains of a pore-forming cardiotoxic protein, volvatoxin A2.

    PubMed

    Weng, Yui-Ping; Lin, Ya-Ping; Hsu, Chyong-Ing; Lin, Jung-Yaw

    2004-02-20

    Volvatoxin A2 (VVA2), a novel pore-forming cardiotoxic protein was isolated from the mushroom Volvariella volvacea. We identified an N-terminal fragment (NTF) (1-127 residues) of VVA2 as a domain for oligomerization by limited tryptic digestion. On preincubation of NTF with VVA2, NTF was found to inhibit VVA2 hemolytic activity by inducing VVA2 oligomerization in the solution in the same manner as liposomes. By site-directed mutagenesis, the amphipathic alpha-helix B of NTF or VVA2 was shown to be indispensable for its biological functions. Interestingly, at a molar ratio of recombinant NTF (reNTF)/VVA2 as low as 0.01, reNTF was able to inhibit VVA2 hemolytic activity and induce VVA2 oligomerization. This indicates that reNTF can trigger VVA2 oligomerization by a seeding effect. Furthermore, the recombinant C-terminal fragment (128-199 residues) was found to be a functional domain that mediates the membrane binding of VVA2. We found a fragment localized at the C-terminal half of VVA2 containing beta6, -7, and -8, which is protected from protease digestion because of its insertion of a membrane. We also identified a putative heparin binding site (HBS) located in the VVA2 C terminus (166-194 residues), which was conserved among 10 kinds of snake venom cardiotoxins. VVA2 or the reHBS fragment was shown to interact with sulfated glycoaminoglycans by affinity column chromatography. The finding of a higher number of glycoaminoglycans in the membrane of cardiac myocytes suggested that they could be the specific membrane target for VVA2. Taken together, these findings indicate that VVA2 contains two functional domains, NTF and CTF. The NTF domain is responsible for VVA2 oligomerization and the CTF domain for membrane binding and insertion. Our results support a model whereby the formation of VVA2 oligomeric pre-pore complexes precedes their membrane insertion. PMID:14645370

  2. Type IV Pilus Proteins Form an Integrated Structure Extending from the Cytoplasm to the Outer Membrane

    PubMed Central

    Li, Chengyun; Wallace, Regina A.; Black, Wesley P.; Li, Yue-zhong; Yang, Zhaomin

    2013-01-01

    The bacterial type IV pilus (T4P) is the strongest biological motor known to date as its retraction can generate forces well over 100 pN. Myxococcus xanthus, a δ-proteobacterium, provides a good model for T4P investigations because its social (S) gliding motility is powered by T4P. In this study, the interactions among M. xanthus T4P proteins were investigated using genetics and the yeast two-hybrid (Y2H) system. Our genetic analysis suggests that there is an integrated T4P structure that crosses the inner membrane (IM), periplasm and the outer membrane (OM). Moreover, this structure exists in the absence of the pilus filament. A systematic Y2H survey provided evidence for direct interactions among IM and OM proteins exposed to the periplasm. For example, the IM lipoprotein PilP interacted with its cognate OM protein PilQ. In addition, interactions among T4P proteins from the thermophile Thermus thermophilus were investigated by Y2H. The results indicated similar protein-protein interactions in the T4P system of this non-proteobacterium despite significant sequence divergence between T4P proteins in T. thermophilus and M. xanthus. The observations here support the model of an integrated T4P structure in the absence of a pilus in diverse bacterial species. PMID:23922942

  3. Comparative Protein Expression in Different Strains of the Bloom-forming Cyanobacterium Microcystis aeruginosa*

    PubMed Central

    Alexova, Ralitza; Haynes, Paul A.; Ferrari, Belinda C.; Neilan, Brett A.

    2011-01-01

    Toxin production in algal blooms presents a significant problem for the water industry. Of particular concern is microcystin, a potent hepatotoxin produced by the unicellular freshwater species Microcystis aeruginosa. In this study, the proteomes of six toxic and nontoxic strains of M. aeruginosa were analyzed to gain further knowledge in elucidating the role of microcystin production in this microorganism. This represents the first comparative proteomic study in a cyanobacterial species. A large diversity in the protein expression profiles of each strain was observed, with a significant proportion of the identified proteins appearing to be strain-specific. In total, 475 proteins were identified reproducibly and of these, 82 comprised the core proteome of M. aeruginosa. The expression of several hypothetical and unknown proteins, including four possible operons was confirmed. Surprisingly, no proteins were found to be produced only by toxic or nontoxic strains. Quantitative proteome analysis using the label-free normalized spectrum abundance factor approach revealed nine proteins that were differentially expressed between toxic and nontoxic strains. These proteins participate in carbon-nitrogen metabolism and redox balance maintenance and point to an involvement of the global nitrogen regulator NtcA in toxicity. In addition, the switching of a previously inactive toxin-producing strain to microcystin synthesis is reported. PMID:21610102

  4. The non-structural protein μNS of piscine orthoreovirus (PRV) forms viral factory-like structures.

    PubMed

    Haatveit, Hanne Merethe; Nyman, Ingvild B; Markussen, Turhan; Wessel, Øystein; Dahle, Maria Krudtaa; Rimstad, Espen

    2016-01-01

    Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation in farmed Atlantic salmon. The virus is ubiquitous and found in both farmed and wild salmonid fish. It belongs to the family Reoviridae, closely related to the genus Orthoreovirus. The PRV genome comprises ten double-stranded RNA segments encoding at least eight structural and two non-structural proteins. Erythrocytes are the major target cells for PRV. Infected erythrocytes contain globular inclusions resembling viral factories; the putative site of viral replication. For the mammalian reovirus (MRV), the non-structural protein μNS is the primary organizer in factory formation. The analogous PRV protein was the focus of the present study. The subcellular location of PRV μNS and its co-localization with the PRV σNS, µ2 and λ1 proteins was investigated. We demonstrated that PRV μNS forms dense globular cytoplasmic inclusions in transfected fish cells, resembling the viral factories of MRV. In co-transfection experiments with μNS, the σNS, μ2 and λ1 proteins were recruited to the globular structures. The ability of μNS to recruit other PRV proteins into globular inclusions indicates that it is the main viral protein involved in viral factory formation and pivotal in early steps of viral assembly. PMID:26743679

  5. Characterisation of different forms of the accessory gp3 canine coronavirus type I protein identified in cats.

    PubMed

    d'Orengiani, Anne-Laure Pham-Hung d'Alexandry; Duarte, Lidia; Pavio, Nicole; Le Poder, Sophie

    2015-04-16

    ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains. PMID:25665789

  6. The RNA-Protein Complexes of E. coli Hfq: Form and Function

    NASA Astrophysics Data System (ADS)

    Lee, Taewoo; Feig, Andrew L.

    E. coli Hfq is an RNA binding protein that has received significant attention due to its role in post-transcriptional gene regulation. Hfq facilitates the base-pairing between mRNAs and ncRNAs leading to translational activation, translational repression and/or degradation of mRNAs — the bacterial analog of the RNA interference pathway. Hfq is the bacterial homolog of the Sm and Lsm proteins and has a similar doughnut-shaped structure. This review summarizes what is known about the diverse physiological roles of Hfq and how its structure facilitates a diverse array of RNA—protein and protein—protein interactions. These interactions are put into context to explain the models of how Hfq is thought to help facilitate post-transcriptional gene regulation by non-coding RNAs in bacteria.

  7. Top-Down Proteomics Reveals Novel Protein Forms Expressed in Methanosarcina acetivorans

    PubMed Central

    Ferguson, Jonathan T.; Wenger, Craig D.; Metcalf, William W.; Kelleher, Neil L.

    2010-01-01

    Using both automated nanospray and online liquid chromatography mass spectrometry LC-MS strategies, 99 proteins have been newly identified by top-down tandem mass spectrometry (MS/MS) in Methanosarcina acetivorans, the methanogen with the largest known genome [5.7 mega base pairs (Mb)] for an Archaeon. Because top-down MS/MS was used, 15 proteins were detected with mispredicted start sites along with an additional five from small open reading frames (SORFs). Beyond characterization of these more common discrepancies in genome annotation, one SORF resulted from a rare start codon (AUA) as the initiation site for translation of this protein. Also, a methylation on a 30S ribosomal protein (MA1259) was localized to Pro59–Val69, contrasting sharply from its homologue in Escherichia coli (rp S12) known to harbor an unusual β-thiomethylated aspartic acid residue. PMID:19577935

  8. Immunogenicity Studies of Proteins Forming the T4 Phage Head Surface

    PubMed Central

    Miernikiewicz, Paulina; Piotrowicz, Agnieszka; Hodyra, Katarzyna; Owczarek, Barbara; Lecion, Dorota; Kaźmierczak, Zuzanna; Letarov, Andrey; Górski, Andrzej

    2014-01-01

    ABSTRACT Advances in phage therapy and novel applications of phages in biotechnology encourage interest in phage impact on human and animal immunity. Here we present comparative studies of immunogenic properties of T4 phage head surface proteins gp23*, gp24*, Hoc, and Soc, both as elements of the phage capsid and as isolated agents. Studies comprise evaluation of specific antibodies in the human population, analysis of the proteins' impact on the primary and secondary responses in mice, and the effect of specific antibodies on phage antibacterial activity in vitro and in vivo in mice. In humans, natural antibodies specific to T4-like phages were abundant (81% of investigated sera). Among those, significantly elevated levels of IgG antibodies only against major head protein (gp23*) were found, which probably reflected cross-reactions of T4 with antibodies induced by other T4-like phages. Both IgM and IgG antibodies were induced mostly by gp23* and Hoc, while weak (gp24*) and very weak (Soc) reactivities of other head proteins were noticed. Thus, T4 head proteins that markedly contribute to immunological memory to the phage are highly antigenic outer capsid protein (Hoc) and major capsid protein (gp23*). Specific anti-gp23* and anti-Hoc antibodies substantially decreased T4 phage activity in vitro and to some extent in vivo. Cooperating with antibodies, the immune complement system also contributed to annihilating phages. IMPORTANCE Current descriptions of phage immunogenicity and its biological consequences are still vague and incomplete; thus, the central problem of this work is timely and may have strong practical implications. Here is presented the very first description of the contribution of bacteriophage proteins to immunological memory of the phage. Understanding of interactions between phages and mammalian immunology may help in biotechnological adaptations of phages for therapeutic requirements as well as for better appreciation of phage ecology and their

  9. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily.

    PubMed

    Diakowski, Witold; Grzybek, Michał; Sikorski, Aleksander F

    2006-01-01

    The review is focused on the domain structure and function of protein 4.1, one of the proteins belonging to the membrane skeleton. The protein 4.1 of the red blood cells (4.1R) is a multifunctional protein that localizes to the membrane skeleton and stabilizes erythrocyte shape and membrane mechanical properties, such as deformability and stability, via lateral interactions with spectrin, actin, glycophorin C and protein p55. Protein 4.1 binding is modulated through the action of kinases and/or calmodulin-Ca2+. Non-erythroid cells express the 4.1R homologues: 4.1G (general type), 4.1B (brain type), and 4.1N (neuron type), and the whole group belongs to the protein 4.1 superfamily, which is characterized by the presence of a highly conserved FERM domain at the N-terminus of the molecule. Proteins 4.1R, 4.1G, 4.1N and 4.1B are encoded by different genes. Most of the 4.1 superfamily proteins also contain an actin-binding domain. To date, more than 40 members have been identified. They can be divided into five groups: protein 4.1 molecules, ERM proteins, talin-related molecules, protein tyrosine phosphatase (PTPH) proteins and NBL4 proteins. We have focused our attention on the main, well known representatives of 4.1 superfamily and tried to choose the proteins which are close to 4.1R or which have distinct functions. 4.1 family proteins are not just linkers between the plasma membrane and membrane skeleton; they also play an important role in various processes. Some, such as focal adhesion kinase (FAK), non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells, play the role in cell adhesion. The other members control or take part in tumor suppression, regulation of cell cycle progression, inhibition of cell proliferation, downstream signaling of the glutamate receptors, and establishment of cell polarity; some are also involved in cell proliferation, cell motility, and/or cell-to-cell communication. PMID:17219717

  10. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins

    PubMed Central

    Reddy, Bhaskara L.; Saier, Milton H.

    2016-01-01

    We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications. PMID:27064789

  11. Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes.

    PubMed Central

    Armstrong, S K; Parr, T R; Parker, C D; Hancock, R E

    1986-01-01

    The major outer membrane protein of molecular weight 40,000 (the 40K protein) of a virulent isolate of Bordetella pertussis was purified to apparent homogeneity. The purified protein formed an oligomer band (of apparent molecular weight 90,000) on sodium dodecyl sulfate-polyacrylamide gels after solubilization at low temperatures. The porin function of this protein was characterized by the black lipid bilayer method. The 40K protein formed channels smaller than all other constitutive major outer membrane porins studied to date. The average single-channel conductance in 1 M KCl was 0.56 nS. This was less than a third of the conductance previously observed for Escherichia coli porins. Zero-current potential measurements made of the porin to determine its ion selectivity revealed the porin to be more than 100-fold selective for anions over cations. The single-channel conductance was measured as a function of salt concentration. The data could be fitted to a Lineweaver-Burk plot suggesting an anion binding site with a Kd of 1.17 M Cl- and a maximum possible conductance through the channel of 1.28 nS. Images PMID:2420780

  12. Crystal structure of metastasis-associated protein S100A4 in the active, calcium-bound form

    PubMed Central

    Pathuri, Puja; Vogeley, Lutz; Luecke, Hartmut

    2008-01-01

    Summary S100A4 (metastasin) is a member of the S100 family of calcium-binding proteins that is directly involved in tumorgenesis. Until recently, the only structural information available was the solution NMR structure of the inactive, calcium-free form of the protein. Here we report the crystal structure of human S100A4 in the active, calcium-bound state at 2.03 Å resolution that was solved by molecular replacement in the space group P65 with two molecules in the asymmetric unit from perfectly merohedrally twinned crystals. The Ca2+-bound S100A4 structure reveals a large conformational change in the three-dimensional structure of the dimeric S100A4 protein upon calcium binding. This calcium-dependent conformational change opens up a hydrophobic binding pocket that is capable of binding to target proteins such as annexin A2, the p53 tumor suppressor protein, and myosin IIA. The structure of the active form of S100A4 provides insight into its interactions with its binding partners and a better understanding on its role in metastasis. PMID:18783790

  13. The Toxoplasma gondii Dense Granule Protein GRA7 Is Phosphorylated upon Invasion and Forms an Unexpected Association with the Rhoptry Proteins ROP2 and ROP4▿

    PubMed Central

    Dunn, Joe Dan; Ravindran, Sandeep; Kim, Seon-Kyeong; Boothroyd, John C.

    2008-01-01

    The obligate intracellular parasite Toxoplasma gondii infects warm-blooded animals throughout the world and is an opportunistic pathogen of humans. As it invades a host cell, Toxoplasma forms a novel organelle, the parasitophorous vacuole, in which it resides during its intracellular development. The parasite modifies the parasitophorous vacuole and its host cell with numerous proteins delivered from rhoptries and dense granules, which are secretory organelles unique to the phylum Apicomplexa. For the majority of these proteins, little is known other than their localization. Here we show that the dense granule protein GRA7 is phosphorylated but only in the presence of host cells. Within 10 min of invasion, GRA7 is present in strand-like structures in the host cytosol that contain rhoptry proteins. GRA7 strands also contain GRA1 and GRA3. Independently of its phosphorylation state, GRA7 associates with the rhoptry proteins ROP2 and ROP4 in infected host cells. This is the first report of interactions between proteins secreted from rhoptries and dense granules. PMID:18809661

  14. Water in the Cratonic Mantle: Insights from FTIR Data on Lac De Gras Xenoliths (Slave Craton, Canada)

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Brandon, Alan D.; Schaffer, Lillian Aurora; O'Reilly, Suzanne Yvette; Griffin, William L.; Morris, Richard V.; Graff, Trevor G.; Agresti, David G.

    2014-01-01

    The mantle lithosphere beneath the cratonic part of continents is the deepest (> 200 km) and oldest (>2-3 Ga) on Earth, remaining a conundrum as to how these cratonic roots could have resisted delamination by asthenospheric convection over time. Water, or trace H incorporated in mineral defects, could be a key player in the evolution of continental lithosphere because it influences melting and rheology of the mantle. Mantle xenoliths from the Lac de Gras kimberlite in the Slave craton were analyzed by FTIR. The cratonic mantle beneath Lac de Gras is stratified with shallow (<145 km) oxidized ultradepleted peridotites and pyroxenites with evidence for carbonatitic metasomatism, underlain by reduced and less depleted peridotites metasomatized by kimberlite melts. Peridotites analyzed so far have H O contents in ppm weight of 7-100 in their olivines, 58 to 255 in their orthopyroxenes (opx), 11 to 84 in their garnet, and 139 in one clinopyroxene. A pyroxenite contains 58 ppm H2O in opx and 5 ppm H2O in its olivine and garnet. Olivine and garnet from the deep peridotites have a range of water contents extending to higher values than those from the shallow ones. The FTIR spectra of olivines from the shallow samples have more prominent Group II OH bands compared to the olivines from the deep samples, consistent with a more oxidized mantle environment. The range of olivine water content is similar to that observed in Kaapvaal craton peridotites at the same depths (129-184 km) but does not extend to as high values as those from Udachnaya (Siberian craton). The Slave, Kaapvaal and Siberian cratons will be compared in terms of water content distribution, controls and role in cratonic root longevity.

  15. The PBX-regulating protein PREP1 is present in different PBX-complexed forms in mouse.

    PubMed

    Ferretti, E; Schulz, H; Talarico, D; Blasi, F; Berthelsen, J

    1999-05-01

    Human PREP1, a novel homeodomain protein of the TALE super-family, forms a stable DNA-binding complex with PBX proteins in solution, a ternary complex with PBX and HOXB1 on DNA, and is able to act as a co-activator in the transcription of PBX-HOXB1 activated promoters (Berthelsen, J., Zappavigna, V., Ferretti, E., Mavilio, F., Blasi, F. , 1998b. The novel homeoprotein Prep1 modulates Pbx-Hox protein cooperatity. EMBO J. 17, 1434-1445; Berthelsen, J., Zappavigna, V., Mavilio, F., Blasi, F., 1998c. Prep1, a novel functional partner of Pbx proteins. EMBO J. 17, 1423-1433). Here we demonstrate the presence of DNA-binding PREP1-PBX complexes also in murine cells. In vivo, PREP1 is a predominant partner of PBX proteins in various murine tissues. However, the choice of PBX family member associated with PREP1 is largely tissue-type specific. We report the cloning and expression domain of murine Prep1 gene. Murine PREP1 shares 100% identity with human PREP1 in the homeodomain and 95% similarity throughout the whole protein. In the adult mouse, PREP1 is expressed ubiquitously, with peaks in testis and thymus. We further demonstrate the presence of murine Prep1 mRNA and protein, and of different DNA-binding PREP1-PBX complexes, in mouse embryos from at least 9.5 days p.c. Moreover, we show that PREP1 is present in all embryonic tissues from at least 7.5-17.5 days p.c with a predominantly nuclear staining. PREP1 is able to super-activate the PBX-HOXB-1 autoregulated Hoxb-1 promoter, and we show that all three proteins, PREP1, PBX and HOXB-1, are present together in the mouse rhombomere 4 domain in vivo, compatible with a role of PREP1 as a regulator of PBX and HOXB-1 proteins activity during development. PMID:10381567

  16. Nanoscale patterning of membrane-bound proteins formed through curvature-induced partitioning of phase-specific receptor lipids.

    PubMed

    Ogunyankin, Maria O; Huber, Dale L; Sasaki, Darryl Y; Longo, Marjorie L

    2013-05-21

    This work describes a technique for forming high-density arrays and patterns of membrane-bound proteins through binding to a curvature-organized compositional pattern of metal-chelating lipids (Cu(2+)-DOIDA or Cu(2+)-DSIDA). In this bottom-up approach, the underlying support is an e-beam formed, square lattice pattern of hemispheres. This curvature pattern sorts Cu(2+)-DOIDA to the 200 nm hemispherical lattice sites of a 600 nm × 600 nm unit cell in Ld - Lo phase separated lipid multibilayers. Binding of histidine-tagged green fluorescent protein (His-GFP) creates a high density array of His-GFP-bound pixels localized to the square lattice sites. In comparison, the negative pixel pattern is created by sorting Cu(2+)-DSIDA in Ld - Lβ' phase separated lipid multibilayers to the flat grid between the lattice sites followed by binding to His-GFP. Lattice defects in the His-GFP pattern lead to interesting features such as pattern circularity. We also observe defect-free arrays of His-GFP that demonstrate perfect arrays can be formed by this method suggesting the possibility of using this approach for the localization of various active molecules to form protein, DNA, or optically active molecular arrays. PMID:23642033

  17. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  18. An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions

    NASA Astrophysics Data System (ADS)

    Brahmkhatri, Varsha P.; Chandra, Kousik; Dubey, Abhinav; Atreya, Hanudatta S.

    2015-07-01

    In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein ubiquitin (Ubq). This involves a dynamic and reversible association and dissociation of ubiquitin from the surface of AgNP. The exchange occurs at a rate much greater than 25 s-1 implying a residence time of <40 ms for the protein. The AgNP-Ubq complex remains stable for months due to steric stabilization over a wide pH range compared to unconjugated AgNPs. NMR studies reveal that the protein molecules bind reversibly to AgNP with an approximate dissociation constant of 55 μM and undergo fast exchange. At pH > 4 the positively charged surface of the protein comes in contact with the citrate capped AgNP surface. Further, NMR relaxation-based experiments suggest that in addition to the dynamic exchange, a conformational rearrangement of the protein takes place upon binding to AgNP. The ultrastability of the AgNP-Ubq complex was found to be useful for its anti-microbial activity, which allowed the recycling of this complex multiple times without the loss of stability. Altogether, the study provides new insights into the mechanism of protein-silver nanoparticle interactions and opens up new avenues for its application in a wide range of systems.In recent years, silver nanoparticles (AgNPs) have attracted significant attention owing to their unique physicochemical, optical, conductive and antimicrobial properties. One of the properties of AgNPs which is crucial for all applications is their stability. In the present study we unravel a mechanism through which silver nanoparticles are rendered ultrastable in an aqueous solution in complex with the protein

  19. The Amyloid Precursor Protein Forms Plasmalemmal Clusters via Its Pathogenic Amyloid-β Domain

    PubMed Central

    Schreiber, Arne; Fischer, Sebastian; Lang, Thorsten

    2012-01-01

    The amyloid precursor protein (APP) is a large, ubiquitous integral membrane protein with a small amyloid-β (Aβ) domain. In the human brain, endosomal processing of APP produces neurotoxic Aβ-peptides, which are involved in Alzheimer's disease. Here, we show that the Aβ sequence exerts a physiological function when still present in the unprocessed APP molecule. From the extracellular site, Aβ concentrates APP molecules into plasmalemmal membrane protein clusters. Moreover, Aβ stabilization of clusters is a prerequisite for their targeting to endocytic clathrin structures. Therefore, we conclude that the Aβ domain directly mediates a central step in APP trafficking, driving its own conversion into neurotoxic peptides. PMID:22455924

  20. Bloodstream form Trypanosome plasma membrane proteins: antigenic variation and invariant antigens.

    PubMed

    Schwede, Angela; Carrington, Mark

    2010-12-01

    Trypanosoma brucei is exposed to the adaptive immune system and complement in the blood of its mammalian hosts. The aim of this review is to analyse the role and regulation of the proteins present on the external face of the plasma membrane in the long-term persistence of an infection and transmission. In particular, the following are addressed: (1) antigenic variation of the variant surface glycoprotein (VSG), (2) the formation of an effective VSG barrier shielding invariant surface proteins, and (3) the rapid uptake of VSG antibody complexes combined with degradation of the immunoglobulin and recycling of the VSG. PMID:20109254

  1. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2.

    PubMed

    Chen, Qian; Zou, Junhuang; Shen, Zuolian; Zhang, Weiping; Yang, Jun

    2014-12-26

    Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy. PMID:25406310

  2. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids.

    PubMed

    Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D; Woodward, Cora L; Christensen, Devin E; Dryden, Kelly A; Pornillos, Owen; Yeager, Mark; Ganser-Pornillos, Barbie K; Jensen, Grant J; Sundquist, Wesley I

    2016-01-01

    TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. PMID:27253068

  3. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids

    PubMed Central

    Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D; Woodward, Cora L; Christensen, Devin E; Dryden, Kelly A; Pornillos, Owen; Yeager, Mark; Ganser-Pornillos, Barbie K; Jensen, Grant J; Sundquist, Wesley I

    2016-01-01

    TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI: http://dx.doi.org/10.7554/eLife.16269.001 PMID:27253068

  4. Channels Formed by Botulinum, Tetanus, and Diphtheria Toxins in Planar Lipid Bilayers: Relevance to Translocation of Proteins across Membranes

    NASA Astrophysics Data System (ADS)

    Hoch, David H.; Romero-Mira, Miryam; Ehrlich, Barbara E.; Finkelstein, Alan; Dasgupta, Bibhuti R.; Simpson, Lance L.

    1985-03-01

    The heavy chains of both botulinum neurotoxin type B and tetanus toxin form channels in planar bilayer membranes. These channels have pH-dependent and voltage-dependent properties that are remarkably similar to those previously described for diphtheria toxin. Selectivity experiments with anions and cations show that the channels formed by the heavy chains of all three toxins are large; thus, these channels could serve as ``tunnel proteins'' for translocation of active peptide fragments. These findings support the hypothesis that the active fragments of botulinum neurotoxin and tetanus toxin, like that of diphtheria toxin, are translocated across the membranes of acidic vesicles.

  5. P15 and P3, the Tail Completion Proteins of Bacteriophage T4, Both Form Hexameric Rings

    PubMed Central

    Zhao, Li; Kanamaru, Shuji; Chaidirek, Chatree'chalerm; Arisaka, Fumio

    2003-01-01

    Two proteins, gp15 and gp3 (gp for gene product), are required to complete the assembly of the T4 tail. gp15 forms the connector which enables the tail to bind to the head, whereas gp3 is involved in terminating the elongation of the tail tube. In this work, genes 15 and 3 were cloned and overexpressed, and the purified gene products were studied by analytical ultracentrifugation, electron microscopy, and circular dichroism. Determination of oligomerization state by sedimentation equilibrium revealed that both gp15 and gp3 are hexamers of the respective polypeptide chains. Electron microscopy of the negatively stained P15 and P3 (P denotes the oligomeric state of the gene product) revealed that both proteins form hexameric rings, the diameter of which is close to that of the tail tube. The differential roles between gp15 and gp3 upon completion of the tail are discussed. PMID:12591887

  6. The Outer Membrane Protein OmpW Forms an Eight-Stranded beta-Barrel with a Hydrophobic Channel

    SciTech Connect

    Hong,H.; Patel, D.; Tamm, L.; van den Berg, B.

    2006-01-01

    Escherichia coli OmpW belongs to a family of small outer membrane (OM) proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. In order to gain insight into the function of these proteins we have determined the crystal structure of Escherichia coli OmpW to 2.7 Angstroms resolution. The structure shows that OmpW forms an eight-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound LDAO detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of LDAO. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial OM.

  7. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  8. Identification of Novel Potentially Toxic Oligomers Formed in Vitro from Mammalian-derived Expanded huntingtin Exon-1 Protein*

    PubMed Central

    Nucifora, Leslie G.; Burke, Kathleen A.; Feng, Xia; Arbez, Nicolas; Zhu, Shanshan; Miller, Jason; Yang, Guocheng; Ratovitski, Tamara; Delannoy, Michael; Muchowski, Paul J.; Finkbeiner, Steven; Legleiter, Justin; Ross, Christopher A.; Poirier, Michelle A.

    2012-01-01

    Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity. PMID:22433867

  9. EsxB, a secreted protein from Bacillus anthracis forms two distinct helical bundles

    SciTech Connect

    Fan, Yao; Tan, Kemin; Chhor, Gekleng; Butler, Emily K.; Jedrzejczak, Robert P.; Missiakas, Dominique; Joachimiak, Andrzej

    2015-07-03

    The EsxB protein from Bacillus anthracis belongs to the WXG100 family, a group of proteins secreted by a specialized secretion system. We have determined the crystal structures of recombinant EsxB and discovered that the small protein (~10 kDa), comprised of a helix-loop-helix (HLH) hairpin, is capable of associating into two different helical bundles. The two basic quaternary assemblies of EsxB are an antiparallel (AP) dimer and a rarely observed bisecting U (BU) dimer. This structural duality of EsxB is believed to originate from the heptad repeat sequence diversity of the first helix of its HLH hairpin, which allows for two alternative helix packing. The flexibility of EsxB and the ability to form alternative helical bundles underscore the possibility that this protein can serve as an adaptor in secretion and can form hetero-oligomeric helix bundle(s) with other secreted members of the WXG100 family, such as EsxW. The highly conserved WXG motif is located within the loop of the HLH hairpin and is mostly buried within the helix bundle suggesting that its role is mainly structural. The exact functions of the motif, including a proposed role as a secretion signal, remain unknown.

  10. The Reticulon and Dp1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum*S⃞

    PubMed Central

    Shibata, Yoko; Voss, Christiane; Rist, Julia M.; Hu, Junjie; Rapoport, Tom A.; Prinz, William A.; Voeltz, Gia K.

    2008-01-01

    We recently identified a class of membrane proteins, the reticulons and DP1/Yop1p, which shape the tubular endoplasmic reticulum (ER) in yeast and mammalian cells. These proteins are highly enriched in the tubular portions of the ER and virtually excluded from other regions. To understand how they promote tubule formation, we characterized their behavior in cellular membranes and addressed how their localization in the ER is determined. Using fluorescence recovery after photobleaching, we found that yeast Rtn1p and Yop1p are less mobile in the membrane than normal ER proteins. Sucrose gradient centrifugation and cross-linking analyses show that they form oligomers. Mutants of yeast Rtn1p, which no longer localize exclusively to the tubular ER or are even totally inactive in inducing ER tubules, are more mobile and oligomerize less extensively. The mammalian reticulons and DP1 are also relatively immobile and can form oligomers. The conserved reticulon homology domain that includes the two membrane-embedded segments is sufficient for the localization of the reticulons to the tubular ER, as well as for their diffusional immobility and oligomerization. Finally, ATP depletion in both yeast and mammalian cells further decreases the mobilities of the reticulons and DP1. We propose that oligomerization of the reticulons and DP1/Yop1p is important for both their localization to the tubular domains of the ER and for their ability to form tubules. PMID:18442980

  11. The short form of the CheA protein restores kinase activity and chemotactic ability to kinase-deficient mutants.

    PubMed Central

    Wolfe, A J; Stewart, R C

    1993-01-01

    Escherichia coli expresses two forms of the chemotaxis-associated CheA protein, CheAL and CheAS, as the result of translational initiation at two distinct, in-frame initiation sites in the gene cheA. The long form, CheAL, plays a crucial role in the chemotactic signal transduction mechanism by phosphorylating two other chemotaxis proteins: CheY and CheB. CheAL must first autophosphorylate at amino acid His-48 before transferring its phosphono group to these other signal transduction proteins. The short form, CheAS, lacks the N-terminal 97 amino acids of CheAL and, therefore, does not possess the site of autophosphorylation. Here we demonstrate that although it lacks the ability to autophosphorylate, CheAS can mediate phosphorylation of kinase-deficient variants of CheAL each of which retains a functional autophosphorylation site. This transphosphorylation enables these kinase-deficient CheAL variants to phosphorylate CheY. Because it mediates this activity, CheAS can restore to kinase-deficient E. coli cells the ability to tumble and, thus, to perform chemotaxis in swarm plate assays. Images PMID:8434013

  12. Biochemical characteristics of cytosolic and particulate forms of protein tyrosine kinases from methyl nitrosourea (MNU)-induced rat mammary carcinoma

    SciTech Connect

    Srivastava, A.K.; Chiasson, J.C.; Chiasson, J.L.; Lacroix, A.; Windisch, L. )

    1991-03-11

    Protein tyrosine kinase (PTK) activities in MNU-induced rat mammary carcinoma has been investigated by using poly (glu: tyr; 4:1) as an exogenous substrate. The PTK activity of the mammary carcinoma was about equally distributed between the particulate and cytosolic fractions at 110 000 x g. Both particulate and cytosolic PTKs catalyzed the phosphorylation of several tyrosine containing synthetic substrates to various degrees, however, poly (glu: tyr; 4:1) was the best substrate. Both the forms utilized ATP as the phosphoryl group donor. Among various divalent cations tested, Co{sup 2+}, Mn{sup 2+} and Mg{sup 2+} were able to fulfill the divalent cation requirement. Poly-lysine exerted a stimulatory effect on the particulate, but not on the cytosolic form. On the other hand, though heparin and quercetin inhibited both the forms in a concentration dependent manner, the particulate form was more sensitive to inhibition. These data indicate that MNU-induced rat mammary carcinoma expresses both particulate and cytosolic forms of PTKs and that there are significant differences in the properties of the two forms. Differential differences in the properties of the two forms. Differential effects of some agents on mammary carcinoma PTKs suggest that these enzymes may be acutely regulated in vivo and could play important role in mammary carcinogenesis.

