Science.gov

Sample records for grasshopper pathogens differentiated

  1. Ecotypic differentiation between urban and rural populations of the grasshopper Chorthippus brunneus relative to climate and habitat fragmentation.

    PubMed

    San Martin Y Gomez, Gilles; Van Dyck, Hans

    2012-05-01

    Urbanization alters environmental conditions in multiple ways and offers an ecological or evolutionary challenge for organisms to cope with. Urban areas typically have a warmer climate and strongly fragmented herbaceous vegetation; the urban landscape matrix is often assumed to be hostile for many organisms. Here, we addressed the issue of evolutionary differentiation between urban and rural populations of an ectotherm insect, the grasshopper Chorthippus brunneus. We compared mobility-related morphology and climate-related life history traits measured on the first generation offspring of grasshoppers from urban and rural populations reared in a common garden laboratory experiment. We predicted (1) the urban phenotype to be more mobile (i.e., lower mass allocation to the abdomen, longer relative femur and wing lengths) than the rural phenotype; (2) the urban phenotype to be more warm adapted (e.g., higher female body mass); and (3) further evidence of local adaptation in the form of significant interaction effects between landscape of origin and breeding temperature. Both males and females of urban origin had significantly longer relative femur and wing lengths and lower mass allocation to the abdomen (i.e., higher investment in thorax and flight muscles) relative to individuals of rural origin. The results were overall significant but small (2-4%). Body mass and larval growth rate were much higher (+10%) in females of urban origin. For the life history traits, we did not find evidence for significant interaction effects between the landscape of origin and the two breeding temperatures. Our results point to ecotypic differentiation with urbanization for mobility-related morphology and climate-related life history traits. We argue that the warmer urban environment has an indirect effect through longer growth season rather than direct effects on the development.

  2. A PCR-based method to identify Entomophaga spp. infections in North American grasshoppers.

    PubMed

    Casique-Valdes, Rebeca; Sanchez-Peña, Sergio; Ivonne Torres-Acosta, R; Bidochka, Michael J

    2012-01-01

    A PCR-based method was developed for the detection and identification of two species of grasshopper-specific pathogens belonging to the genus Entomophaga in North America, Entomophaga calopteni and Entomophaga macleodii. Two separate sets of primers specific for amplification of a DNA product from each species of Entomophaga as well as a positive control were utilized. Grasshoppers were collected from two sites in Mexico during an epizootic with grasshoppers found in "summit disease", typical of Entomophaga infections. There was a preponderance of Melanopline grasshoppers infected by E. calopteni. The described method is an accurate tool for identification of North American grasshopper infections by Entomophaga species.

  3. Differential gene flow of mitochondrial and nuclear DNA markers among chromosomal races of Australian morabine grasshoppers (Vandiemenella, viatica species group).

    PubMed

    Kawakami, T; Butlin, R K; Adams, M; Saint, K M; Paull, D J; Cooper, S J B

    2007-12-01

    Recent theoretical developments have led to a renewed interest in the potential role of chromosomal rearrangements in speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group) provide an excellent study system to test this potential role of chromosomal rearrangements because they show extensive chromosomal variation and formed the basis of a classic chromosomal speciation model. There are three chromosomal races, viatica19, viatica17, and P24(XY), on Kangaroo Island, South Australia, forming five parapatric populations with four putative contact zones among them. We investigate the extent to which chromosomal variation among these populations may be associated with barriers to gene flow. Population genetic and phylogeographical analyses using 15 variable allozyme loci and the elongation factor-1alpha (EF-1alpha) gene indicate that the three races represent genetically distinct taxa. In contrast, analyses of the mitochondrial cytochrome c oxidase subunit I (COI) gene show the presence of three distinctive and geographically localized groups that do not correspond with the distribution of the chromosomal races. These discordant population genetic patterns are likely to result from introgressive hybridization between the chromosomal races and range expansions/contractions. Overall, these results suggest that reduction of nuclear gene flow may be associated with chromosomal variation, or underlying genetic variation linked with chromosomal variation, whereas mitochondrial gene flow appears to be independent of this variation in these morabine grasshoppers. The identification of an intact contact zone between P24(XY) and viatica17 offers considerable potential for further investigation of molecular mechanisms that maintain distinct nuclear genomes among the chromosomal races.

  4. Differentiation of pathogenic and saprophytic leptospira strains.

    PubMed

    Bazovská, S; Kmety, E; Rak, J

    1984-09-01

    Comparative studies of 249 pathogenic and 80 saprophytic leptospira strains, including 2 strains of the illini type, using the 8-azaguanine test, growth at 13 degrees C and growth on trypticase soy broth revealed their good differentiating potency if the recommended conditions were carefully observed. The same results were obtained by a simple hemolytic test using sheep and rat blood cells, having the advantage of providing results within 24 h. This test is suggested to replace the 8-azaguanine and the growth test at 13 degrees C. In these investigations, the first European strain of the illini type was recognized.

  5. Households at Grasshopper Pueblo.

    ERIC Educational Resources Information Center

    Reid, J. Jefferson; Whittlesey, Stephanie M.

    1982-01-01

    Describes the archaeological reconstruction of domestic life in Grasshopper, Arizona, a mogollon pueblo community which began around 1300 A.D. Categories of space and domestic activities are discussed. An analysis of variations in the patterns of household types within the pueblo is included. (AM)

  6. Pathogenicity, morphology, and differentiation of Acanthamoeba.

    PubMed

    Khan, N A

    2001-12-01

    Acanthamoeba keratitis is sight threatening corneal infection caused by pathogenic Acanthamoeba. Previous studies have shown the genotypic differences between pathogenic and non-pathogenic species/strains of Acanthamoeba. In this study, we examined the morphological differences between pathogenic and non-pathogenic species/strains using scanning electron microscopy. Pathogenic Acanthamoeba exhibited higher number of acanthopodia (structures associated with the binding of amoeba to the target cells) as compared to non-pathogens. In addition, interactions of amoeba with the corneal epithelial cells were studied. Only pathogenic amoeba exhibited adhesion to epithelial cells. Further results indicated that phagocytosis occurs in the pathogenic amoeba by the formation of amoebastome (characteristic of amoeba phagocyte). This study showed that Acanthamoeba phagocytosis may be both an efficient means of obtaining nutrients for the amoeba and a significant factor in the pathogenesis of Acanthamoeba infections.

  7. New case of long-term persistence of Paranosema locustae (Microsporidia) in melanopline grasshoppers (Orthoptera: Acrididae: Melanoplinae) of Argentina.

    PubMed

    Lange, Carlos E; Azzaro, Francisco G

    2008-11-01

    We report an additional case of long-term persistence of Paranosema locustae in grasshoppers of Argentina. The pathogen was introduced from North America on rangeland at Loncopué, Neuquén province. Microsporidia were not detected in pre-introduction samples whereas infected grasshoppers were found 11 years after introduction. Affected grasshoppers were the melanoplines Dichroplus elongatus, Dichroplus maculipennis, and Scotussa lemniscata, some of them with high spore loads. The case highlights the ability of P. locustae to recycle in local grasshopper communities by parasitizing susceptible species other than the natural hosts.

  8. Positive interactions between large herbivores and grasshoppers, and their consequences for grassland plant diversity.

    PubMed

    Zhong, Zhiwei; Wang, Deli; Zhu, Hui; Wang, Ling; Feng, Chao; Wang, Zhongnan

    2014-04-01

    Although the influence of positive interactions on plant and sessile communities has been well documented, surprisingly little is known about their role in structuring terrestrial animal communities. We evaluated beneficial interactions between two distantly related herbivore taxa, large vertebrate grazers (sheep) and smaller insect grazers (grasshoppers), using a set of field experiments in eastern Eurasian steppe of China. Grazing by large herbivores caused significantly higher grasshopper density, and this pattern persisted until the end of the experiment. Grasshoppers, in turn, increased the foraging time of larger herbivores, but such response occurred only during the peak of growing season (August). These reciprocal interactions were driven by differential herbivore foraging preferences for plant resources; namely, large herbivores preferred Artemisia forbs, whereas grasshoppers preferred Leymus grass. The enhancement of grasshopper density in areas grazed by large herbivores likely resulted from the selective consumption of Artemisia forbs by vertebrate grazers, which may potentially improve the host finding of grasshoppers. Likewise, grasshoppers appeared to benefit large herbivores by decreasing the cover and density of the dominant grass Leymus chinensis, which hampers large herbivores' access to palatable forbs. Moreover, we found that large herbivores grazing alone may significantly decrease plant diversity, yet grasshoppers appeared to mediate such negative effects when they grazed with large herbivores. Our results suggest that the positive, reciprocal interactions in terrestrial herbivore communities may be more prevalent and complex than previously thought.

  9. [THE IDENTIFICATION AND DIFFERENTIATION OF BACTERIOPHAGES OF HUMAN PATHOGENIC VIBRIO].

    PubMed

    Gaevskaia, N E; Kudriakova, T A; Makedonova, L D; Kachkina, G V

    2015-04-01

    The issue of identification and differentiation of large group of bacteriophages of human pathogenic vibrio is still unresolved. In research and practical applied purposes it is important to consider characteristics of bacteriophages for establishing similarity and differences between them. The actual study was carried out to analyze specimens of DNA-containing bacteriophages of pathogenic vibrio. The overwhelming majority of them characterized by complicated type of symmetry--phages with double-helical DNA and also phages with mono-helical DNA structure discovered recently in vibrio. For the first time, the general framework of identification and differentiation of bacteriophages of pathogenic vibrio was developed. This achievement increases possibility to establish species assignment of phages and to compare with phages registered in the database. "The collection of bacteriophages and test-strains of human pathogenic vibrio" (No2010620549 of 24.09.210).

  10. First Record of Fusarium verticillioides as an Entomopathogenic Fungus of Grasshoppers

    PubMed Central

    Pelizza, SA; Stenglein, SA; Cabello, MN; Dinolfo, MI; Lange, CE

    2011-01-01

    Fusarium verticillioides (Saccardo) Nirenberg (Ascomycota: Hypocreales) is the most common fungus reported on infected corn kernels and vegetative tissues, but has not yet been documented as being entomopathogenic for grasshoppers. Grasshoppers and locusts represent a large group of insects that cause economic damage to forage and crops. Tropidacris collaris (Stoll) (Orthoptera: Acridoidea: Romaleidae) is a large and voracious grasshopper that in recent years has become an increasingly recurrent and widespread pest in progressively more greatly extended areas of some of in Argentina's northern provinces, with chemical insecticides being currently the only means of control. During February and March of 2008–09, nymphs and adults of T. collaris were collected with sweep nets in dense woodland vegetation at a site near Tres Estacas in western Chaco Province, Argentina, and kept in screened cages. F. verticillioides was isolated from insects that died within 10 days and was cultured in PGA medium. Pathogenicity tests were conducted and positive results recorded. Using traditional and molecular-biological methods, an isolate of F. verticillioides was obtained from T. collaris, and its pathogenecity in the laboratory was shown against another harmful grasshopper, Ronderosia bergi (Stål) (Acridoidea: Acrididae: Melanoplinae). The mortality caused by F. verticillioides on R. bergi reached 58 ± 6.53% by 10 days after inoculation. This is the first record of natural infection caused by F. verticillioides in grasshoppers. PMID:21867437

  11. First record of Fusarium verticillioides as an entomopathogenic fungus of grasshoppers.

    PubMed

    Pelizza, S A; Stenglein, S A; Cabello, M N; Dinolfo, M I; Lange, C E

    2011-01-01

    Fusarium verticillioides (Saccardo) Nirenberg (Ascomycota: Hypocreales) is the most common fungus reported on infected corn kernels and vegetative tissues, but has not yet been documented as being entomopathogenic for grasshoppers. Grasshoppers and locusts represent a large group of insects that cause economic damage to forage and crops. Tropidacris collaris (Stoll) (Orthoptera: Acridoidea: Romaleidae) is a large and voracious grasshopper that in recent years has become an increasingly recurrent and widespread pest in progressively more greatly extended areas of some of in Argentina's northern provinces, with chemical insecticides being currently the only means of control. During February and March of 2008-09, nymphs and adults of T. collaris were collected with sweep nets in dense woodland vegetation at a site near Tres Estacas in western Chaco Province, Argentina, and kept in screened cages. F. verticillioides was isolated from insects that died within 10 days and was cultured in PGA medium. Pathogenicity tests were conducted and positive results recorded. Using traditional and molecular-biological methods, an isolate of F. verticillioides was obtained from T. collaris, and its pathogenecity in the laboratory was shown against another harmful grasshopper, Ronderosia bergi (Stål) (Acridoidea: Acrididae: Melanoplinae). The mortality caused by F. verticillioides on R. bergi reached 58 ± 6.53% by 10 days after inoculation. This is the first record of natural infection caused by F. verticillioides in grasshoppers.

  12. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    PubMed

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned.

  13. Ferocious fighting between male grasshoppers.

    PubMed

    Umbers, Kate D L; Tatarnic, Nikolai J; Holwell, Gregory I; Herberstein, Marie E

    2012-01-01

    Contests among individuals over mating opportunities are common across diverse taxa, yet physical conflict is relatively rare. Due to the potentially fatal consequences of physical fighting, most animals employ mechanisms of conflict resolution involving signalling and ritualistic assessment. Here we provide the first evidence of ubiquitous escalated fighting in grasshoppers. The chameleon grasshopper (Kosciuscola tristis) is an Australian alpine specialist, in which males engage in highly aggressive combat over ovipositing females. We describe discrete agonistic behaviours including mandible flaring, mounting, grappling, kicking and biting, and their use depending on the individual's role as challenger or defender. We show that male role predicts damage, with challengers being more heavily damaged than males defending females (defenders). Challengers also possess wider mandibles than defenders, but are similar in other metrics of body size. Our data suggest that fights escalate between males matched in body size and that mandibles are used as weapons in this species. This system represents an exciting opportunity for future research into the evolution of costly fighting behaviour in an otherwise placid group.

  14. Learning improves growth rate in grasshoppers.

    PubMed

    Dukas, R; Bernays, E A

    2000-03-14

    To quantify the adaptive significance of insect learning, we documented the behavior and growth rate of grasshoppers (Schistocerca americana) in an environment containing two artificial food types, one providing a balanced diet of protein and carbohydrate, which maximizes growth, and the other being carbohydrate-deficient, which is unsuitable for growth. Grasshoppers in the Learning treatment experienced a predictable environment, where the spatial location, taste, and color of each food source remained constant throughout the experiment. In contrast, grasshoppers of the Random treatment developed in a temporally varying environment, where the spatial location, taste, and color of the balanced and deficient food types randomly alternated twice each day. Our results show that the grasshoppers that could employ associative learning for diet choice experienced higher growth rates than individuals of the Random treatment, demonstrating the adaptive significance of learning in a small short-lived insect.

  15. Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers.

    PubMed

    Ibanez, Sébastien; Manneville, Olivier; Miquel, Christian; Taberlet, Pierre; Valentini, Alice; Aubert, Serge; Coissac, Eric; Colace, Marie-Pascale; Duparc, Quentin; Lavorel, Sandra; Moretti, Marco

    2013-12-01

    Food preferences and food availability are two major determinants of the diet of generalist herbivores and of their spatial distribution. How do these factors interact and eventually lead to diet differentiation in co-occurring herbivores? We quantified the diet of four grasshopper species co-occurring in subalpine grasslands using DNA barcoding of the plants contained in the faeces of individuals sampled in the field. The food preferences of each grasshopper species were assessed by a choice (cafeteria) experiment from among 24 plant species common in five grassland plots, in which the four grasshoppers were collected, while the habitat was described by the relative abundance of plant species in the grassland plots. Plant species were characterised by their leaf economics spectrum (LES), quantifying their nutrient vs. structural tissue content. The grasshoppers' diet, described by the mean LES of the plants eaten, could be explained by their plant preferences but not by the available plants in their habitat. The diet differed significantly across four grasshopper species pairs out of six, which validates food preferences assessed in standardised conditions as indicators for diet partitioning in nature. In contrast, variation of the functional diversity (FD) for LES in the diet was mostly correlated to the FD of the available plants in the habitat, suggesting that diet mixing depends on the environment and is not an intrinsic property of the grasshopper species. This study sheds light on the mechanisms determining the feeding niche of herbivores, showing that food preferences influence niche position whereas habitat diversity affects niche breadth.

  16. Overexpression of Differentially Expressed Genes Identified in Non-pathogenic and Pathogenic Entamoeba histolytica Clones Allow Identification of New Pathogenicity Factors Involved in Amoebic Liver Abscess Formation

    PubMed Central

    Lorenzen, Stephan; Schuldt, Kathrin; Bernin, Hannah; Zaruba, Mareen; Lender, Corinna; Ittrich, Harald; Roeder, Thomas; Tannich, Egbert; Lotter, Hannelore; Bruchhaus, Iris

    2016-01-01

    We here compared pathogenic (p) and non-pathogenic (np) isolates of Entamoeba histolytica to identify molecules involved in the ability of this parasite to induce amoebic liver abscess (ALA)-like lesions in two rodent models for the disease. We performed a comprehensive analysis of 12 clones (A1–A12) derived from a non-pathogenic isolate HM-1:IMSS-A and 12 clones (B1–B12) derived from a pathogenic isolate HM-1:IMSS-B. “Non-pathogenicity” included the induction of small and quickly resolved lesions while “pathogenicity” comprised larger abscess development that overstayed day 7 post infection. All A-clones were designated as non-pathogenic, whereas 4 out of 12 B-clones lost their ability to induce ALAs in gerbils. No correlation between ALA formation and cysteine peptidase (CP) activity, haemolytic activity, erythrophagocytosis, motility or cytopathic activity was found. To identify the molecular framework underlying different pathogenic phenotypes, three clones were selected for in-depth transcriptome analyses. Comparison of a non-pathogenic clone A1np with pathogenic clone B2p revealed 76 differentially expressed genes, whereas comparison of a non-pathogenic clone B8np with B2p revealed only 19 differentially expressed genes. Only six genes were found to be similarly regulated in the two non-pathogenic clones A1np and B8np in comparison with the pathogenic clone B2p. Based on these analyses, we chose 20 candidate genes and evaluated their roles in ALA formation using the respective gene-overexpressing transfectants. We conclude that different mechanisms lead to loss of pathogenicity. In total, we identified eight proteins, comprising a metallopeptidase, C2 domain proteins, alcohol dehydrogenases and hypothetical proteins, that affect the pathogenicity of E. histolytica. PMID:27575775

  17. Influence of weather variables and plant communities on grasshopper density in the Southern Pampas, Argentina.

    PubMed

    de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta

    2011-01-01

    temperature had no significant effect on total grasshopper density, these weather variables and plant communities had differential influence on the dominant grasshopper species.

  18. Influence of Weather Variables and Plant Communities on Grasshopper Density in the Southern Pampas, Argentina

    PubMed Central

    de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta

    2011-01-01

    temperature had no significant effect on total grasshopper density, these weather variables and plant communities had differential influence on the dominant grasshopper species. PMID:22220572

  19. Assessment of grasshopper abundance in cereal crops using pan traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers and locusts frequently invade cereal crops from adjacent source habitats. To protect the crops from grasshopper damage, areas bordering crop fields may be treated with insecticides. Study of grasshopper dispersal into crops and evaluation of various management alternatives is hindered b...

  20. Differential proteome and secretome analysis during rice-pathogen interaction.

    PubMed

    Wang, Yiming; Kim, Sang Gon; Wu, Jingni; Kim, Sun Tae; Kang, Kyu Young

    2014-01-01

    Substantial evidences implicate that sample preparation and protein extraction in proteomic studies of plant-pathogen interactions are critical to understand cross talk between host and pathogen. Therefore, interest is growing in applying proteomics techniques to investigate simultaneously secreted proteins from rice and pathogen. We have found, however, that most proteins of interest are low abundant so that proper prefractionation or extraction of secreted proteins from extracellular space (ECS) in the rice leaf is required to excavate relevant protein. This chapter describes the preparation of sample and extraction procedure to enrich the proteins interested before separation by 2-DE or LC-MS/MS. This method significantly increases the sensitivity of proteomic comparisons.

  1. [Applications of spectral analysis technique to monitoring grasshoppers].

    PubMed

    Lu, Hui; Han, Jian-guo; Zhang, Lu-da

    2008-12-01

    Grasshopper monitoring is of great significance in protecting environment and reducing economic loss. However, how to predict grasshoppers accurately and effectively is a difficult problem for a long time. In the present paper, the importance of forecasting grasshoppers and its habitat is expounded, and the development in monitoring grasshopper populations and the common arithmetic of spectral analysis technique are illustrated. Meanwhile, the traditional methods are compared with the spectral technology. Remote sensing has been applied in monitoring the living, growing and breeding habitats of grasshopper population, and can be used to develop a forecast model combined with GIS. The NDVI values can be analyzed throughout the remote sensing data and be used in grasshopper forecasting. Hyper-spectra remote sensing technique which can be used to monitor grasshoppers more exactly has advantages in measuring the damage degree and classifying damage areas of grasshoppers, so it can be adopted to monitor the spatial distribution dynamic of rangeland grasshopper population. Differentialsmoothing can be used to reflect the relations between the characteristic parameters of hyper-spectra and leaf area index (LAI), and indicate the intensity of grasshopper damage. The technology of near infrared reflectance spectroscopy has been employed in judging grasshopper species, examining species occurrences and monitoring hatching places by measuring humidity and nutrient of soil, and can be used to investigate and observe grasshoppers in sample research. According to this paper, it is concluded that the spectral analysis technique could be used as a quick and exact tool in monitoring and forecasting the infestation of grasshoppers, and will become an important means in such kind of research for their advantages in determining spatial orientation, information extracting and processing. With the rapid development of spectral analysis methodology, the goal of sustainable monitoring

  2. Mutational analysis of an autoantibody: differential binding and pathogenicity

    PubMed Central

    1994-01-01

    We have used site-directed mutagenesis to change amino acid residues in the heavy chain of the pathogenic R4A anti-double-stranded DNA (dsDNA) antibody and have looked for resultant alterations in DNA binding and in pathogenicity. The data demonstrate that single amino acid substitutions in both complementarity determining and framework regions alter antigen binding. Changes in only a few amino acids entirely ablate DNA specificity or cause a 10-fold increase in relative binding. In vivo studies in mice of the pathogenicity of the mutated antibodies show that a single amino acid substitution leading to a loss of dsDNA binding leads also to a loss of glomerular sequestration. Amino acid substitutions that increase relative affinity for dsDNA cause a change in localization of immunoglobulin deposition from glomeruli to renal tubules. These studies demonstrate that small numbers of amino acid substitutions can dramatically alter antigen binding and pathogenicity, and that the pathogenicity of anti-DNA antibodies does not strictly correlate with affinity for DNA. PMID:8064241

  3. Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba.

    PubMed

    Khan, Naveed A; Jarroll, Edward L; Paget, Timothy A

    2002-09-01

    In this study, 14 isolates of Acanthamoeba from both clinical and environmental sources belonging to seven different species were assayed for tolerance of high osmotic pressure, temperature tolerance, extracellular proteases, and cytopathic effects (CPE) on immortalized rabbit corneal epithelial cells. On the basis of the results, amoeba isolates were divided into pathogenic and nonpathogenic groups. Ribosomal DNA sequencing was performed on these isolates. Phylogenetic relationships revealed that all the pathogenic strains tested clustered together as one group, while nonpathogenic strains clustered into other groups. Sequence comparisons with previously published sequences determined that among the six new pathogenic isolates used in this study, five belong to T4 genotype and one to T11. This is the first report of a T11 genotype being found in Acanthamoeba keratitis.

  4. Control of grasshoppers by combined application of Paranosema locustae and an insect growth regulator (IGR) (cascade) in rangelands in China.

    PubMed

    Guo, Yanyan; An, Zhao; Shi, Wangpeng

    2012-12-01

    The relatively low direct mortality caused by Paranosema locustae (Canning) has limited its application for controlling grasshopper when densities are high, and this study sought to determine if the simultaneous use of this pathogen and the IGR, Flufenoxuron (Cascade) could provide effective control. Nine treatments were tested: 45% Malathion EC at 1500 ml/ha, 5% Cascade at 150 ml/ha, 5% Cascade at 75 ml/ha, 5% Cascade at 37.5 ml/ha, P. locustae at 7.5 x 10(9) spores/ha, combinations of 5% Cascade at 75 ml/ha and P. locustae at 7.5 x 10(9) spores/ha, applied in different rations (1:1, 1:2, 1:3) in the same plot, the untreated control. P. locustae was applied on nonoverlapping plots with the IGR. The different in-plot combinations of P. locustae and Cascade in different ratios provided significantly better overall control of grasshoppers (all species) than the treatment of 5% Cascade of 150 ml/ha after 5d, but combinations were not significantly different from the other concentrations of Cascade after 12 and 31 d. When results were examined separately for specific species of grasshoppers, reduction of Dasyhippus harbipes (Fischer-Waldheim), was higher than that of Myrmeleotettix palpalis (Zubovsky). While combinations showed significant differences in the infection of different grasshopper species at 5 and 12 d posttreatment, no significant differences in rate of infection among the primary species (M. palpalis, D. harbipes, and Oedaleus asiaticus Bei-Bienko) were detected 31 d posttreatment. Our study found that P. locustae by itself could control grasshopper populations at medium densities but the combined application of P. locustae and Cascade at a ratio of 1:2 was more effective against high-density grasshopper populations.

  5. Why certain male grasshoppers have clubbed antennae?

    PubMed

    Dumas, Pascaline; Tetreau, Guillaume; Petit, Daniel

    2010-05-01

    The significance of clubbed antennae in grasshoppers was assessed by investigating the sensilla repertoire of 15 gomphocerine species. The influence of the diet type (graminivorous or polyphagous) and the apical thickening of antenna on the number of sensilla were tested. It appears that the antennal thickening has a stronger impact on the number of sensilla than the food mode. The species bearing clubbed antennae are globally low in olfactive and contact sensilla, maybe in relation with a more complex courtship, but are richer in mechanoreceptors, probably involved in the control of antenna movements. The food mode change from oligophagy to polyphagy is not associated to an increase in the number of olfactive or contact sensilla. In contrast, the high number of these sensilla in a monophagous grasshopper feeding on Ulex bushes is interpreted in the context of alkaloid detection.

  6. In vitro phenotypic differentiation towards commensal and pathogenic oral biofilms.

    PubMed

    Janus, Marleen M; Keijser, Bart J F; Bikker, Floris J; Exterkate, Rob A M; Crielaard, Wim; Krom, Bastiaan P

    2015-01-01

    Commensal oral biofilms, defined by the absence of pathology-related phenotypes, are ubiquitously present. In contrast to pathological biofilms commensal biofilms are rarely studied. Here, the effect of the initial inoculum and subsequent growth conditions on in vitro oral biofilms was studied. Biofilms were inoculated with saliva and grown anaerobically for up to 21 days in McBain medium with or without fetal calf serum (FCS) or sucrose. Pathology-related phenotypes were quantified and the community composition was determined. Biofilms inoculated with pooled saliva or individual inocula were similar. Denaturing gradient gel electrophoresis (DGGE) analysis allowed differentiation of biofilms grown with sucrose, but not with FCS. Lactate production by biofilms was significantly increased by sucrose and protease activity by FCS. McBain grown biofilms showed low activity for both phenotypes. Three clinically relevant in vitro biofilm models were developed and could be differentiated based on pathology-related phenotypes but not DGGE analysis. These models allow analysis of health-to-disease shifts and the effectiveness of prevention measures.

  7. Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens

    PubMed Central

    Powell, Amy J; Conant, Gavin C; Brown, Douglas E; Carbone, Ignazio; Dean, Ralph A

    2008-01-01

    Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life

  8. Multilocus sequence typing of Metarhizium anisopliae var acridum isolates as microbial agents for locust and grasshopper control. Genbank Accession numbers FJ787311 to FJ787325

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing interest in the biological control of locusts and grasshoppers (Acrididae) has led to the development of biopesticides based on naturally occurring pathogens which offers an environmentally safe alternative to chemical pesticides. However, the fungal strains which are being sought for biop...

  9. Evidence for cucurbit powdery mildew pathogen races based on watermelon differentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew (PM) caused by Podosphaera xanthii occurs in open fields and greenhouses and can severely limit cucurbit production. Presently seven races of P. xanthii have been identified using melon (Cucumis melo) differentials. Physiological races of this pathogen have not been classified for ot...

  10. Influence of a large late summer precipitation event on food limitation and grasshopper population dynamics in a northern Great Plains grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about the ecological processes that generate grasshopper outbreaks, and the complex ecological interactions between grasshoppers, weather conditions and plants that cause fluctuations in grasshopper populations remain poorly understood. The effects of initial and increasing grasshopp...

  11. Organophosphate residues in grasshoppers from sprayed rangelands

    USGS Publications Warehouse

    Stromborg, K.L.; McEwen, L.C.; Lamont, Thair

    1984-01-01

    Grasshoppers (Orthoptera) were collected in pastures that had been sprayed with malathion and acephate to estimate the secondary exposure of insectivorous birds to these pesticides. Residues of malathion were below 3 ppm at 30 'and 54 hours after spraying and no malaoxon was detected. In contrast, acephate was found at 8 and 9 ppm 4 hours after spray; 3-5 ppm of the toxic metabolite methamidophos were also detected at that time. By 53 hours postspray, acephate levels declined to 2 ppm and methamidophos to less than 1 ppm. These results suggest that although malathion may not be a hazard to insectivorous species. acephate may be hazardous through metabolic transformation to methamidophos.

  12. Twenty-Five Fun Things to Do with Grasshoppers.

    ERIC Educational Resources Information Center

    Dyche, Steven E.

    1981-01-01

    Briefly described are 25 "hands on" classroom activities which require live, freshly killed, or preserved grasshoppers. Topics of activities include predator-prey relationships, feeding habits, locomotion, dissection, anatomy, and population estimates. (DS)

  13. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    PubMed

    Tan, Jeslin J L; Capozzoli, Monica; Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H; Snounou, Georges; Rénia, Laurent; Ng, Lisa F P

    2014-01-01

    Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  14. Differential regulation of Sciaenops ocellatus viperin expression by intracellular and extracellular bacterial pathogens.

    PubMed

    Dang, Wei; Zhang, Min; Hu, Yong-hua; Sun, Li

    2010-08-01

    Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L. anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens.

  15. Oviposition site selection by the grasshoppers Melanoplus borealis and M. sanguinipes (Orthoptera: Acrididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female grasshoppers can affect the fitness of their offspring through their selection of oviposition sites. Successful embryological development depends on suitable temperature and moisture levels, factors which may vary considerably on a fine scale in natural environments where grasshoppers occur. ...

  16. Pathogenic and Nonpathogenic Strains of Entamoeba histolytica can be Differentiated by Monoclonal Antibodies to the Galactose-Specific Adherence Lectin

    DTIC Science & Technology

    1991-04-01

    AD- A235 913 DEVELOPMENT Ei ENGINEERING CENTER CRDEC-TR-268 PATHOGENIC AND NONPATHOGENIC STRAINS OF ENTAMOEBA HISTOLYTICA CAN BE DIFFERENTIATED BY...Pathogenic and Nonpathogenic Strains of Entamoeba Histolytica can be Differentiated by Monoclonal PR-IFJlX2XXRPEW Antibodies to the Galactose-Specific...galactose lectin produced by Entamoeba histolytica provide the basis for development of a model system for the environmental detection of adherence and

  17. Fourier Transform Infrared Spectroscopy (FTIR) as a Tool for the Identification and Differentiation of Pathogenic Bacteria.

    PubMed

    Zarnowiec, Paulina; Lechowicz, Łukasz; Czerwonka, Grzegorz; Kaca, Wiesław

    2015-01-01

    Methods of human bacterial pathogen identification need to be fast, reliable, inexpensive, and time efficient. These requirements may be met by vibrational spectroscopic techniques. The method that is most often used for bacterial detection and identification is Fourier transform infrared spectroscopy (FTIR). It enables biochemical scans of whole bacterial cells or parts thereof at infrared frequencies (4,000-600 cm(-1)). The recorded spectra must be subsequently transformed in order to minimize data variability and to amplify the chemically-based spectral differences in order to facilitate spectra interpretation and analysis. In the next step, the transformed spectra are analyzed by data reduction tools, regression techniques, and classification methods. Chemometric analysis of FTIR spectra is a basic technique for discriminating between bacteria at the genus, species, and clonal levels. Examples of bacterial pathogen identification and methods of differentiation up to the clonal level, based on infrared spectroscopy, are presented below.

  18. Immunogenetic Variation and Differential Pathogen Exposure in Free-Ranging Cheetahs across Namibian Farmlands

    PubMed Central

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone

    2012-01-01

    Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. PMID:23145096

  19. Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity.

    PubMed

    Kinnear, S M; Marques, R R; Carbonetti, N H

    2001-04-01

    Bordetella pertussis, the causative agent of whooping cough, regulates expression of many virulence factors via a two-component signal transduction system encoded by the bvgAS regulatory locus. It has been shown by transcription activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed within 10 min following a bvgAS-inducing signal, while prn is transcribed after 1 h and ptx is not transcribed until 2 to 4 h after induction. These genes therefore represent early, intermediate, and late classes of bvg-activated promoters, respectively. Although there have been many insightful studies into the mechanisms of BvgAS-mediated regulation, the role that differential regulation of virulence genes plays in B. pertussis pathogenicity has not been characterized. We provide evidence that alterations to the promoter regions of bvg-activated genes can alter the kinetic pattern of expression of these genes without changing steady-state transcription levels. In addition, B. pertussis strains containing these promoter alterations that express either ptx at an early time or fha at a late time demonstrate a significant reduction in their ability to colonize respiratory tracts in an intranasal mouse model of infection. These data suggest a role for differential regulation of bvg-activated genes, and therefore for the BvgAS regulatory system, in the pathogenicity of B. pertussis.

  20. Differential Regulation of Bvg-Activated Virulence Factors Plays a Role in Bordetella pertussis Pathogenicity

    PubMed Central

    Kinnear, Susan M.; Marques, Ryan R.; Carbonetti, Nicholas H.

    2001-01-01

    Bordetella pertussis, the causative agent of whooping cough, regulates expression of many virulence factors via a two-component signal transduction system encoded by the bvgAS regulatory locus. It has been shown by transcription activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed within 10 min following a bvgAS-inducing signal, while prn is transcribed after 1 h and ptx is not transcribed until 2 to 4 h after induction. These genes therefore represent early, intermediate, and late classes of bvg-activated promoters, respectively. Although there have been many insightful studies into the mechanisms of BvgAS-mediated regulation, the role that differential regulation of virulence genes plays in B. pertussis pathogenicity has not been characterized. We provide evidence that alterations to the promoter regions of bvg-activated genes can alter the kinetic pattern of expression of these genes without changing steady-state transcription levels. In addition, B. pertussis strains containing these promoter alterations that express either ptx at an early time or fha at a late time demonstrate a significant reduction in their ability to colonize respiratory tracts in an intranasal mouse model of infection. These data suggest a role for differential regulation of bvg-activated genes, and therefore for the BvgAS regulatory system, in the pathogenicity of B. pertussis. PMID:11254549

  1. Noncanonical dendritic cell differentiation and survival driven by a bacteremic pathogen

    PubMed Central

    Miles, Brodie; Scisci, Elizabeth; Carrion, Julio; Sabino, Gregory J.; Genco, Caroline A.; Cutler, Christopher W.

    2013-01-01

    Maintenance of blood DC homeostasis is essential to preventing autoimmunity while controlling chronic infection. However, the ability of bacteremic pathogens to directly regulate blood DC homeostasis has not been defined. One such bacteremic pathogen, Porphyromonas gingivalis, is shown by our group to survive within mDCs under aerobic conditions and therein, metastasize from its oral mucosal niche. This is accompanied by expansion of the blood mDC pool in vivo, independently of canonical DC poietins. We presently know little of how this bacteremic pathogen causes blood DC expansion and the pathophysiological significance. This work shows that optimum differentiation of MoDCs from primary human monocytes, with or without GM-CSF/IL-4, is dependent on infection with P. gingivalis strains expressing the DC-SIGN ligand mfa-1. DC differentiation is lost when DC-SIGN is blocked with its ligand HIV gp120 or knocked out by siRNA gene silencing. Thus, we have identified a novel, noncanonical pathway of DC differentiation. We term these PDDCs and show that PDDCs are bona fide DCs, based on phenotype and phagocytic activity when immature and the ability to up-regulate accessory molecules and stimulate allo-CD4+ T cell proliferation when matured. The latter is dependent on the P. gingivalis strain used to initially “educate” PDDCs. Moreover, we show that P. gingivalis-infected, conventional MoDCs become resistant to apoptosis and inflammatory pyroptosis, as determined by levels of Annexin V and caspase-8, -3/7, and -1. Taken together, we provide new insights into how a relatively asymptomatic bacteremia may influence immune homeostasis and promote chronic inflammation. PMID:23729500

  2. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    NASA Astrophysics Data System (ADS)

    Rodrigo-Navarro, Aleixandre; Rico, Patricia; Saadeddin, Anas; Garcia, Andres J.; Salmeron-Sanchez, Manuel

    2014-07-01

    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications.

  3. Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    PubMed Central

    Rodrigo-Navarro, Aleixandre; Rico, Patricia; Saadeddin, Anas; Garcia, Andres J.; Salmeron-Sanchez, Manuel

    2014-01-01

    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications. PMID:25068919

  4. Caution: Reptile pets shuttle grasshopper allergy and asthma into homes.

    PubMed

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Jensen, Sebastian A F; Robibaro, Bruno; Kinaciyan, Tamar

    2015-01-01

    The numbers of reptiles in homes has at least doubled in the last decade in Europe and the USA. Reptile purchases are increasingly triggered by the attempt to avoid potentially allergenic fur pets like dogs and cats. Consequently, reptiles are today regarded as surrogate pets initiating a closer relationship with the owner than ever previously observed. Reptile pets are mostly fed with insects, especially grasshoppers and/or locusts, which are sources for aggressive airborne allergens, best known from occupational insect breeder allergies. Exposure in homes thus introduces a new form of domestic allergy to grasshoppers and related insects. Accordingly, an 8-year old boy developed severe bronchial hypersensitivity and asthma within 4 months after purchase of a bearded dragon. The reptile was held in the living room and regularly fed with living grasshoppers. In the absence of a serological allergy diagnosis test, an IgE immunoblot on grasshopper extract and prick-to-prick test confirmed specific sensitization to grasshoppers. After 4 years of allergen avoidance, a single respiratory exposure was sufficient to trigger a severe asthma attack again in the patient. Based on literature review and the clinical example we conclude that reptile keeping is associated with introducing potent insect allergens into home environments. Patient interviews during diagnostic procedure should therefore by default include the question about reptile pets in homes.

  5. Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens.

    PubMed

    Cecil, Jessica D; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Chen, Yu-Yen; Singleton, William; Gause, Katelyn T; Yan, Yan; Caruso, Frank; Reynolds, Eric C

    2016-01-01

    Highly purified outer membrane vesicles (OMVs) of the periodontal pathogens, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were produced using tangential flow ultrafiltration, ultracentrifugation and Optiprep density gradient separation. Cryo-TEM and light scattering showed OMVs to be single lipid-bilayers with modal diameters of 75 to 158 nm. Enumeration of OMVs by nanoparticle flow-cytometry at the same stage of late exponential culture indicated that P. gingivalis was the most prolific OMV producer. P. gingivalis OMVs induced strong TLR2 and TLR4-specific responses and moderate responses in TLR7, TLR8, TLR9, NOD1 and NOD2 expressing-HEK-Blue cells. Responses to T. forsythia OMVs were less than those of P. gingivalis and T. denticola OMVs induced only weak responses. Compositional analyses of OMVs from the three pathogens demonstrated differences in protein, fatty acids, lipopolysaccharide, peptidoglycan fragments and nucleic acids. Periodontal pathogen OMVs induced differential pattern recognition receptor responses that have implications for their role in chronic periodontitis.

  6. Differential Responses of Pattern Recognition Receptors to Outer Membrane Vesicles of Three Periodontal Pathogens

    PubMed Central

    Lenzo, Jason C.; Holden, James A.; Chen, Yu-Yen; Singleton, William; Gause, Katelyn T.; Yan, Yan; Caruso, Frank; Reynolds, Eric C.

    2016-01-01

    Highly purified outer membrane vesicles (OMVs) of the periodontal pathogens, Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia were produced using tangential flow ultrafiltration, ultracentrifugation and Optiprep density gradient separation. Cryo-TEM and light scattering showed OMVs to be single lipid-bilayers with modal diameters of 75 to 158 nm. Enumeration of OMVs by nanoparticle flow-cytometry at the same stage of late exponential culture indicated that P. gingivalis was the most prolific OMV producer. P. gingivalis OMVs induced strong TLR2 and TLR4-specific responses and moderate responses in TLR7, TLR8, TLR9, NOD1 and NOD2 expressing-HEK-Blue cells. Responses to T. forsythia OMVs were less than those of P. gingivalis and T. denticola OMVs induced only weak responses. Compositional analyses of OMVs from the three pathogens demonstrated differences in protein, fatty acids, lipopolysaccharide, peptidoglycan fragments and nucleic acids. Periodontal pathogen OMVs induced differential pattern recognition receptor responses that have implications for their role in chronic periodontitis. PMID:27035339

  7. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    PubMed Central

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and

  8. Characterisation and differentiation of pathogenic and non-pathogenic Acanthamoeba strains by their protein and antigen profiles.

    PubMed

    Walochnik, J; Sommer, K; Obwaller, A; Haller-Schober, E-M; Aspöck, H

    2004-03-01

    Free-living amoebae of the genus Acanthamoeba are the causative agents of Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis. Acanthamoebae occur ubiquitously in the environment and are thus a constant cause of antigenic stimulation. In a previous study we have shown that compared to control sera, AK patients exhibit markedly lower immunoreactivities to whole cell antigen of Acanthamoeba spp. As the pathogenicity of acanthamoebae primarily relies on the excretion of proteins, it was the aim of the present study to investigate the immunoreactivity of metabolic antigen from different Acanthamoeba strains of varying pathogenicity. Three Acanthamoeba strains, one highly pathogenic, one non-pathogenic but thermophilic and one non-thermophilic non-pathogenic, were used for antigen extraction. The antigen was harvested before and after contact with human cells and all strains were tested with AK sera and with sera from healthy individuals. It was shown that the somatic protein profiles of the Acanthamoeba strains correlated to the morphological groups, and that within morphological group II-the group associated with AK-the profiles of the metabolic antigens correlated to strain pathogenicity. Moreover, it was shown that the control sera showed markedly higher immunoreactivities than the sera of the AK patients and that this immunoreactivity was generally higher to the non-pathogenic strains than to the pathogenic strain. Altogether our results once again raise the question of whether there is an immunological predisposition in AK. To our knowledge this is the first study on the immunoreactivity of metabolic antigen of acanthamoebae.

  9. The detection and differentiation of canine respiratory pathogens using oligonucleotide microarrays.

    PubMed

    Wang, Lih-Chiann; Kuo, Ya-Ting; Chueh, Ling-Ling; Huang, Dean; Lin, Jiunn-Horng

    2017-05-01

    Canine respiratory diseases are commonly seen in dogs along with co-infections with multiple respiratory pathogens, including viruses and bacteria. Virus infections in even vaccinated dogs were also reported. The clinical signs caused by different respiratory etiological agents are similar, which makes differential diagnosis imperative. An oligonucleotide microarray system was developed in this study. The wild type and vaccine strains of canine distemper virus (CDV), influenza virus, canine herpesvirus (CHV), Bordetella bronchiseptica and Mycoplasma cynos were detected and differentiated simultaneously on a microarray chip. The detection limit is 10, 10, 100, 50 and 50 copy numbers for CDV, influenza virus, CHV, B. bronchiseptica and M. cynos, respectively. The clinical test results of nasal swab samples showed that the microarray had remarkably better efficacy than the multiplex PCR-agarose gel method. The positive detection rate of microarray and agarose gel was 59.0% (n=33) and 41.1% (n=23) among the 56 samples, respectively. CDV vaccine strain and pathogen co-infections were further demonstrated by the microarray but not by the multiplex PCR-agarose gel. The oligonucleotide microarray provides a highly efficient diagnosis alternative that could be applied to clinical usage, greatly assisting in disease therapy and control.

  10. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack.

    PubMed Central

    Mauch, F; Dudler, R

    1993-01-01

    We have previously characterized a pathogen-induced gene from wheat (Triticum aestivum L.) that was named GstA1 based on sequence similarities with glutathione-S-transferases (GSTs) of maize (R. Dudler, C. Hertig, G. Rebmann, J. Bull, F. Mauch [1991] Mol Plant Microbe Interact 4: 14-18). We have constructed a full-length GstA1 cDNA by combinatorial polymerase chain reaction and demonstrate by functional expression of the cDNA in Escherichia coli that the GstA1-encoded protein has GST activity. An antiserum raised against a GstA1 fusion protein specifically recognized a protein with an apparent molecular mass of 29 kD on immunoblots of extracts from bacteria expressing the GstA1 cDNA and extracts from wheat inoculated with Erysiphe graminis. The GstA1-encoded protein was named GST29. RNA and immunoblot analysis showed that GstA1 was only weakly expressed in control plants and was specifically induced by pathogen attack and by the GST substrate glutathione, but not by various xenobiotics. In contrast, a structurally and antigenically unrelated GST with an apparent molecular mass of 25 kD that was detected with an antiserum raised against GSTs of maize was expressed at a high basal level. This GST25 and an additional immunoreactive protein named GST26 were strongly induced by cadmium and by the herbicides atrazine, paraquat, and alachlor, but not by pathogen attack. Compared with the pathogen-induced GST29, GST25 and GST26 showed a high affinity toward glutathione-agarose and were much more active toward the model substrate 1-chloro-2,4-dinitrobenzene. Thus, wheat contains at least two distinct GST classes that are differentially regulated by xenobiotics and by pathogen attack and whose members have different enzymic properties. GST25 and GST26 appear to have a function in xenobiotic metabolism, whereas GST29 is speculated to fulfill a more specific role in defense reactions against pathogens. PMID:8278547

  11. Reproductive behaviour of female Chorthippus biguttulus grasshoppers.

    PubMed

    Wirmer, Andrea; Faustmann, Melanie; Heinrich, Ralf

    2010-07-01

    Female grasshoppers of acoustically communicating species assume series of reproductive states that are associated with particular behaviours. Studies on laboratory populations of Chorthippus biguttulus (L.) revealed that females of this species lack the period of 'passive copulatory readiness', increase their attractiveness to males by sound production and mate multiple times before their first oviposition. In particular, female Ch. biguttulus display a period of 'primary rejection' after their imaginal moult during which they reject male mating attempts followed by a period of 'active copulatory readiness' in which they produce acoustic signals and may copulate with courting males. Female stridulation generally stimulated male mating activity and stridulating females attracted more male mating attempts than mute females in the same cage, indicating that males preferentially court females that signal 'active copulatory readiness'. After receipt of a spermatophore, Ch. biguttulus females displayed periods of 'secondary rejection' followed by re-establishment of 'active copulatory readiness'. Acoustic responses of females to male songs, an indicator of reproductive readiness, were significantly reduced until 2 days after mating and remained slightly reduced in comparison to pre-mating levels. Some females mated multiple times before their first oviposition and cycled between 'secondary rejection' and 'active copulatory readiness'.

  12. Red List of grasshoppers of the Wadden Sea area

    NASA Astrophysics Data System (ADS)

    Holst, K.; Grein, G.; Dierking, U.; van Wingerden, W. K. R. E.

    1996-10-01

    In typical coastal habitats of the Wadden Sea, 15 species of grasshoppers are threatened in at least one subregion. Of these, 14 species are threatened in the entire area and are therefore placed on the trilateral Red List. The situation in the Danish part of the Wadden Sea could only be taken into consideration in a limited way due to the latest available data in Denmark from 1969. The status of 2 species of grasshoppers in the entire Wadden Sea area is critical, 4 species are endangered, the status of 3 species is vulnerable and of 5 species susceptible.

  13. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    PubMed Central

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-01-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7–10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation. PMID:26902619

  14. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Hay, Jake J.; Rodrigo-Navarro, Aleixandre; Hassi, Karoliina; Moulisova, Vladimira; Dalby, Matthew J.; Salmeron-Sanchez, Manuel

    2016-02-01

    Lactococcus lactis, a non-pathogenic bacteria, has been genetically engineered to express the III7–10 fragment of human fibronectin as a membrane protein. The engineered L. lactis is able to develop biofilms on different surfaces (such as glass and synthetic polymers) and serves as a long-term substrate for mammalian cell culture, specifically human mesenchymal stem cells (hMSC). This system constitutes a living interface between biomaterials and stem cells. The engineered biofilms remain stable and viable for up to 28 days while the expressed fibronectin fragment induces hMSC adhesion. We have optimised conditions to allow long-term mammalian cell culture, and found that the biofilm is functionally equivalent to a fibronectin-coated surface in terms of osteoblastic differentiation using bone morphogenetic protein 2 (BMP-2) added to the medium. This living bacteria interface holds promise as a dynamic substrate for stem cell differentiation that can be further engineered to express other biochemical cues to control hMSC differentiation.

  15. Horizontal and trophic transfer of diflubenzuron and fipronil among grasshoppers (Melanoplus sanguinipes) and between grasshoppers and darkling beetles (Tenebrionidae).

    PubMed

    Smith, D I; Lockwood, J A

    2003-04-01

    The possibility of horizontal transmission of diflubenzuron and fipronil was assessed in rangeland grasshoppers. Laboratory studies of Melanoplus sanguinipes demonstrated that fipronil was horizontally transferred at lethal levels (p < 0.05) via cannibalism through four passages when the initial dose applied to a food source was 250 times the label rate for rangeland grasshopper and locust control (label rate is 4 g AI/ha). Mortality was 100% on the first three passages through cannibalism. At 25 and 1 times the label rate, fipronil was lethal (p < 0.05) only on the first cannibalistic passage. Diflubenzuron generated significant (p < 0.05) mortality via horizontal transmission through two passages when the initial dose applied to a food source was 2,000 times the label rate for rangeland grasshopper control (label rate is 8.71 g AI/ha). There was 100% mortality in the first passage via cannibalism. At 250 and 25 times the label rate, diflubenzuron was lethal only on the first cannibalistic passage. Field applications of these two acridicides followed by collection of cadavers (Amphitornus coloradus and Ageneotettix deorum) that were fed to M. sanguinipes in the laboratory revealed that fipronil (25 times the label rate) generated significant (p < 0.05) mortality through two passages and diflubenzuron (label rate) caused no mortality via necrophagy. Tenebrionid beetles fed grasshopper cadavers collected from the field application of fipronil yielded 45% mortality, compared with 25% mortality in the controls. These findings suggest that horizontal and trophic transfer probably play a nominal ecotoxicological role in rangeland grasshopper control programs with diflubenzuron, but the transfer of fipronil to grasshoppers, scavengers, and natural enemies via necrophagy may increase both the efficacy of control programs and their environmental affects.

  16. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment.

    PubMed

    O'Grady, Eoin P; Sokol, Pamela A

    2011-01-01

    Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host-pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections.

  17. Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African savannah.

    PubMed

    van der Plas, Fons; Olff, Han

    2014-06-01

    African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots ('control plots') with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino ('megaherbivore exclosures'), and (iii) plots with tall fences, excluding all herbivores larger than rodents ('complete ungulate exclosures'). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30% taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.

  18. The diversity of caeliferins in American grasshoppers, what possible function?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caeliferins is a new class of compounds recently identified from regurgitant of the American grasshopper (Schistocerca americana)1. Two closely related caeliferins were shown to induce the release of volatiles in corn plants comparable to what earlier has been shown with volicitin and other fatty a...

  19. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  20. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins.

    PubMed

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine

    2012-03-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.

  1. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins

    PubMed Central

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.

    2012-01-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499

  2. Spatial Genetic Structure and Mitochondrial DNA Phylogeography of Argentinean Populations of the Grasshopper Dichroplus elongatus

    PubMed Central

    Rosetti, Natalia; Remis, Maria Isabel

    2012-01-01

    Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss

  3. Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences

    PubMed Central

    2013-01-01

    Background The accumulation of repetitive DNA during sex chromosome differentiation is a common feature of many eukaryotes and becomes more evident after recombination has been restricted or abolished. The accumulated repetitive sequences include multigene families, microsatellites, satellite DNAs and mobile elements, all of which are important for the structural remodeling of heterochromatin. In grasshoppers, derived sex chromosome systems, such as neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀, are frequently observed in the Melanoplinae subfamily. However, no studies concerning the evolution of sex chromosomes in Melanoplinae have addressed the role of the repetitive DNA sequences. To further investigate the evolution of sex chromosomes in grasshoppers, we used classical cytogenetic and FISH analyses to examine the repetitive DNA sequences in six phylogenetically related Melanoplinae species with X0♂/XX♀, neo-XY♂/XX♀ and neo-X1X2Y♂/X1X1X2X2♀ sex chromosome systems. Results Our data indicate a non-spreading of heterochromatic blocks and pool of repetitive DNAs (C0t-1 DNA) in the sex chromosomes; however, the spreading of multigene families among the neo-sex chromosomes of Eurotettix and Dichromatos was remarkable, particularly for 5S rDNA. In autosomes, FISH mapping of multigene families revealed distinct patterns of chromosomal organization at the intra- and intergenomic levels. Conclusions These results suggest a common origin and subsequent differential accumulation of repetitive DNAs in the sex chromosomes of Dichromatos and an independent origin of the sex chromosomes of the neo-XY and neo-X1X2Y systems. Our data indicate a possible role for repetitive DNAs in the diversification of sex chromosome systems in grasshoppers. PMID:23937327

  4. Antineoplastic Agents 553. The Texas Grasshopper Brachystola magna1

    PubMed Central

    Pettit, George R.; Meng, Yanhui; Herald, Delbert L.; Knight, John C.; Day, John F.