  13. Antigenic and immunogenic properties of defined physical forms of tick-borne encephalitis virus structural proteins.

    PubMed Central

    Heinz, F X; Tuma, W; Kunz, C

    1981-01-01

    Polymeric, delipidated glycoprotein complexes of defined size and composition were prepared from tick-borne encephalitis virus by solubilization with Triton X-100 or cetyltrimethylammonium bromide, followed by centrifugation into detergent-free sucrose density gradients. The antigenic reactivities and immunogenicities of these complexes were compared with those of complete inactivated virus. These glycoprotein preparations induced hemagglutination-inhibiting and neutralizing antibodies which proved to be protective in passive mouse protection tests and monospecifically reacted only with the viral envelope and not with the internal core. In a competitive radioimmunoassay the glycoprotein complexes revealed about 10-fold higher antigenicity than whole virus when tested at equal protein concentrations. The important implications of these results with respect to antigen quantification in vaccines are discussed. As shown in the mouse challenge potency test, glycoprotein complexes prepared after Triton X-100 solubilization actively protected mice almost as well as did complete inactivated virus at the same protein concentration, whereas those prepared after cetyltrimethylammonium bromide solubilization had a somewhat lower protective activity per microgram of protein. Images PMID:7263062

  14. A coiled-coil motif in non-structural protein 3 (NS3) of bluetongue virus forms an oligomer.

    PubMed

    Chacko, Nirmal; Mohanty, Nihar Nalini; Biswas, Sanchay Kumar; Chand, Karam; Yogisharadhya, Revanaiah; Pandey, Awadh Bihari; Mondal, Bimalendu; Shivachandra, Sathish Bhadravati

    2015-10-01

    Bluetongue, an arthropod-borne non-contagious hemorrhagic disease of small ruminants, is caused by bluetongue virus (BTV). Several structural and non-structural proteins encoded by BTV have been associated with virulence mechanisms. In the present study, the NS3 protein sequences of bluetongue viral serotypes were analyzed for the presence of heptad regions and oligomer formation. Bioinformatic analysis of NS3 sequences of all 26 BTV serotypes revealed the presence of at least three coiled-coil motifs (CCMs). A conserved α-helical heptad sequence was identified at 14-26 aa (CCM-I), 185-198aa (CCM-II), and 94-116 aa (CCM-III). Among these, CCM-I occurs close to the N-terminus of NS3 and was presumed to be involved in oligomerization. Furthermore, the N-terminus of NS3 (1M-R117 aa) was over-expressed as a recombinant fusion protein in a prokaryotic expression system. Biochemical characterization of recombinant NS3Nt protein revealed that it forms SDS-resistant dimers and high-order oligomers (hexamer and/or octamer) under reducing or non-reducing conditions. Coiled-coil motifs are believed to be critical for NS protein oligomerization and have potential roles in the formation of viroporin ring/pore either with six/eight subunits and this is the first study toward characterization of CCMs in NS3 of bluetongue virus. PMID:26318174

  15. Adipocyte Spliced Form of X-Box–Binding Protein 1 Promotes Adiponectin Multimerization and Systemic Glucose Homeostasis

    PubMed Central

    Sha, Haibo; Yang, Liu; Liu, Meilian; Xia, Sheng; Liu, Yong; Liu, Feng; Kersten, Sander; Qi, Ling

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in adipocytes, thereby regulating systemic glucose homeostasis. Ectopic expression of XBP1s in adipocytes improves glucose tolerance and insulin sensitivity in both lean and obese (ob/ob) mice. The beneficial effect of adipocyte XBP1s on glucose homeostasis is associated with elevated serum levels of high-molecular-weight adiponectin and, indeed, is adiponectin-dependent. Mechanistically, XBP1s promotes adiponectin multimerization rather than activating its transcription, likely through a direct regulation of the expression of several ER chaperones involved in adiponectin maturation, including glucose-regulated protein 78 kDa, protein disulfide isomerase family A, member 6, ER protein 44, and disulfide bond oxidoreductase A–like protein. Thus, we conclude that XBP1s is an important regulator of adiponectin multimerization, which may lead to a new therapeutic approach for the treatment of type 2 diabetes and hypoadiponectinemia. PMID:24241534

  16. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis.

    PubMed

    Sha, Haibo; Yang, Liu; Liu, Meilian; Xia, Sheng; Liu, Yong; Liu, Feng; Kersten, Sander; Qi, Ling

    2014-03-01

    The physiological role of the spliced form of X-box-binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in adipocytes, thereby regulating systemic glucose homeostasis. Ectopic expression of XBP1s in adipocytes improves glucose tolerance and insulin sensitivity in both lean and obese (ob/ob) mice. The beneficial effect of adipocyte XBP1s on glucose homeostasis is associated with elevated serum levels of high-molecular-weight adiponectin and, indeed, is adiponectin-dependent. Mechanistically, XBP1s promotes adiponectin multimerization rather than activating its transcription, likely through a direct regulation of the expression of several ER chaperones involved in adiponectin maturation, including glucose-regulated protein 78 kDa, protein disulfide isomerase family A, member 6, ER protein 44, and disulfide bond oxidoreductase A-like protein. Thus, we conclude that XBP1s is an important regulator of adiponectin multimerization, which may lead to a new therapeutic approach for the treatment of type 2 diabetes and hypoadiponectinemia. PMID:24241534

  17. JBP2, a SWI2/SNF2-like protein, regulates de novo telomeric DNA glycosylation in bloodstream form Trypanosoma brucei.

    PubMed

    Kieft, Rudo; Brand, Verena; Ekanayake, Dilrukshi K; Sweeney, Kate; DiPaolo, Courtney; Reznikoff, William S; Sabatini, Robert

    2007-11-01

    Synthesis of the modified thymine base, beta-d-glucosyl-hydroxymethyluracil or J, within telomeric DNA of Trypanosoma brucei correlates with the bloodstream form specific epigenetic silencing of telomeric variant surface glycoprotein genes involved in antigenic variation. In order to analyze the function of base J in the regulation of antigenic variation, we are characterizing the regulatory mechanism of J biosynthesis. We have recently proposed a model in which chromatin remodeling by a SWI2/SNF2-like protein (JBP2) regulates the developmental and de novo site-specific localization of J synthesis within bloodstream form trypanosome DNA. Consistent with this model, we now show that JBP2 (-/-) bloodstream form trypanosomes contain five-fold less base J and are unable to stimulate de novo J synthesis in newly generated telomeric arrays. PMID:17706299

  18. The full-length form of the Drosophila amyloid precursor protein is involved in memory formation.

    PubMed

    Bourdet, Isabelle; Preat, Thomas; Goguel, Valérie

    2015-01-21

    The APP plays a central role in AD, a pathology that first manifests as a memory decline. Understanding the role of APP in normal cognition is fundamental in understanding the progression of AD, and mammalian studies have pointed to a role of secreted APPα in memory. In Drosophila, we recently showed that APPL, the fly APP ortholog, is required for associative memory. In the present study, we aimed to characterize which form of APPL is involved in this process. We show that expression of a secreted-APPL form in the mushroom bodies, the center for olfactory memory, is able to rescue the memory deficit caused by APPL partial loss of function. We next assessed the impact on memory of the Drosophila α-secretase kuzbanian (KUZ), the enzyme initiating the nonamyloidogenic pathway that produces secreted APPLα. Strikingly, KUZ overexpression not only failed to rescue the memory deficit caused by APPL loss of function, it exacerbated this deficit. We further show that in addition to an increase in secreted-APPL forms, KUZ overexpression caused a decrease of membrane-bound full-length species that could explain the memory deficit. Indeed, we observed that transient expression of a constitutive membrane-bound mutant APPL form is sufficient to rescue the memory deficit caused by APPL reduction, revealing for the first time a role of full-length APPL in memory formation. Our data demonstrate that, in addition to secreted APPL, the noncleaved form is involved in memory, raising the possibility that secreted and full-length APPL act together in memory processes. PMID:25609621

  19. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Treutiger, C J; Scholander, C; Carlson, J; McAdam, K P; Raynes, J G; Falksveden, L; Wahlgren, M

    1999-12-01

    Excessive sequestration of Plasmodium falciparum-infected (pRBC) and uninfected erythrocytes (RBC) in the microvasculature, cytoadherence, and rosetting, have been suggested to be correlated with the development of cerebral malaria. P. falciparum erythrocyte membrane protein-1 (PfEMP1) is the parasite-derived adhesin which mediates rosetting. Herein we show that serum proteins are crucial for the rosette formation of four strains of parasites (FCR3S1, TM284, TM180, and R29), whereas the rosettes of a fifth strain (DD2) are serum independent. Some parasites, e.g., FCR3S1, can be depleted of all rosettes by washes in heparin and Na citrate and none of the rosettes remain when the parasite is grown in foetal calf serum or ALBUMAX. Rosettes of other parasites are less sensitive; e.g., 20% of TM180 and R29 and 70% of TM284 rosettes still prevail after cultivation. A serum fraction generated by ion-exchange chromatography and poly-ethylene-glycol precipitation restored 50% of FCR3S1 and approx 40 to 100% of TM180 rosettes. In FCR3S1, antibodies to fibrinogen reverted the effect of the serum fraction and stained fibrinogen bound to the pRBC surface in transmission electron microscopy. Normal, nonimmune IgM and/or IgG was also found attached to the pRBC of the four serum-dependent strains as seen by surface immunofluorescens. Our results suggest that serum proteins, known to participate in rouleaux formation of normal erythrocytes, produce stable rosettes in conjunction with the recently identified parasite-derived rosetting ligand PfEMP1. PMID:10600447

  20. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan.

    PubMed

    Ishikawa, Masahito; Yoshimoto, Shogo; Hayashi, Ayumi; Kanie, Junichi; Hori, Katsutoshi

    2016-08-01

    Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis. PMID:27074146

  1. Coilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein.

    PubMed

    Hebert, M D; Szymczyk, P W; Shpargel, K B; Matera, A G

    2001-10-15

    Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the human survival of motor neuron 1 gene, SMN1. SMN protein is part of a large complex that is required for biogenesis of various small nuclear ribonucleoproteins (snRNPs). Here, we report that SMN interacts directly with the Cajal body signature protein, coilin, and that this interaction mediates recruitment of the SMN complex to Cajal bodies. Mutation or deletion of specific RG dipeptide residues within coilin inhibits the interaction both in vivo and in vitro. Interestingly, GST-pulldown experiments show that coilin also binds directly to SmB'. Competition studies show that coilin competes with SmB' for binding sites on SMN. Ectopic expression of SMN and coilin constructs in mouse embryonic fibroblasts lacking endogenous coilin confirms that recruitment of SMN and splicing snRNPs to Cajal bodies depends on the coilin C-terminal RG motif. A cardinal feature of SMA patient cells is a defect in the targeting of SMN to nuclear foci; our results uncover a role for coilin in this process. PMID:11641277

  2. Human heterochromatin proteins form large domains containing KRAB-ZNF genes

    PubMed Central

    Vogel, Maartje J.; Guelen, Lars; de Wit, Elzo; Hupkes, Daniel Peric; Lodén, Martin; Talhout, Wendy; Feenstra, Marike; Abbas, Ben; Classen, Anne-Kathrin; van Steensel, Bas

    2006-01-01

    Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that CBX1 (formerly HP1β) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes constitute one of the largest gene families and are organized in clusters in the human genome. Preference of CBX1 for this gene family was observed in both human and mouse cells. High-resolution mapping on human chromosome 19 revealed that CBX1 coats large domains 0.1–4 Mb in size, which coincide with the position of KRAB-ZNF gene clusters. These domains show an intricate CBX1 binding pattern: While CBX1 is globally elevated throughout the domains, it is absent from the promoters and binds more strongly to the 3′ ends of KRAB-ZNF genes. KRAB-ZNF domains contain large numbers of LINE elements, which may contribute to CBX1 recruitment. These results uncover a surprising link between heterochromatin and a large family of regulatory genes in mammals. We suggest a role for heterochromatin in the evolution of the KRAB-ZNF gene family. PMID:17038565

  3. Human heterochromatin proteins form large domains containing KRAB-ZNF genes.

    PubMed

    Vogel, Maartje J; Guelen, Lars; de Wit, Elzo; Peric-Hupkes, Daniel; Lodén, Martin; Talhout, Wendy; Feenstra, Marike; Abbas, Ben; Classen, Anne-Kathrin; van Steensel, Bas

    2006-12-01

    Heterochromatin is important for gene regulation and chromosome structure, but the genes that are occupied by heterochromatin proteins in the mammalian genome are largely unknown. We have adapted the DamID method to systematically identify target genes of the heterochromatin proteins HP1 and SUV39H1 in human and mouse cells. Unexpectedly, we found that CBX1 (formerly HP1beta) and SUV39H1 bind to genes encoding KRAB domain containing zinc finger (KRAB-ZNF) transcriptional repressors. These genes constitute one of the largest gene families and are organized in clusters in the human genome. Preference of CBX1 for this gene family was observed in both human and mouse cells. High-resolution mapping on human chromosome 19 revealed that CBX1 coats large domains 0.1-4 Mb in size, which coincide with the position of KRAB-ZNF gene clusters. These domains show an intricate CBX1 binding pattern: While CBX1 is globally elevated throughout the domains, it is absent from the promoters and binds more strongly to the 3' ends of KRAB-ZNF genes. KRAB-ZNF domains contain large numbers of LINE elements, which may contribute to CBX1 recruitment. These results uncover a surprising link between heterochromatin and a large family of regulatory genes in mammals. We suggest a role for heterochromatin in the evolution of the KRAB-ZNF gene family. PMID:17038565

  4. Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli.

    PubMed Central

    Fraipont, C; Adam, M; Nguyen-Distèche, M; Keck, W; Van Beeumen, J; Ayala, J A; Granier, B; Hara, H; Ghuysen, J M

    1994-01-01

    Replacement of the 36 and 56 N-terminal amino acid residues of the 588-amino-acid-residue membrane-bound penicillin-binding protein 3 (PBP3) of Escherichia coli by the OmpA signal peptide allows export of F37-V577 PBP3 and G57-V577 PBP3 respectively into the periplasm. The modified ftsI genes were placed under the control of the fused lpp promoter and lac promoter/operator; expression of the truncated PBP3s was optimized by varying the copy number of the recombinant plasmids and the amount of LacI repressor, and export was facilitated by increasing the SecB content of the producing strain. The periplasmic PBP3s (yield 8 mg/l of culture) were purified to 70% protein homogeneity. They require the presence of 0.25 M NaCl to remain soluble. Like the membrane-bound PBP3, they undergo processing by elimination of the C-terminal decapeptide I578-S588, they bind penicillin in a 1:1 molar ratio and they catalyse hydrolysis and aminolysis of acyclic thioesters that are analogues of penicillin. The membrane-anchor-free PBP3s have ragged N-termini. The G57-V577 PBP3, however, is less prone to proteolytic degradation than the F37-V577 PBP3. Images Figure 3 PMID:8129719

  5. tRNA acceptor stem and anticodon bases form independent codes related to protein folding

    PubMed Central

    Carter, Charles W.; Wolfenden, Richard

    2015-01-01

    Aminoacyl-tRNA synthetases recognize tRNA anticodon and 3′ acceptor stem bases. Synthetase Urzymes acylate cognate tRNAs even without anticodon-binding domains, in keeping with the possibility that acceptor stem recognition preceded anticodon recognition. Representing tRNA identity elements with two bits per base, we show that the anticodon encodes the hydrophobicity of each amino acid side-chain as represented by its water-to-cyclohexane distribution coefficient, and this relationship holds true over the entire temperature range of liquid water. The acceptor stem codes preferentially for the surface area or size of each side-chain, as represented by its vapor-to-cyclohexane distribution coefficient. These orthogonal experimental properties are both necessary to account satisfactorily for the exposed surface area of amino acids in folded proteins. Moreover, the acceptor stem codes correctly for β-branched and carboxylic acid side-chains, whereas the anticodon codes for a wider range of such properties, but not for size or β-branching. These and other results suggest that genetic coding of 3D protein structures evolved in distinct stages, based initially on the size of the amino acid and later on its compatibility with globular folding in water. PMID:26034281

  6. Deposition of Bacteriorhodopsin Protein in a Purple Membrane Form on Nitrocellulose Membranes for Enhanced Photoelectric Response

    PubMed Central

    Kim, Young Jun; Neuzil, Pavel; Nam, Chang-Hoon; Engelhard, Martin

    2013-01-01

    Bacteriorhodopsin protein (bR)-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO) electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM) can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices. PMID:23271605

  7. FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure

    PubMed Central

    Bensaid, Mounia; Melko, Mireille; Bechara, Elias G.; Davidovic, Laetitia; Berretta, Antonio; Catania, Maria Vincenza; Gecz, Jozef; Lalli, Enzo; Bardoni, Barbara

    2009-01-01

    FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FMR2 was supposed to have a role in transcriptional regulation, but robust evidences supporting this hypothesis are lacking. We observed that FMR2 co-localizes with the splicing factor SC35 in nuclear speckles, the nuclear regions where splicing factors are concentrated, assembled and modified. Similarly to what was reported for splicing factors, blocking splicing or transcription leads to the accumulation of FMR2 in enlarged, rounded speckles. FMR2 is also localized in the nucleolus when splicing is blocked. We show here that FMR2 is able to specifically bind the G-quartet-forming RNA structure with high affinity. Remarkably, in vivo, in the presence of FMR2, the ESE action of the G-quartet situated in mRNA of an alternatively spliced exon of a minigene or of the putative target FMR1 appears reduced. Interestingly, FMR1 is silenced in the fragile X syndrome, another form of mental retardation. All together, our findings strongly suggest that FMR2 is an RNA-binding protein, which might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure. PMID:19136466

  8. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking.

    PubMed

    Irvine, Scott A; Agrawal, Animesh; Lee, Bae Hoon; Chua, Hui Yee; Low, Kok Yao; Lau, Boon Chong; Machluf, Marcelle; Venkatraman, Subbu

    2015-02-01

    Considerable interest has arisen in precision fabrication of cell bearing scaffolds and structures by free form fabrication. Gelatin is an ideal material for creating cell entrapping constructs, yet its application in free form fabrication remains challenging. We demonstrate the use of gelatin, crosslinked with microbial transglutaminase (mTgase), as a material to print cell bearing hydrogels for both 2-dimensional (2-D) precision patterns and 3-dimensional (3-D) constructs. The precision patterning was attained with 3 % gelatin and 2 % high molecular weight poly (ethylene oxide) (PEO) whereas 3-D constructs were obtained using a 5 % gelatin solution. These hydrogels, referred to as "bioinks" supported entrapped cell growth, allowing cell spreading and proliferation for both HEK293 cells and Human Umbilical Vein Endothelial Cells (HUVECs). These bioinks were shown to be dispensable by robotic precision, forming patterns and constructs that were insoluble and of suitable stiffness to endure post gelation handling. The two bioinks were further characterized for fabrication parameters and mechanical properties. PMID:25653062

  9. High-resolution autoradiography of new formed proteins in the epididymis after incorporation of tritiated amino acids

    SciTech Connect

    Fain-Maurel, M.A.; Dadoune, J.P.; Alfonsi, M.F.

    1981-05-01

    The synthesis and excretion of newly formed proteins in the principal cells of the head, body, and tail of the epididymis were studied by quantitative autoradiography in light and electron microscopy. Adult mice were killed from 5 min to 6 hr after intravenous injection of tritiated leucine, lysine, and arginine. The labels were taken up early and in greater amounts in the principal cells of the head. Radioactivity decreased in the cells of all three segments throughout the first hour following administration of the tracers. Thereafter, it increased in the lumen. High-resolution analysis showed successive peaks of relative concentration of the labels over the endoplasmic reticulum, Golgi apparatus, and apical plasma membrane, thus confirming that protein synthesis and excretion follow the usual pathway in the principal cells all along the epididymis. However, since a radioactivity peak occurred as early as 15 min over the apical membrane of cells in the head, it is likely that part of the endoplasmic reticulum-canalicular and poor in polysomes-is involved independently in the synthesis and rapid transport of newly formed proteins.

  10. Arf1 and Arf6 Promote Ventral Actin Structures formed by acute Activation of Protein Kinase C and Src

    PubMed Central

    Caviston, Juliane P.; Cohen, Lee Ann; Donaldson, Julie G.

    2016-01-01

    Arf proteins regulate membrane traffic and organelle structure. Although Arf6 is known to initiate actin-based changes in cell surface architecture, Arf1 may also function at the plasma membrane. Here we show that acute activation of protein kinase C (PKC) induced by the phorbol ester PMA led to the formation of motile actin structures on the ventral surface of Beas-2b cells, a lung bronchial epithelial cell line. Ventral actin structures also formed in PMA-treated HeLa cells that had elevated levels of Arf activation. For both cell types, formation of the ventral actin structures was enhanced by expression of active forms of either Arf1 or Arf6, and by the expression of guanine nucleotide exchange factors that activate these Arfs. By contrast, formation of these structures was blocked by inhibitors of PKC and Src, and required phosphatidylinositol 4, 5-bisphosphate, Rac, Arf6 and Arf1. Furthermore, expression of ASAP1, an Arf1 GTPase activating protein (GAP) was more effective at inhibiting the ventral actin structures than was ACAP1, an Arf6 GAP. This study adds to the expanding role for Arf1 in the periphery and identifies a requirement for Arf1, a “Golgi Arf”, in the reorganization of the cortical actin cytoskeleton on ventral surfaces, against the substratum. PMID:24916416

  11. Crystallization and preliminary X-ray diffraction data for the aconitase form of human iron-regulatory protein 1

    SciTech Connect

    Dupuy, J.; Darnault, C.; Moulis, J. M.

    2005-05-01

    Two crystal forms of the aconitase version of recombinant human IRP1 are reported. Iron-regulatory proteins (IRPs) 1 and 2 are closely related molecules involved in animal iron metabolism. Both proteins can bind to specific mRNA regions called iron-responsive elements and thereby control the expression of proteins involved in the uptake, storage and utilization of iron. In iron-replete cells, IRP1, but not IRP2, binds a [4Fe–4S] cluster and functions as a cytoplasmic aconitase, with simultaneous loss of its RNA-binding ability. Whereas IRP2 is known to be involved in Fe homeostasis, the role of IRP1 is less clear; it may provide a link between citrate and iron metabolisms and be involved in oxidative stress response. Here, two crystal forms of the aconitase version of recombinant human IRP1 are reported. An X-ray fluorescence measurement performed on a gold-derivative crystal showed the unexpected presence of zinc, in addition to gold and iron. Both native and MAD X-ray data at the Au, Fe and Zn absorption edges have been collected from these crystals.

  12. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB

    PubMed Central

    Coelho, Miguel B; Attig, Jan; Bellora, Nicolás; König, Julian; Hallegger, Martina; Kayikci, Melis; Eyras, Eduardo; Ule, Jernej; Smith, Christopher WJ

    2015-01-01

    Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3. PMID:25599992

  13. Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria.

    PubMed

    Kang, Tse Siang; Wang, Lin; Sarkissian, Christineh N; Gámez, Alejandra; Scriver, Charles R; Stevens, Raymond C

    2010-01-01

    Phenylalanine ammonia lyase (PAL) has long been recognized as a potential enzyme replacement therapeutic for treatment of phenylketonuria. However, various strategies for the oral delivery of PAL have been complicated by the low intestinal pH, aggressive proteolytic digestion and circulation time in the GI tract. In this work, we report 3 strategies to address these challenges. First, we used site-directed mutagenesis of a chymotrypsin cleavage site to modestly improve protease resistance; second, we used silica sol-gel material as a matrix to demonstrate that a silica matrix can provide protection to entrapped PAL proteins against intestinal proteases, as well as a low pH of 3.5; finally, we demonstrated that PEGylation of AvPAL surface lysines can reduce the inactivation of the enzyme by trypsin. PMID:19793667

  14. Actin-Bundling Protein TRIOBP Forms Resilient Rootlets of Hair Cell Stereocilia That Are Essential for Hearing

    PubMed Central

    Kitajiri, Shin-ichiro; Sakamoto, Takeshi; Belyantseva, Inna A.; Goodyear, Richard J.; Stepanyan, Ruben; Fujiwara, Ikuko; Bird, Jonathan E.; Riazuddin, Saima; Riazuddin, Sheikh; Ahmed, Zubair M.; Hinshaw, Jenny E.; Sellers, James; Bartles, James R.; Hammer, John A.; Richardson, Guy P.; Griffith, Andrew J.; Frolenkov, Gregory I.; Friedman, Thomas B.

    2010-01-01

    SUMMARY Inner ear hair cells detect sound through deflection of mechanosensory stereocilia. Each stereocilium is supported by a paracrystalline array of parallel actin filaments that are packed more densely at the base, forming a rootlet extending into the cell body. The function of rootlets and the molecules responsible for their formation are unknown. We found that TRIOBP, a cytoskeleton-associated protein mutated in human hereditary deafness DFNB28, is localized to rootlets. In vitro, purified TRIOBP isoform 4 protein organizes actin filaments into uniquely dense bundles reminiscent of rootlets, but distinct from bundles formed by espin, an actin cross-linker in stereocilia. We generated mutant Triobp mice (TriobpΔex8/Δex8) that are profoundly deaf. Stereocilia of TriobpΔex8/Δex8 mice develop normally, but fail to form rootlets and are easier to deflect and damage. Thus, F-actin bundling by TRIOBP provides durability and rigidity for normal mechanosensitivity of stereocilia and may contribute to resilient cytoskeletal structures elsewhere. PMID:20510926

  15. Saccharomyces cerevisiae Kelch Proteins and Bud14 Protein Form a Stable 520-kDa Formin Regulatory Complex That Controls Actin Cable Assembly and Cell Morphogenesis*

    PubMed Central

    Gould, Christopher J.; Chesarone-Cataldo, Melissa; Alioto, Salvatore L.; Salin, Bénédicte; Sagot, Isabelle; Goode, Bruce L.

    2014-01-01

    Formins perform essential roles in actin assembly and organization in vivo, but they also require tight regulation of their activities to produce properly functioning actin structures. Saccharomyces cerevisiae Bud14 is one member of an emerging class of formin regulators that target the FH2 domain to inhibit actin polymerization, but little is known about how these regulators are themselves controlled in vivo. Kelch proteins are critical for cell polarity and morphogenesis in a wide range of organisms, but their mechanistic roles in these processes are still largely undefined. Here, we report that S. cerevisiae Kelch proteins, Kel1 and Kel2, associate with Bud14 in cell extracts to form a stable 520-kDa complex with an apparent stoichiometry of 2:2:1 Bud14/Kel1/Kel2. Using pairwise combinations of GFP- and red fluorescent protein-tagged proteins, we show that Kel1, Kel2, and Bud14 interdependently co-localize at polarity sites. By analyzing single, double, and triple mutants, we show that Kel1 and Kel2 function in the same pathway as Bud14 in regulating Bnr1-mediated actin cable formation. Loss of any component of the complex results in long, bent, and hyper-stable actin cables, accompanied by defects in secretory vesicle traffic during polarized growth and septum formation during cytokinesis. These observations directly link S. cerevisiae Kelch proteins to the control of formin activity, and together with previous observations made for S. pombe homologues tea1p and tea3p, they have broad implications for understanding Kelch function in other systems. PMID:24828508

  16. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates.

    PubMed

    Liang, Zhili; Li, Lin; Qi, Haiping; Zhang, Xia; Xu, Zhenbo; Li, Bing

    2016-01-01

    Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent) of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent) of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs. PMID:27384561

  17. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates

    PubMed Central

    Liang, Zhili; Li, Lin; Qi, Haiping; Zhang, Xia; Xu, Zhenbo; Li, Bing

    2016-01-01

    Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent) of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent) of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs. PMID:27384561

  18. Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins.

    PubMed

    Larsen, Andreas N; Sørensen, Kasper K; Johansen, Nicolai T; Martel, Anne; Kirkensgaard, Jacob J K; Jensen, Knud J; Arleth, Lise; Midtgaard, Søren Roi

    2016-07-01

    Three dimers of the amphipathic α-helical peptide 18A have been synthesized with different interhelical linkers inserted between the two copies of 18A. The dimeric peptides were denoted 'beltides' where Beltide-1 refers to the 18A-dimer without a linker, Beltide-2 is the 18A-dimer with proline (Pro) as a linker and Beltide-3 is the 18A-dimer linked by two glycines (Gly-Gly). The self-assembly of the beltides with the phospholipid DMPC was studied with and without the incorporated membrane protein bacteriorhodopsin (bR) through a combination of coarse-grained MD simulations, size-exclusion chromatography (SEC), circular dichroism (CD) spectroscopy, small-angle scattering (SAS), static light scattering (SLS) and UV-Vis spectroscopy. For all three beltides, MD and combined small-angle X-ray and -neutron scattering were consistent with a disc structure composed by a phospholipid bilayer surrounded by a belt of peptides and with a total disc diameter of approximately 10 nm. CD confirmed that all three beltides were α-helical in the free form and with DMPC. However, as shown by SEC the different interhelical linkers clearly led to different properties of the beltides. Beltide-3, with the Gly-Gly linker, was very adaptable such that peptide nanodiscs could be formed for a broad range of different peptide to lipid stoichiometries and therefore also possible disc-sizes. On the other hand, both Beltide-2 with the Pro linker and Beltide-1 without a linker were less adaptable and would only form discs of certain peptide to lipid stoichiometries. SLS revealed that the structural stability of the formed peptide nanodiscs was also highly affected by the linkers and it was found that Beltide-1 gave more stable discs than the other two beltides. With respect to membrane protein stabilization, each of the three beltides in combination with DMPC stabilizes the seven-helix transmembrane protein bacteriorhodopsin significantly better than the detergent octyl glucoside, but no

  19. ANALYSIS OF THE FUNCTION OF CYTOPLASMIC FIBERS FORMED BY THE RUBELLA VIRUS NONSTRUCTURAL REPLICASE PROTEINS

    PubMed Central

    Matthews, Jason D.; Tzeng, Wen-Pin; Frey, Teryl K.

    2010-01-01

    The P150 and P90 replicase proteins of rubella virus (RUBV), a plus-strand RNA Togavirus, produce a unique cytoplasmic fiber network resembling microtubules. Pharmacological and mutagenic approaches were used to determine if these fibers functioned in virus replication. The pharmacological approach revealed that microtubules were required for fiber formation, but neither was necessary for virus replication. Through the mutagenic approach it was found that α-helices near both termini of P150 were necessary for fiber assembly and infectivity, but fiber formation and viability could not be correlated because most of these mutations were lethal. The N-terminal α-helix of P150 affected both proteolytic processing of P150 and P90 from the P200 precursor and targeting of P200, possibly through directing conformational folding of P200. Finally, we made the unexpected discovery that RUBV genomes can spread from cell-to-cell without virus particles, a process that we hypothesize utilizes RUBV-induced cytoplasmic projections containing fibers and replication complexes. PMID:20696450

  20. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    PubMed Central

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  1. MSITE: a new computational tool for comparison of homological proteins in holo form.

    PubMed

    Sicinska, Wanda; Kurcinski, Mateusz

    2010-07-01

    The mechanism by which nuclear receptors respond differentially to structurally distinct agonists is not a well understood process. However, it is now obvious that transcriptional activity of nuclear receptors is a function of their interactions with co-activators. Recently, we released a new computational tool, CCOMP, for comparing side chain conformations in crystal structures of homologous protein complexes. Application of the CCOMP program revealed that 20-epi-1alpha,25-(OH)2D3 changes the side chain conformation of vitamin D receptor amino acids residing mostly far away from the ligand-receptor contacts. This strongly suggests that the ligand-co-activator signaling pathway involves indirect interactions between amino acids lining the binding pocket and outer surface residues that could attract co-activators. To facilitate identification of amino acids transmitting the subtle receptor changes upon ligand/modulator binding we developed another simple tool, MSITE. The program automatically lists the nearest neighbors of a given amino acid (for example neighbors of residues that are in contact with a ligand or reorient their side chains in the presence of a co-factor) in an arbitrary number of compared complexes. Comparison of seven binary vitamin D receptor complexes holding as ligands the analogs of 1alpha,25-(OH)2D3 with inverted configuration at carbon 14 or 20, or with incorporated oxolane ring bridging carbons 20 and 23, is reported. PMID:20399855

  2. Evolutionary expression of the neuronal form of the src protein in the brain.

    PubMed Central

    Yang, X M; Martinez, R; Le Beau, J; Wiestler, O; Walter, G

    1989-01-01

    The protooncogene src encodes two proteins, designated pp60c-src+ and pp60c-src.pp60c-src+ is expressed only in neurons, whereas pp60c-src is expressed in neuronal and nonneuronal cells. pp60c-src+ differs from pp60c-src in that it contains an insert of 6 amino acids. To study the evolutionary conservation of the 6-amino acid insert, the expression of pp60c-src+ in the brain of animals from different classes was assayed by using pp60c-src+-specific antibodies raised against a synthetic peptide corresponding to the insert. pp60c-src+ was detected only in the brain of mammals, birds, and reptiles, but not amphibians and fish, whereas pp60c-src was present in the brain of all animals tested, including lobster (invertebrate). These findings indicate that pp60c-src+ may play a role in events associated with higher brain function, such as neuronal plasticity. Images PMID:2499890

  3. Outer membrane protein F stabilised with minimal amphipol forms linear arrays and LPS-dependent 2D crystals.

    PubMed

    Arunmanee, Wanatchaporn; Harris, J Robin; Lakey, Jeremy H

    2014-10-01

    Amphipols (APol) are polymers which can solubilise and stabilise membrane proteins (MP) in aqueous solutions. In contrast to conventional detergents, APol are able to keep MP soluble even when the free APol concentration is very low. Outer membrane protein F (OmpF) is the most abundant MP commonly found in the outer membrane (OM) of Escherichia coli. It plays a vital role in the transport of hydrophilic nutrients, as well as antibiotics, across the OM. In the present study, APol was used to solubilise OmpF to characterize its interactions with molecules such as lipopolysaccharides (LPS) or colicins. OmpF was reconstituted into APol by the removal of detergents using Bio-Beads followed by size-exclusion chromatography (SEC) to remove excess APol. OmpF/APol complexes were then analysed by SEC, dynamic light scattering (DLS) and transmission electron microscopy (TEM). TEM showed that in the absence of free APol-OmpF associated as long filaments with a thickness of ~6 nm. This indicates that the OmpF trimers lie on their sides on the carbon EM grid and that they also favour side by side association. The formation of filaments requires APol and occurs very rapidly. Addition of LPS to OmpF/APol complexes impeded filament formation and the trimers form 2D sheets which mimic the OM. Consequently, free APol is undoubtedly required to maintain the homogeneity of OmpF in solutions, but 'minimum APol' provides a new phase, which can allow weaker protein-protein and protein-lipid interactions characteristic of native membranes to take place and thus control 1D-2D crystallisation. PMID:24585057

  4. Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures.

    PubMed

    Yang, Yi; Wikieł, Agata J; Dall'Agnol, Leonardo T; Eloy, Pierre; Genet, Michel J; Moura, José J G; Sand, Wolfgang; Dupont-Gillain, Christine C; Rouxhet, Paul G

    2016-01-01

    The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis. PMID:26769222

  5. The poliovirus receptor protein is produced both as membrane-bound and secreted forms.

    PubMed Central

    Koike, S; Horie, H; Ise, I; Okitsu, A; Yoshida, M; Iizuka, N; Takeuchi, K; Takegami, T; Nomoto, A

    1990-01-01

    Both genomic and complementary DNA clones encoding poliovirus receptors were isolated from genomic and complementary DNA libraries prepared from HeLa S3 cells, respectively. Nucleotide sequence analysis of these cloned DNAs revealed that the poliovirus receptor gene is approximately 20 kb long and contains seven introns in the coding region, and that at least four mRNA isoforms referring to the coding sequence are generated by alternative splicing and appear to encode four different molecules, that is, PVR alpha, PVR beta, PVR gamma and PVR delta. The predicted amino acid sequences indicate that PVR alpha and PVR delta, corresponding to the previously described cDNA clones H20A and H20B, respectively, are integral membrane proteins while the other two molecules described here for the first time lack a putative transmembrane domain. Mouse cell transformants carrying PVR alpha were permissive for poliovirus infection, but those carrying PVR beta were hardly permissive. In contrast to PVR alpha, PVR beta was not detected on the surface of the mouse cell transformants but was detected in the culture fluid by an immunological method using a monoclonal antibody against poliovirus receptor. Three types of splicing products for PVR alpha, PVR beta and PVR gamma were detected by polymerase chain reactions using appropriate primers in poly(A)+ RNAs of the brain, leukocyte, liver, lung and placenta of humans; the choice of primers used did not permit detection of PVR delta. In situ hybridization using a cDNA fragment as a probe demonstrated that the PVR gene is located at the band q13.1----13.2 of human chromosome 19. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2170108

  6. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza1

    PubMed Central

    Rich, Mélanie K.

    2015-01-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) GIBBERELLIC ACID INSENSITIVE, REPRESSOR of GIBBERELLIC ACID INSENSITIVE, and SCARECROW (GRAS)-type transcription factor, ATYPICAL ARBUSCULE (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of REQUIRED FOR ARBUSCULAR MYCORRHIZA1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550

  7. Space radiation analysis: Radiation effects and particle interaction outside the Earth's magnetosphere using GRAS and GEANT4

    NASA Astrophysics Data System (ADS)

    Martinez, Lisandro M.; Kingston, Jennifer

    2012-03-01

    In order to explore the Moon and Mars it is necessary to investigate the hazards due to the space environment and especially ionizing radiation. According to previous papers, much information has been presented in radiation analysis inside the Earth's magnetosphere, but much of this work was not directly relevant to the interplanetary medium. This work intends to explore the effect of radiation on humans inside structures such as the ISS and provide a detailed analysis of galactic cosmic rays (GCRs) and solar proton events (SPEs) using SPENVIS (Space Environment Effects and Information System) and CREME96 data files for particle flux outside the Earth's magnetosphere. The simulation was conducted using GRAS, a European Space Agency (ESA) software based on GEANT4. Dose and equivalent dose have been calculated as well as secondary particle effects and GCR energy spectrum. The calculated total dose effects and equivalent dose indicate the risk and effects that space radiation could have on the crew, these values are calculated using two different types of structures, the ISS and the TransHab modules. Final results indicate the amounts of radiation expected to be absorbed by the astronauts during long duration interplanetary flights; this denotes importance of radiation shielding and the use of proper materials to reduce the effects.

  8. A Histone-Like Protein Induces Plasmid DNA to Form Liquid Crystals in Vitro and Gene Compaction in Vivo

    PubMed Central

    Sun, Shiyong; Liu, Mingxue; Dong, Faqin; Fan, Shenglan; Yao, Yanchen

    2013-01-01

    The liquid crystalline state is a universal phenomenon involving the formation of an ordered structure via a self-assembly process that has attracted attention from numerous scientists. In this study, the dinoflagellate histone-like protein HCcp3 is shown to induce super-coiled pUC18 plasmid DNA to enter a liquid crystalline state in vitro, and the role of HCcp3 in gene condensation in vivo is also presented. The plasmid DNA (pDNA)-HCcp3 complex formed birefringent spherical particles with a semi-crystalline selected area electronic diffraction (SAED) pattern. Circular dichroism (CD) titrations of pDNA and HCcp3 were performed. Without HCcp3, pUC18 showed the characteristic B conformation. As the HCcp3 concentration increased, the 273 nm band sharply shifted to 282 nm. When the HCcp3 concentration became high, the base pair (bp)/dimer ratio fell below 42/1, and the CD spectra of the pDNA-HCcp3 complexes became similar to that of dehydrated A-form DNA. Microscopy results showed that HCcp3 compacted the super-coiled gene into a condensed state and that inclusion bodies were formed. Our results indicated that HCcp3 has significant roles in gene condensation both in vitro and in histone-less eukaryotes in vivo. The present study indicates that HCcp3 has great potential for applications in non-viral gene delivery systems, where HCcp3 may compact genetic material to form liquid crystals. PMID:24322443

  9. Membrane Damage by an α-Helical Pore-forming Protein, Equinatoxin II, Proceeds through a Succession of Ordered Steps*

    PubMed Central

    Rojko, Nejc; Kristan, Katarina Č.; Viero, Gabriella; Žerovnik, Eva; Maček, Peter; Dalla Serra, Mauro; Anderluh, Gregor

    2013-01-01

    Actinoporin equinatoxin II (EqtII) is an archetypal example of α-helical pore-forming toxins that porate cellular membranes by the use of α-helices. Previous studies proposed several steps in the pore formation: binding of monomeric protein onto the membrane, followed by oligomerization and insertion of the N-terminal α-helix into the lipid bilayer. We studied these separate steps with an EqtII triple cysteine mutant. The mutant was engineered to monitor the insertion of the N terminus into the lipid bilayer by labeling Cys-18 with a fluorescence probe and at the same time to control the flexibility of the N-terminal region by the disulfide bond formed between cysteines introduced at positions 8 and 69. The insertion of the N terminus into the membrane proceeded shortly after the toxin binding and was followed by oligomerization. The oxidized, non-lytic, form of the mutant was still able to bind to membranes and oligomerize at the same level as the wild-type or the reduced form. However, the kinetics of the N-terminal helix insertion, the release of calcein from erythrocyte ghosts, and hemolysis of erythrocytes was much slower when membrane-bound oxidized mutant was reduced by the addition of the reductant. Results show that the N-terminal region needs to be inserted in the lipid membrane before the oligomerization into the final pore and imply that there is no need for a stable prepore formation. This is different from β-pore-forming toxins that often form β-barrel pores via a stable prepore complex. PMID:23803608

  10. C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel

    PubMed Central

    Kang, Lijun; Gao, Jingwei; Schafer, William R.; Xie, Zhixiong; Xu, X. Z. Shawn

    2010-01-01

    Summary Mechanotransduction channels mediate several common sensory modalities such as hearing, touch, and proprioception; however, very little is known about the molecular identities of these channels. Many TRP family channels have been implicated in mechanosensation, but none of them has been demonstrated to form a mechanotransduction channel, raising the question of whether TRP proteins simply play indirect roles in mechanosensation. Using C. elegans as a model, here we have recorded a mechanosensitive conductance in a ciliated mechanosensory neuron in vivo. This conductance develops very rapidly upon mechanical stimulation with its latency and activation time constant reaching the range of micro-seconds, consistent with mechanical gating of the conductance. TRP-4, a TRPN (NOMPC) subfamily channel, is required for this conductance. Importantly, point mutations in the predicted pore region of TRP-4 alter the ion selectivity of the conductance. These results identify TRP-4 as the first TRP protein that functions as an essential pore-forming subunit of a native mechanotransduction channel. PMID:20696377

  11. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation

    PubMed Central

    Xiong, Hui; Wang, Danling; Chen, Linan; Choo, Yeun Su; Ma, Hong; Tang, Chengyuan; Xia, Kun; Jiang, Wei; Ronai, Ze’ev; Zhuang, Xiaoxi; Zhang, Zhuohua

    2009-01-01

    Mutations in PARKIN, pten-induced putative kinase 1 (PINK1), and DJ-1 are individually linked to autosomal recessive early-onset familial forms of Parkinson disease (PD). Although mutations in these genes lead to the same disease state, the functional relationships between them and how their respective disease-associated mutations cause PD are largely unknown. Here, we show that Parkin, PINK1, and DJ-1 formed a complex (termed PPD complex) to promote ubiquitination and degradation of Parkin substrates, including Parkin itself and Synphilin-1 in neuroblastoma cells and human brain lysates. Genetic ablation of either Pink1 or Dj-1 resulted in reduced ubiquitination of endogenous Parkin as well as decreased degradation and increased accumulation of aberrantly expressed Parkin substrates. Expression of PINK1 enhanced Parkin-mediated degradation of heat shock–induced misfolded protein. In contrast, PD-pathogenic Parkin and PINK1 mutations showed reduced ability to promote degradation of Parkin substrates. This study identified a functional ubiquitin E3 ligase complex consisting of PD-associated Parkin, PINK1, and DJ-1 to promote degradation of un-/misfolded proteins and suggests that their PD-pathogenic mutations impair E3 ligase activity of the complex, which may constitute a mechanism underlying PD pathogenesis. PMID:19229105

  12. The Prodomain-bound Form of Bone Morphogenetic Protein 10 Is Biologically Active on Endothelial Cells*

    PubMed Central

    Jiang, He; Salmon, Richard M.; Upton, Paul D.; Wei, Zhenquan; Lawera, Aleksandra; Davenport, Anthony P.; Morrell, Nicholas W.; Li, Wei

    2016-01-01

    BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality because of impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular, it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling. PMID:26631724

  13. P2X7R large pore is partially blocked by pore forming proteins antagonists in astrocytes.

    PubMed

    Faria, Robson X; Reis, Ricardo A M; Ferreira, Leonardo G B; Cezar-de-Mello, Paula F T; Moraes, Milton O

    2016-06-01

    The ATP-gated P2X7R (P2X7R) is a channel, which is involved in events, such as inflammation, cell death, and pain. The most intriguing event concerning P2X7R functions is the phenomenon of pore dilation. Once P2X7R is activated, the permeability of the plasma membrane becomes higher, leading to the permeation of 1000 Da-weight solutes. The mechanisms involved in this process remain unclear. Nevertheless, this event is not exclusively through P2X7R, as other proteins may form large pores in the plasma membrane. Recent evidence concerning pore formation reveals putative P2X7R and other pores-associated protein complexes, revealing cross-interactive pharmacological and biophysical issues. In this work, we showed results that corroborated with cross-interactive aspects with P2X7R and pores in astrocytes. These cells expressed most of the pores, including P2X7R. We discovered that different pore types open with peculiar characteristics, as both anionic and cationic charged solutes permeate the plasma membrane, following P2X7R activation. Moreover, we showed that both synergic and additive relationships are found within P2X7, cationic, and anionic large pores. Therefore, our data suggest that other protein-related pores are assembled following the formation of P2X7R pore. PMID:26830892

  14. Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms

    SciTech Connect

    Simonetti, Angelita; Fabbretti, Attilio; Hazemann, Isabelle; Jenner, Lasse; Gualerzi, Claudio O.; Klaholz, Bruno P.

    2013-06-01

    The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.

  15. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides

    NASA Astrophysics Data System (ADS)

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-01

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  16. Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos

    SciTech Connect

    Murray, M.T.; Krohne, G.; Franke, W.W. )

    1991-01-01

    To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occur in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.

  17. Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2.

    PubMed

    Trible, Benjamin R; Suddith, Andrew W; Kerrigan, Maureen A; Cino-Ozuna, Ada G; Hesse, Richard A; Rowland, Raymond R R

    2012-12-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169-180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169-180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43-233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169-180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169-180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169-180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection. PMID:23035215

  18. Recognition of the Different Structural Forms of the Capsid Protein Determines the Outcome following Infection with Porcine Circovirus Type 2

    PubMed Central

    Trible, Benjamin R.; Suddith, Andrew W.; Kerrigan, Maureen A.; Cino-Ozuna, Ada G.; Hesse, Richard A.

    2012-01-01

    Porcine circovirus type 2 (PCV2) capsid protein (CP) is the only protein necessary for the formation of the virion capsid, and recombinant CP spontaneously forms virus-like particles (VLPs). Located within a single CP subunit is an immunodominant epitope consisting of residues 169 to 180 [CP(169–180)], which is exposed on the surface of the subunit, but, in the structural context of the VLP, the epitope is buried and inaccessible to antibody. High levels of anti-CP(169–180) activity are associated with porcine circovirus-associated disease (PCVAD). The purpose of this study was to investigate the role of the immune response to monomer CP in the development of PCVAD. The approach was to immunize pigs with CP monomer, followed by challenge with PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV). To maintain the CP immunogen as a stable monomer, CP(43–233) was fused to ubiquitin (Ub-CP). Size exclusion chromatography showed that Ub-CP was present as a single 33-kDa protein. Pigs immunized with Ub-CP developed a strong antibody response to PCV2, including antibodies against CP(169–180). However, only low levels of virus neutralizing activity were detected, and viremia levels were similar to those of nonimmunized pigs. As a positive control, immunization with baculovirus-expressed CP (Bac-CP) resulted in high levels of virus neutralizing activity, small amounts of anti-CP(169–180) activity, and the absence of viremia in pigs following virus challenge. The data support the role of CP(169–180) as an immunological decoy and illustrate the importance of the structural form of the CP immunogen in determining the outcome following infection. PMID:23035215

  19. Multiple bHLH Proteins form Heterodimers to Mediate CRY2-Dependent Regulation of Flowering-Time in Arabidopsis

    PubMed Central

    Li, Kunwu; Liu, Hongtao; Lin, Chentao

    2013-01-01

    Arabidopsis thaliana cryptochrome 2 (CRY2) mediates light control of flowering time. CIB1 (CRY2-interacting bHLH 1) specifically interacts with CRY2 in response to blue light to activate the transcription of FT (Flowering Locus T). In vitro, CIB1 binds to the canonical E-box (CACGTG, also referred to as G-box) with much higher affinity than its interaction with non-canonical E-box (CANNTG) DNA sequences. However, in vivo, CIB1 binds to the chromatin region of the FT promoter, which only contains the non-canonical E-box sequences. Here, we show that CRY2 also interacts with at least CIB5, in response to blue light, but not in darkness or in response to other wavelengths of light. Our genetic analysis demonstrates that CIB1, CIB2, CIB4, and CIB5 act redundantly to activate the transcription of FT and that they are positive regulators of CRY2 mediated flowering. More importantly, CIB1 and other CIBs proteins form heterodimers, and some of the heterodimers have a higher binding affinity than the CIB homodimers to the non-canonical E-box in the in vitro DNA-binding assays. This result explains why in vitro CIB1 and other CIBs bind to the canonical E-box (G-box) with a higher affinity, whereas they are all associated with the non-canonical E-boxes at the FT promoter in vivo. Consistent with the hypothesis that different CIB proteins play similar roles in the CRY2-midiated blue light signaling, the expression of CIB proteins is regulated specifically by blue light. Our study demonstrates that CIBs function redundantly in regulating CRY2-dependent flowering, and that different CIBs form heterodimers to interact with the non-canonical E-box DNA in vivo. PMID:24130508

  20. Uptake and Degradation of Protease-Sensitive and -Resistant Forms of Abnormal Human Prion Protein Aggregates by Human Astrocytes

    PubMed Central

    Choi, Young Pyo; Head, Mark W.; Ironside, James W.; Priola, Suzette A.

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrPSc) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrPSc is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrPSc). Although evidence suggests that sPrPSc may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrPSc. Furthermore, the cell does not appear to distinguish between sPrPSc and protease-resistant PrPSc, suggesting that sPrPSc could contribute to prion infection. PMID:25280631

  1. Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms

    PubMed Central

    Weber, Christoph; Hartig, Andreas; Hartmann, Roland K.; Rossmanith, Walter

    2014-01-01

    The RNase P family is a diverse group of endonucleases responsible for the removal of 5′ extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility. PMID:25101763

  2. Di-Ras2 Protein Forms a Complex with SmgGDS Protein in Brain Cytosol in Order to Be in a Low Affinity State for Guanine Nucleotides.

    PubMed

    Ogita, Yoshitaka; Egami, Sachiko; Ebihara, Arisa; Ueda, Nami; Katada, Toshiaki; Kontani, Kenji

    2015-08-14

    The Ras family of small GTPases function in a wide variety of biological processes as "molecular switches" by cycling between inactive GDP-bound and active GTP-bound forms. Di-Ras1 and Di-Ras2 were originally identified as small GTPases forming a distinct subgroup of the Ras family. Di-Ras1/Di-Ras2 mRNAs are detected predominantly in brain and heart tissues. Biochemical analysis of Di-Ras1/Di-Ras2 has revealed that they have little GTPase activity and that their intrinsic guanine-nucleotide exchange rates are much faster than that of H-Ras. Yet little is known about the biological role(s) of Di-Ras1/Di-Ras2 or of how their activities are regulated. In the present study we found that endogenous Di-Ras2 co-purifies with SmgGDS from rat brain cytosol. Size-exclusion chromatography of purified recombinant proteins showed that Di-Ras2 forms a high affinity complex with SmgGDS. SmgGDS is a guanine nucleotide exchange factor with multiple armadillo repeats and has recently been shown to specifically activate RhoA and RhoC. In contrast to the effect on RhoA, SmgGDS does not act as a guanine nucleotide exchange factor for Di-Ras2 but instead tightly associates with Di-Ras2 to reduce its binding affinity for guanine nucleotides. Finally, pulse-chase analysis revealed that Di-Ras2 binds, in a C-terminal CAAX motif-dependent manner, to SmgGDS immediately after its synthesis. This leads to increased Di-Ras2 stability. We thus propose that isoprenylated Di-Ras2 forms a tight complex with SmgGDS in cytosol immediately after its synthesis, which lowers its affinity for guanine nucleotides. PMID:26149690

  3. Salicylate-inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore-forming outer membrane protein.

    PubMed Central

    Burns, J L; Clark, D K

    1992-01-01

    The most common mechanism of antibiotic resistance in multiply resistant Pseudomonas cepacia is decreased porin-mediated outer membrane permeability. In some gram-negative organisms this form of antibiotic resistance can be induced by growth in the presence of weak acids, such as salicylates, which suppress porin synthesis. To determine the effects of salicylates on outer membrane permeability of P. cepacia, a susceptible laboratory strain, 249-2, was grown in 10 mM sodium salicylate. Antibiotic susceptibility and uptake, as well as outer membrane protein patterns, were compared between strain 249-2 grown with and without salicylates. The MICs of chloramphenicol, trimethoprim, ciprofloxacin, and ceftazidime were compared between organisms grown in standard and salicylate-containing medium and are as follows: chloramphenicol, 12.5 versus 100 micrograms/ml; trimethoprim, 0.78 versus 3.125 micrograms/ml; ciprofloxacin, 0.4 versus 1.56 micrograms/ml; ceftazidime, 3.125 versus 3.125 micrograms/ml. The permeability of beta-lactam antibiotics was calculated from the rate of hydrolysis of the chromogenic cephalosporin, PADAC. There was no significant difference between strains grown in the presence and absence of salicylate. By using high-pressure liquid chromatography quantitation of loss from culture medium, the effect of 10 mM salicylate on the cellular permeability of chloramphenicol was measured in strain 249-2 by introduction of a plasmid which encodes production of chloramphenicol acetyltransferase. After 1 h of incubation, 18.5% +/- 1.54% versus 70.1% +/- 3.52%, and after 2 h, 4.20% +/- 1.65% versus 41.90% +/- 2.16% remained in supernatants from organisms grown in the absence and presence of 10 mM salicylate, respectively. Outer membrane protein pattern analysis demonstrated the absence of a protein of apparent molecular weight of 40,000 when strain 249-2 was grown in the presence of 10 mM salicylate. To determine whether this protein functioned as a porin

  4. The Generation of Turnip Crinkle Virus-Like Particles in Plants by the Transient Expression of Wild-Type and Modified Forms of Its Coat Protein

    PubMed Central

    Saunders, Keith; Lomonossoff, George P.

    2015-01-01

    Turnip crinkle virus (TCV), a member of the genus carmovirus of the Tombusviridae family, has a genome consisting of a single positive-sense RNA molecule that is encapsidated in an icosahedral particle composed of 180 copies of a single type of coat protein. We have employed the CPMV-HT transient expression system to investigate the formation of TCV-like particles following the expression of the wild-type coat protein or modified forms of it that contain either deletions and/or additions. Transient expression of the coat protein in plants results in the formation of capsid structures that morphologically resemble TCV virions (T = 3 structure) but encapsidate heterogeneous cellular RNAs, rather than the specific TCV coat protein messenger RNA. Expression of an amino-terminal deleted form of the coat protein resulted in the formation of smaller T = 1 structures that are free of RNA. The possibility of utilizing TCV as a carrier for the presentation of foreign proteins on the particle surface was also explored by fusing the sequence of GFP to the C-terminus of the coat protein. The expression of coat protein-GFP hybrids permitted the formation of VLPs but the yield of particles is diminished compared to the yield obtained with unmodified coat protein. Our results confirm the importance of the N-terminus of the coat protein for the encapsidation of RNA and show that the coat protein's exterior P domain plays a key role in particle formation. PMID:26734041

  5. Production of Recombinant Human Papillomavirus Type 52 L1 Protein in Hansenula polymorpha Formed Virus-Like Particles.

    PubMed

    Liu, Cunbao; Yao, Yufeng; Yang, Xu; Bai, Hongmei; Huang, Weiwei; Xia, Ye; Ma, Yanbing

    2015-06-01

    Human papillomavirus (HPV) type 52 is a high-risk HPV responsible for cervical cancer. HPV type 52 is common around the world and is the most common in some Asian regions. The available prophylactic HPV vaccines protect only from HPV types 16 and 18. Supplementing economical vaccines that target HPV type 52 may satisfactorily complement available prophylactic vaccines. A codon-adapted HPV 52 L1 gene was expressed in the methylotrophic yeast Hansenula polymorpha, which is used as an industrial platform for economical hepatitis B surface antigen particle production in China. We found that the recombinant proteins produced in this expression system could form virus-like particles (VLPs) with diameters of approximately 50 nm. This study suggests that the HPV 52 VLPs produced in this platform may satisfactorily complement available prophylactic vaccines in fighting against HPVs prevalent in Asia. PMID:25639723

  6. Increased Understanding of the Biochemistry and Biosynthesis of MUC2 and Other Gel-Forming Mucins Through the Recombinant Expression of Their Protein Domains

    PubMed Central

    Ambort, Daniel; Thomsson, Elisabeth; Johansson, Malin E. V.; Hansson, Gunnar C.

    2016-01-01

    The gel-forming mucins are large and heavily O-glycosylated proteins which build up mucus gels. The recombinant production of full-length gel-forming mucins has not been possible to date. In order to study mucin biosynthesis and biochemistry, we and others have taken the alternative approach of constructing different recombinant proteins consisting of one or several domains of these large proteins and expressing them separately in different cell lines. Using this approach, we have determined that MUC2, the intestinal gel-forming mucin, dimerizes via its C-terminal cysteine-knot domain and also trimerizes via one of the N-terminal von Willebrand D domains. Both of these interactions are disulfide bond mediated. Via this assembly, a molecular network is built by which the mucus gel is formed. Here we discuss not only the functional understanding obtained from studies of the recombinant proteins, but also highlight the difficulties encountered when these proteins were produced recombinantly. We often found an accumulation of the proteins in the ER and consequently no secretion. This was especially apparent when the cysteine-rich domains of the N- and C-terminal parts of the mucins were expressed. Other proteins that we constructed were either not secreted or not expressed at all. Despite these problems, the knowledge of mucin biosynthesis and assembly has advanced considerably through the studies of these recombinant proteins. PMID:23359125

  7. Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages.

    PubMed

    Dacheux, D; Goure, J; Chabert, J; Usson, Y; Attree, I

    2001-04-01

    The Pseudomonas aeruginosa cystic fibrosis isolate CHA induces type III secretion system-dependent but ExoU-independent oncosis of neutrophils and macrophages. Time-lapse microscopy of the infection process revealed the rapid accumulation of motile bacteria around infected cells undergoing the process of oncosis, a phenomenon we termed pack swarming. Characterization of the non-chemotactic CHAcheZ mutant showed that pack swarming is a bacterial chemotactic response to infected macrophages. A non-cytotoxic mutant, lacking the type III-secreted proteins PcrV, PopB and PopD, was able to pack swarm only in the presence of the parental strain CHA or when macrophages were pretreated with the pore-forming toxin streptolysin O. Interaction of P. aeruginosa with red blood cells (RBCs) showed that the contact-dependent haemolysis provoked by CHA requires secretion via the type III system and the PcrV, PopB/PopD proteins. The pore inserted into RBC membrane was estimated from osmoprotection experiments to be between 2.8 and 3.5 nm. CHA-infected macrophages could be protected from cell lysis with PEG3350, indicating that the pore introduced into RBC and macrophage membranes is of similar size. The time course uptake of the vital fluorescent dye, Yo-Pro-1, into infected macrophages confirmed that the formation of transmembrane pores by CHA precedes cellular oncosis. Therefore, CHA-induced macrophage death results from a pore-forming activity that is dependent on the intact pcrGVHpopBD operon. PMID:11298277

  8. On the maximum charge state and proton transfer reactivity of peptide and protein ions formed by electrospray ionization.

    PubMed

    Schnier, P D; Gross, D S; Williams, E R

    1995-11-01

    A relatively simple model for calculation of the energetics of gas-phase proton transfer reactions and the maximum charge state of multiply protonated ions formed by electrospray ionization is presented. This model is based on estimates of the intrinsic proton transfer reactivity of sites of protonation and point charge Coulomb interactions. From this model, apparent gas-phase basicities (GB(app)) of multiply protonated ions are calculated. Comparison of this value to the gas-phase basicity of the solvent from which an ion is formed enables a maximum charge state to be calculated. For 13 commonly electrosprayed proteins, our calculated maximum charge states are within an average of 6% of the experimental values reported in the literature. This indicates that the maximum charge state for proteins is determined by their gas-phase reactivity. Similar results are observed for peptides with many basic residues. For peptides with few basic residues, we find that the maximum charge state is better correlated to the charge state in solution. For low charge state ions, we find that the most basic sites Arg, Lys, and His are preferentially protonated. A significant fraction of the less basic residues Pro, Trp, and Gln are protonated in high charge state ions. The calculated GB(app) of individual protonation sites varies dramatically in the high charge state ions. From these values, we calculate a reduced cross section for proton transfer reactivity that is significantly lower than the Langevin collision frequency when the GB(app) of the ion is approximately equal to the GB of the neutral base. PMID:24214055

  9. Structures formed by a cell membrane-associated arabinogalactan-protein on graphite or mica alone and with Yariv phenylglycosides

    PubMed Central

    Zhou, Li Hong; Weizbauer, Renate A.; Singamaneni, Srikanth; Xu, Feng; Genin, Guy M.; Pickard, Barbara G.

    2014-01-01

    Background Certain membrane-associated arabinogalactan-proteins (AGPs) with lysine-rich sub-domains participate in plant growth, development and resistance to stress. To complement fluorescence imaging of such molecules when tagged and introduced transgenically to the cell periphery and to extend the groundwork for assessing molecular structure, some behaviours of surface-spread AGPs were visualized at the nanometre scale in a simplified electrostatic environment. Methods Enhanced green fluorescent protein (EGFP)-labelled LeAGP1 was isolated from Arabidopsis thaliana leaves using antibody-coated magnetic beads, deposited on graphite or mica, and examined with atomic force microscopy (AFM). Key Results When deposited at low concentration on graphite, LeAGP can form independent clusters and rings a few nanometres in diameter, often defining deep pits; the aperture of the rings depends on plating parameters. On mica, intermediate and high concentrations, respectively, yielded lacy meshes and solid sheets that could dynamically evolve arcs, rings, ‘pores’ and ‘co-pores’, and pits. Glucosyl Yariv reagent combined with the AGP to make very large and distinctive rings. Conclusions Diverse cell-specific nano-patterns of native lysine-rich AGPs are expected at the wall–membrane interface and, while there will not be an identical patterning in different environmental settings, AFM imaging suggests protein tendencies for surficial organization and thus opens new avenues for experimentation. Nanopore formation with Yariv reagents suggests how the reagent might bind with AGP to admit Ca2+ to cells and hints at ways in which AGP might be structured at some cell surfaces. PMID:25164699

  10. Paracoccidioides brasiliensis Enolase Is a Surface Protein That Binds Plasminogen and Mediates Interaction of Yeast Forms with Host Cells ▿

    PubMed Central

    Nogueira, Sarah Veloso; Fonseca, Fernanda L.; Rodrigues, Marcio L.; Mundodi, Vasanth; Abi-Chacra, Erika A.; Winters, Michael S.; Alderete, John F.; Soares, Célia Maria de Almeida

    2010-01-01

    Paracoccidioidomycosis (PCM), caused by the dimorphic fungus Paracoccidioides brasiliensis, is a disseminated, systemic disorder that involves the lungs and other organs. The ability of the pathogen to interact with host components, including extracellular matrix (ECM) proteins, is essential to further colonization, invasion, and growth. Previously, enolase (EC 4.2.1.11) was characterized as a fibronectin binding protein in P. brasiliensis. Interaction of surface-bound enolase with plasminogen has been incriminated in tissue invasion for pathogenesis in several pathogens. In this paper, enolase was expressed in Escherichia coli as a recombinant glutathione S-transferase (GST) fusion protein (recombinant P. brasiliensis enolase [rPbEno]). The P. brasiliensis native enolase (PbEno) was detected at the fungus surface and cytoplasm by immunofluorescence with an anti-rPbEno antibody. Immobilized purified rPbEno bound plasminogen in a specific, concentration-dependent fashion. Both native enolase and rPbEno activated conversion of plasminogen to plasmin through tissue plasminogen activator. The association between PbEno and plasminogen was lysine dependent. In competition experiments, purified rPbEno, in its soluble form, inhibited plasminogen binding to fixed P. brasiliensis, suggesting that this interaction required surface-localized PbEno. Plasminogen-coated P. brasiliensis yeast cells were capable of degrading purified fibronectin, providing in vitro evidence for the generation of active plasmin on the fungus surface. Exposure of epithelial cells and phagocytes to enolase was associated with an increased expression of surface sites of adhesion. In fact, the association of P. brasiliensis with epithelial cells and phagocytes was increased in the presence of rPbEno. The expression of PbEno was upregulated in yeast cells derived from mouse-infected tissues. These data indicate that surface-associated PbEno may contribute to the pathogenesis of P. brasiliensis. PMID

  11. Transition of Plasmodium Sporozoites into Liver Stage-Like Forms Is Regulated by the RNA Binding Protein Pumilio

    PubMed Central

    Prudêncio, Miguel; Carret, Céline; Gomes, Ana Rita; Pain, Arnab; Feltwell, Theresa; Khan, Shahid; Waters, Andrew; Janse, Chris; Mair, Gunnar R.; Mota, Maria M.

    2011-01-01

    Many eukaryotic developmental and cell fate decisions that are effected post-transcriptionally involve RNA binding proteins as regulators of translation of key mRNAs. In malaria parasites (Plasmodium spp.), the development of round, non-motile and replicating exo-erythrocytic liver stage forms from slender, motile and cell-cycle arrested sporozoites is believed to depend on environmental changes experienced during the transmission of the parasite from the mosquito vector to the vertebrate host. Here we identify a Plasmodium member of the RNA binding protein family PUF as a key regulator of this transformation. In the absence of Pumilio-2 (Puf2) sporozoites initiate EEF development inside mosquito salivary glands independently of the normal transmission-associated environmental cues. Puf2- sporozoites exhibit genome-wide transcriptional changes that result in loss of gliding motility, cell traversal ability and reduction in infectivity, and, moreover, trigger metamorphosis typical of early Plasmodium intra-hepatic development. These data demonstrate that Puf2 is a key player in regulating sporozoite developmental control, and imply that transformation of salivary gland-resident sporozoites into liver stage-like parasites is regulated by a post-transcriptional mechanism. PMID:21625527

  12. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions

    PubMed Central

    Siemens, Jan; Kazmierczak, Piotr; Reynolds, Anna; Sticker, Melanie; Littlewood-Evans, Amanda; Müller, Ulrich

    2002-01-01

    Usher syndrome type 1 (USH1) patients suffer from sensorineuronal deafness, vestibular dysfunction, and visual impairment. Several genetic loci have been linked to USH1, and four of the relevant genes have been identified. They encode the unconventional myosin VIIa, the PDZ-domain protein harmonin, and the putative adhesion receptors cadherin 23 (CDH23) and protocadherin 15 (PCDH15). We show here that CDH23 and harmonin form a protein complex. Two PDZ domains in harmonin interact with two complementary binding surfaces in the CDH23 cytoplasmic domain. One of the binding surfaces is disrupted by sequences encoded by an alternatively spliced CDH23 exon that is expressed in the ear, but not the retina. In the ear, CDH23 and harmonin are expressed in the stereocilia of hair cells, and in the retina within the photoreceptor cell layer. Because CDH23-deficient mice have splayed stereocilia, our data suggest that CDH23 and harmonin are part of a transmembrane complex that connects stereocilia into a bundle. Defects in the formation of this complex are predicted to disrupt stereocilia bundles and cause deafness in USH1 patients. PMID:12407180

  13. Crystal Structure of a Novel Dimeric Form of NS5A Domain I Protein from Hepatitis C Virus

    SciTech Connect

    Love, Robert A.; Brodsky, Oleg; Hickey, Michael J.; Wells, Peter A.; Cronin, Ciarán N.; Pfizer

    2009-07-10

    A new protein expression vector design utilizing an N-terminal six-histidine tag and tobacco etch virus protease cleavage site upstream of the hepatitis C virus NS5A sequence has resulted in a more straightforward purification method and improved yields of purified NS5A domain I protein. High-resolution diffracting crystals of NS5A domain I (amino acids 33 to 202) [NS5A(33-202)] were obtained by using detergent additive crystallization screens, leading to the structure of a homodimer which is organized differently from that published previously (T. L. Tellinghuisen, J. Marcotrigiano, and C. M. Rice, Nature 435:374-379, 2005) yet is consistent with a membrane association model for NS5A. The monomer-monomer interface of NS5A(33-202) features an extensive buried surface area involving the most-highly conserved face of each monomer. The two alternate structural forms of domain I now available may be indicative of the multiple roles emerging for NS5A in viral RNA replication and viral particle assembly.

  14. Vibrio effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux

    PubMed Central

    Sreelatha, Anju; Bennett, Terry L.; Zheng, Hui; Jiang, Qiu-Xing; Orth, Kim; Starai, Vincent J.

    2013-01-01

    Defects in normal autophagic pathways are implicated in numerous human diseases—such as neurodegenerative diseases, cancer, and cardiomyopathy—highlighting the importance of autophagy and its proper regulation. Herein we show that Vibrio parahaemolyticus uses the type III effector VopQ (Vibrio outer protein Q) to alter autophagic flux by manipulating the partitioning of small molecules and ions in the lysosome. This effector binds to the conserved Vo domain of the vacuolar-type H+-ATPase and causes deacidification of the lysosomes within minutes of entering the host cell. VopQ forms a gated channel ∼18 Å in diameter that facilitates outward flux of ions across lipid bilayers. The electrostatic interactions of this type 3 secretion system effector with target membranes dictate its preference for host vacuolar-type H+-ATPase–containing membranes, indicating that its pore-forming activity is specific and not promiscuous. As seen with other effectors, VopQ is exploiting a eukaryotic mechanism, in this case manipulating lysosomal homeostasis and autophagic flux through transmembrane permeation. PMID:23798441

  15. Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria.