    2011-01-01

    Bioassay (P388 lymphocytic leukemia cell line and human cancer cell lines) -guided separation of an extract prepared from the previously chemically uninvestigated Texas grasshopper Brachystola magna led to isolation of the cancer cell growth inhibitory pancratistatin (1), narciclasine (2) and ungeremine (3). Pancratistatin (1) was first isolated from the bulbs of Hymenocallis littoralis (a.k.a. Pancratium littorale Jacq) and the original crystal structure was deduced by X-ray analysis of a monomethyl ether derivative. In the present study a crystal of pancratistatin (1) was isolated from an extract of B. magna, which led to the X-ray crystal structure of this anticancer drug. Since isoquinoline derivatives 1–3 are previously known only as constituents of amaryllidaceous plants, some of the interesting implications of their rediscovery in the grasshopper B. magna that does not appear to utilize amaryllis family plants were discussed. PMID:16124772

  5. Antineoplastic agents. 553. The Texas grasshopper Brachystola magna.

    PubMed

    Pettit, George R; Meng, Yanhui; Herald, Delbert L; Knight, John C; Day, John F

    2005-08-01

    Bioassay (P388 lymphocytic leukemia cell line and human cancer cell lines) guided separation of an extract prepared from the previously chemically uninvestigated Texas grasshopper Brachystola magna led to isolation of the cancer cell growth inhibitory pancratistatin (1), narciclasine (2), and ungeremine (3). Pancratistatin (1) was first isolated from the bulbs of Hymenocallis littoralis), and the original crystal structure was deduced by X-ray analysis of a monomethyl ether derivative. In the present study pancratistatin (1) was isolated from an extract of B. magna, which led to the X-ray crystal structure of this anticancer drug. Since isoquinoline derivatives 1-3 are previously known only as constituents of amaryllidaceous plants, some of the interesting implications of their rediscovery in the grasshopper B. magna that does not appear to utilize amaryllis family plants were discussed.

  6. Borrelia burgdorferi sensu stricto and Borrelia afzelii: Population structure and differential pathogenicity.

    PubMed

    Jungnick, Sabrina; Margos, Gabriele; Rieger, Melissa; Dzaferovic, Eldina; Bent, Stephen J; Overzier, Evelyn; Silaghi, Cornelia; Walder, Gernot; Wex, Franziska; Koloczek, Johannes; Sing, Andreas; Fingerle, Volker

    2015-10-01

    MultiLocus sequence typing (MLST) is considered a powerful method to unveil relationships within bacterial populations and it constitutes an economical and fast alternative to whole genome sequencing. We used this method to understand whether there are differences in human pathogenicity within and between different Borrelia burgdorferi sensu lato species. Therefore, 136 strains from human patients or ticks from Europe were included in MLST analyses. The scheme employed used eight chromosomally located housekeeping genes (i.e. clpA, clpX, nifS, pepX, pyrG, recG, rplB and uvrA). We investigated Borrelia afzelii, one of the predominant species in Europe, and B. burgdorferi sensu stricto (s.s.), because it allowed comparative analysis to strains from the USA. We typed 113 patient isolates as well as 23 tick isolates. For further comparative purposes an additional 746 strains from Europe and the USA were included from the MLST website http://borrelia.mlst.net. We observed an overlap of the B. burgdorferi s.s. populations from Europe and the USA isolated from human patients while there was no overlap of the populations found in tick vectors. Further results indicate that B. afzelii was significantly less associated with disseminated infection than B. burgdorferi s.s. and that B. burgdorferi s.s. from Europe caused neuroborreliosis to a significantly greater extent than B. afzelii or B. burgdorferi s.s. in the USA. Our data suggest that there may be an evolutionary basis of differential interspecies pathogenicity in Borrelia. This was not evident within Borrelia species: we found the same sequence types in patients with disseminated or localized symptoms when the number of strains was sufficiently high. We hypothesize that the finding that B. burgdorferi s.s. in Europe is much more associated with neuroborreliosis than in the USA maybe linked to factor(s) related to the human host, the tick vector or the bacterium itself (e.g. plasmid content and structure).

  7. Grasshoppers in research and education: methods for maintenance and production.

    PubMed

    Badman, James; Harrison, Jon F; McGarry, Michael P

    2007-03-01

    Insects used in research have traditionally been housed and cared for in the investigator's laboratory. Centralized colony maintenance may be advantageous, but presents unique challenges to animal care staff members, who are more familiar with vertebrate research animals. To fill this potential knowledge gap, the authors share the procedures they have developed at Arizona State University for the housing, husbandry, and breeding of grasshoppers used in research and teaching.

  8. Allocation of nutrients to somatic tissues in young ovariectomized grasshoppers.

    PubMed

    Judd, Evan T; Hatle, John D; Drewry, Michelle D; Wessels, Frank J; Hahn, Daniel A

    2010-11-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma "relative" to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of ¹³C and ¹⁵N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  9. Micro-evolution in grasshoppers mediated by polymorphic Robertsonian translocations.

    PubMed

    Colombo, Pablo C

    2013-01-01

    This review focuses on grasshoppers that are polymorphic for Robertsonian translocations because in these organisms the clarity of meiotic figures allows the study of both chiasma distribution and the orientation of trivalents and multivalents in metaphase I. Only five species of such grasshoppers were found in the literature, and all of them were from the New World: Oedaleonotus enigma (Scudder) (Orthoptera: Acrididae), Leptysma argentina Bruner, Dichroplus pratensis Bruner, Sinipta dalmani Stål, and Cornops aquaticum Bruner. A general feature of these species (except O. enigma) is that fusion carriers suffer a marked reduction of proximal and interstitial (with respect to the centromere) chiasma frequency; this fact, along with the reduction in the number of linkage groups with the consequent loss of independent segregation, produces a marked decrease of recombination in fusion carriers. This reduction in recombination has led to the conclusion that Robertsonian polymorphic grasshopper species share some properties with inversion polymorphic species of Drosophila, such as the central-marginal pattern (marginal populations are monomorphic, central populations are highly polymorphic). This pattern might be present in D. pratensis, which is certainly the most complex Robertsonian polymorphism system in the present study. However, L. argentina and C. aquaticum do not display this pattern. This issue is open to further research. Since C. aquaticum is soon to be released in South Africa as a biological control, the latitudinal pattern found in South America may repeat there. This experiment's outcome is open and deserves to be followed.

  10. Micro-Evolution in Grasshoppers Mediated by Polymorphic Robertsonian Translocations

    PubMed Central

    Colombo, Pablo C.

    2013-01-01

    This review focuses on grasshoppers that are polymorphic for Robertsonian translocations because in these organisms the clarity of meiotic figures allows the study of both chiasma distribution and the orientation of trivalents and multivalents in metaphase I. Only five species of such grasshoppers were found in the literature, and all of them were from the New World: Oedaleonotus enigma (Scudder) (Orthoptera: Acrididae), Leptysma argentina Bruner, Dichroplus pratensis Bruner, Sinipta dalmani Stål, and Cornops aquaticum Bruner. A general feature of these species (except O. enigma) is that fusion carriers suffer a marked reduction of proximal and interstitial (with respect to the centromere) chiasma frequency; this fact, along with the reduction in the number of linkage groups with the consequent loss of independent segregation, produces a marked decrease of recombination in fusion carriers. This reduction in recombination has led to the conclusion that Robertsonian polymorphic grasshopper species share some properties with inversion polymorphic species of Drosophila, such as the central-marginal pattern (marginal populations are monomorphic, central populations are highly polymorphic). This pattern might be present in D. pratensis, which is certainly the most complex Robertsonian polymorphism system in the present study. However, L. argentina and C. aquaticum do not display this pattern. This issue is open to further research. Since C. aquaticum is soon to be released in South Africa as a biological control, the latitudinal pattern found in South America may repeat there. This experiment's outcome is open and deserves to be followed. PMID:23909914

  11. Differential gene expression in Arachis diogoi upon interaction with peanut late leaf spot pathogen, Phaeoisariopsis personata and characterization of a pathogen induced cyclophilin.

    PubMed

    Kumar, Koppolu Raja Rajesh; Kirti, Pulugurtha Bharadwaja

    2011-03-01

    The wild relatives of peanut are resistant to various economically important diseases including late leaf spot (LLS) caused by Phaeoisariopsis personata, compared with the susceptible cultivated peanut (Arachis hypogaea L.). The interaction of the late leaf spot pathogen, Phaeoisariopsis personata and the highly resistant, diploid peanut wild species, Arachis diogoi was analyzed at the molecular level by differential gene expression studies. Genes up-regulated with in 48 h of pathogen challenge were isolated as partial cDNAs. Some of the isolated genes, which are shown to be involved in the first line of defense in plants, were further characterized with respect to their transcriptional regulation in response to pathogen. Among the isolated clones, two were found to encode cyclophilin like proteins. One of the two isolated partial cDNAs encoding cyclophilin like proteins was extended using 5' RACE. The full length cDNA, designated as AdCyp, was 886 bp in length and encodes a polypeptide of 172 amino acids. Southern hybridization suggests that AdCyp is possibly coded by a single gene and at least one more identical gene is present in Arachis diogoi genome. AdCyp exhibits evolutionary conservation across the kingdoms. Phylogenetic analysis showed that AdCyp belongs to the subgroup I of Group I in cyclophilins. A translational fusion of GFP-AdCyp was found to localize to both cytosol and nucleus. AdCyp transcripts were found to accumulate in response to the treatments with pathogen as well as phytohormones. Constitutive heterologous expression of AdCyp resulted in enhanced resistance to Ralstonia solanacearum and reduced susceptibility towards Phytophthora parasitica var. nicotianae in transgenic tobacco and the resistance was associated with higher transcript levels of various defense related genes.

  12. Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster)

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Cully, J.F.; Bala, T.; Ray, C.; Collinge, S.K.

    2007-01-01

    Rodent-associated Bartonella species are generally host-specific parasites in North America. Here evidence that Bartonella species can 'jump' between host species is presented. Northern grasshopper mice and other rodents were trapped in the western USA. A study of Bartonella infection in grasshopper mice demonstrated a high prevalence that varied from 25% to 90% by location. Bartonella infection was detected in other rodent species with a high prevalence as well. Sequence analyses of gltA identified 29 Bartonella variants in rodents, 10 of which were obtained from grasshopper mice. Among these 10, only six variants were specific to grasshopper mice, whereas four were identical to variants specific to deer mice or 13-lined ground squirrels. Fourteen of 90 sequenced isolates obtained from grasshopper mice were strains found more commonly in other rodent species and were apparently acquired from these animals. The ecological behavior of grasshopper mice may explain the occurrence of Bartonella strains in occasional hosts. The observed rate at which Bartonella jumps from a donor host species to the grasshopper mouse was directly proportional to a metric of donor host density and to the prevalence of Bartonella in the donor host, and inversely proportional to the same parameters for the grasshopper mouse. ?? 2007 Federation of European Microbiological Societies.

  13. Effects of nymph-overwintering grasshopper density on Ageneotettix deorum survival in a northern mixed grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although most pest grasshopper species in North America hatch in late spring or early summer, some species hatch in late summer and become adults in late spring. It is not well understood how they impact densities of later developing pest grasshopper species. In an earlier study examining temporall...

  14. Relationships between plant diversity and grasshopper diversity and abundance in the Little Missouri National Grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuing challenge in Orthoptera ecology is to understand what determines grasshopper species diversity at a given site. In this study, the objective was to determine if variation in grasshopper abundance and diversity between 23 sites in western North Dakota (USA) could be explained by variatio...

  15. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  16. Diet influences rates of carbon and nitrogen mineralization from decomposing grasshopper frass and cadavers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect herbivory can produce a pulse of mineral nitrogen (N) in soil from the decomposition of frass and cadavers. In this study we examined how diet quality affects rates of N and carbon (C) mineralization from grasshopper frass and cadavers. Frass was collected from grasshoppers fed natural or mer...

  17. Populations of the northern grasshopper, Melanoplus borealis (Orthoptera: Acrididae), in Alaska are rarely food limited

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasshoppers can cause substantial losses to forage on rangelands and pastures and to field crops, but chemical control of grasshopper pests is rarely justified because of the low per-area value of forages, the extensive areas needed to be treated to protect crops, and because of potential impacts t...

  18. Degree-day requirements for eight economically important grasshoppers (Orthoptera: Acrididae) in Nebraska using field data.

    PubMed

    Brust, Mathew L; Hoback, W Wyatt; Wright, Robert J

    2009-10-01

    The timing of application for the management of rangeland grasshoppers (Orthoptera: Acrididae) is critical, especially as insecticides become more specialized and the use of Insect Growth Regulators becomes more widespread. The general seasonal occurrence of adults of many grasshopper species has been well documented; however, their appearance varies widely between years. We analyzed sweep samples collected over the western two thirds of Nebraska from a 3-yr period and noted the occurrence of adults by region for eight species of rangeland grasshoppers. We analyzed occurrence based on degree-day accumulations for the region and developed estimates of degree-day requirements for these species. Because these grasshopper species are common rangeland pests, degree-day requirements to reach adulthood should improve the effectiveness of grasshopper treatment programs over a large geographic area.

  19. Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species Chorthippus parallelus.

    PubMed

    Wiesner, Kerstin R; Habel, Jan Christian; Gossner, Martin M; Loxdale, Hugh D; Köhler, Günter; Schneider, Anja R R; Tiedemann, Ralph; Weisser, Wolfgang W

    2014-10-01

    Land-use intensity (LUI) is assumed to impact the genetic structure of organisms. While effects of landscape structure on the genetics of local populations have frequently been analysed, potential effects of variation in LUI on the genetic diversity of local populations have mostly been neglected. In this study, we used six polymorphic microsatellites to analyse the genetic effects of variation in land use in the highly abundant grasshopper Chorthippus parallelus. We sampled a total of 610 individuals at 22 heterogeneous grassland sites in the Hainich-Dün region of Central Germany. For each of these grassland sites we assessed habitat size, LUI (combined index of mowing, grazing and fertilization), and the proportion of grassland adjoining the sampling site and the landscape heterogeneity (the latter two factors within a 500 m buffer zone surrounding each focal site). We found only marginal genetic differentiation among all local populations and no correlation between geographical and genetic distance. Habitat size, LUI and landscape characteristics had only weak effects on most of the parameters of genetic diversity of C. parallelus; only expected heterozygosity and the grasshopper abundances were affected by interacting effects of LUI, habitat size and landscape characteristics. The lack of any strong relationships between LUI, abundance and the genetic structure might be due to large local populations of the species in the landscape, counteracting local differentiation and potential genetic drift effects.

  20. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    PubMed

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects.

  1. IGS Minisatellites Useful for Race Differentiation in Colletotrichum lentis and a Likely Site of Small RNA Synthesis Affecting Pathogenicity.

    PubMed

    Durkin, Jonathan; Bissett, John; Pahlavani, Mohammadhadi; Mooney, Brent; Buchwaldt, Lone

    2015-01-01

    Colletotrichum lentis is a fungal pathogen of lentil in Canada but rarely reported elsewhere. Two races, Ct0 and Ct1, have been identified using differential lines. Our objective was to develop a PCR-probe differentiating these races. Sequences of the translation elongation factor 1α (tef1α), RNA polymerase II subunit B2 (rpb2), ATP citrate lyase subunit A (acla), and internal transcribed spacer (ITS) regions were monomorphic, while the intergenic spacer (IGS) region showed length polymorphisms at two minisatellites of 23 and 39 nucleotides (nt). A PCR-probe (39F/R) amplifying the 39 nt minisatellite was developed which subsequently revealed 1-5 minisatellites with 1-12 repeats in C. lentis. The probe differentiated race Ct1 isolates having 7, 9 or 7+9 repeats from race Ct0 having primarily 2 or 4 repeats, occasionally 5, 6, or 8, but never 7 or 9 repeats. These isolates were collected between 1991 and 1999. In a 2012 survey isolates with 2 and 4 repeats increased from 34% to 67%, while isolated with 7 or 9 repeats decreased from 40 to 4%, likely because Ct1 resistant lentil varieties had been grown. The 39 nt repeat was identified in C. gloeosporioides, C. trifolii, Ascochyta lentis, Sclerotinia sclerotiorum and Botrytis cinerea. Thus, the 39F/R PCR probe is not species specific, but can differentiate isolates based on repeat number. The 23 nt minisatellite in C. lentis exists as three length variants with ten sequence variations differentiating race Ct0 having 14 or 19 repeats from race Ct1 having 17 repeats, except for one isolate. RNA-translation of 23 nt repeats forms hairpins and has the appropriate length to suggest that IGS could be a site of small RNA synthesis, a hypothesis that warrants further investigation. Small RNA from fungal plant pathogens able to silence genes either in the host or pathogen thereby aiding infection have been reported.

  2. Infection of Melanoplus sanguinipes grasshoppers following ingestion of rangeland plant species harboring vesicular stomatitis virus.

    PubMed

    Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D

    2009-05-01

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.

  3. Growth, development, and nutritional physiology of grasshoppers from subarctic and temperate regions.

    PubMed

    Fielding, Dennis J; Defoliart, Linda S

    2007-01-01

    Despite the importance of developmental rate, growth rate, and size at maturity in the life history of poikliotherms, the trade-offs among these traits and selection pressures involved in the evolution of these traits are not well understood. This study compared these traits in a grasshopper, Melanoplus sanguinipes F. (Orthoptera: Acrididae), from two contrasting geographical regions, subarctic Alaska and temperate Idaho. The growing season in the interior of Alaska is about 80 d shorter than at low-elevation sites in Idaho. We hypothesized that the Alaskan grasshoppers would show more rapid growth and development than grasshoppers from Idaho, at the cost of greater sensitivity to food quality. On a diet of lettuce and wheat bran, grasshoppers from Alaska developed from egg hatch to adult more rapidly than those from Idaho at each of three different temperature regimes. Averaged over all temperature treatments, the weight of the Alaskan grasshoppers was about 5% less than that of the Idaho grasshoppers at the adult molt. Feeding and digestive efficiencies were determined for the final two instars using two meridic diets: one with a high concentration of nutrients and the other with the same formulation but diluted with cellulose. Alaskan grasshoppers again developed more rapidly, weighed less, and had faster growth rates than those from Idaho. Alaskan grasshoppers supported their more rapid growth by increasing postingestive efficiencies; that is, they had higher conversion rates of digested matter to biomass on the high-quality diet, greater assimilation of food on the low-quality diet, and greater efficiency of nitrogen assimilation or retention on both diets. There was no evidence that performance of Alaskan grasshoppers suffered any more than that of the Idaho grasshoppers on the low-quality diet.

  4. Expired and Pathogen-Inactivated Platelet Concentrates Support Differentiation and Immunomodulation of Mesenchymal Stromal Cells in Culture.

    PubMed

    Jonsdottir-Buch, Sandra Mjoll; Sigurgrimsdottir, Hildur; Lieder, Ramona; Sigurjonsson, Olafur Eysteinn

    2015-01-01

    Platelet lysates have been reported as suitable cell culture supplement for cultures of mesenchymal stromal cells (MSCs). The demand for safe and animal-free cultures of MSCs is linked to the potential application of MSCs in clinics. While the use of platelet lysates offers an alternative to animal serum in MSC cultures, obtaining supplies of fresh platelet concentrates for lysate production is challenging and raises concerns due to the already existing shortage of platelet donors. We have previously demonstrated that expired platelet concentrates may represent a good source of platelets for lysate production without competing with blood banks for platelet donors. The INTERCEPT Blood System™ treatment of platelet concentrates allows for prolonged storage up to 7 days, using highly specific technology based on amotosalen and UV-A light. The INTERCEPT system has therefore been implemented in blood processing facilities worldwide. In this study, we evaluated the suitability of INTERCEPT-treated, expired platelet concentrates, processed into platelet lysates, for the culture of MSCs compared to nontreated expired platelets. Bone marrow-derived MSCs were cultured in media supplemented with either platelet lysates from traditionally prepared expired platelet concentrates or in platelet lysates from expired and pathogen-inactivated platelet concentrates. The effects of pathogen inactivation on the ability of the platelets to support MSCs in culture were determined by evaluating MSC immunomodulation, immunophenotype, proliferation, and trilineage differentiation. Platelet lysates prepared from expired and pathogen-inactivated platelet concentrates supported MSC differentiation and immunosuppression better compared to traditionally prepared platelet lysates from expired platelet units. Pathogen inactivation of platelets with the INTERCEPT system prior to use in MSC culture had no negative effects on MSC immunophenotype or proliferation. In conclusion, the use of expired

  5. Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper.

    PubMed

    Cabrero, J; Teruel, M; Carmona, F D; Jiménez, R; Camacho, J P M

    2007-01-01

    The facultative heterochromatic X chromosome in leptotene spermatocytes of the grasshopper Eyprepocnemis plorans showed marked hypoacetylation for lysine 9 in the H3 histone (H3-K9) with no sign of histone H2AX phosphorylation. Since H3-K9 hypoacetylation precedes the meiotic appearance of phosphorylated H2AX (gamma-H2AX), which marks the beginning of recombinational DNA double-strand breaks (DSBs), it seems that meiotic sex-chromosome inactivation (MSCI) in this grasshopper occurs prior to the beginning of recombination and hence synapsis (which in this species begins later than recombination). In addition, all constitutively heterochromatic chromosome regions harbouring a 180-bp tandem-repeat DNA and rDNA (B chromosomes and pericentromeric regions of A chromosomes) were H3-K9 hypoacetylated at early leptotene even though they will synapse at subsequent stages. This also suggests that meiotic silencing in this grasshopper might be independent of synapsis. The H3-K9 hypoacetylated state of facultative and constitutive heterochromatin persisted during subsequent meiotic stages and was even apparent in round spermatids. Finally, the fact that B chromosomes are differentially hypoacetylated in testis and embryo interphase cells suggests that they might be silenced early in development and remain this way for most (or all) life-cycle stages.

  6. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae

    PubMed Central

    Mahmood, Maziah; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Nejat, Naghmeh; Latif, Muhammad A.

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  7. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Mahmood, Maziah; Abdullah, Siti N A; Hanafi, Mohamed M; Nejat, Naghmeh; Latif, Muhammad A; Sahebi, Mahbod

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties.

  8. Proteome data on the microbial microbiome of grasshopper feces.

    PubMed

    Jehmlich, Nico; Müller, Martina; Meyer, Stefanie; Tischer, Alexander; Potthast, Karin; Michalzik, Beate; von Bergen, Martin

    2016-12-01

    We present proteome data from the microbiota (feces) after a diet shift from a natural diverse to a monocultural meadow with Dactylis glomerata. The abundant grasshopper species, Chorthippus dorsatus, was taken from the wild and kept in captivity and were fed with Dactylis glomerata for five days. For phytophagous insects, the efficiency of utilization of hemicellulose and cellulose depends on the gut microbiota. Shifts in environmental and management conditions alter the presence and abundance of plant species which may induce adaptations in the diversity of gut microbiota. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005126.

  9. Analysis of the Habitat of Henslow's Sparrows and Grasshopper Sparrows Compared to Random Grassland Areas

    SciTech Connect

    Maier, K.; Walton, R.; Kasper, P.

    2006-01-01

    ABSTRAC T Henslow’s Sparrows are endangered prairie birds, and Grasshopper Sparrows are considered rare prairie birds. Both of these birds were abundant in Illinois, but their populations have been declining due to loss of the grasslands. This begins an ongoing study of the birds’ habitat so Fermilab can develop a land management plan for the Henslow’s and Grasshoppers. The Henslow’s were found at ten sites and Grasshoppers at eight sites. Once the birds were located, the vegetation at their sites was studied. Measurements of the maximum plant height, average plant height, and duff height were taken and estimates of the percent of grass, forbs, duff, and bare ground were recorded for each square meter studied. The same measurements were taken at ten random grassland sites on Fermilab property. Several t-tests were performed on the data, and it was found that both Henslow’s Sparrows and Grasshopper Sparrows preferred areas with a larger percentage of grass than random areas. Henslow’s also preferred areas with less bare ground than random areas, while Grasshoppers preferred areas with more bare ground than random areas. In addition, Grasshopper Sparrows preferred a lower percentage of forbs than was found in random areas and a shorter average plant height than the random locations. Two-sample variance tests suggested significantly less variance for both Henslow’s Sparrows and Grasshopper Sparrows for maximum plant height in comparison to the random sites.

  10. Laboratory bioassays of vegetable oils as kairomonal phagostimulants for grasshoppers (Orthoptera: Acrididae).

    PubMed

    Latchininsky, Alexandre V; Schell, Scott P; Lockwood, Jeffrey A

    2007-10-01

    Vegetable oils have kairomonal attractant properties to grasshoppers primarily due to the presence of linoleic and linolenic fatty acids. These fatty acids are dietary essentials for grasshoppers and, once volatilized, can be detected by the insects' olfactory receptors. A laboratory bioassay method has been developed to identify vegetable oils that have fatty acid profiles similar to grasshoppers and that induce grasshopper attraction and feeding. Such oils could be useful kairomonal adjuvants and/or carriers for acridicide formulations. Three sets of laboratory bioassays demonstrated that the addition of a standard aliquot of different vegetable oils resulted in varying degrees of grasshopper feeding on otherwise neutral substrates. Addition of olive oil stimulated the greatest feeding in all three sets of assays, regardless of the age of the tested insects. Furthermore, addition of canola or flax oils markedly enhanced grasshopper feeding. These three oils--i.e., olive, canola, and flax oil--proved to be the best performing grasshopper stimulants. A second group of oils included rapeseed-flax mix and rapeseed oils; however, their performance was not as consistent as oils in the first group--especially with regard to nymphal feeding. A third group of oils consisted of soybean, corn, peanut, and sunflower oil. Theoretical expectations regarding these oils varied wildly, suggesting that the results of a single bioassay should be cautiously interpreted as being negative.

  11. Taxonomic and Functional Resilience of Grasshoppers (Orthoptera, Caelifera) to Fire in South Brazilian Grasslands.

    PubMed

    Ferrando, C P R; Podgaiski, L R; Costa, M K M; Mendonça, M D S

    2016-08-01

    Fire is a frequent disturbance in grassland ecosystems enabling variability in habitat characteristics and creating important environmental filters for community assembly. Changes in vegetation have a large influence on herbivore insect assemblages. Here, we explored the responses of grasshoppers to disturbance by fire in grasslands of southern Brazil through a small-scale experiment based in paired control and burned plots. The resilience of grasshoppers was assessed by monitoring changes to their abundance, taxonomic, and functional parameters along time. Burned patches have been already recolonized by grasshoppers 1 month after fire and did not differ in terms of abundance and richness from control areas in any evaluated time within 1 year. Simpson diversity decreased 1 month after fire due to the increased dominance of Dichroplus misionensis (Carbonell) and Orphulella punctata (De Geer). In this period, grasshoppers presented in average a smaller body and a larger relative head size; these are typically nymph characteristics, which are possibly indicating a preference of juveniles for the young high-quality vegetation, or a diminished vulnerability to predation in open areas. Further, at 6 months after fire grasshoppers with smaller relative hind femur and thus lower dispersal ability seemed to be benefitted in burned patches. Finally, 1 year after fire grasshoppers became more similar to each other in relation to their set of traits. This study demonstrates how taxonomic and functional aspects of grasshopper assemblages can be complementary tools to understand their responses to environmental change.

  12. Density mediates grasshopper performance in response to temperature manipulation and spider predation in tallgrass prairie.

    PubMed

    Laws, A N; Joern, A

    2017-04-01

    Species interactions are often context-dependent, where outcomes require an understanding of influences among multiple biotic and abiotic factors. However, it remains unclear how abiotic factors such as temperature combine with important biotic factors such as density-dependent food limitation and predation to influence species interactions. Using a native grassland - grasshopper - wolf spider model food chain in tallgrass prairie, we conducted a manipulative field experiment to examine how predator-prey interactions respond to manipulations of temperature, grasshopper density, and food chain length. We find that grasshopper performance responses to temperature and predator treatments were density dependent. At high densities, grasshopper survival decreased with increased temperature when no spiders were present. When spiders were present, grasshopper survival was reduced, and this effect was strongest in the cooled treatment. In contrast, grasshopper survival did not vary significantly with spider presence or among temperature treatments at low grasshopper densities. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how and when key biotic and abiotic factors combine to influence species interactions.

  13. Differential gene expression for Curvularia eragrostidis pathogenic incidence in crabgrass (Digitaria sanguinalis) revealed by cDNA-AFLP analysis.

    PubMed

    Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng

    2013-01-01

    Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis.

  14. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects

    PubMed Central

    Finck, Jonas; Berdan, Emma L.; Mayer, Frieder; Ronacher, Bernhard; Geiselhardt, Sven

    2016-01-01

    Cuticular hydrocarbons (CHCs) play a major role in the evolution of reproductive isolation between insect species. The CHC profiles of two closely related sympatric grasshopper species, Chorthippus biguttulus and C. mollis, differ mainly in the position of the first methyl group in major methyl-branched CHCs. The position of methyl branches is determined either by a fatty acid synthase (FAS) or by elongases. Both protein families showed an expansion in insects. Interestingly, the FAS family showed several lineage-specific expansions, especially in insect orders with highly diverse methyl-branched CHC profiles. We found five putative FASs and 12 putative elongases in the reference transcriptomes for both species. A dN/dS test showed no evidence for positive selection acting on FASs and elongases in these grasshoppers. However, one candidate FAS showed species-specific transcriptional differences and may contribute to the shift of the methyl-branch position between the species. In addition, transcript levels of four elongases were expressed differentially between the sexes. Our study indicates that complex methyl-branched CHC profiles are linked to an expansion of FASs genes, but that species differences can also mediated at the transcriptional level. PMID:27677406

  15. Species composition of grasshoppers (Orthoptera) in open plots and farmlands in calabar metropolis, southern Nigeria.

    PubMed

    Oku, E E; Arong, G A; Bassey, D A

    2011-04-15

    The grasshoppers are strategic in the welfare of man and may constitute a major threat when its population is not checked. A study on the distribution of grasshoppers in open plots and farmlands was carried out within Calabar Metropolis between August to November, 2010. A total of 295 grasshoppers belonging to 11 species grouped under 3 families (Tettigoniidae, Acrididae and Pyrgomorphidae) were collected from 8 study locations. Grasshoppers were collected weekly from all study sites using sweep nets between 11 a.m. to 4 p.m. The collection was done using sweep nets between 11 a.m. to 4 p.m. when grasshoppers baked themselves under the sun. The percentage abundance of these species were Spathosterrium pygmaeum (16.27%), Tettigonia viridissima (11.86%), Catantops spissus (11.19%) Acridaturita sp. (10.17%), Gastrimargus acrididae (9.83%), Schistocerca nitens (9.49%), Tylopsis sp. (7.46%), Zonocerus variegatus (6.78%), Omocestus viridulus (6.10%), Scudderia mexicana (5.76%) and Zonocerus elegans (5.08%). Tettigonia viridissima and Acridaturita sp. were largely distributed as it occurred in 7 of 8 study sites while Scudderia mexicana was the least distributed, as it was reported in 3 sites only. The dominant grasshopper species in open plot was Spathosterrium pygmaeum (19%) in relative abundance and the least was Zonocerus variegatus (0.64%). Zonocerus variegatus was the dominant species in farmland (14%) in relative abundance and the least was Schistocerca nitens (4%). Chi-square test showed a high significant difference between the distribution of grasshoppers in open plots and farmlands (p < 0.05). Variations in grasshopper species composition were attributed to lizard predation and management practices such as grass cutting, fertilizer and pesticide applications. It was therefore concluded that species abundance and population of grasshoppers could be enhanced by minimizing human activities that interfere with land use.

  16. Grasshoppers of the Mascarene Islands: new species and new records (Orthoptera, Caelifera).

    PubMed

    Hugel, Sylvain

    2014-12-23

    The grasshopper fauna of Mascarene Islands (Mauritius, Rodrigues and La Réunion), in South Western Indian ocean is examined. Numerous field surveys and examination of museum specimens recorded twenty species of Grasshoppers on the archipelago. Five of them are new records, including a new species: Odontomelus ancestrus n. sp. restricted to Round Island, a 2 km² islet North to Mauritius. Despite intensive searching, five of the non endemic species once recorded on the archipelago have not been recorded again and might correspond to temporary settlements/introductions. A key to Mascarene grasshoppers is given.

  17. A system for the distribution of differential host and pathogen sets.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vegetable seed industry has been concerned with inconsistent naming of pathogen strains and races which has led to confusion in disease resistance claims. In August 2007, an American Phytopathological Society adhoc committee in cooperation with the International Seed Federation (ISF) was establi...

  18. Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses

    PubMed Central

    Askovich, Peter S.; Sanders, Catherine J.; Rosenberger, Carrie M.; Diercks, Alan H.; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C.; Thomas, Paul G.; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains. PMID:24073225

  19. [Correlation between monthly average temperature and grasshopper outbreak in the region around Qinghai Lake based on GIS].

    PubMed

    Zhang, Hongliang; Ni, Shaoxiang; Deng, Ziwang; Chen, Yun

    2002-07-01

    It is necessary to study the relationship between grasshopper and ecological factors for forecasting grasshopper outbreak effectively. Temperature is one of main factors influencing grasshopper outbreak in the region around Qinghai Lake. With the support of Arc/Info and ArcView, monthly average temperatures were simulated under the scale of 150 m by data from sixteen meteorological stations adjacent to Qinghai Lake for adapting the comprehensive method and establishing spatial temperature database. Then, the relationship between grasshopper outbreak and monthly average temperature were analyzed by combining the spatial data of grasshopper density and the spatial data of monthly average temperature. The result showed that effects of monthly average temperature on Grasshopper outbreak were closely related to the life cycle of the dominant grasshopper species in the region, namely, monthly average temperatures of May, June, and July influenced grasshopper outbreak in the current year, and monthly average temperatures of August and September influenced grasshopper outbreak in the next year. Thereby, it could provide a base of establishing forecasting models of grasshopper outbreak.

  20. Transferable Antibiotic Resistances in Marketed Edible Grasshoppers (Locusta migratoria migratorioides).

    PubMed

    Osimani, Andrea; Garofalo, Cristiana; Aquilanti, Lucia; Milanović, Vesna; Cardinali, Federica; Taccari, Manuela; Pasquini, Marina; Tavoletti, Stefano; Clementi, Francesca

    2017-03-24

    Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6')-Ie aph(2″)-Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6')-Ie aph(2″)-Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin.

  1. Hemolymph ecdysteroids do not affect vitellogenesis in the lubber grasshopper.

    PubMed

    Hatle, John D; Juliano, Steven A; Borst, David W

    2003-01-01

    The role of hemolymph ecdysteroids in the reproduction of non-dipteran insects is unclear. We examine the role(s) of hemolymph ecdysteroids during egg production in the lubber grasshopper, Romalea microptera. In all individuals, hemolymph ecdysteroids rose to a sharp peak with similar maxima and then fell to undetectable levels. The time from the adult molt to the maximum ecdysteroid titer (E(max) titer) varied in response to food availability, whereas the time from E(max) titer to oviposition was unrelated to food availability. Because both the timing of egg production and the timing of E(max) responded similarly to environmental changes, ecdysteroids may be involved in egg production. We hypothesized that this role is the stimulation of vitellogenesis. Ovariectomized females had vitellogenin but no ecdysteroids, so ecdysteroids are not necessary for vitellogenin production. In addition, treatment of females with ecdysteroids altered neither Vg titers nor ovarian growth. Ovarian ecdysteriods increased at the same age in development as hemolymph ecdysteroids. In contrast to hemolymph ecdysteroids, ovarian ecdysteroids persisted until oviposition. Despite this, [(3)H]ecdysone injected into the hemolymph was detected later only at very low levels in the ovary, suggesting that hemolymph ecdysteroids are not sequestered by the ovary. In summary, our studies indicate that hemolymph ecdysteroids in adult females of the lubber grasshopper are associated with the timing of egg production, but they neither regulate vitellogenesis nor act as a source of ecdysteroids for the ovary.

  2. Differential Adsorption of Occluded and Nonoccluded Insect-Pathogenic Viruses to Soil-Forming Minerals

    PubMed Central

    Christian, Peter D.; Richards, Andrew R.; Williams, Trevor

    2006-01-01

    Soil represents the principal environmental reservoir of many insect-pathogenic viruses. We compared the adsorption and infectivity of one occluded and two nonoccluded viruses, Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV) (Baculoviridae), Cricket paralysis virus (CrPV) (Dicistroviridae), and Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae), respectively, in mixtures with a selection of soil-forming minerals. The relative infective titers of HaSNPV and CrPV were unchanged or slightly reduced in the presence of different minerals compared to their titers in the absence of the mineral. In contrast, the infective titer of IIV-6 varied according to the mineral being tested. In adsorption studies, over 98% of HaSNPV occlusion bodies were adsorbed by all the minerals, and a particularly high affinity was observed with ferric oxide, attapulgite, and kaolinite. In contrast, the adsorption of CrPV and IIV-6 differed markedly with mineral type, with low affinity to bentonites and high affinity to ferric oxide and kaolinite. We conclude that interactions between soil-forming minerals and insect viruses appear to be most important in nucleopolyhedroviruses, followed by invertebrate iridescent viruses, and least important in CrPV, which may reflect the ecology of these pathogens. Moreover, soils with a high content of iron oxides or kaolinite would likely represent highly effective reservoirs for insect-pathogenic viruses. PMID:16820456

  3. Organization of somatosensory cortex in the northern grasshopper mouse (Onychomys leucogaster), a predatory rodent

    PubMed Central

    Sarko, Diana K.; Leitch, Duncan B.; Girard, Isabelle; Sikes, Robert S.; Catania, Kenneth C.

    2010-01-01

    Northern grasshopper mice (Onychomys leucogaster) are among the most highly carnivorous rodents in North America. Because predatory mammals may have specialization of senses used to detect prey, we investigated the organization of sensory areas within grasshopper mouse neocortex and quantified the number of myelinated axons in grasshopper mouse trigeminal, cochlear, and optic nerves. Multiunit electrophysiological recordings combined with analysis of flattened sections of neocortex processed for cytochrome oxidase were used to determine the topography of primary somatosensory cortex (S1) and the location and size of both the visual and auditory cortex in adult animals. These findings were then related to the distinctive chemoarchitecture of layer IV visible in flattened cortical sections of juvenile grasshopper mice labeled with the serotonin transporter (SERT) antibody, revealing a striking correspondence between electrophysiological maps and cortical anatomy. PMID:21120928

  4. Influence of individual body size on reproductive traits in Melanopline grasshoppers (Orthoptera: Acrididae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Body size is a fundamental trait of an organism, affecting most aspects of its performance, including reproduction. Numerous biotic and environmental factors can influence individual body size and reproduction in grasshoppers. Using data from four experiments, I examined intraspecific relationships ...

  5. Analysis of the habitat of Henslow's sparrows and Grasshopper sparrows compared to random grassland areas

    SciTech Connect

    Maier, Kristen; Walton, Rod; Kasper, Peter; /Fermilab

    2005-01-01

    Henslow's Sparrows are endangered prairie birds, and Grasshopper Sparrows are considered rare prairie birds. Both of these birds were abundant in Illinois, but their populations have been declining due to loss of the grasslands. This begins an ongoing study of the birds habitat so Fermilab can develop a land management plan for the Henslow's and Grasshoppers. The Henslow's were found at ten sites and Grasshoppers at eight sites. Once the birds were located, the vegetation at their sites was studied. Measurements of the maximum plant height, average plant height, and duff height were taken and estimates of the percent of grass, forbs, duff, and bare ground were recorded for each square meter studied. The same measurements were taken at ten random grassland sites on Fermilab property. Several t-tests were performed on the data, and it was found that both Henslow's Sparrows and Grasshopper Sparrows preferred areas with a larger percentage of grass than random areas. Henslow's also preferred areas with less bare ground than random areas, while Grasshoppers preferred areas with more bare ground than random areas. In addition, Grasshopper Sparrows preferred a lower percentage of forbs than was found in random areas and a shorter average plant height than the random locations. Two-sample variance tests suggested significantly less variance for both Henslow's Sparrows and Grasshopper Sparrows for maximum plant height in comparison to the random sites. For both birds, the test suggested a significant difference in the variance of the percentage of bare ground compared to random sites, but only the Grasshopper Sparrow showed significance in the variation in the percentage of forbs.

  6. Analysis of Spatial Pattern among Grasshopper and Vegetation in Heihe based on GIS

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Wang, KeMing; Zhao, Chengzhang; Zhang, Qi-peng

    Geostatistics was used to analyze the grasshopper and dominant plants population spatial pattern and their relationship in the upper reaches of Heihe River under GIS platform. The results showed that the plants and grasshoppers populations have strong spatial correlation in study area. The Semivariogram curve of Chorthippus brunneus huabeiensis, Filchnerella, Aneurolepidium dasystanchys and Artemisia dalailamae is spherical model, Gomphocerus licenti and Stipa krylovii's Semivariogram curve is exponential and Gaussian model respectively, and their spatial autocorrelation scope is 10.8, 11.3, 11.5, 12.4, 23.5 and 59.7 meters respectively. Stipa krylovii and Artemisia dalailamae spatial distribution was patchy, Aneurolepidium dasystanchys showed flaky distribution; Gomphocerus licenti and Chorthippus brunneus huabeiensis mainly located in southeast areas with high coverage of Stipa krylovii and Aneurolepidium dasystanchys. Filchnerella nearly located in North areas with high coverage of Artemisia dalailamae, but were rarely found in south and east areas. The effects of different plants coverage on grasshopper abundance are significantly different. Filchnerella abundance and Artemisia dalailamae coverage showed significantly positive correlation, Chorthippus brunneus huabeiensis and Gomphocerus licenti positively correlated with Aneurolepidium dasystanchys and Stipa krylovii. Grasshopper spatial patterns and occurrence numbers are both influenced by grasshopper biological characteristics and plant community composition, which reflected complex coupled relation between grasshopper and plant.

  7. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae

    PubMed Central

    Jacob, Stefan; Foster, Andrew J; Yemelin, Alexander; Thines, Eckhard

    2014-01-01

    The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1p and MoHik1p were previously reported to be components of the HOG pathway in M. oryzae. The ΔMosln1 mutant is more susceptible to salt stress compared to ΔMohik1, whereas ΔMohik1 appears to be stronger affected by osmotic or sugar stress. In contrast to yeast, the HOG signaling cascade in phytopathogenic fungi apparently comprises more elements. Furthermore, vegetative growth of the mutants ΔMohik5 and ΔMohik9 was found to be sensitive to hypoxia-inducing NaNO2-treatment. Additionally, it was monitored that NaNO2-treatment resulted in MoHog1p phosphorylation. As a consequence we assume a first simplified model for hypoxia signaling in M. oryzae including the HOG pathway and the HIKs MoHik5p and MoHik9p. PMID:25103193

  8. Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans

    PubMed Central

    Freire-Benéitez, Verónica; Gourlay, Sarah; Berman, Judith; Buscaino, Alessia

    2016-01-01

    DNA repeats, found at the ribosomal DNA locus, telomeres and subtelomeric regions, are unstable sites of eukaryotic genomes. A fine balance between genetic variability and genomic stability tunes plasticity of these chromosomal regions. This tuning mechanism is particularly important for organisms such as microbial pathogens that utilise genome plasticity as a strategy for adaptation. For the first time, we analyse mechanisms promoting genome stability at the rDNA locus and subtelomeric regions in the most common human fungal pathogen: Candida albicans. In this organism, the histone deacetylase Sir2, the master regulator of heterochromatin, has acquired novel functions in regulating genome stability. Contrary to any other systems analysed, C. albicans Sir2 is largely dispensable for repressing recombination at the rDNA locus. We demonstrate that recombination at subtelomeric regions is controlled by a novel DNA element, the TLO Recombination Element, TRE, and by Sir2. While the TRE element promotes high levels of recombination, Sir2 represses this recombination rate. Finally, we demonstrate that, in C. albicans, mechanisms regulating genome stability are plastic as different environmental stress conditions lead to general genome instability and mask the Sir2-mediated recombination control at subtelomeres. Our data highlight how mechanisms regulating genome stability are rewired in C. albicans. PMID:27369382

  9. Prey change behaviour with predation threat, but demographic effects vary with prey density: experiments with grasshoppers and birds.

    PubMed

    Belovsky, Gary E; Laws, Angela Nardoni; Slade, Jennifer B

    2011-04-01

    Increasingly, ecologists emphasize that prey frequently change behaviour in the presence of predators and these behavioural changes can reduce prey survival and reproduction as much or more than predation itself. However, the effects of behavioural changes on survival and reproduction may vary with prey density due to intraspecific competition. In field experiments, we varied grasshopper density and threat of avian predation and measured grasshopper behaviour, survival and reproduction. Grasshopper behaviour changed with the threat of predation and these behavioural changes were invariant with grasshopper density. Behavioural changes with the threat of predation decreased per capita reproduction over all grasshopper densities; whereas the behavioural changes increased survival at low grasshopper densities and then decreased survival at high densities. At low grasshopper densities, the total reproductive output of the grasshopper population remained unchanged with predation threat, but declined at higher densities. The effects of behavioural changes with predation threat varied with grasshopper density because of a trade-off between survival and reproduction as intraspecific competition increased with density. Therefore, resource availability may need to be considered when assessing how prey behavioural changes with predation threat affect population and food web dynamics.

  10. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China.

    PubMed

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans.

  11. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China

    PubMed Central

    Diao, Yongzhao; Zhang, Can; Xu, Jianping; Lin, Dong; Liu, Li; Mtung'e, Olivo G; Liu, Xili

    2015-01-01

    Colletotrichum truncatum is an extremely important fungal pathogen. It can cause diseases both in humans and in over 460 plant species. However, little is known about its genetic diversity within and among populations. One of the major plant hosts of C. truncatum is pepper, and China is one of the main pepper-producing countries in the world. Here, we propose the hypotheses that geography has a major influence on the relationships among populations of C. truncatum in China and that infections in different populations need to be managed differently. To test these hypotheses, we obtained and analyzed 266 C. truncatum isolates from 13 regions representing the main pepper-growing areas throughout China. The analysis based on nine microsatellite markers identified high intrapopulation genetic diversity, evidence of sexual recombination, and geographic differentiation. The genetic differentiation was positively correlated with geographic distance, with the southern and northern China populations grouped in two distinct clusters. Interestingly, isolates collected from the pepper-breeding center harbored the most private alleles. The results suggest that the geographic populations of C. truncatum on peppers in China are genetically differentiated and should be managed accordingly. Our study also provides a solid foundation from which to further explore the global genetic epidemiology of C. truncatum in both plants and humans. PMID:25667606

  12. Assortative preferences and discrimination by females against hybrid male song in the grasshoppers Chorthippus brunneus and Chorthippus jacobsi (Orthoptera: Acrididae).

    PubMed

    Bridle, J R; Saldamando, C I; Koning, W; Butlin, R K

    2006-07-01

    The grasshoppers Chorthippus brunneus and Chorthippus jacobsi are highly differentiated for male mating signals, and form a mosaic hybrid zone in northern Spain. At some sites within this zone, many hybrids are observed. At others, few hybrids are observed. Such bimodal sites may reflect recent contacts between parental genotypes, or local variation in levels of assortative mating or selection against hybrids. Playback of 12 parental and F1 male songs to 296 parental and hybrid females revealed positive assortative preferences in C. brunneus and C. jacobsi females, supporting a direct role of male mating signals in female choice. However, all female genotypic classes showed reduced responsiveness to F1 male songs. Such sexual selection against hybrids is consistent with the narrow cline width observed in the field for song characters relative to morphology. These results have implications for the genetic structure of the hybrid zone and for models of speciation by reinforcement.

  13. Differential efficiency among DNA extraction methods influences detection of the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Bletz, M C; Rebollar, E A; Harris, R N

    2015-02-10

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is responsible for massive declines and extinctions of amphibians worldwide. The most common method for detecting Bd is quantitative polymerase chain reaction (qPCR). qPCR is a highly sensitive detection technique, but its ability to determine the presence and accurately quantify the amount of Bd is also contingent on the efficiency of the DNA extraction method used prior to PCR. Using qPCR, we compared the extraction efficiency of 3 different extraction methods commonly used for Bd detection across a range of zoospore quantities: PrepMan Ultra Reagent, Qiagen DNeasy Blood and Tissue Kit, and Mobio PowerSoil DNA Isolation Kit. We show that not all extraction methods led to successful detection of Bd for the low zoospore quantities and that there was variation in the estimated zoospore equivalents among the methods, which demonstrates that these methods have different extraction efficiencies. These results highlight the importance of considering the extraction method when comparing across studies. The Qiagen DNeasy kit had the highest efficiency. We also show that replicated estimates of less than 1 zoospore can result from known zoospore concentrations; therefore, such results should be considered when obtained from field data. Additionally, we discuss the implications of our findings for interpreting previous studies and for conducting future Bd surveys. It is imperative to use the most efficient DNA extraction method in tandem with the highly sensitive qPCR technique in order to accurately diagnose the presence of Bd as well as other pathogens.

  14. Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi.

    PubMed Central

    Maresca, B; Kobayashi, G S

    1989-01-01

    Several fungi can assume either a filamentous or a unicellular morphology in response to changes in environmental conditions. This process, known as dimorphism, is a characteristic of several pathogenic fungi, e.g., Histoplasma capsulatum, Blastomyces dermatitidis, and Paracoccidioides brasiliensis, and appears to be directly related to adaptation from a saprobic to a parasitic existence. H. capsulatum is the most extensively studied of the dimorphic fungi, with a parasitic phase consisting of yeast cells and a saprobic mycelial phase. In culture, the transition of H. capsulatum from one phase to the other can be triggered reversibly by shifting the temperature of incubation between 25 degrees C (mycelia) and 37 degrees C (yeast phase). Mycelia are found in soil and never in infected tissue, in contrast to the yeast phase, which is the only form present in patients. The temperature-induced phase transition and the events in establishment of the disease state are very likely to be intimately related. Furthermore, the temperature-induced phase transition implies that each growth phase is an adaptation to two critically different environments. A fundamental question concerning dimorphism is the nature of the signal(s) that responds to temperature shifts. So far, both the responding cell component(s) and the mechanism(s) remain unclear. This review describes the work done in the last several years at the biochemical and molecular levels on the mechanisms involved in the mycelium to yeast phase transition and speculates on possible models of regulation of morphogenesis in dimorphic pathogenic fungi. Images PMID:2666842

  15. Multiple independent colonization of the Canary Islands by the winged grasshopper genus Sphingonotus Fieber, 1852.

    PubMed

    Husemann, Martin; Deppermann, Jana; Hochkirch, Axel

    2014-12-01

    Volcanic archipelagos represent ideal systems to study processes of colonization, differentiation and speciation. The Canary Islands are one of the best studied archipelagos, being composed of seven main islands with a well-known geological history. Most taxa have colonized these islands stepwise from the African or Iberian mainland from east to west, following their geological origin as well as the predominating wind direction and ocean currents. Furthermore, within-island radiations have been reported for several taxa. The grasshopper genus Sphingonotus is species-rich and occurs with nine fully winged species on the Canary Islands, seven of which are endemic to single or few islands. We inferred a phylogeny of these species and their North African and Iberian relatives based upon sequences of three mitochondrial genes and one nuclear gene of 136 specimens. Surprisingly, our results suggest that almost all Sphingonotus species colonized the archipelago independently from the mainland and nearly no inter-island colonization occurred. Despite their strong flight capabilities, only one pair of endemic species are closely related (S. sublaevis from Gran Canary and S. pachecoi from Lanzarote). Moreover, no within-island speciation events were detected. We hypothesize that passive wind dispersal from the African mainland was the main driver of the colonization process and that most Sphingonotus species are not able to cover inter-island distances by active flight. This, together with strong intrageneric niche overlap might explain the lack of within-island speciation in this taxon.

  16. Comparative cytogenetic analysis of two grasshopper species of the tribe Abracrini (Ommatolampinae, Acrididae)

    PubMed Central

    de França Rocha, Marília; de Melo, Natoniel Franklin; de Souza, Maria José

    2011-01-01

    The grasshopper species Orthoscapheus rufipes and Eujivarus fusiformis were analyzed using several cytogenetic techniques. The karyotype of O. rufipes, described here for the first time, had a diploid number of 2n = 23, whereas E. fusiformis had a karyotype with 2n = 21. The two species showed the same mechanism of sex determination (XO type) but differed in chromosome morphology. Pericentromeric blocks of constitutive heterochromatin (CH) were detected in the chromosome complement of both species. CMA3/DA/DAPI staining revealed CMA3-positive blocks in CH regions in four autosomal bivalents of O. rufipes and in two of E. fusiformis. The location of active NORs differed between the two species, occurring in bivalents M6 and S9 of O. rufipes and M6 and M7 of E. fusiformsi. The rDNA sites revealed by FISH coincided with the number and position of the active NORs detected by AgNO3 staining. The variability in chromosomal markers accounted for the karyotype differentiation observed in the tribe Abracrini. PMID:21734819

  17. The corky root rot pathogen Pyrenochaeta lycopersici secretes a proteinaceous inducer of cell death affecting host plants differentially.

    PubMed

    Clergeot, Pierre-Henri; Schuler, Herwig; Mørtz, Ejvind; Brus, Maja; Vintila, Simina; Ekengren, Sophia

    2012-09-01

    Pathogenic isolates of Pyrenochaeta lycopersici, the causal agent of corky root rot of tomato, secrete cell death in tomato 1 (CDiT1), a homodimeric protein of 35 kDa inducing cell death after infiltration into the leaf apoplast of tomato. CDiT1 was purified by fast protein liquid chromatography, characterized by mass spectrometry and cDNA cloning. Its activity was confirmed after infiltration of an affinity-purified recombinant fusion of the protein with a C-terminal polyhistidine tag. CDiT1 is highly expressed during tomato root infection compared with axenic culture, and has a putative ortholog in other pathogenic Pleosporales species producing proteinaceous toxins that contribute to virulence. Infiltration of CDiT1 into leaves of other plants susceptible to P. lycopersici revealed that the protein affects them differentially. All varieties of cultivated tomato (Solanum lycopersicum) tested were more sensitive to CDiT1 than those of currant tomato (S. pimpinellifolium). Root infection assays showed that varieties of currant tomato are also significantly less prone to intracellular colonization of their root cells by hyphae of P. lycopersici than varieties of cultivated tomato. Therefore, secretion of this novel type of inducer of cell death during penetration of the fungus inside root cells might favor infection of host species that are highly sensitive to this molecule.

  18. Differential effects of catecholamines on in vitro growth of pathogenic bacteria

    NASA Technical Reports Server (NTRS)

    Belay, Tesfaye; Sonnenfeld, Gerald

    2002-01-01

    Supplementation of minimal medium inoculated with bacterial cultures with norepinephrine, epinephrine, dopamine, or isoproterenol resulted in marked increases in growth compared to controls. Norepinephrine and dopamine had the greatest enhancing effects on growth of cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae, while epinephrine and isoproterenol also enhanced growth to a lesser extent. The growth of Escherichia coli in the presence of norepinephrine was greater than growth in the presence of the three other neurochemicals used in the study. Growth of Staphylococcus aureus was also enhanced in the presence of norepinephrine, but not to the same degree as was the growth of gram negative bacteria. Addition of culture supernatants from E. coli cultures that had been grown in the presence of norepinephrine was able to enhance the growth of K. pneumoniae. Addition of the culture supernatant fluid culture from E. coli cultures that had been grown in the presence of norepinephrine did not enhance growth of P. aeruginosa or S. aureus. Culture supernatant fluids from bacteria other than E. coli grown in the presence of norepinephrine were not able to enhance the growth of any bacteria tested. The results suggest that catecholamines can enhance growth of pathogenic bacteria, which may contribute to development of pathogenesis; however, there is no uniform effect of catecholamines on bacterial growth.