    PubMed

    Ahting, U; Thieffry, M; Engelhardt, H; Hegerl, R; Neupert, W; Nussberger, S

    2001-06-11

    Tom40 is the main component of the preprotein translocase of the outer membrane of mitochondria (TOM complex). We have isolated Tom40 of Neurospora crassa by removing the receptor Tom22 and the small Tom components Tom6 and Tom7 from the purified TOM core complex. Tom40 is organized in a high molecular mass complex of approximately 350 kD. It forms a high conductance channel. Mitochondrial presequence peptides interact specifically with Tom40 reconstituted into planar lipid membranes and decrease the ion flow through the pores in a voltage-dependent manner. The secondary structure of Tom40 comprises approximately 31% beta-sheet, 22% alpha-helix, and 47% remaining structure as determined by circular dichroism measurements and Fourier transform infrared spectroscopy. Electron microscopy of purified Tom40 revealed particles primarily with one center of stain accumulation. They presumably represent an open pore with a diameter of approximately 2.5 nm, similar to the pores found in the TOM complex. Thus, Tom40 is the core element of the TOM translocase; it forms the protein-conducting channel in an oligomeric assembly. PMID:11402060

  16. Properties of the monomeric form of human 14-3-3ζ protein and its interaction with tau and HspB6.

    PubMed

    Sluchanko, Nikolai N; Sudnitsyna, Maria V; Seit-Nebi, Alim S; Antson, Alfred A; Gusev, Nikolai B

    2011-11-15

    Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E(5), (12)LAE(14), and (82)YREKIE(87). Under a wide range of expression conditions in Escherichia coli, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ. PMID:21978388

  17. Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q

    PubMed Central

    Moreau, Christophe; Bally, Isabelle; Chouquet, Anne; Bottazzi, Barbara; Ghebrehiwet, Berhane; Gaboriaud, Christine; Thielens, Nicole

    2016-01-01

    Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A–C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed. PMID:26973654

  18. In Vivo Biotinylation of the Toxoplasma Parasitophorous Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and Pathogenesis

    PubMed Central

    Nadipuram, Santhosh M.; Kim, Elliot W.; Vashisht, Ajay A.; Lin, Andrew H.; Bell, Hannah N.; Coppens, Isabelle; Wohlschlegel, James A.

    2016-01-01

    ABSTRACT Toxoplasma gondii is an obligate intracellular parasite that invades host cells and replicates within a unique parasitophorous vacuole. To maintain this intracellular niche, the parasite secretes an array of dense granule proteins (GRAs) into the nascent parasitophorous vacuole. These GRAs are believed to play key roles in vacuolar remodeling, nutrient uptake, and immune evasion while the parasite is replicating within the host cell. Despite the central role of GRAs in the Toxoplasma life cycle, only a subset of these proteins have been identified, and many of their roles have not been fully elucidated. In this report, we utilize the promiscuous biotin ligase BirA* to biotinylate GRA proteins secreted into the vacuole and then identify those proteins by affinity purification and mass spectrometry. Using GRA-BirA* fusion proteins as bait, we have identified a large number of known and candidate GRAs and verified localization of 13 novel GRA proteins by endogenous gene tagging. We proceeded to functionally characterize three related GRAs from this group (GRA38, GRA39, and GRA40) by gene knockout. While Δgra38 and Δgra40 parasites showed no altered phenotype, disruption of GRA39 results in slow-growing parasites that contain striking lipid deposits in the parasitophorous vacuole, suggesting a role in lipid regulation that is important for parasite growth. In addition, parasites lacking GRA39 showed dramatically reduced virulence and a lower tissue cyst burden in vivo. Together, the findings from this work reveal a partial vacuolar proteome of T. gondii and identify a novel GRA that plays a key role in parasite replication and pathogenesis. PMID:27486190

  19. Assessing the fractions of tautomeric forms of the imidazole ring of histidine in proteins as a function of pH

    PubMed Central

    Vila, Jorge A.; Arnautova, Yelena A.; Vorobjev, Yury; Scheraga, Harold A.

    2011-01-01

    A method is proposed to determine the fraction of the tautomeric forms of the imidazole ring of histidine in proteins as a function of pH, provided that the observed and chemical shifts and the protein structure, or the fraction of H+ form, are known. This method is based on the use of quantum chemical methods to compute the 13C NMR shieldings of all the imidazole ring carbons (13Cγ, , and ) for each of the two tautomers, Nδ1-H and Nϵ2-H, and the protonated form, H+, of histidine. This methodology enabled us (i) to determine the fraction of all the tautomeric forms of histidine for eight proteins for which the and chemical shifts had been determined in solution in the pH range of 3.2 to 7.5 and (ii) to estimate the fraction of tautomeric forms of eight histidine-containing dipeptide crystals for which the chemical shifts had been determined by solid-state 13C NMR. Our results for proteins indicate that the protonated form is the most populated one, whereas the distribution of the tautomeric forms for the imidazole ring varies significantly among different histidines in the same protein, reflecting the importance of the environment of the histidines in determining the tautomeric forms. In addition, for ∼70% of the neutral histidine-containing dipeptides, the method leads to fairly good agreement between the calculated and the experimental tautomeric form. Coexistence of different tautomeric forms in the same crystal structure may explain the remaining 30% of disagreement. PMID:21422292

  20. Inhibitory effects of nontoxic protein volvatoxin A1 on pore-forming cardiotoxic protein volvatoxin A2 by interaction with amphipathic alpha-helix.

    PubMed

    Wu, Pei-Tzu; Lin, Su-Chang; Hsu, Chyong-Ing; Liaw, Yen-Chywan; Lin, Jung-Yaw

    2006-07-01

    Volvatoxin A2, a pore-forming cardiotoxic protein, was isolated from the edible mushroom Volvariella volvacea. Previous studies have demonstrated that volvatoxin A consists of volvatoxin A2 and volvatoxin A1, and the hemolytic activity of volvatoxin A2 is completely abolished by volvatoxin A1 at a volvatoxin A2/volvatoxin A1 molar ratio of 2. In this study, we investigated the molecular mechanism by which volvatoxin A1 inhibits the cytotoxicity of volvatoxin A2. Volvatoxin A1 by itself was found to be nontoxic, and furthermore, it inhibited the hemolytic and cytotoxic activities of volvatoxin A2 at molar ratios of 2 or lower. Interestingly, volvatoxin A1 contains 393 amino acid residues that closely resemble a tandem repeat of volvatoxin A2. Volvatoxin A1 contains two pairs of amphipathic alpha-helices but it lacks a heparin-binding site. This suggests that volvatoxin A1 may interact with volvatoxin A2 but not with the cell membrane. By using confocal microscopy, it was demonstrated that volvatoxin A1 could not bind to the cell membrane; however, volvatoxin A1 could inhibit binding of volvatoxin A2 to the cell membrane at a molar ratio of 2. Via peptide competition assay and in conjunction with pull-down and co-pull-down experiments, we demonstrated that volvatoxin A1 and volvatoxin A2 may form a complex. Our results suggest that this occurs via the interaction of one molecule of volvatoxin A1, which contains two amphipathic alpha-helices, with two molecules of volvatoxin A2, each of which contains one amphipathic alpha-helix. Taken together, the results of this study reveal a novel mechanism by which volvatoxin A1 regulates the cytotoxicity of volvatoxin A2 via direct interaction, and potentially provide an exciting new strategy for chemotherapy. PMID:16792702

  1. Single-column purification of the tag-free, recombinant form of the neuronal calcium sensor protein, hippocalcin expressed in Escherichia coli.

    PubMed

    Krishnan, Anuradha; Viviano, Jeffrey; Morozov, Yaroslav; Venkataraman, Venkat

    2016-07-01

    Hippocalcin is a 193 aa protein that is a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. Mice that lack the function of this protein are compromised in the long term potentiation aspect of memory generation. Recently, mutations in the gene have been linked with dystonia in human. The protein has no intrinsic enzyme activity but is known to bind to variety of target proteins. Very little information is available on how the protein executes its critical role in signaling pathways, except that it is regulated by binding of calcium. Further delineation of its function requires large amounts of pure protein. In this report, we present a single-step purification procedure that yields high quantities of the bacterially expressed, recombinant protein. The procedure may be adapted to purify the protein from inclusion bodies or cytosol in its myristoylated or non-myristoylated forms. MALDI-MS (in source decay) analyses demonstrates that the myristoylation occurs at the glycine residue. The protein is also biologically active as measured through tryptophan fluorescence, mobility shift and guanylate cyclase activity assays. Thus, further analyses of hippocalcin, both structural and functional, need no longer be limited by protein availability. PMID:27001424

  2. Atomic Force Microscopy Characterization of Protein Fibrils Formed by the Amyloidogenic Region of the Bacterial Protein MinE on Mica and a Supported Lipid Bilayer

    PubMed Central

    Chiang, Ya-Ling; Chang, Yuan-Chih; Chiang, I-Chen; Mak, Huey-Ming; Hwang, Ing-Shouh; Shih, Yu-Ling

    2015-01-01

    Amyloid fibrils play a crucial role in many human diseases and are found to function in a range of physiological processes from bacteria to human. They have also been gaining importance in nanotechnology applications. Understanding the mechanisms behind amyloid formation can help develop strategies towards the prevention of fibrillation processes or create new technological applications. It is thus essential to observe the structures of amyloids and their self-assembly processes at the nanometer-scale resolution under physiological conditions. In this work, we used highly force-sensitive frequency-modulation atomic force microscopy (FM-AFM) to characterize the fibril structures formed by the N-terminal domain of a bacterial division protein MinE in solution. The approach enables us to investigate the fibril morphology and protofibril organization over time progression and in response to changes in ionic strength, molecular crowding, and upon association with different substrate surfaces. In addition to comparison of the fibril structure and behavior of MinE1-31 under varying conditions, the study also broadens our understanding of the versatile behavior of amyloid-substrate surface interactions. PMID:26562523

  3. Atomic Force Microscopy Characterization of Protein Fibrils Formed by the Amyloidogenic Region of the Bacterial Protein MinE on Mica and a Supported Lipid Bilayer.

    PubMed

    Chiang, Ya-Ling; Chang, Yuan-Chih; Chiang, I-Chen; Mak, Huey-Ming; Hwang, Ing-Shouh; Shih, Yu-Ling

    2015-01-01

    Amyloid fibrils play a crucial role in many human diseases and are found to function in a range of physiological processes from bacteria to human. They have also been gaining importance in nanotechnology applications. Understanding the mechanisms behind amyloid formation can help develop strategies towards the prevention of fibrillation processes or create new technological applications. It is thus essential to observe the structures of amyloids and their self-assembly processes at the nanometer-scale resolution under physiological conditions. In this work, we used highly force-sensitive frequency-modulation atomic force microscopy (FM-AFM) to characterize the fibril structures formed by the N-terminal domain of a bacterial division protein MinE in solution. The approach enables us to investigate the fibril morphology and protofibril organization over time progression and in response to changes in ionic strength, molecular crowding, and upon association with different substrate surfaces. In addition to comparison of the fibril structure and behavior of MinE1-31 under varying conditions, the study also broadens our understanding of the versatile behavior of amyloid-substrate surface interactions. PMID:26562523

  4. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Bussweiler, Yannick; Foley, Stephen F.; Prelević, Dejan; Jacob, Dorrit E.

    2015-04-01

    This study presents detailed petrographical and geochemical investigations on remarkably fresh olivines in kimberlites from the EKATI Diamond Mine™ located in the Tertiary/Cretaceous Lac de Gras kimberlite field within the Slave craton of Canada. Olivine, constituting about 42 vol.% of the analyzed samples, can be divided into two textural groups: (i) macrocrystic olivines, > 100 μm sub-rounded crystals and (ii) groundmass olivines, < 100 μm subhedral crystals. Olivines from both populations define two distinct chemical trends; a "mantle trend" with angular cores, showing low Ca (< 0.1 wt.% CaO) and high Ni (0.3-0.4 wt.% NiO) at varying Mg# (0.86-0.93), contrasts with a "melt trend" typified by thin (< 100 μm) rims with increasing Ca (up to 1.0 wt.% CaO) and decreasing Ni (down to 0.1 wt.% NiO) contents at constant Mg# (~ 0.915). These findings are in agreement with recent studies suggesting that virtually all olivine is composed of xenocrystic (i.e. mantle-related) cores with phenocrystic (i.e. melt-related) overgrowths, thereby challenging the traditional view that the origin of kimberlitic olivine can be distinguished based on size and morphology. The two main trends can be further resolved into sub-groups refining the crystallization history of olivine; the mantle trend indicates a multi-source origin that samples the layered lithosphere below the Slave craton, whereas the melt trend represents multi-stage crystallization comprising a differentiation trend starting at mantle conditions and a second trend controlled by the crystallization of additional phases (e.g. chromite) and changing magma conditions (e.g. oxidation). These trends are also seen in the concentrations of trace elements not routinely measured in olivine (e.g. Na, P, Ti, Co, Sc, Zr). Trace element mapping with LA-ICP-MS reveals the distribution of these elements within olivine grains. The trace element distribution between the two trends appears to be consistent with phenocrystic olivine

  5. A comparison of the efficiency of G protein activation by ligand-free and light-activated forms of rhodopsin.

    PubMed Central

    Melia, T J; Cowan, C W; Angleson, J K; Wensel, T G

    1997-01-01

    Activation of the photoreceptor G protein transducin (Gt) by opsin, the ligand-free form of rhodopsin, was measured using rod outer segment membranes with densities of opsin and Gt similar to those found in rod cells. When GTPgammaS was used as the activating nucleotide, opsin catalyzed transducin activation with an exponential time course with a rate constant k(act) on the order of 2 x 10(-3)s(-1). Comparison under these conditions to activation by flash-generated metarhodopsin II (MII) revealed that opsin- and R*-catalyzed activation showed similar kinetics when MII was present at a surface density approximately 10(-6) lower than that of opsin. Thus, in contrast to some previous reports, we find that the catalytic potency of opsin is only approximately 10(-6) that of MII. In the presence of residual retinaldehyde-derived species present in membranes treated with hydroxylamine after bleaching, the apparent k(act) observed was much higher than that for opsin, suggesting a possible explanation for previous reports of more efficient activation by opsin. These results are important for considering the possible role of opsin in the diverse phenomena in which it has been suggested to play a key role, such as bleaching desensitization and retinal degeneration induced by continuous light or vitamin A deprivation. PMID:9414230

  6. Interaction of mixed micelles formed from glycocholic acid and lecithin with the protein binding of various drugs.

    PubMed Central

    Guentert, T W; Oie, S; Paalzow, L; Frey, B M; Brandt, R; Aarons, L J; Rowland, M

    1987-01-01

    Mixed micelles (MM) formed from glycocholic acid and lecithin are suited to solubilize lipophilic drugs for intravenous use. To test for possible drug-drug interactions, the protein binding of a series of agents known to bind to different sites on albumin (diazepam, warfarin, ketoprofen, frusemide, probenecid) and additionally (prazosin, quinidine, propranolol) or exclusively (disopyramide) to alpha 1-acid glycoprotein or to transcortin (prednisolone) was determined in the presence and absence of MM. Concentrations of MM, corresponding to the maximum possible plasma concentration achieved by injecting the highest clinical doses of MM into the systemic circulation, had little or no effect on the unbound fractions of drugs known to bind exclusively to albumin. Only at five times higher MM concentrations were the free fractions substantially increased (by up to 45%). Unbound fractions of drugs bound with high affinity but low capacity to alpha 1-acid glycoprotein were increased between 50-85% even at 'therapeutic' doses of MM. The present study suggests that drugs solubilized by MM should be given by slow injection or infusion to patients already receiving drugs which are highly bound to alpha 1-acid glycoprotein. PMID:3593626

  7. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface.

    PubMed Central

    Iino, R; Koyama, I; Kusumi, A

    2001-01-01

    Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443

  8. A Targeted Oligonucleotide Enhancer of SMN2 Exon 7 Splicing Forms Competing Quadruplex and Protein Complexes in Functional Conditions

    PubMed Central

    Smith, Lindsay D.; Dickinson, Rachel L.; Lucas, Christian M.; Cousins, Alex; Malygin, Alexey A.; Weldon, Carika; Perrett, Andrew J.; Bottrill, Andrew R.; Searle, Mark S.; Burley, Glenn A.; Eperon, Ian C.

    2014-01-01

    Summary The use of oligonucleotides to activate the splicing of selected exons is limited by a poor understanding of the mechanisms affected. A targeted bifunctional oligonucleotide enhancer of splicing (TOES) anneals to SMN2 exon 7 and carries an exonic splicing enhancer (ESE) sequence. We show that it stimulates splicing specifically of intron 6 in the presence of repressing sequences in intron 7. Complementarity to the 5′ end of exon 7 increases U2AF65 binding, but the ESE sequence is required for efficient recruitment of U2 snRNP. The ESE forms at least three coexisting discrete states: a quadruplex, a complex containing only hnRNP F/H, and a complex enriched in the activator SRSF1. Neither hnRNP H nor quadruplex formation contributes to ESE activity. The results suggest that splicing limited by weak signals can be rescued by rapid exchange of TOES oligonucleotides in various complexes and raise the possibility that SR proteins associate transiently with ESEs. PMID:25263560

  9. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites*

    PubMed Central

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; Cort, John R.; Davin, Laurence B.; Lewis, Norman G.

    2015-01-01

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (−)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition. PMID:25411250

  10. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites

    DOE PAGESBeta

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; Cort, John R.; Davin, Laurence B.; Lewis, Norman G.

    2014-11-19

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcoholmore » radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (₋)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. We find DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.« less

  11. Trimeric Structure of (+)-Pinoresinol-forming Dirigent Protein at 1.95 Å Resolution with Three Isolated Active Sites

    SciTech Connect

    Kim, Kye-Won; Smith, Clyde A.; Daily, Michael D.; Cort, John R.; Davin, Laurence B.; Lewis, Norman G.

    2014-11-19

    Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded β-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (₋)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. We find DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.

  12. Engineering of betabellin-15D: a 64 residue beta sheet protein that forms long narrow multimeric fibrils.

    PubMed Central

    Lim, A.; Saderholm, M. J.; Makhov, A. M.; Kroll, M.; Yan, Y.; Perera, L.; Griffith, J. D.; Erickson, B. W.

    1998-01-01

    The betabellin target structure is a beta-sandwich protein consisting of two 32 residue beta-sheets packed against one another by interaction of their hydrophobic faces. The 32 residue chain of betabellin-15S (HSLTAKIpkLTFSIAphTYTCAV pkYTAKVSH, where p=DPro, k=DLys, and h=DHis) did not fold in water at pH 6.5. Air oxidation of betabellin-15S provided betabellin-15D, the 64 residue disulfide bridged two-chain molecule, which also remained unfolded in water at pH 6.5. By circular dichroic spectropolarimetry, the extent of beta structure observed for betabellin-15D increased with the pH and ionic strength of the solution and the betabellin-15D concentration. By electron microscopy, in 5.0 mM MOPS and 0.25 M NaCl at pH 6.9, betabellin-15D formed long narrow multimeric fibrils. A molecular model was constructed to show that the dimensions of these betabellin-15D fibrils are consistent with a single row of beta-sandwich molecules joined by multiple intersheet H-bonds. PMID:9684887

  13. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions

    PubMed Central

    Vanarsdall, Adam L.; Howard, Paul W.; Wisner, Todd W.; Johnson, David C.

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion) is just gH/gL and gB. Here, we demonstrate that HCMV gB and gH/gL form a stable complex early after their synthesis and in the absence of other viral proteins. gH/gL can interact with gB mutants that are unable to mediate cell-cell fusion. gB-gH/gL complexes included as much as 16–50% of the total gH/gL in HCMV virus particles. In contrast, only small amounts of gH/gL/gO and gH/gL/UL128-131 complexes were found associated with gB. All herpesviruses express gB and gH/gL molecules and most models describing herpesvirus entry suggest that gH/gL interacts with gB to mediate membrane fusion, although there is no direct evidence for this. For herpes simplex virus (HSV-1) it has been suggested that after receptor binding gH/gL binds to gB either just before, or coincident with membrane fusion. Therefore, our results have major implications for these models, demonstrating that HCMV gB and gH/gL forms stable gB-gH/gL complexes that are incorporated virions without receptor binding or membrane fusion. Moreover, our data is the best support to date for the proposal that gH/gL interacts with gB. PMID:27082872

  14. Dual activity of certain HIT-proteins: A. thaliana Hint4 and C. elegans DcpS act on adenosine 5'-phosphosulfate as hydrolases (forming AMP) and as phosphorylases (forming ADP).

    PubMed

    Guranowski, Andrzej; Wojdyła, Anna Maria; Zimny, Jarosław; Wypijewska, Anna; Kowalska, Joanna; Jemielity, Jacek; Davis, Richard E; Bieganowski, Paweł

    2010-01-01

    Histidine triad (HIT)-family proteins interact with different mono- and dinucleotides and catalyze their hydrolysis. During a study of the substrate specificity of seven HIT-family proteins, we have shown that each can act as a sulfohydrolase, catalyzing the liberation of AMP from adenosine 5'-phosphosulfate (APS or SO(4)-pA). However, in the presence of orthophosphate, Arabidopsis thaliana Hint4 and Caenorhabditis elegans DcpS also behaved as APS phosphorylases, forming ADP. Low pH promoted the phosphorolytic and high pH the hydrolytic activities. These proteins, and in particular Hint4, also catalyzed hydrolysis or phosphorolysis of some other adenylyl-derivatives but at lower rates than those for APS cleavage. A mechanism for these activities is proposed and the possible role of some HIT-proteins in APS metabolism is discussed. PMID:19896942

  15. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction.

    PubMed Central

    Inouye, H.; Fraser, P. E.; Kirschner, D. A.

    1993-01-01

    To elucidate the relation between amyloid fibril formation in Alzheimer disease and the primary structure of the beta/A4 protein, which is the major component of the amyloid, we have been investigating the ability of peptides sharing sequences with beta/A4 to form fibrils in vitro. In previous studies we focused on the macroscopic morphology of the assemblies formed by synthetic peptides corresponding in sequence to different regions of this protein. In the present study we analyze the x-ray diffraction patterns obtained from these assemblies. All specimens showed wide angle reflections that could be indexed by an orthogonal lattice of beta-crystallites having unit cell dimensions a = 9.4 A, b = 7 A, and c = 10 A, where a refers to hydrogen bonding direction, b to polypeptide chain direction, and c to intersheet direction. Given the amino acid sequence of beta/A4 as NH2-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIAT-COOH, we found that, based on their orientation and assembly, the analogues could be classified into three groups: Group A, residues 19-28, 13-28, 12-28, 11-28, 9-28, 1-28, 1-38, 1-40, 6-25, 11-25 and 34-42; Group B, residues 18-28, 17-28, and 15-28; and Group C, residues 22-35 and 26-33. For Groups A and C, the sharpest reflections were (h00), indicating that the assemblies were fibrillar, i.e., elongated in a single direction. Lateral alignment of the crystallites in Group A account for its cross-beta pattern, in which the hydrogen bonding (H-bonding) direction is the fiber (rotation) axis. By comparison, the beta-crystallites of Group C had no preferential orientation, thus giving circular scattering. For Group B, the sharpest reflections were (h0l) on the meridian, indicating that the assemblies were plate-like, i.e., extended in two directions. A series of equatorial Bragg reflections having a 40 A period indicated regular stacking of the plates, and the rotation axis was normal to the surface of the plates. Of the Group A peptides, the analogues 11

  16. Reversal of multidrug resistance by the inhibition of ATP-binding cassette pumps employing "Generally Recognized As Safe" (GRAS) nanopharmaceuticals: A review.

    PubMed

    Sosnik, Alejandro

    2013-11-01

    Pumps of the ATP-binding cassette superfamily (ABCs) regulate the access of drugs to the intracellular space. In this context, the overexpression of ABCs is a well-known mechanism of multidrug resistance (MDR) in cancer and infectious diseases (e.g., viral hepatitis and the human immunodeficiency virus) and is associated with therapeutic failure. Since their discovery, ABCs have emerged as attractive therapeutic targets and the search of compounds that inhibit their genetic expression and/or their functional activity has gained growing interest. Different generations of pharmacological ABC inhibitors have been explored over the last four decades to address resistance in cancer, though clinical results have been somehow disappointing. "Generally Recognized As Safe" (GRAS) is a U.S. Food and Drug Administration designation for substances that are accepted as safe for addition in food. Far from being "inert", some amphiphilic excipients used in the production of pharmaceutical products have been shown to inhibit the activity of ABCs in MDR tumors, emerging as a clinically translatable approach to overcome resistance. The present article initially overviews the classification, structure and function of the different ABCs, with emphasis on those pumps related to drug resistance. Then, the different attempts to capitalize on the activity of GRAS nanopharmaceuticals as ABC inhibitors are discussed. PMID:24055628

  17. Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of alpha-helical outer membrane proteins.

    PubMed

    Thornton, Nicolas; Stroud, David A; Milenkovic, Dusanka; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2010-02-26

    The mitochondrial outer membrane contains two translocase machineries for precursor proteins--the translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The TOM complex functions as the main mitochondrial entry gate for nuclear-encoded proteins, whereas the SAM complex was identified according to its function in the biogenesis of beta-barrel proteins of the outer membrane. The SAM complex is required for the assembly of precursors of the TOM complex, including not only the beta-barrel protein Tom40 but also a subset of alpha-helical subunits. While the interaction of beta-barrel proteins with the SAM complex has been studied in detail, little is known about the interaction between the SAM complex and alpha-helical precursor proteins. We report that the SAM is not static but that the SAM core complex can associate with different partner proteins to form two large SAM complexes with different functions in the biogenesis of alpha-helical Tom proteins. We found that a subcomplex of TOM, Tom5-Tom40, associates with the SAM core complex to form a new large SAM complex. This SAM-Tom5/Tom40 complex binds the alpha-helical precursor of Tom6 after the precursor has been inserted into the outer membrane in an Mim1 (mitochondrial import protein 1)-dependent manner. The second large SAM complex, SAM-Mdm10 (mitochondrial distribution and morphology protein), binds the alpha-helical precursor of Tom22 and promotes its membrane integration. We suggest that the modular composition of the SAM complex provides a flexible platform to integrate the sorting pathways of different precursor proteins and to promote their assembly into oligomeric complexes. PMID:20026336

  18. ZipperDB: Predictions of Fibril-forming Segments within Proteins Identified by the 3D Profile Method (from the UCLA-DOE Institute for Genomics and Proteomics)

    DOE Data Explorer

    Goldschmidt, L.; Teng, P. K.; Riek, R.; Eisenberg, D.

    ZipperDB contains predictions of fibril-forming segments within proteins identified by the 3D Profile Method. The UCLA-DOE Institute for Genomics and Proteomics has analyzed over 20,000 putative protein sequences for segments with high fibrillation propensity that could form a "steric zipper"ùtwo self-complementary beta sheets, giving rise to the spine of an amyloid fibril. The approach is unique in that structural information is used to evaluate the likelihood that a particular sequence can form fibrils. [copied with edits from http://www.doe-mbi.ucla.edu/]. In addition to searching the database, academic and non-profit users may also submit their protein sequences to the database.

  19. Mardi Gras Math

    ERIC Educational Resources Information Center

    Eubanks-Turner, Christina; Hajj, Najat

    2015-01-01

    In this article, Christina Eubanks-Turner and Najat Hajj describe a planning process that they used to create a fun-filled eighth-grade math activity that focused on parade planning. The activity was designed to enhance and supplement the eighth-grade algebra curriculum on linear equations and functions, help students use mathematical habits of…

  20. GRAS Notice 000076: ERYTHRITOL

    Center for Food Safety and Applied Nutrition (CFSAN)

    ... I -----l :'f, ~~I:..xt:1> ::;: A·,,·;b:: C~('~: I·.

  1. Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection.

    PubMed

    Jiao, Ya-Sen; Du, Pu-Feng

    2016-08-01

    Recently, several efforts have been made in predicting Golgi-resident proteins. However, it is still a challenging task to identify the type of a Golgi-resident protein. Precise prediction of the type of a Golgi-resident protein plays a key role in understanding its molecular functions in various biological processes. In this paper, we proposed to use a mutual information based feature selection scheme with the general form Chou's pseudo-amino acid compositions to predict the Golgi-resident protein types. The positional specific physicochemical properties were applied in the Chou's pseudo-amino acid compositions. We achieved 91.24% prediction accuracy in a jackknife test with 49 selected features. It has the best performance among all the present predictors. This result indicates that our computational model can be useful in identifying Golgi-resident protein types. PMID:27155042

  2. Most of the structural elements of the globular domain of murine prion protein form fibrils with predominant beta-sheet structure.

    PubMed

    Jamin, Nadège; Coïc, Yves-Marie; Landon, Céline; Ovtracht, Ludmila; Baleux, Françoise; Neumann, Jean-Michel; Sanson, Alain

    2002-10-01

    The conversion of the cellular prion protein into the beta-sheet-rich scrapie prion protein is thought to be the key step in the pathogenesis of prion diseases. To gain insight into this structural conversion, we analyzed the intrinsic structural propensity of the amino acid sequence of the murine prion C-terminal domain. For that purpose, this globular domain was dissected into its secondary structural elements and the structural propensity of the protein fragments was determined. Our results show that all these fragments, excepted that strictly encompassing helix 1, have a very high propensity to form structured aggregates with a dominant content of beta-sheet structures. PMID:12372610

  3. Enzyme mechanism-based, oxidative DNA-protein cross-links formed with DNA polymerase β in vivo.

    PubMed

    Quiñones, Jason L; Thapar, Upasna; Yu, Kefei; Fang, Qingming; Sobol, Robert William; Demple, Bruce

    2015-07-14

    Free radical attack on the C1' position of DNA deoxyribose generates the oxidized abasic (AP) site 2-deoxyribonolactone (dL). Upon encountering dL, AP lyase enzymes such as DNA polymerase β (Polβ) form dead-end, covalent intermediates in vitro during attempted DNA repair. However, the conditions that lead to the in vivo formation of such DNA-protein cross-links (DPC), and their impact on cellular functions, have remained unknown. We adapted an immuno-slot blot approach to detect oxidative Polβ-DPC in vivo. Treatment of mammalian cells with genotoxic oxidants that generate dL in DNA led to the formation of Polβ-DPC in vivo. In a dose-dependent fashion, Polβ-DPC were detected in MDA-MB-231 human cells treated with the antitumor drug tirapazamine (TPZ; much more Polβ-DPC under 1% O2 than under 21% O2) and even more robustly with the "chemical nuclease" 1,10-copper-ortho-phenanthroline, Cu(OP)2. Mouse embryonic fibroblasts challenged with TPZ or Cu(OP)2 also incurred Polβ-DPC. Nonoxidative agents did not generate Polβ-DPC. The cross-linking in vivo was clearly a result of the base excision DNA repair pathway: oxidative Polβ-DPC depended on the Ape1 AP endonuclease, which generates the Polβ lyase substrate, and they required the essential lysine-72 in the Polβ lyase active site. Oxidative Polβ-DPC had an unexpectedly short half-life (∼ 30 min) in both human and mouse cells, and their removal was dependent on the proteasome. Proteasome inhibition under Cu(OP)2 treatment was significantly more cytotoxic to cells expressing wild-type Polβ than to cells with the lyase-defective form. That observation underscores the genotoxic potential of oxidative Polβ-DPC and the biological pressure to repair them. PMID:26124145

  4. Enzyme mechanism-based, oxidative DNA–protein cross-links formed with DNA polymerase β in vivo

    PubMed Central

    Quiñones, Jason L.; Thapar, Upasna; Yu, Kefei; Fang, Qingming; Sobol, Robert William; Demple, Bruce

    2015-01-01

    Free radical attack on the C1′ position of DNA deoxyribose generates the oxidized abasic (AP) site 2-deoxyribonolactone (dL). Upon encountering dL, AP lyase enzymes such as DNA polymerase β (Polβ) form dead-end, covalent intermediates in vitro during attempted DNA repair. However, the conditions that lead to the in vivo formation of such DNA–protein cross-links (DPC), and their impact on cellular functions, have remained unknown. We adapted an immuno-slot blot approach to detect oxidative Polβ-DPC in vivo. Treatment of mammalian cells with genotoxic oxidants that generate dL in DNA led to the formation of Polβ-DPC in vivo. In a dose-dependent fashion, Polβ-DPC were detected in MDA-MB-231 human cells treated with the antitumor drug tirapazamine (TPZ; much more Polβ-DPC under 1% O2 than under 21% O2) and even more robustly with the “chemical nuclease” 1,10-copper-ortho-phenanthroline, Cu(OP)2. Mouse embryonic fibroblasts challenged with TPZ or Cu(OP)2 also incurred Polβ-DPC. Nonoxidative agents did not generate Polβ-DPC. The cross-linking in vivo was clearly a result of the base excision DNA repair pathway: oxidative Polβ-DPC depended on the Ape1 AP endonuclease, which generates the Polβ lyase substrate, and they required the essential lysine-72 in the Polβ lyase active site. Oxidative Polβ-DPC had an unexpectedly short half-life (∼30 min) in both human and mouse cells, and their removal was dependent on the proteasome. Proteasome inhibition under Cu(OP)2 treatment was significantly more cytotoxic to cells expressing wild-type Polβ than to cells with the lyase-defective form. That observation underscores the genotoxic potential of oxidative Polβ-DPC and the biological pressure to repair them. PMID:26124145

  5. Expression, purification, crystallization and preliminary X-ray characterization of two crystal forms of stationary-phase survival E protein from Campylobacter jejuni

    SciTech Connect

    Gonçalves, A. M. D.; Rêgo, A. T.; Thomaz, M.; Enguita, F. J.; Carrondo, M. A.

    2008-03-01

    Survival E (SurE) protein from Campylobacter jejuni, a Gram-negative mesophile, has been overexpressed in Escherichia coli as a soluble protein, successfully purified and crystallized in two distinct crystal forms. Survival E (SurE) protein from Campylobacter jejuni, a Gram-negative mesophile, has been overexpressed in Escherichia coli as a soluble protein, successfully purified and crystallized in two distinct crystal forms. The first form belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with a tetramer in the asymmetric unit and unit-cell parameters a = 80.5, b = 119.0, c = 135.3 Å. The second form belongs to space group C2, with unit-cell parameters a = 121.4, b = 47.1, c = 97.8 Å, and contains a dimer in the asymmetric unit. Diffraction data have been collected from these crystal forms to 2.5 and 2.95 Å resolution, respectively.

  6. Differential expression of Trypanosoma cruzi I associated with clinical forms of Chagas disease: overexpression of oxidative stress proteins in acute patient isolate.

    PubMed

    Díaz, M L; Solari, A; González, C I

    2011-08-24

    Chagas disease has a variable clinical course with different manifestations and heterogenous geographical distribution. Some studies suggest that this clinical variability could be influenced by the genetic variability of T. cruzi. Here we present the differential protein expression among trypomastigotes and amastigotes of T. cruzi group I isolates from patients with acute and chronic form of Chagas disease from Santander, Colombia. A total of 29 proteins were identified by MALDI-TOF and LC-MS/MS; twenty in trypomastigote and nine in amastigote stage. The 29 proteins identified were grouped in 7 functional categories: 1) metabolism 31%, 2) assembly of cytoskeleton 13.7%, 3) protein destination 13.7%, 4) defenses antioxidants 20.6%, 5) protein synthesis and cellular cycle 13.7%, 6) catabolism 6.8%, and 7) adhesion 3.4%. Tryparedoxin peroxidase, lipoamide dehydrogenase, tyrosine amino transferase and HSP70 were overexpressed in the acute Chagas isolate. Tryparedoxin peroxidase overexpression in the acute isolate was confirmed by Western blot analysis. Most of these proteins are associated with resistance to oxidative stress facilitating their survival within host cells. Therefore, these proteins may represent virulence factors associated with the development of the acute form of the disease and could be used as biomarkers of the clinical course of disease and as drug targets. PMID:21642025

  7. Orchid Fleck Virus Structural Proteins N and P Form Intranuclear Viroplasm-Like Structures in the Absence of Viral Infection

    PubMed Central

    Chiba, Sotaro; Andika, Ida Bagus; Maruyama, Kazuyuki; Tamada, Tetsuo; Suzuki, Nobuhiro

    2013-01-01

    Orchid fleck virus (OFV) has a unique two-segmented negative-sense RNA genome that resembles that of plant nucleorhabdoviruses. In infected plant cells, OFV and nucleorhabdoviruses induce an intranuclear electron-lucent viroplasm that is believed to be the site for virus replication. In this study, we investigated the molecular mechanism by which OFV viroplasms are produced in vivo. Among OFV-encoded proteins, the nucleocapsid protein (N) and the putative phosphoprotein (P) were present in nuclear fractions of OFV-infected Nicotiana benthamiana plants. Transient coexpression of N and P, in the absence of virus infection, was shown to be sufficient for formation of an intranuclear viroplasm-like structure in plant cells. When expressed independently as a fluorescent protein fusion product in uninfected plant cells, N protein accumulated throughout the cell, while P protein accumulated in the nucleus. However, the N protein, when coexpressed with P, was recruited to a subnuclear region to induce a large viroplasm-like focus. Deletion and substitution mutagenesis demonstrated that the P protein contains a nuclear localization signal (NLS). Artificial nuclear targeting of the N-protein mutant was insufficient for formation of viroplasm-like structures in the absence of P. A bimolecular fluorescence complementation assay confirmed interactions between the N and P proteins within subnuclear viroplasm-like foci and interactions of two of the N. benthamiana importin-α homologues with the P protein but not with the N protein. Taken together, our results suggest that viroplasm formation by OFV requires nuclear accumulation of both the N and P proteins, which is mediated by P-NLS, unlike nucleorhabdovirus viroplasm utilizing the NLS on protein N. PMID:23616651

  8. Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles*S⃞

    PubMed Central

    Cappuccio, Jenny A.; Blanchette, Craig D.; Sulchek, Todd A.; Arroyo, Erin S.; Kralj, Joel M.; Hinz, Angela K.; Kuhn, Edward A.; Chromy, Brett A.; Segelke, Brent W.; Rothschild, Kenneth J.; Fletcher, Julia E.; Katzen, Federico; Peterson, Todd C.; Kudlicki, Wieslaw A.; Bench, Graham; Hoeprich, Paul D.; Coleman, Matthew A.

    2008-01-01

    Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies. PMID:18603642

  9. Strategies for stabilizing superoxide dismutase (SOD1), the protein destabilized in the most common form of familial amyotrophic lateral sclerosis

    PubMed Central

    Auclair, Jared R.; Boggio, Kristin J.; Petsko, Gregory A.; Ringe, Dagmar; Agar, Jeffrey N.

    2010-01-01

    Amyotrophic lateral sclerosis (ALS) is a disorder characterized by the death of both upper and lower motor neurons and by 3- to 5-yr median survival postdiagnosis. The only US Food and Drug Administration-approved drug for the treatment of ALS, Riluzole, has at best, moderate effect on patient survival and quality of life; therefore innovative approaches are needed to combat neurodegenerative disease. Some familial forms of ALS (fALS) have been linked to mutations in the Cu/Zn superoxide dismutase (SOD1). The dominant inheritance of mutant SOD1 and lack of symptoms in knockout mice suggest a “gain of toxic function” as opposed to a loss of function. A prevailing hypothesis for the mechanism of the toxicity of fALS-SOD1 variants, or the gain of toxic function, involves dimer destabilization and dissociation as an early step in SOD1 aggregation. Therefore, stabilizing the SOD1 dimer, thus preventing aggregation, is a potential therapeutic strategy. Here, we report a strategy in which we chemically cross-link the SOD1 dimer using two adjacent cysteine residues on each respective monomer (Cys111). Stabilization, measured as an increase in melting temperature, of ∼20 °C and ∼45 °C was observed for two mutants, G93A and G85R, respectively. This stabilization is the largest for SOD1, and to the best of our knowledge, for any disease-related protein. In addition, chemical cross-linking conferred activity upon G85R, an otherwise inactive mutant. These results demonstrate that targeting these cysteine residues is an important new strategy for development of ALS therapies. PMID:21098299

  10. Three RNA Binding Proteins Form a Complex to Promote Differentiation of Germline Stem Cell Lineage in Drosophila

    PubMed Central

    Zhao, Shaowei; Geng, Qing; Gao, Yu; Li, Xin; Zhang, Yang; Wang, Zhaohui

    2014-01-01

    In regenerative tissues, one of the strategies to protect stem cells from genetic aberrations, potentially caused by frequent cell division, is to transiently expand the stem cell daughters before further differentiation. However, failure to exit the transit amplification may lead to overgrowth, and the molecular mechanism governing this regulation remains vague. In a Drosophila mutagenesis screen for factors involved in the regulation of germline stem cell (GSC) lineage, we isolated a mutation in the gene CG32364, which encodes a putative RNA-binding protein (RBP) and is designated as tumorous testis (tut). In tut mutant, spermatogonia fail to differentiate and over-amplify, a phenotype similar to that in mei-P26 mutant. Mei-P26 is a TRIM-NHL tumor suppressor homolog required for the differentiation of GSC lineage. We found that Tut binds preferentially a long isoform of mei-P26 3′UTR, and is essential for the translational repression of mei-P26 reporter. Bam and Bgcn are both RBPs that have also been shown to repress mei-P26 expression. Our genetic analyses indicate that tut, bam, or bgcn is required to repress mei-P26 and to promote the differentiation of GSCs. Biochemically, we demonstrate that Tut, Bam, and Bgcn can form a physical complex in which Bam holds Tut on its N-terminus and Bgcn on its C-terminus. Our in vivo and in vitro evidence illustrate that Tut acts with Bam, Bgcn to accurately coordinate proliferation and differentiation in Drosophila germline stem cell lineage. PMID:25412508

  11. Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom.

    PubMed

    Schlumberger, Sébastien; Kristan, Katarina Črnigoj; Ota, Katja; Frangež, Robert; Molgό, Jordi; Sepčić, Kristina; Benoit, Evelyne; Maček, Peter

    2014-01-01

    Proteins from the oyster mushroom, 15 kDa ostreolysin A (OlyA), and 59 kDa pleurotolysin B (PlyB) with a membrane attack complex/perforin (MACPF) domain, damage cell membranes as a binary cytolytic pore-forming complex. Measurements of single-channel conductance and transmembrane macroscopic current reveal that OlyA/PlyB form non-selective ion-conducting pores with broad, skewed conductance distributions in N18 neuroblastoma and CHO-K1 cell membranes. Polyethylene-glycol 8000 (hydrodynamic radius of 3.78 nm) provides almost complete osmotic protection against haemolysis, which strongly suggests a colloid-osmotic type of erythrocyte lysis. Our data indicate that OlyA/PlyB form transmembrane pores of varied sizes, as other pore-forming proteins with a MACPF domain. PMID:24211835

  12. Coexistence of two forms of disease-associated prion protein in extracerebral tissues of cattle infected with H-type bovine spongiform encephalopathy.

    PubMed

    Okada, Hiroyuki; Miyazawa, Kohtaro; Masujin, Kentaro; Yokoyama, Takashi

    2016-08-01

    H-type bovine spongiform encephalopathy (H-BSE) is an atypical form of BSE in aged cattle. H-BSE is characterized by the presence of two proteinase K-resistant forms of disease-associated prion protein (PrP(Sc)), identified as PrP(Sc) #1 and PrP(Sc) #2, in the brain. To investigate the coexistence of different PrP(Sc) forms in the extracerebral tissues of cattle experimentally infected with H-BSE, immunohistochemical and molecular analyses were performed by using N-terminal-, core-region- and C-terminal-specific anti-prion protein antibodies. Our results demonstrated that two distinct forms of PrP(Sc) coexisted in the various extracerebral tissues. PMID:27010466

  13. Coexistence of two forms of disease-associated prion protein in extracerebral tissues of cattle infected with H-type bovine spongiform encephalopathy

    PubMed Central

    OKADA, Hiroyuki; MIYAZAWA, Kohtaro; MASUJIN, Kentaro; YOKOYAMA, Takashi

    2016-01-01

    H-type bovine spongiform encephalopathy (H-BSE) is an atypical form of BSE in aged cattle. H-BSE is characterized by the presence of two proteinase K-resistant forms of disease-associated prion protein (PrPSc), identified as PrPSc #1 and PrPSc #2, in the brain. To investigate the coexistence of different PrPSc forms in the extracerebral tissues of cattle experimentally infected with H-BSE, immunohistochemical and molecular analyses were performed by using N-terminal-, core-region- and C-terminal-specific anti-prion protein antibodies. Our results demonstrated that two distinct forms of PrPSc coexisted in the various extracerebral tissues. PMID:27010466

  14. Developmentally Regulated RNA-binding Protein 1 (Drb1)/RNA-binding Motif Protein 45 (RBM45), a Nuclear-Cytoplasmic Trafficking Protein, Forms TAR DNA-binding Protein 43 (TDP-43)-mediated Cytoplasmic Aggregates.

    PubMed

    Mashiko, Takafumi; Sakashita, Eiji; Kasashima, Katsumi; Tominaga, Kaoru; Kuroiwa, Kenji; Nozaki, Yasuyuki; Matsuura, Tohru; Hamamoto, Toshiro; Endo, Hitoshi

    2016-07-15

    Cytoplasmic protein aggregates are one of the pathological hallmarks of neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Several RNA-binding proteins have been identified as components of inclusion bodies. Developmentally regulated RNA-binding protein 1 (Drb1)/RNA-binding motif protein 45 is an RNA-binding protein that was recently described as a component in ALS- and FTLD-related inclusion bodies. However, the molecular mechanism underlying cytoplasmic Drb1 aggregation remains unclear. Here, using an in vitro cellular model, we demonstrated that Drb1 co-localizes with cytoplasmic aggregates mediated by TAR DNA-binding protein 43, a major component of ALS and FTLD-related inclusion bodies. We also defined the domains involved in the subcellular localization of Drb1 to clarify the role of Drb1 in the formation of cytoplasmic aggregates in ALS and FTLD. Drb1 predominantly localized in the nucleus via a classical nuclear localization signal in its carboxyl terminus and is a shuttling protein between the nucleus and cytoplasm. Furthermore, we identify a double leucine motif serving as a nuclear export signal. The Drb1 mutant, presenting mutations in both nuclear localization signal and nuclear export signal, is prone to aggregate in the cytoplasm. The mutant Drb1-induced cytoplasmic aggregates not only recruit TAR DNA-binding protein 43 but also decrease the mitochondrial membrane potential. Taken together, these results indicate that perturbation of Drb1 nuclear-cytoplasmic trafficking induces toxic cytoplasmic aggregates, suggesting that mislocalization of Drb1 is involved in the cause of cytotoxicity in neuronal cells. PMID:27226551

  15. Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126

    PubMed Central

    Chatterjee, Biswanath; Lee, Chung-Yu; Lin, Chen; Chen, Eric H.-L.; Huang, Chao-Li; Yang, Chien-Chih; Chen, Rita P.-Y.

    2013-01-01

    The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrPC) into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23–230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107–143), mPrP(107–126), and mPrP(127–143). Our results showed that the amyloid fibrils formed from mPrP(107–143) and mPrP(127–143), but not those formed from mPrP(107–126), were able to seed the amyloidogenesis of mPrP(23–230), showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP(23–230). PMID:23844138

  16. Structure of the fimbrial protein Mfa4 from Porphyromonas gingivalis in its precursor form: implications for a donor-strand complementation mechanism

    PubMed Central

    Kloppsteck, Patrik; Hall, Michael; Hasegawa, Yoshiaki; Persson, Karina

    2016-01-01

    Gingivitis and periodontitis are chronic inflammatory diseases that can lead to tooth loss. One of the causes of these diseases is the Gram-negative Porphyromonas gingivalis. This periodontal pathogen is dependent on two fimbriae, FimA and Mfa1, for binding to dental biofilm, salivary proteins, and host cells. These fimbriae are composed of five proteins each, but the fimbriae assembly mechanism and ligands are unknown. Here we reveal the crystal structure of the precursor form of Mfa4, one of the accessory proteins of the Mfa1 fimbria. Mfa4 consists of two β-sandwich domains and the first part of the structure forms two well-defined β-strands that run over both domains. This N-terminal region is cleaved by gingipains, a family of proteolytic enzymes that encompass arginine- and lysine-specific proteases. Cleavage of the N-terminal region generates the mature form of the protein. Our structural data allow us to propose that the new N-terminus of the mature protein may function as a donor strand in the polymerization of P. gingivalis fimbriae. PMID:26972441

  17. Purification and characterization of the human cysteine-rich S100A3 protein and its pseudo citrullinated forms expressed in insect cells.

    PubMed

    Kizawa, Kenji; Unno, Masaki; Takahara, Hidenari; Heizmann, Claus W

    2013-01-01

    High quantity and quality of recombinant Ca(2+)-binding proteins are required to study their molecular interactions, self-assembly, posttranslational modifications, and biological activities to elucidate Ca(2+)-dependent cellular signaling pathways. S100A3 is a unique member of the S100 protein family with the highest cysteine content (10%). This protein, derived from human hair follicles and cuticles, is characterized by an N-terminal acetyl group and irreversible posttranslational citrullination by peptidylarginine deiminase causing its homotetramer assembly. Insect cells, capable of introducing eukaryotic N-terminus and disulfide bonds, are an appropriate host in which to express this cysteine-rich protein. Four out of ten cysteines in the recombinant S100A3 form two intramolecular disulfide bridges that modulate its Ca(2+)-affinity. Three free thiol groups located at the C-terminus are predicted to form the high-affinity Zn(2+)-binding site. Citrullination of specific arginine residues in native S100A3 can be mimicked by site-directed mutagenic substitution of Arg/Ala. This chapter details our procedures used for the purification and characterization of the human S100A3 protein and its pseudo citrullinated forms expressed in insect cells. PMID:23296605

  18. Structure of the fimbrial protein Mfa4 from Porphyromonas gingivalis in its precursor form: implications for a donor-strand complementation mechanism.

    PubMed

    Kloppsteck, Patrik; Hall, Michael; Hasegawa, Yoshiaki; Persson, Karina

    2016-01-01

    Gingivitis and periodontitis are chronic inflammatory diseases that can lead to tooth loss. One of the causes of these diseases is the Gram-negative Porphyromonas gingivalis. This periodontal pathogen is dependent on two fimbriae, FimA and Mfa1, for binding to dental biofilm, salivary proteins, and host cells. These fimbriae are composed of five proteins each, but the fimbriae assembly mechanism and ligands are unknown. Here we reveal the crystal structure of the precursor form of Mfa4, one of the accessory proteins of the Mfa1 fimbria. Mfa4 consists of two β-sandwich domains and the first part of the structure forms two well-defined β-strands that run over both domains. This N-terminal region is cleaved by gingipains, a family of proteolytic enzymes that encompass arginine- and lysine-specific proteases. Cleavage of the N-terminal region generates the mature form of the protein. Our structural data allow us to propose that the new N-terminus of the mature protein may function as a donor strand in the polymerization of P. gingivalis fimbriae. PMID:26972441

  19. A neural-specific splicing event generates an active form of the Wiskott-Aldrich syndrome protein.

    PubMed

    Le Page, Yann; Demay, Florence; Salbert, Gilles

    2004-09-01

    Actin polymerization is required for cellular events such as podosome, lamellipode or filopode formation in migrating cells, and members of the Wiskott-Aldrich syndrome protein (WASP) family have essential roles in regulating actin dynamics at the cell leading edge. However, WASP proteins need first to be activated in order to be able to target actin polymerization. Here, we show the occurrence of a neural-specific splicing event, which is favoured by the nuclear orphan receptor chicken ovalbumin upstream promoter-transcription factor I, and generates a truncated WASP protein deleted of exon 2-encoded amino acids. This deletion relocates the protein to the plasma membrane and induces the formation of actin-rich podosome-like structures that also contain paxillin and vinculin. Furthermore, expression of the truncated protein in PC12 cells, as well as in primary neurons, stimulates neuritogenesis. These data underscore the importance of the neural-specific splicing of WASP RNA during development. PMID:15332112

  20. Biochemical and immunological properties of two forms of pertactin, the 69,000-molecular-weight outer membrane protein of Bordetella pertussis.

    PubMed Central

    Gotto, J W; Eckhardt, T; Reilly, P A; Scott, J V; Cowell, J L; Metcalf, T N; Mountzouros, K; Gibbons, J J; Siegel, M

    1993-01-01

    Two apparent isoforms of the virulence-associated 69,000-molecular-weight protein pertactin were purified from Bordetella pertussis. Mass spectrometry showed a difference of 2,060 Da, which may result from differential C-terminal cleavage of a larger precursor. Both forms were protective in a mouse model, eliciting bactericidal antibodies and reducing respiratory tract colonization. Images PMID:8478113

  1. Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly

    PubMed Central

    Park, Sang Ho; Marassi, Francesca M.; Black, David; Opella, Stanley J.

    2010-01-01

    The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16–A46) around its long axis changes dramatically (by 160°) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2–G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state 1H/15N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly. PMID:20816058

  2. Multiple types and forms of odorant-binding proteins in the Old-World porcupine Hystrix cristata.

    PubMed

    Felicioli, A; Ganni, M; Garibotti, M; Pelosi, P

    1993-01-01

    1. Eight new proteins have been identified and purified from the nasal tissue of the old-world porcupine. 2. All of them show good binding activity to tritiated 2-isobutyl-3-methoxypyrazine. 3. They show values of molecular mass, in denaturing conditions, between 18 and 23 kDa, and of isoelectric points between 4.2 and 4.6. 4. This represents the first example of more than two odorant-binding proteins (OBPs) found in the same animal species and could support a discriminating function of these proteins in the process of odour perception. PMID:8365121

  3. DELLA proteins regulate expression of a subset of AM symbiosis-induced genes in Medicago truncatula.

    PubMed

    Floss, Daniela S; Lévesque-Tremblay, Véronique; Park, Hee-Jin; Harrison, Maria J

    2016-04-01

    The majority of the vascular flowering plants form symbiotic associations with fungi from the phylum Glomeromycota through which both partners gain access to nutrients, either mineral nutrients in the case of the plant, or carbon, in the case of the fungus. (1) The association develops in the roots and requires substantial remodeling of the root cortical cells where branched fungal hyphae, called arbuscules, are housed in a new membrane-bound apoplastic compartment. (2) Nutrient exchange between the symbionts occurs over this interface and its development and maintenance is critical for symbiosis. Previously, we showed that DELLA proteins, which are well known as repressors of gibberellic acid signaling, also regulate development of AM symbiosis and are necessary to enable arbuscule development. (3) Furthermore, constitutive overexpression of a dominant DELLA protein (della1-Δ18) is sufficient to induce transcripts of several AM symbiosis-induced genes, even in the absence of the fungal symbiont. (4) Here we further extend this approach and identify AM symbiosis genes that respond transcriptionally to constitutive expression of a dominant DELLA protein and also genes that do respond to this treatment. Additionally, we demonstrate that DELLAs interact with REQUIRED FOR ARBUSCULE DEVELOPMENT 1 (RAD1) which further extends our knowledge of GRAS factor complexes that have the potential to regulate gene expression during AM symbiosis. PMID:26984507

  4. High-resolution structures of the D-alanyl carrier protein (Dcp) DltC from Bacillus subtilis reveal equivalent conformations of apo- and holo-forms.

    PubMed

    Zimmermann, Stephan; Pfennig, Sabrina; Neumann, Piotr; Yonus, Huma; Weininger, Ulrich; Kovermann, Michael; Balbach, Jochen; Stubbs, Milton T

    2015-08-19

    D-Alanylation of lipoteichoic acids plays an important role in modulating the properties of Gram-positive bacteria cell walls. The D-alanyl carrier protein DltC from Bacillus subtilis has been solved in apo- and two cofactor-modified holo-forms, whereby the entire phosphopantetheine moiety is defined in one. The atomic resolution of the apo-structure allows delineation of alternative conformations within the hydrophobic core of the 78 residue four helix bundle. In contrast to previous reports for a peptidyl carrier protein from a non-ribosomal peptide synthetase, no obvious structural differences between apo- and holo-DltC forms are observed. Solution NMR spectroscopy confirms these findings and demonstrates in addition that the two forms exhibit similar backbone dynamics on the ps-ns and ms timescales. PMID:26193422

  5. The Activation Domain of the Bovine Papillomavirus E2 Protein Mediates Association of DNA-Bound Dimers to form DNA Loops

    NASA Astrophysics Data System (ADS)

    Knight, Jonathan D.; Li, Rong; Botchan, Michael

    1991-04-01

    The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, performed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on te DNA, E2 condenses the molecule into a bow-tie structure. This implies that each E2 dimer has at least two independent surfaces for multimerization. Two naturally occurring shorter forms of the protein, E2C and D8/E2, which function in vivo as repressors of transcription, do not form such loops. Thus, the looping function of E2 maps to the 161-amino acid activation domain. These results support the looping model of transcription activation by enhancers.

  6. Cloning, purification, crystallization and preliminary X-ray analysis of the catalytic domain of human receptor-like protein tyrosine phosphatase [gamma] in three different crystal forms

    SciTech Connect

    Kish, Kevin; McDonnell, Patricia A.; Goldfarb, Valentina; Gao, Mian; Metzler, William J.; Langley, David R.; Bryson, James W.; Kiefer, Susan E.; Carpenter, Brian; Kostich, Walter A.; Westphal, Ryan S.; Sheriff, Steven

    2013-03-07

    Protein tyrosine phosphatase {gamma} is a membrane-bound receptor and is designated RPTP{gamma}. RPTP{gamma} and two mutants, RPTP{gamma}(V948I, S970T) and RPTP{gamma}(C858S, S970T), were recombinantly expressed and purified for X-ray crystallographic studies. The purified enzymes were crystallized using the hanging-drop vapor-diffusion method. Crystallographic data were obtained from several different crystal forms in the absence and the presence of inhibitor. In this paper, a description is given of how three different crystal forms were obtained that were used with various ligands. An orthorhombic crystal form and a trigonal crystal form were obtained both with and without ligand, and a monoclinic crystal form was only obtained in the presence of a particularly elaborated inhibitor.

  7. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition.

    PubMed

    Chen, Yen-Kuang; Li, Kuo-Bin

    2013-02-01

    The type information of un-annotated membrane proteins provides an important hint for their biological functions. The experimental determination of membrane protein types, despite being more accurate and reliable, is not always feasible due to the costly laboratory procedures, thereby creating a need for the development of bioinformatics methods. This article describes a novel computational classifier for the prediction of membrane protein types using proteins' sequences. The classifier, comprising a collection of one-versus-one support vector machines, makes use of the following sequence attributes: (1) the cationic patch sizes, the orientation, and the topology of transmembrane segments; (2) the amino acid physicochemical properties; (3) the presence of signal peptides or anchors; and (4) the specific protein motifs. A new voting scheme was implemented to cope with the multi-class prediction. Both the training and the testing sequences were collected from SwissProt. Homologous proteins were removed such that there is no pair of sequences left in the datasets with a sequence identity higher than 40%. The performance of the classifier was evaluated by a Jackknife cross-validation and an independent testing experiments. Results show that the proposed classifier outperforms earlier predictors in prediction accuracy in seven of the eight membrane protein types. The overall accuracy was increased from 78.3% to 88.2%. Unlike earlier approaches which largely depend on position-specific substitution matrices and amino acid compositions, most of the sequence attributes implemented in the proposed classifier have supported literature evidences. The classifier has been deployed as a web server and can be accessed at http://bsaltools.ym.edu.tw/predmpt. PMID:23137835

  8. The 90-kDa junctional sarcoplasmic reticulum protein forms an integral part of a supramolecular triad complex in skeletal muscle.

    PubMed

    Froemming, G R; Pette, D; Ohlendieck, K

    1999-08-11

    Although it is well established that voltage-sensing of the alpha(1)-dihydropyridine receptor triggers Ca(2+)-release via the ryanodine receptor during excitation-contraction coupling in skeletal muscle fibers, it remains to be determined which junctional components are responsible for the assembly, maintenance, and stabilization of triads. Here, we analyzed the expression pattern and neighborhood relationship of a novel 90-kDa sarcoplasmic reticulum protein. This protein is highly enriched in the triad fraction and is predominantly expressed in fast-twitching muscle fibers. Chronic low-frequency electro-stimulation induced a drastic decrease in the relative abundance of this protein. Chemical crosslinking showed a potential overlap between the 90-kDa junctional face membrane protein and the ryanodine receptor Ca(2+)-release channel, suggesting tight protein-protein interactions between these two triad components. Hence, Ca(2+)-regulatory muscle proteins have a strong tendency to oligomerize and the triad region of skeletal muscle fibers forms supramolecular membrane complexes involved in the regulation of Ca(2+)-homeostasis and signal transduction. PMID:10441473

  9. Zfrp8 forms a complex with fragile-X mental retardation protein and regulates its localization and function.

    PubMed

    Tan, William; Schauder, Curtis; Naryshkina, Tatyana; Minakhina, Svetlana; Steward, Ruth

    2016-02-15

    Fragile-X syndrome is the most commonly inherited cause of autism and mental disabilities. The Fmr1 (Fragile-X Mental Retardation 1) gene is essential in humans and Drosophila for the maintenance of neural stem cells, and Fmr1 loss results in neurological and reproductive developmental defects in humans and flies. FMRP (Fragile-X Mental Retardation Protein) is a nucleo-cytoplasmic shuttling protein, involved in mRNA silencing and translational repression. Both Zfrp8 and Fmr1 have essential functions in the Drosophila ovary. In this study, we identified FMRP, Nufip (Nuclear Fragile-X Mental Retardation Protein-interacting Protein) and Tral (Trailer Hitch) as components of a Zfrp8 protein complex. We show that Zfrp8 is required in the nucleus, and controls localization of FMRP in the cytoplasm. In addition, we demonstrate that Zfrp8 genetically interacts with Fmr1 and tral in an antagonistic manner. Zfrp8 and FMRP both control heterochromatin packaging, also in opposite ways. We propose that Zfrp8 functions as a chaperone, controlling protein complexes involved in RNA processing in the nucleus. PMID:26772998

  10. Protein Interaction between Ameloblastin and Proteasome Subunit α Type 3 Can Facilitate Redistribution of Ameloblastin Domains within Forming Enamel.

    PubMed

    Geng, Shuhui; White, Shane N; Paine, Michael L; Snead, Malcolm L

    2015-08-21

    Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization. PMID:26070558

  11. Regulator of G protein signaling 8 inhibits protease-activated receptor 1/Gi/o signaling by forming a distinct G protein-dependent complex in live cells.

    PubMed

    Lee, Jinyong; Ghil, Sungho

    2016-05-01

    Activation of seven-transmembrane-domain-possessing G protein-coupled receptors (GPCRs) by extracellular stimuli elicits intracellular responses. One class of GPCRs-protease-activated receptors (PARs)-is activated by endogenous proteases, such as thrombin and trypsin. Members of the regulator of G protein signaling (RGS) family stimulate GTP hydrolysis of G protein alpha (Gα) subunits, thereby inhibiting GPCR/Gα-mediated signaling. We previously reported that RGS2 and RGS4 inhibit PAR1/Gα-mediated signaling by interacting with PAR1 in a Gα-dependent manner. Here, employing the bioluminescence resonance energy transfer (BRET) technique, we identified RGS8 as a novel PAR1-interacting protein. Very little BRET activity was observed between PAR1-Venus (PAR1-Ven) and RGS8-Luciferase (RGS8-Luc) in the absence of Gα. However, in the presence of Gαo, BRET activity was specifically and significantly increased. This interaction was confirmed by biochemical and immunofluorescence assays. Notably, RGS8 inhibited PAR1/Gαi/o-mediated adenylyl cyclase and ERK activation, and prevented Gαo-induced neurite outgrowth and activation of Necdin protein, a downstream target of Gαo. Our findings suggest a novel function of RGS8 and reveal cellular mechanisms by which RGS8 mediates PAR1 inhibition. PMID:26829215

  12. In vitro growth-inhibitory effect of ethanol GRAS plant and supercritical CO₂ hop extracts on planktonic cultures of oral pathogenic microorganisms.

    PubMed

    Pilna, J; Vlkova, E; Krofta, K; Nesvadba, V; Rada, V; Kokoska, L

    2015-09-01

    Conventional chemical antiseptics used for treatment of oral infections often produce side-effects, which restrict their long-term use. Plants are considered as perspective sources of novel natural antiseptics. However, little is still known about their inhibitory properties against oral pathogens. The objective of this study was to test in vitro antimicrobial activities of generally recognized as safe (GRAS) species against planktonic cultures of cariogenic, periodontal and candidal microorganisms and identify active compounds of the most active extracts. Growth-inhibitory effects of ethanol extracts from 109 GRAS plant species, six Humulus lupulus cultivars and two hop supercritical CO2 extracts were evaluated using broth microdilution method. The chemical analysis was done through high-performance liquid chromatography. Best results were obtained for supercritical CO2 and ethanol extracts of H. lupulus with minimum inhibitory concentrations (MIC) ≥8 μg/mL and ≥16 μg/mL, respectively. The chemical analysis of supercritical CO2H. lupulus extracts revealed that α- and β-acids were their main constituents. Capsicum annuum and Capsicum frutescens showed antibacterial effect against Streptococcus sobrinus and Streptococcus salivarius (MIC=64-128 μg/mL). These strains were further inhibited by Zanthoxylum clava-herculis (MIC=64-128 μg/mL) and Myristica fragrans (both MIC≥128 μg/mL). The latter also exhibited antimicrobial activity against Fusobacterium nucleatum (MIC=64 μg/mL). Punica granatum possessed inhibitory effects against Candida albicans (MIC=128 μg/mL) and F. nucleatum (MIC=64 μg/mL). The results indicate that supercritical CO2H. lupulus extracts together with ethanol extracts of C. annuum, C. frutescens, M. fragrans, P. granatum and Z. clava-herculis are promising materials for further investigation on new antiseptic agents of oral care products. PMID:26232134

  13. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence.

    PubMed

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R; Kehn-Hall, Kylene; Omichinski, James G

    2015-05-12

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  14. A ΩXaV motif in the Rift Valley fever virus NSs protein is essential for degrading p62, forming nuclear filaments and virulence

    PubMed Central

    Cyr, Normand; de la Fuente, Cynthia; Lecoq, Lauriane; Guendel, Irene; Chabot, Philippe R.; Kehn-Hall, Kylene; Omichinski, James G.

    2015-01-01

    Rift Valley fever virus (RVFV) is a single-stranded RNA virus capable of inducing fatal hemorrhagic fever in humans. A key component of RVFV virulence is its ability to form nuclear filaments through interactions between the viral nonstructural protein NSs and the host general transcription factor TFIIH. Here, we identify an interaction between a ΩXaV motif in NSs and the p62 subunit of TFIIH. This motif in NSs is similar to ΩXaV motifs found in nucleotide excision repair (NER) factors and transcription factors known to interact with p62. Structural and biophysical studies demonstrate that NSs binds to p62 in a similar manner as these other factors. Functional studies in RVFV-infected cells show that the ΩXaV motif is required for both nuclear filament formation and degradation of p62. Consistent with the fact that the RVFV can be distinguished from other Bunyaviridae-family viruses due to its ability to form nuclear filaments in infected cells, the motif is absent in the NSs proteins of other Bunyaviridae-family viruses. Taken together, our studies demonstrate that p62 binding to NSs through the ΩXaV motif is essential for degrading p62, forming nuclear filaments and enhancing RVFV virulence. In addition, these results show how the RVFV incorporates a simple motif into the NSs protein that enables it to functionally mimic host cell proteins that bind the p62 subunit of TFIIH. PMID:25918396

  15. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    SciTech Connect

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  16. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-07-01

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  17. The Interplay between PolyQ and Protein Context Delays Aggregation by Forming a Reservoir of Protofibrils

    PubMed Central

    Thomas, David J.; San Biagio, Pier Luigi; Pastore, Annalisa

    2006-01-01

    Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders caused by the expansion of CAG codon repeats, which code for polyQ in the corresponding gene products. These diseases are associated with the presence of amyloid-like protein aggregates, induced by polyQ expansion. It has been suggested that the soluble aggregates rather than the mature fibrillar aggregates are the toxic species, and that the aggregation properties of polyQ can be strongly modulated by the surrounding protein context. To assess the importance of the protein carrier in polyQ aggregation, we have studied the misfolding pathway and the kinetics of aggregation of polyQ of lengths above (Q41) and below (Q22) the pathological threshold fused to the well-characterized protein carrier glutathione S-transferase (GST). This protein, chosen as a model system, is per se able to misfold and aggregate irreversibly, thus mimicking the behaviour of domains of naturally occurring polyQ proteins. We prove that, while it is generally accepted that the aggregation kinetics of polyQ depend on its length and are faster for longer polyQ tracts, the presence of GST alters the polyQ aggregation pathway and reverses this trend. Aggregation occurs through formation of a reservoir of soluble intermediates whose populations and kinetic stabilities increase with polyQ length. Our results provide a new model that explains the toxicity of expanded polyQ proteins, in which the interplay between polyQ regions and other aggregation-prone domains plays a key role in determining the aggregation pathway. PMID:17205115

  18. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  19. Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility

    PubMed Central

    McMahon, Roisin M.; Coinçon, Mathieu; Tay, Stephanie; Heras, Begoña; Morton, Craig J.; Scanlon, Martin J.; Martin, Jennifer L.

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen for which new antimicrobial drug options are urgently sought. P. aeruginosa disulfide-bond protein A1 (PaDsbA1) plays a pivotal role in catalyzing the oxidative folding of multiple virulence proteins and as such holds great promise as a drug target. As part of a fragment-based lead discovery approach to PaDsbA1 inhibitor development, the identification of a crystal form of PaDsbA1 that was more suitable for fragment-soaking experiments was sought. A previously identified crystallization condition for this protein was unsuitable, as in this crystal form of PaDsbA1 the active-site surface loops are engaged in the crystal packing, occluding access to the target site. A single residue involved in crystal-packing interactions was substituted with an amino acid commonly found at this position in closely related enzymes, and this variant was successfully used to generate a new crystal form of PaDsbA1 in which the active-site surface is more accessible for soaking experiments. The PaDsbA1 variant displays identical redox character and in vitro activity to wild-type PaDsbA1 and is structurally highly similar. Two crystal structures of the PaDsbA1 variant were determined in complex with small molecules bound to the protein active site. These small molecules (MES, glycerol and ethylene glycol) were derived from the crystallization or cryoprotectant solutions and provide a proof of principle that the reported crystal form will be amenable to co-crystallization and soaking with small molecules designed to target the protein active-site surface. PMID:26627647

  20. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies.