  19. Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks.

    PubMed

    Cui, Zhu; Hu, Jiao; He, Liang; Li, Qunhui; Gu, Min; Wang, Xiaoquan; Hu, Shunlin; Liu, Huimou; Liu, Wenbo; Liu, Xiaowen; Liu, Xiufan

    2014-02-01

    CK10 and GS10 are two H5N1 highly pathogenic influenza viruses of similar genetic background but differ in their pathogenicity in mallard ducks. CK10 is highly pathogenic whereas GS10 is low pathogenic. In this study, strong inflammatory response in terms of the expression level of several cytokines was observed in mallard duck peripheral blood mononuclear cells (PBMC) infected with CK10 while mild response was triggered in those by GS10 infection. Two remarkable and intense peaks of immune response were induced by CK10 infection within 24 hours (at 8 and 24 hours post infection, respectively) without reducing the virus replication. Our observations indicated that sustained and intense innate immune responses may be central to the high pathogenicity caused by CK10 in ducks.

  20. Construction of a GeogDetector-based model system to indicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats.

    PubMed

    Shen, J; Zhang, N; Gexigeduren; He, B; Liu, C-Y; Li, Y; Zhang, H-Y; Chen, X-Y; Lin, H

    2015-06-01

    Grasshopper plagues have seriously disturbed grassland ecosystems in Inner Mongolia, China. The accurate prediction of grasshopper infestations and control of grasshopper plagues have become urgent needs. We sampled 234, 342, 335, and 369 plots in Xianghuangqi County of Xilingol League in 2010, 2011, 2012, and 2013, respectively, and measured the density of the most dominant grasshopper species, Oedaleus decorus asiaticus, and the latitude, longitude, and associated relatively stable habitat factors at each plot. We used Excel-GeogDetector software to explore the effects of individual habitat factors and the two-factor interactions on grasshopper density. We estimated the membership of each grasshopper density rank and determined the weights of each habitat category. These results were used to construct a model system evaluating grasshopper habitat suitability. The results showed that our evaluation system was reliable and the fuzzy evaluation scores of grasshopper habitat suitability were good indicators of potential occurrence of grasshoppers. The effects of the two-factor interactions on grasshopper density were greater than the effects of any individual factors. O. d. asiaticus was most likely to be found at elevations of 1300-1400 m, flat terrain or slopes of 4-6°, typical chestnut soil with 70-80% sand content in the top 5 cm of soil, and medium-coverage grassland. The species preferred temperate bunchgrass steppe dominated by Stipa krylovii and Cleistogenes squarrosa. These findings may be used to improve models to predict grasshopper occurrence and to develop management guidelines to control grasshopper plagues by changing habitats.

  1. GC/MS technique and AMDIS software application in identification of hydrophobic compounds of grasshoppers' abdominal secretion (Chorthippus spp.).

    PubMed

    Buszewska-Forajta, Magdalena; Bujak, Renata; Yumba-Mpanga, Arlette; Siluk, Danuta; Kaliszan, Roman

    2015-01-01

    , one sterol, one organic acid and one alkaloid. The last part of our study was statistical analysis of average intensities of signals of compounds identified in grasshopper's abdominal secretion in order to differentiate insects collected at two distant locations in Poland: Starogard Gdański and Łubianka meadows.

  2. Rapid top-down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem.

    PubMed

    Zhang, Guangming; Han, Xingguo; Elser, James J

    2011-05-01

    Understanding how food web interactions alter the processing of limiting nutrient elements is an important goal of ecosystem ecology. An experiment manipulating densities of the grasshopper Oedaleus asiaticus was performed to assess top-down effects of grasshoppers on C:N:P stoichiometry of plants and soil in a grassland ecosystem in Inner Mongolia (China). With increased grasshopper feeding, plant biomass declined fourfold, litter abundance increased 30%, and the plant community became dominated by non-host plant taxa. Plant stoichiometric response depended on whether or not the plant was a grasshopper host food species: C:N and C:P ratios increased with increasing grasshopper density (GD) for host plants but decreased in non-host plants. These data suggest either a direct transfer of grasshopper-recycled nutrients from host to non-host plants or a release of non-host plants from nutrient competition with heavily grazed host plants. Litterfall C:N and C:P decreased across moderate levels of grasshopper density but no effects on C:N:P stoichiometry in the surface soil were observed, possibly due to the short experimental period. Our observations of divergent C:N:P stoichiometric response among plant species highlight the important role of grasshopper herbivory in regulating plant community structure and nutrient cycling in grassland ecosystems.

  3. Differential Gene Expression in Five Isolates of the Clam Pathogen, Quahog Parasite Unknown (QPX).

    PubMed

    Rubin, Ewelina; Tanguy, Arnaud; Pales Espinosa, Emmanuelle; Allam, Bassem

    2017-02-07

    Quahog parasite unknown (QPX) is a thraustochytrid protist that infects the hard clam, Mercenaria mercenaria, causing significant economic losses along the northeastern coasts of North America. Previous investigations noted differences in growth dynamics and virulence in QPX cells from different geographic locations. In order to probe the molecular determinants for these variations, we investigated the transcriptomic profiles of five geographically-distinct QPX isolates using custom 15K 60-mer oligonucleotide arrays. A total of 1263 transcripts were differentially expressed (DE) among the five QPX isolates. The hierarchical clustering of gene expression profiles showed that the QPX isolates from Raritan Bay (RB, NY) and from Provincetown Harbor (MA) were more similar to each other and diverged from QPX isolates from Peconic Bay (PB, NY) and Old Plantation Creek (VA) which had more similar gene expression profiles. The most prominent difference was based on 78 transcripts coding for heat shock proteins DE between the five QPX isolates. The study generated contrasting transcriptomic profiles for QPX isolated from northern (MA) and deeper (RB, NY) locations as compared to southern (VA) and shallower (PB, NY) areas, suggesting the adaptation of the parasite to local environmental, in particular temperature, conditions. This article is protected by copyright. All rights reserved.

  4. Identification of new pathogenic races of common bunt and dwarf bunt fungi, and evaluation of known races using an expanded set of differential cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic races of Tilletia caries and T. foetida, which cause common bunt of wheat (Triticum aestivum), and T. contraversa, which causes dwarf bunt of wheat, have been identified previously by their reaction to ten monogenic differential wheat lines, each containing single bunt resistance genes Bt...

  5. Differential Role of Ferritins in Iron Metabolism and Virulence of the Plant-Pathogenic Bacterium Erwinia chrysanthemi 3937▿

    PubMed Central

    Boughammoura, Aïda; Matzanke, Berthold F.; Böttger, Lars; Reverchon, Sylvie; Lesuisse, Emmanuel; Expert, Dominique; Franza, Thierry

    2008-01-01

    During infection, the phytopathogenic enterobacterium Erwinia chrysanthemi has to cope with iron-limiting conditions and the production of reactive oxygen species by plant cells. Previous studies have shown that a tight control of the bacterial intracellular iron content is necessary for full virulence. The E. chrysanthemi genome possesses two loci that could be devoted to iron storage: the bfr gene, encoding a heme-containing bacterioferritin, and the ftnA gene, coding for a paradigmatic ferritin. To assess the role of these proteins in the physiology of this pathogen, we constructed ferritin-deficient mutants by reverse genetics. Unlike the bfr mutant, the ftnA mutant had increased sensitivity to iron deficiency and to redox stress conditions. Interestingly, the bfr ftnA mutant displayed an intermediate phenotype for sensitivity to these stresses. Whole-cell analysis by Mössbauer spectroscopy showed that the main iron storage protein is FtnA and that there is an increase in the ferrous iron/ferric iron ratio in the ftnA and bfr ftnA mutants. We found that ftnA gene expression is positively controlled by iron and the transcriptional repressor Fur via the small antisense RNA RyhB. bfr gene expression is induced at the stationary phase of growth. The σS transcriptional factor is necessary for this control. Pathogenicity tests showed that FtnA and the Bfr contribute differentially to the virulence of E. chrysanthemi depending on the host, indicating the importance of a perfect control of iron homeostasis in this bacterial species during infection. PMID:18165304

  6. "Ant" and "grasshopper" life-history strategies in Saccharomyces cerevisiae.

    PubMed

    Spor, Aymé; Wang, Shaoxiao; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2008-02-13

    From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the resource uptake rate deserves particular attention, because it depends on both the environment and the genetic background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated the intrinsic growth rate (r), the carrying capacity (K), the mean cell size and the glucose consumption rate per cell. The life-history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but high carrying capacity. These two contrasted behaviors may be metaphorically defined as "ant" and "grasshopper" strategies of resource utilization. Interestingly, a strain may be "ant" in one medium and "grasshopper" in another. These life-history strategies are discussed

  7. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    USGS Publications Warehouse

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  8. Metabolism by grasshoppers of volatile chemical constituents from Mangifera indica and Solanum paniculatum leaves.

    PubMed

    Ramos, Clécio S; Ramos, Natália S M; Da Silva, Rodolfo R; Da Câmara, Cláudio A G; Almeida, Argus V

    2012-12-01

    The chemical volatiles from plant leaves and their biological activities have been extensively studied. However, no studies have addressed plant-chemical volatiles after undergoing the digestive process in host insects. Here we describe for the first time chemical profiles of volatile constituents from Solanum paniculatum and Mangifera indica leaves metabolized by grasshoppers. Both profiles were qualitatively and quantitatively different from the profiles of non-metabolized leaves. The amount of nerolidol, the major constituent of S. paniculatum leaves, decreased and other sesquiterpenes, such as spathulenol, were formed during the digestive process of the grasshopper Chromacris speciosa. In M. indica, the presence of phenylpropanoids was observed (dillapiole, Z-asarone, E-asarone and γ-asarone) in the leaves metabolized by the grasshopper Tropidacris collaris, but these compounds were not found in the non-metabolized leaves.

  9. Differentiation of Yersinia enterocolitica biotype 1A from pathogenic Yersinia enterocolitica biotypes by detection of β-glucosidase activity: comparison of two chromogenic culture media and Vitek2.

    PubMed

    Karhukorpi, Jari; Päivänurmi, Marjut

    2014-01-01

    Aesculin hydrolysis (ESC) is one of the key reactions in differentiating pathogenic Yersinia enterocolitica biotypes 1B, 2, 3, 4 and 5 from the less-pathogenic biotype 1A. Because the ESC reaction is caused by β-glucosidase (βGLU) activity of the bacteria, we studied whether two commonly used methods (BBL CHROMagar Orientation and Vitek2 Gram-negative identification card) could be used in assessing βGLU activity of 74 Yersinia strains. Both methods were sensitive (100 % and 97 %) and specific (100 % and 100 %) in differentiating βGLU-positive YE BT1A from βGLU-negative Y. enterocolitica biotypes. For a subset of strains (n = 69), a new selective CHROMagar Yersinia showed excellent agreement with the strains' βGLU activity. Thus all the methods evaluated in this study may be used to differentiate between YE BT1A and other Y. enterocolitica biotypes.

  10. Diversity and Relatedness Enhance Survival in Colour Polymorphic Grasshoppers

    PubMed Central

    Caesar, Sofia; Karlsson, Magnus; Forsman, Anders

    2010-01-01

    Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals. PMID:20526364

  11. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  12. Visually targeted reaching in horse-head grasshoppers.

    PubMed

    Niven, Jeremy E; Ott, Swidbert R; Rogers, Stephen M

    2012-09-22

    Visually targeted reaching to a specific object is a demanding neuronal task requiring the translation of the location of the object from a two-dimensionsal set of retinotopic coordinates to a motor pattern that guides a limb to that point in three-dimensional space. This sensorimotor transformation has been intensively studied in mammals, but was not previously thought to occur in animals with smaller nervous systems such as insects. We studied horse-head grasshoppers (Orthoptera: Proscopididae) crossing gaps and found that visual inputs are sufficient for them to target their forelimbs to a foothold on the opposite side of the gap. High-speed video analysis showed that these reaches were targeted accurately and directly to footholds at different locations within the visual field through changes in forelimb trajectory and body position, and did not involve stereotyped searching movements. The proscopids estimated distant locations using peering to generate motion parallax, a monocular distance cue, but appeared to use binocular visual cues to estimate the distance of nearby footholds. Following occlusion of regions of binocular overlap, the proscopids resorted to peering to target reaches even to nearby locations. Monocular cues were sufficient for accurate targeting of the ipsilateral but not the contralateral forelimb. Thus, proscopids are capable not only of the sensorimotor transformations necessary for visually targeted reaching with their forelimbs but also of flexibly using different visual cues to target reaches.

  13. Diversity and relatedness enhance survival in colour polymorphic grasshoppers.

    PubMed

    Caesar, Sofia; Karlsson, Magnus; Forsman, Anders

    2010-05-28

    Evolutionary theory predicts that different resource utilization and behaviour by alternative phenotypes may reduce competition and enhance productivity and individual performance in polymorphic, as compared with monomorphic, groups of individuals. However, firm evidence that members of more heterogeneous groups benefit from enhanced survival has been scarce or lacking. Furthermore, benefits associated with phenotypic diversity may be counterbalanced by costs mediated by reduced relatedness, since closely related individuals typically are more similar. Pygmy grasshoppers (Tetrix subulata) are characterized by extensive polymorphism in colour pattern, morphology, behaviour and physiology. We studied experimental groups founded by different numbers of mothers and found that survival was higher in low than in high density, that survival peaked at intermediate colour morph diversity in high density, and that survival was independent of diversity in low density where competition was less intense. We further demonstrate that survival was enhanced by relatedness, as expected if antagonistic and competitive interactions are discriminately directed towards non-siblings. We therefore also performed behavioural observations and staged encounters which confirmed that individuals recognized and responded differently to siblings than to non-siblings. We conclude that negative effects associated with competition are less manifest in diverse groups, that there is conflicting selection for and against genetic diversity occurring simultaneously, and that diversity and relatedness may facilitate the productivity and ecological success of groups of interacting individuals.

  14. Effects of parental radiation exposure on developmental instability in grasshoppers.

    PubMed

    Beasley, D E; Bonisoli-Alquati, A; Welch, S M; Møller, A P; Mousseau, T A

    2012-06-01

    Mutagenic and epigenetic effects of environmental stressors and their transgenerational consequences are of interest to evolutionary biologists because they can amplify natural genetic variation. We studied the effect of parental exposure to radioactive contamination on offspring development in lesser marsh grasshopper Chorthippus albomarginatus. We used a geometric morphometric approach to measure fluctuating asymmetry (FA), wing shape and wing size. We measured time to sexual maturity to check whether parental exposure to radiation influenced offspring developmental trajectory and tested effects of radiation on hatching success and parental fecundity. Wings were larger in early maturing individuals born to parents from high radiation sites compared to early maturing individuals from low radiation sites. As time to sexual maturity increased, wing size decreased but more sharply in individuals from high radiation sites. Radiation exposure did not significantly affect FA or shape in wings nor did it significantly affect hatching success and fecundity. Overall, parental radiation exposure can adversely affect offspring development and fitness depending on developmental trajectories although the cause of this effect remains unclear. We suggest more direct measures of fitness and the inclusion of replication in future studies to help further our understanding of the relationship between developmental instability, fitness and environmental stress.

  15. Asymmetrical integration of sensory information during mating decisions in grasshoppers.

    PubMed

    Clemens, Jan; Krämer, Stefanie; Ronacher, Bernhard

    2014-11-18

    Decision-making processes, like all traits of an organism, are shaped by evolution; they thus carry a signature of the selection pressures associated with choice behaviors. The way sexual communication signals are integrated during courtship likely reflects the costs and benefits associated with mate choice. Here, we study the evaluation of male song by females during acoustic courtship in grasshoppers. Using playback experiments and computational modeling we find that information of different valence (attractive vs. nonattractive) is weighted asymmetrically: while information associated with nonattractive features has large weight, attractive features add little to the decision to mate. Accordingly, nonattractive features effectively veto female responses. Because attractive features have so little weight, the model suggests that female responses are frequently driven by integration noise. Asymmetrical weighting of negative and positive information may reflect the fitness costs associated with mating with a nonattractive over an attractive singer, which are also highly asymmetrical. In addition, nonattractive cues tend to be more salient and therefore more reliable. Hence, information provided by them should be weighted more heavily. Our findings suggest that characterizing the integration of sensory information during a natural behavior has the potential to provide valuable insights into the selective pressures shaping decision-making during evolution.

  16. A Test of the Thermal Melanism Hypothesis in the Wingless Grasshopper Phaulacridium vittatum

    PubMed Central

    Harris, Rebecca M.; McQuillan, Peter; Hughes, Lesley

    2013-01-01

    Altitudinal clines in melanism are generally assumed to reflect the fitness benefits resulting from thermal differences between colour morphs, yet differences in thermal quality are not always discernible. The intra-specific application of the thermal melanism hypothesis was tested in the wingless grasshopper Phaulacridium vittatum (Sjöstedt) (Orthoptera: Acrididae) first by measuring the thermal properties of the different colour morphs in the laboratory, and second by testing for differences in average reflectance and spectral characteristics of populations along 14 altitudinal gradients. Correlations between reflectance, body size, and climatic variables were also tested to investigate the underlying causes of clines in melanism. Melanism in P. vittatum represents a gradation in colour rather than distinct colour morphs, with reflectance ranging from 2.49 to 5.65%. In unstriped grasshoppers, darker morphs warmed more rapidly than lighter morphs and reached a higher maximum temperature (lower temperature excess). In contrast, significant differences in thermal quality were not found between the colour morphs of striped grasshoppers. In support of the thermal melanism hypothesis, grasshoppers were, on average, darker at higher altitudes, there were differences in the spectral properties of brightness and chroma between high and low altitudes, and temperature variables were significant influences on the average reflectance of female grasshoppers. However, altitudinal gradients do not represent predictable variation in temperature, and the relationship between melanism and altitude was not consistent across all gradients. Grasshoppers generally became darker at altitudes above 800 m a.s.l., but on several gradients reflectance declined with altitude and then increased at the highest altitude. PMID:23909454

  17. Synchrotron imaging of the grasshopper tracheal system : morphological and physiological components of tracheal hypermetry.

    SciTech Connect

    Greenlee, K. J.; Henry, J. R.; Kirkton, S. D.; Westneat, M. W.; Fezzaa, K.; Lee, W.; Harrison, J. F.; North Dakota State Univ.; Arizona State Univ.; Union Coll.; Field Museum of Natural History

    2009-11-01

    As grasshoppers increase in size during ontogeny, they have mass specifically greater whole body tracheal and tidal volumes and ventilation than predicted by an isometric relationship with body mass and body volume. However, the morphological and physiological bases to this respiratory hypermetry are unknown. In this study, we use synchrotron imaging to demonstrate that tracheal hypermetry in developing grasshoppers (Schistocerca americana) is due to increases in air sacs and tracheae and occurs in all three body segments, providing evidence against the hypothesis that hypermetry is due to gaining flight ability. We also assessed the scaling of air sac structure and function by assessing volume changes of focal abdominal air sacs. Ventilatory frequencies increased in larger animals during hypoxia (5% O{sub 2}) but did not scale in normoxia. For grasshoppers in normoxia, inflated and deflated air sac volumes and ventilation scaled hypermetrically. During hypoxia (5% O{sub 2}), many grasshoppers compressed air sacs nearly completely regardless of body size, and air sac volumes scaled isometrically. Together, these results demonstrate that whole body tracheal hypermetry and enhanced ventilation in larger/older grasshoppers are primarily due to proportionally larger air sacs and higher ventilation frequencies in larger animals during hypoxia. Prior studies showed reduced whole body tracheal volumes and tidal volume in late-stage grasshoppers, suggesting that tissue growth compresses air sacs. In contrast, we found that inflated volumes, percent volume changes, and ventilation were identical in abdominal air sacs of late-stage fifth instar and early-stage animals, suggesting that decreasing volume of the tracheal system later in the instar occurs in other body regions that have harder exoskeleton.

  18. Same barcode, different biology: differential patterns of infectivity, specificity and pathogenicity in two almost identical parasite strains.

    PubMed

    Ramírez, Raúl; Bakke, Tor A; Harris, Philip D

    2014-07-01

    Two Norwegian isolates of the monogenean Gyrodactylus salaris Malmberg, 1957 with identical cytochrome c oxidase subunit I barcodes from different hosts, show highly divergent biological and behavioural characteristics. The Lierelva parasite strain, typically infecting Atlantic salmon, Salmo salar L., grew exponentially on Atlantic salmon, but the Pålsbufjorden parasite strain, commonly infecting Arctic charr, Salvelinus alpinus L., grew slowly on both hosts and was non-pathogenic to Atlantic salmon. Both parasite strains reproduced successfully on Arctic charr, but the Atlantic salmon-infecting Lierelva strain grew faster on both hosts. Experiments with isolated worms revealed differences in reproductive rates which may account for the observed population differences. Atlantic salmon parasites consistently gave birth at an earlier age than the Arctic charr parasites, with the differential increasing from 1 day for the first birth up to 2-4 days for the third birth. Arctic charr-infecting parasites were more active on Atlantic salmon than salmon parasites on Arctic charr, a behavioural strategy leading to enhanced G. salaris mortality. Sequencing of 10 kb of nuclear genomic markers revealed only four single nucleotide polymorphisms, confirming that isolates of G. salaris with differences in fitness traits influencing establishment, fecundity and behaviour may be remarkably similar at a molecular level. The framework for reporting and control of G. salaris requires re-appraisal in light of the discovery of variants with such divergent biology.

  19. Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.

    2012-12-01

    Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation

  20. Microsatellite markers for the Chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae), an Australian Alpine Specialist.

    PubMed

    Umbers, Kate D L; Dennison, Siobhan; Manahan, Czarina A; Blondin, Laurence; Pagés, Christine; Risterucci, Ange-Marie; Chapuis, Marie-Pierre

    2012-01-01

    A set of polymorphic loci was characterised using an enrichment library for the Australian alpine specialist, the chameleon grasshopper (Kosciuscola tristis), an atypical grasshopper known for its remarkable temperature-controlled colour change. The number of alleles per locus ranged from three to 20 and observed heterozygosity from 0.16 to 0.76. These are the first microsatellite markers for a non-endangered Australian alpine animal and will inform questions of gene flow across the sky islands of this unique and threatened region.

  1. Mermithid nematode infection in a colony of blue-winged grasshoppers (Tropidacris collaris).

    PubMed

    Attard, Lydia M; Carreno, Ramon A; Paré, Jean A; Peregrine, Andrew S; Dutton, Christopher J; Mason, Thomas R

    2008-09-01

    A die-off occurred in a captive colony of blue-winged grasshoppers (Tropidacris collaris) at the Toronto Zoo. One fourth of the colony died within a year due to infection with worms initially mistaken for nematomorphs but later identified as nematodes belonging to the Mermithidae, genus Mermis. Mortality persisted and the grasshopper population dwindled over the following years. Mermithid larvae developed in the hemocoel of the insects until they eventually emerged from a hollowed-out exoskeleton. Circumstantial evidence suggests that the parasites were introduced with raspberry browse that was grown on site and contaminated with mermithid eggs.

  2. Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes

    PubMed Central

    Hussmann, Katherine L.

    2014-01-01

    The neuroinflammatory response to West Nile virus (WNV) infection can be either protective or pathological depending on the context. Although several studies have examined chemokine profiles within brains of WNV-infected mice, little is known about how various cell types within the central nervous system (CNS) contribute to chemokine expression. Here, we assessed chemokine expression in brain microvascular endothelial cells and astrocytes, which comprise the major components of the blood–brain barrier (BBB), in response to a non-pathogenic (WNV-MAD78) and a highly pathogenic (WNV-NY) strain of WNV. Higher levels of the chemokine CCL5 were detected in WNV-MAD78-infected brain endothelial monolayers compared with WNV-NY-infected cells. However, the opposite profile was observed in WNV-infected astrocytes, indicating that pathogenic and non-pathogenic strains of WNV provoke different CCL5 profiles at the BBB. Thus, cells comprising the BBB may contribute to a dynamic pro-inflammatory response within the CNS that evolves as WNV infection progresses. PMID:24413421

  3. Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes.

    PubMed

    Hussmann, Katherine L; Fredericksen, Brenda L

    2014-04-01

    The neuroinflammatory response to West Nile virus (WNV) infection can be either protective or pathological depending on the context. Although several studies have examined chemokine profiles within brains of WNV-infected mice, little is known about how various cell types within the central nervous system (CNS) contribute to chemokine expression. Here, we assessed chemokine expression in brain microvascular endothelial cells and astrocytes, which comprise the major components of the blood-brain barrier (BBB), in response to a non-pathogenic (WNV-MAD78) and a highly pathogenic (WNV-NY) strain of WNV. Higher levels of the chemokine CCL5 were detected in WNV-MAD78-infected brain endothelial monolayers compared with WNV-NY-infected cells. However, the opposite profile was observed in WNV-infected astrocytes, indicating that pathogenic and non-pathogenic strains of WNV provoke different CCL5 profiles at the BBB. Thus, cells comprising the BBB may contribute to a dynamic pro-inflammatory response within the CNS that evolves as WNV infection progresses.

  4. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii

    PubMed Central

    Qiu, Zhongying; Liu, Fei; Lu, Huimeng; Yuan, Hao; Zhang, Qin; Huang, Yuan

    2016-01-01

    Background: The grasshopper Shirakiacris shirakii is an important agricultural pest and feeds mainly on gramineous plants, thereby causing economic damage to a wide range of crops. However, genomic information on this species is extremely limited thus far, and transcriptome data relevant to insecticide resistance and pest control are also not available. Methods: The transcriptome of S. shirakii was sequenced using the Illumina HiSeq platform, and we de novo assembled the transcriptome. Results: Its sequencing produced a total of 105,408,878 clean reads, and the de novo assembly revealed 74,657 unigenes with an average length of 680 bp and N50 of 1057 bp. A total of 28,173 unigenes were annotated for the NCBI non-redundant protein sequences (Nr), NCBI non-redundant nucleotide sequences (Nt), a manually-annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Based on the Nr annotation results, we manually identified 79 unigenes encoding cytochrome P450 monooxygenases (P450s), 36 unigenes encoding carboxylesterases (CarEs) and 36 unigenes encoding glutathione S-transferases (GSTs) in S. shirakii. Core RNAi components relevant to miroRNA, siRNA and piRNA pathways, including Pasha, Loquacious, Argonaute-1, Argonaute-2, Argonaute-3, Zucchini, Aubergine, enhanced RNAi-1 and Piwi, were expressed in S. shirakii. We also identified five unigenes that were homologous to the Sid-1 gene. In addition, the analysis of differential gene expressions revealed that a total of 19,764 unigenes were up-regulated and 4185 unigenes were down-regulated in larvae. In total, we predicted 7504 simple sequence repeats (SSRs) from 74,657 unigenes. Conclusions: The comprehensive de novo transcriptomic data of S. shirakii will offer a series of valuable molecular resources for better studying insecticide resistance, RNAi and molecular marker discovery in the transcriptome. PMID:27455245

  5. Preferential Occupancy of R2 Retroelements on the B Chromosomes of the Grasshopper Eyprepocnemis plorans

    PubMed Central

    Montiel, Eugenia E.; Cabrero, Josefa; Ruiz-Estévez, Mercedes; Burke, William D.; Eickbush, Thomas H.; Camacho, Juan Pedro M.; López-León, María Dolores

    2014-01-01

    R2 non-LTR retrotransposons exclusively insert into the 28S rRNA genes of their host, and are expressed by co-transcription with the rDNA unit. The grasshopper Eyprepocnemis plorans contains transcribed rDNA clusters on most of its A chromosomes, as well as non-transcribed rDNA clusters on the parasitic B chromosomes found in many populations. Here the structure of the E. plorans R2 element, its abundance relative to the number of rDNA units and its retrotransposition activity were determined. Animals screened from five populations contained on average over 12,000 rDNA units on their A chromosomes, but surprisingly only about 100 R2 elements. Monitoring the patterns of R2 insertions in individuals from these populations revealed only low levels of retrotransposition. The low rates of R2 insertion observed in E. plorans differ from the high levels of R2 insertion previously observed in insect species that have many fewer rDNA units. It is proposed that high levels of R2 are strongly selected against in E. plorans, because the rDNA transcription machinery in this species is unable to differentiate between R2-inserted and uninserted units. The B chromosomes of E. plorans contain an additional 7,000 to 15,000 rDNA units, but in contrast to the A chromosomes, from 150 to over 1,500 R2 elements. The higher concentration of R2 in the inactive B chromosomes rDNA clusters suggests these chromosomes can act as a sink for R2 insertions thus further reducing the level of insertions on the A chromosomes. These studies suggest an interesting evolutionary relationship between the parasitic B chromosomes and R2 elements. PMID:24632855

  6. Effect of ethanol on differential protein production and expression of potential virulence functions in the opportunistic pathogen Acinetobacter baumannii.

    PubMed

    Nwugo, Chika C; Arivett, Brock A; Zimbler, Daniel L; Gaddy, Jennifer A; Richards, Ashley M; Actis, Luis A

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments.

  7. Effect of Ethanol on Differential Protein Production and Expression of Potential Virulence Functions in the Opportunistic Pathogen Acinetobacter baumannii

    PubMed Central

    Nwugo, Chika C.; Arivett, Brock A.; Zimbler, Daniel L.; Gaddy, Jennifer A.; Richards, Ashley M.; Actis, Luis A.

    2012-01-01

    Acinetobacter baumannii persists in the medical environment and causes severe human nosocomial infections. Previous studies showed that low-level ethanol exposure increases the virulence of A. baumannii ATCC 17978. To better understand the mechanisms involved in this response, 2-D gel electrophoresis combined with mass spectrometry was used to investigate differential protein production in bacteria cultured in the presence or absence of ethanol. This approach showed that the presence of ethanol significantly induces and represses the production of 22 and 12 proteins, respectively. Although over 25% of the ethanol-induced proteins were stress-response related, the overall bacterial viability was uncompromised when cultured under these conditions. Production of proteins involved in lipid and carbohydrate anabolism was increased in the presence of ethanol, a response that correlates with increased carbohydrate biofilm content, enhanced biofilm formation on abiotic surfaces and decrease bacterial motility on semi-solid surfaces. The presence of ethanol also induced the acidification of bacterial cultures and the production of indole-3-acetic acid (IAA), a ubiquitous plant hormone that signals bacterial stress-tolerance and promotes plant-bacteria interactions. These responses could be responsible for the significantly enhanced virulence of A. baumannii ATCC 17978 cells cultured in the presence of ethanol when tested with the Galleria mellonella experimental infection model. Taken together, these observations provide new insights into the effect of ethanol in bacterial virulence. This alcohol predisposes the human host to infections by A. baumannii and could favor the survival and adaptation of this pathogen to medical settings and adverse host environments. PMID:23284824

  8. Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens.

    PubMed

    Uppalapati, Srinivasa Rao; Ishiga, Yasuhiro; Doraiswamy, Vanthana; Bedair, Mohamed; Mittal, Shipra; Chen, Jianghua; Nakashima, Jin; Tang, Yuhong; Tadege, Million; Ratet, Pascal; Chen, Rujin; Schultheiss, Holger; Mysore, Kirankumar S

    2012-01-01

    To identify genes that confer nonhost resistance to biotrophic fungal pathogens, we did a forward-genetics screen using Medicago truncatula Tnt1 retrotransposon insertion lines. From this screen, we identified an inhibitor of rust germ tube differentation1 (irg1) mutant that failed to promote preinfection structure differentiation of two rust pathogens, Phakopsora pachyrhizi and Puccinia emaculata, and one anthracnose pathogen, Colletotrichum trifolii, on the abaxial leaf surface. Cytological and chemical analyses revealed that the inhibition of rust preinfection structures in irg1 mutants is due to complete loss of the abaxial epicuticular wax crystals and reduced surface hydrophobicity. The composition of waxes on abaxial leaf surface of irg1 mutants had >90% reduction of C30 primary alcohols and a preferential increase of C29 and C31 alkanes compared with the wild type. IRG1 encodes a Cys(2)His(2) zinc finger transcription factor, PALM1, which also controls dissected leaf morphology in M. truncatula. Transcriptome analysis of irg1/palm1 mutants revealed downregulation of eceriferum4, an enzyme implicated in primary alcohol biosynthesis, and MYB96, a major transcription factor that regulates wax biosynthesis. Our results demonstrate that PALM1 plays a role in regulating epicuticular wax metabolism and transport and that epicuticular wax influences spore differentiation of host and nonhost fungal pathogens.

  9. A remarkable new pygmy grasshopper (Orthoptera, Tetrigidae) in Miocene amber from the Dominican Republic

    PubMed Central

    Heads, Sam W.; Thomas, M. Jared; Wang, Yinan

    2014-01-01

    Abstract A new genus and species of pygmy grasshopper (Orthoptera: Tetrigidae) is described from Early Miocene (Burdigalian) Dominican amber. Electrotettix attenboroughi Heads & Thomas, gen. et sp. n. is assigned to the subfamily Cladonotinae based on the deeply forked frontal costa, but is remarkable for the presence of tegmina and hind wings, hitherto unknown in this subfamily. PMID:25147472

  10. Heat dosage and oviposition depth influence egg mortality of two common rangeland grasshopper species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland fire is a common naturally occurring event and management tool, with the amount and structure of biomass controlling transfer of heat belowground. Temperatures grasshopper eggs are exposed to during rangeland fires are mediated by species specific oviposition traits. This experiment examin...

  11. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of compounds has been isolated from the regurgitant of the grasshopper species Schistocerca americana. These compounds (named here caeliferins) are comprised of saturated and monounsaturated, sulfated alpha-hydroxy fatty acids in which the omega carbon is functionalized with either a su...

  12. Novel fatty acid-related compounds from the American bird grasshopper, Schistocerca americana, elicit plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new class of compounds has been isolated from the regurgitant of the grasshopper, Schistocerca americana. These compounds (named caeliferins) are comprised of unusual saturated and monounsaturated, alpha- and omega-substituted fatty acids. The regurgitant contains a series of these compounds wit...

  13. Excretion of cadmium and zinc during moulting in the grasshopper Omocestus viridulus (Orthoptera)

    SciTech Connect

    Lindqvist, L.; Block, M. )

    1994-10-01

    Nymphs of Omocestus viridulus (Orthoptera) were reared on grass leaves containing known amounts of [sup 109]Cd or [sup 65]Zn. After the animals molted to adults, contents of these metals were measured in the grasshoppers, in the cast of exuviae and in the feces produced during rearing. Dry weights of adult bodies and exuviae were lower for [sup 109]Cd-treated grasshoppers than for those given [sup 65]Zn. Exuviae accounted for only a minor part of the excreted [sup 109]Cd and [sup 65]Zn. The [sup 109]Cd was assimilated from food to a much smaller extent than was [sup 65]Zn. After 15 d of rearing, [approximately] 50% of the ingested [sup 65]Zn, but only 10% of the ingested [sup 109]Cd, remained in the grasshoppers. Because the amount of [sup 109]Cd in the grasshopper nymphs decreased with time, whereas that of the exuviae were constant, content in exuviae constituted a larger portion of the total content of [sup 109]Cd with increasing time between feeding of [sup 109]Cd and molting. For [sup 65]Zn there was no such trend.

  14. Stage-based mortality of grassland grasshoppers (Acrididae) from wandering spider (Lycosidae) predation

    NASA Astrophysics Data System (ADS)

    Oedekoven, Mark A.; Joern, Anthony

    1998-12-01

    Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland ( Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.

  15. Grasshoppers regulate N:p stoichiometric homeostasis by changing phosphorus contents in their frass.

    PubMed

    Zhang, Zijia; Elser, James J; Cease, Arianne J; Zhang, Ximei; Yu, Qiang; Han, Xingguo; Zhang, Guangming

    2014-01-01

    Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.

  16. Infection of Melanoplus Sanguinipes Grasshoppers Following Ingestion of Rangeland Plant Species Harboring Vesicular Stomatitis Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical to understanding the epidemiology of sporadic disease outbreaks in the western U.S. Migratory grasshoppers (Melanoplus sanguinipes, Fabricius) have been implicated as reservoirs and mechanical vectors of VS...

  17. Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Hilborn, Robert C.

    2004-04-01

    The butterfly effect has become a popular metaphor for sensitive dependence on initial conditions—the hallmark of chaotic behavior. I describe how, where, and when this term was conceived in the 1970s. Surprisingly, the butterfly metaphor was predated by more than 70 years by the grasshopper effect.

  18. Embryonic development rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature-dependent rates of embryonic development are a primary determinant of the life cycle of many species of grasshoppers which, in cold climates, spend two winters in the egg stage. Knowledge of embryonic developmental rates is important for an assessment of the effects of climate change and...

  19. Status assessment and conservation plan for the Grasshopper Sparrow (Ammodramus savannarum)

    USGS Publications Warehouse

    Ruth, Janet M.

    2015-01-01

    The Grasshopper Sparrow (Ammodramus savannarum) breeds in grassland habitats throughout much of the U.S., southern and southeastern Canada, and northern Mexico. Additional subspecies are resident in Central America, northern South America, and the Caribbean. It winters primarily in the coastal states of the southeastern U.S., southern portions of the southwestern states, and in Mexico, Central America, and the Caribbean. The species prefers relatively open grassland with intermediate grass height and density and patchy bare ground; because it is widely distributed across different grassland types in North America, it selects different vegetation structure and species composition depending on what is available. In the winter, they use a broader range of grassland habitats including open grasslands, as well as weedy fields and grasslands with woody vegetation. Analyses show significant range-wide population declines from the late 1960s through the present, primarily caused by habitat loss, degradation, and fragmentation. Grasshopper Sparrow is still a relatively common and broadly distributed species, but because of significant population declines and stakeholder concerns, the species is considered of conservation concern nationally and at the state level for numerous states. Many factors, often related to different grassland management practices (e.g., grazing, burning, mowing, management of shrub encroachment, etc.) throughout the species’ range, have impacts on Grasshopper Sparrow distribution, abundance, and reproduction and may represent limiting factors or threats given steep declines in this species’ population. Because of the concerns for this species, Grasshopper Sparrow has been identified as a focal species by the U.S. Fish and Wildlife Service (USFWS) and this Status Assessment and Conservation Plan for Grasshopper Sparrow has been developed. Through literature searches and input from stakeholders across its range, this plan presents information about

  20. [Diversity and distribution of grasshoppers (Orthoptera: Acridoidea) in grasslands of the Southern Pampas region, Argentina].

    PubMed

    Mariottini, Yanina; De Wysiecki, María Laura; Lange, Carlos Ernesto

    2013-03-01

    In Argentina, the grasslands of Pampas region comprise approximately 15% of the country. As in other grasslands of the world, grasshoppers are among the most important native herbivores. Their economic importance has been recognized in Argentina since the mid to late nineteenth century, since outbreaks of different species have become recurrent phenomena. Therefore, the main objective of this work was to study their diversity and distribution in grasslands of the Southern Pampas region (Laprida county, Buenos Aires province), as one of the most affected areas. The study was conducted during five seasons (2005-10). Sampling sites were represented by the most common plant communities in this area, classified in four categories: native grasslands, disturbed grasslands, implanted pastures and halophilous grasslands. The samplings were conducted from mid-spring to early autumn, with five or six samples per season. We estimated the following population descriptors: species richness (S), eveness (E), dominance (J), and diversity index (H'). In order to evaluate the similitude of the grasshopper communities present in the different plant communities, we used qualitative and quantitative coefficients of similitude. A total of 22 species of grasshoppers were collected, of which 21 belong to the family Acrididae. The subfamily Melanoplinae was the most diverse with eight species. The largest species richness was recorded in native grasslands (18). The different communities of grasshoppers had similar indices of evenness and dominance (p>0.05). Considering all plant communities, the average value of Shannon-Wiener index was 1.58+/-0.075. There was a positive correlation between evenness index and species richness (p<0.05). The diversity index H' was different between plants communities (p<0.05), and it was higher in the disturbed grassland (1.75+/-0.096, p<0.05) than in the halophilous grasslands (1.34+/-0.12). Native and disturbed grasslands had a higher plant richness than

  1. Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula.

    PubMed

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Gómez, Ricardo; Perfectti, Francisco; Camacho, Juan Pedro Martínez

    2013-01-01

    The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B) chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east) of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260-655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average G(ST) = 0.129), and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD) between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.

  2. Development of a toxic bait for control of eastern lubber grasshopper (Orthoptera: Acrididae).

    PubMed

    Barbara, Kathryn A; Capinera, John L

    2003-06-01

    This study assessed baits for eastern lubber grasshopper, Romalea guttata (Houttuyn). When offered a choice among several grain-based baits (rolled oats, wheat bran, oat bran, yeast, corn meal, cornflakes) and vegetable oils (canola, corn, peanut, soybean), eastern lubber grasshopper adults preferred bait consisting of wheat bran carrier with corn oil as an added phagostimulant. Other carriers were accepted but consumed less frequently. Discrimination by eastern lubber grasshoppers among oils was poor. Similarly, addition of flavorings (peppermint, anise, lemon, banana) resulted in few significant effects. The carbaryl, wheat bran, and oil bait developed in this study was effective at causing eastern lubber grasshopper mortality in field-cage studies. Significant mortality occurred even though grasshoppers had to locate dishes of bait in a large cage, and could feed on daylilies, or grass growing through the bottom of the cage, rather than on the bran flakes. Consumption of as little as a single carbaryl-treated bran flake could induce mortality, although individuals varied greatly in their susceptibility. The bait matrix developed in this study was readily consumed when in the presence of some plant species. We expect that wheat bran and corn oil bait would be most effective as protection for less preferred plants (tomato, pepper, eggplant, leek, parsley, fennel, daylily, lily of the Nile, and canna lily) because baits were readily consumed in the presence of these plants. Plants that are readily consumed in the presence of bait (preferred plants) included butter crunch lettuce, carrot, yellow squash, cauliflower, collards, green onion, chive, cucumber, cabbage, cantalope, endive, red leaf lettuce, society garlic, caladium, and amaryllis. Baits are likely to be less effective in the presence of such plants. On average, vegetables in Solanaceae (i.e., tomato, pepper, and eggplant) and Apiaceae (i.e., fennel and parsley) elicited high levels of bait-feeding activity

  3. Spore loads of Paranosema locustae (Microsporidia) in heavily infected grasshoppers (Orthoptera: Acridoidea) of the Argentine Pampas and Patagonia.

    PubMed

    Plischuk, Santiago; Bardi, Christian J; Lange, Carlos E

    2013-09-01

    Paranosema locustae, an entomopathogen of grasshoppers and locusts, remains the only microsporidium registered as a biocontrol agent. After introductions from North America, it became established in grasshopper communities of Argentina. We measured the infection intensity of field collected, heavily infected male and female adults of individuals belonging to six grasshopper species, five melanoplines (Melanoplinae) (Baeacris pseudopunctulatus, Dichroplus maculipennis, Dichroplus vittatus, Neopedies brunneri, Scotussa lemniscata), and one gomphocerine (Gomphocerinae) (Staurorhectus longicornis). Average spore load among heavily infected grasshoppers ranged from 8.7±0.5×10(7) to 1.1±0.7×10(9). Only females of B. pseudopunctulatus and S. longicornis showed significantly higher spore loads than the males.

  4. The Entomophaga grylli (Fresenius) Batko species complex (Zygomycetes: Entomophthorales) infecting grasshoppers in Ilheus (Bahia) Brazil: notes and new records

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi from the Entomophthoraceae (Zygomycotina; Zygomycetes: Entomophthorales) belonging to the Entomophaga grylli species complex have been found in the state of Bahia, Brazil, to affect populations of grasshoppers (Orthoptera: Acrididae) of the species Rhammatocerus brasiliensis Bruner, Rhammatoce...

  5. Modulation of CD4+ T Cell-Dependent Specific Cytotoxic CD8+ T Cells Differentiation and Proliferation by the Timing of Increase in the Pathogen Load

    PubMed Central

    Tzelepis, Fanny; Persechini, Pedro M.; Rodrigues, Mauricio M.

    2007-01-01

    Background Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8+ T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8+ T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process. Methodology/Principal Findings Using increasing doses of the protozoan parasite Trypanosoma cruzi to infect C57BL/6 mice, we observed a significant acceleration in the timing of parasitemia without an increase in mouse susceptibility. In contrast, in CD8 deficient mice, we observed an inverse relationship between the parasite inoculum and the timing of death. These results suggest that in normal mice CD8+ T cells became protective earlier, following the accelerated development of parasitemia. The evaluation of specific cytotoxic responses in vivo to three distinct epitopes revealed that increasing the parasite inoculum hastened the expansion of specific CD8+ cytotoxic T cells following infection. The differentiation and expansion of T. cruzi-specific CD8+ cytotoxic T cells is in fact dependent on parasite multiplication, as radiation-attenuated parasites were unable to activate these cells. We also observed that, in contrast to most pathogens, the activation process of T. cruzi-specific CD8+ cytotoxic T cells was dependent on MHC class II restricted CD4+ T cells. Conclusions/Significance Our results are compatible with our initial hypothesis that the timing of increase in the pathogen load can be a critical parameter governing the kinetics of CD4+ T cell-dependent expansion of pathogen-specific CD8+ cytotoxic T cells. PMID:17460760

  6. Environmental factors governing population dynamics of rangeland grasshoppers: The first application of GIS and remote sensing to acridology in Russia

    NASA Astrophysics Data System (ADS)

    Latchininsky, Alexandre Vsevolodovich

    Grasshoppers (Orthoptera: Acrididae) are pests of rangeland and crops in temperate Eurasia (Siberia) where landscapes are dominated by short-grass vegetation and have many common features with the prairies of the Great Plains of North America. The zone of economic importance of grasshoppers in Siberia is localized in its southern part between 50° and 55°N and 68° and 132°E. In particular, grasshopper infestations are concentrated in close proximity to Lake Baikal, the world's deepest lake, holding one-fifth of the Earth's total fresh water supply. From a biodiversity perspective, Lake Baikal is unparalleled because >80% of its 1,085 plant and 1,550 animal species are endemic. Broad-scale pesticide applications in the zone close to the Baikal ecosystem can seriously aggravate the hazards of environmental pollution, with potentially catastrophic consequences on a vast scale. Specific composition and density of grasshopper communities were studied over a variety of habitats. Of about 50 local grasshopper species, two gomphocerines, Aeropus sibiricus and Chorthippus albomarginatus, dominated grasshopper communities in dry and mesic habitats, respectively. These species accounted for the most of the crop damage during recent outbreaks in the 1990s requiring large-scale insecticidal control. Annual fluctuations of grasshopper infestations appeared to track changes in air temperature and summer precipitation, but only a synthetic "Aridity index" was statistically significant. Spatial distribution of historic grasshopper infestations was studied using GIS (ERDAS IMAGINERTM) and remote sensing (Landsat TM satellite imagery) and was found to be significantly clumped. The highest grasshopper densities were associated with dry grasslands in transitional zones between foothills and valleys characterized by a particular elevation (600--650 m), soil type (sod-forest, or pararendzina), amount of April--October precipitation (250 mm) and degree of grazing (moderate

  7. Predator-Prey Interactions are Context Dependent in a Grassland Plant-Grasshopper-Wolf Spider Food Chain.

    PubMed

    Laws, Angela N; Joern, Anthony

    2015-06-01

    Species interactions are often context dependent, where outcomes vary in response to one or more environmental factors. It remains unclear how abiotic conditions like temperature combine with biotic factors such as consumer density or food quality to affect resource availability or influence species interactions. Using the large grasshopper Melanoplus bivittatus (Say) and a common wolf spider [Rabidosa rabida (Walkenaer)], we conducted manipulative field experiments in tallgrass prairie to examine how spider-grasshopper interactions respond to manipulations of temperature, grasshopper density, and food quality. Grasshopper survival was density dependent, as were the effects of spider presence and food quality in context-dependent ways. In high grasshopper density treatments, predation resulted in increased grasshopper survival, likely as a result of reduced intraspecific competition in the presence of spiders. Spiders had no effect on grasshopper survival when grasshoppers were stocked at low densities. Effects of the experimental treatments were often interdependent so that effects were only observed when examined together with other treatments. The occurrence of trophic cascades was context dependent, where the effects of food quality and spider presence varied with temperature under high-density treatments. Temperature weakly affected the impact of spider presence on M. bivittatus survivorship when all treatments were considered simultaneously, but different context-dependent responses to spider presence and food quality were observed among the three temperature treatments under high-density conditions. Our results indicate that context-dependent species interactions are common and highlight the importance of understanding how key biotic and abiotic factors combine to influence species interactions.

  8. Effects of Altered Seasonality of Precipitation on Grass Production and Grasshopper Performance in a Northern Mixed Prairie.

    PubMed

    Branson, David H

    2017-03-15

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of herbivory on vegetation. We modified seasonal patterns of precipitation and grasshopper density in a manipulative experiment to examine if seasonality of drought combined with herbivory affected plant biomass, nitrogen content, and grasshopper performance. Grass biomass was affected by both precipitation and grasshopper density treatments, while nitrogen content of grass was higher with early-season drought. Proportional survival was negatively affected by initial density, while survival was higher with early drought than with full-season drought. Drought timing affected the outcome, with early summer drought increasing grass nitrogen content and grasshopper survival, while season-long and late-season drought did not. The results support arguments that our knowledge of plant responses to seasonal short-term variation in climate is limited and illustrate the importance of experiments manipulating precipitation phenology. The results confirm that understanding the season of drought is critical for predicting grasshopper population dynamics, as extreme early summer drought may be required to strongly affect Melanoplus sanguinipes (F.) performance.

  9. Rapid diagnosis and differentiation of microbial pathogens in otitis media with a combined Raman spectroscopy and low-coherence interferometry probe: toward in vivo implementation

    NASA Astrophysics Data System (ADS)

    Zhao, Youbo; Monroy, Guillermo L.; You, Sixian; Shelton, Ryan L.; Nolan, Ryan M.; Tu, Haohua; Chaney, Eric J.; Boppart, Stephen A.

    2016-10-01

    We investigate and demonstrate the feasibility of using a combined Raman scattering (RS) spectroscopy and low-coherence interferometry (LCI) probe to differentiate microbial pathogens and improve our diagnostic ability of ear infections [otitis media (OM)]. While the RS probe provides noninvasive molecular information to identify and differentiate infectious microorganisms, the LCI probe helps to identify depth-resolved structural information as well as to guide and monitor positioning of the Raman spectroscopy beam for relatively longer signal acquisition times. A series of phantom studies, including the use of human middle ear effusion samples, were performed to mimic the conditions of in vivo investigations. These were also conducted to validate the feasibility of using this combined RS/LCI probe for point-of-care diagnosis of the infectious pathogen(s) in OM patients. This work establishes important parameters for future in vivo investigations of fast and accurate determination and diagnosis of infectious microorganisms in OM patients, potentially improving the efficacy and outcome of OM treatments, and importantly reducing the misuse of antibiotics in the presence of viral infections.

  10. A simple and rapid nested polymerase chain reaction-restriction fragment length polymorphism technique for differentiation of pathogenic and nonpathogenic Leptospira spp.

    PubMed

    Djadid, Navid Dinparast; Ganji, Zahra Faghanzadeh; Gouya, Mohammad Mehdi; Rezvani, Mahmood; Zakeri, Sedigheh

    2009-03-01

    A rapid and specific nested polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) has been developed to detect and differentiate pathogenic and nonpathogenic Leptospira spp. Leptospiral genomic DNA was extracted from suspected human sera using an improved method of standard phenol-chloroform, and specific primers have been used to amplify 16S ribosomal RNA from all pathogenic and nonpathogenic Leptospira spp. The PCR products of all nonpathogenic species were digested with ApoI enzyme, but not pathogenic. To evaluate this assay, we analyzed 283 serum samples collected from suspected patients with leptospirosis. Nested PCR assay confirmed that 42 (14.8%) of 283 samples harbored Leptospira infection, and RFLP assay confirmed 38 (90.5%) of 42 and 4 (9.5%) of 42 positive cases had pathogenic and nonpathogenic Leptospira spp., respectively. Based on sequencing results, Leptospira interrogans, Leptospira kirschneri, and Leptospira wolffii and nonpathogenic Leptospira biflexa and Leptospira genomospecies 3 have been detected among analyzed samples. The nested PCR-RFLP assay developed in this study fulfills this requirement in the early stage of infection.

  11. Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL

    SciTech Connect

    Waldhauer, A. P.

    1989-07-01

    A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (/lambda/=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 /mu/m with a spherical mirror, and 25 /mu/m with an elliptical one. Elliptical mirrors have been acquired and are now being installed in the two grasshoppers at SSRL.

  12. Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL

    NASA Astrophysics Data System (ADS)

    Waldhauer, A. P.

    1989-07-01

    A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (λ=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 μm with a spherical mirror, and 25 μm with an elliptical one. Elliptical mirrors have been acquired and are now being installed in the two grasshoppers at SSRL.

  13. Physical mapping of the Period gene on meiotic chromosomes of South American grasshoppers (Acridomorpha, Orthoptera).

    PubMed

    Souza, T E; Oliveira, D L; Santos, J F; Rieger, T T

    2014-12-19

    The single-copy gene Period was located in five grasshopper species belonging to the Acridomorpha group through permanent in situ hybridization (PISH). The mapping revealed one copy of this gene in the L1 chromosome pair in Ommexecha virens, Xyleus discoideus angulatus, Tropidacris collaris, Schistocerca pallens, and Stiphra robusta. A possible second copy was mapped on the L2 chromosome pair in S. robusta, which should be confirmed by further studies. Except for the latter case, the chromosomal position of the Period gene was highly conserved among the four families studied. The S. robusta karyotype also differs from the others both in chromosome number and morphology. The position conservation of the single-copy gene Period contrasts with the location diversification of multigene families in these species. The localization of single-copy genes by PISH can provide new insights about the genomic content and chromosomal evolution of grasshoppers and others insects.

  14. Highly pathogenic H5N1 avian influenza viruses differentially affect gene expression in primary chicken embryo fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly pathogenic avian influenza viruses cause severe clinical disease associated with high mortality in chickens and other gallinaceous species. However, the mechanism by which different strains of avian influenza viruses overcome host response in birds is still unclear. In the present study, ch...

  15. Altered differentiation, diminished pathogenicity, and regulatory activity of myelin-specific T cells expressing an enhanced affinity TCR

    PubMed Central

    Alli, Rajshekhar; Nguyen, Phuong; Geiger, Terrence L.