    PubMed

    Krasnoslobodtsev, Alexey V; Deckert-Gaudig, Tanja; Zhang, Yuliang; Deckert, Volker; Lyubchenko, Yuri L

    2016-06-01

    Aggregation of prion proteins is the cause of various prion related diseases. The infectious form of prions, amyloid aggregates, exist as multiple strains. The strains are thought to represent structurally different prion protein molecules packed into amyloid aggregates, but the knowledge on the structure of different types of aggregates is limited. Here we report on the use of AFM (Atomic Force Microscopy) and TERS (Tip-Enhanced Raman Scattering) to study morphological heterogeneity and access underlying conformational features of individual amyloid aggregates. Using AFM we identified the morphology of amyloid fibrils formed by the peptide (CGNNQQNY) from the yeast prion protein Sup35 that is critically involved in the aggregation of the full protein. TERS results demonstrate that morphologically different amyloid fibrils are composed of a distinct set of conformations. Fibrils formed at pH 5.6 are composed of a mixture of peptide conformations (β-sheets, random coil and α-helix) while fibrils formed in pH~2 solution primarily have β-sheets. Additionally, peak positions in the amide III region of the TERS spectra suggested that peptides have parallel arrangement of β-sheets for pH~2 fibrils and antiparallel arrangement for fibrils formed at pH 5.6. We also developed a methodology for detailed analysis of the peptide secondary structure by correlating intensity changes of Raman bands in different regions of TERS spectra. Such correlation established that structural composition of peptides is highly localized with large contribution of unordered secondary structures on a fibrillar surface. PMID:27060278

  1. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations.

    PubMed Central

    Kuo, M H; Nadeau, E T; Grayhack, E J

    1997-01-01

    The Saccharomyces cerevisiae Mcm1 protein is an essential multifunctional transcription factor which is highly homologous to human serum response factor. Mcm1 protein acts on a large number of distinctly regulated genes: haploid cell-type-specific genes, G2-cell-cycle-regulated genes, pheromone-induced genes, arginine metabolic genes, and genes important for cell wall and cell membrane function. We show here that Mcm1 protein is phosphorylated in vivo. Several (more than eight) isoforms of Mcm1 protein, resolved by isoelectric focusing, are present in vivo; two major phosphorylation sites lie in the N-terminal 17 amino acids immediately adjacent to the conserved MADS box DNA-binding domain. The implications of multiple species of Mcm1, particularly the notion that a unique Mcm1 isoform could be required for regulation of a specific set of Mcm1's target genes, are discussed. We also show here that Mcm1 plays an important role in the response to stress caused by NaCl. G. Yu, R. J. Deschenes, and J. S. Fassler (J. Biol. Chem. 270:8739-8743, 1995) showed that Mcm1 function is affected by mutations in the SLN1 gene, a signal transduction component implicated in the response to osmotic stress. We find that mcm1 mutations can confer either reduced or enhanced survival on high-salt medium; deletion of the N terminus or mutation in the primary phosphorylation site results in impaired growth on high-salt medium. Furthermore, Mcm1 protein is a target of a signal transduction system responsive to osmotic stress: a new isoform of Mcm1 is induced by NaCl or KCl; this result establishes that Mcm1 itself is regulated. PMID:9001236

  2. [Interrelation of the antibiotic sensitivity (resistance) of staphylococci, clinical forms of the infection and production of protein A].

    PubMed

    Fomenko, G A

    1984-06-01

    Two hundred and thirty-two strains of Staph. aureus isolated from patients with staphylococcal infections were studied. The strains were isolated from the blood of patients with sepsis, from the purulent foci on the skin and in the subcutaneous fat, from the nasopharyngeal mucosa of patients with tonsillitis and inflammation of the upper respiratory tract, from the sputum of patients with the pneumonia signs and from the pus of patients with otitis. The pathogens were identified with the routine methods. The quantitative content of protein A in the strains was determined by the method of indirect hemagglutination with red blood cells sensitized with the hemolytic serum. The data obtained were analysed with regard to the strain group and characteristics of the strain resistance or sensitivity to benzylpenicillin, erythromycin, oleandomycin, chloramphenicol, streptomycin, neomycin, kanamycin, monomycin, ristomycin and furagin K. Statistically significant differences in the protein A content in certain strain groups were observed. These differences might be correlated with the strain antibiotic resistance but not sensitivity. Pronounced changes in the levels of protein A were detected in the staphylococcal hemocultures resistant to erythromycin and streptomycin. The cultures resistant to erythromycin were characterized by decreased content of protein A and those resistant to streptomycin were characterized by increased content of protein A. Comparison of the antibiotic sensitivity of the strains of 5 groups by variation statistics revealed significant differences in the levels of sensitivity to streptomycin, neomycin, kanamycin, monomycin, ristomycin and furagin K but not to erythromycin, oleandomycin and chloramphenicol in the strains of certain groups. The staphylococcal hemocultures isolated from patients with sepsis proved to be the most sensitive to the antibiotics. PMID:6476803

  3. Augmented DNA-binding activity of p53 protein encoded by a carboxyl-terminal alternatively spliced mRNA is blocked by p53 protein encoded by the regularly spliced form.

    PubMed Central

    Wolkowicz, R; Peled, A; Elkind, N B; Rotter, V

    1995-01-01

    DNA-binding activity of the wild-type p53 is central to its function in vivo. However, recombinant or in vitro translated wild-type p53 proteins, unless modified, are poor DNA binders. The fact that the in vitro produced protein gains DNA-binding activity upon modification at the C terminus raises the possibility that similar mechanisms may exist in the cell. Data presented here show that a C-terminal alternatively spliced wild-type p53 (ASp53) mRNA expressed by bacteria or transcribed in vitro codes for a p53 protein that efficiently binds DNA. Our results support the conclusion that the augmented DNA binding activity of an ASp53 protein is probably due to attenuation of the negative effect residing at the C terminus of the wild-type p53 protein encoded by the regularly spliced mRNA (RSp53) rather than acquisition of additional functionality by the alternatively spliced C' terminus. In addition, we found that ASp53 forms a complex with the non-DNA-binding RSp53, which in turn blocks the DNA-binding activity of ASp53. Interaction between these two wild-type p53 proteins may underline a mechanism that controls the activity of the wild-type p53 protein in the cell. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7624329

  4. A Fusion between Domains of the Human Bone Morphogenetic Protein-2 and Maize 27 kD γ-Zein Accumulates to High Levels in the Endoplasmic Reticulum without Forming Protein Bodies in Transgenic Tobacco

    PubMed Central

    Ceresoli, Valentina; Mainieri, Davide; Del Fabbro, Massimo; Weinstein, Roberto; Pedrazzini, Emanuela

    2016-01-01

    Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs. PMID:27047526

  5. The secreted form of dengue virus nonstructural protein NS1 is endocytosed by hepatocytes and accumulates in late endosomes: implications for viral infectivity.

    PubMed

    Alcon-LePoder, Sophie; Drouet, Marie-Thérèse; Roux, Pascal; Frenkiel, Marie-Pascale; Arborio, Michel; Durand-Schneider, Anne-Marie; Maurice, Michèle; Le Blanc, Isabelle; Gruenberg, Jean; Flamand, Marie

    2005-09-01

    The flavivirus nonstructural protein NS1 is expressed as three discrete species in infected mammalian cells: an intracellular, membrane-associated form essential for viral replication, a cell surface-associated form that may be involved in signal transduction, and a secreted form (sNS1), the biological properties of which remain elusive. To determine the distribution of the dengue virus (DEN) sNS1 protein in vivo, we have analyzed by immunohistological means the tissue tropism of purified DEN sNS1 injected intravenously into adult mice. The sNS1 protein was found predominantly associated with the liver, where hepatocytes appeared to represent a major target cell. We further showed that sNS1 could be efficiently endocytosed by human Huh7 and HepG2 hepatocytes in vitro. After its internalization, the protein was detected intracellularly for at least 48 h without being substantially degraded. Colocalization studies of sNS1 with markers of the endolysosomal compartments revealed that the protein was specifically targeted to lysobisphosphatidic acid-rich structures reminiscent of late endosomes, as confirmed by electron microscopy. Intracellular accumulation of sNS1 in Huh7 cells enhanced the fluid phase uptake of rhodamine-labeled dextran. Furthermore, preincubation of Huh7 cells with sNS1 increased dengue virus production after infection with the homologous strain of DEN-1 virus. Our results demonstrate that the accumulation of DEN sNS1 in the late endosomal compartment of hepatocytes potentializes subsequent dengue virus infection in vitro, raising the possibility that sNS1 may contribute to viral propagation in vivo. PMID:16103191

  6. Alzheimer's disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons.

    PubMed Central

    Kawahara, M; Arispe, N; Kuroda, Y; Rojas, E

    1997-01-01

    We have previously shown that the 40-residue peptide termed amyloid beta-protein (A beta P[1-40]) in solution forms cation-selective channels across artificial phospholipid bilayer membranes. To determine whether A beta P[1-40] also forms channels across natural membranes, we used electrically silent excised membrane patches from a cell line derived from hypothalamic gonadotrophin-releasing hormone GnRH neurons. We found that exposing either the internal or the external side of excised membrane patches to A beta P[1-40] leads to the spontaneous formation of cation-selective channels. With Cs+ as the main cation in both the external as well as the internal saline, the amplitude of the A beta P[1-40] channel currents was found to follow the Cs+ gradient and to exhibit spontaneous conductance changes over a wide range (50-500 pS). We also found that free zinc (Zn2+), reported to bind to amyloid beta-protein in solution, can block the flow of Cs+ through the A beta P[1-40] channel. Because the Zn2+ chelator o-phenanthroline can reverse this blockade, we conclude that the underlying mechanism involves a direct interaction between the transition element Zn2+ and sites in the A beta P[1-40] channel pore. These properties of the A beta P[1-40] channel are rather similar to those observed in the artificial bilayer system. We also show here, by immunocytochemical confocal microscopy, that amyloid beta-protein molecules form deposits closely associated with the plasma membrane of a substantial fraction of the GnRH neurons. Taken together, these results suggest that the interactions between amyloid beta-protein and neuronal membranes also occur in vivo, lending further support to the idea that A beta P[1-40] channel formation might be a mechanism of amyloid beta-protein neurotoxicity. Images FIGURE 5 PMID:9199772

  7. Protein Recognition of Gold-Based Drugs: 3D Structure of the Complex Formed When Lysozyme Reacts with Aubipy(c.).

    PubMed

    Messori, Luigi; Cinellu, Maria Agostina; Merlino, Antonello

    2014-10-01

    The structure of the adduct formed in the reaction between Aubipy(c), a cytotoxic organogold(III) compound, and the model protein hen egg white lysozyme (HEWL) has been solved by X-ray crystallography. It emerges that Aubipy(c), after interaction with HEWL, undergoes reduction of the gold(III) center followed by detaching of the cyclometalated ligand; the resulting naked gold(I) ion is found bound to the protein at Gln121. A direct comparison between the present structure and those previously solved for the lysozyme adducts with other gold(III) compounds demonstrates that coordinated ligands play a key role in the protein-metallodrug recognition process. Structural data support the view that gold(III)-based antitumor prodrugs are activated through metal reduction. PMID:25313321

  8. The C-terminal region of the transcriptional regulator THAP11 forms a parallel coiled-coil domain involved in protein dimerization.

    PubMed

    Cukier, Cyprian D; Maveyraud, Laurent; Saurel, Olivier; Guillet, Valérie; Milon, Alain; Gervais, Virginie

    2016-06-01

    Thanatos associated protein 11 (THAP11) is a cell cycle and cell growth regulator differentially expressed in cancer cells. THAP11 belongs to a distinct family of transcription factors recognizing specific DNA sequences via an atypical zinc finger motif and regulating diverse cellular processes. Outside the extensively characterized DNA-binding domain, THAP proteins vary in size and predicted domains, for which structural data are still lacking. We report here the crystal structure of the C-terminal region of human THAP11 protein, providing the first 3D structure of a coiled-coil motif from a THAP family member. We further investigate the stability, dynamics and oligomeric properties of the determined structure combining molecular dynamics simulations and biophysical experiments. Our results show that the C-ter region of THAP11 forms a left-handed parallel homo-dimeric coiled-coil structure possessing several unusual features. PMID:26975212

  9. Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes.

    PubMed

    Quintyn, Royston S; Zhou, Mowei; Yan, Jing; Wysocki, Vicki H

    2015-12-01

    One attractive feature of ion mobility mass spectrometry (IM-MS) lies in its ability to provide experimental collision cross section (CCS) measurements, which can be used to distinguish different conformations that a protein complex may adopt during its gas-phase unfolding. However, CCS values alone give no detailed information on subunit structure within the complex. Consequently, structural characterization typically requires molecular modeling, which can have uncertainties without experimental support. One method of obtaining direct experimental evidence on the structures of these intermediates is utilizing gas-phase activation techniques that can effectively dissociate the complexes into substructures while preserving the native topological information. The most commonly used activation method, collision-induced dissociation (CID) with low-mass target gases, typically leads to unfolding of monomers of a protein complex. Here, we describe a method that couples IM-MS and surface-induced dissociation (SID) to dissociate the source-activated precursors of three model protein complexes: C-reactive protein (CRP), transthyretin (TTR), and concanavalin A (Con A). The results of this study confirm that CID involves the unfolding of the protein complex via several intermediates. More importantly, our experiments also indicate that retention of similar CCS between different intermediates does not guarantee retention of structure. Although CID spectra (at a given collision energy) of source-activated, mass-selected precursors do not distinguish between native-like, collapsed, and expanded forms of a protein complex, dissociation patterns and/or average charge states of monomer products in SID of each of these forms are unique. PMID:26499904

  10. Fusion proteins containing the A2 domain of cholera toxin assemble with B polypeptides of cholera toxin to form immunoreactive and functional holotoxin-like chimeras.

    PubMed

    Jobling, M G; Holmes, R K

    1992-11-01

    Cholera enterotoxin (CT) is produced by Vibrio cholerae and excreted into the culture medium as an extracellular protein. CT consists of one A polypeptide and five B polypeptides associated by noncovalent bonds, and CT-B interacts with CT-A primarily via the A2 domain. Treatment of CT with trypsin cleaves CT-A into A1 and A2 fragments that are linked by a disulfide bond. CT-B binds to ganglioside GM1, which functions as the plasma membrane receptor for CT, and the enzymatic activity of A1 causes the toxic effects of CT on target cells. We constructed translational fusions that joined foreign proteins via their carboxyl termini to the A2 domain of CT-A, and we studied the interactions of the fusion proteins with CT-B. The A2 domain was necessary and sufficient to enable bacterial alkaline phosphatase (BAP), maltose-binding protein (MBP) or beta-lactamase (BLA) to associate with CT-B to form stable, immunoreactive, holotoxin-like chimeras. Each holotoxin-like chimera was able to bind to ganglioside GM1. Holotoxin-like chimeras containing the BAP-A2 and BLA-A2 fusion proteins had BAP activity and BLA activity, respectively. We constructed BAP-A2 mutants with altered carboxyl-terminal sequences and tested their ability to assemble into holotoxin-like chimeras. Although the carboxyl-terminal QDEL sequence of the BAP-A2 fusion protein was not required for interaction with CT-B, most BAP-A2 mutants with altered carboxyl termini did not form holotoxin-like chimeras. When holotoxin-like chimeras containing BAP-A2, MBP-A2, or BLA-A2 were synthesized in V. cholerae, they were found predominantly in the periplasm. The toxin secretory apparatus of V. cholerae was not able, therefore, to translocate these holotoxin-like chimeras across the outer membrane. PMID:1399002

  11. Mutations of the domain forming the dimeric interface of the ArdA protein affect dimerization and antimodification activity but not antirestriction activity

    PubMed Central

    Roberts, Gareth A; Chen, Kai; Bower, Edward K M; Madrzak, Julia; Woods, Arcadia; Barker, Amy M; Cooper, Laurie P; White, John H; Blakely, Garry W; Manfield, Iain; Dryden, David T F

    2013-01-01

    ArdA antirestriction proteins are encoded by genes present in many conjugative plasmids and transposons within bacterial genomes. Antirestriction is the ability to prevent cleavage of foreign incoming DNA by restriction-modification (RM) systems. Antimodification, the ability to inhibit modification by the RM system, can also be observed with some antirestriction proteins. As these mobile genetic elements can transfer antibiotic resistance genes, the ArdA proteins assist their spread. The consequence of antirestriction is therefore the enhanced dissemination of mobile genetic elements. ArdA proteins cause antirestriction by mimicking the DNA structure bound by Type I RM enzymes. The crystal structure of ArdA showed it to be a dimeric protein with a highly elongated curved cylindrical shape [McMahon SA et al. (2009) Nucleic Acids Res37, 4887–4897]. Each monomer has three domains covered with negatively charged side chains and a very small interface with the other monomer. We investigated the role of the domain forming the dimer interface for ArdA activity via site-directed mutagenesis. The antirestriction activity of ArdA was maintained when up to seven mutations per monomer were made or the interface was disrupted such that the protein could only exist as a monomer. The antimodification activity of ArdA was lost upon mutation of this domain. The ability of the monomeric form of ArdA to function in antirestriction suggests, first, that it can bind independently to the restriction subunit or the modification subunits of the RM enzyme, and second, that the many ArdA homologues with long amino acid extensions, present in sequence databases, may be active in antirestriction. Structured digital abstract ArdA and ArdA bind by molecular sieving (1, 2) ArdA and ArdA bind by cosedimentation in solution (1, 2) PMID:23910724

  12. Intrinsically Disordered Enamel Matrix Protein Ameloblastin Forms Ribbon-like Supramolecular Structures via an N-terminal Segment Encoded by Exon 5*

    PubMed Central

    Wald, Tomas; Osickova, Adriana; Sulc, Miroslav; Benada, Oldrich; Semeradtova, Alena; Rezabkova, Lenka; Veverka, Vaclav; Bednarova, Lucie; Maly, Jan; Macek, Pavel; Sebo, Peter; Slaby, Ivan; Vondrasek, Jiri; Osicka, Radim

    2013-01-01

    Tooth enamel, the hardest tissue in the body, is formed by the evolutionarily highly conserved biomineralization process that is controlled by extracellular matrix proteins. The intrinsically disordered matrix protein ameloblastin (AMBN) is the most abundant nonamelogenin protein of the developing enamel and a key element for correct enamel formation. AMBN was suggested to be a cell adhesion molecule that regulates proliferation and differentiation of ameloblasts. Nevertheless, detailed structural and functional studies on AMBN have been substantially limited by the paucity of the purified nondegraded protein. With this study, we have developed a procedure for production of a highly purified form of recombinant human AMBN in quantities that allowed its structural characterization. Using size exclusion chromatography, analytical ultracentrifugation, transmission electron, and atomic force microscopy techniques, we show that AMBN self-associates into ribbon-like supramolecular structures with average widths and thicknesses of 18 and 0.34 nm, respectively. The AMBN ribbons exhibited lengths ranging from tens to hundreds of nm. Deletion analysis and NMR spectroscopy revealed that an N-terminal segment encoded by exon 5 comprises two short independently structured regions and plays a key role in self-assembly of AMBN. PMID:23782691

  13. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    SciTech Connect

    Yokoyama, Hideshi; Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  14. Molecular Aspects of the Interaction of Iminium and Alkanolamine Forms of the Anticancer Alkaloid Chelerythrine with Plasma Protein Bovine Serum Albumin.

    PubMed

    Bhuiya, Sutanwi; Pradhan, Ankur Bikash; Haque, Lucy; Das, Suman

    2016-01-14

    The interaction between a quaternary benzophenanthridine alkaloid chelerythrine (herein after, CHL) and bovine serum albumin (herein after, BSA) was probed by employing various spectroscopic tools and isothermal titration calorimetry (ITC). Fluorescence studies revealed that the binding affinity of the alkanolamine form of the CHL is higher compared to the iminium counterpart. This was further established by fluorescence polarization anisotropy measurement and ITC. Fluorescence quenching study along with time-resolved fluorescence measurements establish that both forms of CHL quenched the fluorescence intensity of BSA through the mechanism of static quenching. Site selective binding and molecular modeling studies revealed that the alkaloid binds predominantly in the BSA subdomain IIA by electrostatic and hydrophobic forces. From Forster resonance energy transfer (FRET) studies, the average distances between the protein donor and the alkaloid acceptor were found to be 2.71 and 2.30 nm between tryptophan (Trp) 212 (donor) and iminium and alkanolamine forms (acceptor), respectively. Circular dichroism (CD) study demonstrated that the α-helical organization of the protein is reduced due to binding with CHL along with an increase in the coiled structure. This is indicative of a small but definitive partial unfolding of the protein. Thermodynamic parameters obtained from ITC experiments revealed that the interaction is favored by negative enthalpy change and positive entropy change. PMID:26653994

  15. Effect of ice storage on the functional properties of proteins from a few species of fresh water fish (Indian major carps) with special emphasis on gel forming ability.

    PubMed

    Mehta, Naresh Kumar; Elavarasan, K; Reddy, A Manjunatha; Shamasundar, B A

    2014-04-01

    In the present study the effect of ice storage on physico-chemical and functional properties of proteins from Indian major carps with special emphasis on gel forming ability have been assessed for a period of 22 days. The solubility profile of proteins in high ionic strength buffer and calcium adenosine triphosphatase (ATPase) enzyme activity reduced significantly (p < 0.05), while that of total volatile base nitrogen (TVB-N) increased significantly (p < 0.05) at the end of 22 days of ice storage. The major protein fraction showed association-dissociation-denaturation phenomenon during ice storage as revealed by gel filtration profile and viscosity measurements. The gel forming ability of three fish species both in fresh and during different periods of ice storage was assessed by measuring the gel strength of heat induced gel. Among the three species the gel strength of the gel obtained from Catla catla and Cirrhinus mrigala was higher (586 and 561 g.cm) than the gel obtained from Labeo rohita (395 g.cm) in fresh condition. The gel forming ability of three species was significantly affected (p < 0.05) during ice storage. The TVB-N values of fish meat as a function of ice storage was within the prescribed limit up to 17 days of the ice storage. PMID:24741158

  16. SMN, the Spinal Muscular Atrophy Protein, Forms a Pre-Import Snrnp Complex with Snurportin1 and Importin β

    PubMed Central

    Narayanan, Usha; Ospina, Jason K.; Frey, Mark R.; Hebert, Michael D.; Matera, A. Gregory

    2006-01-01

    The survival of motor neuron (SMN) protein is mutated in patients with spinal muscular atrophy (SMA). SMN is part of a multiprotein complex required for biogenesis of the Sm class of small nuclear ribonucleoproteins (snRNPs). Following assembly of the Sm core domain, snRNPs are transported to the nucleus via importin β. Sm snRNPs contain a nuclear localization signal (NLS) consisting of a 2,2,7-trimethylguanosine (TMG) cap and the Sm core. Snurportin1 (SPN) is the adaptor protein that recognizes both the TMG cap and importin β. Here, we report that a mutant SPN construct lacking the importin β binding domain (IBB), but containing an intact TMG cap-binding domain, localizes primarily to the nucleus, whereas full-length SPN localizes to the cytoplasm. The nuclear localization of the mutant SPN was not a result of passive diffusion through the nuclear pores. Importantly, we found that SPN interacts with SMN, Gemin3, Sm snRNPs and importin β. In the presence of ribonucleases, the interactions with SMN and Sm proteins were abolished, indicating that snRNAs mediate this interplay. Cell fractionation studies showed that SPN binds preferentially to cytoplasmic SMN complexes. Notably, we found that SMN directly interacts with importin β in a GST-pulldown assay, suggesting that the SMN complex might represent the Sm core NLS receptor predicted by previous studies. Therefore, we conclude that, following Sm protein assembly, the SMN complex persists until the final stages of cytoplasmic snRNP maturation and may provide somatic cell RNPs with an alternative NLS. PMID:12095920

  17. Adaptation to high light intensity in Synechococcus sp. strain PCC 7942: regulation of three psbA genes and two forms of the D1 protein.

    PubMed Central

    Kulkarni, R D; Golden, S S

    1994-01-01

    The three psbA genes in the cyanobacterium Synechococcus sp. strain PCC 7942 encode two distinct forms of the D1 protein of photosystem II. The psbAI message, which encodes form I, dominates the psbA transcript pool at low to moderate light intensities; however, exposure to high light triggers a response in which the psbAI message is actively degraded while psbAII and psbAIII, which encode form II, are transcriptionally induced. We addressed whether these changes result from a generalized stress response and examined the consequence of light-responsive psbA regulation on the composition of D1 in thylakoid membranes. Heat shock and oxidative stress had some effect on levels of the three psbA transcripts but did not produce the responses generated by an increase in light intensity. Prolonged exposure to high light (24-h time course) was characterized by elevated levels of all psbA transcripts through maintenance of high levels of psbAII and psbAIII messages and a rebound of the psbAI transcript after its initial decline. Form II-encoding transcripts were enriched relative to those encoding form I at all high-light time points. Form II replaced form I in the thylakoid membrane at high light despite an abundance of psbAI transcript at later time points; this may be explained by the observed faster turnover of form I than form II in the membrane. We propose that form II is less susceptible to damage at high light and that this qualitative alteration, coupled with increased turnover of D1, protects the cells from photoinhibition. Images PMID:8106338

  18. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  19. Noncanonical FK506-binding Protein BDBT Binds DBT to Enhance its Circadian Function and Forms Foci at Night

    PubMed Central

    Fan, Jin-Yuan; Agyekum, Boadi; Venkatesan, Anandakrishnan; Hall, David R.; Keightley, Andrew; Bjes, Edward S.; Bouyain, Samuel; Price, Jeffrey L.

    2013-01-01

    SUMMARY The kinase DOUBLETIME is a master regulator of the Drosophila circadian clock, yet the mechanisms regulating its activity remain unclear. A proteomic analysis of DOUBLETIME interactors led to the identification of an unstudied protein designated CG17282. RNAi-mediated knock-down of CG17282 produced behavioral arrhythmicity and long periods, high levels of hypophosphorylated nuclear PERIOD and phosphorylated DOUBLETIME. Overexpression of DOUBLETIME in flies suppresses these phenotypes and overexpression of CG17282 in S2 cells enhances DOUBLETIME-dependent PERIOD degradation, indicating that CG17282 stimulates DOUBLETIME’s circadian function. In photoreceptors, CG17282 accumulates rhythmically in PERIOD- and DOUBLETIME-dependent cytosolic foci. Finally, structural analyses demonstrated CG17282 is a noncanonical FK506-binding protein with an inactive peptide prolyl-isomerase domain that binds DOUBLETIME and tetratricopeptide repeats that may promote assembly of larger protein complexes. We have named CG17282 Bride of Doubletime and established it as a mediator of DOUBLETIME’s effects on PERIOD, most likely in cytosolic foci that regulate PERIOD nuclear accumulation. PMID:24210908

  20. Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems.

    PubMed

    Quental, Maria V; Caban, Magda; Pereira, Matheus M; Stepnowski, Piotr; Coutinho, João A P; Freire, Mara G

    2015-09-01

    Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) are promising platforms for the extraction and purification of proteins. In this work, a series of alternative and biocompatible ABS composed of cholinium-based ILs and polypropylene glycol were investigated. The respective ternary phase diagrams, tie-lines, tie-line lengths and critical points were determined at 25°C. The extraction performance of these systems for commercial bovine serum albumin (BSA) was then evaluated. The stability of BSA at the IL-rich phase was ascertained by size exclusion high-performance liquid chromatography and Fourier transform infrared spectroscopy. Appropriate ILs lead to the complete extraction of BSA for the IL-rich phase, in a single step, while maintaining the protein's native conformation. Furthermore, to evaluate the performance of these systems when applied to real matrices, the extraction of BSA from bovine serum was additionally carried out, revealing that the complete extraction of BSA was maintained and achieved in a single step. The remarkable extraction efficiencies obtained are far superior to those observed with typical polymer-based ABS. Therefore, the proposed ABS may be envisaged as a more effective and biocompatible approach for the separation and purification of other value-added proteins. PMID:25864445

  1. Photochemically Generated Elemental Selenium Forms Conjugates with Serum Proteins that Are Preferentially Cytotoxic to Leukemia and Selected Solid Tumor Cells

    PubMed Central

    Daziano, Jean-Pierre; Günther, Wolfgang H.H.; Krieg, Marianne; Tsujino, Ichiro; Miyagi, Kiyoko; Anderson, Gregory S.; Sampson, Reynée W.; Ostrowski, Martin D.; Muir, Sarah A.; Bula, Raymond J.; Sieber, Fritz

    2012-01-01

    The objective of this study was to determine if and how photoproducts contribute to the anti-tumor effect of merocyanine-mediated PDT. A panel of barbituric, thiobarbituric and selenobarbituric acid analogues of Merocyanine 540 was photobleached, and the resulting photoproducts were characterized by absorption, fluorescence emission, mass, energy dispersive X-ray, and X-ray photoelectron spectroscopy, and tested for cytotoxic activity against tumor cell lines and freshly explanted bone marrow cells. While all dyes were readily photobleached, only photoproducts of selone dyes showed cytotoxic activity. One-hour incubations with micromolar concentrations of selone-derived photoproducts were sufficient to reduce leukemia/lymphoma cells ≥10,000 fold while preserving virtually all normal CD34-positive bone marrow cells. Of 6 multi-drug resistant tumor cell lines tested, 5 were as sensitive or more sensitive to photoproducts than the corresponding wild-type lines. Physicochemical characterizations of the cytotoxic activity indicated that it consisted of conjugates of subnano particles of elemental selenium and (lipo)proteins. The discovery of cytotoxic Se-protein conjugates provides a rare example of photoproducts contributing substantially to the anti-tumor effect of PDT and challenges the long-held view that Se in oxidation state zero is biologically inert. Agents modeled after our Se-protein conjugates may prove useful for the treatment of leukemia. PMID:22211823

  2. PTPN14 Forms a Complex with Kibra and LATS1 Proteins and Negatively Regulates the YAP Oncogenic Function*

    PubMed Central

    Wilson, Kayla E.; Li, Ying-Wei; Yang, Nuo; Shen, He; Orillion, Ashley R.; Zhang, Jianmin

    2014-01-01

    The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to epithelial-to-mesenchymal transition and malignant transformation. Therefore, it is of great importance to decipher the mechanisms underlying the regulations of YAP/TAZ at various levels. Here we report that non-receptor tyrosine phosphatase 14 (PTPN14) interacts with the Kibra protein. The interaction between PTPN14 and Kibra is through the PPXY domain of PTPN14 and WW domain of Kibra. PTPN14 and Kibra can induce the LATS1 activation independently and cooperatively. Interestingly, activation of LATS1 by PTPN14 is dependent on the C terminus of PTPN14 and independent of the upstream mammalian STE20-like kinase (MST) proteins. Furthermore, we demonstrate that PTPN14 increases the LAST1 protein stability. Last, overexpression of Kibra rescues the increased cell migration and aberrant three-dimensional morphogenesis induced by knockdown of PTPN14, and this rescue is mediated through the activation of the upstream LATS1 kinase and subsequent cytoplasmic sequestration of YAP. In summary, our results indicate a potential regulatory role of PTPN14 in the Hippo pathway and demonstrate another layer of regulation in the YAP oncogenic function. PMID:25023289

  3. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  4. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  5. TYPE-ONE PROTEIN PHOSPHATASE4 Regulates Pavement Cell Interdigitation by Modulating PIN-FORMED1 Polarity and Trafficking in Arabidopsis1

    PubMed Central

    Guo, Xiaola; Qin, Qianqian; Yan, Jia; Niu, Yali; Huang, Bingyao; Guan, Liping; Li, Yuan; Ren, Dongtao; Li, Jia; Hou, Suiwen

    2015-01-01

    In plants, cell morphogenesis is dependent on intercellular auxin accumulation. The polar subcellular localization of the PIN-FORMED (PIN) protein is crucial for this process. Previous studies have shown that the protein kinase PINOID (PID) and protein phosphatase6-type phosphatase holoenzyme regulate the phosphorylation status of PIN1 in root tips and shoot apices. Here, we show that a type-one protein phosphatase, TOPP4, is essential for the formation of interdigitated pavement cell (PC) pattern in Arabidopsis (Arabidopsis thaliana) leaf. The dominant-negative mutant topp4-1 showed severely inhibited interdigitated PC growth. Expression of topp4-1 gene in wild-type plants recapitulated the PC defects in the mutant. Genetic analyses suggested that TOPP4 and PIN1 likely function in the same pathway to regulate PC morphogenesis. Furthermore, colocalization, in vitro and in vivo protein interaction studies, and dephosphorylation assays revealed that TOPP4 mediated PIN1 polar localization and endocytic trafficking in PCs by acting antagonistically with PID to modulate the phosphorylation status of PIN1. In addition, TOPP4 affects the cytoskeleton pattern through the Rho of Plant GTPase-dependent auxin-signaling pathway. Therefore, we conclude that TOPP4-regulated PIN1 polar targeting through direct dephosphorylation is crucial for PC morphogenesis in the Arabidopsis leaf. PMID:25560878

  6. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    SciTech Connect

    Valdes, Iris; Bernardo, Lidice; Pavon, Alekis; Guzman, Maria G.

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  7. Sent packing: protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility

    SciTech Connect

    McMahon, Roisin M. Coinçon, Mathieu; Tay, Stephanie; Heras, Begoña; Morton, Craig J.; Scanlon, Martin J.; Martin, Jennifer L.

    2015-11-26

    The crystal structure of a P. aeruginosa DsbA1 variant is more suitable for fragment-based lead discovery efforts to identify inhibitors of this antimicrobial drug target. In the reported structures the active site of the protein can simultaneously bind multiple ligands introduced in the crystallization solution or via soaking. Pseudomonas aeruginosa is an opportunistic human pathogen for which new antimicrobial drug options are urgently sought. P. aeruginosa disulfide-bond protein A1 (PaDsbA1) plays a pivotal role in catalyzing the oxidative folding of multiple virulence proteins and as such holds great promise as a drug target. As part of a fragment-based lead discovery approach to PaDsbA1 inhibitor development, the identification of a crystal form of PaDsbA1 that was more suitable for fragment-soaking experiments was sought. A previously identified crystallization condition for this protein was unsuitable, as in this crystal form of PaDsbA1 the active-site surface loops are engaged in the crystal packing, occluding access to the target site. A single residue involved in crystal-packing interactions was substituted with an amino acid commonly found at this position in closely related enzymes, and this variant was successfully used to generate a new crystal form of PaDsbA1 in which the active-site surface is more accessible for soaking experiments. The PaDsbA1 variant displays identical redox character and in vitro activity to wild-type PaDsbA1 and is structurally highly similar. Two crystal structures of the PaDsbA1 variant were determined in complex with small molecules bound to the protein active site. These small molecules (MES, glycerol and ethylene glycol) were derived from the crystallization or cryoprotectant solutions and provide a proof of principle that the reported crystal form will be amenable to co-crystallization and soaking with small molecules designed to target the protein active-site surface.