    2011-01-01

    Whereas increased affinity enhances T cell competitiveness after immunization, the role of affinity in modulating the pathogenicity of self-reactive T cells is less established. To assess this, we generated two myelin-specific, class II MHC-restricted TCR that differ only in a buried hydroxymethyl that forms a common TRBV variant. The variation, predicted to increase TCR stability, resulted in a ~3log10 difference in TCR sensitivity with preserved fine specificity. The high affinity TCR markedly diminished T cell pathogenicity. T cells were not deleted, did not upregulate Foxp3, and barring disease induction were predominantly naïve. However, high affinity CD4+ T cells showed an altered cytokine profile characterized by the production of protective cytokines prior to experimental allergic encephalomyelitis induction and decreased effector cytokines after. Further, the high affinity TCR promoted the development of CD4−CD8− and CD8+ T cells that possessed low intrinsic pathogenicity, were protective even in small numbers when transferred into wild type mice and in mixed chimeras, and outcompete CD4+ T cells during disease development. Therefore TCR affinities exceeding an upper affinity threshold may impede the development of autoimmunity through altered development and functional maturation of T cells, including diminished intrinsic CD4+ T-cell pathogenicity and the development of CD4− Foxp3− regulatory populations. PMID:22025553

  16. The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arterivirus genus member Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically devastating disease that presents global concerns to the pork industry, which have been exacerbated by the emergence of a highly pathogenic PRRSV strain (HP-PRRSV) in China and Southeast Asia....

  17. Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription profiles of Glycine tomentella genotypes having different responses to soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, were compared using suppression subtractive hybridization (SSH). Four cDNA libraries were constructed from infected and non-infected leaves of resis...

  18. High plant species diversity indirectly mitigates CO 2- and N-induced effects on grasshopper growth

    NASA Astrophysics Data System (ADS)

    Strengbom, Joachim; Reich, Peter B.; Ritchie, Mark E.

    2008-09-01

    We examined how elevated atmospheric [CO 2] and higher rate of nitrogen (N) input may influence grasshopper growth by changing food plant quality and how such effects may be modified by species diversity of the plant community. We reared grasshopper nymphs ( Melanoplus femurrubrum) on Poa pratensis from field-grown monocultures or polycultures (16 species) that were subjected to either ambient or elevated levels of CO 2 and N. Grasshopper growth rate was higher on P. pratensis leaves grown in monocultures than in polycultures, higher on P. pratensis grown under elevated than under ambient [CO 2], and higher on P. pratensis grown under elevated than under ambient [N]. The higher growth rate observed on P. pratensis exposed to elevated [CO 2] was, however, less pronounced for polyculture- than monoculture-grown P. pratensis. Growth rate of the grasshoppers was positively correlated with leaf [N], [C], and concentration of soluble carbohydrates + lipids. Concentration of non-structural carbohydrates + lipids was higher in leaves grown under elevated than under ambient [CO 2], and the difference between P. pratensis grown under ambient and elevated [CO 2] was greater for monoculture- than polyculture-grown P. pratensis. In addition, leaf N concentration was higher in P. pratensis grown in monocultures than in polycultures, suggesting that plant species richness, indirectly, may influence insect performance by changed nutritional value of the plants. Because we found interactive effects between all factors included ([CO 2], [N], and plant species diversity), our results suggest that these parameters may influence plant-insect interactions in a complex way that is not predictable from the sum of single factor manipulations.

  19. Processing of acoustic signals in grasshoppers - a neuroethological approach towards female choice.

    PubMed

    Ronacher, Bernhard; Stange, Nicole

    2013-01-01

    Acoustic communication is a major factor for mate attraction in many grasshopper species and thus plays a vital role in a grasshopper's life. First of all, the recognition of the species-specific sound patterns is crucial for preventing hybridization with other species, which would result in a drastic fitness loss. In addition, there is evidence that females are choosy with respect to conspecific males and prefer or reject the songs of some individuals, thereby exerting a sexual selection on males. Remarkably, the preferences of females are preserved even under masking noise. To discriminate between the basically similar signals of conspecifics is obviously a challenge for small nervous systems. We therefore ask how the acoustic signals are processed and represented in the grasshopper's nervous system, to allow for a fine discrimination and assessment of individual songs. The discrimination of similar signals may be impeded not only by signal masking due to external noise sources, but also by intrinsic noise due to the inherent variability of spike trains. Using a spike train metric we could estimate how well, in principle, the songs of different individuals can be discriminated on the basis of neuronal responses, and found a remarkable potential for discrimination performance at the first stage, but not on higher stages of the auditory pathway. Next, we ask which benefits a grasshopper female may earn from being choosy. New results, which revealed correlations between specific song features and the size and immunocompetence of the males, suggest that females may derive from acoustic signals clues about condition and health of the sending male. However, we observed substantial differences between the preference functions of individual females and it may be particularly rewarding to relate the variations in female preferences to individual differences in the responses of identified neurons.

  20. Differentiation between pathogenic serotype 1 isolates of Marek's disease virus and the Rispens CVI988 vaccine in Australia using real-time PCR and high resolution melt curve analysis.

    PubMed

    Renz, K G; Cheetham, B F; Walkden-Brown, S W

    2013-01-01

    Two real-time PCR assays were developed which enable quantitation and differentiation between pathogenic Australian isolates of Marek's disease virus (MDV) serotype 1 and the serotype 1 vaccine strain Rispens CVI988. The assays are based on a DNA sequence variation in the meq gene between pathogenic and vaccinal MDV1 which has been confirmed by sequencing of 20 Australian field strains of MDV. Complete specificity has been demonstrated in samples containing pathogenic MDV (n=20), Rispens (3 commercial vaccine strains), or both. The limit of detection of both the Rispens-specific and the pathogenic MDV1-specific assays was 10 viral copies/reaction. The tests successfully differentiated and quantified MDV in mixtures of pathogenic and vaccinal Rispens virus. A high resolution melt curve analysis targeting the same SNP used for the real-time PCR assays was also developed which successfully detected sequence variation between Md5, six Australian MDV1 isolates and the three Rispens vaccines. However it was ineffective at differentiating mixtures of pathogenic and vaccinal MDV1. The real-time PCR assays have both diagnostic and epidemiological applications as they enable differentiation and quantitation of Rispens CVI988 and pathogenic MDV1 in co-infected chickens in Australia.

  1. Resource-mediated impact of spider predation risk on performance in the grasshopper Ageneotettix deorum (Orthoptera: Acrididae).

    PubMed

    Danner, Bradford J; Joern, Anthony

    2003-11-01

    In response to increased exposure to predators when searching for food, many prey increase the frequency of antipredator behaviors, potentially reducing foraging rate and food intake. Such direct, nonlethal interactions between predators and prey resulting in reduced food intake can indirectly influence lifecycle development through effects on growth, developmental rate, and survival. We investigated the general hypothesis that individual performance of a herbivorous insect can be negatively affected when exposed to nonlethal predation risk, and that the response can be mediated by food quality. This hypothesis was tested using the common rangeland grasshopper Ageneotettix deorum with and without exposure to common wolf spider predators (Lycosidae, Schizocosa spp.) on both untreated natural and fertilized vegetation. All spiders were rendered temporarily incapable of direct feeding by restricting function of the chelicerae with beeswax. Detectable responses by grasshoppers to spiders indicate indirect consequences for lifecycle development. Grasshopper performance was measured as hind femur growth, duration of nymphal lifecycle stages, and survivorship in a caged field experiment conducted over 2 years. Grasshoppers developed faster and grew 3-5% larger when allowed to forage on fertilized vegetation in the absence of risk from a spider predator. Failure-time analysis illustrated enhanced survival probability in response to elevated food quality and the negative effects of grasshopper susceptibility to nonlethal predation risk. Performance on food of relatively low, ambient quality with no predation risk equaled that of grasshoppers caged with high quality vegetation in the presence of a modified spider. Increased resource quality can clearly moderate the negative life history responses caused by the behavioral modification of grasshoppers when exposed to spider predation risk, a compensatory response.

  2. Reprint of: The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    PubMed

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-12-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44 °C ± 0.4 °C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change.

  3. The effectiveness of common thermo-regulatory behaviours in a cool temperate grasshopper.

    PubMed

    Harris, Rebecca M B; McQuillan, Peter; Hughes, Lesley

    2015-08-01

    Behavioural thermoregulation has the potential to alleviate the short-term impacts of climate change on some small ectotherms, without the need for changes to species distributions or genetic adaptation. We illustrate this by measuring the effect of behaviour in a cool temperate species of grasshopper (Phaulacridium vittatum) over a range of spatial and temporal scales in laboratory and natural field experiments. Microhabitat selection at the site scale was tested in free-ranging grasshoppers and related to changing thermal quality over a daily period. Artificial warming experiments were then used to measure the temperature at which common thermoregulatory behaviours are initiated and the subsequent reductions in body temperature. Behavioural means such as timing of activity, choice of substrates with optimum surface temperatures, shade seeking and postural adjustments (e.g. stilting, vertical orientation) were found to be highly effective at maintaining preferred body temperature. The maximum voluntarily tolerated temperature (MVT) was determined to be 44°C±0.4°C, indicating the upper bounds of thermal flexibility in this species. Behavioural thermoregulation effectively enables small ectotherms to regulate exposure to changing environmental temperatures and utilize the spatially and temporally heterogeneous environments they occupy. Species such as the wingless grasshopper, although adapted to cool temperate conditions, are likely to be well equipped to respond successfully to coarse scale climate change.

  4. Grasshopper sparrow reproductive success and habitat use on reclaimed surface mines varies by age of reclamation

    USGS Publications Warehouse

    Wood, Petra; Ammer, Frank K.

    2015-01-01

    We studied 3 mountaintop mining–valley fill (MTMVF) complexes in southern West Virginia, USA to examine grasshopper sparrow (Ammodramus savannarum pratensis) demographic response to different age classes of mine land reclamation. For 71 nests monitored during the 2001–2002 breeding seasons, overall nest success (36%) was within the range of nest success rates previously reported for this species, but it was highest on more recently reclaimed sites (56%). Nest density and clutch size did not differ (P > 0.30) among reclamation age classes, whereas number of fledglings was greater (P = 0.01) on more recently reclaimed sites. We measured vegetation variables at 70 nest subplots and at 96 systematic subplots to compare nest vegetation with vegetation available on the plots. We found that nests occurred in areas with more bare ground near the nest, greater vegetation height–density surrounding the nest site, lower grass height, and fewer woody stems, similar to previous studies. As postreclamation age increased, vegetation height–density and maximum grass height increased, and sericea (Lespedeza cuneata) became more dominant. Nest success declined with increasing vegetation height–density at the nest. The grasslands available on these reclaimed mine complexes are of sufficient quality to support breeding populations of grasshopper sparrows, but nest success decreased on the older reclaimed areas. Without active management, grasslands on reclaimed MTMVF mines become less suitable for nesting grasshopper sparrows about 10 years after reclamation.

  5. Reduced predation risk for melanistic pygmy grasshoppers in post-fire environments

    PubMed Central

    Karpestam, Einat; Merilaita, Sami; Forsman, Anders

    2012-01-01

    The existence of melanistic (black) color forms in many species represents interesting model systems that have played important roles for our understanding of selective processes, evolution of adaptations, and the maintenance of variation. A recent study reported on rapid evolutionary shifts in frequencies of the melanistic forms in replicated populations of Tetrix subulata pygmy grasshoppers; the incidence of the melanistic form was higher in recently burned areas with backgrounds blackened by fire than in nonburned areas, and it declined over time in postfire environments. Here, we tested the hypothesis that the frequency shifts of the black color variant were driven, at least in part, by changes in the selective regime imposed by visual predators. To study detectability of the melanistic form, we presented human “predators” with images of black grasshoppers and samples of the natural habitat on computer screens. We demonstrate that the protective value of black coloration differs between burnt and nonburnt environments and gradually increases in habitats that have been more blackened by fire. These findings support the notion that a black color pattern provides improved protection from visually oriented predators against blackened backgrounds and implicate camouflage and predation as important drivers of fire melanism in pygmy grasshoppers. PMID:23139879

  6. Genome size variation affects song attractiveness in grasshoppers: evidence for sexual selection against large genomes.

    PubMed

    Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus

    2014-12-01

    Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits.

  7. Differential Communications between Fungi and Host Plants Revealed by Secretome Analysis of Phylogenetically Related Endophytic and Pathogenic Fungi

    PubMed Central

    Xu, Xihui; He, Qin; Zhang, Chulong

    2016-01-01

    During infection, both phytopathogenic and endophytic fungi form intimate contact with living plant cells, and need to resist or disable host defences and modify host metabolism to adapt to their host. Fungi can achieve these changes by secreting proteins and enzymes. A comprehensive comparison of the secretomes of both endophytic and pathogenic fungi can improve our understanding of the interactions between plants and fungi. Although Magnaporthe oryzae, Gaeumannomyces graminis, and M. poae are economically important fungal pathogens, and the related species Harpophora oryzae is an endophyte, they evolved from a common pathogenic ancestor. We used a pipeline analysis to predict the H. oryzae, M. oryzae, G. graminis, and M. poae secretomes and identified 1142, 1370, 1001, and 974 proteins, respectively. Orthologue gene analyses demonstrated that the M. oryzae secretome evolved more rapidly than those of the other three related species, resulting in many species-specific secreted protein-encoding genes, such as avirulence genes. Functional analyses highlighted the abundance of proteins involved in the breakdown of host plant cell walls and oxidation-reduction processes. We identified three novel motifs in the H. and M. oryzae secretomes, which may play key roles in the interaction between rice and H. oryzae. Furthermore, we found that expression of the H. oryzae secretome involved in plant cell wall degradation was downregulated, but the M. oryzae secretome was upregulated with many more upregulated genes involved in oxidation-reduction processes. The divergent in planta expression patterns of the H. and M. oryzae secretomes reveal differences that are associated with mutualistic and pathogenic interactions, respectively. PMID:27658302

  8. Sampling Frequency Differentially Influences Interpretation of Zoonotic Pathogen and Host Dynamics: Sin Nombre Virus and Deer Mice

    PubMed Central

    Mills, James N.; Kuenzi, Amy; Flietstra, Timothy; Douglass, Richard

    2010-01-01

    Abstract Reports of novel emerging and resurging wildlife and zoonotic diseases have increased. Consequently, integration of pathogen sampling into wildlife monitoring programs has grown. Sampling frequency influences interpretations of coupled host–pathogen dynamics, with direct implication to human exposure risk, but has received little empirical attention. To address this, a 15-year study, based on monthly sampling, of deer mouse (Peromyscus maniculatus) populations and Sin Nombre virus (SNV; a virulent disease in humans) dynamics was evaluated. Estimates of deer mouse abundance, number infected with SNV, and SNV prevalence from sampling less frequently than each month (achieved by deletion of months and recalculation of these parameters) were compared to monthly sampling frequencies. Deer mouse abundance was underestimated (10%–20%), SNV prevalence was overestimated when prevalence was high (>15%), and fewer annual extremes of abundance and infection were detected when sampling frequency was less than monthly. Effort necessary to detect temporal dynamics of SNV differed from effort to detect demographic patterns in deer mouse abundance. Findings here are applicable to sampling strategies for other host–pathogen dynamics and have direct implications for allocation of public health resources and intervention programs. PMID:20528169

  9. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes.

    PubMed

    Duhen, Thomas; Campbell, Daniel J

    2014-07-01

    In humans, Th1/17 cells, identified by coexpression of the chemokine receptors CCR6 and CXCR3, are proposed to be highly pathogenic in several autoimmune disorders due in part to their expression of the proinflammatory cytokines IL-17, IFN-γ, and GM-CSF. However, their developmental requirements, relationship with "classic" Th17 and Th1 cells and physiological role in normal immune responses are not well understood. In this study, we examined CCR6+ CXCR3+ Th1/17 cells from healthy individuals and found that ex vivo these cells produced the effector cytokines IL-17, IL-22, and IFN-γ in all possible combinations and were highly responsive to both IL-12 and IL-23. Moreover, although the Ag specificity of CCR6+ CXCR3+ Th1/17 cells showed substantial overlap with that of Th1 and Th17 cells, this population was enriched in cells recognizing certain extracellular bacteria and expressing the intestinal homing receptor integrin β7. Finally, we identified IL-1β as a key cytokine that renders Th17 cells sensitive to IL-12, and both cytokines together potently induced the differentiation of cells that produce IL-17, IFN-γ, and GM-CSF. Therefore, interfering with IL-1β and IL-12 signaling in Th17 cells during inflammation may be a promising therapeutic approach to reduce their differentiation into "pathogenic" CCR6+ CXCR3+ Th1/17 cells in patients with autoimmune diseases.

  10. Differential cellular gene expression in duck trachea infected with a highly or low pathogenic H5N1 avian influenza virus

    PubMed Central

    2013-01-01

    Background Avian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses. These viruses are a threat not only for animal health but also public health due to their zoonotic potential. The domestic duck plays a major role in the epidemiological cycle of influenza virus subtypes H5 but little is known concerning host/pathogen interactions during influenza infection in duck species. In this study, a subtracted library from duck trachea (a primary site of influenza virus infection) was constructed to analyse and compare the host response after a highly or low pathogenic (LP) H5N1-infection. Results Here, we show that more than 200 different genes were differentially expressed in infected duck trachea to a significant degree. In addition, significant differentially expressed genes between LPAI- and HPAI-infected tracheas were observed. Gene ontology annotation was used and specific signalling pathways were identified. These pathways were different for LPAI and HPAI-infected tracheas, except for the CXCR4 signalling pathway which is implicated in immune response. A different modulation of genes in the CXCR4 signalling pathway and TRIM33 was induced in duck tracheas infected with a HPAI- or a LPAI-H5N1. Conclusion First, this study indicates that Suppressive Subtractive Hybridization (SSH) is an alternative approach to gain insights into the pathogenesis of influenza infection in ducks. Secondly, the results indicate that cellular gene expression in the duck trachea was differently modulated after infection with a LPAI-H5N1 or after infection with a HPAI-H5N1 virus. Such difference found in infected trachea, a primary infection site, could precede continuation of infection and could explain appearance of respiratory symptoms or not. PMID:24015922

  11. Rapid detection and statistical differentiation of KPC gene variants in Gram-negative pathogens by use of high-resolution melting and ScreenClust analyses.

    PubMed

    Roth, Amanda L; Hanson, Nancy D

    2013-01-01

    In the United States, the production of the Klebsiella pneumoniae carbapenemase (KPC) is an important mechanism of carbapenem resistance in Gram-negative pathogens. Infections with KPC-producing organisms are associated with increased morbidity and mortality; therefore, the rapid detection of KPC-producing pathogens is critical in patient care and infection control. We developed a real-time PCR assay complemented with traditional high-resolution melting (HRM) analysis, as well as statistically based genotyping, using the Rotor-Gene ScreenClust HRM software to both detect the presence of bla(KPC) and differentiate between KPC-2-like and KPC-3-like alleles. A total of 166 clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii with various β-lactamase susceptibility patterns were tested in the validation of this assay; 66 of these organisms were known to produce the KPC β-lactamase. The real-time PCR assay was able to detect the presence of bla(KPC) in all 66 of these clinical isolates (100% sensitivity and specificity). HRM analysis demonstrated that 26 had KPC-2-like melting peak temperatures, while 40 had KPC-3-like melting peak temperatures. Sequencing of 21 amplified products confirmed the melting peak results, with 9 isolates carrying bla(KPC-2) and 12 isolates carrying bla(KPC-3). This PCR/HRM assay can identify KPC-producing Gram-negative pathogens in as little as 3 h after isolation of pure colonies and does not require post-PCR sample manipulation for HRM analysis, and ScreenClust analysis easily distinguishes bla(KPC-2-like) and bla(KPC-3-like) alleles. Therefore, this assay is a rapid method to identify the presence of bla(KPC) enzymes in Gram-negative pathogens that can be easily integrated into busy clinical microbiology laboratories.

  12. A cumulative feeding threshold required for vitellogenesis can be obviated with juvenile hormone treatment in lubber grasshoppers.

    PubMed

    Fronstin, R B; Hatle, J D

    2008-01-01

    Developmental thresholds can ensure that an adequate condition has been attained to proceed through major transitions (e.g. initiation of reproduction, metamorphosis). Nutrition is critical to attaining most thresholds, because it is needed for both growth and storage. Attaining a threshold typically stimulates the release of hormones that commit the animal to the developmental transition, yet the relationships between the nutrition needed for developmental thresholds and these endocrine signals are poorly understood. Lubber grasshoppers require a cumulative feeding threshold to initiate vitellogenesis and potentially commit to oviposition. We tested the relative roles of the nutritional threshold and the major gonadotropin (juvenile hormone; JH) in initiating vitellogenesis and committing to oviposition. The source of JH was removed from all females, and then JH analog was applied after different amounts of feeding. Threshold feeding was not required to initiate vitellogenesis, suggesting that sub-threshold grasshoppers are competent to respond to JH. Further, sub-threshold grasshoppers went on to oviposit earlier than supra-threshold grasshoppers treated with JH at the same time. Hence, threshold feeding is required only to cause the production and release of JH. At the same time, we also found that individuals that were restored with JH late in life tended to favor current reproduction, at the expense of future reproduction. Both time to oviposition and vitellogenin profiles were consistent with this developmental allocation. Taken together, our results suggest that lubber grasshoppers adjust reproductive tactics primarily in response to nutrition (which only serves to release JH) and secondarily in response to age.

  13. Quantitative analysis of diet structure by real-time PCR, reveals different feeding patterns by two dominant grasshopper species

    PubMed Central

    Huang, Xunbing; Wu, Huihui; McNeill, Mark Richard; Qin, Xinghu; Ma, Jingchuan; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Studies on grasshopper diets have historically employed a range of methodologies, each with certain advantages and disadvantages. For example, some methodologies are qualitative instead of quantitative. Others require long experimental periods or examine population-level effects, only. In this study, we used real-time PCR to examine diets of individual grasshoppers. The method has the advantage of being both fast and quantitative. Using two grasshopper species, Oedaleus asiaticus and Dasyhippus barbipes, we designed ITS primer sequences for their three main host plants, Stipa krylovii, Leymus chinensis and Cleistogenes squarrosa and used real-time PCR method to test diet structure both qualitatively and quantitatively. The lowest detection efficiency of the three grass species was ~80% with a strong correlation between actual and PCR-measured food intake. We found that Oedaleus asiaticus maintained an unchanged diet structure across grasslands with different grass communities. By comparison, Dasyhippus barbipes changed its diet structure. These results revealed why O. asiaticus distribution is mainly confined to Stipa-dominated grassland, and D. barbipes is more widely distributed across Inner Mongolia. Overall, real-time PCR was shown to be a useful tool for investigating grasshopper diets, which in turn offers some insight into grasshopper distributions and improved pest management. PMID:27562455

  14. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble.

    PubMed

    Fournier, E; Giraud, T

    2008-01-01

    Prime candidates for sympatric ecological divergence include parasites that differentiate via host shifts, because different host species exert strong disruptive selection and because both hosts and parasites are continually co-evolving. Sympatric divergence may be fostered even more strongly in phytopathogenic fungi, in particular those where sex must occur on the host, which allows adaptation alone to restrict gene flow between populations developing on different hosts. We sampled populations of Botrytis cinerea, a generalist ascomycete fungus, on sympatric grapes and brambles in six regions in France. Microsatellite data were analyzed using standard population genetics, a population graph analysis and a Bayesian approach. In addition to confirming that B. cinerea reproduces sexually, our results showed that the fungal populations on the two hosts were significantly differentiated, indicating restricted gene flow, even in sympatry. In contrast, only weak geographical differentiation could be detected. These results support the possibility of sympatric divergence associated with host use in generalist parasites.

  15. Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses.

    PubMed

    Ali, Gul Shad; Reddy, Vaka S; Lindgren, Peter B; Jakobek, Judy L; Reddy, A S N

    2003-04-01

    Calmodulin (CaM) plays an important role in sensing and transducing changes in cellular Ca2+ concentration in response to several biotic and abiotic stresses. Although CaM is implicated in plant-pathogen interactions, its molecular targets and their role in defense signaling pathway(s) are poorly understood. To elucidate the signaling pathways that link CaM to defense responses, we screened a cDNA library constructed from bean leaves undergoing a hypersensitive response (HR) with radiolabeled CaM isoforms. A total of 26 putative CBPs were identified. Sequencing of the cDNAs revealed that they represent 8 different genes. They are homologues of previously identified CaM-binding proteins (CBPs) in other systems. However, some CBPs are novel members of known CBP families. The proteins encoded by these clones bound CaM in a Ca2+-dependent manner. To determine if these CBPs are involved in plant defense responses, we analyzed their expression in bean leaves inoculated with compatible, incompatible and nonpathogenic bacterial strains. Expression of three CBPs including an isoform of cyclic nucleotide-gated channels (PvCNGC-A) and two hypothetical proteins (PvCBP60-C and PvCBP60-D) was induced whereas the expression of two other isoforms of CNGCs (PvCNGC-B and PvCNGC-C) was repressed in response to incompatible pathogens. The expression of the rest, a small auxin up RNA (PvSAUR1) and two hypothetical proteins (PvCBP60-A and PvCBP60-B), was not changed. The expression of most of the pathogen-regulated genes was also affected by salicylic acid, jasmonic acid, hydrogen peroxide and a fungal elicitor, which are known to induce defense responses. Our results strongly suggest that at least five bean CBPs are involved in plant defense responses.

  16. Domain II hairpin structure in ITS1 sequences as an aid in differentiating recently evolved animal and plant pathogenic fungi.

    PubMed

    Bridge, P D; Schlitt, T; Cannon, P F; Buddie, A G; Baker, M; Borman, A M

    2008-07-01

    The hypothesis that ITS structural features can be used to define fungal groups, where sequence analysis is unsatisfactory, was examined in plant and animal pathogenic fungi. Structural models of ITS1 regions were predicted for presumed closely related species in Colletotrichum and Trichophyton anamorphs of Arthroderma species. Structural alignment of models and comparison with ITS sequence analysis identified a variable region in a conserved hairpin formed from a common inverted repeat. Thirteen different hairpin structure models were obtained for Colletotrichum species and five different models were obtained for Trichophyton species. The different structure types could be matched to individual species and species complexes as defined by ITS sequence analysis.

  17. Grazing damage to plants and gastropod and grasshopper densities in a CO 2-enrichment experiment on calcareous grassland

    NASA Astrophysics Data System (ADS)

    Ledergerber, Stephan; Thommen, G. Heinrich; Baur, Bruno

    Plant-herbivore interactions may change as atmospheric CO 2 concentrations continue to rise. We examined the effects of elevated atmospheric CO 2 and CO 2-exposure chambers on the grazing damage to plants, and on the abundances of potential herbivores (terrestrial gastropods and grasshoppers) in a calcareous grassland in the Jura mountains of Switzerland (village of Nenzlingen). Individuals of most plant species examined showed slight grazing damage. However, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in the extent of grazing damage. Similarly, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in either gastropod or grasshopper density. Experimental plots with and without chambers did not differ in the number of gastropods. However, the densities of gastropods and grasshoppers and extent of grazing damage to plants were generally lower in the experimental area than in the grassland outside the experimental field.

  18. Differential specificity of selective culture media for enumeration of pathogenic vibrios: advantages and limitations of multi-plating methods.

    PubMed

    Nigro, Olivia D; Steward, Grieg F

    2015-04-01

    Plating environmental samples on vibrio-selective chromogenic media is a commonly used technique that allows one to quickly estimate concentrations of putative vibrio pathogens or to isolate them for further study. Although this approach is convenient, its usefulness depends directly on how well the procedure selects against false positives. We tested whether a chromogenic medium, CHROMagar Vibrio (CaV), used alone (single-plating) or in combination (double-plating) with a traditional medium thiosulfate-citrate-bile-salts (TCBS), could improve the discrimination among three pathogenic vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) and thereby decrease the number of false-positive colonies that must be screened by molecular methods. Assays were conducted on water samples from two estuarine environments (one subtropical, one tropical) in a variety of seasonal conditions. The results of the double-plating method were confirmed by PCR and 16S rRNA sequencing. Our data indicate that there is no significant difference in the false-positive rate between CaV and TCBS when using a single-plating technique, but determining color changes on the two media sequentially (double-plating) reduced the rate of false positive identification in most cases. The improvement achieved was about two-fold on average, but varied greatly (from 0- to 5-fold) and depended on the sampling time and location. The double-plating method was most effective for V. vulnificus in warm months, when overall V. vulnificus abundance is high (false positive rates as low as 2%, n=178). Similar results were obtained for V. cholerae (minimum false positive rate of 16%, n=146). In contrast, the false positive rate for V. parahaemolyticus was always high (minimum of 59%, n=109). Sequence analysis of false-positive isolates indicated that the majority of confounding isolates are from the Vibrionaceae family, however, members of distantly related bacterial groups were also able to

  19. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    PubMed

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  20. Difficulties in differentiating Neisseria cinerea from Neisseria gonorrhoeae in rapid systems used for identifying pathogenic Neisseria species.

    PubMed

    Boyce, J M; Mitchell, E B

    1985-11-01

    Neisseria cinerea and Neisseria gonorrhoeae may occur at the same body sites and may have similar colony morphologies. Ideally, systems used for rapid identification of N. gonorrhoeae should be able to differentiate N. cinerea from gonococci. We tested seven N. cinerea strains using the Gonochek II (Du Pont Diagnostics), Minitek (BBL Microbiology Systems), RapID-NH (Innovative Diagnostics, Inc.), RIM-N (American Microscan), and Phadebact (Pharmacia Diagnostics) systems. We found that the reactions produced by N. cinerea in Gonochek II, Minitek, and RapID-NH kits could be confused with the results produced by some strains of N. gonorrhoeae. The susceptibility of N. cinerea to colistin, its ability to grow on tryptic soy or Mueller-Hinton agar, and its inability to grow on modified Thayer-Martin medium help differentiate it from gonococci.

  1. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments.

    PubMed

    Nemchenko, Andriy; Kunze, Susan; Feussner, Ivo; Kolomiets, Michael

    2006-01-01

    Most plant oxylipins, a large class of diverse oxygenated polyunsaturated fatty acids and their derivatives, are produced through the lipoxygenase (LOX) pathway. Recent progress in dicots has highlighted the biological roles of oxylipins in plant defence responses to pathogens and pests. By contrast, the physiological function of LOXs and their metabolites in monocots is poorly understood. Two maize LOXs, ZmLOX10 and ZmLOX11 that share >90% amino acid sequence identity but are localized on different chromosomes, were cloned and characterized. Phylogenetic analysis revealed that ZmLOX10 and ZmLOX11 cluster together with well-characterized plastidic type 2 linoleate 13-LOXs from diverse plant species. Regio-specificity analysis of recombinant ZmLOX10 protein overexpressed in Escherichia coli proved it to be a linoleate 13-LOX with a pH optimum at approximately pH 8.0. Both predicted proteins contain putative transit peptides for chloroplast import. ZmLOX10 was preferentially expressed in leaves and was induced in response to wounding, cold stress, defence-related hormones jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA), and inoculation with an avirulent strain of Cochliobolus carbonum. These data suggested a role for this gene in maize adaptation to abiotic stresses and defence responses against pathogens and pests. ZmLOX11 was preferentially expressed in silks and was induced in leaves only by ABA, indicating its possible involvement in responses to osmotic stress. In leaves, mRNA accumulation of ZmLOX10 is strictly regulated by a circadian rhythm, with maximal expression coinciding temporally with the highest photosynthetic activity. This study reveals the evolutionary divergence of physiological roles for relatively recently duplicated genes. Possible physiological functions of these 13-LOXs are suggested.

  2. Change in the Chemical Profile of Mangifera indica Leaves after their Metabolism in the Tropidacris collaris Grasshopper.

    PubMed

    da Silva, Rodolfo R; Moraes, Marcilio M; Camara, Claudio A G; Ramos, Clécio S

    2015-11-01

    This present work addresses research on the discovery of new compounds from natural sources. It is based on a study of Mangifera indica leaf metabolism by the Tropidacris collaris grasshopper. We found that the grasshopper hydrolyzed the flavonoid isoquercitrin to quercetin when the O-glycosidic bond was broken and sugar released as a probable energy source for the insect. There was not, however, hydrolysis of the major compound in the leaves, mangiferin, which contains the C-glycosidic bond. All compounds were isolated and their chemical structure determined by UV, IR, MS, 1H and 13C NMR.

  3. Effect of controlled low levels of SO/sub 2/ on grasshopper densities on a northern mixed-grass prairie

    SciTech Connect

    McNary, T.J.; Milchunas, D.G.; Leetham, J.W.; Lauenroth, W.K.; Dodd, J.L.

    1981-02-01

    A northern mixed-grass prairie was exposed to monthly median SO/sub 2/ concentrations of 73, 134, and 228 ..mu..g/m/sup 3/. Total grasshopper density and the density of Melanoplus sanguinipes (F.) were significantly (P < 0.01) reduced by SO/sub 2/ treatment on late-growing-season dates within each year of SO/sub 2/ exposure. Grasshopper density tended to decrease with increasing SO/sub 2/ concentration. Sulfur dioxide did not alter the relative proportions of M. sanguinipes in the total population. 14 references, 1 figure.

  4. Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems.

    PubMed

    Osman, Abdimajid; Hitzler, Walter E; Ameur, Adam; Provost, Patrick

    2015-01-01

    Platelet concentrates (PCs) are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR) systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE) RNA sequencing (RNA-Seq), we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05) compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC) ≥ 2. At the p-value < 0.001, as many as 147 genes were deregulated by ≥ 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA) and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products.

  5. Thermo-responsive expression and differential secretion of the extracellular enzyme levansucrase in the plant pathogenic bacterium Pseudomonas syringae pv. glycinea.

    PubMed

    Li, Hongqiao; Schenk, Alexander; Srivastava, Abhishek; Zhurina, Daria; Ullrich, Matthias S

    2006-12-01

    In the plant pathogen Pseudomonas syringae, production of the exopolysaccharide levan is mediated by extracellular levansucrase (Lsc), which is encoded by two functional genes, lscB and lscC. Comparison of extracellular protein profiles of P. syringae pv. glycinea PG4180 grown at 18 and 28 degrees C and Western blots revealed that Lsc was predominantly found in the supernatant at 18 degrees C, a temperature fostering virulence of this pathogen. Northern blot analysis indicated that transcription of lscB and lscC was temperature-dependent. Quantification of Lsc in supernatants and cellular protein samples of mutants defective in either lscB or lscC confirmed that LscB secretion at low temperature was due to a combination of thermo-regulated transcription and secretion. In contrast, LscC accumulated in the periplasmic space. LscB and LscC differ in only five amino acid residues, one of which is a cysteine residue. Temperature shift experiments suggested that de novo synthesized protein(s) at 18 degrees C might be responsible for differential LscB secretion and that the presumed secretory machinery was stable when cells were shifted to 28 degrees C. Our results imply that Lsc export and secretion may occur by yet-to-be identified novel mechanism(s).

  6. Trait similarity patterns within grass and grasshopper communities: multitrophic community assembly at work.

    PubMed

    Van der Plas, F; Anderson, T M; Olff, H

    2012-04-01

    Trait-based community assembly theory suggests that trait variation among co-occurring species is shaped by two main processes: abiotic filtering, important in stressful environments and promoting similarity, and competition, more important in productive environments and promoting dissimilarity. Previous studies have indeed found trait similarity to decline along productivity gradients. However, these studies have always been done on single trophic levels. Here, we investigated how interactions between trophic levels affect trait similarity patterns along environmental gradients. We propose three hypotheses for the main drivers of trait similarity patterns of plants and herbivores along environmental gradients: (1) environmental control of both, (2) bottom-up control of herbivore trait variation, and (3) top-down control of grass trait variation. To test this, we collected data on the community composition and trait variation of grasses (41 species) and grasshoppers (53 species) in 50 plots in a South African savanna. Structural equation models were used to investigate how the range and spacing of within-community functional trait values of both grasses and their insect herbivores (grasshoppers; Acrididae) respond to (1) rainfall and fire frequency gradients and (2) the trait similarity patterns of the other trophic level. The analyses revealed that traits of co-occurring grasses became more similar toward lower rainfall and higher fire frequency (environmental control), while showing little evidence for top-down control. Grasshopper trait range patterns, on the other hand, were mostly directly driven by vegetation structure and grass trait range patterns (bottom-up control), while environmental factors had mostly indirect effects via plant traits. Our study shows the potential to expand trait-based community assembly theory to include trophic interactions.

  7. Evaluation of a reproductive index to estimate grasshopper sparrow and eastern meadowlark reproductive success

    USGS Publications Warehouse

    Althoff, D.P.; Gipson, P.S.; Pontius, J.S.; Japuntich, R.D.

    2009-01-01

    We compared an index of reproductive success based on breeding behavior to actual nest fates of grasshopper sparrows (Ammodramus savannarum) and eastern meadowlarks (Sturnella magna) on 12 plots (4-ha). Concordance of results between the two methods was 58% for grasshopper sparrows and 42% for eastern meadowlarks on a plot-by-plot basis. The indirect method yielded higher estimates of reproductive activity than nest monitoring for the balance of the plots,. There was little evidence that brown-headed cowbird (Molothrus ater) parasitism influenced the estimates of reproductive success using the indirect method. We concluded that nests and about-to-fledge nestlings were missed during searches on some plots. It may be appropriate to use an indirect method to more efficiently survey territories and/or plots for species with hard-to-find nests or when monitoring large areas. Use of a reproductive index may be appropriate and more time-efficient than nest searching and monitoring for comparing management effects such as burning, grazing, haying, military training, and other localized disturbances that are likely to affect reproductive success of grasshopper sparrows and eastern meadowlarks. However, nest monitoring may be necessary for more precise estimates of productivity necessary for long-term monitoring. Nest monitoring results are also likely to allow for direct comparisons to results from other studies because the index method requires intimate knowledge of the species being evaluated - a factor that could lead to reduced precision because the experience level of technicians relying only on behavioral cues from study-to-study is likely to vary considerably.

  8. New and little-known pygmy grasshoppers (Orthoptera: Tetrigidae) from Thailand.

    PubMed

    Storozhenko, Sergey Yu; Dawwrueng, Pattarawich

    2015-12-07

    An annotated list of 39 species in 25 genera and seven subfamilies of the pygmy grasshoppers (Orthoptera: Tetrididae) from Thailand is given; from these 18 species are recorded from this country for the first time. Five new species are described: Cotysoides gaponi sp. nov. (subfamily Metrodorinae), Eucriotettix anisyutkini sp. nov., Gavialidium bufocrocodil sp. nov., Scelimena bellula sp. nov. (subfamily Scelimeninae) and Phaesticus uvarovi sp. nov. (subfamily Discotettiginae). One species is transferred from Scelimena to Amphibotettix and a new combination is proposed: Scelimena hafizhaii Mahmmod, Idris et Salman, 2007 = Amphibotettix hafizhaii (Mahmmod, Idris et Salman, 2007), comb. nov. The previously unknown male of Falconius tschernovi Storozhenko, 2014 is described.

  9. Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa.

    PubMed

    Rincones, Johana; Scarpari, Leandra M; Carazzolle, Marcelo F; Mondego, Jorge M C; Formighieri, Eduardo F; Barau, Joan G; Costa, Gustavo G L; Carraro, Dirce M; Brentani, Helena P; Vilas-Boas, Laurival A; de Oliveira, Bruno V; Sabha, Maricene; Dias, Robson; Cascardo, Júlio M; Azevedo, Ricardo A; Meinhardt, Lyndel W; Pereira, Gonçalo A G

    2008-07-01

    Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabolite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.

  10. Functional specialization and differential regulation of short-chain carboxylic acid transporters in the pathogen Candida albicans

    PubMed Central

    Vieira, Neide; Casal, Margarida; Johansson, Björn; MacCallum, Donna M; Brown, Alistair JP; Paiva, Sandra

    2010-01-01

    The major fungal pathogen Candida albicans has the metabolic flexibility to assimilate a wide range of nutrients in its human host. Previous studies have suggested that C. albicans can encounter glucose-poor microenvironments during infection and that the ability to use alternative non-fermentable carbon sources contributes to its virulence. JEN1 encodes a monocarboxylate transporter in C. albicans and we show that its paralogue, JEN2, encodes a novel dicarboxylate plasma membrane transporter, subjected to glucose repression. A strain deleted in both genes lost the ability to transport lactic, malic and succinic acids by a mediated mechanism and it displayed a growth defect on these substrates. Although no significant morphogenetic or virulence defects were found in the double mutant strain, both JEN1 and JEN2 were strongly induced during infection. Jen1-GFP (green fluorescent protein) and Jen2-GFP were upregulated following the phagocytosis of C. albicans cells by neutrophils and macrophages, displaying similar behaviour to an Icl1-GFP fusion. In the murine model of systemic candidiasis approximately 20–25% of C. albicans cells infecting the kidney expressed Jen1-GFP and Jen2-GFP. Our data suggest that Jen1 and Jen2 are expressed in glucose-poor niches within the host, and that these short-chain carboxylic acid transporters may be important in the early stages of infection. PMID:19968788

  11. Differential expression of pathogenicity- and virulence-related genes of Xanthomonas axonopodis pv. citri under copper stress.

    PubMed

    Palmieri, Ana Carolina Basílio; do Amaral, Alexandre Morais; Homem, Rafael Augusto; Machado, Marcos Antonio

    2010-04-01

    In this study, we used real-time quantitative PCR (RT-qPCR) to evaluate the expression of 32 genes of Xanthomonas axonopodis pv. citri related to pathogenicity and virulence that are also involved in copper detoxification. Nearly all of the genes were up-regulated, including copA and copB. Two genes homologous to members of the type II secretion system (xcsH and xcsC) and two involved in the degradation of plant cell wall components (pglA and pel) were the most expressed in response to an elevated copper concentration. The type II secretion system (xcs operon) and a few homologues of proteins putatively secreted by this system showed enhanced expression when the bacteria were exposed to a high concentration of copper sulfate. The enhanced expression of the genes of secretion II system during copper stress suggests that this pathway may have an important role in the adaptative response of X. axonopodis pv. citri to toxic compounds. These findings highlight the potential role of these genes in attenuating the toxicity of certain metals and could represent an important means of bacterial resistance against chemicals used to control diseases.

  12. Using the Alexander Collection to measure the effects of climate change on the grasshoppers of the southern Rocky Mountains of Colorado

    NASA Astrophysics Data System (ADS)

    Nufio, C. R.; Bowers, D. M.; Guralnick, R. P.

    2007-12-01

    The current study utilizes the recently curated and databased Alexander Grasshopper Collection coupled with a new resurvey program to measure the effects of climate change on grasshoppers found along an elevational gradient in the southern Rocky Mountains of Colorado. The Alexander Collection is composed of approximately 19,000 pinned grasshoppers and a series of field data notebooks from a three year 1958-1960 survey project. During these survey years, Alexander processed over 65,000 grasshoppers from repeatedly sampled sites along an elevational gradient from Boulder (1530 m elev.) to Mt Evans (3900m elev.) in the Colorado Front Range. Data from 2006 shows that at mid-elevation sites grasshoppers are becoming adults 15-28 days earlier than they did nearly a half century ago. We found no changes in the time to reach adulthood at the high elevation sites. Preliminary data from 2007 (a year with milder spring temperatures) suggests that unlike the dramatic patterns documented in 2006, that the time to reach adulthood for grasshoppers at low and high elevation sites was not much different than it was 50 years ago. In 2007, several grasshopper species at mid-elevation did become adults earlier than they had a half century ago.

  13. Does insecticide drift adversely affect grasshoppers (Orthoptera: Saltatoria) in field margins? A case study combining laboratory acute toxicity testing with field monitoring data.

    PubMed

    Bundschuh, Rebecca; Schmitz, Juliane; Bundschuh, Mirco; Brühl, Carsten Albrecht

    2012-08-01

    The current terrestrial risk assessment of insecticides regarding nontarget arthropods considers exclusively beneficial organisms, whereas herbivorous insects, such as grasshoppers, are ignored. However, grasshoppers living in field margins or meadows adjacent to crops may potentially be exposed to insecticides due to contact with or ingestion of contaminated food. Therefore, the present study assessed effects of five active ingredients of insecticides (dimethoate, pirimicarb, imidacloprid, lambda-cyhalothrin, and deltamethrin) on the survival of Chorthippus sp. grasshopper nymphs by considering two routes of exposure (contact and oral). The experiments were accompanied by monitoring field margins that neighbored cereals, vineyards, and orchards. Grasslands were used as reference sites. The laboratory toxicity tests revealed a sensitivity of grasshoppers with regard to the insecticides tested in the present study similar to that of the standard test species used in arthropod risk assessments. In the field monitoring program, increasing grasshopper densities were detected with increasing field margin width next to cereals and vineyards, but densities remained low over the whole range of field margins from 0.5 to 20 m next to orchards. Grasshopper densities equivalent to those of grassland sites were only observed in field margins exceeding 9 m in width, except for field margins next to orchards. These results may indicate that current insecticide risk assessments are insufficiently protective for grasshoppers in field margins.

  14. Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages

    PubMed Central

    Laoui, Damya; Van Overmeire, Eva; Guilliams, Martin; Schouppe, Elio; Tacke, Frank; deVries, Carlie J.; De Baetselier, Patrick; Beschin, Alain

    2015-01-01

    Monocytes consist of two well-defined subsets, the Ly6C+ and Ly6C– monocytes. Both CD11b+ myeloid cells populations have been proposed to infiltrate tissues during inflammation. While infiltration of Ly6C+ monocytes is an established pathogenic factor during hepatic inflammation, the role of Ly6C– monocytes remains elusive. Mice suffering experimental African trypanosome infection die from systemic inflammatory response syndrome (SIRS) that is initiated by phagocytosis of parasites by liver myeloid cells and culminates in apoptosis/necrosis of liver myeloid and parenchymal cells that reduces host survival. C57BL/6 mice are considered as trypanotolerant to Trypanosoma congolense infection. We have reported that in these animals, IL-10, produced among others by myeloid cells, limits the liver damage caused by pathogenic TNF-producing Ly6C+ monocytes, ensuring prolonged survival. Here, the heterogeneity and dynamics of liver myeloid cells in T. congolense-infected C57/BL6 mice was further dissected. Moreover, the contribution of Ly6C– monocytes to trypanotolerance was investigated. By using FACS analysis and adoptive transfer experiments, we found that the accumulation of Ly6C– monocytes and macrophages in the liver of infected mice coincided with a drop in the pool of Ly6C+ monocytes. Pathogenic TNF mainly originated from Ly6C+ monocytes while Ly6C– monocytes and macrophages were major and equipotent sources of IL-10 within myeloid cells. Moreover, Nr4a1 (Nur77) transcription factor-dependent Ly6C– monocytes exhibited IL-10-dependent and cell contact-dependent regulatory properties contributing to trypanotolerance by suppressing the production of TNF by Ly6C+ monocytes and by promoting the differentiation of the latter cells into macrophages. Thus, Ly6C– monocytes can dampen liver damage caused by an extensive Ly6C+ monocyte-associated inflammatory immune response in T. congolense trypanotolerant animals. In a more general context, Ly6C– or Ly6C

  15. A differential medium for the isolation and rapid identification of a plant soft rot pathogen, Erwinia chrysanthemi.

    PubMed

    Lee, Yung-An; Yu, Cheng-Pin

    2006-02-01

    A medium was developed for the isolation and differentiation of Erwinia chrysanthemi from other Erwinia spp. based on the production of blue-pigmented indigoidine. The medium, named NGM, consists of nutrient agar supplemented with 1% glycerol, that induces pigment production, and 2 mM MnCl2*4H2O, that further enhances color development. More than fifty E. chrysanthemi strains from six different plant hosts were tested. All tested strains of E. chrysanthemi grew well on the NGM medium, developing dark brownish to blue colonies easily distinguishable from other Erwinia spp. The results indicate that pigment production on the NGM medium is a very stable property and can be used as a phenotypic property to differentiate E. chrysanthemi from other Erwinia spp. In addition, a specific oligonucleotide primer set was designed for the detection of indC, which is involved in indigoidine biosynthesis. All E. chrysanthemi strains tested contained indC as determined by PCR amplification. No amplification was observed with other Erwinia spp. Thus, pigment production of E. chrysanthemi on the NGM medium is consistent with the existence of indC. The NGM medium was used to isolate and identify the causal agent of soft rot lesions of diseased Phalaenopsis orchids from three orchid cultivation areas in Taiwan. The causal agents of Phalaenopsis soft rot were all identified as E. chrysanthemi. The results indicate that the NGM medium is efficient in isolation and identification of E. chrysanthemi from plants with soft rot symptoms and can also be used for epidemiological studies.

  16. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli

    PubMed Central

    Tan, Lendl; Moriel, Danilo G.; Totsika, Makrina; Beatson, Scott A.

    2016-01-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen. PMID:27598999

  17. Differential tolerance of 'pseudo-pathogenic' tryptophan residues in calcium-binding EGF domains of short fibulin proteins.

    PubMed

    Nguyen, Annie; Hulleman, John D

    2015-01-01

    An Arg345Trp (R345W) mutation in the last canonical calcium-binding epidermal growth factor (cbEGF) domain of fibulin-3 (F3) causes the rare macular dystrophy, Malattia Leventinese (ML). In cell culture studies, this mutation leads to inefficient F3 secretion and higher intracellular steady state levels, likely due to F3 disulfide bonding and/or protein folding problems. However, how the R345W mutation actually causes ML is still largely unknown. Herein we tested whether the introduction of analogous, 'pseudo-pathogenic' tryptophan mutations immediately after the bn cysteine (bn+1) in other cbEGF domains also caused protein folding/secretion challenges. We found that introduction of tryptophan mutations into each of the four other F3 canonical cbEGF domains caused a significant reduction in protein secretion ranging from 2.7 to 56% of wild-type (WT) F3 levels. Surprisingly, an R185W mutation in the first canonical cbEGF domain of F3 yielded the highest amount of secretion among the F3 tryptophan mutants, and its secretion defect could be rescued to near WT levels (95%) after growth temperature reduction. Interestingly, when similarly positioned tryptophan mutations were introduced into any of the canonical cbEGF domains of the highly homologous protein, fibulin-5 (F5), there was no effect on secretion. In an attempt to make F3 tolerant of tryptophan residues (like F5), we genetically engineered F3 to have a higher sequence homology with F5 by deleting three insert regions present in F3, but not F5. However, deletion of one or more of these regions did not have a beneficial effect on R345W F3 secretion. Overall, these results demonstrate that the introduction of tryptophan residues at the bn+1 position does not universally disrupt cbEGF domain folding and secretion, but that their effect is context dependent, and in this case, uniquely disrupt the folding of canonical cbEGF domains of F3, but not F5.

  18. Effects of altered seasonality of precipitation on grass production and grasshopper performance in a northern mixed prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of...

  19. Cd and Pb contents in soil, plants, and grasshoppers along a pollution gradient in Huludao City, Northeast China.

    PubMed

    Zhang, Zhongsheng; Song, Xiaolin; Wang, Qichao; Lu, Xianguo

    2012-03-01

    Cd and Pb contents in soil, plants, and two grasshopper species (Locusta migratoria manilensis and Acrida chinensis) were examined to quantify the influence ranges of zinc smelting on heavy metal contamination. Samples were collected simultaneously from Huludao City, a chemical and nonferrous smelting base in Northeast China. Cd and Pb contamination in soil and plants were serious. Cd and Pb contents were 13.32 and 8.83 mg/kg in L. migratoria manilensis and 16.67 and 15.00 mg/kg in A. chinensis, respectively. Correlation analysis indicated the same metal source for Cd and Pb in soil, plants, and grasshoppers. Cd and Pb contents in soil, plants, and grasshoppers were all significantly related to distances far from the zinc smelter in good negative logarithm model. The fitting curves indicated that the influence radius of the smelter on heavy metal contamination was about 4,000 m for soil and plants and about 2,000 m for grasshoppers.

  20. Identification of Novel Source of Resistance and Differential Response of Allium Genotypes to Purple Blotch Pathogen, Alternaria porri (Ellis) Ciferri

    PubMed Central

    Nanda, Satyabrata; Chand, Subodh Kumar; Mandal, Purander; Tripathy, Pradyumna; Joshi, Raj Kumar

    2016-01-01

    Purple blotch, caused by Alternaria porri (Ellis) Cifferi, is a serious disease incurring heavy yield losses in the bulb and seed crop of onion and garlic worldwide. There is an immediate need for identification of effective resistance sources for use in host resistance breeding. A total of 43 Allium genotypes were screened for purple blotch resistance under field conditions. Allium cepa accession ‘CBT-Ac77’ and cultivar ‘Arka Kalyan’ were observed to be highly resistant. In vitro inoculation of a selected set of genotypes with A. porri, revealed that 7 days after inoculation was suitable to observe the disease severity. In vitro screening of 43 genotypes for resistance to A. porri revealed two resistant lines. An additional 14 genotypes showed consistent moderate resistance in the field as well as in vitro evaluations. Among the related Allium species, A. schoenoprasum and A. roylei showed the least disease index and can be used for interspecific hybridization with cultivated onion. Differential reaction analysis of three A. porri isolates (Apo-Chiplima, Apn-Nasik, Apg-Guntur) in 43 genotypes revealed significant variation among the evaluated Allium species (P = 0.001). All together, the present study suggest that, the newly identified resistance sources can be used as potential donors for ongoing purple blotch resistance breeding program in India. PMID:27904458

  1. Differentiation of Crohn’s Disease-Associated Isolates from Other Pathogenic Escherichia coli by Fimbrial Adhesion under Shear Force

    PubMed Central

    Szunerits, Sabine; Zagorodko, Oleksandr; Cogez, Virginie; Dumych, Tetiana; Chalopin, Thibaut; Alvarez Dorta, Dimitri; Sivignon, Adeline; Barnich, Nicolas; Harduin-Lepers, Anne; Larroulet, Iban; Yanguas Serrano, Aritz; Siriwardena, Aloysius; Pesquera, Amaia; Zurutuza, Amaia; Gouin, Sébastien G.; Boukherroub, Rabah; Bouckaert, Julie

    2016-01-01

    Shear force exerted on uropathogenic Escherichia coli adhering to surfaces makes type-1 fimbriae stretch out like springs to catch on to mannosidic receptors. This mechanism is initiated by a disruption of the quaternary interactions between the lectin and the pilin of the two-domain FimH adhesin and transduces allosterically to the mannose-binding pocket of FimH to increase its affinity. Mannose-specific adhesion of 14 E. coli pathovars was measured under flow, using surface plasmon resonance detection on functionalized graphene-coated gold interfaces. Increasing the shear had important differential consequences on bacterial adhesion. Adherent-invasive E. coli, isolated from the feces and biopsies of Crohn’s disease patients, consistently changed their adhesion behavior less under shear and displayed lower SPR signals, compared to E. coli opportunistically infecting the urinary tract, intestines or loci of knee and hip prostheses. We exemplified this further with the extreme behaviors of the reference strains UTI89 and LF82. Whereas their FimA major pilins have identical sequences, FimH of LF82 E. coli is marked by the Thr158Pro mutation. Positioned in the inter-domain region known to carry hot spots of mutations in E. coli pathotypes, residue 158 is indicated to play a structural role in the allosteric regulation of type-1 fimbriae-mediated bacterial adhesion. PMID:27043645

  2. Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Praveen; Maclean, Michelle; MacGregor, Scott J.; Anderson, John G.; Grant, M. Helen

    2014-10-01

    Healthcare associated infections pose a major threat to patients admitted to hospitals and infection rates following orthopedic arthroplasty surgery are as high as 4%. A 405-nm high-intensity narrow spectrum light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in arthroplasty surgery. Cultured rat osteoblasts were exposed to varying light intensities and it was found that exposures of up to a dose of 36 J/cm2 had no significant effect on cell viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay], function (alkaline phosphatase activity), and proliferation rate (BrdU cell proliferation assay). High irradiance exposures (54 J/cm2) significantly affected the cell viability indicating that the effects of 405-nm light on osteoblasts are dose dependent. Additionally, exposure of a variety of clinically related bacteria to a dose of 36 J/cm2 resulted in up to 100% kill. These results demonstrating the differential sensitivity of osteoblasts and bacteria to 405-nm light are an essential step toward developing the technique for decontamination in orthopedic surgery.

  3. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium.

    PubMed

    Previte, D; Olds, B P; Yoon, K; Sun, W; Muir, W; Paige, K N; Lee, S H; Clark, J; Koehler, J E; Pittendrigh, B R

    2014-04-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days post-infection, but plateaued in head lice at 4 days post-infection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation.

  4. Differential gene expression in laboratory strains of human head and body lice when challenged with Bartonella quintana, a pathogenic bacterium

    PubMed Central

    Previte, D.; Olds, B. P.; Yoon, K.; Sun, W.; Muir, W.; Paige, K. N.; Lee, S. H.; Clark, J.; Koehler, J. E.; Pittendrigh, B. R.

    2014-01-01

    Human head and body lice are obligatory hematophagous ectoparasites that belong to a single species, Pediculus humanus. Only body lice, however, are vectors of the infectious Gram-negative bacterium Bartonella quintana. Because of their near identical genomes, yet differential vector competence, head and body lice provide a unique model system to study the gain or loss of vector competence. Using our in vitro louse-rearing system, we infected head and body lice with blood containing B. quintana in order to detect both differences in the proliferation of B. quintana and transcriptional differences of immune-related genes in the lice. B. quintana proliferated rapidly in body lice at 6 days postinfection, but plateaued in head lice at 4 days postinfection. RNAseq and quantitative real-time PCR validation analyses determined gene expression differences. Eight immunoresponse genes were observed to be significantly different with many associated with the Toll pathway: Fibrinogen-like protein, Spaetzle, Defensin 1, Serpin, Scavenger receptor A and Apolipoporhrin 2. Our findings support the hypothesis that body lice, unlike head lice, fight infection from B. quintana only at the later stages of its proliferation. PMID:24404961

  5. Identification of Novel Source of Resistance and Differential Response of Allium Genotypes to Purple Blotch Pathogen, Alternaria porri (Ellis) Ciferri.

    PubMed

    Nanda, Satyabrata; Chand, Subodh Kumar; Mandal, Purander; Tripathy, Pradyumna; Joshi, Raj Kumar

    2016-12-01

    Purple blotch, caused by Alternaria porri (Ellis) Cifferi, is a serious disease incurring heavy yield losses in the bulb and seed crop of onion and garlic worldwide. There is an immediate need for identification of effective resistance sources for use in host resistance breeding. A total of 43 Allium genotypes were screened for purple blotch resistance under field conditions. Allium cepa accession 'CBT-Ac77' and cultivar 'Arka Kalyan' were observed to be highly resistant. In vitro inoculation of a selected set of genotypes with A. porri, revealed that 7 days after inoculation was suitable to observe the disease severity. In vitro screening of 43 genotypes for resistance to A. porri revealed two resistant lines. An additional 14 genotypes showed consistent moderate resistance in the field as well as in vitro evaluations. Among the related Allium species, A. schoenoprasum and A. roylei showed the least disease index and can be used for interspecific hybridization with cultivated onion. Differential reaction analysis of three A. porri isolates (Apo-Chiplima, Apn-Nasik, Apg-Guntur) in 43 genotypes revealed significant variation among the evaluated Allium species (P = 0.001). All together, the present study suggest that, the newly identified resistance sources can be used as potential donors for ongoing purple blotch resistance breeding program in India.

  6. Postfledging survival of Grasshopper Sparrows in grasslands managed with fire and grazing

    USGS Publications Warehouse

    Hovick, Torre J.; Miller, James R.; Koford, Rolf R.; Engle, David M.; Debinski, Diane M.

    2011-01-01

    More accurate estimates of survival after nestlings fledge are needed for population models to be parameterized and population dynamics to be understood during this vulnerable life stage. The period after fledging is the time when chicks learn to fly, forage, and hide from predators. We monitored postfledging survival, causespecific mortality, and movements of Grasshopper Sparrows (Ammodramus savannarum) in grassland managed with fire and grazing. In 2009, we attached radio transmitters to 50 nestlings from 50 different broods and modeled their survival in response to climatic, biological, and ecological variables. There was no effect of treatment on survival. The factor most influencing postfledging survival was age; no other variable was significant. The majority of chicks (74%) died within 3 days of radio-transmitter attachment. We attributed most mortality to mesopredators (48%) and exposure (28%). Fledglings' movements increased rapidly for the first 4 days after they left the nest and were relatively stable for the remaining 10 days we tracked them. On average, fledglings took flight for the first time 4 days after fledging and flew ≥10 m 9 days after fledging. Our data show that the Grasshopper Sparrow's survival rates may be less than most models relying on nest-success estimates predict, and we emphasize the importance of incorporating estimates of survival during the postfledging period in demographic models.

  7. Limited condition dependence of male acoustic signals in the grasshopper Chorthippus biguttulus

    PubMed Central

    Franzke, Alexandra; Reinhold, Klaus

    2012-01-01

    In many animal species, male acoustic signals serve to attract a mate and therefore often play a major role for male mating success. Male body condition is likely to be correlated with male acoustic signal traits, which signal male quality and provide choosy females indirect benefits. Environmental factors such as food quantity or quality can influence male body condition and therefore possibly lead to condition-dependent changes in the attractiveness of acoustic signals. Here, we test whether stressing food plants influences acoustic signal traits of males via condition-dependent expression of these traits. We examined four male song characteristics, which are vital for mate choice in females of the grasshopper Chorthippus biguttulus. Only one of the examined acoustic traits, loudness, was significantly altered by changing body condition because of drought- and moisture-related stress of food plants. No condition dependence could be observed for syllable to pause ratio, gap duration within syllables, and onset accentuation. We suggest that food plant stress and therefore food plant quality led to shifts in loudness of male grasshopper songs via body condition changes. The other three examined acoustic traits of males do not reflect male body condition induced by food plant quality. PMID:22957192

  8. Rapid evolution of fire melanism in replicated populations of pygmy grasshoppers.

    PubMed

    Forsman, Anders; Karlsson, Magnus; Wennersten, Lena; Johansson, Jenny; Karpestam, Einat

    2011-09-01

    Evolutionary theory predicts an interactive process whereby spatiotemporal environmental heterogeneity will maintain genetic variation, while genetic and phenotypic diversity will buffer populations against stress and allow for fast adaptive evolution in rapidly changing environments. Here, we study color polymorphism patterns in pygmy grasshoppers (Tetrix subulata) and show that the frequency of the melanistic (black) color variant was higher in areas that had been ravaged by fires the previous year than in nonburned habitats, that, in burned areas, the frequency of melanistic grasshoppers dropped from ca. 50% one year after a fire to 30% after four years, and that the variation in frequencies of melanistic individuals among and within populations was genetically based on and represented evolutionary modifications. Dark coloration may confer a selective benefit mediated by enhanced camouflage in recently fire-ravaged areas characterized by blackened visual backgrounds before vegetation has recovered. These findings provide rare evidence for unusually large, extremely rapid adaptive contemporary evolution in replicated natural populations in response to divergent and fluctuating selection associated with spatiotemporal environmental changes.

  9. Within-season variability of fighting behaviour in an Australian alpine grasshopper.

    PubMed

    Muschett, Giselle; Umbers, Kate D L; Herberstein, Marie E

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system.

  10. Computational principles underlying recognition of acoustic signals in grasshoppers and crickets.

    PubMed

    Ronacher, Bernhard; Hennig, R Matthias; Clemens, Jan

    2015-01-01

    Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.

  11. Spatial sorting may explain evolutionary dynamics of wing polymorphism in pygmy grasshoppers.

    PubMed

    Berggren, H; Tinnert, J; Forsman, A

    2012-10-01

    Wing polymorphism in insects provides a good model system for investigating evolutionary dynamics and population divergence in dispersal-enhancing traits. This study investigates the contribution of divergent selection, trade-offs, behaviour and spatial sorting to the evolutionary dynamics of wing polymorphism in the pygmy grasshopper Tetrix subulata (Tetrigidae: Orthoptera). We use data for > 2800 wild-caught individuals from 13 populations and demonstrate that the incidence of the long-winged (macropterous) morph is higher and changes faster between years in disturbed habitats characterized by succession than in stable habitats. Common garden and mother-offspring resemblance studies indicate that variation among populations and families is genetically determined and not influenced to any important degree by developmental plasticity in response to maternal condition, rearing density or individual growth rate. Performance trials show that only the macropterous morph is capable of flight and that propensity to fly differs according to environment. Mark-recapture data reveal no difference in the distance moved between free-ranging long- and short-winged individuals. There is no consistent difference across populations and years in number of hatchlings produced by long- and shorter-winged females. Our findings suggest that the variable frequency of the long-winged morph among and within pygmy grasshopper populations may reflect evolutionary modifications driven by spatial sorting due to phenotype- and habitat type-dependent emigration and immigration.

  12. Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex.

    PubMed

    Weinrich, Anja; Kunst, Michael; Wirmer, Andrea; Holstein, Gay R; Heinrich, Ralf

    2008-08-01

    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers.

  13. Differential immune response in the hard clam (mercenaria mercenaria) against bacteria and the protistan pathogen QPX (quahog parasite unknown).

    PubMed

    Perrigault, Mickael; Allam, Bassem

    2012-06-01

    The immune response of the hard clam (quahog) Mercenaria mercenaria following challenge with live bacteria (Vibrio alginolyticus) and the protist QPX (Quahog Parasite Unknown) was investigated. The study also compared immune responses following QPX challenge in two different hard clam broodstocks exhibiting different degrees of susceptibility toward this parasite. Different immune and stress-related cellular and humoral factors were assessed including general hemocyte parameters (total and differential hemocyte counts, percentage of dead cells, reactive oxygen production, phagocytosis), parameters geared toward QPX (anti-QPX activity in plasma and hemocyte resistance to the cytotoxicity of QPX extracellular products). Two genes (ferritin and metallothionein) previously shown to be modulated following QPX exposure were molecularly characterized by rapid amplification of cDNA ends (RACE) and their transcription levels were determined in resistant and susceptible clams in response to QPX and bacterial challenge. Results indicated that both V. alginolyticus and QPX challenge triggered significant immune responses in clams with similar trends for most measured parameters. However, specific responses were observed for anti-QPX activity in plasma and hemocyte resistance to QPX products as well as ferritin and metallothionein expression according to each inoculum. Similarly, different response patterns were detected following QPX challenge in susceptible and resistant clam stocks. Resistant clams were able to elicit effective response against the parasite leading to the elimination of QPX and the restoration of constitutive immune status whereas QPX-susceptible clams triggered a strong immune modulation characterized by an acute phase response and associated acute phase protein but appeared to be less active in eliminating the parasite. These results suggest that different signaling pathways are triggered during V. alginolyticus and QPX challenge. Moreover, differences in

  14. Supercooling capacity and cold hardiness of band-winged grasshopper eggs (Orthoptera: Acrididae).

    PubMed

    Pang, Bao-Ping; Li, Na; Zhou, Xiao-Rong

    2014-01-01

    The band-winged grasshopper, Oedaleus asiaticus Bei-Bienko, is one of the most dominant and economically important grasshopper species in the steppe grasslands and farming-pastoral ecotone in northern China. It is a univoltine species and overwinters as eggs in soil. The cold hardiness of its eggs was examined in the laboratory. Water content in soil significantly affected the supercooling points (SCPs), water content and fat content of prediapause eggs. With the increase of water content in soil, the SCP, and water content of prediapause eggs rose whereas the fat content declined. There was a significant relationship between the SCP and water content or fat content of prediapause eggs. The SCPs of prediapause and diapause eggs varied from -7.6 to -28.4°C and the SCPs of eggs 30 d after oviposition could be divided into two groups. The means of high SCP group (-11.0 to -11.9°C) were much higher than those of low SCP group (-21.8 to -21.9°C), and the majority belonged to the latter (90.48-93.33%). The SCPs of prediapause eggs and early-diapause eggs 30 d after oviposition were significantly higher than those of deep-diapause eggs 60 d after oviposition. The survival rates of diapause eggs were significantly different among different temperature treatments. The survival rate was higher than 88% at greater than -20°C and declined significantly to 57% at -25°C, and suddenly dropped to zero at -30°C. The lower lethal temperature (Ltemp50) for 12 h exposure was -25.3°C and the lower lethal time (Ltime50) at -20°C was 32.8 d. As the mean SCPs of diapause eggs were similar to their Ltemp50, the SCP of eggs can be considered as a good indicator of cold hardiness for O. asiaticus and that this grasshopper is a freeze-intolerant insect.

  15. Complete mitochondrial genome of the geophilous grasshopper Trilophidia annulata (Acrididae: Oedipodinae: Trilophidia).

    PubMed

    Guan, De-Long; Xu, Sheng-Quan

    2016-09-01

    The complete mitogenome of the geophilous grasshopper Trilophidia annulata was reconstructed from whole-genome Illumina sequencing data. After annotation, the circular genome was obtained with 16,501 bp in length, and typically consisted of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and 1 D-loop region. All PCGs were initiated with ATN codons, except ND2 with the start codon GTG. Most of the PCGs used TAA as their stop codons, while the others used TAG as stop codons (COX1, COX3&ND1). The nucleotide composition was asymmetric (42.3% A, 15.0% C, 11.0% G, 31.8% T) with an overall GC content of 25.9%. These data would contribute to the design of novel molecular markers for population and evolutionary research of T. annulata.

  16. Exposure to Exogenous Enkephalins Disrupts Reproductive Development in the Eastern Lubber Grasshopper, Romalea microptera (Insecta: Orthoptera)

    PubMed Central

    Kumar, Sandeep; Ganji, Purnachandra Nagaraju; Song, Hojun; von Kalm, Laurence; Borst, David W.

    2012-01-01

    Enkephalins play a major role in reproductive physiology in crustaceans; however their role in reproductive development in insects is largely unknown. We investigated the effect of exposure to exogenous leucine-enkephalin (Leu-Enk), methionine-enkephalin (Met-Enk), and the opioid antagonist naloxone on gonad development in the Eastern lubber grasshopper, Romalea microptera. Injection of either Leu-Enk or naloxone alone significantly increased the testicular index and testicular follicular diameter in males, and the ovarian index, oocyte length, and oocyte diameter in females. In contrast, injection of Met-Enk inhibited all measures of reproductive development in both sexes. Surprisingly, co-injection of naloxone with either enkephalin enhanced the effect associated with administration of the enkephalin alone. This study clearly demonstrates the ability of enkephalins to disrupt insect sexual development and also suggests the existence of conserved enkephaline-dependent regulatory mechanisms in insects and crustaceans. PMID:23226477

  17. Evolutionary dynamics of a B chromosome invasion in island populations of the grasshopper Eyprepocnemis plorans.

    PubMed

    Riera, L; Petitpierre, E; Juan, C; Cabrero, J; Camacho, J P M

    2004-05-01

    Four natural populations of the grasshopper Eyprepocnemis plorans in the Mallorca island were analysed for several years revealing the recent invasion of the B1 chromosome from the south-west part of the island (Palma region) towards the north and to the east. In only 10 years, the mean number of Bs in the northern population at Pollença increased from 0.053 to 0.692. Therefore, B chromosome invasion seems to be very rapid and has recently arrived to the north of the island. The south-west (close to Palma) is the most likely point at which B invasion started in the Mallorca Island. Finally, the number of B chromosomes was significantly associated to an increase in chiasma frequency (and thus recombination) in A chromosomes.

  18. Cross-fostering alters advertisement vocalizations of grasshopper mice (Onychomys): Evidence for the developmental stress hypothesis.

    PubMed

    Pasch, Bret; Abbasi, Mustafa Z; Wilson, Macey; Zhao, Daniel; Searle, Jeremy B; Webster, Michael S; Rice, Aaron N

    2016-04-01

    Nutritional stress can have lasting impacts on the development of traits involved in vocal production. Cross-fostering experiments are often used to examine the propensity for vocal learning in a variety of taxa, but few studies assess the influence of malnourishment that can occur as a byproduct of this technique. In this study, we reciprocally cross-fostered sister taxa of voluble grasshopper mice (genus Onychomys) to explore their propensity for vocal learning. Vocalizations of Onychomys leucogaster did not differ between control and cross-fostered animals, but cross-fostered Onychomys arenicola produced vocalizations that were higher in frequency in a direction away from tutors. These same animals exhibited a transient reduction in body mass early in development, indicative of malnutrition. Our findings simultaneously refute vocal learning and support the developmental stress hypothesis to highlight the importance of early ontogeny on the production of vocalizations later in life.

  19. Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kirk, Evan M; Kingsolver, Joel G

    2015-06-22

    Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change.

  20. Higher establishment success in more diverse groups of pygmy grasshoppers under seminatural conditions.

    PubMed

    Wennersten, Lena; Johansson, Jenny; Karpestam, Einat; Forsman, Anders

    2012-12-01

    Large founder groups and habitat match have been shown to increase the establishment success of reintroduced populations. Theory posits that the diversity of founder groups should also be important, but this has rarely been investigated. Here, experimental introductions of color-polymorphic Tetrix subulata pygmy grasshoppers into outdoor enclosures were used to test whether higher phenotypic diversity promotes establishment success. We show that the number of individuals present one year after introduction increases with color morph diversity in founder groups. Variance in establishment success did not decrease with increasing founder diversity, arguing against an important contribution of sampling effects or evolutionary rescue. Color morphs in T. subulata covary with a suite of other functionally important traits and utilize different resources. The higher establishment success in more diverse founder groups may therefore result, in part, from niche complementarity. Variation in establishment among groups was not associated with differences among source populations in reproductive capacities.

  1. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    USGS Publications Warehouse

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  2. Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica.

    PubMed

    Qiu, Zhongying; Liu, Fei; Lu, Huimeng; Huang, Yuan

    2016-06-11

    The pygmy grasshopper Tetrix japonica is a common insect distributed throughout the world, and it has the potential for use in studies of body colour polymorphism, genomics and the biology of Tetrigoidea (Insecta: Orthoptera). However, limited biological information is available for this insect. Here, we conducted a de novo transcriptome study of adult and larval T. japonica to provide a better understanding of its gene expression and develop genomic resources for future work. We sequenced and explored the characteristics of the de novo transcriptome of T. japonica using Illumina HiSeq 2000 platform. A total of 107 608 206 paired-end clean reads were assembled into 61 141 unigenes using the trinity software; the mean unigene size was 771 bp, and the N50 length was 1238 bp. A total of 29 225 unigenes were functionally annotated to the NCBI nonredundant protein sequences (Nr), NCBI nonredundant nucleotide sequences (Nt), a manually annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of putative genes that are potentially involved in pigment pathways, juvenile hormone (JH) metabolism and signalling pathways were identified in the T. japonica transcriptome. Additionally, 165 769 and 156 796 putative single nucleotide polymorphisms occurred in the adult and larvae transcriptomes, respectively, and a total of 3162 simple sequence repeats were detected in this assembly. This comprehensive transcriptomic data for T. japonica will provide a usable resource for gene predictions, signalling pathway investigations and molecular marker development for this species and other pygmy grasshoppers.

  3. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    NASA Astrophysics Data System (ADS)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  4. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization

    PubMed Central

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-01-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements. PMID:25248465

  5. Ribosomal DNA is active in different B chromosome variants of the grasshopper Eyprepocnemis plorans.

    PubMed

    Ruíz-Estévez, Mercedes; López-León, M Dolores; Cabrero, Josefa; Camacho, Juan Pedro M

    2013-09-01

    B chromosomes are considered to be genetically inert elements. However, some of them are able to show nucleolus organizer region (NOR) activity, as detected by both cytological and molecular means. The grasshopper Eyprepocnemis plorans shows a B chromosome polymorphism characterized by the existence of many B variants. One of them, B24, shows NOR activity in about half of B-carrying males in the Torrox population. Molecular data have suggested the recent origin for B chromosomes in this species, and on this basis it would be expected that NOR activity was widespread among the different B variants. Here we test this hypothesis in four different B chromosome variants (B1, B2, B5, and B24) from 11 natural populations of the grasshopper E. plorans covering the south and east of the Iberian Peninsula plus the Balearic Islands. We used two different approaches: (1) the cytological observation of nucleoli attached to the distal region of the B chromosome (where the rDNA is located), and (2) the molecular detection of the rDNA transcripts carrying an adenine insertion characteristic of B chromosome ITS2 sequences. The results showed NOR expression not only for B24 but also for the B1 and B2 variants. However, the level of B-NOR expression in these latter variants, measured by the proportion of cells showing nucleoli attached to the B chromosomes, was much lower than that previously reported for B24. This suggests the possibility that structural or genetic background conditions are enhancing the expressivity of the rDNA in the B24 variant.

  6. Vitellogenin RNAi halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers.

    PubMed

    Tokar, Derek R; Veleta, Katherine A; Canzano, Joseph; Hahn, Daniel A; Hatle, John D

    2014-11-01

    Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph.

  7. U1 snDNA clusters in grasshoppers: chromosomal dynamics and genomic organization.

    PubMed

    Anjos, A; Ruiz-Ruano, F J; Camacho, J P M; Loreto, V; Cabrero, J; de Souza, M J; Cabral-de-Mello, D C

    2015-02-01

    The spliceosome, constituted by a protein set associated with small nuclear RNA (snRNA), is responsible for mRNA maturation through intron removal. Among snRNA genes, U1 is generally a conserved repetitive sequence. To unveil the chromosomal/genomic dynamics of this multigene family in grasshoppers, we mapped U1 genes by fluorescence in situ hybridization in 70 species belonging to the families Proscopiidae, Pyrgomorphidae, Ommexechidae, Romaleidae and Acrididae. Evident clusters were observed in all species, indicating that, at least, some U1 repeats are tandemly arrayed. High conservation was observed in the first four families, with most species carrying a single U1 cluster, frequently located in the third or fourth longest autosome. By contrast, extensive variation was observed among Acrididae, from a single chromosome pair carrying U1 to all chromosome pairs carrying it, with occasional occurrence of two or more clusters in the same chromosome. DNA sequence analysis in Eyprepocnemis plorans (species carrying U1 clusters on seven different chromosome pairs) and Locusta migratoria (carrying U1 in a single chromosome pair) supported the coexistence of functional and pseudogenic lineages. One of these pseudogenic lineages was truncated in the same nucleotide position in both species, suggesting that it was present in a common ancestor to both species. At least in E. plorans, this U1 snDNA pseudogenic lineage was associated with 5S rDNA and short interspersed elements (SINE)-like mobile elements. Given that we conclude in grasshoppers that the U1 snDNA had evolved under the birth-and-death model and that its intragenomic spread might be related with mobile elements.

  8. A test of Allen's rule in ectotherms: the case of two south American Melanopline Grasshoppers (Orthoptera: Acrididae) with partially overlapping geographic ranges.

    PubMed

    Bidau, Claudio J; Martí, Dardo A

    2008-01-01

    We studied the geographic variation of three morphometric characters in relation to body size in two South American grasshoppers (Acrididae), Dichroplus vittatus Bruner and D. pratensis Bruner to test Allen's rule in these ectotherms. Since both species follow the converse to Bergmann's rule owing to latitudinal and/or altitudinal variation in time available for growth and reproduction, geographic variation in body size proportions of protruding parts may obey to differential allometric growth in different geographic areas. Alternatively, it could reflect true Allenian variation related to thermoregulation. Body proportions were studied by correlation/regression analyses with geographic and climatic variables. In D. pratensis, body proportions increased with latitude and decreased with altitude. These results probably obey to the effects of water balance and seasonality on final body size, and on the allometric growth of the three studied characters not being related to thermoregulation. In D. vittatus, a generally non-significant trend towards the decrease of the mean proportions of all three characters with increasing latitude was observed. Nevertheless, also in this species, it is probable that the environmental gradient responds to seasonality factors (although not to water balance) that affect the length of growing season and, in consequence, body size and its allometric relationships. We conclude that the regularities in the geographic distribution of body proportions of D. pratensis and D. vittatus do not follow Allen's rule in the sense of thermoregulation, and result from variables that determine growing season length and the allometric growth of different body parts.

  9. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania.

    PubMed

    Lyda, Todd A; Joshi, Manju B; Andersen, John F; Kelada, Andrew Y; Owings, Joshua P; Bates, Paul A; Dwyer, Dennis M

    2015-06-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts.

  10. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania

    PubMed Central

    Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.

    2015-01-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714

  11. Effects of weather and plague-induced die-offs of prairie dogs on the fleas of northern grasshopper mice.

    PubMed

    Salkeld, Daniel J; Stapp, Paul

    2009-05-01

    Plague, the disease caused by the bacterium Yersinia pestis, can have devastating impacts on black-tailed prairie dogs (Cynomys ludovicianus Ord). Other mammal hosts living on prairie dog colonies may be important in the transmission and maintenance of plague. We examined the flea populations of northern grasshopper mice (Onychomys leucogaster Wied) before, during, and after plague epizootics in northern Colorado and studied the influence of host and environmental factors on flea abundance patterns. Grasshopper mice were frequently infested with high numbers of fleas, most commonly Pleochaetis exilis Jordan and Thrassis fotus Jordan. Flea loads changed in response to both environmental temperature and rainfall. After plague-induced prairie dog die-offs, flea loads and likelihood of infestation were unchanged for P. exilis, but T. fotus loads declined.

  12. Distribution of breeding Arizona Grasshopper Sparrow (Ammodramus savannarum ammolegus) in the southwestern United States: Past, present, and future

    USGS Publications Warehouse

    Ruth, Janet M.

    2008-01-01

    The Arizona Grasshopper Sparrow (Ammodramus savannarum ammolegus) breeds in desert grasslands of southeastern Arizona and southwestern New Mexico in the US, and in adjacent parts of northern Sonora and Chihuahua, Mexico. Roads that were surveyed in 1982 and 1987 in Arizona and New Mexico were relocated and roadside survey protocols were repeated in 2004 and 2005 to identify changes in distribution or abundance of the subspecies during the subsequent 17 yr. The Sonoita and San Rafael valleys in Arizona and the Animas Valley in New Mexico remain as primary population centers, supporting the highest mean numbers of singing males per stop, as well as the largest populations of Arizona Grasshopper Sparrows in the US. Mean number of singing males per stop was highest in the San Rafael Valley. Mean number of singing males per survey stop showed an increasing pattern from 1982–1987 and a subsequent decline to the present (2004–2005). Present bird densities are intermediate in value between 1982 and 1987 values. Small populations remain in the Altar, San Pedro, Sulphur Springs, and San Bernardino valleys in Arizona. The valleys evaluated in this and historical surveys represent the areas in which almost all Arizona Grasshopper Sparrows breed in the US; if any additional areas exist, they support peripheral, small, or remnant populations. Although historic, current, and future land use, and current and future threats differ among valleys, the primary factors posing threats to the future of Arizona Grasshopper Sparrow populations appear to be loss and/or degradation of habitat due to exurban development, overgrazing, and the effects of long-term drought.

  13. Hsp70 level in progeny of aging grasshoppers from variously polluted habitats and additionally exposed to zinc during diapause.

    PubMed

    Augustyniak, Maria; Tarnawska, Monika; Babczyńska, Agnieszka; Augustyniak, Michał

    2009-08-01

    The hsp70 level in the bodies of 1st instars of grasshoppers Chorthippus brunneus from unpolluted (Pilica) and polluted (Olkusz, Szopienice) sites and additionally exposed to various doses of zinc during diapause and embryonic development prior to hatching were measured by Western blotting. The main aim of our work was to assess the relationship between the age of female grasshoppers originating from variously polluted habitat and the hsp70 level in their progeny. Possible reasons for population variation in hsp70 levels were discussed. The hsp70 level in the offspring's body depended on the place of origin. The strongest expression of hsp70 was found in the bodies of larvae hatching from the eggs laid by young females from Pilica (reference site). In contrast, a low initial level of hsp70 in larvae from polluted sites, especially in young females' progeny, was observed. The application of zinc during diapause influenced the hsp70 level in grasshopper larvae; however, the direction of the changes depended on the insects' place of origin. In larvae from the reference site, and also (but to a lesser degree) from Olkusz, the increase in the hsp70 level after zinc treatment was most pronounced. Whereas in grasshoppers from Szopienice, zinc (in 100microg g(-1) dry weight of sand) did not change the hsp70 level, or (in 500microg g(-1) dry weight of sand) caused a reduction in hsp70. The differences may result from maternal effects; however, possible adaptation also cannot be excluded. To confirm this statement further studies are needed.

  14. The DNA-repair Ku70 protein is located in the nucleus and tail of elongating spermatids in grasshoppers.

    PubMed

    Cabrero, Josefa; Palomino-Morales, Rogelio J; Camacho, Juan Pedro M

    2007-01-01

    Fluorescence immunostaining for the phosphorylated H2AX histone (gammaH2AX) in the grasshopper Eyprepocnemis plorans has shown abundance of gammaH2AX in the nuclei of round and elongating spermatids, suggesting that DNA double-strand breaks (DSBs) occur regularly during spermiogenesis. Immunofluorescence patterns for Ku70, a DNA-repair protein participating in the non-homologous end-joining (NHEJ) pathway, showed that this protein is present in round and elongating spermatids, implying that the NHEJ DNA-repair pathway operates during chromatin compaction in spermiogenesis. In addition, during the final stages of spermiogenesis, the Ku70 protein concentrates on the region forming the sperm tail. Since Ku70 was also abundant in spermatid tails, it is reasonable to assume that Ku70 might play a novel function in sperm-tail formation. The analysis of Ku70 immunofluorescence patterns in 13 other grasshopper species also showed the presence of this protein in the nucleus and tail of elongating spermatids, indicating that this is a general characteristic in grasshoppers.

  15. Factors associated with arrival densities of grasshopper sparrow (Ammodramus Savannarum) and baird's sparrow (A. Bairdii) in the upper great plains

    USGS Publications Warehouse

    Ahlering, M.A.; Johnson, D.H.; Faaborg, J.

    2009-01-01

    Although critical to habitat and population management, the proximate cues that birds use to establish territories are largely unknown. Understanding these cues is important for birds, such as many grassland birds, that exhibit high annual variability in population density and make new habitat-selection decisions annually. Identifying the actual cues used is difficult in the field, but the factors associated with the arrival densities of birds can help uncover variables that are involved in or correlated with cues used for selection. During the summers of 2002-2004, we investigated how weather and local vegetation factors were related to arrival densities of Grasshopper Sparrows (Ammodramus savannarum) and Baird's Sparrows (A. bairdii) at three locations across North Dakota and Saskatchewan. Spring densities of Grasshopper Sparrows were positively correlated with concurrent May precipitation, whereas densities of Baird's Sparrows were negatively correlated with the previous winter's snowfall. We used a model-selection approach to evaluate the vegetation characteristics associated with arrival densities of birds. Grasshopper Sparrow densities showed a strong negative relationship to woody cover, and Baird's Sparrow densities showed a negative relationship to vegetation height and vegetation density near the ground. Our results provide a first detailed look at habitat and weather associations immediately after arrival in spring and an important first step in uncovering factors that may be involved in habitat selection in two grassland species. Received 13 August 2008, accepted 20 April 2009. ?? The American Ornithologists' Union, 2009.

  16. Both Nsp1β and Nsp11 are responsible for differential TNF-α production induced by porcine reproductive and respiratory syndrome virus strains with different pathogenicity in vitro.

    PubMed

    He, Qing; Li, Yan; Zhou, Lei; Ge, Xinna; Guo, Xin; Yang, Hanchun

    2015-04-02

    Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized to be one of the most important pathogens severely affecting global swine industry. An increasingly number of studies have paid much attention to the diverse roles of its nonstructural proteins (Nsps) in regulating the innate immune response of host upon PRRSV infection. In the present study, we first discovered that highly pathogenic PRRSV (HP-PRRSV) and low pathogenic PRRSV (LP-PRRSV) infection exhibited a differential TNF-α expression in pulmonary alveolar macrophages (PAMs), showing that HP-PRRSV infection induces lower TNF-α production at protein level in PAMs, compared with LP-PRRSV. Next, HP-PRRSV was confirmed to strongly suppress TNF-α production by inhibiting ERK signaling pathway. Finally, both Nsp1β and Nsp11 were demonstrated to be responsible for the inhibitory effect on TNF-α production induced by HP-PRRSV and the differential TNF-α production in PAMs. These findings contribute to the understanding of the pathogenesis of the Chinese HP-PRRSV.

  17. Complete mitochondrial genome of the Chinese endemic grasshopper Fruhstorferiola kulinga (Orthoptera: Acrididae: Podismini).

    PubMed

    Yang, Rui; Guan, De-Long; Xu, Sheng-Quan

    2016-09-01

    The whole-genome Illumina sequence of the Chinese endemic grasshopper Fruhstorferiola kulinga mitogenome was constructed and reported in this study. In all, the circular genome was obtained with 15,655 bp in length and contains 75.4% A + T. It typically consists of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs) and 1 D-loop region. All PCGs are initiated with ATN codons. Most of the PCGs use TAA as their stop codons, while the others use TAG as stop codons (COX1 and ND1). The size of the large and small ribosomal RNA genes are 1314 bp and 851 bp. The A + T-rich region (777 bp) showed strong resemblance to the other known Orthoptera insects. Our data would contribute to confirm the close relationship and other evolutionary researches of the F. kulinga.

  18. Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana)

    PubMed Central

    Lee, Wah-Keat; Socha, John J

    2009-01-01

    Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana) using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs) and circulatory (heart) systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates. PMID:19272159

  19. Effects of forest-dune ecotone management on the endangered heath grasshopper, Chorthippus vagans (Orthoptera: Acrididae).

    PubMed

    Hochkirch, A; Gärtner, A-C; Brandt, T

    2008-10-01

    Dry, oligotrophic ecosystems are highly threatened in Europe due to massive changes in land use and eutrophication. The conservation of these xeric habitats has received much attention, whereas the ecotones between xeric habitats and other habitat types are often disregarded. One species which mainly inhabits the transition zone between pine forests and adjacent xeric habitats is the heath grasshopper, Chorthippus vagans. This species is endangered in large parts of Europe. One of the largest populations in northern Germany is found on a degraded inland dune near Hanover. This population is threatened by dense growth of deciduous trees and litter accumulation. We analyzed changes in the distribution of this population after the implementation of conservation measures (thinning out the forest and removal of leaf litter). Moreover, we examined dispersal distances of the species in order to assess its colonization potential. We also studied the microhabitat preferences of C. vagans to assess key factors influencing its local distribution. Our data show a substantial growth in population size, which might be a consequence of the conservation measures. New patches on the dune were colonized, promoting dispersal between the subpopulations. We propose that restoration of forest-dune ecotones should be considered more often in landscape planning and conservation management.

  20. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    PubMed

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  1. Nematodes (Mermithidae) parasitizing grasshoppers (Orthoptera: Acrididae) in the Pampean region, Argentina.

    PubMed

    Rusconi, J M; Camino, N B; Achinelly, M F

    2016-07-04

    This work provides the results of a survey of entomonematodes parasites of grasshoppers in grasslands of the Pampean Region, Argentina. Nymphs of Staurorhectus longicornis Giglio-Tos, Laplatacris dispar Rhen, 1939, Dichroplus elongatus Giglio-Tos, 1894 and Metaleptea brevicornis (L.) (Orthoptera: Acrididae) were collected. Mermithidae was the only family registered with seven species: Agamermis decaudata Cobb, Steiner and Christie, 1923, Amphimermis bonaerensis Miralles and Camino, 1983, Amphimermis dichroplusi Camino and Lange, 1997, Amphimermis ronderosi Camino and Lange, 1997, Hexamermis coclhearius Stock and Camino, 1992, Hexamermis ovistriata Stock and Camino, 1992, and Longimermis acridophila Camino and Stock, 1989. The values of parasitism ranged between 1-12%, and intensity not overcome the number of 5.0 nematodes per larva. The nematodes observed showed specificity, not registering the same species of parasite in more than one host species. The Pampean region constituted an area with high diversity of mermithids where new species could be consider as bioregulator agents of this troublesome insect pests in agricultural areas of Argentina.

  2. Prevalence and Molecular Identification of Nematode and Dipteran Parasites in an Australian Alpine Grasshopper (Kosciuscola tristis)

    PubMed Central

    Umbers, Kate D. L.; Byatt, Lachlan J.; Hill, Nichola J.; Bartolini, Remo J.; Hose, Grant C.; Herberstein, Marie E.; Power, Michelle L

    2015-01-01

    In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations. PMID:25919745

  3. Proliferative cell types in embryonic lineages of the central complex of the grasshopper Schistocerca gregaria.

    PubMed

    Boyan, George; Williams, Leslie; Legl, Andrea; Herbert, Zsofia

    2010-08-01

    The central complex of the grasshopper Schistocerca gregaria develops to completion during embryogenesis. A major cellular contribution to the central complex is from the w, x, y, z lineages of the pars intercerebralis, each of which comprises over 100 cells, making them by far the largest in the embryonic protocerebrum. Our focus has been to find a cellular mechanism that allows such a large number of cell progeny to be generated within a restricted period of time. Immunohistochemical visualization of the chromosomes of mitotically active cells has revealed an almost identical linear array of proliferative cells present simultaneously in each w, x, y, z lineage at 50% of embryogenesis. This array is maintained relatively unchanged until almost 70% of embryogenesis, after which mitotic activity declines and then ceases. The array is absent from smaller lineages of the protocerebrum not associated with the central complex. The proliferative cells are located apically to the zone of ganglion mother cells and amongst the progeny of the neuroblast. Comparisons of cell morphology, immunoreactivity (horseradish peroxidase, repo, Prospero), location in lineages and spindle orientation have allowed us to distinguish the proliferative cells in an array from neuroblasts, ganglion mother cells, neuronal progeny and glia. Our data are consistent with the proliferative cells being secondary (amplifying) progenitors and originating from a specific subtype of ganglion mother cell. We propose a model of the way that neuroblasts, ganglion mother cells and secondary progenitors together produce the large cell numbers found in central complex lineages.

  4. Microdissection and chromosome painting of X and B chromosomes in the grasshopper Eyprepocnemis plorans.

    PubMed

    Teruel, M; Cabrero, J; Perfectti, F; Acosta, M J; Sánchez, A; Camacho, J P M

    2009-01-01

    The relative location of 2 repetitive DNAs, i.e. ribosomal (rDNA) and a tandemly repeated satellite DNA (satDNA), with respect to the centromere, suggested that B chromosomes in the grasshopper Eyprepocnemis plorans derived intraspecifically from the X chromosome. To test this hypothesis, we microdissected X and B chromosomes and amplified the obtained DNA by 2 different procedures, the conventional DOP-PCR method and the single-cell whole-genome amplification GenomePlex method. We then generated DNA probes to perform chromosome painting. Our results have confirmed that X and B chromosomes share many DNA sequences between them and with most of the autosomes, especially at locations where the satDNA and rDNA reside, in consistency with previous information. This supports the hypothesis of an intraspecific origin of B chromosomes in E. plorans. Nevertheless, the present results did not help to clarify whether Bs were derived from the X chromosome or else from 1 or more autosomes.

  5. Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).

    PubMed

    Pedraza-Lara, Carlos; Barrientos-Lozano, Ludivina; Rocha-Sánchez, Aurora Y; Zaldívar-Riverón, Alejandro

    2015-03-01

    The genus Sphenarium (Pyrgomorphidae) is a small group of grasshoppers endemic to México and Guatemala that are economically and culturally important both as a food source and as agricultural pests. However, its taxonomy has been largely neglected mainly due to its conserved interspecific external morphology and the considerable intraspecific variation in colour pattern of some taxa. Here we examined morphological as well as mitochondrial and nuclear DNA sequence data to assess the species boundaries and evolutionary history in Sphenarium. Our morphological identification and DNA sequence-based species delimitation, carried out with three different approaches (DNA barcoding, general mixed Yule-coalescent model, Bayesian species delimitation), all recovered a higher number of putative species of Sphenarium than previously recognised. We unambiguously delimit seven species, and between five and ten additional species depending on the data/method analysed. Phylogenetic relationships within the genus strongly support two main clades, one exclusively montane, the other coastal. Divergence time estimates suggest late Miocene to Pliocene ages for the origin and most of the early diversification events in the genus, which were probably influenced by the formation of the Trans-Mexican Volcanic Belt. A series of Pleistocene events could have led to the current species diversification in both montane and coastal regions. This study not only reveals an overlooked species richness for the most popular edible insect in Mexico, but also highlights the influence of the dynamic geological and climatic history of the region in shaping its current diversity.

  6. Protein-coding genes in B chromosomes of the grasshopper Eyprepocnemis plorans

    PubMed Central

    Navarro-Domínguez, Beatriz; Ruiz-Ruano, Francisco J.; Cabrero, Josefa; Corral, José María; López-León, María Dolores; Sharbel, Timothy F.; Camacho, Juan Pedro M.

    2017-01-01

    For many years, parasitic B chromosomes have been considered genetically inert elements. Here we show the presence of ten protein-coding genes in the B chromosome of the grasshopper Eyprepocnemis plorans. Four of these genes (CIP2A, GTPB6, KIF20A, and MTG1) were complete in the B chromosome whereas the six remaining (CKAP2, CAP-G, HYI, MYCB2, SLIT and TOP2A) were truncated. Five of these genes (CIP2A, CKAP2, CAP-G, KIF20A, and MYCB2) were significantly up-regulated in B-carrying individuals, as expected if they were actively transcribed from the B chromosome. This conclusion is supported by three truncated genes (CKAP2, CAP-G and MYCB2) which showed up-regulation only in the regions being present in the B chromosome. Our results indicate that B chromosomes are not so silenced as was hitherto believed. Interestingly, the five active genes in the B chromosome code for functions related with cell division, which is the main arena where B chromosome destiny is played. This suggests that B chromosome evolutionary success can lie on its gene content. PMID:28367986

  7. A population genomic scan in Chorthippus grasshoppers unveils previously unknown phenotypic divergence.

    PubMed

    Berdan, Emma L; Mazzoni, Camila J; Waurick, Isabelle; Roehr, Johannes T; Mayer, Frieder

    2015-08-01

    Understanding the genetics of speciation and the processes that drive it is a central goal of evolutionary biology. Grasshoppers of the Chorthippus species group differ strongly in calling song (and corresponding female preferences) but are exceedingly similar in other characteristics such as morphology. Here, we performed a population genomic scan on three Chorthippus species (Chorthippus biguttulus, C. mollis and C. brunneus) to gain insight into the genes and processes involved in divergence and speciation in this group. Using an RNA-seq approach, we examined functional variation between the species by calling SNPs for each of the three species pairs and using FST -based approaches to identify outliers. We found approximately 1% of SNPs in each comparison to be outliers. Between 37% and 40% of these outliers were nonsynonymous SNPs (as opposed to a global level of 17%) indicating that we recovered loci under selection. Among the outliers were several genes that may be involved in song production and hearing as well as genes involved in other traits such as food preferences and metabolism. Differences in food preferences between species were confirmed with a behavioural experiment. This indicates that multiple phenotypic differences implicating multiple evolutionary processes (sexual selection and natural selection) are present between the species.

  8. THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL

    PubMed Central

    Stevens, Barbara J.

    1965-01-01

    The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121

  9. Muscle group dependent responses to stimuli in a grasshopper model for tonic immobility

    PubMed Central

    Miriyala, Ashwin; Dutta-Gupta, Aparna; Joseph, Joby

    2013-01-01

    Summary Tonic Immobility (TI) is a prolonged immobile condition exhibited by a variety of animals when exposed to certain stimuli, and is thought to be associated with a specific state of arousal. In our study, we characterize this state by using the reliably inducible TI state of the grasshopper (Hieroglyphus banian) and by monitoring abdominal pulsations and body movements in response to visual and auditory stimuli. These pulsations are present during the TI and ‘awake’, standing states, but not in the CO2 anesthetized state. In response to the stimuli, animals exhibited a suppression in pulsation and a startle response. The suppression of pulsation lasted longer than the duration of stimulus application. During TI, the suppression of pulsation does not habituate over time, whereas the startle response does. In response to the translating visual stimulus, the pulsations are suppressed at a certain phase independent of the time of stimulus application. Thus, we describe TI in Hieroglyphus banian as a state more similar to an ‘awake’ state than to an anesthetized state. During TI, the circuitry to the muscle outputs controlling the abdomen pulsation and the startle response are, at least in some part, different. The central pattern generators that maintain the abdomen pulsation receive inputs from visual and auditory pathways. PMID:24244858

  10. Dietary diversification and variations in the number of labrum sensilla in grasshoppers: which came first?

    PubMed

    Zaim, Assia; Petit, Daniel; ElGhadraoui, Lahsen

    2013-06-01

    The diversity of the diet of grasshoppers (Acrididae, Orthoptera) is related to multiple factors, including the chemoreceptors on the antennae, palps and on the epipharyngeal face of the labrum. In the present study, we sought to understand the nature of the diet of 12 Moroccan acridian species and to try to relate various aspects of their diet to the number of labrum sensilla. If the effect of the labrum size on the number of sensilla is removed, four groups of species are recorded: (i) polyphagous species with a broad diet and numerous sensilla; (ii) polyphagous species with a graminivorous diet and numerous sensilla; (iii) oligophagous species feeding exclusively on Poaceae and with a medium number of sensilla; and (iv) strictly monophagous species feeding on a single plant species and with the smallest number of sensilla. These observations show the close relationship between the diet and the number of labrum sensilla. However, Sphingonotus rubescens, a polyphagous species, is an exception to this trend as it harbours a medium number of sensilla. We propose that the modification in the number of labrum sensilla is a result of a progressive adaptation to a different diet and does not represent its cause.

  11. Intensity invariance properties of auditory neurons compared to the statistics of relevant natural signals in grasshoppers.

    PubMed

    Clemens, Jan; Weschke, Gerroth; Vogel, Astrid; Ronacher, Bernhard

    2010-04-01

    The temporal pattern of amplitude modulations (AM) is often used to recognize acoustic objects. To identify objects reliably, intensity invariant representations have to be formed. We approached this problem within the auditory pathway of grasshoppers. We presented AM patterns modulated at different time scales and intensities. Metric space analysis of neuronal responses allowed us to determine how well, how invariantly, and at which time scales AM frequency is encoded. We find that in some neurons spike-count cues contribute substantially (20-60%) to the decoding of AM frequency at a single intensity. However, such cues are not robust when intensity varies. The general intensity invariance of the system is poor. However, there exists a range of AM frequencies around 83 Hz where intensity invariance of local interneurons is relatively high. In this range, natural communication signals exhibit much variation between species, suggesting an important behavioral role for this frequency band. We hypothesize, just as has been proposed for human speech, that the communication signals might have evolved to match the processing properties of the receivers. This contrasts with optimal coding theory, which postulates that neuronal systems are adapted to the statistics of the relevant signals.

  12. Genetic analysis of a chromosomal hybrid zone in the Australian morabine grasshoppers (Vandiemenella, viatica species group).

    PubMed

    Kawakami, Takeshi; Butlin, Roger K; Adams, Mark; Paull, David J; Cooper, Steven J B

    2009-01-01

    Whether chromosomal rearrangements promote speciation by providing barriers to gene exchange between populations is one of the long-standing debates in evolutionary biology. This question can be addressed by studying patterns of gene flow and selection in hybrid zones between chromosomally diverse taxa. Here we present results of the first study of the genetic structure of a hybrid zone between chromosomal races of morabine grasshoppers Vandiemenella viatica, P24(XY) and viatica17, on Kangaroo Island, Australia. Chromosomal and 11 nuclear markers revealed a narrow hybrid zone with strong linkage disequilibrium and heterozygote deficits, most likely maintained by a balance between dispersal and selection. Widths and positions of clines for these markers are concordant and coincident, suggesting that selection is unlikely to be concentrated on a few chromosomes. In contrast, a mitochondrial marker showed a significantly wider cline with centre offset toward the P24(XY) side. We argue that the discordance between the mitochondrial and nuclear/chromosomal clines and overall asymmetry of the clines suggest a secondary origin of the contact zone and potential movement of the zone after contact. Genome-wide scans using many genetic markers and chromosomal mapping of these markers are needed to investigate whether chromosomal differences directly reduce gene flow after secondary contact.

  13. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  14. Metaphase I orientation of Robertsonian trivalents in the water-hyacinth grasshopper, Cornops aquaticum (Acrididae, Orthoptera)

    PubMed Central

    2009-01-01

    Trivalents resulting from polymorphic Robertsonian rearrangements must have a regular orientation in metaphase I if the polymorphisms are to be maintained. It has been argued that redistribution of proximal and interstitial chiasmata to more distal positions is necessary for a convergent orientation, the only one that produces viable gametes. Cornops aquaticum is a South-American grasshopper that lives and feeds on water-hyacinths, and has three polymorphic Robertsonian rearrangements in its southernmost distribution area in Central Argentina and Uruguay. The orientation of trivalents in metaphase I, the formation of abnormal spermatids and the frequency and position of chiasmata in the trivalents, was analysed in a polymorphic population of C. aquaticus. In this study we observed a correlation between the number of trivalents with the frequency of abnormal spermatids; additionally, the number of chiasmata, especially proximal and interstitial ones, was strongly correlated with the frequency of the linear orientation. Therefore we confirmed our previous assumption, based on other evidence, that the chiasmata redistribution in fusion carriers is essential to the maintenance of the polymorphisms. PMID:21637651

  15. The role of the host-specific grasshopper Cornops aquaticum (Orthoptera: Acrididae) as consumer of native Eichhornia crassipes (Pontederiaceae) floating meadows.

    PubMed

    Franceschini, María Celeste; De Wysiecki, María Laura; Poi de Neiff, Alicia; Galassi, María Eugenia; Martínez Fedra, Solange

    2011-09-01

    Cornops aquaticum is a widely distributed semiaquatic grasshopper in the Neotropics. The development, feeding and oviposition of C. aquaticum take place on Pontederiaceae, especially on species of Eichhornia. Several aspects of the feeding of C. aquaticum are studied because is one of the most important herbivores of the highly invasive floating Eichhornia crassipes in native areas. The aims of this paper were: (1) to quantify the amount of E. crassipes consumed by C. aquaticum, (2) to determine the growth rate and the conversion efficiency of food ingested by this grasshopper, and (3) to determine the possible effect of consumption on E. crassipes productivity. Thirty individuals from each specific age class were used in the experiment: nymphs A, nymphs B, adult males and adult females. Insects were individually confined in plastic pots with a leaf of E. crassipes. We estimated feeding by individual, consumption index (CI), relative growth rate (GR) and efficiency of conversion of ingested food to body substance (ECI). The impact of C. aquaticum consumption on E. crassipes floating meadows was assessed with the abundance of the grasshopper, and the available data on primary production of the host plant at the study site. Food intake of C. aquaticum was 11.23% of plant productivity. Food consumption, growth rate and food conversion efficiency of this grasshopper varied according to the specific age classes. Damage caused by C. aquaticum is high in comparison with the damage caused by other semiaquatic and grassland grasshoppers, however it is not enough to prevent the growth and coverage of native E. crassipes floating meadows because abundance of grasshoppers are realtively low and the growth rate and productivity of the host plant is high.

  16. Transcriptome and Metabolite Profiling of the Infection Cycle of Zymoseptoria tritici on Wheat Reveals a Biphasic Interaction with Plant Immunity Involving Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifestyle Definition1[OPEN

    PubMed Central

    Rudd, Jason J.; Kanyuka, Kostya; Hassani-Pak, Keywan; Derbyshire, Mark; Andongabo, Ambrose; Devonshire, Jean; Lysenko, Artem; Saqi, Mansoor; Desai, Nalini M.; Powers, Stephen J.; Hooper, Juliet; Ambroso, Linda; Bharti, Arvind; Farmer, Andrew; Hammond-Kosack, Kim E.; Dietrich, Robert A.; Courbot, Mikael

    2015-01-01

    The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection. PMID:25596183

  17. Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior.

    PubMed

    Wenzel, Beate; Kunst, Michael; Günther, Cornelia; Ganter, Geoffrey K; Lakes-Harlan, Reinhard; Elsner, Norbert; Heinrich, Ralf

    2005-07-25

    Grasshopper sound production, in the context of mate finding, courtship, and rivalry, is controlled by the central body complex in the protocerebrum. Stimulation of muscarinic acetylcholine receptors in the central complex has been demonstrated to stimulate specific singing in various grasshoppers including the species Chorthippus biguttulus. Sound production elicited by stimulation of muscarinic acetylcholine receptors in the central complex is inhibited by co-applications of various drugs activating the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway. The nitric oxide-donor sodium nitroprusside caused a reversible suppression of muscarine-stimulated sound production that could be blocked by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxaline-1-one (ODQ), which prevents the formation of cGMP by specifically inhibiting soluble guanylyl cyclase. Furthermore, injections of both the membrane-permeable cGMP analog 8-Br-cGMP and the specific inhibitor of the cGMP-degrading phosphodiesterase Zaprinast reversibly inhibited singing. To identify putative sources of nitric oxide, brains of Ch. biguttulus were subjected to both nitric oxide synthase immunocytochemistry and NADPH-diaphorase staining. Among other areas known to express nitric oxide synthase, both procedures consistently labeled peripheral layers in the upper division of the central body complex, suggesting that neurons supplying this neuropil contain nitric oxide synthase and may generate nitric oxide upon activation. Exposure of dissected brains to nitric oxide and 3-(5'hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) induced cGMP-associated immunoreactivity in both the upper and lower division. Therefore, both the morphological and pharmacological data presented in this study strongly suggest a contribution of the nitric oxide/cGMP signaling pathway to the central control of grasshopper sound production.

  18. Independent recruitment of a flavin-dependent monooxygenase for safe accumulation of sequestered pyrrolizidine alkaloids in grasshoppers and moths.