  8. A Protein Synthesis and Nitric Oxide-Dependent Presynaptic Enhancement in Persistent Forms of Long-Term Potentiation

    ERIC Educational Resources Information Center

    Johnstone, Victoria P. A.; Raymond, Clarke R.

    2011-01-01

    Long-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2,…

  9. Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5'-amp with n-acetylaminoacyl imidazolides - Implications regarding the origin of protein synthesis

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.

    1992-01-01

    Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.

  10. A model of EcoRII restriction endonuclease action: the active complex is most likely formed by one protein subunit and one DNA recognition site

    NASA Technical Reports Server (NTRS)

    Karpova, E. A.; Kubareva, E. A.; Shabarova, Z. A.

    1999-01-01

    To elucidate the mechanism of interaction of restriction endonuclease EcoRII with DNA, we studied by native gel electrophoresis the binding of this endonuclease to a set of synthetic DNA-duplexes containing the modified or canonical recognition sequence 5'-d(CCA/TGG)-3'. All binding substrate or substrate analogues tested could be divided into two major groups: (i) duplexes that, at the interaction with endonuclease EcoRII, form two types of stable complexes on native gel in the absence of Mg2+ cofactor; (ii) duplexes that form only one type of complex, observed both in the presence and absence of Mg2+. Unlike the latter, duplexes under the first group can be hydrolyzed by endonuclease. Data obtained suggest that the active complex is most likely formed by one protein subunit and one DNA recognition sequence. A model of EcoRII endonuclease action is presented.

  11. Leishmanial Excreted Factor: Protein-Bound and Free Forms from Promastigote Cultures of Leishmania tropica and Leishmania donovani

    PubMed Central

    Slutzky, Gerald M.; El-On, Joseph; Greenblatt, Charles L.

    1979-01-01

    Leishmania spp. growing in culture produce an immunologically active substance called excreted factor (EF), which precipitates antibodies raised against intact cells and has been implicated as the conditioning agent for parasite infection of host macrophages. An improved method for isolation of the material is described, based on Sephadex column chromatography of growth medium which had been boiled at pH 5.0. This procedure allows the detection of differences among the EF molecules of different species, and it overcomes previous shortcomings through the monitoring of immunological activity throughout. Analysis of the products of this procedure revealed that EFs from Leishmania tropica and Leishmania donovani share a common carrier protein, identified as rabbit serum albumin, and are chemically quite similar. Growth medium from L. tropica boiled at acidic pH contains primarily an EF-albumin complex of 75,000 molecular weight. Treated growth medium from L. donovani, on the other hand, contains both the albumin complex and a smaller molecule (less than 27,000 molecular weight) that is not associated with rabbit protein. This material accounts for nearly 20% of the EF of one L. donovani strain, but constitutes only a minute fraction of L. tropica EF. Treatment of the EF-albumin complex with trichloroacetic acid separates the molecule into two major subunits, one having a molecular weight of about 61,000 (without anti-Leishmania activity) and the other having a molecular weight of about 18,000 (with no anti-rabbit activity). The protein-free EF of L. tropica differs from that released by trichloroacetic acid extraction in that it is capable of precipitating antisera of nonhomologous serotypes, whereas the albumin complex and the trichloroacetic acid-treated EF fragment are not. EFs from both species display pH-dependent affinity for certain lectins. Images PMID:118936

  12. The Respiratory Syncytial Virus M2-1 Protein Forms Tetramers and Interacts with RNA and P in a Competitive Manner▿

    PubMed Central

    Tran, Thi-Lan; Castagné, Nathalie; Dubosclard, Virginie; Noinville, Sylvie; Koch, Emmanuelle; Moudjou, Mohammed; Henry, Céline; Bernard, Julie; Yeo, Robert Paul; Eléouët, Jean-François

    2009-01-01

    The respiratory syncytial virus (RSV) M2-1 protein is an essential cofactor of the viral RNA polymerase complex and functions as a transcriptional processivity and antitermination factor. M2-1, which exists in a phosphorylated or unphosphorylated form in infected cells, is an RNA-binding protein that also interacts with some of the other components of the viral polymerase complex. It contains a CCCH motif, a putative zinc-binding domain that is essential for M2-1 function, at the N terminus. To gain insight into its structural organization, M2-1 was produced as a recombinant protein in Escherichia coli and purified to >95% homogeneity by using a glutathione S-transferase (GST) tag. The GST-M2-1 fusion proteins were copurified with bacterial RNA, which could be eliminated by a high-salt wash. Circular dichroism analysis showed that M2-1 is largely α-helical. Chemical cross-linking, dynamic light scattering, sedimentation velocity, and electron microscopy analyses led to the conclusion that M2-1 forms a 5.4S tetramer of 89 kDa and ∼7.6 nm in diameter at micromolar concentrations. By using a series of deletion mutants, the oligomerization domain of M2-1 was mapped to a putative α-helix consisting of amino acid residues 32 to 63. When tested in an RSV minigenome replicon system using a luciferase gene as a reporter, an M2-1 deletion mutant lacking this region showed a significant reduction in RNA transcription compared to wild-type M2-1, indicating that M2-1 oligomerization is essential for the activity of the protein. We also show that the region encompassing amino acid residues 59 to 178 binds to P and RNA in a competitive manner that is independent of the phosphorylation status of M2-1. PMID:19386701

  13. Yeast Ivy1p Is a Putative I-BAR-domain Protein with pH-sensitive Filament Forming Ability in vitro.

    PubMed

    Itoh, Yuzuru; Kida, Kazuki; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro

    2016-01-01

    Bin-Amphiphysin-Rvs161/167 (BAR) domains mold lipid bilayer membranes into tubules, by forming a spiral polymer on the membrane. Most BAR domains are thought to be involved in forming membrane invaginations through their concave membrane binding surfaces, whereas some members have convex membrane binding surfaces, and thereby mold membranes into protrusions. The BAR domains with a convex surface form a subtype called the inverse BAR (I-BAR) domain or IRSp53-MIM-homology domain (IMD). Although the mammalian I-BAR domains have been studied, those from other organisms remain elusive. Here, we found putative I-BAR domains in Fungi and animal-like unicellular organisms. The fungal protein containing the putative I-BAR-domain is known as Ivy1p in yeast, and is reportedly localized in the vacuole. The phylogenetic analysis of the I-BAR domains revealed that the fungal I-BAR-domain containing proteins comprise a distinct group from those containing IRSp53 or MIM. Importantly, Ivy1p formed a polymer with a diameter of approximately 20 nm in vitro, without a lipid membrane. The filaments were formed at neutral pH, but disassembled when pH was reverted to basic. Moreover, Ivy1p and the I-BAR domain expressed in mammalian HeLa cells was localized at a vacuole-like structure as filaments as revealed by super-resolved microscopy. These data indicate the pH-sensitive polymer forming ability and the functional conservation of Ivy1p in eukaryotic cells. PMID:26657738

  14. Escherichia coli sec mutants accumulate a processed immature form of maltose-binding protein (MBP), a late-phase intermediate in MBP export.

    PubMed

    Ueguchi, C; Ito, K

    1990-10-01

    Protein translocation across the Escherichia coli cytoplasmic membrane may consist of several temporally or topographically distinct steps. Although early events in the translocation pathway have been characterized to some extent, the mechanisms responsible for the trans-bilayer movement of a polypeptide are only poorly understood. This article reports on our attempts to dissect the translocation pathway in vivo. A processed form of maltose-binding protein (MBP) was detected in the spheroplasts of secY and secA temperature-sensitive mutant cells that had been pulse-labeled at the permissive temperature (30 degrees C). This species of molecule was found to have an electrophoretic mobility identical to that of the mature MBP, but a considerable fraction of it was inaccessible to externally added protease. It had not attained the protease-resistant conformation characteristically observed for the exported mature protein. The radioactivity associated with this species decreased during chase and was presumably converted into the exported mature form, a process that required energy, probably the proton motive force, as demonstrated by its inhibition by an energy uncoupler. The spheroplast-associated processed form was more predominantly observed in the presence of a low concentration of chloramphenicol. A similar intermediate was also detected for beta-lactamase in wild-type cells. These results suggest that in a late phase of translocation, the bulk of the polypeptide chain can move through the membrane in the absence of the covalently attached leader peptide, and the secA-secY gene products are somehow involved in this process. We termed the processed intermediates processed immature forms. PMID:2211501

  15. Human cord blood T-cell receptor alpha beta cell responses to protein antigens of Paracoccidioides brasiliensis yeast forms.

    PubMed Central

    Munk, M E; Kaufmann, S H

    1995-01-01

    Paracoccidioides brasiliensis causes a chronic granulomatous mycosis, prevalent in South America, and cell-mediated immunity represents the principal mode of protection against this fungal infection. We investigated the response of naive cord blood T cells to P. brasiliensis lysates. Our results show: (1) P. brasiliensis stimulates T-cell expansion, interleukin-2 (IL-2) production and differentiation into cytotoxic T cells; (2) T-cell stimulation depends on P. brasiliensis processing and major histocompatibility complex (MHC) class II expression; (3) the responsive T-cell population expresses alpha beta T-cell receptors (TCR) with different V beta gene products, CD4 and CD45RO; (4) the P. brasiliensis components involved in T-cell expansion primarily reside in a high molecular weight (100,000 MW) and a low molecular weight (< 1000 MW) protein fraction. These results indicate that protein antigens of P. brasiliensis stimulate cord blood CD4 alpha beta T cells, independent from in vivo presensitization, and thus question direct correlation of positive in vitro responses with protective immunity in vivo. PMID:7890308

  16. The Ribosome-Sec61 Translocon Complex Forms a Cytosolically Restricted Environment for Early Polytopic Membrane Protein Folding.

    PubMed

    Patterson, Melissa A; Bandyopadhyay, Anannya; Devaraneni, Prasanna K; Woodward, Josha; Rooney, LeeAnn; Yang, Zhongying; Skach, William R

    2015-11-27

    Transmembrane topology of polytopic membrane proteins (PMPs) is established in the endoplasmic reticulum (ER) by the ribosome Sec61-translocon complex (RTC) through iterative cycles of translocation initiation and termination. It remains unknown, however, whether tertiary folding of transmembrane domains begins after the nascent polypeptide integrates into the lipid bilayer or within a proteinaceous environment proximal to translocon components. To address this question, we used cysteine scanning mutagenesis to monitor aqueous accessibility of stalled translation intermediates to determine when, during biogenesis, hydrophilic peptide loops of the aquaporin-4 (AQP4) water channel are delivered to cytosolic and lumenal compartments. Results showed that following ribosome docking on the ER membrane, the nascent polypeptide was shielded from the cytosol as it emerged from the ribosome exit tunnel. Extracellular loops followed a well defined path through the ribosome, the ribosome translocon junction, the Sec61-translocon pore, and into the ER lumen coincident with chain elongation. In contrast, intracellular loops (ICLs) and C-terminalresidues exited the ribosome into a cytosolically shielded environment and remained inaccessible to both cytosolic and lumenal compartments until translation was terminated. Shielding of ICL1 and ICL2, but not the C terminus, became resistant to maneuvers that disrupt electrostatic ribosome interactions. Thus, the early folding landscape of polytopic proteins is shaped by a spatially restricted environment localized within the assembled ribosome translocon complex. PMID:26254469

  17. Saccharomyces cerevisiae Porin Pore Forms Complexes with Mitochondrial Outer Membrane Proteins Om14p and Om45p

    PubMed Central

    Lauffer, Susann; Mäbert, Katrin; Czupalla, Cornelia; Pursche, Theresia; Hoflack, Bernard; Rödel, Gerhard; Krause-Buchholz, Udo

    2012-01-01

    Numerous transport processes occur between the two mitochondrial (mt) membranes due to the diverse functions and metabolic processes of the mt organelle. The metabolite and ion transport through the mt outer membrane (OM) is widely assumed to be mediated by the porin pore, whereas in the mt inner membrane (IM) specific carriers are responsible for transport processes. Here, we provide evidence by means of Blue Native (BN)-PAGE analysis, co-immunoprecipitation, and tandem affinity purification that the two mt OM proteins Om14p and Om45p associate with the porin pore. Porin molecules seem to assemble independently to build the core unit. A subpopulation of these core units interacts with Om14p and Om45p. With preparative tandem affinity purification followed by MS analysis, we could identify interaction partners of this OM complex, which are mainly localized within the mt IM and function as carriers for diverse molecules. We propose a model for the role of the two OM proteins in addressing the porin pore to bind to specific channels in the mt IM to facilitate transport of metabolites. PMID:22461620

  18. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing

    PubMed Central

    Zhang, Cui-Jun; Hou, Xiao-Mei; Tan, Lian-Mei; Shao, Chang-Rong; Huang, Huan-Wei; Li, Yong-Qiang; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2016-01-01

    Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. PMID:27273316

  19. Comparison of two chemical cleavage methods for preparation of a truncated form of recombinant human insulin-like growth factor I from a secreted fusion protein.

    PubMed

    Forsberg, G; Baastrup, B; Brobjer, M; Lake, M; Jörnvall, H; Hartmanis, M

    1989-12-01

    We have produced a naturally occurring variant of human insulin-like growth factor I, truncated by three amino acids at the amino terminus. The polypeptide is obtained as a fusion protein in Escherichia coli. The fusion partner is a synthetic IgG-binding peptide. During fermentation the fusion protein is secreted into the medium, and is purified on IgG--Sepharose prior to cleavage. Two different genes for the fusion protein were used, allowing chemical cleavage at either a tryptophan linker or a methionine linker between the fusion partner and the growth factor, using N-chlorosuccinimide (NCS) or cyanogen bromide (CNBr) respectively. A partial CNBr cleavage yielded the native peptide, whereas the NCS cleavage yielded a product in which the single methionine had been oxidized to the sulfoxide. The forms from both cleavage methods exhibited biological activity and were characterized after purification to homogeneity. Both cleavage methods gave products having correct N- and C-terminal ends. The purified product had a biological activity equal to that of corresponding material from natural sources, 15 000 U/mg. Modified forms of truncated IGF-I were also identified, purified and characterized. Modifications such as proteolysis and misincorporation of norleucine for methionine occurred during biosynthesis, while oxidation of methionine took place during both fermentation and chemical cleavage. PMID:2696476

  20. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair.

    PubMed

    Mahaney, Brandi L; Hammel, Michal; Meek, Katheryn; Tainer, John A; Lees-Miller, Susan P

    2013-02-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  1. Diphosphoryl lipid A from Rhodobacter sphaeroides inhibits complexes that form in vitro between lipopolysaccharide (LPS)-binding protein, soluble CD14, and spectrally pure LPS.

    PubMed Central

    Jarvis, B W; Lichenstein, H; Qureshi, N

    1997-01-01

    An early event in septic shock is the activation of macrophages by a complex consisting of lipopolysaccharide (LPS), LPS-binding protein (LBP), and the cell surface antigen CD14. The complexes that form between [3H]ReLPS (ReLPS is deep-rough-chemotype hexacyl LPS from E. coli D31m4), soluble CD14 (sCD14), and LBP were analyzed by two independent methods, native (nondenaturing) gel electrophoresis and size-exclusion high-performance liquid chromatography (HPLC). This is the first reported use of HPLC to purify and study LPS-protein complexes. The binding of [3H]ReLPS to LBP and sCD14 was inhibited by preincubation with diphosphoryl lipid A from Rhodobacter sphaeroides (RsDPLA), a potent LPS antagonist. In addition, [3H]ReLPS bound to LBP and to a truncated form of sCD14 [sCD14(1-152)] that contained the LPS binding domain. Binding to both proteins was blocked by RsDPLA. Thus, RsDPLA competes in a 1:1 ratio for the same or nearby binding sites on ReLPS complexes. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of aggregated ReLPS eluting from the HPLC indicated that only LBP, not sCD14, was bound to the aggregated ReLPS. This finding supports the binary model of LPS complex formation with LBP and sCD14. PMID:9234747

  2. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair

    PubMed Central

    Mahaney, Brandi L.; Hammel, Michal; Meek, Katheryn; Tainer, John A.; Lees-Miller, Susan P.

    2013-01-01

    DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the non-homologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long complementary DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. PMID:23442139

  3. Nicotinic acetylcholine receptor α7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors

    PubMed Central

    Murray, Teresa A; Liu, Qiang; Whiteaker, Paul; Wu, Jie; Lukas, Ronald J

    2009-01-01

    Aim: Several nicotinic acetylcholine receptor (nAChR) subunits have been engineered as fluorescent protein (FP) fusions and exploited to illuminate features of nAChRs. The aim of this work was to create a FP fusion in the nAChR α7 subunit without compromising formation of functional receptors. Methods: A gene construct was generated to introduce yellow fluorescent protein (YFP), in frame, into the otherwise unaltered, large, second cytoplamsic loop between the third and fourth transmembrane domains of the mouse nAChR α7 subunit (α7Y). SH-EP1 cells were transfected with mouse nAChR wild type α7 subunits (α7) or with α7Y subunits, alone or with the chaperone protein, hRIC-3. Receptor function was assessed using whole-cell current recording. Receptor expression was measured with 125I-labeled α-bungarotoxin (I-Bgt) binding, laser scanning confocal microscopy, and total internal reflectance fluorescence (TIRF) microscopy. Results: Whole-cell currents revealed that α7Y nAChRs and α7 nAChRs were functional with comparable EC50 values for the α7 nAChR-selective agonist, choline, and IC50 values for the α7 nAChR-selective antagonist, methyllycaconitine. I-Bgt binding was detected only after co-expression with hRIC-3. Confocal microscopy revealed that α7Y had primarily intracellular rather than surface expression. TIRF microscopy confirmed that little α7Y localized to the plasma membrane, typical of α7 nAChRs. Conclusion: nAChRs composed as homooligomers of α7Y subunits containing cytoplasmic loop YFP have functional, ligand binding, and trafficking characteristics similar to those of α7 nAChRs. α7Y nAChRs may be used to elucidate properties of α7 nAChRs and to identify and develop novel probes for these receptors, perhaps in high-throughput fashion. PMID:19498423

  4. The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development.

    PubMed

    Pignoni, F; Hu, B; Zavitz, K H; Xiao, J; Garrity, P A; Zipursky, S L

    1997-12-26

    Sine oculis (so) and eyes absent (eya) are required for Drosophila eye development and are founding members of the mammalian Six and Eya gene families. These genes have been proposed to act with eyeless (Pax6) to regulate eye development in vertebrates and invertebrates. so encodes a highly diverged homeobox transcription factor and eya encodes a novel nuclear protein. We demonstrate that So and Eya (1) regulate common steps in eye development including cell proliferation, patterning, and neuronal development; (2) synergize in inducing ectopic eyes; and (3) interact in yeast and in vitro through evolutionarily conserved domains. We propose that an So/Eya complex regulates multiple steps in eye development and functions within the context of a network of genes to specify eye tissue identity. PMID:9428512

  5. Combinations of Polyclonal or Monoclonal Antibodies to Proteins of the Outer Membranes of the Two Infectious Forms of Vaccinia Virus Protect Mice against a Lethal Respiratory Challenge

    PubMed Central

    Lustig, Shlomo; Fogg, Christiana; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Moss, Bernard

    2005-01-01

    Previous studies demonstrated that antibodies to live vaccinia virus infection are needed for optimal protection against orthopoxvirus infection. The present report is the first to compare the protective abilities of individual and combinations of specific polyclonal and monoclonal antibodies that target proteins of the intracellular (IMV) and extracellular (EV) forms of vaccinia virus. The antibodies were directed to one IMV membrane protein, L1, and to two outer EV membrane proteins, A33 and B5. In vitro studies showed that the antibodies to L1 neutralized IMV and that the antibodies to A33 and B5 prevented the spread of EV in liquid medium. Prophylactic administration of individual antibodies to BALB/c mice partially protected them against disease following intranasal challenge with lethal doses of vaccinia virus. Combinations of antibodies, particularly anti-L1 and -A33 or -L1 and -B5, provided enhanced protection when administered 1 day before or 2 days after challenge. Furthermore, the protection was superior to that achieved with pooled immune gamma globulin from human volunteers inoculated with live vaccinia virus. In addition, single injections of anti-L1 plus anti-A33 antibodies greatly delayed the deaths of severe combined immunodeficiency mice challenged with vaccinia virus. These studies suggest that antibodies to two or three viral membrane proteins optimally derived from the outer membranes of IMV and EV, may be beneficial for prophylaxis or therapy of orthopoxvirus infections. PMID:16227266

  6. Solution Structure of an Amyloid-Forming Protein During Photoinitiated Hexamer-Dodecamer Transitions Revealed Through Small-Angle Neutron Scattering

    SciTech Connect

    Hamill,A.; Wang, S.; Lee, Jr., C.

    2007-01-01

    Shape-reconstruction analysis applied to small angle neutron scattering (SANS) data is used to determine the in vitro conformations of {alpha}-chymotrypsin oligomers that form as a result of partial unfolding with a photoresponsive surfactant. In the presence of the photoactive surfactant under visible light, the native oligomers (dimers or compact hexamers) rearrange into expanded corkscrew-like hexamers. Converting the surfactant to the photopassive form with UV light illumination causes the hexamers to laterally aggregate and intertwine into dodecamers with elongated, twisted conformations containing cross-sectional dimensions similar to amyloid protofilaments. Secondary-structure measurements with FT-IR indicate that this photoinduced hexamer-to-dodecamer association occurs through intermolecular {beta} sheets stabilized with hydrogen bonds, similar to amyloid formation. Traditional structural characterization techniques such as X-ray crystallography and NMR are not easily amenable to the study of these non-native protein conformations; however, SANS is ideally suited to the study of these associated intermediates, providing direct observation of the mechanism of oligomeric formation in an amyloid-forming protein. Combined with photoinitiated hexamer-to-dodecamer associations in the presence of the photoresponsive surfactant, this study could provide unique insight into the amyloidosis disease pathway, as well as novel disease treatment strategies.

  7. Structural and Functional Aspects of Hetero-oligomers Formed by the Small Heat Shock Proteins αB-Crystallin and HSP27*

    PubMed Central

    Aquilina, J. Andrew; Shrestha, Sudichhya; Morris, Amie M.; Ecroyd, Heath

    2013-01-01

    Small heat shock proteins (sHSPs) exist as large polydisperse species in which there is constant dynamic subunit exchange between oligomeric and dissociated forms. Their primary role in vivo is to bind destabilized proteins and prevent their misfolding and aggregation. αB-Crystallin (αB) and HSP27 are the two most widely distributed and most studied sHSPs in the human body. They are coexpressed in different tissues, where they are known to associate with each other to form hetero-oligomeric complexes. In this study, we aimed to determine how these two sHSPs interact to form hetero-oligomers in vitro and whether, by doing so, there is an increase in their chaperone activity and stability compared with their homo-oligomeric forms. Our results demonstrate that HSP27 and αB formed polydisperse hetero-oligomers in vitro, which had an average molecular mass that was intermediate of each of the homo-oligomers and which were more thermostable than αB, but less so than HSP27. The hetero-oligomer chaperone function was found to be equivalent to that of αB, with each being significantly better in preventing the amorphous aggregation of α-lactalbumin and the amyloid fibril formation of α-synuclein in comparison with HSP27. Using mass spectrometry to monitor subunit exchange over time, we found that HSP27 and αB exchanged subunits 23% faster than the reported rate for HSP27 and αA and almost twice that for αA and αB. This represents the first quantitative evaluation of αB/HSP27 subunit exchange, and the results are discussed in the broader context of regulation of function and cellular proteostasis. PMID:23532854

  8. Crystallographic and single-particle analyses of native- and nucleotide-bound forms of the cystic fibrosis transmembrane conductance regulator (CFTR) protein.

    PubMed

    Awayn, N H; Rosenberg, M F; Kamis, A B; Aleksandrov, L A; Riordan, J R; Ford, R C

    2005-11-01

    Cystic fibrosis, one of the major human inherited diseases, is caused by defects in the CFTR (cystic fibrosis transmembrane conductance regulator), a cell-membrane protein. CFTR acts as a chloride channel which can be opened by ATP. Low-resolution structural studies of purified recombinant human CFTR are described in the present paper. Localization of the C-terminal decahistidine tag in CFTR was achieved by Ni2+-nitriloacetate nanogold labelling, followed by electron microscopy and single-particle analysis. The presence of the gold label appears to improve the single-particle-alignment procedure. Projection structures of CFTR from two-dimensional crystals analysed by electron crystallography displayed two alternative conformational states in the presence of nucleotide and nanogold, but only one form of the protein was observed in the quiescent (nucleotide-free) state. PMID:16246030

  9. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p.

    PubMed Central

    Nakashima, N; Noguchi, E; Nishimoto, T

    1999-01-01

    Prp20p and Rna1p are GDP/GTP exchanging and GTPase-activating factors of Gsp1p, respectively, and their mutations, prp20-1 and rna1-1, can both be suppressed by Saccharomyces cerevisiae gtr1-11. We found that gtr1-11 caused a single amino acid substitution in Gtr1p, forming S20L, which is a putative GDP-bound mutant protein, while Gtr1p has been reported to bind to GTP alone. Consistently, gtr1-S20N, another putative GDP-bound mutant, suppressed both prp20-1 and rna1-1. On the other hand, gtr1-Q65L, a putative GTP-bound mutant, was inhibitory to prp20-1 and rna1-1. Thus, the role that Gtr1p plays in vivo appears to depend upon the nucleotide bound to it. Our data suggested that the GTP-bound Gtr1p, but not the GDP-bound Gtr1p, interacts with itself through its C-terminal tail. S. cerevisiae possesses a novel gene, GTR2, which is homologous to GTR1. Gtr2p interacts with itself in the presence of Gtr1p. The disruption of GTR2 suppressed prp20-1 and abolished the inhibitory effect of gtr1-Q65L on prp20-1. This finding, taken together with the fact that Gtr1p-S20L is a putative, inactive GDP-bound mutant, implies that Gtr1p negatively regulates the Ran/Gsp1p GTPase cycle through Gtr2p. PMID:10388807

  10. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor

    PubMed Central

    Amsalem, Ayelet R.; Marom, Barak; Shapira, Keren E.; Hirschhorn, Tal; Preisler, Livia; Paarmann, Pia; Knaus, Petra; Henis, Yoav I.; Ehrlich, Marcelo

    2016-01-01

    The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and –SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3’ terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane. PMID:26739752

  11. Nonionic and zwitterionic forms of glycylglycylarginine as a part of spider silk protein: Spectroscopic and theoretical study.

    PubMed

    Arı, Hatice; Özpozan, Talat

    2016-01-01

    Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features. PMID:25677985

  12. Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor.

    PubMed

    Amsalem, Ayelet R; Marom, Barak; Shapira, Keren E; Hirschhorn, Tal; Preisler, Livia; Paarmann, Pia; Knaus, Petra; Henis, Yoav I; Ehrlich, Marcelo

    2016-02-15

    The expression and function of transforming growth factor-β superfamily receptors are regulated by multiple molecular mechanisms. The type II BMP receptor (BMPRII) is expressed as two alternatively spliced forms, a long and a short form (BMPRII-LF and -SF, respectively), which differ by an ∼500 amino acid C-terminal extension, unique among TGF-β superfamily receptors. Whereas this extension was proposed to modulate BMPRII signaling output, its contribution to the regulation of receptor expression was not addressed. To map regulatory determinants of BMPRII expression, we compared synthesis, degradation, distribution, and endocytic trafficking of BMPRII isoforms and mutants. We identified translational regulation of BMPRII expression and the contribution of a 3' terminal coding sequence to this process. BMPRII-LF and -SF differed also in their steady-state levels, kinetics of degradation, intracellular distribution, and internalization rates. A single dileucine signal in the C-terminal extension of BMPRII-LF accounted for its faster clathrin-mediated endocytosis relative to BMPRII-SF, accompanied by mildly faster degradation. Higher expression of BMPRII-SF at the plasma membrane resulted in enhanced activation of Smad signaling, stressing the potential importance of the multilayered regulation of BMPRII expression at the plasma membrane. PMID:26739752

  13. Nonionic and zwitterionic forms of glycylglycylarginine as a part of spider silk protein: Spectroscopic and theoretical study

    NASA Astrophysics Data System (ADS)

    Arı, Hatice; Özpozan, Talat

    2016-01-01

    Glycylglycylarginine as a part of GGX motif of spider silk spidroin in nonionic (non-GGR) and zwitterionic (zwt-GGR) forms have been examined from theoretical and spectroscopic aspects. The most stable conformational isomers of non-GGR and zwt-GGR were obtained through relaxed scan using the DFT/B3LYP with 6-31G(d) basis set. Nonionic and zwitterionic forms of 310-helix structures of GGR have also been calculated and compared with the most stable conformers obtained as a result of conformer analysis of isolated three peptide structures. This comparison should give an idea about the stability contribution of intermolecular interactions between the 310-helix structured peptide chains. O3LYP and B3PW91 hybrid functionals beside B3LYP have also been used for further calculations of geometry optimization, vibrational analysis, Natural Bond Orbital (NBO) analysis, HOMO-LUMO analysis and hydrogen bonding analysis. Normal Mode Analysis was carried through Potential Energy Distribution (PED) calculations by means of VEDA4 program package. IR and Raman spectra of GGR have also been used to relate the spectroscopic data obtained to electronic and structural features.

  14. Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion

    PubMed Central

    Poncet, Joël; Dubremetz, Jean-François; Lebrun, Maryse

    2009-01-01

    One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes. PMID:19247437

  15. [The Inheritance of Endosperm Storage Proteins by the Line of the Saratovskaya 29 Cultivar of Common Wheat from its Parental Forms].

    PubMed

    Obukhova, L V; Shumny, V K

    2016-01-01

    We ran a comparative analysis of storage proteins (gliadins, high- (HMW) and low-molecular-weight (LMW) glutenins, puroindolines, and exogenous α-amylase pest inhibitors) in the Saratovskaya 29 cultivar line from the collection of a genetic engineering laboratory, its parental forms (Albidum 24 and Lyutescens 55/11), and distant ancestors (Poltavka, Selivanovskiy Rusak, Sarroza, and tetraploid Beloturka). It was confirmed that the allelic states of storage proteins in the Gli-1, Gli-2 and Glu-1 loci originate from ancestral forms from the collection of the Vavilov Institute of Plant Industry. Moreover, new alleles were found in Lyutescense 55/11 (Glu-Ala) and Selivanovskiy Rusak (Glu-B1b) cultivars from the collection of the Institute of Cytology and Genetics. A new allelic state, Ha, was observed in the loci of the Poltavka cultivar as a soft-grain cultivar, and the ha allele was found in the hard-grain Albidum 24 and Sarroza cultivars. It was found that the expression rate of exogenous α-amylase inhibitors of pests in the Saratovskaya 29 cultivar line is lower than that of ancestral cultivars (Albidum 24, Sarroza, Poltavka, and Beloturka). Such inhibitors are absent in the paternal form Lyutescense 55/11. A high expression rate of protein pest inhibitors for exogenous α-amylases and puroindolines was observed in the Poltavka cultivar. The allelic composition of Glu-1 loci was newly studied in the Sarroza cultivar, which has some promising features. The Saratovskaya 29 cultivar line, on the basis of which a wide range of diverse lines were created in the Institute of Cytology and Genetics, is isogenic for all of the studied traits. PMID:27183793

  16. Conserved Surface Features Form the Double-stranded RNA Binding Site of Non-structural Protein 1 (NS1) from Influenza A and B Viruses

    SciTech Connect

    Yin,C.; Khan, J.; Swapna, G.; Ertekin, A.; Krug, R.; Tong, L.; Montelione, G.

    2007-01-01

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-{angstrom} x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier 'working models' of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an {approx}45{sup o} angle relative to the axes of helices {alpha}2/{alpha}2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses.

  17. Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B viruses.

    PubMed

    Yin, Cuifeng; Khan, Javed A; Swapna, G V T; Ertekin, Asli; Krug, Robert M; Tong, Liang; Montelione, Gaetano T

    2007-07-13

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-A x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier "working models" of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an approximately 45 degrees angle relative to the axes of helices alpha2/alpha2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses. PMID:17475623

  18. Ex-vivo transduced autologous skin fibroblasts expressing human Lim Mineralization Protein-3 efficiently form new bone in animal models

    PubMed Central

    Lattanzi, Wanda; Parrilla, Claudio; Fetoni, Annarita; Logroscino, Giandomenico; Straface, Giuseppe; Pecorini, Giovanni; Stigliano, Egidio; Tampieri, Anna; Bedini, Rossella; Pecci, Raffaella; Michetti, Fabrizio; Gambotto, Andrea; Robbins, Paul D.; Pola, Enrico

    2012-01-01

    Local gene transfer of the human LIM Mineralization Protein (LMP), a novel intracellular positive regulator of the osteoblast differentiation program, can induce efficient bone formation in rodents. In order to develop a clinically relevant gene therapy approach to facilitate bone healing, we have used primary dermal fibroblasts transduced ex vivo with Ad.LMP3 and seeded on an hydroxyapatite/collagen matrix prior to autologous implantation. Here we demonstrate that genetically modified autologous dermal fibroblasts expressing Ad.LMP-3 are able to induce ectopic bone formation following implantation of the matrix into the mouse triceps and paravertebral muscles. Moreover, implantation of the Ad.LMP-3-modified dermal fibroblasts into a rat mandibular bone critical size defect model results in efficient healing as determined by X-ray, histology and three dimensional micro computed tomography (3DμCT). These results demonstrate the effectiveness of the non-secreted intracellular osteogenic factor LMP-3, in inducing bone formation in vivo. Moreover, the utilization of autologous dermal fibroblasts implanted on a biomaterial represents a promising approach for possible future clinical applications aimed at inducing new bone formation. PMID:18633445

  19. Brain Endothelial Cells Produce Amyloid β from Amyloid Precursor Protein 770 and Preferentially Secrete the O-Glycosylated Form*

    PubMed Central

    Kitazume, Shinobu; Tachida, Yuriko; Kato, Masaki; Yamaguchi, Yoshiki; Honda, Takashi; Hashimoto, Yasuhiro; Wada, Yoshinao; Saito, Takashi; Iwata, Nobuhisa; Saido, Takaomi; Taniguchi, Naoyuki

    2010-01-01

    Deposition of amyloid β (Aβ) in the brain is closely associated with Alzheimer disease (AD). Aβ is generated from amyloid precursor protein (APP) by the actions of β- and γ-secretases. In addition to Aβ deposition in the brain parenchyma, deposition of Aβ in cerebral vessel walls, termed cerebral amyloid angiopathy, is observed in more than 80% of AD individuals. The mechanism for how Aβ accumulates in blood vessels remains largely unknown. In the present study, we show that brain endothelial cells expressed APP770, a differently spliced APP mRNA isoform from neuronal APP695, and produced Aβ40 and Aβ42. Furthermore, we found that the endothelial APP770 had sialylated core 1 type O-glycans. Interestingly, Ο-glycosylated APP770 was preferentially processed by both α- and β-cleavage and secreted into the media, suggesting that O-glycosylation and APP processing involved related pathways. By immunostaining human brain sections with an anti-APP770 antibody, we found that APP770 was expressed in vascular endothelial cells. Because we were able to detect O-glycosylated sAPP770β in human cerebrospinal fluid, this unique soluble APP770β has the potential to serve as a marker for cortical dementias such as AD and vascular dementia. PMID:20952385

  20. OS9 Protein Interacts with Na-K-2Cl Co-transporter (NKCC2) and Targets Its Immature Form for the Endoplasmic Reticulum-associated Degradation Pathway.