    PubMed

    Wang, Linzhu; Beuerle, Till; Timbilla, James; Ober, Dietrich

    2012-01-01

    Several insect lineages have developed diverse strategies to sequester toxic pyrrolizidine alkaloids from food-plants for their own defense. Here, we show that in two highly divergent insect taxa, the hemimetabolous grasshoppers and the holometabolous butterflies, an almost identical strategy evolved independently for safe accumulation of pyrrolizidine alkaloids. This strategy involves a pyrrolizidine alkaloid N-oxygenase that transfers the pyrrolizidine alkaloids to their respective N-oxide, enabling the insects to avoid high concentrations of toxic pyrrolizidine alkaloids in the hemolymph. We have identified a pyrrolizidine alkaloid N-oxygenase, which is a flavin-dependent monooxygenase, of the grasshopper Zonocerus variegatus. After heterologous expression in E. coli, this enzyme shows high specificity for pyrrolizidine alkaloids of various structural types and for the tropane alkaloid atropine as substrates, a property that has been described previously for a pyrrolizidine alkaloid N-oxygenase of the arctiid moth Grammia geneura. Phylogenetic analyses of insect flavin-dependent monooxygenase sequences suggest that independent gene duplication events preceded the establishment of this specific enzyme in the lineages of the grasshoppers and of arctiid moths. Two further flavin-dependent monooxygenase sequences have been identified from Z. variegatus sharing amino acid identities of approximately 78% to the pyrrolizidine alkaloid N-oxygenase. After heterologous expression, both enzymes are also able to catalyze the N-oxygenation of pyrrolizidine alkaloids, albeit with a 400-fold lower specific activity. With respect to the high sequence identity between the three Z. variegatus sequences this ability to N-oxygenize pyrrolizidine alkaloids is interpreted as a relict of a former bifunctional ancestor gene of which one of the gene copies optimized this activity for the specific adaptation to pyrrolizidine alkaloid containing food plants.

  19. Life-extending ovariectomy in grasshoppers increases somatic storage, but dietary restriction with an equivalent feeding rate does not.

    PubMed

    Hatle, John D; Kellenberger, James W; Viray, Ephraim; Smith, Alicia M; Hahn, Daniel A

    2013-09-01

    Reduced diet or reduced reproduction each extends lifespan in many animals. It is often thought that reduced reproduction and reduced diet may act through the same mechanisms. In grasshoppers, ovariectomy extends lifespan and reduces feeding to a level similar to that used for life extension by dietary restriction, further suggesting mechanistic overlap. Here, we measure the feeding rate of ovariectomized grasshoppers and, by manipulating feeding levels, create a sham-operated & dietary restricted group with matched daily feeding. Both groups show ~25% increased survivorship near the median age of mortality for fully fed and reproductive controls. Ovariectomy results in a doubling of fat body mass and hemolymph volume in comparison to both a feeding-matched dietary restriction group and a sham-operated & fully fed control, which do not differ from each other. Total anti-oxidant activity in the hemolymph and the skeletal muscle was unchanged upon ovariectomy or dietary restriction, so it does not appear to be a major factor in lifespan extension. Next, we measured mitochondrial counts using qPCR to determine mitochondrial cytochrome-b concentrations relative to nuclear (genomic) beta-actin. Mitochondrial counts in the ovariectomized group were lower than sham-operated and fully fed controls but not than the dietary restriction group. Last, in the fat body, transcript levels of hexamerin-90 (a hemolymph storage protein) were affected by neither ovariectomy nor dietary restriction. Hence, ovariectomy resulted in large magnitude increases in organismal storage. The matched-fed dietary restricted group differed from the ovariectomized group only in organismal storage, and not in any of the cellular parameters measured here. This study suggests that longevity via ovariectomy has distinct physiological mechanisms from longevity via dietary restriction in grasshoppers that are independent of daily feeding rate, particularly for protein and fat storage.

  20. Two strains of Pseudomonas fluorscens bacteria differentially affect survivorship of waxworm (Galleria mellonella) larvae exposed to an arthropod fungal pathogen, Beauveria bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two strains of Pseudomonas fluorescens were found contaminating a biopesticide used in a previous study against Varroa destructor infestations in honey bee hives. In the aforementioned study the biopesticide, a formulation of the arthropod pathogen Beauveria bassiana, failed to have any impact on t...

  1. Identification of differentially expressed genes associated with changes in the morphology and pathogenicity of Pichia fermentans on apple and peach fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pichia fermentans (strain DISAABA 726) is an effective biocontrol agent against Monilinia fructicola or Botrytis cinerea when inoculated in artificially wounded apple fruit but is an aggressive pathogen when inoculated on wounded peach fruit, causing severe fruit decay. P. fermentans grows as a bud...

  2. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae)

    PubMed Central

    2015-01-01

    Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616

  3. Post-meiotic B chromosome expulsion, during spermiogenesis, in two grasshopper species.

    PubMed

    Cabrero, Josefa; Martín-Peciña, María; Ruiz-Ruano, Francisco J; Gómez, Ricardo; Camacho, Juan Pedro M

    2017-02-11

    Most supernumerary (B) chromosomes are parasitic elements carrying out an evolutionary arms race with the standard (A) chromosomes. A variety of weapons for attack and defense have evolved in both contending elements, the most conspicuous being B chromosome drive and A chromosome drive suppression. Here, we show for the first time that most microspermatids formed during spermiogenesis in two grasshopper species contain expulsed B chromosomes. By using DNA probes for B-specific satellite DNAs in Eumigus monticola and Eyprepocnemis plorans, and also 18S rDNA in the latter species, we were able to count the number of B chromosomes in standard spermatids submitted to fluorescence in situ hybridization, as well as visualizing B chromosomes inside most microspermatids. In E. plorans, the presence of B-carrying microspermatids in 1B males was associated with a significant decrease in the proportion of B-carrying standard spermatids. The fact that this decrease was apparent in elongating spermatids but not in round ones demonstrates that meiosis yields 1:1 proportions of 0B and 1B spermatids and hence that B elimination takes place post-meiotically, i.e., during spermiogenesis, implying a 5-25% decrease in B transmission rate. In E. monticola, the B chromosome is mitotically unstable and B number varies between cells within a same individual. A comparison of B frequency between round and elongating spermatids of a same individual revealed a significant 12.3% decrease. We conclude that B chromosome elimination during spermiogenesis is a defense weapon of the host genome to get rid of parasitic chromosomes.

  4. Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth.

    PubMed

    Raubenheimer, D; Simpson, S J

    2003-05-01

    We examined correlates of nutrient balancing with dietary range by comparing diet selection and ingestive, post-ingestive and performance-related responses to macronutrient imbalance in two species of grasshopper. One of the two species, Locusta migratoria (the African migratory locust), is a specialist grass-feeder, while the other, Schistocerca gregaria (the desert locust), is a generalist herbivore that includes both grasses and forbs in its diet. In ad libitum conditions, both species composed a balanced intake of the two macronutrients protein and carbohydrate from nutritionally complementary synthetic foods, but the composition of the selected diet differed, with the generalist selecting more protein, but not carbohydrate, than the grass-specialist. The grass-specialist, by contrast, retained ingested nitrogen more efficiently on the ad libitum diets. When confined to nutritionally imbalanced foods, both species regulated ingestion in such a way as to mitigate excesses as well as deficits of the two nutrients. The responses were, however, distinct in the two species, with the generalist feeder ingesting greater excesses of protein than the specialist. The species also differed in their post-ingestive responses to ingested excesses of nutrient, with the generalist but not the specialist using protein-derived carbon as an energy source when fed carbohydrate-deficient foods. The generalist also retained a higher level of body protein when confined to protein-deficient diets. The data suggested one functional reason why the generalist species selected a diet with higher protein content in the ad libitum treatment because, when confined to the nutritionally imbalanced foods, development rate peaked on higher protein foods for the generalist compared with the specialist. Many aspects of these data agree with the prediction that generalist-feeding animals should show greater behavioural and physiological flexibility in their responses to nutrient imbalance than do

  5. DNA amount of X and B chromosomes in the grasshoppers Eyprepocnemis plorans and Locusta migratoria.

    PubMed

    Ruiz-Ruano, F J; Ruiz-Estévez, M; Rodríguez-Pérez, J; López-Pino, J L; Cabrero, J; Camacho, J P M

    2011-01-01

    We analyzed the DNA amount in X and B chromosomes of 2 XX/X0 grasshopper species (Eyprepocnemis plorans and Locusta migratoria), by means of Feulgen image analysis densitometry (FIAD), using previous estimates in L. migratoria as standard (5.89 pg). We first analyzed spermatids of 0B males and found a bimodal distribution of integrated optical densities (IODs), suggesting that one peak corresponded to +X and the other to -X spermatids. The difference between the 2 peaks corresponded to the X chromosome DNA amount, which was 1.28 pg in E. plorans and 0.80 pg in L. migratoria. In addition, the +X peak in E. plorans gave an estimate of the C-value in this species (10.39 pg). We next analyzed diplotene cells from 1B males in E. plorans and +B males in L. migratoria (a species where Bs are mitotically unstable and no integer B number can be defined for an individual) and measured B chromosome IOD relative to X chromosome IOD, within the same cell, taking advantage of the similar degree of condensation for both positively heteropycnotic chromosomes at this meiotic stage. From this proportion, we estimated the DNA amount for 3 different B chromosome variants found in individuals from 3 E. plorans Spanish populations (0.54 pg for B1 from Saladares, 0.51 pg for B2 from Salobreña and 0.64 for B24 from Torrox). Likewise, we estimated the DNA amount of the B chromosome in L. migratoria to be 0.15 pg. To automate measurements, we wrote a GPL3 licensed Python program (pyFIA). We discuss the utility of the present approach for estimating X and B chromosome DNA amount in a variety of situations, and the meaning of the DNA amount estimates for X and B chromosomes in these 2 species.

  6. Condition-dependence and sexual ornamentation: Effects of immune challenges on a highly sexually dimorphic grasshopper.

    PubMed

    Valverde, J Pablo; Eggert, Hendrik; Kurtz, Joachim; Schielzeth, Holger

    2017-02-23

    Sexual ornaments contribute substantially to phenotypic diversity and it is particularly relevant to understand their evolution. Ornaments can assume the function of signals-of-quality that the choosy sex uses to evaluate potential mating partners. Often there are no obvious direct benefits and investment into mate choice is primarily rewarded by beneficial alleles that are inherited to the offspring. Inter-sexual communication via sexual ornaments requires honesty of the sexual signal, yet the question of what maintains honesty remains only partially solved. One solution is that honesty is maintained by trait expression being dependent on individual condition, since condition-dependent trait expression offers an effectively inexhaustible source of genetic variability. Here we test in the highly sexually dimorphic club-legged grasshopper Gomphocerus sibiricus if putative sexual ornaments, in particular the striking front-leg clubs, are more strongly affected by a lipopolysaccharide (LPS) immune challenge than putatively not sexually selected traits. Our results show overall little condition-dependent expression of morphological and song traits, with sexually selected traits exhibiting effects comparable to non-sexually selected traits (with the possible exception of stridulatory file length and syllable-to-pause ratio in advertisement songs). Interestingly, field observations of individuals of lethally parasitized individuals suggest that a very strong environmental challenge can specifically affect the expression of the front-leg clubs. The presence of 1% of males in natural populations with missing or heavily deformed clubs plus 5% with minor club deformations furthermore indicate that there are risks associated with club development during final ecdysis and this might act as a filter against deleterious alleles. This article is protected by copyright. All rights reserved.

  7. DNA damage in grasshoppers' larvae--comet assay in environmental approach.

    PubMed

    Augustyniak, Maria; Orzechowska, Helena; Kędziorski, Andrzej; Sawczyn, Tomasz; Doleżych, Bogdan

    2014-02-01

    The comet assay that provides a quantitative measure of the DNA-strand breaks may be used for assessing the 'genotoxic potential' of the environment. Young adults of Chorthippus brunneus (Orthoptera), collected at three sites in Southern Poland, differing in the level of pollution, particularly with heavy metals: Pilica (reference), Olkusz (moderately polluted) and Szopienice (heavily polluted) - were allowed to mate under laboratory conditions that were free from any pollution. Egg-pods were collected and, after diapause, brain cells from one-day old larvae were used for the comet assay. We compared the level of DNA damage in the larvae originating from these sites and also measured time-dependent DNA repair after single 10min. application of H2O2 (20μM final concentration). The DNA damage was relatively low in larval cells irrespectively of the site pollution their parents came from. However, measured comet parameters - tail DNA content (TDNA), tail length (TL), and olive tail moment (OTM) - were significantly higher in larvae originating from the Szopienice site than in those from the reference site. Incubation of cells with H2O2 resulted in significantly higher values of the comet parameters in the insects from all the study sites with the highest ones observed in the offspring of grasshoppers from Szopienice. Moreover, DNA repair, following the treatment, did not occur in the latter group. These data contribute to almost unexplored subject of genotoxic effects of environmental pollutants in insects. They are discussed in the light of the concept of adaptive strategies in energy allocation depending on the level of biotope pollution.

  8. Body Size Adaptations to Altitudinal Climatic Variation in Neotropical Grasshoppers of the Genus Sphenarium (Orthoptera: Pyrgomorphidae).

    PubMed

    Sanabria-Urbán, Salomón; Song, Hojun; Oyama, Ken; González-Rodríguez, Antonio; Serrano-Meneses, Martin A; Cueva Del Castillo, Raúl

    2015-01-01

    Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group.

  9. Nitric oxide/cGMP signaling in the corpora allata of female grasshoppers.

    PubMed

    Wirmer, Andrea; Heinrich, Ralf

    2011-01-01

    The corpora allata (CA) of various insects express enzymes with fixation resistant NADPHdiaphorase activity. In female grasshoppers, juvenile hormone (JH) released from the CA is necessary to establish reproductive readiness, including sound production. Previous studies demonstrated that female sound production is also promoted by systemic inhibition of nitric oxide (NO) formation. In addition, allatotropin and allatostatin expressing central brain neurons were located in close vicinity of NO generating cells. It was therefore speculated that NO signaling may contribute to the control of juvenile hormone release from the CA. This study demonstrates the presence of NO/cGMP signaling in the CA of female Chorthippus biguttulus. CA parenchymal cells exhibit NADPHdiaphorase activity, express anti NOS immunoreactivity and accumulate citrulline, which is generated as a byproduct of NO generation. Varicose terminals from brain neurons in the dorsal pars intercerebralis and pars lateralis that accumulate cGMP upon stimulation with NO donors serve as intrinsic targets of NO in the CA. Both accumulation of citrulline and cyclic GMP were inhibited by the NOS inhibitor aminoguanidine, suggesting that NO in CA is produced by NOS. These results suggest that NO is a retrograde transmitter that provides feedback to projection neurons controlling JH production. Combined immunostainings and backfill experiments detected CA cells with processes extending into the CC and the protocerebrum that expressed immunoreactivity against the pan-neural marker anti-HRP. Allatostatin and allatotropin immunopositive brain neurons do not express NOS but subpopulations accumulate cGMP upon NO-formation. Direct innervation of CA by these peptidergic neurons was not observed.

  10. Chromosomal localization of ribosomal and telomeric DNA provides new insights on the evolution of gomphocerinae grasshoppers.

    PubMed

    Jetybayev, I E; Bugrov, A G; Karamysheva, T V; Camacho, J P M; Rubtsov, N B

    2012-01-01

    Chromosome location of ribosomal DNA (rDNA) and telomeric repeats was analysed in mitotic chromosomes of 15 species of Gomphocerinae grasshoppers belonging to the tribes Arcypterini, Gomphocerini, Stenobothrini, and Chrysochraontini. Two types of rDNA distribution were found in the Gomphocerini tribe. Type 1, found in 9 species, was characterized by the presence of rDNA in the short arm of the long biarmed chromosomes 2 and 3 and, in some species, also in the X chromosome. Type 2 was found only in Aeropus sibiricus and Stauroderus scalaris and consisted in the presence of pericentromeric rDNA blocks in all chromosomes. A comparison of rDNA distribution in Gomphocerini species with 2n ♂ = 23, 2n ♂ = 21, and 2n ♂ = 17 suggested the possible involvement of chromosome 6 in the ancestral karyotype (2n ♂ = 23) in 1 of the 3 centric fusions that decreased the chromosome number in these species. In the tribe Stenobothrini, Stenobothrus eurasius carried a single rDNA cluster in the X chromosome, likewise 2 Spanish species previously analysed, but Omocestus viridulus unusually showed a single rDNA cluster in the longest autosome. Telomeric repeats were located primarily on the ends of chromosome arms. In 2 species, however, we observed the presence of interstitial clusters outside telomeric regions. The first one, Aeropus sibiricus, exhibited a polymorphic interstitial site of telomeric repeats in chromosome 6 as a consequence of a paracentric inversion. Most remarkably, Chorthippus jacobsoni showed the presence of telomeric repeats in the pericentric regions of the 3 biarmed chromosome pairs originated by centric fusion, thus suggesting that these rearrangements were not of the Robertsonian type but true centric fusion with a probable generation of dicentric chromosomes.

  11. Embryonic developmental rates of northern grasshoppers (Orthoptera: Acrididae): implications for climate change and habitat management.

    PubMed

    Fielding, Dennis J; Defoliart, Linda S

    2010-10-01

    Accurate models of temperature-dependent embryonic developmental rates are important to assess the effects of a changing climate on insect life cycles and to suggest methods of population management by habitat manipulation. Embryonic development determines the life cycle of many species of grasshoppers, which, in cold climates, spend two winters in the egg stage. Increasing temperatures associated with climate change in the subarctic could potentiate a switch to a univoltine life cycle. However, egg hatch could be delayed by maintaining a closed vegetative canopy, which would lower soil temperatures by shading the soil surface. Prediapause and postdiapause embryonic developmental rates were measured in the laboratory over a wide range of temperatures for Melanoplus borealis Fieber and Melanoplus sanguinipes F. (Orthoptera: Acrididae) A model was fit to the data and used to predict dates of egg hatch in the spring and prediapause development in the fall under different temperature regimens. Actual soil temperatures were recorded at several locations over 5 yr. To simulate climate warming, 2, 3, or 4°C was added to each hourly recorded temperature. Results suggest that a 2, 3, or 4°C increase in soil temperatures will result in eggs hatching ≈ 3, 5, or 7 d earlier, respectively. An increase of 3°C would be required to advance prediapause development enough to allow for a portion of the population to be univoltine in warmer years. To simulate shading, 2 and 4°C were subtracted from observed temperatures. A 4°C decrease in temperatures could potentially delay hatch by 8 d.

  12. Differential response of tomato genotypes to Xanthomonas-specific pathogen-associated molecular patterns and correlation with bacterial spot (Xanthomonas perforans) resistance

    PubMed Central

    Bhattarai, Krishna; Louws, Frank J; Williamson, John D; Panthee, Dilip R

    2016-01-01

    Plants depend on innate immune responses to retard the initial spread of pathogens entering through stomata, hydathodes or injuries. These responses are triggered by conserved patterns in pathogen-encoded molecules known as pathogen-associated molecular patterns (PAMPs). Production of reactive oxygen species (ROS) is one of the first responses, and the resulting ‘oxidative burst’ is considered to be a first line of defense. In this study, we conducted association analyses between ROS production and bacterial spot (BS; Xanthomonas spp.) resistance in 63 genotypes of tomato (Solanum lycopersicum L.). A luminol-based assay was performed on leaf tissues that had been treated with a flagellin 22 (flg22), flagellin 28 and a Xanthomonas-specific flg22 (flg22-Xac) peptide, to measure PAMP-induced ROS production in each genotype. These genotypes were also assessed for BS disease response by inoculation with Xanthomonas perforans, race T4. Although there was no consistent relationship between peptides used and host response to the BS, there was a significant negative correlation (r=−0.25, P<0.05) between foliar disease severity and ROS production, when flg22-Xac was used. This response could potentially be used to identify the Xanthomonas-specific PRR allele in tomato, and eventually PAMP-triggered immunity loci could be mapped in a segregating population. This has potential significance in tomato improvement. PMID:27555919

  13. Aspects of lipid oxidation of meat from free-range broilers consuming a diet containing grasshoppers on alpine steppe of the Tibetan Plateau.

    PubMed

    Sun, T; Long, R J; Liu, Z Y; Ding, W R; Zhang, Y

    2012-01-01

    The objective of this study was to evaluate the characteristics of lipid oxidation in the meat of free-range broilers feeding on grasshoppers in alpine rangeland on the Tibetan Plateau. Eighty 28-d-old Qinjiaoma male broilers were introduced into a rangeland where there was a dense population of grasshoppers (PB). Control birds were reared under intensive conditions and given a maize-soybean diet. At 91 d of age, 24 birds from each treatment were slaughtered. Fresh breast and thigh meats were packaged and refrigerated for determination. The results indicate that rearing conditions, which included a diet rich in grasshoppers for PB broilers, significantly (P < 0.05) affected α-tocopherol content, total iron, heme iron, and nonheme iron content in the muscle of both the breast and leg. Rearing system and diet also had an important effect on antioxidant activity and lipid oxidation during refrigerated storage. This influence changed with storage time between different tissues. The activities of glutathione peroxidase and superoxide dismutase in the muscle of chicken breasts or legs from PB broilers were significantly (P < 0.05) higher than those from the controls, but no significant (P > 0.05) differences were found for the activities of catalase between the PB broilers and the controls. In conclusion, the meat in free-range broilers feeding on grasshoppers has more antioxidative potential and longer storage life.

  14. The Grasshopper and the Taxonomer. Use of Song and Structure in Orthoptera Saltatoria for Teaching the Principles of Taxonomy. Part 1. Field and Laboratory Exercises

    ERIC Educational Resources Information Center

    Broughton, W. B.

    1972-01-01

    Describes the coordinated study of European grasshoppers as living specimens in the field and as permanent laboratory preparations for introducing taxonomic principles. Provides details for the preparation of specimens and sample instructions provided to students. Part I of a three-part series. (AL)

  15. Turn the temperature to turquoise: cues for colour change in the male chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae).

    PubMed

    Umbers, Kate D L

    2011-09-01

    Rapid, reversible colour change is unusual in animals, but is a feature of male chameleon grasshoppers (Kosciuscola tristis). Understanding what triggers this colour change is paramount to developing hypotheses explaining its evolutionary significance. In a series of manipulative experiments the author quantified the effects of temperature, and time of day, as well as internal body temperature, on the colour of male K. tristis. The results suggest that male chameleon grasshoppers change colour primarily in response to temperature and that the rate of colour change varies considerably, with the change from black to turquoise occurring up to 10 times faster than the reverse. Body temperature changed quickly (within 10min) in response to changes in ambient temperature, but colour change did not match this speed and thus colour is decoupled from internal temperature. This indicates that male colour change is driven primarily by ambient temperature but that their colour does not necessarily reflect current internal temperature. I propose several functional hypotheses for male colour change in K. tristis.

  16. [Differentiation and characterization of yeasts pathogenic for humans (Candida albicans, Exophiala dermatitidis) and algae pathogenic for animals (Prototheca spp.) using Fourier transform infrared spectroscopy (FTIR) in comparison with conventional methods].

    PubMed

    Schmalreck, A F; Tränkle, P; Vanca, E; Blaschke-Hellmessen, R

    1998-01-01

    Due to the Fourier-Transform Infrared Spectroscopy (FT-IR) of strain specific traits demonstrated to be a suitable and efficient method for diagnostic and epidemiological determinations for the yeasts Candida albicans, Exophiala dermatitidis and the chlorophylless algae of the genus Prototheca. FT-IR leads in a rapid and economical way to reproducible results according to the spectral differences of intact cells (IR-fingerprints). Different genera, species and sub-species respectively, different strains can be recognized and grouped into different clusters and subclusters. The FT-IR analysis of Candida albicans isolates (n = 150) of 22 newborns-at-risk of an intensive care unit showed, that 86% of the children were colonised with several (2-4) different strains in the oral cavities and faeces. Stationary cross-infections could definitely be determined. Exophiala dermatitidis isolates (n = 31), mostly isolated repetitively within a period of 3 years from sputa of patients suffering from cystic fibrosis could be characterized and grouped patient-specifically over the total sampling period. Of 6 from 8 patients (75%) their individual strains remain the same and could be tracked over the three years. Cross-infections during the stationary treatment could be clearly identified by FT-IR. The Prototheca isolate (n = 43) from live-stock and farm environment showed clear distinguishable clusters differentiating the species P. wickerhamii, P. zopfii and P. stagnora. In addition, the biotypes of P. zopfii could be distinguished, especially the subclusters of variants II and III. It could be demonstrated, that FT-IR is suitable for the routine identification and differentiation of yeasts and algae. However, in spite of the gain of knowledge by using FT-IR for the characterization of microorganisms, the conventional phenotyping and/or genetic analysis of yeast or algae strains cannot be replaced completely. For a final taxonomic classification a combination of conventional

  17. Detection of Differential Host Susceptibility to the Marine Oomycete Pathogen Eurychasma dicksonii by Real-Time PCR: Not All Algae Are Equal▿ †

    PubMed Central

    Gachon, Claire M. M.; Strittmatter, Martina; Müller, Dieter G.; Kleinteich, Julia; Küpper, Frithjof C.

    2009-01-01

    In the marine environment, a growing body of evidence points to parasites as key players in the control of population dynamics and overall ecosystem structure. However, their prevalence and impact on marine macroalgal communities remain virtually unknown. Indeed, infectious diseases of seaweeds are largely underdocumented, partly because of the expertise required to diagnose them with a microscope. Over the last few years, however, real-time quantitative PCR (qPCR) has emerged as a rapid and reliable alternative to visual symptom scoring for monitoring pathogens. Thus, we present here a qPCR assay suitable for the detection and quantification of the intracellular oomycete pathogen Eurychasma dicksonii in its ectocarpalean and laminarialean brown algal hosts. qPCR and microscopic observations made of laboratory-controlled cultures revealed that clonal brown algal strains exhibit different levels of resistance against Eurychasma, ranging from high susceptibility to complete absence of symptoms. This observation strongly argues for the existence of a genetic determinism for disease resistance in brown algae, which would have broad implications for the dynamics and genetic structure of natural populations. We also used qPCR for the rapid detection of Eurychasma in filamentous brown algae collected in Northern Europe and South America and found that the assay is specific, robust, and widely applicable to field samples. Hence, this study opens the perspective of combining large-scale disease monitoring in the field with laboratory-controlled experiments on the genome model seaweed Ectocarpus siliculosus to improve our understanding of brown algal diseases. PMID:19011072

  18. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex.

    PubMed

    Dryahina, Kseniya; Sovová, Kristýna; Nemec, Alexandr; Španěl, Patrik

    2016-08-10

    As a contribution to the continuing search for breath biomarkers of lung and airways infection in patients with cystic fibrosis, CF, we have analysed the volatile metabolites released in vitro by Pseudomonas aeruginosa and other bacteria involved in respiratory infections in these patients, i.e. those belonging to the Burkholderia cepacia complex, Staphylococcus aureus or Stenotrophomonas maltophilia. These opportunistic pathogens are generally harmless to healthy people but they may cause serious infections in patients with severe underlying disease or impaired immunity such as CF patients. Volatile organic compounds emitted from the cultures of strains belonging to the above-mentioned four taxa were analysed by selected ion flow tube mass spectrometry. In order to minimize the effect of differences in media composition all strains were cultured in three different liquid media. Multivariate statistical analysis reveals that the four taxa can be well discriminated by the differences in the headspace VOC concentration profiles. The compounds that should be targeted in breath as potential biomarkers of airway infection were identified for each of these taxa of CF pathogens.

  19. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts.

    PubMed

    Gotham, Steven; Song, Hojun

    2013-11-01

    Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with

  20. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum.

    PubMed

    Salas-Marina, Miguel A; Isordia-Jasso, María I; Islas-Osuna, María A; Delgado-Sánchez, Pablo; Jiménez-Bremont, Juan F; Rodríguez-Kessler, Margarita; Rosales-Saavedra, María T; Herrera-Estrella, Alfredo; Casas-Flores, Sergio

    2015-01-01

    Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum) plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000). Deletion (KO) of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, overexpression (OE) of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  1. A SYBR Green-based real-time RT-PCR assay for simple and rapid detection and differentiation of highly pathogenic and classical type 2 porcine reproductive and respiratory syndrome virus circulating in China.

    PubMed

    Chai, Zheng; Ma, Wenjun; Fu, Fang; Lang, Yuekun; Wang, Wei; Tong, Guangzhi; Liu, Qinfang; Cai, Xuehui; Li, Xi

    2013-02-01

    SYBR Green coupled to melting curve analysis has been suggested to detect RNA viruses showing high genomic variability. Here, a SYBR Green-based real-time RT-PCR assay was developed for simultaneous detection and differentiation of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) and classical type 2 PRRSV (C-PRRSV). The different strains were identified by their distinctive melting temperatures: 82.98 ± 0.25 °C and 85.95 ± 0.24 °C for HP-PRRSVs or 82.74 ± 0.26 °C for C-PRRSVs. Specificity was tested using nine other viral and bacterial pathogens of swine. The detection limit was 1 TCID(50) for HP- or C-PRRSV. Furthermore, the detection results for samples from an animal trial with HP- or C-PRRSV infections showed that the SYBR Green-based real-time RT-PCR was more sensitive than the conventional RT-PCR. Additionally, an analysis of 319 field samples from North China, Central China and Northeast China showed that HP- and C-PRRSVs co-circulated in pig herds. Thus, the SYBR Green-based real-time RT-PCR, which can be performed within one hour, is a rapid, sensitive and low-cost diagnostic tool for rapid differential detection and routine surveillance of HP- and classical type 2 PRRSVs in China.

  2. Identification of novel molecules and pathogenic pathways in primary biliary cirrhosis: cDNA array analysis of intrahepatic differential gene expression

    PubMed Central

    Shackel, N; McGuinness, P; Abbott, C; Gorrell, M; McCaughan, G

    2001-01-01

    BACKGROUND—Primary biliary cirrhosis (PBC) is an autoimmune disease in which the pathogenesis of progressive liver injury is poorly understood.
AIM—To provide novel insights into the pathogenesis of PBC related liver injury using cDNA array analysis, which simultaneously examines expression of many genes.
METHODS—Utilising cDNA arrays of 874 genes, PBC was compared with primary sclerosing cholangitis (PSC) associated cirrhosis and non-diseased liver. Differential expression of 10 genes was confirmed by real time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTS—Array analysis identified many differentially expressed genes that are important in inflammation, fibrosis, proliferation, signalling, apoptosis, and oxidative stress. PBC was associated with increased expression of both Th1 and Th2 type molecules of the immune response. Fibrosis related gene expression featured upregulation of connective tissue growth factor and transforming growth factor beta3. Many more apoptosis associated molecules exhibited increased expression, consistent with apoptosis being a more active and regulated process, in PSC associated cirrhosis than in PBC. Increased expression of many genes of the Wnt and notch pathways implicated these highly conserved and linked pathways in PBC pathogenesis. The observed increases in expression of c-jun, c-myc, and c-fos related antigen 1 are consistent with increased Wnt pathway activity in PBC. Differential expression of four components of the Wnt pathway, Wnt-5a, Wnt-13, FRITZ, and beta-catenin, was confirmed by quantitative RT-PCR.
CONCLUSION—Many genes implicated in intrahepatic inflammation, fibrosis, and regeneration were upregulated in PBC cirrhosis. In particular, increased expression of a number of Drosophila homologues was seen in PBC.


Keywords: primary sclerosing cholangitis; apoptosis; fibrosis; connective tissue growth factor; Wnt; Th1/Th2; brain derived neurotrophic factor; notch

  3. Molecular Evidence for an Old World Origin of Galapagos and Caribbean Band-Winged Grasshoppers (Acrididae: Oedipodinae: Sphingonotus)

    PubMed Central

    Husemann, Martin; Habel, Jan Christian; Namkung, Suk; Hochkirch, Axel; Otte, Daniel; Danley, Patrick D.

    2015-01-01

    Patterns of colonization and diversification on islands provide valuable insights into evolutionary processes. Due to their unique geographic position and well known history, the Galapagos Islands are an important model system for evolutionary studies. Here we investigate the evolutionary history of a winged grasshopper genus to infer its origin and pattern of colonization in the Galapagos archipelago. The grasshopper genus Sphingonotus has radiated extensively in the Palaearctic and many species are endemic to islands. In the New World, the genus is largely replaced by the genus Trimerotropis. Oddly, in the Caribbean and on the Galapagos archipelago, two species of Sphingonotus are found, which has led to the suggestion that these might be the result of anthropogenic translocations from Europe. Here, we test this hypothesis using mitochondrial and nuclear DNA sequences from a broad sample of Sphingonotini and Trimerotropini species from the Old World and New World. The genetic data show two distinct genetic clusters representing the New World Trimerotropini and the Old World Sphingonotini. However, the Sphingonotus species from Galapagos and the Caribbean split basally within the Old World Sphingonotini lineage. The Galapagos and Caribbean species appear to be related to Old World taxa, but are not the result of recent anthropogenic translocations as revealed by divergence time estimates. Distinct genetic lineages occur on the four investigated Galapagos Islands, with deep splits among them compared to their relatives from the Palaearctic. A scenario of a past wider distribution of Sphingonotus in the New World with subsequent extinction on the mainland and replacement by Trimerotropis might explain the disjunct distribution. PMID:25692768

  4. Molecular evidence for an old world origin of Galapagos and Caribbean band-winged grasshoppers (Acrididae: Oedipodinae: Sphingonotus).

    PubMed

    Husemann, Martin; Habel, Jan Christian; Namkung, Suk; Hochkirch, Axel; Otte, Daniel; Danley, Patrick D

    2015-01-01

    Patterns of colonization and diversification on islands provide valuable insights into evolutionary processes. Due to their unique geographic position and well known history, the Galapagos Islands are an important model system for evolutionary studies. Here we investigate the evolutionary history of a winged grasshopper genus to infer its origin and pattern of colonization in the Galapagos archipelago. The grasshopper genus Sphingonotus has radiated extensively in the Palaearctic and many species are endemic to islands. In the New World, the genus is largely replaced by the genus Trimerotropis. Oddly, in the Caribbean and on the Galapagos archipelago, two species of Sphingonotus are found, which has led to the suggestion that these might be the result of anthropogenic translocations from Europe. Here, we test this hypothesis using mitochondrial and nuclear DNA sequences from a broad sample of Sphingonotini and Trimerotropini species from the Old World and New World. The genetic data show two distinct genetic clusters representing the New World Trimerotropini and the Old World Sphingonotini. However, the Sphingonotus species from Galapagos and the Caribbean split basally within the Old World Sphingonotini lineage. The Galapagos and Caribbean species appear to be related to Old World taxa, but are not the result of recent anthropogenic translocations as revealed by divergence time estimates. Distinct genetic lineages occur on the four investigated Galapagos Islands, with deep splits among them compared to their relatives from the Palaearctic. A scenario of a past wider distribution of Sphingonotus in the New World with subsequent extinction on the mainland and replacement by Trimerotropis might explain the disjunct distribution.

  5. Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers.

    PubMed

    Cabrero, Josefa; López-León, Ma Dolores; Teruel, María; Camacho, Juan Pedro M

    2009-01-01

    We analyse chromosome location of H3 and H4 histone gene clusters by fluorescence in-situ hybridization (FISH) in 35 species of Acrididae grasshoppers belonging to seven subfamilies. As in other organisms, H3 and H4 co-localized in the same chromosome region in the 11 species where double FISH was performed with the H3 and H4 DNA probes. Chromosome location of H3-H4 histone gene clusters showed high regularity in the species analysed, with all of them carrying a single H3-H4 cluster in an autosome which, in most cases, was located interstitially in the proximal chromosome third. In 17 out of the 21 species with 2n masculine = 23 acrocentric chromosomes, the H3-H4-carrying autosome was about eighth in order of decreasing size. Two of the four exceptions changed H3-H4 localization to proximal (Pezotettix giornae) or distal (Tropidopola graeca) in the eighth-sized autosome, but the remainder (the two Eyprepocnemis species) showed the H3-H4 cluster distally located in the second-sized autosome. All 14 species with 2n masculine = 17 chromosomes (including three long metacentric autosome pairs, five acrocentric autosome pairs and an acrocentric X chromosome) carried an interstitial H3-H4 cluster in the short arm of the smallest of the three long metacentric pairs. These results suggest that chromosome location of H3-H4 histone gene clusters seem to be highly conservative in Acrididae grasshoppers. The change in H3-H4 location from the acrocentric medium-sized autosome in the 2n masculine = 23 karyotype to the long metacentric autosome in the 2n masculine = 17 karyotype is most parsimoniously explained by common ancestry, i.e. by the involvement of the H3-H4-carrying acrocentric in the centric fusion that gave rise to the smallest of the three long metacentric autosomes of 2n masculine = 17 species.

  6. The attractiveness fragment—AFLP analysis of local adaptation and sexual selection in a caeliferan grasshopper, Chorthippus biguttulus

    NASA Astrophysics Data System (ADS)

    Klappert, Kirsten; Butlin, Roger K.; Reinhold, Klaus

    2007-08-01

    Genetic variability among males is a necessary precondition for the evolution of female choice based on indirect genetic benefits. In addition to mutations and host parasite cycles, migration of locally adapted individuals offers an explanation for the maintenance of genetic variability. In a previous study, conducting a reciprocal transplant experiment on a grasshopper, Chorthippus biguttulus, we found that environmental conditions significantly influenced not only body condition but also an important trait of male calling song, the amplitude of song. Although not significant, all other analysed physical and courtship song traits and attractiveness were superior in native than in transferred males. Thus, we concluded that local adaptation has a slight but consistent influence on a range of traits in our study populations, including male acoustic attractiveness. In our present study, we scanned male grasshoppers from the same two populations for amplification fragment length polymorphism (AFLP) loci connected with acoustic attractiveness to conspecific females. We found greater differences in allele frequencies between the two populations, for some loci, than are expected from a balance between drift and gene flow. These loci are potentially connected with locally adapted traits. We examined whether these alleles show the proposed genotype environment interaction by having different associations with attractiveness in the two populations. One locus was significantly related to sexual attractiveness; however, this was independent of the males’ population affiliation. Future research on the evolution of female choice will benefit from knowledge of the underlying genetic architecture of male traits under intraspecific sexual selection, and the ‘population genomics’ approach can be a powerful tool for revealing this structure.

  7. Life-extending dietary restriction and ovariectomy result in similar feeding rates but different physiologic responses in grasshoppers.

    PubMed

    Drewry, M D; Williams, J M; Hatle, J D

    2011-10-01

    Dietary restriction (DR) and reduced reproduction each extend life span in many species. Females undergoing DR typically experience a reduction in their fecundity, which raises the question of whether the two treatments are actually extending life span in overlapping ways. Life span in lubber grasshoppers has been shown to be increased by DR, and separately by ovariectomy (OVX). Here, we test the combination of these on life span. If life extension by the two treatments are additive, it would suggest that they likely act through separate pathways. The experimental groups were: fully reproductive and fully fed (ShamFD); ovariectomized and fully fed (OVXFD); fully reproductive and restricted diet (ShamDR); and ovariectomized and restricted diet (OVXDR). The median life spans of these groups were: ShamFD=245 d, OVXFD=285 d, ShamDR=286 d, and OVXDR=322 d. Feeding rate for the OVXFD group was 64% of ad libitum, similar to the 70% of ad libitum that was used for ShamDR. We also measured hemolymph parameters of physiology in these same individuals. Hemolymph levels of vitellogenin (the egg yolk-precursor protein) were increased 5-fold by OVX, but were not affected by DR. In addition, hemolymph total anti-oxidant activity (per μg protein) was significantly reduced by OVX, but was not affected by DR. We show that OVX and DR produce different physiological responses in grasshoppers, despite life extensions and feeding levels that were not significantly different. These data suggest that OVX and DR might extend life span via distinct pathways.

  8. Chromosomal evolution of rDNA and H3 histone genes in representative Romaleidae grasshoppers from northeast Brazil

    PubMed Central

    2013-01-01

    Background Grasshoppers from the Romaleidae family are well distributed in the Neotropical Region and represent a diversified and multicolored group in which the karyotype is conserved. Few studies have been conducted to understand the evolutionary dynamics of multigene families. Here, we report the chromosomal locations of the 18S and 5S rDNA and H3 histone multigene families in four grasshopper species from the Romaleidae family, revealed by fluorescent in situ hybridization (FISH). Results The 5S rDNA gene was located in one or two chromosome pairs, depending on the species, and was found in a basal distribution pattern. Its chromosomal location was highly conserved among these species. The 18S rDNA was located in a single medium-sized chromosomal pair in all species analyzed. Its chromosomal location was near the centromere in the proximal or pericentromeric regions. The location of the H3 histone gene was highly conserved, with slight chromosomal location differences among some species. To our knowledge, this is the first report of a megameric chromosome carrying both the chromosomal markers 18S rDNA and the H3 histone genes, thereby expanding our understanding of such chromosomes. Conclusions The 5S and 18S rDNA genes and the H3 histone genes showed a conservative pattern in the species that we analyzed. A basal distribution pattern for 5S rDNA was observed with a location on the fourth chromosomal pair, and it was identified as the possible ancestral bearer. The 18S rDNA and H3 histone genes were restricted to a single pair of chromosomes, representing an ancestral pattern. Our results reinforce the known taxonomic relationships between Chromacris and Xestotrachelus, which are two close genera. PMID:24090216

  9. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae

    PubMed Central

    Liu, Xiao-Hong; Zhao, Ya-Hui; Zhu, Xue-Ming; Zeng, Xiao-Qing; Huang, Lu-Yao; Dong, Bo; Su, Zhen-Zhu; Wang, Yao; Lu, Jian-Ping; Lin, Fu-Cheng

    2017-01-01

    Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the vacuole/lysosome in eukaryotic cells. MoAtg14 in M. oryzae, a hitherto uncharacterized protein, is the highly divergent homolog of the yeast Atg14 and the mammal BARKOR. The MoATG14 deletion mutant exhibited collapse in the center of the colonies, poor conidiation and a complete loss of virulence. Significantly, the ΔMoatg14 mutant showed delayed breakdown of glycogen, less lipid bodies, reduced turgor pressure in the appressorium and impaired conidial autophagic cell death. The autophagic process was blocked in the ΔMoatg14 mutant, and the autophagic degradation of the marker protein GFP-MoAtg8 was interrupted. GFP-MoAtg14 co-localized with mCherry-MoAtg8 in the aerial hypha. In addition, a conserved coiled-coil domain was predicted in the N-terminal region of the MoAtg14 protein, a domain which could mediate the interaction between MoAtg14 and MoAtg6. The coiled-coil domain of the MoAtg14 protein is essential for its function in autophagy and pathogenicity. PMID:28067330

  10. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack.

    PubMed Central

    Keith, B; Dong, X N; Ausubel, F M; Fink, G R

    1991-01-01

    We have isolated cDNAs from two distinct genes encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) in Arabidopsis thaliana. Predicted protein sequences from both genes, DHS1 and DHS2, and a potato DAHP synthase gene are highly related, but none shows significant sequence similarity to conserved microbial DAHP synthase proteins. Despite this structural difference, the DHS1 cDNA complements mutations in a yeast strain lacking DAHP synthase activity. DHS1 RNA levels increase in Arabidopsis leaves subjected either to physical wounding or to infiltration with pathogenic Pseudomonas syringae strains. DHS2 RNA levels are not increased by these treatments, suggesting that the DHS1 and DHS2 proteins fulfill different physiological functions. Other enzymes in the Arabidopsis aromatic pathway are also encoded by duplicated genes, an arrangement that may allow independent regulation of aromatic amino acid biosynthesis by distinct physiological requirements such as protein synthesis and secondary metabolism. The presence of amino-terminal extensions characteristic of chloroplast transit peptides on DHS1 and DHS2 suggests that both proteins may be targeted to the chloroplast. Images PMID:1681544

  11. Discrimination between Candida albicans and Other Pathogenic Species of the Genus Candida by Their Differential Sensitivities to Toxins of a Panel of Killer Yeasts

    PubMed Central

    Buzzini, P.; Martini, A.

    2001-01-01

    The differential sensitivities to toxins produced by a short panel of four killer yeasts allowed discrimination between 91 strains of the yeast Candida albicans and 223 non-C. albicans Candida strains. One hundred percent of C. albicans isolates exhibited negative results to the toxin panel, while 100% of non-C. albicans cultures gave well-defined and reproducible positive results to at least one of the four killer toxins. Among C. albicans strains only 96 and 87% gave germ tube (GT)- and chlamydospore-positive results, respectively. In addition a few GT-false-positive strains were detected among non-C. albicans isolates. Susceptibility to the toxin panel is apparently expressed more consistently than either GT or chlamydospore production and may constitute a promising basis for a new simple and easy-to-use procedure for routine discrimination between the species C. albicans and other species of the genus Candida. PMID:11526179

  12. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex.

    PubMed

    Canessa, Paulo; Schumacher, Julia; Hevia, Montserrat A; Tudzynski, Paul; Larrondo, Luis F

    2013-01-01

    Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more

  13. Determination of Water-Soluble Components of Abdominal Secretion of Grasshopper (Chorthippus spp.) by GC/MS/MS in Search for Potential Wound Healing Agents.

    PubMed

    Buszewska-Forajta, Magdalena; Struck-Lewicka, Wiktoria; Bujak, Renata; Siluk, Danuta; Kaliszan, Roman

    2014-01-01

    Wound healing is still a serious medical problem due to process complexity and lack of effective medicaments. This is particularly true in the treatment of wounds arising in the course of such diseases as AIDS or diabetes. Therefore, scientific efforts are focused on the search for new compounds of natural origin, which could be used as medicines or evaluated for subsequent drug design. In folk medicine, grasshopper (Chorthippus spp.) abdominal secretion has been used to accelerate the wound healing process. In this context, the knowledge of the composition of grasshopper abdominal secretion is crucial. The aim of this study was to determine the main water-soluble components of grasshopper abdominal secretion with the use of GC/MS/MS. Liquid-liquid extraction was used as a pretreatment method to clean up, concentrate and fractionate compounds from the complex insect matrix. To obtain more stable and volatile compounds, necessary for GC/MS/MS analysis, a double-step derivatization process was carried out with the use of methoxyamine hydrochloride and a mixture of bis-N,O-trimethylsilyl trifluoroacetamide and chlorotrimethylsilane. As a result, 2,108 compounds were identified, mainly as amino acids, carbohydrates and organic acids. Some of the identified compounds are emphasized due to antimicrobial, antifungal or antioxidant activities reported in the literature. Moreover, a set of compounds characteristic for Chorthippus spp. samples has been selected. In the last part of the study, a statistical analysis was performed to demonstrate differences in composition of aqueous fractions of abdominal secretions from grasshoppers collected at two distant locations: Starogard Gdański and Łubianka meadows.

  14. Gas-liquid chromatographic and gas-liquid-mass spectometric determination of fenvalerate and permethrin residues in grasshoppers and duck tissue samples

    USGS Publications Warehouse

    Reichel, W.L.; Kolbe, E.J.; Stafford, C.J.

    1981-01-01

    A procedure is described for determining fenvalerate and permethrin residues in grasshoppers and duck tissues. Samples are Soxhlet-extracted with hexane and cleaned up by gel permeation chromatography with an in-line alumina column. Samples are analyzed by gas-liquid chromatography with electron capture detection, and confirmed by gas-liquid chromatography-mass spectrometry. The average recovery from fortified tissues was 97%.

  15. Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development.

    PubMed

    Wu, Hui-Wen; Lin, Shih-Shun; Chen, Kuan-Chun; Yeh, Shyi-Dong; Chua, Nam-Hai

    2010-01-01

    Helper component-proteinase (HC-Pro), the gene-silencing suppressor of Potyvirus spp., interferes with microRNA (miRNA) and short-interfering RNA (siRNA) pathways. Our previous studies showed that three mutations of highly conserved amino acids of HC-Pro, R(180)I (mutation A), F(205)L (B), and E(396)N (C), of Zucchini yellow mosaic virus (ZYMV) affect symptom severity and viral pathogenicity. The mutant ZYMV GAC (ZGAC) with double mutations, R(180)I/E(396)N, induces transient leaf mottling in host plants followed by recovery. This mutant confers complete cross protection against subsequent infection by the parental ZYMV (ZG) strain. Here, we sought to obtain molecular evidence on the roles of the three highly conserved amino acids of HC-Pro in miRNA and siRNA pathways using transgenic Arabidopsis plants expressing comparable levels of wild-type and mutant HC-Pro proteins. We demonstrated that amino acid residues 180, 205, and 396 of HC-Pro are critical for suppression of miRNA, trans-acting siRNA (ta-siRNA), and virus-induced gene silencing (VIGS) pathways but not for sense-post transcriptional gene silencing (s-PTGS). Because the HC-Pro double mutant (R(180)I/E(396)N) does not interfere with miRNA and ta-siRNA pathways, the ZGAC mutant virus elicits only attenuated symptoms. Furthermore, the recovery seen on ZGAC-infected plants likely results from the weak VIGS suppression by the HC-Pro double AC mutant. Thus, through manipulating these three conserved amino acids on HC-Pro, symptom severity of diseases caused by Potyvirus spp. can be modulated to generate useful cross protectants for field application. Although some of our mutated HC-Pro proteins do not interfere with miRNA and ta-siRNA pathways, they still retain the ability to suppress s-PTGS.

  16. Biological and ecological evidences suggest Stipa krylovii (Pooideae), contributes to optimal growth performance and population distribution of the grasshopper Oedaleus asiaticus.

    PubMed

    Huang, X B; McNeill, M R; Ma, J C; Qin, X H; Tu, X B; Cao, G C; Wang, G J; Nong, X Q; Zhang, Z H

    2017-01-31

    Oedaleus asiaticus Bey. Bienko is a significant grasshopper pest species occurring in north Asian grasslands. Outbreaks often result in significant loss in grasses and economic losses. Interestingly, we found this grasshopper was mainly restricted to Stipa-dominated grassland. We suspected this may be related to the dominant grasses species, Stipa krylovii Roshev, and hypothesized that S. krylovii contributes to optimal growth performance and population distribution of O. asiaticus. A 4 year investigation showed that O. asiaticus density was positively correlated to the above-ground biomass of S. krylovii and O. asiaticus growth performance variables (survival rate, size, growth rate) were significantly higher in Stipa-dominated grassland. A feeding trial also showed that O. asiaticus had a higher growth performance when feeding exclusively on S. krylovii. In addition, the choice, consumption and the efficiency of conversion of ingested food (ECI) by O. asiaticus was highest for S. krylovii compared with other plant species found in the Asian grasslands. These ecological and biological traits revealed why O. asiaticus is strongly associated with Stipa-dominated grasslands. We concluded that the existence of S. krylovii benefited the growth performance and explained the distribution of O. asiaticus. These results are useful for improved pest management strategies and developing guidelines for the monitoring of grasshopper population dynamics against the background of vegetation succession and changing plant communities in response to activities such as grazing, fire and climate change.

  17. Life-extending Dietary Restriction Reduces Oxidative Damage of Proteins in Grasshoppers but Does Not Alter Allocation of Ingested Nitrogen to Somatic Tissues.

    PubMed

    Heck, Matthew J; Pehlivanovic, Mirna; Purcell, Jennifer U; Hahn, Daniel A; Hatle, John D

    2016-06-15

    Dietary restriction (DR) extends life span and reduces reproduction in most animals. The disposable soma hypothesis suggests that this longevity is the result of reduced investment in reproduction and increased nutrient allocation to the soma, permitting an increase in cellular maintenance. To investigate the role of nutrient allocation upon life-extending DR, tissue-specific nitrogen allocation was tracked in grasshoppers (Romalea microptera) upon a full or restricted (60% of full) diet. In addition, carbonyl (oxidized protein) assays addressed tissue maintenance. To develop a labeled diet on which grasshoppers could thrive, hydroponically grown Romaine lettuce was enriched with (15)N. This allowed quantification of nitrogen allocation upon a normal or restricted diet. There was a 50% decrease in reproductive investment upon DR. At the same time, relative allocation of (15)N to the ovary did not change. Most important, relative allocation was similar between restricted and full diet grasshoppers for somatic tissues (ie, mandibular and femur muscle, dried hemolymph, gut, and fat body). Carbonyl assays of muscles, hemolymph, and gut revealed an overall reduction in protein oxidation upon DR. These data suggest that DR does not alter nutrient allocation but does reduce protein oxidation, an observation that is inconsistent with the basic predictions of the disposable soma hypothesis.

  18. Activation‐Induced Killer Cell Immunoglobulin‐like Receptor 3DL2 Binding to HLA–B27 Licenses Pathogenic T Cell Differentiation in Spondyloarthritis

    PubMed Central

    Ridley, Anna; Hatano, Hiroko; Wong‐Baeza, Isabel; Shaw, Jacqueline; Matthews, Katherine K.; Al‐Mossawi, Hussein; Ladell, Kristin; Price, David A.; Bowness, Paul

    2016-01-01

    Objective In the spondyloarthritides (SpA), increased numbers of CD4+ T cells express killer cell immunoglobulin‐like receptor 3DL2 (KIR‐3DL2). The aim of this study was to determine the factors that induce KIR‐3DL2 expression, and to characterize the relationship between HLA–B27 and the phenotype and function of KIR‐3DL2–expressing CD4+ T cells in SpA. Methods In total, 34 B27+ patients with SpA, 28 age‐ and sex‐matched healthy controls (20 B27− and 8 B27+), and 9 patients with rheumatoid arthritis were studied. KIR-3DL2 expression and other phenotypic characteristics of peripheral blood and synovial fluid CD4+ T cells were studied by flow cytometry, quantitative polymerase chain reaction, and Western blotting. T cell receptor clonality was determined by template‐switch anchored reverse transcription–polymerase chain reaction and sequencing analysis. Cytokines were measured by enzyme‐linked immunosorbent assay. Results Cellular activation induced KIR‐3DL2 expression on both naive and effector CD4+ T cells. KIR‐3DL2 binding to B27+ cells promoted expression of KIR‐3DL2, the Th17‐specific transcription factor retinoic acid receptor–related orphan nuclear receptor γt, and the antiapoptotic factor B cell lymphoma 2. KIR‐3DL2+CD4+ T cells in patients with ankylosing spondylitis were oligoclonal and enriched for markers of T cell activation and for the gut homing receptor CCR9. In the presence of B27+ antigen‐presenting cells, KIR‐3DL2+CD4+ T cells produced less interleukin‐2 (IL‐2) but more IL‐17. This effect was blocked by HC10, an antibody that inhibits the binding of KIR‐3DL2 to B27 heavy chains. Conclusion KIR‐3DL2 binding to HLA–B27 licenses Th17 cell differentiation in SpA. These findings raise the therapeutic potential of targeting HLA–B27–KIR‐3DL2 interactions for the treatment of B27+ patients with SpA. PMID:26841353

  19. Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers.

    PubMed

    Carstens, Bryan C; Knowles, L Lacey

    2007-06-01

    Estimating phylogenetic relationships among closely related species can be extremely difficult when there is incongruence among gene trees and between the gene trees and the species tree. Here we show that incorporating a model of the stochastic loss of gene lineages by genetic drift into the phylogenetic estimation procedure can provide a robust estimate of species relationships, despite widespread incomplete sorting of ancestral polymorphism. This approach is applied to a group of montane Melanoplus grasshoppers for which genealogical discordance among loci and incomplete lineage sorting obscures any obvious phylogenetic relationships among species. Unlike traditional treatments where gene trees estimated using standard phylogenetic methods are implicitly equated with the species tree, with the coalescent-based approach the species tree is modeled probabilistically from the estimated gene trees. The estimated species phylogeny (the ESP) is calculated for the grasshoppers from multiple gene trees reconstructed for nuclear loci and a mitochondrial gene. This empirical application is coupled with a simulation study to explore the performance of the coalescent-based approach. Specifically, we test the accuracy of the ESP given the data based on analyses of simulated data matching the multilocus data collected in Melanoplus (i.e., data were simulated for each locus with the same number of base pairs and locus-specific mutational models). The results of the study show that ESPs can be computed using the coalescent-based approach long before reciprocal monophyly has been achieved, and that these statistical estimates are accurate. This contrasts with analyses of the empirical data collected in Melanoplus and simulated data based on concatenation of multiple loci, for which the incomplete lineage sorting of recently diverged species posed significant problems. The strengths and potential challenges associated with incorporating an explicit model of gene

  20. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum.

    PubMed

    Marín, Patricia; Magan, Naresh; Vázquez, Covadonga; González-Jaén, María Teresa

    2010-08-01

    The effects of ecophysiological factors, temperature and solute potential, on both the growth and the regulation of the fumonisin biosynthetic FUM1 gene were studied and compared in one isolate each of the two closely related fumonisin-producing and maize pathogens Fusarium verticillioides and Fusarium proliferatum. The effect of solute potential and temperature was examined on in vitro mycelia growth and on the expression of the FUM1 gene, quantified by species-specific real-time reverse transcriptase-PCR assays. Although both isolates showed similar two-dimensional profiles of growth, for F. verticillioides, optimal growth conditions were maintained at higher temperatures and lower solute potential values. FUM1 gene expression was markedly induced at 20 degrees C in both isolates, under suboptimal conditions for growth; however, their expression patterns differed in relation to solute potential. Whereas FUM1 expression was induced in response to increasing water stress in the isolate of F. verticillioides, the F. proliferatum one showed a stable expression pattern regardless of water potential conditions. These results suggest a differential regulation of fumonisin biosynthesis in these isolates of the two species that might be related to their different host range, and play an ecological role. Additionally, environmental conditions leading to water stress (drought) might result in increased risk of fumonisin contamination of maize caused by F. verticillioides.

  1. Development of a PCR-restriction fragment length polymorphism protocol for rapid detection and differentiation of four cockroach vectors (group I "Dirty 22" species) responsible for food contamination and spreading of foodborne pathogens: public health importance.

    PubMed

    Sulaiman, Irshad M; Anderson, Mickey; Khristova, Marina; Tang, Kevin; Sulaiman, Nikhat; Phifer, Edwin; Simpson, Steven; Kerdahi, Khalil

    2011-11-01

    Assessing the adulteration of food products and the presence of filth and extraneous materials is one of the measures that the U.S. Food and Drug Administration (FDA) utilizes in implementing regulatory actions of public health importance. To date, 22 common pest species (also known as the "Dirty 22" species) have been regarded by this agency as the spreaders of foodborne diseases. We have further categorized the Dirty 22 species into four groups: I has four cockroach species, II has two ant species, III has 12 fly species, and IV has four rodent species. The presence of any Dirty 22 species is also considered an indicator of unsanitary conditions in food processing and storage facilities. In this study, we describe the development of a two-step nested PCR protocol to amplify the small subunit ribosomal gene of group I Dirty 22 species that include four cockroach species: Blattella germanica, Blatta orientalis, Periplaneta americana, and Supella longipalpa, along with the development of a PCR-restriction fragment length polymorphism method for rapid detection and differentiation of these violative species. This method will be utilized when the specimen cannot be identified with conventional microscopic taxonomic methods, especially when only small body parts are separated and recovered from food samples for analysis or when these body parts are in a decomposed state. This new PCR-restriction fragment length polymorphism will provide correct identification of group I Dirty 22 species; this information can then be used in regulation and prevention of foodborne pathogens.

  2. Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars

    PubMed Central

    Wang, Sibao; Fang, Weiguo; Wang, Chengshu; St. Leger, Raymond J.

    2011-01-01

    An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene. PMID:21731492

  3. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars.

    PubMed

    Wang, Sibao; Fang, Weiguo; Wang, Chengshu; St Leger, Raymond J

    2011-06-01

    An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene.

  4. Do Exogenous DNA Double-Strand Breaks Change Incomplete Synapsis and Chiasma Localization in the Grasshopper Stethophyma grossum?

    PubMed Central

    2016-01-01

    Meiotic recombination occurs as a programmed event that initiates by the formation of DNA double-strand breaks (DSBs) that give rise to the formation of crossovers that are observed as chiasmata. Chiasmata are essential for the accurate chromosome segregation and the generation of new combinations of parental alleles. Some treatments that provoke exogenous DSBs also lead to alterations in the recombination pattern of some species in which full homologous synapsis is achieved at pachytene. We have carried out a similar approach in males of the grasshopper Stethophyma grossum, whose homologues show incomplete synapsis and proximal chiasma localization. After irradiating males with γ rays we have studied the distribution of both the histone variant γ-H2AX and the recombinase RAD51. These proteins are cytological markers of DSBs at early prophase I. We have inferred synaptonemal complex (SC) formation via identification of SMC3 and RAD 21 cohesin subunits. Whereas thick and thin SMC3 filaments would correspond to synapsed and unsynapsed regions, the presence of RAD21 is only restricted to synapsed regions. Results show that irradiated spermatocytes maintain restricted synapsis between homologues. However, the frequency and distribution of chiasmata in metaphase I bivalents is slightly changed and quadrivalents were also observed. These results could be related to the singular nuclear polarization displayed by the spermatocytes of this species. PMID:28005992

  5. Disparate molecular evolution of two types of repetitive DNAs in the genome of the grasshopper Eyprepocnemis plorans

    PubMed Central

    Teruel, M; Ruíz-Ruano, F J; Marchal, J A; Sánchez, A; Cabrero, J; Camacho, J PM; Perfectti, F

    2014-01-01

    Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones. PMID:24346496

  6. Discrimination of grasshopper (Orthoptera: Acrididae) diet and niche overlap using next-generation sequencing of gut contents

    PubMed Central

    McClenaghan, Beverly; Gibson, Joel F; Shokralla, Shadi; Hajibabaei, Mehrdad

    2015-01-01

    Species of grasshopper have been divided into three diet classifications based on mandible morphology: forbivorous (specialist on forbs), graminivorous (specialist on grasses), and mixed feeding (broad-scale generalists). For example, Melanoplus bivittatus and Dissosteira carolina are presumed to be broad-scale generalists, Chortophaga viridifasciata is a specialist on grasses, and Melanoplus femurrubrum is a specialist on forbs. These classifications, however, have not been verified in the wild. Multiple specimens of these four species were collected, and diet analysis was performed using DNA metabarcoding of the gut contents. The rbcLa gene region was amplified and sequenced using Illumina MiSeq sequencing. Levins’ measure and the Shannon–Wiener measure of niche breadth were calculated using family-level identifications and Morisita’s measure of niche overlap was calculated using operational taxonomic units (OTUs). Gut contents confirm both D. carolina and M. bivittatus as generalists and C. viridifasciata as a specialist on grasses. For M. femurrubrum, a high niche breadth was observed and species of grasses were identified in the gut as well as forbs. Niche overlap values did not follow predicted patterns, however, the low values suggest low competition between these species. PMID:26356479

  7. The B chromosome polymorphism of the grasshopper Eyprepocnemis plorans in North Africa: III. mutation rate of B chromosomes.

    PubMed

    Bakkali, M; Camacho, J P M

    2004-05-01

    B chromosome variation in nine Moroccan populations of the grasshopper Eyprepocnemis plorans was analysed for 3 consecutive years. In addition to B1, which was the predominant B chromosome in all nine populations, we found 15 other B variants, albeit at very low frequency. Eight variants were found in adults caught in the wild, four appeared in adults reared in the laboratory and seven were found in embryo progeny of controlled crosses between a 0B male and a B-carrying female. Some variants were found in more than one kind of material. At least the seven B variants that appeared in embryo progeny of females carrying a different B type arose de novo through mutation of the maternal B chromosome. The mutation rate of B chromosomes was 0.73%, on average, which explains the high variety of morphs and banding patterns found. The most frequent de novo mutations observed in these chromosomes were centromere misdivision with or without chromatid nondisjunction, which generates iso-B-chromosomes or telocentric Bs, respectively, as well as translocations with A and B chromosomes and deletions. But the whole variation observed, including that found in adult individuals, suggests that other mutations such as duplications, inversions and centric fusions do usually affect B chromosomes. Finally, B chromosome mutation rate was remarkably similar in both Moroccan and Spanish populations, which suggests that it might be dependent on B chromosome intrinsic factors.

  8. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper

    PubMed Central

    Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J

    2015-01-01

    Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826

  9. The effect of discontinuous gas exchange on respiratory water loss in grasshoppers (Orthoptera: Acrididae) varies across an aridity gradient.

    PubMed

    Huang, Shu-Ping; Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-08-01

    The significance of discontinuous gas-exchange cycles (DGC) in reducing respiratory water loss (RWL) in insects is contentious. Results from single-species studies are equivocal in their support of the classic 'hygric hypothesis' for the evolution of DGC, whereas comparative analyses generally support a link between DGC and water balance. In this study, we investigated DGC prevalence and characteristics and RWL in three grasshopper species (Acrididae, subfamily Pamphaginae) across an aridity gradient in Israel. In order to determine whether DGC contributes to a reduction in RWL, we compared the DGC characteristics and RWL associated with CO2 release (transpiration ratio, i.e. the molar ratio of RWL to CO2 emission rates) among these species. Transpiration ratios of DGC and continuous breathers were also compared intraspecifically. Our data show that DGC characteristics, DGC prevalence and the transpiration ratios correlate well with habitat aridity. The xeric-adapted Tmethis pulchripennis exhibited a significantly shorter burst period and lower transpiration ratio compared with the other two mesic species, Ocneropsis bethlemita and Ocneropsis lividipes. However, DGC resulted in significant water savings compared with continuous exchange in T. pulchripennis only. These unique DGC characteristics for T. pulchripennis were correlated with its significantly higher mass-specific tracheal volume. Our data suggest that the origin of DGC may not be adaptive, but rather that evolved modulation of cycle characteristics confers a fitness advantage under stressful conditions. This modulation may result from morphological and/or physiological modifications.

  10. Ovariectomy in grasshoppers increases somatic storage, but proportional allocation of ingested nutrients to somatic tissues is unchanged.

    PubMed

    Judd, Evan T; Wessels, Frank J; Drewry, Michelle D; Grove, Matthew; Wright, Katharine; Hahn, Daniel A; Hatle, John D

    2011-12-01

    Reduced reproduction increases storage and extends lifespan in several animal species. The disposable soma hypothesis suggests this life extension occurs by shifting allocation of ingested nutrients from reproduction to the soma. A great deal of circumstantial evidence supports this hypothesis, but no direct tracking of nutrients has been performed in animals that are long-lived because of direct reduction in reproduction. Here, we use the stable isotopes to track carbon and nitrogen from ingestion to somatic organs in long-lived, ovariectomized grasshoppers. Three estimates of somatic storage (viz., quantity of hemolymph storage proteins, amount of femur muscle carbohydrates, and size of the fat body) all doubled upon ovariectomy. In stark contrast, ovariectomy did not increase the proportion of these tissues that were made from recently ingested foods. In other words, the physiology underlying relative allocation to these somatic tissues was not affected by ovariectomy. Thus, at the level of whole tissue storage, these results are consistent with a trade-off between reproduction and longevity. In contrast, our stable isotope data are inconsistent with the prediction that enhanced storage in ovariectomized females results from a physiological shift in allocation of ingested nutrients.

  11. Individual size variation and population stability in a seasonal environment: a discrete-time model and its calibration using grasshoppers.

    PubMed

    Filin, Ido; Ovadia, Ofer

    2007-11-01

    Much recent literature is concerned with how variation among individuals (e.g., variability in their traits and fates) translates into higher-level (i.e., population and community) dynamics. Although several theoretical frameworks have been devised to deal with the effects of individual variation on population dynamics, there are very few reports of empirically based estimates of the sign and magnitude of these effects. Here we describe an analytical model for size-dependent, seasonal life cycles and evaluate the effect of individual size variation on population dynamics and stability. We demonstrate that the effect of size variation on the population net reproductive rate varies in both magnitude and sign, depending on season length. We calibrate our model with field data on size- and density-dependent growth and survival of the generalist grasshopper Melanoplus femurrubrum. Under deterministic dynamics (fixed season length), size variation impairs population stability, given naturally occurring densities. However, in the stochastic case, where season length exhibits yearly fluctuations, size variation reduces the variance in population growth rates, thus enhancing stability. This occurs because the effect of size variation on net reproductive rate is dependent on season length. We discuss several limitations of the current model and outline possible routes for future model development.

  12. The auditory system of non-calling grasshoppers (Melanoplinae: Podismini) and the evolutionary regression of their tympanal ears.

    PubMed

    Lehmann, Gerlind U C; Berger, Sandra; Strauss, Johannes; Lehmann, Arne W; Pflüger, Hans-Joachim

    2010-11-01

    Reduction of tympanal hearing organs is repeatedly found amongst insects and is associated with weakened selection for hearing. There is also an associated wing reduction, since flight is no longer required to evade bats. Wing reduction may also affect sound production. Here, the auditory system in four silent grasshopper species belonging to the Podismini is investigated. In this group, tympanal ears occur but sound signalling does not. The tympanal organs range from fully developed to remarkably reduced tympana. To evaluate the effects of tympanal regression on neuronal organisation and auditory sensitivity, the size of wings and tympana, sensory thresholds and sensory central projections are compared. Reduced tympanal size correlates with a higher auditory threshold. The threshold curves of all four species are tuned to low frequencies with a maximal sensitivity at 3-5 kHz. Central projections of the tympanal nerve show characteristics known from fully tympanate acridid species, so neural elements for tympanal hearing have been strongly conserved across these species. The results also confirm the correlation between reduction in auditory sensitivity and wing reduction. It is concluded that the auditory sensitivity of all four species may be maintained by stabilising selective forces, such as predation.

  13. Re-examination of a proposed case of stasipatric speciation: phylogeography of the Australian morabine grasshoppers (Vandiemenella viatica species group).

    PubMed

    Kawakami, Takeshi; Butlin, Roger K; Adams, Mark; Saint, Kathleen M; Paull, David J; Cooper, Steven J B

    2009-08-01

    Karyotypic differences have been used for delimiting populations or species, although whether these mutations provide strong barriers to gene flow between populations and promote speciation remains contentious. In this study, we assessed whether 11 chromosomal races of Australian morabine grasshoppers (Vandiemenella viatica species group) represent genetically distinct populations by analyses of cytological and allozyme (35 loci) data and DNA sequences of the elongation factor-1 alpha (EF-1alpha), anonymous Mvia11, and mitochondrial cytochrome c oxidase subunit I (COI) loci. While the Vandiemenella chromosomal taxa generally represent genetically distinct units, a substantial portion of the total genetic variation in our samples was not explained by the chromosomal variation. Mantel tests indicated that Vandiemenella populations were spatially structured and have maintained gene flow at a local scale within each of the taxa. The group was subdivided into 13 genetic clusters; four chromosomal taxa comprised single exclusive clusters, while others comprised more than one cluster or clusters shared with other taxa. Boundaries of these cryptic population subdivisions correspond with several biogeographical barriers, such as straits, gulfs, the Murray River, and an ancient mega-lake, Lake Bungunnia. The viatica species group was previously proposed to have diversified without major geographical separation based on the stasipatric speciation model; however, the present study suggests the involvement of allopatric fragmentation. Given extensive nonmonophyly of chromosomal taxa and incomplete barriers to gene flow among taxa, all Vandiemenella chromosomal taxa and genetically distinct populations within chromosomal taxa, except Vandiemenella pichirichi, should be regarded as populations of one species: Vandiemenella viatica.

  14. Organization of some repetitive DNAs and B chromosomes in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) (Orthoptera, Acrididae, Leptysminae)

    PubMed Central

    Anjos, Allison; Loreto, Vilma; Cabral-de-Mello, Diogo C.

    2016-01-01

    Abstract B chromosomes occur in approximately 15% of eukaryotes and are usually heterochromatic and rich in repetitive DNAs. Here we describe characteristics of a B chromosome in the grasshopper Eumastusia koebelei koebelei (Rehn, 1909) through classical cytogenetic methods and mapping of some repetitive DNAs, including multigene families, telomeric repeats and a DNA fraction enriched with repetitive DNAs obtained from DOP-PCR. Eumastusia koebelei koebelei presented 2n=23, X0 and, in one individual, two copies of the same variant of a B chromosome were noticed, which are associated during meiosis. The C-positive blocks were located in the pericentromeric regions of the standard complement and along the entire length of the B chromosomes. Some G+C-rich heterochromatic blocks were noticed, including conspicuous blocks in the B chromosomes. The mapping of 18S rDNA and U2 snDNA revealed only autosomal clusters, and the telomeric probe hybridized in terminal regions. Finally, the DOP-PCR probe obtained from an individual without a B chromosome revealed signals in the heterochromatic regions, including the entire length of the B chromosome. The possible intraspecific origin of the B chromosomes, due to the shared pool of repetitive DNAs between the A and B chromosomes and the possible consequences of their association are discussed. PMID:27551344

  15. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    PubMed

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated.

  16. Enteric pathogens and gut function: role of cytokines and STATs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut harbors the largest immune system in the body. The mucosa is considered to be the initial site of interaction with commensal and pathogenic organisms; therefore, it is the first line of defense against pathogens. In response to the invasion of various pathogens, naïve CD4+ cells differenti...

  17. Pathogene Mikroorganismen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin

    Infektionen, die vom Tier auf den Menschen übertragen werden, werden als Zoonosen bezeichnet. Pathogene Mikroorganismen können entweder durch Mensch-Mensch, Mensch-Tier-Kontakt oder durch Kontakt mit kontaminierten Vektoren übertragen werden [39]. Vektoren können einerseits belebt (z. B. blutsaugende Insekten), andererseits unbelebt sein. Kontaminierte Lebensmittel und Wasser gehören zu den wichtigsten unbelebten Vektoren. Neben Lebensmitteln können aber auch kontaminierte Gegenstände oder der Kontakt mit Kontaminationsquellen in der Umwelt Auslöser von Krankheitsfällen sein. Weltweit sind mehr als 1400 krankheitsverursachende biologische Agentien bekannt, von denen über 60 % ein zoonotisches Potenzial aufweisen. Als Ergebnis von Expertengesprächen wurde kürzlich berichtet, dass etwa 3 bis 4, meist virale, neu auftretende Infektionskrankheiten ("emerging diseases“) pro Jahr erwartet werden können [15]. Es handelt sich bei diesen Vorgängen aber nicht nur um das Auftauchen vollkommen neuer oder unbeschriebener Spezies, sondern auch um evolutionsbedingte Anpassungen von mikrobiellen Populationen an neue Bedingungen in ihrem Ökosystem [7]. Molekulare Analysen an Umweltchlamydien erbrachten Hinweise, dass die Evolution erste genetische Pathogenitätsmerkmale in dieser Spezies schon vor 700 Mio. Jahren entstehen ließ [14]. Viele Faktoren befeuern den Prozess der Anpassung, unter anderem auch alle Strategien, mit denen der Mensch seit Jahrtausenden versucht, Lebensmittel sicher und haltbar zu machen. Als die treibenden Kräfte des Auftretens neuer Krankheitserreger werden in der Gegenwart vor allem das sich ändernde Weltklima, die globalen Warenströme und die sich verändernden Konsumgewohnheiten genannt. Es steht auch außer Zweifel, dass viele dieser Erreger Tiere als ihr natürliches Reservoir haben werden, d. h. Zoonosen im klassischen Sinne sind [15].

  18. Goose Toll-like receptor 7 (TLR7), myeloid differentiation factor 88 (MyD88) and antiviral molecules involved in anti-H5N1 highly pathogenic avian influenza virus response.

    PubMed

    Wei, Liangmeng; Jiao, Peirong; Yuan, Runyu; Song, Yafen; Cui, Pengfei; Guo, Xuchen; Zheng, Bofang; Jia, Weixin; Qi, Wenbao; Ren, Tao; Liao, Ming

    2013-05-15

    In mammals, Toll-like receptor 7 (TLR7) is an important membrane-bound receptor triggered by antiviral compounds and single-stranded RNA. It is implicated in the immune response to viruses such as influenza virus. It was not known whether geese, a natural host for avian influenza viruses, possess a homologue of mammalian TLR7 for recognizing avian influenza virus. In this study, we cloned the full-length of goose TLR7 and partial sequences of its adaptor protein, myeloid differentiation factor 88 (MyD88), some antiviral molecules such as RNA-dependent protein kinase (PKR) and 2',5'-oligoadenylate synthetase (OAS). Goose TLR7 has a protein secondary structure identical to that of mammals, consisting of several leucine-rich domains, a transmembrane domain, and Toll/interleukin-1 receptor domain. To further understand whether the MyD88-dependent pathway of TLR7 is involved in the antiviral innate immune response against highly pathogenic avian influenza virus (HPAIV) infection in geese, we inoculated geese with an H5N1 HPAIV isolated from ducks in 2004. The virus, A/Duck/Guangdong/212/2004, replicated in various tissues resulting in 40% mortality. Quantitative real-time PCR analysis showed upregulation of mRNA transcripts for TLR7, MyD88, PKR and OAS in the lungs of geese at 1, 2 and 3 days post-inoculation. Therefore, the MyD88-dependent pathway of TLR7 was involved in the early stage of antiviral innate immune response in geese during H5N1 HPAIV infection.

  19. Development of an EvaGreen-based multiplex real-time PCR assay with melting curve analysis for simultaneous detection and differentiation of six viral pathogens of porcine reproductive and respiratory disorder.

    PubMed

    Rao, Pinbin; Wu, Haigang; Jiang, Yonghou; Opriessnig, Tanja; Zheng, Xiaowen; Mo, Yecheng; Yang, Zongqi

    2014-11-01

    Concurrent infection of pigs with two or more pathogens is common in pigs under intensive rearing conditions. Porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), Japanese encephalitis virus (JEV) and pseudorabies virus (PRV) are all associated with reproductive or respiratory disorders or both and can cause significant economic losses in pig production worldwide. An EvaGreen-based multiplex real-time PCR (EG-mPCR) with melting curve analysis was developed in this study for simultaneous detection and differentiation of these six viruses in pigs. This method is able to detect and distinguish PCV2, PPV, PRRSV, CSFV, JEV and PRV with the limits of detection ranging from 100 to 500 copies/μL, high reproducibility, and intra-assay and inter-assay variation ranging from 0.11 to 3.20%. After validation, a total of 118 field samples were tested by the newly developed EG-mPCR. PCV2 was identified in 23%, PPV in 15%, PRRSV in 17% and PRV in 5% of the samples. Concurrent PCV2 and PRRSV infection was detected in 6.7%, PCV2 and PPV in 5% and PPV2 and PRRSV infection was detected in 5% of the cases. The agreement of the EG-mPCR and conventional PCR tests was 99.2%. This EG-mPCR will be a useful, rapid, reliable and cost-effective alternative for routine surveillance testing of viral infections in pigs.

  20. Waves of parthenogenesis in the desert: evidence for the parallel loss of sex in a grasshopper and a gecko from Australia.

    PubMed

    Kearney, Michael; Blacket, Mark J; Strasburg, Jared L; Moritz, Craig

    2006-06-01

    The rarity of parthenogenesis, reproduction without sex, is a major evolutionary puzzle. To understand why sexual genetic systems are so successful in nature, we must understand why parthenogenesis sometimes evolves and persists. Here we use DNA sequence data to test for similarities in the tempo and mode of the evolution of parthenogenesis in a grasshopper and a lizard from the Australian desert. We find spectacular congruence between genetic and geographic patterns of parthenogenesis in these distantly related organisms. In each species, parthenogenesis evolved twice and appears to have expanded in parallel waves across the desert, suggesting a highly general selective force against sex.

  1. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  2. Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers.

    PubMed

    Palacios-Gimenez, O M; Marti, D A; Cabral-de-Mello, D C

    2015-09-01

    Sex chromosomes have evolved many times from morphologically identical autosome pairs, most often presenting several recombination suppression events, followed by accumulation of repetitive DNA sequences. In Orthoptera, most species have an X0♂ sex chromosome system. However, in the subfamily Melanoplinae, derived variants of neo-sex chromosomes (neo-XY♂ or neo-X1X2Y♂) emerged several times. Here, we examined the differentiation of neo-sex chromosomes in a Melanoplinae species with a neo-XY♂/XX♀ system, Ronderosia bergi, using several approaches: (i) classical cytogenetic analysis, (ii) mapping via fluorescent in situ hybridization of some selected repetitive DNA sequences and microdissected sex chromosomes, and (iii) immunolocalization of distinct histone modifications. The microdissected sex chromosomes were also used as sources for Polymerase chain reaction (PCR) amplification of RNA-coding multigene families, to study variants related to the sex chromosomes. Our data suggest that the R. bergi neo-Y has become differentiated after its formation by a Robertsonian translocation and inversions, and has accumulated repetitive DNA sequences. Interestingly, the ex autosomes incorporated into the neo-sex chromosomes retain some autosomal post-translational histone modifications, at least in metaphase I, suggesting that the establishment of functional modifications in neo-sex chromosomes is slower than their sequence differentiation.

  3. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change

    PubMed Central

    Beckmann, Björn C.; Purse, Bethan V.; Roy, David B.; Roy, Helen E.; Sutton, Peter G.; Thomas, Chris D.

    2015-01-01

    There are large variations in the responses of species to the environmental changes of recent decades, heightening interest in whether their traits may explain inter-specific differences in range expansions and contractions. Using a long-term distributional dataset, we calculated range changes of grasshoppers and crickets in Britain between the 1980s and the 2000s and assessed whether their traits (resource use, life history, dispersal ability, geographic location) explain relative performance of different species. Our analysis showed large changes in the distributions of some species, and we found a positive relationship between three traits and range change: ranges tended to increase for habitat generalists, species that oviposit in the vegetation above ground, and for those with a southerly distribution. These findings accord well with the nature of environmental changes over this period (climatic warming; reductions in the diversity and increases in the height of vegetation). However, the trait effects applied mainly to just two species, Conocephalus discolor and Metrioptera roeselii, which had shown the greatest range increases. Once they were omitted from the analysis, trait effects were no longer statistically significant. Previous studies on these two species emphasised wing-length dimorphism as the key to their success, resulting in a high phenotypic plasticity of dispersal and evolutionary-ecological feedback at their expanding range margins. This, combined with our results, suggests that an unusual combination of traits have enabled these two species to undertake extremely rapid responses to recent environmental changes. The fact that our results are dominated by two species only became apparent through cautious testing of the results’ robustness, not through standard statistical checks. We conclude that trait-based analyses may contribute to the assessment of species responses to environmental change and provide insights into underlying mechanisms

  4. Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change.

    PubMed

    Beckmann, Björn C; Purse, Bethan V; Roy, David B; Roy, Helen E; Sutton, Peter G; Thomas, Chris D

    2015-01-01

    There are large variations in the responses of species to the environmental changes of recent decades, heightening interest in whether their traits may explain inter-specific differences in range expansions and contractions. Using a long-term distributional dataset, we calculated range changes of grasshoppers and crickets in Britain between the 1980s and the 2000s and assessed whether their traits (resource use, life history, dispersal ability, geographic location) explain relative performance of different species. Our analysis showed large changes in the distributions of some species, and we found a positive relationship between three traits and range change: ranges tended to increase for habitat generalists, species that oviposit in the vegetation above ground, and for those with a southerly distribution. These findings accord well with the nature of environmental changes over this period (climatic warming; reductions in the diversity and increases in the height of vegetation). However, the trait effects applied mainly to just two species, Conocephalus discolor and Metrioptera roeselii, which had shown the greatest range increases. Once they were omitted from the analysis, trait effects were no longer statistically significant. Previous studies on these two species emphasised wing-length dimorphism as the key to their success, resulting in a high phenotypic plasticity of dispersal and evolutionary-ecological feedback at their expanding range margins. This, combined with our results, suggests that an unusual combination of traits have enabled these two species to undertake extremely rapid responses to recent environmental changes. The fact that our results are dominated by two species only became apparent through cautious testing of the results' robustness, not through standard statistical checks. We conclude that trait-based analyses may contribute to the assessment of species responses to environmental change and provide insights into underlying mechanisms, but

  5. Phytotoxic and antibacterial metabolites from Fusarium proliferatum ZS07 isolated from the gut of long-horned grasshoppers.

    PubMed

    Li, Shuai; Shao, Ming-Wei; Lu, Yi-Hui; Kong, Li-Chun; Jiang, Dong-Hua; Zhang, Ying-Lao

    2014-09-10

    In the proceeding of screening new bioactive natural products, the ethyl acetate extract of the fermentation broth of Fusarium proliferatum ZS07, a fungus residing in the gut of long-horned grasshoppers (Tettigonia chinensis), was found possessing selective phytotoxic activity against the radicle growth of Amaranthus retroflexus L. Bioactivity-guided fractionation lead to the isolation of six fungal metabolites 1-6, including a new polyketide derivate O-methylated SMA93 (2) and five known compounds SMA93 (1), rhodolamprometrin (3), radicinin (4), dehydroallogibberic acid (5), and 3-methyl-6,8-dihydroxyisocoumarin (6). Their structures were identified on the basis of spectroscopic analysis and by comparison of the corresponding data to those reported in the literature previously. Phytotoxic effects of the four isolated compounds 1-4 on the radicle growth of A. retroflexus L. seeds were investigated under laboratory conditions, and compounds 2 and 4 showed good phytotoxic activity in the concentration of 100 μg/mL, with the inhibition rates of 83.0 and 65.2%, respectively. Furthermore, the antibacterial activity of compounds 1-5 were evaluated against selected bacteria. Compounds 1-3 were found to possess potent antibacterial activity against Bacillus subtilis (ATCC 6633), with the minimum inhibitory concentration (MIC) values of 3.13-12.50 μg/mL, while Escherichia coli (ATCC 8739) and Salmonella typhimurium [CMCC(B) 50115] were not susceptible. These results suggest that the new polyketide derivate 2 and known compounds 1, 3, and 4 have potential to be used as biocontrol agents in agriculture.

  6. Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer ribosomal DNA sequences in Hesperotettix viridis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hesperotettix viridis grasshoppers (Orthoptera: Acrididae:Melanoplinae) exhibit intra-individual variation in both mitochondrial 12S-valine-16S and nuclear internal transcribed spacer (ITS) ribosomal DNA sequences. These findings violate core assumptions underlying DNA sequence data obtained via pol...

  7. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): morphological trait variations follow an ecogeographical rule

    PubMed Central

    Bai, Yi; Dong, Jia-Jia; Guan, De-Long; Xie, Juan-Ying; Xu, Sheng-Quan

    2016-01-01

    A quantitative analysis of wing variation in grasshoppers can help us to understand how environmental heterogeneity affects the phenotypic patterns of insects. In this study, geometric morphometric methods were used to measure the differences in wing shape and size of Trilophidia annulata among 39 geographical populations in China, and a regression analysis was applied to identify the major environmental factors contributing to the observed morphological variations. The results showed that the size of the forewing and hindwing were significantly different among populations; the shape of the forewing among populations can be divided into geographical groups, however hindwing shape are geographical overlapped, and populations cannot be divided into geographical groups. Environmental PCA and thin-plate spline analysis suggested that smaller individuals with shorter and blunter-tip forewings were mainly distributed in the lower latitudes and mountainous areas, where they have higher temperatures and more precipitation. Correspondingly, the larger-bodied grasshoppers, those that have longer forewings with a longer radial sector, are distributed in contrary circumstances. We conclude that the size variations in body, forewing and hindwing of T. annulata apparently follow the Bergmann clines. The importance of climatic variables in influencing morphological variation among populations, forewing shape of T. annulata varies along an environmental gradient. PMID:27597437

  8. Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes.

    PubMed

    Milani, Diogo; Cabral-de-Mello, Diogo Cavalcanti

    2014-01-01

    With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used fluorescent in situ hybridization (FISH) to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae), which harbors B chromosome. FISH revealed two main patterns: (i) exclusively scattered signals, and (ii) scattered and specific signals, forming evident blocks. The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C)30 was absent in heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the B chromosome more distinctive blocks for (GA)15 and (GAG)10. For A complement distinctive blocks were noticed for (A)30, (CA)15, (CG)15, (GA)15, (CAC)10, (CAA)10, (CGG)10, (GAA)10, (GAC)10 and (GATA)8. These results revealed an intense spreading of microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers including the B chromosomes.

  9. Protein accumulation underlying lifespan extension via ovariectomy in grasshoppers is consistent with the disposable soma hypothesis but is not due to dietary restriction.

    PubMed

    Hatle, John D; Paterson, Cathy S; Jawaid, Imran; Lentz, Colleen; Wells, Sean M; Fronstin, Raime B

    2008-10-01

    Reduced reproduction extends lifespan in many experimental animals, but the mechanism by which this occurs is unclear. The disposable soma hypothesis suggests that when reproduction is reduced, more nutrients are allocated to the soma and lifespan is extended. Alternatively, the reproductive tissues or the process of reproduction may have a direct (i.e., non-nutritional) negative effect on lifespan. We used ovariectomized grasshoppers to examine the effects of reduced reproduction throughout the lifespan at the physiological level. We focused on protein, the limiting nutrient for egg production. Ovariectomized females lived significantly longer than sham females. Because both groups ingested similar amounts, the effect was independent of dietary restriction. Despite this, ovariectomized females gained less body mass than sham females. Ovariectomized grasshoppers produced the egg yolk-precursor protein vitellogenin. At the time sham females laid their first clutch, cumulative reproductive protein was similar in ovariectomized and sham females. By advanced ages, however, ovariectomized females had produced about five-fold less cumulative reproductive protein than sham females. In contrast, old ovariectomized females had at least two-fold more hemolymph storage protein. These results are consistent with ovariectomy extending lifespan in part via enhanced protein allocation to storage at the expense of reproduction.

  10. The effect of a diet containing grasshoppers and access to free-range on carcase and meat physicochemical and sensory characteristics in broilers.

    PubMed

    Sun, T; Long, R J; Liu, Z Y

    2013-01-01

    1. Research was conducted to evaluate the impact of a diet containing grasshoppers on the carcase, physicochemical and sensory characteristics in a free-range, grassland-based broiler production system. 2. A total of 80, 28-d-old male broilers were reared on grassland containing a large population of grasshoppers (treatment PB). Control birds were reared intensively on a maize-soybean diet (treatment CB). At 91 d of age, 24 birds from each treatment were slaughtered to evaluate carcase, meat and sensory characteristics. 3. Treatment PB produced birds with significantly lower live weights, breast, wing, thigh and drum weights, and higher dressing percentage and breast percentage of carcase, compared with CB. Treatment PB produced breast meat with significantly higher redness values, shear force and protein content, and lower pH values, cooking loss, moisture and fat content compared with CB. Sensory panel results for breast and thigh meats showed no treatment effect on colour and juiciness, but significantly higher scores for chewiness, flavour, aroma and overall appreciation, and lower scores for tenderness from treatment PB compared with CB. 4. Rearing chickens on rangeland may provide an alternative way to produce poultry meat which is considered superior by modern consumers.

  11. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen)

    PubMed Central

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca2+ disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  12. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen).

    PubMed

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W; Zhang, Zehua

    2016-06-22

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca(2+) disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control.

  13. Comparison of the olfactory sensitivity of two sympatric steppe grasshopper species (Orthoptera: Acrididae) to plant volatile compounds.

    PubMed

    Chen, Huhai; Zhao, Yunxian; Kang, Le

    2004-04-01

    Electroantennogram (EAG) responses of male and female Oedipodinae grasshoppers, Oedaleus decorus asiaticus B.-Bienko and Angaracris barabensis Pall to 37 plant volatile compounds were recorded. The two species have sympatric distribution and synchronous seasonal activity in Inner Mongolia Grasslands. They have different host plant preference with Oedaleus decorus asiaticus graminivorous and A. barabensis forbivorous. The EAG response profiles to 37 compounds of the two species and their both sexes were similar. Most of the green leaf volatiles elicited higher EAG responses in both species and sexes than terpenic compounds and some aromatic compounds. Strong EAG responses were elicited by 6-carbon alcohols (1-hexanol, Z-hexen-2-ol-1, E-2-hexen-1-ol, E-hexen-3-ol-1), aldehyde (E-2-hexen-1-al), ester (Z-hexen-3-yl acetate), and 7-carbon alcohols (1-heptanol) in both species and sexes. Monoterpenes with functional groups of alcohols and aldehydes were more stimulating than other monoterpenes tested. The sesquiterpenes tested elicited relatively low responses. Benzaldehyde elicited the highest responses for both species among aromatic components. Oedaleus decorus asiaticus showed higher EAG responses than A. barabensis to the green leaf volatiles, 1-decanol, 1-nonanol, 1-pentanol, hexanal, Z-hexen-3-yl acetate and to the sesquiterpenes (-)-trans-caryophyllene. Males have higher responses than females in Oedaleus decorus asiaticus. No sexual difference was observed in A. barabensis. Dose-dependent responses to six selected chemicals were observed from females. In both species, all the chemicals tested elicit EAG responses at concentration between 10(-3) mol/L and 10(-2) mol/L, except that the responses of A. barabensis to terpineol had a threshold concentration of 10(-2) mol/L benzaldehyde and 1-hexanol had the highest slopes in dose curves, while 1-octen-3-ol showed the smallest slope in responses to the six chemicals tested. Comparative studies on the responses of two

  14. PATHOGENS: VIEWS OF EPA'S PATHOGEN EQUIVALENCY COMMITTEE

    EPA Science Inventory

    This presentation reviews the pathogenic microorganisms that may be found in municipal sewage sludge and the commonly employed Class A and B processes for controlling pathogens. It notes how extensively they are used and discusses issues and concerns with their application. Pre...

  15. Lagenidium giganteum pathogenicity in mammals.

    PubMed

    Vilela, Raquel; Taylor, John W; Walker, Edward D; Mendoza, Leonel

    2015-02-01

    Infections of mammals by species in the phylum Oomycota taxonomically and molecularly similar to known Lagenidium giganteum strains have increased. During 2013-2014, we conducted a phylogenetic study of 21 mammalian Lagenidium isolates; we found that 11 cannot be differentiated from L. giganteum strains that the US Environmental Protection Agency approved for biological control of mosquitoes; these strains were later unregistered and are no longer available. L. giganteum strains pathogenic to mammals formed a strongly supported clade with the biological control isolates, and both types experimentally infected mosquito larvae. However, the strains from mammals grew well at 25°C and 37°C, whereas the biological control strains developed normally at 25°C but poorly at higher temperatures. The emergence of heat-tolerant strains of L. giganteum pathogenic to lower animals and humans is of environmental and public health concern.

  16. SAM Pathogen Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target pathogen analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select pathogens.

  17. Studies in Mexican Grasshoppers: Liladownsia fraile, a new genus and species of Dactylotini (Acrididae: Melanoplinae) and an updated molecular phylogeny of Melanoplinae.

    PubMed

    Woller, Derek A; Fontana, Paolo; Mariño-Pérez, Ricardo; Song, Hojun

    2014-05-01

    Liladownsia fraile gen. nov. sp. nov. Fontana, Mariño-Pérez, Woller & Song (Lila Downs' friar grasshopper) of the tribe Dactylotini (Orthoptera: Acrididae: Melanoplinae) is described from the pine-oak forest of the Sierra Madre del Sur Mountain Range in Oaxaca, Mexico. Taxonomic placement of this new genus is justified based on morphological characters as well as a molecular phylogeny. Information about the probable host plant, phenology, and known localities is also presented. We also present an updated molecular phylogeny of Melanoplinae, which includes representatives of five of the seven recognized tribes. The monophyly of the subfamily and the included tribes is tested and we find Dactylotini to be paraphyletic because of the placement of Hesperotettix Scudder, 1876. We also recover strong close relationships between the new genus and Perixerus Gerstaecker, 1873 and Dactylotum Charpentier, 1845.  

  18. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow

    NASA Astrophysics Data System (ADS)

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  19. Object-based classification as an alternative approach to the traditional pixel-based classification to identify potential habitat of the grasshopper sparrow.

    PubMed

    Jobin, Benoît; Labrecque, Sandra; Grenier, Marcelle; Falardeau, Gilles

    2008-01-01

    The traditional method of identifying wildlife habitat distribution over large regions consists of pixel-based classification of satellite images into a suite of habitat classes used to select suitable habitat patches. Object-based classification is a new method that can achieve the same objective based on the segmentation of spectral bands of the image creating homogeneous polygons with regard to spatial or spectral characteristics. The segmentation algorithm does not solely rely on the single pixel value, but also on shape, texture, and pixel spatial continuity. The object-based classification is a knowledge base process where an interpretation key is developed using ground control points and objects are assigned to specific classes according to threshold values of determined spectral and/or spatial attributes. We developed a model using the eCognition software to identify suitable habitats for the Grasshopper Sparrow, a rare and declining species found in southwestern Québec. The model was developed in a region with known breeding sites and applied on other images covering adjacent regions where potential breeding habitats may be present. We were successful in locating potential habitats in areas where dairy farming prevailed but failed in an adjacent region covered by a distinct Landsat scene and dominated by annual crops. We discuss the added value of this method, such as the possibility to use the contextual information associated to objects and the ability to eliminate unsuitable areas in the segmentation and land cover classification processes, as well as technical and logistical constraints. A series of recommendations on the use of this method and on conservation issues of Grasshopper Sparrow habitat is also provided.

  20. Farmers' perception on the importance of variegated grasshopper (Zonocerus variegatus (L.)) in the agricultural production systems of the humid forest zone of Southern Cameroon

    PubMed Central

    Kekeunou, Sévilor; Weise, Stephan; Messi, Jean; Tamò, Manuel

    2006-01-01

    Background Zonocerus variegatus (Linnaeus, 1758) (Orthoptera: Pyrgomorphidae) is known as an agricultural pest in West and Central Africa. However, its importance in the agricultural production system in Cameroon has not been investigated. The study assesses farmers' perception on the importance of Z. variegatus in the agricultural production systems of the humid forest zone of Southern Cameroon. Methods Research was carried out in 5 villages of each of three Agro-Ecological, Cultural and Demographic Blocks (AECD-Blocks) of the Forest Margin Benchmark Area (FMBA). In each village, a semi-structured survey was used; male and female groups of farmers were interviewed separately. Results Z. variegatus is present throughout the humid forest zone of Southern Cameroon, where it is ranked as the third most economically important insect pest of agriculture. In the farmers' opinion, Z. variegatus is a polyphagous insect with little impact on young perennial crops. The length of the pre-farming fallow does not affect Z. variegatus pest pressure in the following crops. The increased impact of the grasshopper observed today in the fields, compared to what existed 10 years ago is as a result of deforestation and increase in surface of herbaceous fallow. The damage caused by Z. variegatus is higher in fields adjacent to C. odorata and herbaceous fallows than in those adjacent to forests and shrubby fallows. The fight against this grasshopper is often done through physical methods carried out by hand, for human consumption. The farmers highlight low usage of the chemical methods and a total absence of biological and ecological methods. Conclusion Farmers' perception have contributed to understanding the status of Z. variegatus in the humid forest zone of Southern Cameroon. The results are in general similar to those obtained in other countries. PMID:16573815

  1. The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects' habitat.

    PubMed

    Karpeta-Kaczmarek, Julia; Kubok, Magdalena; Dziewięcka, Marta; Sawczyn, Tomasz; Augustyniak, Maria

    2016-08-01

    The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables 'sex' and 'treatment'. Similarly, the variable 'sex', when analyzed alongside 'treatment' and 'site' (the area from which the insects were collected), or 'treatment' and 'time' had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured.

  2. Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location.

    PubMed

    Cabral-de-Mello, Diogo C; Cabrero, Josefa; López-León, María Dolores; Camacho, Juan Pedro M

    2011-07-01

    We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers.

  3. Pathogen Phytosensing: Plants to Report Plant Pathogens.

    PubMed

    Mazarei, Mitra; Teplova, Irina; Hajimorad, M Reza; Stewart, C Neal

    2008-04-14

    Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or 'phytosensors', by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV) 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different pathogens with the regulation of detectable

  4. Monograph of the Afrotropical species of Scelio Latreille (Hymenoptera, Platygastridae), egg parasitoids of acridid grasshoppers (Orthoptera, Acrididae).

    PubMed

    Yoder, Matthew J; Valerio, Alejandro A; Polaszek, Andrew; van Noort, Simon; Masner, Lubomír; Johnson, Norman F

    2014-01-01

    The genus Scelio is a cosmopolitan and speciose group of solitary parasitoids of the eggs of short-horned grasshoppers (Orthoptera: Acrididae). A number of these hosts are important pests, including plague locusts of the genus Schistocerca. Species of Scelio are recognized as potentially important biological control agents, but this possibility has yet to be fully realized, in part because the species-level taxonomy is still incompletely developed. The species of the pulchripennis group have been recently revised. As a continuation of this effort, here we revise the Afrotropical species of Scelio, excluding the pulchripennis species group. Sixty two (62) species are treated, 48 of which are new. Species are classified into the following species groups: ernstii (12 species, 9 new), howardi (23 species, 19 new), ipomeae (6 species, 5 new), irwini (4 species, 3 new), simoni (3 new species) and walkeri (12 species, 9 new). Keys to species groups and to the species within each group are provided. New species described are: S. albatus Yoder, sp. n., S. aphares Yoder, sp. n., S. apospastos Yoder, sp. n., S. ardelio Yoder, sp. n., S. aurantium Yoder, sp. n., S. balo Valerio & Yoder, sp. n., S. bayanga Yoder, sp. n., S. bubulo Yoder, sp. n., S. cano Yoder, sp. n., S. clypeatus Yoder, sp. n., S. concavus Yoder, sp. n., S. copelandi Yoder, sp. n., S. crepo Yoder, sp. n., S. destico Yoder, sp. n., S. dupondi Yoder, sp. n., S. effervesco Yoder, sp. n., S. erugatus Yoder, sp. n., S. exophthalmus Yoder, sp. n., S. fremo Valerio & Yoder, sp. n., S. gemo Yoder, sp. n., S. grunnio Yoder, sp. n., S. harinhalai Yoder, sp. n., S. igland Yoder, sp. n., S. impostor Yoder, sp. n., S. irwini Yoder, sp. n., S. janseni Yoder, sp. n., S. latro Yoder, sp. n., S. memorabilis Yoder, sp. n., S. modulus Yoder, sp. n., S. mutio Yoder, sp. n., S. ntchisii Yoder, sp. n., S. parkeri Yoder, sp. n., S. phaeoprora Yoder, sp. n., S. pilosilatus Yoder, sp. n., S. pipilo Yoder, sp. n., S. quasiclypeatus

  5. Mycosis Inhibits Grasshopper Necrophagy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Necrophagy is common among the Acrididae and the tettigonid, Anabrus simplex; these behaviors have been proposed as mechanisms for the horizontal transmission of Microsporida and entomopathogenic fungi. After anecdotal observations that Melanoplus sanguinipes and A. simplex did not eat cadavers tha...

  6. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  7. Plant pathogen resistance

    DOEpatents

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  8. Emerging Escherichia Pathogen

    PubMed Central

    Permpalung, Nitipong; Sentochnik, Deborah E.

    2013-01-01

    Escherichia hermannii was first identified as a new species in 1982. It has rarely been reported as a human pathogen. We report the first case of E. hermannii as the sole pathogen in a catheter-related bloodstream infection. PMID:23740732

  9. BACTERIAL WATERBORNE PATHOGENS

    EPA Science Inventory

    Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

  10. Emerging foodborne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence of new foodborne pathogens is due to a number of factors. An important factor is the globalization of the food supply with the possibility of the introduction of foodborne pathogens from other countries. Animal husbandry, food production, food processing, and food distribution system...

  11. Monograph of the Afrotropical species of Scelio Latreille (Hymenoptera, Platygastridae), egg parasitoids of acridid grasshoppers (Orthoptera, Acrididae)

    PubMed Central

    Yoder, Matthew J.; Valerio, Alejandro A.; Polaszek, Andrew; van Noort, Simon; Masner, Lubomír; Johnson, Norman F.

    2014-01-01

    Abstract The genus Scelio is a cosmopolitan and speciose group of solitary parasitoids of the eggs of short-horned grasshoppers (Orthoptera: Acrididae). A number of these hosts are important pests, including plague locusts of the genus Schistocerca. Species of Scelio are recognized as potentially important biological control agents, but this possibility has yet to be fully realized, in part because the species-level taxonomy is still incompletely developed. The species of the pulchripennis group have been recently revised. As a continuation of this effort, here we revise the Afrotropical species of Scelio, excluding the pulchripennis species group. Sixty two (62) species are treated, 48 of which are new. Species are classified into the following species groups: ernstii (12 species, 9 new), howardi (23 species, 19 new), ipomeae (6 species, 5 new), irwini (4 species, 3 new), simoni (3 new species) and walkeri (12 species, 9 new). Keys to species groups and to the species within each group are provided. New species described are: S. albatus Yoder, sp. n., S. aphares Yoder, sp. n., S. apospastos Yoder, sp. n., S. ardelio Yoder, sp. n., S. aurantium Yoder, sp. n., S. balo Valerio & Yoder, sp. n., S. bayanga Yoder, sp. n., S. bubulo Yoder, sp. n., S. cano Yoder, sp. n., S. clypeatus Yoder, sp. n., S. concavus Yoder, sp. n., S. copelandi Yoder, sp. n., S. crepo Yoder, sp. n., S. destico Yoder, sp. n., S. dupondi Yoder, sp. n., S. effervesco Yoder, sp. n., S. erugatus Yoder, sp. n., S. exophthalmus Yoder, sp. n., S. fremo Valerio & Yoder, sp. n., S. gemo Yoder, sp. n., S. grunnio Yoder, sp. n., S. harinhalai Yoder, sp. n., S. igland Yoder, sp. n., S. impostor Yoder, sp. n., S. irwini Yoder, sp. n., S. janseni Yoder, sp. n., S. latro Yoder, sp. n., S. memorabilis Yoder, sp. n., S. modulus Yoder, sp. n., S. mutio Yoder, sp. n., S. ntchisii Yoder, sp. n., S. parkeri Yoder, sp. n., S. phaeoprora Yoder, sp. n., S. pilosilatus Yoder, sp. n., S. pipilo Yoder, sp. n., S

  12. Purification and characterization of an oviposition-stimulating protein of the long hyaline tubules in the male migratory grasshopper, Melanoplus sanguinipes.

    PubMed

    Yi, S -X.; Gillott, C

    1999-02-01

    An oviposition-stimulating protein (OSP) was isolated and purified from the long hyaline tubules of the male accessory gland complex in the migratory grasshopper, Melanoplus sanguinipes. Gel filtration of the native OSP, using Sephadex G-100, indicates its molecular weight to be about 60000Da with the oviposition-stimulating activity while sodium dodecyl sulphate-polyacrylamide gel electrophoresis shows that the OSP comprises two subunits, each with a molecular weight of 30000Da. The purified OSP appears as a single symmetric peak on fast performance liquid chromatography using Mono Q. Isoelectric focusing of the OSP indicates an apparent pI of 5.5. Injection of the OSP induces oviposition in about 70% of ovulated virgin females within 48h. Stimulation of oviposition can be blocked by a polyclonal antibody raised against the OSP 30000Da subunits. Amino acid analysis of the dimer and its subunits shows a comparatively high content of aspartic acid/asparagine (14.8%) as well as leucine (12.2%) and glutamic acid/glutamine (12.0%). The N-terminal 21 amino acid sequence of the OSP shows little similarity to known peptides. Immunoreactivity with the anti-OSP antibody was observed in the viscous secretion, spermatheca, and the egg-pod froth of mated females, confirming transfer of the OSP from male to female during copulation.

  13. Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro.

    PubMed

    Koc, Kubra; Incekara, Umit; Turkez, Hasan

    2014-09-01

    In this investigation, the genotoxic and oxidative effects of water soluble extracts of dung beetles, flying grasshopper and mole crickets have been assessed on cultured human blood cells. The extracts were added to the culture tubes at 12 different concentrations (0-2000 ppm). Micronucleus test was used to monitor the DNA and the chromosomal damage produced by aqueous extracts in vitro. In addition, to assess the oxidative effects, total antioxidant capacity (TAC) and total oxidant status (TOS) levels were also measured. Our results indicated that these extracts did not show genotoxic effects at the tested concentrations. However, the extracts caused dose-dependent alterations in both TAC and TOS levels. Based on the findings, it was concluded that the studied insects can be consumed safely, but it is necessary to consider the cellular damages which are likely to appear depending on oxidative stress at higher concentrations. It has also been suggested that this in vitro approach for oxidative and genotoxicity assessments may be useful to evaluate the potential health risks of edible insects.

  14. A new method of detecting hormone-binding proteins electroblotted onto glass fiber filter: juvenile hormone-binding proteins from grasshopper hemolymph.

    PubMed

    Jefferies, L S; Roberts, P E

    1990-03-01

    We have developed a new method to identify juvenile hormone (JH)-binding proteins blotted onto glass fiber filter (GFF) after electrophoretic separation. Insect JH regulates reproduction in the two-striped grasshopper, Melanoplus bivittatus. A number of proteins are involved in the delivery of JH from its site of synthesis to the nuclei of fat body cells where it acts to induce vitellogenesis. To identify JH binding proteins, hemolymph was separated by PAGE, electroblotted onto GFF, and incubated in [10-3H]JH-III. The amount of hormone bound by blotted proteins increased with the amount of protein on the filter, was competitively displaced by excess non-labeled hormone, and was affiliated with individual bands on fluorograms of proteins blotted after electrophoretic separation. GFF etched with trifluoroacetic acid was better than nitrocellulose, Zeta Probe, cellulose acetate or unetched GFF. Phosphate (pH 6.0-7.3) or Tris buffers (pH 7.3-8.0) worked equally well for the procedure. Unbound hormone was easily removed by short washes in buffer, and adequate binding for detection was achieved in a 15 min incubation. Preliminary data suggest that this technique may be used to detect receptors, carriers, and binding proteins of steroid hormones.