    PubMed

    Seaayfan, Elie; Defontaine, Nadia; Demaretz, Sylvie; Zaarour, Nancy; Laghmani, Kamel

    2016-02-26

    Mutations in the renal specific Na-K-2Cl co-transporter (NKCC2) lead to type I Bartter syndrome, a life-threatening kidney disease featuring arterial hypotension along with electrolyte abnormalities. We have previously shown that NKCC2 and its disease-causing mutants are subject to regulation by endoplasmic reticulum-associated degradation (ERAD). The aim of the present study was to identify the protein partners specifically involved in ERAD of NKCC2. To this end, we screened a kidney cDNA library through a yeast two-hybrid assay using NKCC2 C terminus as bait. We identified OS9 (amplified in osteosarcomas) as a novel and specific binding partner of NKCC2. Co-immunoprecipitation assays in renal cells revealed that OS9 association involves mainly the immature form of NKCC2. Accordingly, immunocytochemistry analysis showed that NKCC2 and OS9 co-localize at the endoplasmic reticulum. In cells overexpressing OS9, total cellular NKCC2 protein levels were markedly decreased, an effect blocked by the proteasome inhibitor MG132. Pulse-chase and cycloheximide-chase assays demonstrated that the marked reduction in the co-transporter protein levels was essentially due to increased protein degradation of the immature form of NKCC2. Conversely, knockdown of OS9 by small interfering RNA increased NKCC2 expression by increasing the co-transporter stability. Inactivation of the mannose 6-phosphate receptor homology domain of OS9 had no effect on its action on NKCC2. In contrast, mutations of NKCC2 N-glycosylation sites abolished the effects of OS9, indicating that OS9-induced protein degradation is N-glycan-dependent. In summary, our results demonstrate the presence of an OS9-mediated ERAD pathway in renal cells that degrades immature NKCC2 proteins. The identification and selective modulation of ERAD components specific to NKCC2 and its disease-causing mutants might provide novel therapeutic strategies for the treatment of type I Bartter syndrome. PMID:26721884

  1. Human Bone-Forming Chondrocytes Cultured in the Hydrodynamic Focusing Bioreactor Retain Matrix Proteins: Similarities to Spaceflight Results

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Hecht, J.; Montufar-Solis, D.

    2006-01-01

    Fracture healing, crucial to a successful Mars mission, involves formation of a cartilaginous fracture callus which differentiates, mineralizes, ossifies and remodels via the endochondral process. Studies of spaceflown and tailsuspended rats found that, without loading, fracture callus formation and cartilage differentiation within the callus were minimal. We found delayed differentiation of chondrocytes within the rat growth plate on Cosmos 1887, 2044, and Spacelab 3. In the current study, differentiation of human bone-forming chondrocytes cultured in the hydrodynamic focusing bioreactor (HFB) was assessed. Human costochondral chondrocytes in suspension were aggregated overnight, then cultured in the HFB for 25 days. Collagen Type II, aggrecan and unsulfated chondroitin were found extracellularly and chondroitin sulfates 4 and 6 within the cell. Lack of secretion was also found in pancreatic cells of spaceflown rats, and in our SL3 studies. The HFB can be used to study cartilage differentiation in simulated microgravity.

  2. Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content.

    PubMed

    Sun, Liangliang; Dubiak, Kyle M; Peuchen, Elizabeth H; Zhang, Zhenbin; Zhu, Guijie; Huber, Paul W; Dovichi, Norman J

    2016-07-01

    Single cell analysis is required to understand cellular heterogeneity in biological systems. We propose that single cells (blastomeres) isolated from early stage invertebrate, amphibian, or fish embryos are ideal model systems for the development of technologies for single cell analysis. For these embryos, although cell cleavage is not exactly symmetric, the content per blastomere decreases roughly by half with each cell division, creating a geometric progression in cellular content. This progression forms a ladder of single-cell targets for the development of successively higher sensitivity instruments. In this manuscript, we performed bottom-up proteomics on single blastomeres isolated by microdissection from 2-, 4-, 8-, 16-, 32-, and 50-cell Xenopus laevis (African clawed frog) embryos. Over 1 400 protein groups were identified in single-run reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry from single balstomeres isolated from a 16-cell embryo. When the mass of yolk-free proteins in single blastomeres decreased from ∼0.8 μg (16-cell embryo) to ∼0.2 μg (50-cell embryo), the number of protein group identifications declined from 1 466 to 644. Around 800 protein groups were quantified across four blastomeres isolated from a 16-cell embryo. By comparing the protein expression among different blastomeres, we observed that the blastomere-to-blastomere heterogeneity in 8-, 16-, 32-, and 50-cell embryos increases with development stage, presumably due to cellular differentiation. These results suggest that comprehensive quantitative proteomics on single blastomeres isolated from these early stage embryos can provide valuable insights into cellular differentiation and organ development. PMID:27314579

  3. Purification, Crystallization and Preliminary X-ray Diffraction Analysis of the Phage T4 Vertex Protein Gp24 and its Mutant Forms

    SciTech Connect

    Boeshans,K.; Liu, F.; Peng, G.; Idler, W.; Jang, S.; Marekov, L.; Black, L.; Ahvazi, B.

    2006-01-01

    The study of bacteriophage T4 assembly has revealed regulatory mechanisms pertinent not only to viruses but also to macromolecular complexes. The capsid of bacteriophage T4 is composed of the major capsid protein gp23, and a minor capsid protein gp24, which is arranged as pentamers at the vertices of the capsid. In this study the T4 capsid protein gp24 and its mutant forms were overexpressed and purified to homogeneity. The overexpression from plasmid vectors of all the constructs in Escherichia coli yields biologically active protein in vivo as determined by assembly of active virus following infection with inactivated gene 24 mutant viruses. The gp24 mutant was subjected to surface entropy reduction by mutagenesis and reductive alkylation in order to improve its crystallization properties and diffraction quality. To determine if surface mutagenesis targeting would result in diffractable crystals, two glutamate to alanine mutations (E89A,E90A) were introduced. We report here the biochemical observations and consequent mutagenesis experiment that resulted in improvements in the stability, crystallizability and crystal quality of gp24 without affecting the overall folding. Rational modification of the protein surface to achieve crystallization appears promising for improving crystallization behavior and crystal diffracting qualities. The crystal of gp24(E89A,E90A) diffracted to 2.6 {angstrom} resolution compared to wild-type gp24 at 3.80 {angstrom} resolution under the same experimental conditions. Surface mutation proved to be a better method than reductive methylation for improving diffraction quality of the gp24 crystals.

  4. Heteronuclear NMR assignments and secondary structure of the coiled coil trimerization domain from cartilage matrix protein in oxidized and reduced forms.

    PubMed Central

    Wiltscheck, R.; Kammerer, R. A.; Dames, S. A.; Schulthess, T.; Blommers, M. J.; Engel, J.; Alexandrescu, A. T.

    1997-01-01

    The C-terminal oligomerization domain of chicken cartilage matrix protein is a trimeric coiled coil comprised of three identical 43-residue chains. NMR spectra of the protein show equivalent magnetic environments for each monomer, indicating a parallel coiled coil structure with complete threefold symmetry. Sequence-specific assignments for 1H-, 15N-, and 13C-NMR resonances have been obtained from 2D 1H NOESY and TOCSY spectra, and from 3D HNCA, 15N NOESY-HSQC, and HCCH-TOCSY spectra. A stretch of alpha-helix encompassing five heptad repeats (35 residues) has been identified from intra-chain HN-HN and HN-H alpha NOE connectivities. 3JHNH alpha coupling constants, and chemical shift indices. The alpha-helix begins immediately downstream of inter-chain disulfide bonds between residues Cys 5 and Cys 7, and extends to near the C-terminus of the molecule. The threefold symmetry of the molecule is maintained when the inter-chain disulfide bonds that flank the N-terminus of the coiled coil are reduced. Residues Ile 21 through Glu 36 show conserved chemical shifts and NOE connectivities, as well as strong protection from solvent exchange in the oxidized and reduced forms of the protein. By contrast, residues Ile 10 through Val 17 show pronounced chemical shift differences between the oxidized and reduced protein. Strong chemical exchange NOEs between HN resonances and water indicate solvent exchange on time scales faster than 10 s, and suggests a dynamic fraying of the N-terminus of the coiled coil upon reduction of the disulfide bonds. Possible roles for the disulfide crosslinks of the oligomerization domain in the function of cartilage matrix protein are proposed. PMID:9260286

  5. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    PubMed

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-03-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. PMID:27098620

  6. The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.

    PubMed Central

    Basu, Piku; Katterle, Bettina; Andersson, K Kristoffer; Dalton, Howard

    2003-01-01

    A protocol has been developed which permits the purification of a membrane-associated methane-oxidizing complex from Methylococcus capsulatus (Bath). This complex has approximately 5 fold higher specific activity than any purified particulate methane mono-oxygenase (pMMO) previously reported from M. capsulatus (Bath). This efficiently functioning methane-oxidizing complex consists of the pMMO hydroxylase (pMMOH) and an unidentified component we have assigned as a potential pMMO reductase (pMMOR). The complex was isolated by solubilizing intracytoplasmic membrane preparations containing the high yields of active membrane-bound pMMO (pMMO(m)), using the non-ionic detergent dodecyl-beta-D-maltoside, to yield solubilized enzyme (pMMO(s)). Further purification gave rise to an active complex (pMMO(c)) that could be resolved (at low levels) by ion-exchange chromatography into two components, the pMMOH (47, 27 and 24 kDa subunits) and the pMMOR (63 and 8 kDa subunits). The purified complex contains two copper atoms and one non-haem iron atom/mol of enzyme. EPR spectra of preparations grown with (63)Cu indicated that the copper ion interacted with three or four nitrogenic ligands. These EPR data, in conjunction with other experimental results, including the oxidation by ferricyanide, EDTA treatment to remove copper and re-addition of copper to the depleted protein, verified the essential role of copper in enzyme catalysis and indicated the implausibility of copper existing as a trinuclear cluster. The EPR measurements also demonstrated the presence of a tightly bound mononuclear Fe(3+) ion in an octahedral environment that may well be exchange-coupled to another paramagnetic species. PMID:12379148

  7. The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.

    PubMed

    Basu, Piku; Katterle, Bettina; Andersson, K Kristoffer; Dalton, Howard

    2003-01-15

    A protocol has been developed which permits the purification of a membrane-associated methane-oxidizing complex from Methylococcus capsulatus (Bath). This complex has approximately 5 fold higher specific activity than any purified particulate methane mono-oxygenase (pMMO) previously reported from M. capsulatus (Bath). This efficiently functioning methane-oxidizing complex consists of the pMMO hydroxylase (pMMOH) and an unidentified component we have assigned as a potential pMMO reductase (pMMOR). The complex was isolated by solubilizing intracytoplasmic membrane preparations containing the high yields of active membrane-bound pMMO (pMMO(m)), using the non-ionic detergent dodecyl-beta-D-maltoside, to yield solubilized enzyme (pMMO(s)). Further purification gave rise to an active complex (pMMO(c)) that could be resolved (at low levels) by ion-exchange chromatography into two components, the pMMOH (47, 27 and 24 kDa subunits) and the pMMOR (63 and 8 kDa subunits). The purified complex contains two copper atoms and one non-haem iron atom/mol of enzyme. EPR spectra of preparations grown with (63)Cu indicated that the copper ion interacted with three or four nitrogenic ligands. These EPR data, in conjunction with other experimental results, including the oxidation by ferricyanide, EDTA treatment to remove copper and re-addition of copper to the depleted protein, verified the essential role of copper in enzyme catalysis and indicated the implausibility of copper existing as a trinuclear cluster. The EPR measurements also demonstrated the presence of a tightly bound mononuclear Fe(3+) ion in an octahedral environment that may well be exchange-coupled to another paramagnetic species. PMID:12379148

  8. Identification and Characterization of an Immunogenic Hybrid Epitope Formed by both HIV gp120 and Human CD4 Proteins

    PubMed Central

    Lewis, George K.; Fouts, Timothy R.; Ibrahim, Sani; Taylor, Brian M.; Salkar, Rachita; Guan, Yongjun; Kamin-Lewis, Roberta; DeVico, Anthony L.

    2011-01-01

    Certain antibodies from HIV-infected humans bind conserved transition state (CD4 induced [CD4i]) domains on the HIV envelope glycoprotein, gp120, and demonstrate extreme dependence on the formation of a gp120-human CD4 receptor complex. The epitopes recognized by these antibodies remain undefined although recent crystallographic studies of the anti-CD4i monoclonal antibody (MAb) 21c suggest that contacts with CD4 as well as gp120 might occur. Here, we explore the possibility of hybrid epitopes that demand the collaboration of both gp120 and CD4 residues to enable antibody reactivity. Analyses with a panel of human anti-CD4i MAbs and gp120-CD4 antigens with specific mutations in predicted binding domains revealed one putative hybrid epitope, defined by the human anti-CD4i MAb 19e. In virological and immunological tests, MAb 19e did not bind native or constrained gp120 except in the presence of CD4. This contrasted with other anti-CD4i MAbs, including MAb 21c, which bound unliganded, full-length gp120 held in a constrained conformation. Conversely, MAb 19e exhibited no specific reactivity with free human CD4. Computational modeling of MAb 19e interactions with gp120-CD4 complexes suggested a distinct binding profile involving antibody heavy chain interactions with CD4 and light chain interactions with gp120. In accordance, targeted mutations in CD4 based on this model specifically reduced MAb 19e interactions with stable gp120-CD4 complexes that retained reactivity with other anti-CD4i MAbs. These data represent a rare instance of an antibody response that is specific to a pathogen-host cell protein interaction and underscore the diversity of immunogenic CD4i epitope structures that exist during natural infection. PMID:21994452

  9. Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2.

    PubMed

    Zunke, Friederike; Andresen, Lisa; Wesseler, Sophia; Groth, Johann; Arnold, Philipp; Rothaug, Michelle; Mazzulli, Joseph R; Krainc, Dimitri; Blanz, Judith; Saftig, Paul; Schwake, Michael

    2016-04-01

    The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2-derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies. PMID:27001828

  10. Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

    PubMed Central

    Gunun, P.; Wanapat, M.; Anantasook, N.

    2013-01-01

    This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen (NH3-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers. PMID:25049759

  11. Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin.

    PubMed

    Mihara, Emiko; Hirai, Hidenori; Yamamoto, Hideki; Tamura-Kawakami, Keiko; Matano, Mami; Kikuchi, Akira; Sato, Toshiro; Takagi, Junichi

    2016-01-01

    Wnt plays important role during development and in various diseases. Because Wnts are lipidated and highly hydrophobic, they can only be purified in the presence of detergents, limiting their use in various in vitro and in vivo assays. We purified N-terminally tagged recombinant Wnt3a secreted from cells and accidentally discovered that Wnt3a co-purified with a glycoprotein afamin derived from the bovine serum included in the media. Wnt3a forms a 1:1 complex with afamin, which remains soluble in aqueous buffer after isolation, and can induce signaling in various cellular systems including the intestical stem cell growth assay. By co-expressing with afamin, biologically active afamin-Wnt complex can be easily obtained in large quantity. As afamin can also solubilize Wnt5a, Wnt3, and many more Wnt subtypes, afamin complexation will open a way to put various Wnt ligands and their signaling mechanisms under a thorough biochemical scrutiny that had been difficult for years. PMID:26902720

  12. Single-channel analysis of the anion channel-forming protein from the plant pathogenic bacterium Clavibacter michiganense ssp. nebraskense

    PubMed Central

    Schürholz, Theo; Dloczik, Larissa; Neumann, Eberhard

    1993-01-01

    The anion channel protein from Clavibacter michiganense ssp. nebraskense (Schürholz, Th. et al. 1991, J. Membrane Biol. 123: 1-8) was analyzed at different concentrations of KCl and KF. At 0.8 M KCl the conductance G(Vm) increases exponentially from 21 pS at 50 mV up to 53 pS at Vm = 200 mV, 20°C. The concentration dependence of G(Vm) corresponds to a Michaelis-Menten type saturation function at all membrane voltage values applied (0-200 mV). The anion concentration K0.5, where G(Vm) has its half-maximum value, increases from 0.12 M at 50 mV to 0.24 M at 175 mV for channels in a soybean phospholipid bilayer. The voltage dependence of the single channel conductance, which is different for charged and neutral lipid bilayers, can be described either by a two-state flicker (2SF) model and the Nernst-Planck continuum theory, or by a two barrier, one-site (2B1S) model with asymmetric barriers. The increase in the number of open channels after a voltage jump from 50 mV to 150 mV has a time constant of 0.8 s. The changes of the single-channel conductance are much faster (<1 ms). The electric part of the gating process is characterized by the (reversible) molar electrical work ΔGθel = ρZgFVm ≈ -1.3 RT, which corresponds to the movement of one charge of the gating charge number ǀZgǀ = 1 across the fraction ρ = ΔVm/Vm = 0.15 of the membrane voltage Vm = 200 mV. Unlike with chloride, the single channel conductance of fluoride has a maximum at about 150 mV in the presence of the buffer PIPES (≥5 mM, pH 6.8) with K0.5 ≈ 1 M. It is shown that the decrease in conductance is due to a blocking of the channel by the PIPES anion. In summary, the results indicate that the anion transport by the Clavibacter anion channel (CAC) does not require a voltage dependent conformation change of the CAC. PMID:19431871

  13. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs.

    PubMed

    Kesimer, Mehmet; Cullen, John; Cao, Rui; Radicioni, Giorgia; Mathews, Kyle G; Seiler, Gabriela; Gookin, Jody L

    2015-01-01

    Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs. PMID:26414376

  14. Two distinct forms of the 64,000 Mr protein of the cleavage stimulation factor are expressed in mouse male germ cells

    PubMed Central

    Wallace, A. Michelle; Dass, Brinda; Ravnik, Stuart E.; Tonk, Vijay; Jenkins, Nancy A.; Gilbert, Debra J.; Copeland, Neal G.; MacDonald, Clinton C.

    1999-01-01

    Polyadenylation in male germ cells differs from that in somatic cells. Many germ cell mRNAs do not contain the canonical AAUAAA in their 3′ ends but are efficiently polyadenylated. To determine whether the 64,000 Mr protein of the cleavage stimulation factor (CstF-64) is altered in male germ cells, we examined its expression in mouse testis. In addition to the 64,000 Mr form, we found a related ≈70,000 Mr protein that is abundant in testis, at low levels in brain, and undetectable in all other tissues examined. Expression of the ≈70,000 Mr CstF-64 was limited to meiotic spermatocytes and postmeiotic spermatids in testis. In contrast, the 64,000 Mr form was absent from spermatocytes, suggesting that the testis-specific CstF-64 might control expression of meiosis-specific genes. To determine why the 64,000 Mr CstF-64 is not expressed in spermatocytes, we mapped its chromosomal location to the X chromosome in both mouse and human. CstF-64 may, therefore, be absent in spermatocytes because the X chromosome is inactivated during male meiosis. By extension, the testis-specific CstF-64 may be expressed from an autosomal homolog of the X chromosomal gene. PMID:10359786

  15. Apoptosis-associated speck-like protein containing a CARD forms specks but does not activate caspase-1 in the absence of NLRP3 during macrophage swelling.

    PubMed

    Compan, Vincent; Martín-Sánchez, Fátima; Baroja-Mazo, Alberto; López-Castejón, Gloria; Gomez, Ana I; Verkhratsky, Alexei; Brough, David; Pelegrín, Pablo

    2015-02-01

    Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is a key adaptor molecule required for the inflammatory processes. ASC acts by bridging NLRP proteins, such as NLRP3, with procaspase-1 within the inflammasome complex, which subsequently results in the activation of caspase-1 and the secretion of IL-1β and IL-18. In response to bacterial infection, ASC also forms specks by self-oligomerization to activate caspase-1 and induce pyroptosis. Hitherto, the role of these specks in NLRP3 inflammasome activation in response to danger signals, such as a hypotonic environment, largely has been unexplored. In this article, we report that, under hypotonic conditions and independently of NLRP3, ASC was able to form specks that did not activate caspase-1. These specks were not associated with pyroptosis and were controlled by transient receptor potential vanilloid 2 channel-mediated signaling. However, interaction with NLRP3 enhanced ASC speck formation, leading to fully functional inflammasomes and caspase-1 activation. This study reveals that the ASC speck can present different oligomerization assemblies and represents an essential step in the activation of functional NLRP3 inflammasomes. PMID:25552542

  16. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs

    PubMed Central

    Kesimer, Mehmet; Cullen, John; Cao, Rui; Radicioni, Giorgia; Mathews, Kyle G.; Seiler, Gabriela; Gookin, Jody L.

    2015-01-01

    Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs. PMID:26414376

  17. Apoptosis-associated speck-like protein containing CARD forms specks but does not activate caspase-1 in the absence of NLRP3 during macrophage swelling

    PubMed Central

    Compan, Vincent; Martín-Sánchez, Fátima; Baroja-Mazo, Alberto; López-Castejón, Gloria; Gomez, Ana I.; Verkhratsky, Alexei; Brough, David; Pelegrín, Pablo

    2016-01-01

    Apoptosis-associated speck-like protein containing a CARD (ASC) is a key adaptor molecule required for inflammatory processes. ASC acts by bridging NLRP proteins, such as NLRP3, with pro-caspase-1 within the inflammasome complex that subsequently results in the activation of caspase-1 and the secretion of interleukin (IL)-1β and IL-18. In response to bacterial infection, ASC also forms specks by self-oligomerization to activate caspase-1 and induce pyroptosis. Hitherto the role of these specks in NLRP3 inflammasome activation in response to danger signals is largely unexplored. Here we report that under hypotonic conditions, ASC formed specks independently of NLRP3 that did not activate caspase-1. These specks were not associated with pyroptosis and were controlled by Transient Receptor Potential Vanilloid 2 channel mediated signaling. However, interaction with NLRP3 enhanced ASC speck formation leading to fully functional inflammasomes and caspase-1 activation. This study reveals that the ASC speck could present different oligomerization assemblies and represents an essential step in the activation of functional NLRP3 inflammasomes. PMID:25552542

  18. A Specific Form of Phospho Protein Phosphatase 2 Regulates Anaphase-promoting Complex/Cyclosome Association with Spindle Poles

    PubMed Central

    Ban, Kenneth H.

    2010-01-01

    In early mitosis, the END (Emi1/NuMA/Dynein-dynactin) network anchors the anaphase-promoting complex/cyclosome (APC/C) to the mitotic spindle and poles. Spindle anchoring restricts APC/C activity, thereby limiting the destruction of spindle-associated cyclin B and ensuring maintenance of spindle integrity. Emi1 binds directly to hypophosphorylated APC/C, linking the APC/C to the spindle via NuMA. However, whether the phosphorylation state of the APC/C is important for its association with the spindle and what kinases and phosphatases are necessary for regulating this event remain unknown. Here, we describe the regulation of APC/C-mitotic spindle pole association by phosphorylation. We find that only hypophosphorylated APC/C associates with microtubule asters, suggesting that phosphatases are important. Indeed, a specific form of PPP2 (CA/R1A/R2B) binds APC/C, and PPP2 activity is necessary for Cdc27 dephosphorylation. Screening by RNA interference, we find that inactivation of CA, R1A, or R2B leads to delocalization of APC/C from spindle poles, early mitotic spindle defects, a failure to congress chromosomes, and decreased levels of cyclin B on the spindle. Consistently, inhibition of cyclin B/Cdk1 activity increased APC/C binding to microtubules. Thus, cyclin B/Cdk1 and PPP2 regulate the dynamic association of APC/C with spindle poles in early mitosis, a step necessary for proper spindle formation. PMID:20089842

  19. Nanoscale mono- and multi-layer cylinder structures formed by recombinant S-layer proteins of mosquitocidal Bacillus sphaericus C3-41.

    PubMed

    Li, Jia; Yang, Lingling; Hu, Xiaomin; Zheng, Dasheng; Yan, Jianpin; Yuan, Zhiming

    2013-08-01

    The mature surface layer (S-layer) protein SlpC of mosquitocidal Bacillus sphaericus C3-41 comprises amino acids 31-1,176 and could recrystallize in vitro. The N-terminal SLH domain is responsible for binding function. Deletion of this part, S-layer proteins could not bind to the cell wall sacculi. To investigate the self-assembly ability of SlpC from B. sphaericus, nine truncations were constructed and their self-assembly properties were compared with the recombinant mature S-layer protein rSlpC₃₁₋₁,₁₇₆. The results showed that rSbsC₃₁₋₁,₁₇₆ and truncations rSlpC₂₁₁₋₁,₁₇₆, rSlpC₂₇₈₋₁,₁₇₆, rSlpC₃₁₋₁,₁₀₀, and rSlpC₃₁₋₁,₀₅₀ could assemble into multilayer cylinder structures, while N-terminal truncations rSlpC₃₃₈₋₁,₁₇₆, rSlpC₄₃₈₋₁,₁₇₆, and rSlpC₄₉₈₋₁,₁₇₆ mainly showed monolayer cylinders in recombinant Escherichia coli BL21 (DE3) cells. Growth phase analysis of the self-assembly process revealed that rSlpC₄₉₈₋₁,₁₇₆ mainly formed monolayer cylinders in the early stage (0.5 and 1 h induction of expression), but few double-layer or multilayer cylinders were also found with the cells growing, while rSlpC₃₁₋₁,₁₇₆ could formed multilayer cylinders in all the growth stage in the E. coli cells. It is concluded that the deletion of the C-terminal 126 aa or the N-terminal 497 aa did not interfere with the self-assembly process, the fragment (amino acids 278 to 337) is essential for the multilayer cylinder formation in E. coli BL21 (DE3) cells in the early stage and the fragment (amino acids 338 to 497) is related to monolayer cylinder formation. The information is important for further studies on the assembly mechanism of S-layer proteins and forms a basis for further studies concerning surface display and nanobiotechnology. PMID:23306643

  20. The Bactofilin Cytoskeleton Protein BacM of Myxococcus xanthus Forms an Extended β-Sheet Structure Likely Mediated by Hydrophobic Interactions

    PubMed Central

    Xie, Kefang; Engelhardt, Harald; Bosch, Jürgen; Hoiczyk, Egbert

    2015-01-01

    Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization. PMID:25803609

  1. Transcriptional corepression in vitro: a Mot1p-associated form of TATA-binding protein is required for repression by Leu3p.

    PubMed Central

    Wade, P A; Jaehning, J A

    1996-01-01

    Signals from transcriptional activators to the general mRNA transcription apparatus are communicated by factors associated with RNA polymerase II or the TATA-binding protein (TBP). Currently, little is known about how gene-specific transcription repressors communicate with RNA polymerase II. We have analyzed the requirements for repression by the saccharomyces cerevisiae Leu3 protein (Leu3p) in a reconstituted transcription system. We have identified a complex form of TBP which is required for communication of the repressing signal. This TFIID-like complex contains a known TBP-associated protein, Mot1p, which has been implicated in the repression of a subset of yeast genes by genetic analysis. Leu3p-dependent repression can be reconstituted with purified Mot1p and recombinant TBP. In addition, a mutation in the Mot1 gene leads to partial derepression of the Leu3p-dependent LEU2 promoter. These in vivo and in vitro observations define a role for Mot1p as a transcriptional corepressor. PMID:8657139

  2. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme.

    PubMed

    Messori, Luigi; Merlino, Antonello

    2014-04-28

    A crystallographic study of the adduct formed between hen egg white lysozyme (HEWL) and NAMI-A, an established ruthenium(III) anticancer agent in clinical trials, is presented here. The X-ray structure reveals that NAMI-A coordinates the protein, as a naked ruthenium ion, at two distinct sites (namely Asp101 or Asp119) after releasing all its original ligands (DMSO, imidazole and Cl(-)). Structural data of the HEWL/NAMI-A adduct are compared with those previously obtained for the HEWL adduct of AziRu, a NAMI-A analogue bearing a pyridine in place of imidazole. The present results further support the view that NAMI-A exerts its biological effects acting as a classical "prodrug" first undergoing activation and then causing extensive metalation of relevant protein targets. It is also proposed that the original Ru-ligands, although absent in the final adduct, play a major role in directing the ruthenium center to its ultimate anchoring site on the protein surface. PMID:24553967

  3. Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes

    PubMed Central

    Liu, Wanlu; Wang, Haifeng; Papikian, Ashot; Pastor, William A.; Moissiard, Guillaume; Vashisht, Ajay A.; Dangl, Jeffery L.; Wohlschlegel, James A.; Jacobsen, Steven E.

    2016-01-01

    The MORC family of GHKL ATPases are an enigmatic class of proteins with diverse chromatin related functions. In Arabidopsis, AtMORC1, AtMORC2, and AtMORC6 act together in heterodimeric complexes to mediate transcriptional silencing of methylated DNA elements. Here, we studied Arabidopsis AtMORC4 and AtMORC7. We found that, in contrast to AtMORC1,2,6, they act to suppress a wide set of non-methylated protein-coding genes that are enriched for those involved in pathogen response. Furthermore, atmorc4 atmorc7 double mutants show a pathogen response phenotype. We found that AtMORC4 and AtMORC7 form homomeric complexes in vivo and are concentrated in discrete nuclear bodies adjacent to chromocenters. Analysis of an atmorc1,2,4,5,6,7 hextuple mutant demonstrates that transcriptional de-repression is largely uncoupled from changes in DNA methylation in plants devoid of MORC function. However, we also uncover a requirement for MORC in both DNA methylation and silencing at a small but distinct subset of RNA-directed DNA methylation target loci. These regions are characterized by poised transcriptional potential and a low density of sites for symmetric cytosine methylation. These results provide insight into the biological function of MORC proteins in higher eukaryotes. PMID:27171361

  4. Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin

    PubMed Central

    Perisic, Ljubica; Rodriguez, Patricia Q.; Hultenby, Kjell; Sun, Ying; Lal, Mark; Betsholtz, Christer; Uhlén, Mathias; Wernerson, Annika; Hedin, Ulf; Pikkarainen, Timo; Tryggvason, Karl; Patrakka, Jaakko

    2015-01-01

    Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGFβ signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated. PMID:25807495

  5. Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex.

    PubMed

    Zhu, Ben-Zhan; Mao, Li; Fan, Rui-Mei; Zhu, Jun-Ge; Zhang, Ying-Nan; Wang, Jing; Kalyanaraman, Balaraman; Frei, Balz

    2011-01-14

    Ergothioneine (2-mercaptohistidine trimethylbetaine) is a naturally occurring amino acid analogue found in up to millimolar concentrations in several tissues and biological fluids. However, the biological functions of ergothioneine remain incompletely understood. In this study, we investigated the role of ergothioneine in copper-induced oxidative damage to DNA and protein, using two copper-containing systems: Cu(II) with ascorbate and Cu(II) with H(2)O(2) [0.1 mM Cu(II), 1 mM ascorbate, and 1 mM H(2)O(2)]. Oxidative damage to DNA and bovine serum albumin was measured as strand breakage and protein carbonyl formation, respectively. Ergothioneine (0.1-1.0 mM) provided strong, dose-dependent protection against oxidation of DNA and protein in both copper-containing systems. In contrast, only limited protection was observed with the purported hydroxyl radical scavengers, dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Ergothioneine also significantly inhibited copper-catalyzed oxidation of ascorbate and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous copper, but not cupric copper, as demonstrated by UV-visible and low-temperature electron spin resonance techniques. We conclude that ergothioneine is a potent, natural sulfur-containing antioxidant that prevents copper-dependent oxidative damage to biological macromolecules by forming a redox-inactive ergothioneine-copper complex. PMID:21047085

  6. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ

    PubMed Central

    Draper, Olga; Byrne, Meghan E.; Li, Zhuo; Keyhani, Sepehr; Cueto Barrozo, Joyce; Jensen, Grant; Komeili, Arash

    2011-01-01

    SUMMARY Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide-ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane-bound organelles that aid in navigation along the earth’s magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB-1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo. We also uncover two proteins, MamJ and LimJ, which perform a redundant function to promote the dynamic behavior of MamK filaments in wildtype cells. The absence of both MamJ and LimJ leads to static filaments, a disrupted magnetosome chain, and an anomalous build-up of cytoskeletal filaments between magnetosomes. Our results suggest that MamK filaments, like eukaryotic actins, are intrinsically stable and rely on regulators for their dynamic behavior, a feature that stands in contrast to some classes of bacterial actins characterized to date. PMID:21883528

  7. Major vault protein forms complexes with hypoxia-inducible factor (HIF)-1alpha and reduces HIF-1alpha level in ACHN human renal adenocarcinoma cells.

    PubMed

    Iwashita, Ken-ichi; Ikeda, Ryuji; Takeda, Yasuo; Sumizawa, Tomoyuki; Furukawa, Tatsuhiko; Yamaguchi, Tatsuya; Akiyama, Shin-ichi; Yamada, Katsushi

    2010-04-01

    Vaults are evolutionarily highly conserved ribonucleoprotein (RNP) particles with a hollow barrel-like structure. Although roles in multidrug resistance and innate immunity have been suggested, the physiological function of vaults remains unclear. Major vault protein (MVP), the main component of the vault particle, has been reported to be induced by hypoxia. However, there are no reports about the effect of vaults on cellular responses to hypoxia. We thus examined whether vaults are implicated in cellular responses to hypoxia. In this study, we focused on hypoxia-inducible factor-1alpha (HIF-1alpha), which is a master regulator of hypoxic responses, and found that: (i) MVP knockdown by RNA interference increases HIF-1alpha protein levels induced by hypoxia and hypoxia mimetics; (ii) MVP knockdown does not affect HIF-1alpha mRNA levels, but decreases the ubiquitination and degradation of HIF-1alpha protein; and (iii) vaults form complexes with HIF-1alpha, PHD2, and pVHL. Taken together, these results suggest that vaults function as scaffolds in HIF-1alpha degradation pathway and promote the ubiquitination and degradation of HIF-1alpha. PMID:20175781

  8. Isolation and characterization of three forms of 36-kDa Ca2+-dependent actin- and phospholipid-binding proteins from human placenta membrane.

    PubMed

    Hayashi, H; Sonobe, S; Owada, M K; Kakunaga, T

    1987-07-31

    We purified three forms of 36-kDa proteins, two monomeric 36-kDa proteins, wh