  15. Exploring the population genetic consequences of the colonization process with spatio-temporally explicit models: insights from coupled ecological, demographic and genetic models in montane grasshoppers.

    PubMed

    Knowles, L Lacey; Alvarado-Serrano, Diego F

    2010-09-01

    Understanding the genetic consequences of shifting species distributions is critical for evaluating the impact of climate-induced distributional changes. However, the demographic expansion associated with the colonization process typically takes place across a heterogeneous environment, with population sizes and migration rates varying across the landscape. Here we describe an approach for coupling ecological-niche models (ENMs) with demographic and genetic models to explore the genetic consequences of distributional shifts across a heterogeneous landscape. Analyses of a flightless grasshopper from the sky islands of the Rocky Mountains of North America are used to show how biologically informed predictions can be generated about the genetic consequences of a colonization process across a spatially and temporally heterogeneous landscape (i.e. the suitability of habitats for the montane species differs across the landscape and is itself not static, with the displacement of contemporary populations into glacial refugia). By using (i) ENMs for current climatic conditions and the last glacial maximum to (ii) parameterize a demographic model of the colonization process, which then (iii) informs coalescent simulations, a set of models can be generated that capture different processes associated with distributional shifts. We discuss how the proposed approach for model generation can be integrated into a statistical framework for estimating key demographic parameters and testing hypotheses about the conditions for which distributional shifts may (or may not) enhance species divergence, including the importance of habitat stability, past gene-flow among currently isolated populations, and maintenance of refugial populations in multiple geographic regions.

  16. Stomata and pathogens

    PubMed Central

    Gudesblat, Gustavo E; Torres, Pablo S

    2009-01-01

    Bacteria and fungi are capable of triggering stomatal closure through pathogen-associated molecular patterns (PAMPs), which prevents penetration through these pores. Therefore, the stomata can be considered part of the plant innate immune response. Some pathogens have evolved mechanisms to evade stomatal defense. The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc), which infects plants of the Brassicaceae family mainly through hydathodes, has also been reported to infect plants through stomata. A recent report shows that penetration of Xcc in Arabidopsis leaves through stomata depends on a secreted small molecule whose synthesis is under control of the rpf/diffusible signal factor (DSF) cell-to-cell signaling system, which also controls genes involved in biofilm formation and pathogenesis. The same reports shows that Arabidopsis ROS- and PAMP-activated MAP kinase 3 (MPK3) is essential for stomatal innate response. Other recent and past findings about modulation of stomatal behaviour by pathogens are also discussed. In all, these findings support the idea that PAMP-triggered stomatal closure might be a more effective and widespread barrier against phytopathogens than previously thought, which has in turn led to the evolution in pathogens of several mechanisms to evade stomatal defense. PMID:20514224

  17. Candida albicans pathogenicity mechanisms

    PubMed Central

    Mayer, François L.; Wilson, Duncan; Hube, Bernhard

    2013-01-01

    The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen. PMID:23302789

  18. Bloodborne Pathogens Program

    NASA Technical Reports Server (NTRS)

    Blasdell, Sharon

    1993-01-01

    The final rule on the Occupational Exposure to Bloodborne Pathogens was published in the Federal Register on Dec. 6, 1991. This Standard, 29 CFR Part 1910.130, is expected to prevent 8,900 hepatitis B infections and nearly 200 deaths a year in healthcare workers in the U.S. The Occupational Medicine and Environmental Health Services at KSC has been planning to implement this standard for several years. Various aspects of this standard and its Bloodborne Pathogens Program at KSC are discussed.

  19. Waterborne Pathogens: The Protozoans.

    PubMed

    Moss, Joseph Anthony

    2016-09-01

    Waterborne diseases associated with polluted recreational and potable waters have been documented for more than a century. Key microbial protozoan parasites, such as Cryptosporidium and Giardia, are causative agents for gastrointestinal disease worldwide. Although not a first-line diagnostic approach for these diseases, medical imaging, such as radiography, computed tomography, magnetic resonance imaging, ultrasonography, and nuclear medicine technologies, can be used to evaluate patients with long-term effects. This article describes protozoan pathogens that affect human health, treatment of common waterborne pathogen-related diseases, and associated medical imaging.

  20. Particle size and pathogenicity in the respiratory tract

    PubMed Central

    Thomas, Richard James

    2013-01-01

    Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans. PMID:24225380

  1. DISINFECTION OF EMERGING PATHOGENS

    EPA Science Inventory

    There is a growing awareness of the need to control waterborne microbial pathogens. This presentation will concentate on the role of chemical inactivation, using chlorine, chloramines and ozone as a means of controlling bacterial and protozoan species. Information will be present...

  2. PATHOGEN EQUIVALENCY COMMITTEE (PEC)

    EPA Science Inventory

    The U.S. Environmental Protection Agency created the PEC in 1985 to make recommendations to EPA and State managers on the equivalency of unproven sewage sludge disinfection technologies/processes to either a Process to Significantly Reduce Pathogens (PSRP) or a Process to Further...

  3. Leafhopper viral pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four newly discovered viral pathogens in leafhopper vectors of Pierce’s disease of grapes, have been shown to replicate in sharpshooter leafhoppers; the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, and Oncometopia nigricans (Hemiptera: Cicadellidae). The viruses were classified as memb...

  4. Pathogenicity and virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pathogenic microorganisms are host-specific in that they parasitize only one or a few animal species. For example, the cause of equine strangles, Streptococcus equi subspecies equi, is essentially limited to infection of horses. Others—certain Salmonella serotypes, for example—have a broad host...

  5. Marine Viral Pathogens.

    DTIC Science & Technology

    2007-11-02

    toxin producing microalgae (Raphidophyceae). Although we have not definitively shown that the pathogen is viral, it has many characteristics that...Society America, Miami, FL, June 1994. 40.Hennes, K.P. and C.A. Suttle. 1994. The use of cyanine dyes for quantifying free viruses in natural water

  6. Pathogen-specific T cell depletion and reactivation of opportunistic pathogens in HIV infection.

    PubMed

    Geldmacher, Christof; Koup, Richard A

    2012-05-01

    During HIV infection, it is unclear why different opportunistic pathogens cause disease at different CD4 T cell count thresholds. Early work has shown that CD4 T cell depletion is influenced both by cellular activation status and expression of viral entry receptors. More recently, functional characteristics of the CD4 T cells, such as cytokine and chemokine production, have also been shown to influence cellular susceptibility to HIV. Here, we examine how functional differences in pathogen-specific CD4 T cells could lead to their differential loss during HIV infection. This may have implications for when different opportunistic infections occur, and a better understanding of the mechanisms for functional imprinting of antigen-specific T cells may lead to improvements in design of vaccines against HIV and opportunistic pathogens.

  7. WATERBORNE PATHOGENS IN URBAN WATERSHEDS

    EPA Science Inventory

    Pathogens are microorganisms that can cause sickness or even death. A serious concern for managers of water resources, pathogens in the urban environment easily enter waters through a number of pathways, including discharge of inadequately treated sewage, stormwater runoff, combi...

  8. Hemipterans as plant pathogens.

    PubMed

    Kaloshian, Isgouhi; Walling, Linda L

    2005-01-01

    Integration of the tools of genetics, genomics, and biochemistry has provided new approaches for identifying genes responding to herbivory. As a result, a picture of the complexity of plant-defense signaling to different herbivore feeding guilds is emerging. Plant responses to hemipteran insects have substantial overlap with responses mounted against microbial pathogens, as seen in changes in RNA profiles and emission of volatiles. Responses to known defense signals and characterization of the signaling pathways controlled by the first cloned insect R gene (Mi-1) indicate that perception and signal transduction leading to resistance may be similar to plant-pathogen interactions. Additionally, novel signaling pathways are emerging as important components of plant defense to insects. The availability of new tools and approaches will further enhance our understanding of the nature of defense in plant-hemipteran interactions.

  9. Differential gear

    SciTech Connect

    Shibuya, K.; Hamada, T.; Masuda, K.; Shimada, K.

    1989-05-02

    A differential gear for permitting a difference in rotational speed between two output shafts is described, the differential gear including an input shaft and two output shafts. The improvement consists of means for limiting the difference in rotational speed between the two output shafts in response to the rotational speed of the input shaft, the rotational speed limiting means comprising a differential casing coupled to the input shaft and adapted to be rotated by the input shaft, a differential pinion shaft radially extending within the differential casing and rotatably mounted at its opposite ends in the differential casing. A plurality of differential pinion gears rotatably mounted on the differential pinion shaft is also included, and also a pair of side gears having a rotational axis common to that of the differential casing, wherein the side gears mesh with the differential pinion gears and the two output shafts are fixed to the side gears, the means for limiting the difference in rotational speed between the two output shafts comprising a weight means radially movable in the differential casing, the weight means limiting the difference in rotational speed between the two output shafts in response to the centrifugal force applied to the weight means, the weight means being slidably mounted on the differential pinion shaft and being biased radially inwardly.

  10. Resequencing Pathogen Microarray (RPM) for prospective detection and identification of emergent pathogen strains and variants

    NASA Astrophysics Data System (ADS)

    Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David

    2010-04-01

    High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.

  11. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  12. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  13. Morphometric differentiation in Cornops aquaticum (Orthoptera: Acrididae): associations with sex, chromosome, and geographic conditions.

    PubMed

    Romero, María Luciana; Colombo, Pablo César; Remis, María Isabel

    2014-01-01

    The water-hyacinth grasshopper Cornops aquaticum (Bruner) (Orthoptera: Acrididae) is native to South America and inhabits lowlands from southern Mexico to central Argentina and Uruguay. This grasshopper feeds and lays eggs on species from the genera Eichhornia and Pontederia. Particularly, Eichhornia crassipes is considered "the world's worst water weed," and the release of C. aquaticum was proposed as a form of biological control. Morphometric variation on the chromosomally differentiated populations from the middle and lower Paraná River and its possible association with geographic, sex, and chromosomal conditions was analyzed. Significant phenotype variation in C. aquaticum population was detected. C. aquaticum presents body-size sexual dimorphism, females being bigger than males. Female-biased sexual size dimorphism for all five analyzed traits was detected. The assessment of variation in sexual size dimorphism for tegmen length showed that this trait scaled allometrically, indicating that males and females did not vary in a similar fashion. The detected allometry was consistent with Rensch's rule demonstrating greater evolutionary divergence in male size than in female size and suggests that males are more sensitive to environmental condition. The analysis of morphometric variation in the context of chromosome constitution showed that the presence of fusion 1/6 was related to body-size variation. Fusion carriers displayed bigger body size than standard homozygotes. Besides, a positive relationship between tegmen length and the number of fused chromosomes was detected, showing a chromosome dose effect. Because the highest frequency of fusions has been found in the lower Paraná River, a marginal environment for this species, the results found would support the hypothesis that some supergenes located in the fusions may be favored in the southern populations, thus contributing to the establishment and maintenance of the polymorphism.

  14. Pathogenicity Islands in Bacterial Pathogenesis

    PubMed Central

    Schmidt, Herbert; Hensel, Michael

    2004-01-01

    In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections. PMID:14726454

  15. Single-cell Genomics Unveils Critical Regulators of Th17 cell Pathogenicity

    PubMed Central

    Gaublomme, Jellert T.; Yosef, Nir; Lee, Youjin; Gertner, Rona S.; Yang, Li V.; Wu, Chuan; Pandolfi, Pier Paolo; Mak, Tak; Satija, Rahul; Shalek, Alex K.; Kuchroo, Vijay K.; Park, Hongkun; Regev, Aviv

    2015-01-01

    SUMMARY Extensive cellular heterogeneity exists within specific immune-cell subtypes classified as a single lineage, but its molecular underpinnings are rarely characterized at a genomic scale. Here, we use single-cell RNA-seq to investigate the molecular mechanisms governing heterogeneity and pathogenicity of Th17 cells isolated from the central nervous system (CNS) and lymph nodes (LN) at the peak of autoimmune encephalomyelitis (EAE) or differentiated in vitro under either pathogenic or non-pathogenic polarization conditions. Computational analysis relates a spectrum of cellular states in vivo to in vitro differentiated Th17 cells, and unveils genes governing pathogenicity and disease susceptibility. Using knockout mice, we validate four new genes: Gpr65, Plzp, Toso and Cd5l (in a companion paper). Cellular heterogeneity thus informs Th17 function in autoimmunity, and can identify targets for selective suppression of pathogenic Th17 cells while potentially sparing non-pathogenic tissue-protective ones. PMID:26607794

  16. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    PubMed

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  17. Preferential Amplification of Pathogenic Sequences.

    PubMed

    Ge, Fang; Parker, Jayme; Chul Choi, Sang; Layer, Mark; Ross, Katherine; Jilly, Bernard; Chen, Jack

    2015-06-11

    The application of next generation sequencing (NGS) technology in the diagnosis of human pathogens is hindered by the fact that pathogenic sequences, especially viral, are often scarce in human clinical specimens. This known disproportion leads to the requirement of subsequent deep sequencing and extensive bioinformatics analysis. Here we report a method we called "Preferential Amplification of Pathogenic Sequences (PATHseq)" that can be used to greatly enrich pathogenic sequences. Using a computer program, we developed 8-, 9-, and 10-mer oligonucleotides called "non-human primers" that do not match the most abundant human transcripts, but instead selectively match transcripts of human pathogens. Instead of using random primers in the construction of cDNA libraries, the PATHseq method recruits these short non-human primers, which in turn, preferentially amplifies non-human, presumably pathogenic sequences. Using this method, we were able to enrich pathogenic sequences up to 200-fold in the final sequencing library. This method does not require prior knowledge of the pathogen or assumption of the infection; therefore, it provides a fast and sequence-independent approach for detection and identification of human viruses and other pathogens. The PATHseq method, coupled with NGS technology, can be broadly used in identification of known human pathogens and discovery of new pathogens.

  18. Ecology of Fungal Plant Pathogens.

    PubMed

    Termorshuizen, Aad J

    2016-12-01

    Fungal plant pathogens are ubiquitous and highly diverse. Key to their success is high host density, which notably is the case in agroecosystems. Several hypotheses related to the effects of plant pathogens on plant diversity (the Janzen-Connell hypothesis, the dilution effect hypothesis) and the phenomenon of higher biomass in plant mixtures (i.e., overyielding) can all be explained by the quantitative interplay between host and pathogen density. In many agroecosystems, fungal plant pathogens cause great losses, since in monocultures diseased plants cannot be replaced by healthy plants. On the other hand, in natural ecosystems fungal plant pathogens shape the succession of vegetation and enhance the biodiversity of forests and grasslands. When pathogens are introduced into areas outside their natural range, they may behave differently, causing severe damage. Once introduced, changes may occur such as hybridization with other closely related pathogens or host shifts, host jumps, or horizontal gene transfer. Such changes can be hazardous for both agricultural and natural ecosystems.

  19. Introduction to Pathogenic Protozoa

    DTIC Science & Technology

    2011-06-01

    1 1 Introduction Mary K. Klassen-Fischer and Ronald C. Neafie Introduction Protozoa Protozoa are single-celled eukaryotic animals first dis...phylogeny of protozoa , see Table 1.1. A recent trend is to replace the term “ protozoa ” with “protista.” For these topics we retain “pro- tozoa” and...JUN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Introduction to Pathogenic Protozoa 5a. CONTRACT

  20. Portable pathogen detection system

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Milanovich, Fred P.; Brown, Steve B.; Vendateswaran, Kodumudi; Simon, Jonathan N.

    2005-06-14

    A portable pathogen detection system that accomplishes on-site multiplex detection of targets in biological samples. The system includes: microbead specific reagents, incubation/mixing chambers, a disposable microbead capture substrate, and an optical measurement and decoding arrangement. The basis of this system is a highly flexible Liquid Array that utilizes optically encoded microbeads as the templates for biological assays. Target biological samples are optically labeled and captured on the microbeads, which are in turn captured on an ordered array or disordered array disposable capture substrate and then optically read.

  1. Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colletotrichum species are devastating fungal pathogens of major crop plants worldwide. Infection involves differentiation of specialized cell-types associated with host surface penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). Here we report genome and t...

  2. Cryptosporidium Pathogenicity and Virulence

    PubMed Central

    Bouzid, Maha; Chalmers, Rachel M.; Tyler, Kevin M.

    2013-01-01

    Cryptosporidium is a protozoan parasite of medical and veterinary importance that causes gastroenteritis in a variety of vertebrate hosts. Several studies have reported different degrees of pathogenicity and virulence among Cryptosporidium species and isolates of the same species as well as evidence of variation in host susceptibility to infection. The identification and validation of Cryptosporidium virulence factors have been hindered by the renowned difficulties pertaining to the in vitro culture and genetic manipulation of this parasite. Nevertheless, substantial progress has been made in identifying putative virulence factors for Cryptosporidium. This progress has been accelerated since the publication of the Cryptosporidium parvum and C. hominis genomes, with the characterization of over 25 putative virulence factors identified by using a variety of immunological and molecular techniques and which are proposed to be involved in aspects of host-pathogen interactions from adhesion and locomotion to invasion and proliferation. Progress has also been made in the contribution of host factors that are associated with variations in both the severity and risk of infection. Here we provide a review comprised of the current state of knowledge on Cryptosporidium infectivity, pathogenesis, and transmissibility in light of our contemporary understanding of microbial virulence. PMID:23297262

  3. Tropism and Pathogenicity of Rickettsiae

    PubMed Central

    Uchiyama, Tsuneo

    2012-01-01

    Rickettsiae are obligate intracellular parasitic bacteria that cause febrile exanthematous illnesses such as Rocky Mountain spotted fever, Mediterranean spotted fever, epidemic, and murine typhus, etc. Although the vector ranges of each Rickettsia species are rather restricted; i.e., ticks belonging to Arachnida and lice and fleas belonging to Insecta usually act as vectors for spotted fever group (SFG) and typhus group (TG) rickettsiae, respectively, it would be interesting to elucidate the mechanisms controlling the vector tropism of rickettsiae. This review discusses the factors determining the vector tropism of rickettsiae. In brief, the vector tropism of rickettsiae species is basically consistent with their tropism toward cultured tick and insect cells. The mechanisms responsible for rickettsiae pathogenicity are also described. Recently, genomic analyses of rickettsiae have revealed that they possess several genes that are homologous to those affecting the pathogenicity of other bacteria. Analyses comparing the genomes of pathogenic and non-pathogenic strains of rickettsiae have detected many factors that are related to rickettsial pathogenicity. It is also known that a reduction in the rickettsial genome has occurred during the course of its evolution. Interestingly, Rickettsia species with small genomes, such as Rickettsia prowazekii, are more pathogenic to humans than those with larger genomes. This review also examines the growth kinetics of pathogenic and non-pathogenic species of SFG rickettsiae (SFGR) in mammalian cells. The growth of non-pathogenic species is restricted in these cells, which is mediated, at least in part, by autophagy. The superinfection of non-pathogenic rickettsiae-infected cells with pathogenic rickettsiae results in an elevated yield of the non-pathogenic rickettsiae and the growth of the pathogenic rickettsiae. Autophagy is restricted in these cells. These results are discussed in this review. PMID:22737150

  4. Is Cryptococcus gattii a Primary Pathogen?

    PubMed Central

    Kwon-Chung, Kyung J.; Saijo, Tomomi

    2016-01-01

    The two etiologic agents of cryptococcal meningoencephalitis, Cryptococcus neoformans and C. gattii, have been commonly designated as either an opportunistic pathogen for the first species or as a primary pathogen for the second species. Such a distinction has been based on epidemiological findings that the majority of patients presenting meningoencephalitis caused by C. neoformans are immunocompromised while C. gattii infection has been reported more often in immunocompetent patients. A recent report, however, showed that GM-CSF (granulocyte-macrophage colony-stimulating factor) neutralizing antibodies were prevalent in the plasma of “apparently immunocompetent” C. gattii patients with meningoencephalitis. Because GM-CSF is essential for differentiation of monocytes to macrophages and modulating the immune response, it is not surprising that the lack of GM-CSF function predisposes otherwise healthy individuals to infection via inhalation of environmental pathogens such as C. gattii. Since the test for anti-GM-CSF autoantibodies is not included in routine immunological profiling at most hospitals, healthy patients with GM-CSF neutralizing antibodies are usually categorized as immunocompetent. It is likely that a comprehensive immunological evaluation of patients with C. gattii meningoencephalitis, who had been diagnosed as immunocompetent, would reveal a majority of them had hidden immune dysfunction. This paper reviews the relationship between GM-CSF neutralizing antibodies and the risk for C. gattii infection with CNS involvement. PMID:27795955

  5. Differential games.

    NASA Technical Reports Server (NTRS)

    Varaiya, P. P.

    1972-01-01

    General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.

  6. Differentiated Staffing.

    ERIC Educational Resources Information Center

    Allen, Dwight W.; Kline, Lloyd W.

    The traditional educational structure requires the teacher to be part bookkeeper, part clerical assistant, and part psychologist, among other roles, while his salary scale is based on length of service. Differentiated staffing offers ways of changing this pattern. The details of differentiated duties are largely a matter of local option and…

  7. [Pathogenic factors of mycoplasma].

    PubMed

    Shimizu, Takashi

    2015-01-01

    Mycoplasmas are smallest organisms capable of self-replication and cause various diseases in human. Especially, Mycoplasma pneumoniae is known as an etiological agent of pneumonia. From 2010 to 2012, epidemics of M. pneumoniae infections were reported worldwide (e.g., in France, Israel, and Japan). In the diseases caused by mycoplasmas, strong inflammatory responses induced by mycoplasmas have been thought to be important. However, mycoplasmas lack of cell wall and do not possess inflammation-inducing endotoxin such as lipopolysaccharide (LPS). We purified inflammation-inducing factors from pathogenic mycoplasmas and identified that they were lipoproteins. Lipoproteins derived from mycoplasmas induced inflammatory responses through Toll-like receptor (TLR) 2. In addition, we demonstrated that cytadherent property of M. pneumoniae played an important role in induction of inflammatory responses. Cytadherent property of M. pneumoniae induced inflammatory responses through TLR2 independent pathway. TLR4, inflammasomes, and autophagy were involved in this TLR2 independent induction of inflammatory responses.

  8. [Streptococcus pyogenes pathogenic factors].

    PubMed

    Bidet, Ph; Bonacorsi, S

    2014-11-01

    The pathogenicity of ß-hemolytic group A streptococcus (GAS) is particularly diverse, ranging from mild infections, such as pharyngitis or impetigo, to potentially debilitating poststreptococcal diseases, and up to severe invasive infections such as necrotizing fasciitis or the dreaded streptococcal toxic shock syndrome. This variety of clinical expressions, often radically different in individuals infected with the same strain, results from a complex interaction between the bacterial virulence factors, the mode of infection and the immune system of the host. Advances in comparative genomics have led to a better understanding of how, following this confrontation, GAS adapts to the immune system's pressure, either peacefully by reducing the expression of certain virulence factors to achieve an asymptomatic carriage, or on the contrary, by overexpressing them disproportionately, resulting in the most severe forms of invasive infection.

  9. Flagella and bacterial pathogenicity.

    PubMed

    Duan, Qiangde; Zhou, Mingxu; Zhu, Liqian; Zhu, Guoqiang

    2013-01-01

    As locomotive organelles, flagella allow bacteria to move toward favorable environments. A flagellum consists of three parts: the basal structure (rotary motor), the hook (universal joint), and the filament (helical propeller). For ages, flagella have been generally regarded as important virulence factors, mainly because of their motility property. However, flagella are getting recognized to play multiple roles with more functions besides motility and chemotaxis. Recent evidence has pinpointed that the bacterial flagella participate in many additional processes including adhesion, biofilm formation, virulence factor secretion, and modulation of the immune system of eukaryotic cells. This mini-review summarizes data from recent studies that elucidated how flagella, as a virulence factor, contribute to bacterial pathogenicity.

  10. Probiotics against Campylobacter Pathogens.

    PubMed

    Sorokulova; Kirik; Pinchuk

    1997-12-01

    Background: The subject matter of this study was to investigate, for the first time, the immediate-preventive effect of probiotics, composed of bacillus species, in a murine model of Campylobacter infection. Methods: An established model of Campylobacter infection in mice with a defined LD50 was utilized to assess the protective effect of probiotics. Results: The results obtained demonstrate that the level of animal protection, after a single administration of the new probiotics biosporin and subalin, reached 90-100% at LD50 and 80% at LD100. Conclusions: Such efficacy of probiotics is considered to be due to their high antagonistic activity against those pathogens registered in vitro. Antagonistic activity of other tested probiotics (bactisubtil and cereobiogen) to different cultures of Campylobacter was not manifested.

  11. [Granulomatous diseases and pathogenic microorganism].

    PubMed

    Inoue, Yoshikazu; Suga, Moritaka

    2008-02-01

    Granuloma formation is a chronic inflammatory reaction where macrophage system and other inflammatory cells are involved. After some antigen exposure and processing, T cells, macrophages, epithelioid cells, and giant cell are activated, and granulomas are formed. Granuloma is considered as a defense mechanism against antigens, which stay in the organs without inactivation. Granulomas including fibroblasts extra-cellular matrix surround and isolate the antigens. Granulomas are classified to noninfectious granulomas and infectious granulomas. However recent studies revealed pathogenic microorganism are suspected to be a cause of granuloma in non-inflammatory diseases. Balance between pathogenic microorganisms and defense mechanisms of the host might be important in the special immunologic reaction. In some cases, it is hard to clearly classify infectious and noninfectious granulomas. Recently, Eishi et al. reported that latent infection of Propionibacterium acnes might be cause of sarcoidosis. Several hypersensitivity pneumonias are considered to be caused by exogenous microorganisms. The symposium was organized to know and clarify the new mechanisms of non-infectious granulomatous lung diseases and pathogenic microorganisms. This report is a summary of a symposium entitled "Granulomatous Diseases and Pathogenic Microorganism", organized in the 82nd Japanese Society for Tuberculosis (president Dr. Mitsunori Sakatani, M.D.). 1. Imaging of Granulomatous Lung Diseases: Masanori AKIRA (Department of Radiology, National Hospital Organization Kinki-chuo Chest Medical Center) High-resolution computed tomography (HRCT) is a useful tool in the evaluation of parenchymal changes in patients with a granulomatous lung disease. In sarcoidosis, the HRCT findings include small, well-defined nodules in relation to lymphatic roots, lymph node enlargement, and middle or upper lobe predominance. The appearances of subacute hypersensitivity pneumonitis include ill-defined centrilobular

  12. Rapid Detection of Pathogens

    SciTech Connect

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  13. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary [Brentwood, CA; Slezak, Thomas [Livermore, CA; Birch, James M [Albany, CA

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  14. Host Specificity of Bacterial Pathogens

    PubMed Central

    Bäumler, Andreas; Fang, Ferric C.

    2013-01-01

    Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica. PMID:24296346

  15. Differentiating Knowledge, Differentiating (Occupational) Practice

    ERIC Educational Resources Information Center

    Hordern, Jim

    2016-01-01

    This paper extends arguments for differentiating knowledge into conceptualisations of occupational practice. It is argued that specialised forms of knowledge and practice require recognition and differentiation in ways that many contemporary approaches to practice theory deny. Drawing on Hager's interpretation of MacIntyre, it is suggested that…

  16. Richness and Composition of Niche-Assembled Viral Pathogen Communities

    PubMed Central

    Seabloom, Eric W.; Borer, Elizabeth T.; Lacroix, Christelle; Mitchell, Charles E.; Power, Alison G.

    2013-01-01

    The pathogen and parasite community that inhabits every free-living organism can control host vital rates including lifespan and reproductive output. To date, however, there have been few experiments examining pathogen community assembly replicated at large-enough spatial scales to inform our understanding of pathogen dynamics in natural systems. Pathogen community assembly may be driven by neutral stochastic colonization and extinction events or by niche differentiation that constrains pathogen distributions to particular environmental conditions, hosts, or vectors. Here, we present results from a regionally-replicated experiment investigating the community of barley and cereal yellow dwarf viruses (B/CYDV's) in over 5000 experimentally planted individuals of six grass species along a 700 km latitudinal gradient along the Pacific coast of North America (USA) in response to experimentally manipulated nitrogen and phosphorus supplies. The composition of the virus community varied predictably among hosts and across nutrient-addition treatments, indicating niche differentiation among virus species. There were some concordant responses among the viral species. For example, the prevalence of most viral species increased consistently with perennial grass cover, leading to a 60% increase in the richness of the viral community within individual hosts (i.e., coinfection) in perennial-dominated plots. Furthermore, infection rates of the six host species in the field were highly correlated with vector preferences assessed in laboratory trials. Our results reveal the importance of niche differentiation in structuring virus assemblages. Virus species distributions reflected a combination of local host community composition, host species-specific vector preferences, and virus responses to host nutrition. In addition, our results suggest that heterogeneity among host species in their capacity to attract vectors or support pathogens between growing seasons can lead to positive

  17. Pathogenic agents in freshwater resources

    NASA Astrophysics Data System (ADS)

    Geldreich, Edwin E.

    1996-02-01

    Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.

  18. Differential induction of redox sensitive extracellular phenolic amides in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study focuses on the differential induction of extracellular phenolic amides that accumulate in potato cell suspensions during the first few hours of the interaction between these plant cells and bacterial pathogens or pathogen-related elicitors. Using suspension cells of Solanum tuberosum we ...

  19. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi.

    PubMed

    Pérez-Martín, José; Bardetti, Paola; Castanheira, Sónia; de la Torre, Antonio; Tenorio-Gómez, María

    2016-09-01

    To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.

  20. USEPA PATHOGEN EQUIVALENCY COMMITTEE RETREAT

    EPA Science Inventory

    The Pathogen Equivalency Committee held its retreat from September 20-21, 2005 at Hueston Woods State Park in College Corner, Ohio. This presentation will update the PEC’s membership on emerging pathogens, analytical methods, disinfection techniques, risk analysis, preparat...

  1. Proteomics of Foodborne Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.

    This chapter is intended to be a relatively brief overview of proteomic techniques currently in use for the identification and analysis of microorganisms with a special emphasis on foodborne pathogens. The chapter is organized as follows. First, proteomic techniques are introduced and discussed. Second, proteomic applications are presented specifically as they relate to the identification and qualitative/quantitative analysis of foodborne pathogens.

  2. DIFFERENTIAL ANALYZER

    DOEpatents

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  3. Physical constraints for pathogen movement.

    PubMed

    Schwarz, Ulrich S

    2015-10-01

    In this pedagogical review, we discuss the physical constraints that pathogens experience when they move in their host environment. Due to their small size, pathogens are living in a low Reynolds number world dominated by viscosity. For swimming pathogens, the so-called scallop theorem determines which kinds of shape changes can lead to productive motility. For crawling or gliding cells, the main resistance to movement comes from protein friction at the cell-environment interface. Viruses and pathogenic bacteria can also exploit intracellular host processes such as actin polymerization and motor-based transport, if they present the appropriate factors on their surfaces. Similar to cancer cells that also tend to cross various barriers, pathogens often combine several of these strategies in order to increase their motility and therefore their chances to replicate and spread.

  4. Molecular pathogenicity of Streptococcus anginosus.

    PubMed

    Asam, D; Spellerberg, B

    2014-08-01

    Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under-recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome-wide comparative analysis suggested the presence of multiple putative virulence factors that are well-known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.

  5. Production of Eicosanoids and Other Oxylipins by Pathogenic Eukaryotic Microbes

    PubMed Central

    Noverr, Mairi C.; Erb-Downward, John R.; Huffnagle, Gary B.

    2003-01-01

    Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen “cross-talk” that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens. PMID:12857780

  6. Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity.

    PubMed

    Brüggemann, Holger

    2005-10-01

    The recently decoded genomes of the major clostridial toxin-producing pathogens Clostridium perfringens, Clostridium tetani, Clostridium botulinum and Clostridium difficile have provided a huge amount of new sequence data. Recent studies have focused on the identification and investigation of pathogenic determinants and the regulatory events governing their expression. The sequence data revealed also the genomic background of virulence genes, as well as the contribution of extrachromosomal elements to a pathogenic phenotype. This has generated new insights in clostridial pathogenesis - and will continue to do so in the future - and has deepened our understanding of the anaerobic lifestyle of clostridial species.

  7. Confocal microscopy reveals in planta dynamic interactions between pathogenic, avirulent and non-pathogenic Pseudomonas syringae strains.

    PubMed

    Rufián, José S; Macho, Alberto P; Corry, David S; Mansfield, John; Ruiz-Albert, Javier; Arnold, Dawn; Beuzón, Carmen R

    2017-01-24

    Recent advances in genomics and single-cell analysis have demonstrated the extraordinary complexity that microbial populations may reach within their hosts. Communities range from complex multispecies groups, to homogeneous populations differentiating into lineages through genetic or non-genetic mechanisms. Diversity within bacterial populations is recognised as a key driver of the evolution of animal pathogens. In plants, however, little is known about how interactions between different pathogenic and non-pathogenic variants within the host impacts on defence responses or how presence within a mixture may affect the development or the fate of each variant. Using confocal fluorescence microscopy, we have analysed the colonization of the plant apoplast by individual virulence variants of Pseudomonas syringae within mixed populations. We found that non-pathogenic variants can proliferate and even spread beyond the inoculated area to neighbouring tissues when in close proximity to pathogenic bacteria. The high bacterial concentrations reached at natural entry points promote such interactions during the infection process. We also found that a diversity of interactions take place at a cellular level between virulent and avirulent variants, ranging from dominant negative effects on proliferation of virulent to in trans suppression of defences triggered by avirulent bacteria. Our results illustrate the spatial dynamics and complexity of the interactions found within mixed infections, and their potential impact on pathogen evolution. This article is protected by copyright. All rights reserved.

  8. Transient virulence of emerging pathogens.

    PubMed

    Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini

    2010-05-06

    Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.

  9. Host-Pathogen Interactions

    PubMed Central

    English, Patricia D.; Jurale, Joseph Byrne; Albersheim, Peter

    1971-01-01

    The effect of a number of physiological variables on the secretion of polysaccharide-degrading enzymes by culture-grown Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner was determined. The number of spores used to inoculate cultures grown on isolated bean hypocotyl cell walls affects the time after inoculation at which enzyme secretion occurs, but has no significant effect on the maximal amount of enzyme ultimately secreted. Cell walls isolated from bean leaves, first internodes, or hypocotyls (susceptible to C. lindemuthianum infection), when used as carbon source for C. lindemuthianum growth, stimulate the fungus to secrete more α-galactosidase than do cell walls isolated from roots (resistant to infection). The concentration of carbon source used for fungal growth determines the final level of enzyme activity in the culture fluid. The level of enzyme secretion is not proportional to fungal growth; rather, enzyme secretion is induced. Maximal α-galactosidase activity in the culture medium is found when the concentration of cell walls used as carbon source is 1% or greater. A higher concentration of cell walls is necessary for maximal α-arabinosidase activity. Galactose, when used as the carbon source, stimulates α-galactosidase secretion but, at comparable concentrations, is less effective in doing so than are cell walls. Polysaccharide-degrading enzymes are secreted by C. lindemuthianum at different times during growth of the pathogen on isolated cell walls. Pectinase and α-arabinosidase are secreted first, followed by β-xylosidase and cellulase, then β-glucosidase, and, finally, α-galactosidase. PMID:16657562

  10. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water

    PubMed Central

    Falkinham, Joseph O.; Pruden, Amy; Edwards, Marc

    2015-01-01

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. PMID:26066311

  11. Host Pathogen Relations: Exploring Animal Models for Fungal Pathogens

    PubMed Central

    Harwood, Catherine G.; Rao, Reeta P.

    2014-01-01

    Pathogenic fungi cause superficial infections but pose a significant public health risk when infections spread to deeper tissues, such as the lung. Within the last three decades, fungi have been identified as the leading cause of nosocomial infections making them the focus of research. This review outlines the model systems such as the mouse, zebrafish larvae, flies, and nematodes, as well as ex vivo and in vitro systems available to study common fungal pathogens. PMID:25438011

  12. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    PubMed

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  13. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    PubMed Central

    Pechanova, Olga; Pechan, Tibor

    2015-01-01

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus. PMID:26633370

  14. Approaching the Next Revolution? Evolutionary Integration of Neural and Immune Pathogen Sensing and Response

    PubMed Central

    Tracey, Kevin J.

    2015-01-01

    Mammalian immunity evolved by the process of natural selection that produced differential survival and reproduction advantages through combinations of hereditary traits underlying the response to pathogens. Primitive animals sense the presence of microbial pathogens through recognition of pathogen-derived molecules in their rudimentary immune and nervous systems. No molecular biological mechanism assigns primacy of pathogen sensing mechanisms to immune cells over neurons. Rather, in animals as diverse as Caenorhabditis elegans to mammals, neural reflexes are activated by the presence of pathogens and transduce neural mechanisms that control the development of immunity. A coming revolution in immunological thinking will require immunologists to incorporate neural circuits into understanding pathogen signal transduction, and the molecular mechanisms of learning, that culminate in immunity. PMID:25376836

  15. Development of Genomic Resources for a thraustochytrid Pathogen and Investigation of Temperature Influences on Gene Expression

    PubMed Central

    Garcia-Vedrenne, Ana Elisa; Groner, Maya; Page-Karjian, Annie; Siegmund, Gregor-Fausto; Singhal, Sonia; Sziklay, Jamie; Roberts, Steven

    2013-01-01

    Understanding how environmental changes influence the pathogenicity and virulence of infectious agents is critical for predicting epidemiological patterns of disease. Thraustochytrids, part of the larger taxonomic class Labyrinthulomycetes, contain several highly pathogenic species, including the hard clam pathogen quahog parasite unknown (QPX). QPX has been associated with large-scale mortality events along the northeastern coast of North America. Growth and physiology of QPX is temperature-dependent, and changes in local temperature profiles influence pathogenicity. In this study we characterize the partial genome of QPX and examine the influence of temperature on gene expression. Genes involved in several biological processes are differentially expressed upon temperature change, including those associated with altered growth and metabolism and virulence. The genomic and transcriptomic resources developed in this study provide a foundation for better understanding virulence, pathogenicity and life history of thraustochytrid pathogens. PMID:24069279

  16. Dual metabolomics: a novel approach to understanding plant-pathogen interactions.

    PubMed

    Allwood, J William; Clarke, Andrew; Goodacre, Royston; Mur, Luis A J

    2010-04-01

    One of the most well-characterised plant pathogenic interactions involves Arabidopsis thaliana and the bacteria Pseudomonas syringae pathovar tomato (Pst). The standard Pst inoculation procedure involves infiltration of large populations of bacteria into plant leaves which means that metabolite changes cannot be readily assigned to the host or pathogen. A plant cell-pathogen co-culture based approach has been developed where the plant and pathogen cells are separated after 12h of co-culture via differential filtering and centrifugation. Fourier transform infrared (FT-IR) spectroscopy was employed to assess the intracellular metabolomes (metabolic fingerprints) of both host and pathogen and their extruded (extracellular) metabolites (metabolic footprints) under conditions relevant to disease and resistance. We propose that this system will enable the metabolomic profiling of the separated host and pathogen (i.e. 'dual metabolomics') and will facilitate the modelling of reciprocal responses.

  17. Functional genomics of pathogenic bacteria.

    PubMed Central

    Moxon, E R; Hood, D W; Saunders, N J; Schweda, E K H; Richards, J C

    2002-01-01

    Microbial diseases remain the commonest cause of global mortality and morbidity. Automated-DNA sequencing has revolutionized the investigation of pathogenic microbes by making the immense fund of information contained in their genomes available at reasonable cost. The challenge is how this information can be used to increase current understanding of the biology of commensal and virulence behaviour of pathogens with particular emphasis on in vivo function and novel approaches to prevention. One example of the application of whole-genome-sequence information is afforded by investigations of the pathogenic role of Haemophilus influenzae lipopolysaccharide and its candidacy as a vaccine. PMID:11839188

  18. Future research needs involving pathogens in groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of groundwater by enteric pathogens has commonly been associated with disease outbreaks. Proper management and treatment of pathogen sources are important barriers to preventing groundwater contamination. However, non-point sources of pathogen contamination are frequently difficult to ...

  19. Regulation of appressorium development in pathogenic fungi

    PubMed Central

    Ryder, Lauren S; Talbot, Nicholas J

    2015-01-01

    Many plant pathogenic fungi have the capacity to breach the intact cuticles of their plant hosts using specialised infection cells called appressoria. These cells exert physical force to rupture the plant surface, or deploy enzymes in a focused way to digest the cuticle and plant cell wall. They also provide the means by which focal secretion of effectors occurs at the point of plant infection. Development of appressoria is linked to re-modelling of the actin cytoskeleton, mediated by septin GTPases, and rapid cell wall differentiation. These processes are regulated by perception of plant cell surface components, and starvation stress, but also linked to cell cycle checkpoints that control the overall progression of infection-related development. PMID:26043436

  20. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  1. Evolution of Immunity and Pathogens.

    PubMed

    Jack, Robert S

    2015-01-01

    Host and pathogen engage in a constant evolutionary struggle known as a "Red Queen Paradigm". In this struggle, natural selection favours the pathogen which evolves effective virulence mechanisms and the host which is able to field adequate resistance strategies. A number of factors limit what each side can do. These include the fact that the elaboration of virulence or resistance mechanisms results in costs in genetic fitness and requires the use of ever more of the limited number of genes available in the genome. In addition, since the pathogen usually has a very much shorter generation time than the host, it can fix new virulence mutations much more quickly than the host can evolve matching resistance mechanisms. Finally, the host must ensure that its defence system does not result in unacceptable levels of collateral damage to its own tissues. This chapter briefly outlines how these considerations shape host-pathogen interactions.

  2. Pathogen detection using engineered bacteriophages.

    PubMed

    Smartt, Abby E; Xu, Tingting; Jegier, Patricia; Carswell, Jessica J; Blount, Samuel A; Sayler, Gary S; Ripp, Steven

    2012-04-01

    Bacteriophages, or phages, are bacterial viruses that can infect a broad or narrow range of host organisms. Knowing the host range of a phage allows it to be exploited in targeting various pathogens. Applying phages for the identification of microorganisms related to food and waterborne pathogens and pathogens of clinical significance to humans and animals has a long history, and there has to some extent been a recent revival in these applications as phages have become more extensively integrated into novel detection, identification, and monitoring technologies. Biotechnological and genetic engineering strategies applied to phages are responsible for some of these new methods, but even natural unmodified phages are widely applicable when paired with appropriate innovative detector platforms. This review highlights the use of phages as pathogen detector interfaces to provide the reader with an up-to-date inventory of phage-based biodetection strategies.

  3. Serial analysis of gene expression in eukaryotic pathogens.

    PubMed

    Kronstad, James W

    2006-09-01

    The tag-based method of serial analysis of gene expression (SAGE) has been used to measure mRNA abundance and differential expression in a variety of organisms including several parasites and fungal pathogens. SAGE is based on the collection of short sequence tags as a measure of transcript abundance and the method provides an alternative, and in some instances, complementary approach to array-based methods of measuring differential gene expression. These methods are being used to improve our molecular understanding of the pathogenesis of eukaryotic microbes and SAGE in particular presents valuable opportunities for gene discovery and genome annotation. For eukaryotic pathogens, the SAGE method has been employed for the parasites Plasmodium falciparum, Toxoplasma gondii and Giardia lamblia, as well as fungal pathogens of plants (Magnaporthe grisea, Blumeria graminis, Ustilago maydis) and humans (Cryptococcus neoformans, Coccidiodes posadasii, Trichophyton rubrum). The accumulating information promises to speed the identification of key pathogen functions for virulence and proliferation in the host with the hope that some of these will represent important targets for drug and vaccine development.

  4. Continuous-Flow Detector for Rapid Pathogen Identification

    SciTech Connect

    Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.; Cummings, Eric B.; Fiechtner, Gregory J.

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  5. Crustal differentiation

    NASA Astrophysics Data System (ADS)

    Melekhova, E.; Blundy, J.

    2012-12-01

    Few erupted arc magmas are sufficiently primitive to be in equilibrium with mantle wedge peridotite, meaning a significant volume of arc crust must comprise plutonic cumulates formed during differentiation of primitive basalts. This cumulate material is typically not available for petrological study. A notable exception is the Lesser Antilles arc, which is renowned for the exceptional abundance and variety of cumulate xenoliths. Additionally, several Lesser Antilles islands erupt primitive basaltic magmas that are close to being in mantle equilibrium. The abundance of plutonic cumulate xenolith and presence of primitive basalts make the Lesser Antilles an ideal natural laboratory for understanding crust-building processes. Here we evaluate the chemical consequences of basalt differentiation in the mid to lower crust and uppermost mantle (10 to 30 km) by means of experiments on a primitive basalt from St. Vincent. The results were combined with compositional and textural observation of plutonic cumulate xenoliths from the island. Our goal was to constrain the conditions under which basalt differentiation can generate the observed chemical diversity of erupted magmas at St. Vincent and the compositions of minerals in cumulate xenoliths. Our experimental results show that it is possible to produce a wide compositional range of melts by differentiation at different depths and water contents from the same primitive source. The melts provide a close match to the full range of erupted lavas on the island. The cumulate assemblages, however, have a consistently lower pressure origin (6-10 km). They are formed by crystallisation of ascending melts generated in the deep crust. Phencocrysts in the lavas are distinct from those in cumulates, notably in the absence of amphibole. The phenocrysts demonstrably grew in response to crystallisation at very shallow depth, probably in sub-volcanic magma chambers. Thus St. Vincent shows clear evidence for polybaric crustal

  6. Waterborne pathogens in urban watersheds.

    PubMed

    Arnone, Russell D; Walling, Joyce Perdek

    2007-03-01

    A serious concern for managers of water resources, pathogens in the urban environment easily enter waters through a number of pathways, including discharge of inadequately treated sewage, stormwater runoff, combined sewer overflows and sanitary sewer overflows. Pathogens in US ambient water bodies are regulated under the Clean Water Act (CWA), while pathogens in drinking water supplies are regulated under the Safe Drinking Water Act. Total maximum daily loads (TMDLs) are developed in accordance with CWA regulations for ambient water bodies with bacterial concentrations exceeding the water quality standard, which generally is a measure of a bacterial indicator organism. However, developing a TMDL for a supplementary indicator or pathogen is also required if a use impairment would still exist even after the water body is in compliance with the standard. This occurs because indicator organisms do not reflect the presence of pathogen contamination with complete certainty. The evaluation of pathogen indicators and summary of epidemiological studies presented are resources for those developing TMDLs to achieve water quality standards and restore water bodies to their intended uses.

  7. DNA methylation profiling to assess pathogenicity of BRCA1 unclassified variants in breast cancer.

    PubMed

    Flower, Kirsty J; Shenker, Natalie S; El-Bahrawy, Mona; Goldgar, David E; Parsons, Michael T; Spurdle, Amanda B; Morris, Joanna R; Brown, Robert; Flanagan, James M

    2015-01-01

    Germline pathogenic mutations in BRCA1 increase risk of developing breast cancer. Screening for mutations in BRCA1 frequently identifies sequence variants of unknown pathogenicity and recent work has aimed to develop methods for determining pathogenicity. We previously observed that tumor DNA methylation can differentiate BRCA1-mutated from BRCA1-wild type tumors. We hypothesized that we could predict pathogenicity of variants based on DNA methylation profiles of tumors that had arisen in carriers of unclassified variants. We selected 150 FFPE breast tumor DNA samples [47 BRCA1 pathogenic mutation carriers, 65 BRCAx (BRCA1-wild type), 38 BRCA1 test variants] and analyzed a subset (n=54) using the Illumina 450K methylation platform, using the remaining samples for bisulphite pyrosequencing validation. Three validated markers (BACH2, C8orf31, and LOC654342) were combined with sequence bioinformatics in a model to predict pathogenicity of 27 variants (independent test set). Predictions were compared with standard multifactorial likelihood analysis. Prediction was consistent for c.5194-12G>A (IVS 19-12 G>A) (P>0.99); 13 variants were considered not pathogenic or likely not pathogenic using both approaches. We conclude that tumor DNA methylation data alone has potential to be used in prediction of BRCA1 variant pathogenicity but is not independent of estrogen receptor status and grade, which are used in current multifactorial models to predict pathogenicity.

  8. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization.

    PubMed

    Seidl, Michael F; Van den Ackerveken, Guido; Govers, Francine; Snel, Berend

    2011-02-01

    Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.

  9. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics

    PubMed Central

    Corwin, Jason A.; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J.

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes. PMID:26866607

  10. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

    PubMed Central

    2010-01-01

    Background Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. Results The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. Conclusions Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae. PMID:20626842

  11. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    PubMed

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J

    2016-02-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.

  12. Genomic and Phenomic Study of Mammary Pathogenic Escherichia coli

    PubMed Central

    Blum, Shlomo E.; Heller, Elimelech D.; Sela, Shlomo; Elad, Daniel; Edery, Nir; Leitner, Gabriel

    2015-01-01

    Escherichia coli is a major etiological agent of intra-mammary infections (IMI) in cows, leading to acute mastitis and causing great economic losses in dairy production worldwide. Particular strains cause persistent IMI, leading to recurrent mastitis. Virulence factors of mammary pathogenic E. coli (MPEC) involved pathogenesis of mastitis as well as those differentiating strains causing acute or persistent mastitis are largely unknown. This study aimed to identify virulence markers in MPEC through whole genome and phenome comparative analysis. MPEC strains causing acute (VL2874 and P4) or persistent (VL2732) mastitis were compared to an environmental strain (K71) and to the genomes of strains representing different E. coli pathotypes. Intra-mammary challenge in mice confirmed experimentally that the strains studied here have different pathogenic potential, and that the environmental strain K71 is non-pathogenic in the mammary gland. Analysis of whole genome sequences and predicted proteomes revealed high similarity among MPEC, whereas MPEC significantly differed from the non-mammary pathogenic strain K71, and from E. coli genomes from other pathotypes. Functional features identified in MPEC genomes and lacking in the non-mammary pathogenic strain were associated with synthesis of lipopolysaccharide and other membrane antigens, ferric-dicitrate iron acquisition and sugars metabolism. Features associated with cytotoxicity or intra-cellular survival were found specifically in the genomes of strains from severe and acute (VL2874) or persistent (VL2732) mastitis, respectively. MPEC genomes were relatively similar to strain K-12, which was subsequently shown here to be possibly pathogenic in the mammary gland. Phenome analysis showed that the persistent MPEC was the most versatile in terms of nutrients metabolized and acute MPEC the least. Among phenotypes unique to MPEC compared to the non-mammary pathogenic strain were uric acid and D-serine metabolism. This study

  13. Pathogens in Dairy Farming: Source Characterization and Groundwater Impacts

    NASA Astrophysics Data System (ADS)

    Atwill, E. R.; Watanabe, N.; Li, X.; Hou, L.; Harter, T.; Bergamaschi, B.

    2007-12-01

    Intense animal husbandry is of growing concern as a potential contamination source of enteric pathogens as well as antibiotics. To assess the public health risk from pathogens and their hydrologic pathways, we hypothesize that the animal farm is not a homogeneous diffuse source, but that pathogen loading to the soil and, therefore, to groundwater varies significantly between the various management units of a farm. A dairy farm, for example, may include an area with calf hutches, corrals for heifers of various ages, freestalls and exercise yards for milking cows, separate freestalls for dry cows, a hospital barn, a yard for collection of solid manure, a liquid manure storage lagoon, and fields receiving various amounts of liquid and solid manure. Pathogen shedding and, hence, therapeutic and preventive pharmaceutical treatments vary between these management units. We are implementing a field reconnaissance program to determine the occurrence of three different pathogens ( E. coli, Salmonella, Campylobacter) and one indicator organism ( Enterococcus) at the ground-surface and in shallow groundwater of seven different management units on each of two farms, and in each of four seasons (spring/dry season, summer/irrigation season, fall/dry season, winter/rainy season). Initial results indicate that significant differences exist in the occurrence of these pathogens between management units and between organisms. These differences are weakly reflected in their occurrence in groundwater, despite the similarity of the shallow geologic environment across these sites. Our results indicate the importance of differentiating sources within a dairy farm and the importance of understanding subsurface transport processes for these pathogens.

  14. Hepatocyte differentiation.

    PubMed

    Olsavsky Goyak, Katy M; Laurenzana, Elizabeth M; Omiecinski, Curtis J

    2010-01-01

    Increasingly, research suggests that for certain systems, animal models are insufficient for human toxicology testing. The development of robust, in vitro models of human toxicity is required to decrease our dependence on potentially misleading in vivo animal studies. A critical development in human toxicology testing is the use of human primary hepatocytes to model processes that occur in the intact liver. However, in order to serve as an appropriate model, primary hepatocytes must be maintained in such a way that they persist in their differentiated state. While many hepatocyte culture methods exist, the two-dimensional collagen "sandwich" system combined with a serum-free medium, supplemented with physiological glucocorticoid concentrations, appears to robustly maintain hepatocyte character. Studies in rat and human hepatocytes have shown that when cultured under these conditions, hepatocytes maintain many markers of differentiation including morphology, expression of plasma proteins, hepatic nuclear factors, phase I and II metabolic enzymes. Functionally, these culture conditions also preserve hepatic stress response pathways, such as the SAPK and MAPK pathways, as well as prototypical xenobiotic induction responses. This chapter will briefly review culture methodologies but will primarily focus on hallmark hepatocyte structural, expression and functional markers that characterize the differentiation status of the hepatocyte.

  15. Characterization of Pathogenicity, Virulence and Host-Pathogen Interractions

    SciTech Connect

    Krishnan, A; Folta, P

    2006-07-27

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the

  16. Pathogen evolution and the immunological niche.

    PubMed

    Cobey, Sarah

    2014-07-01

    Host immunity is a major driver of pathogen evolution and thus a major determinant of pathogen diversity. Explanations for pathogen diversity traditionally assume simple interactions between pathogens and the immune system, a view encapsulated by the susceptible-infected-recovered (SIR) model. However, there is growing evidence that the complexity of many host-pathogen interactions is dynamically important. This revised perspective requires broadening the definition of a pathogen's immunological phenotype, or what can be thought of as its immunological niche. After reviewing evidence that interactions between pathogens and host immunity drive much of pathogen evolution, I introduce the concept of a pathogen's immunological phenotype. Models that depart from the SIR paradigm demonstrate the utility of this perspective and show that it is particularly useful in understanding vaccine-induced evolution. This paper highlights questions in immunology, evolution, and ecology that must be answered to advance theories of pathogen diversity.

  17. Compositions and methods for pathogen transport

    DOEpatents

    El-Etr, Sahar; Farquar, George R.

    2016-01-26

    This disclosure provides a method for transporting a pathogen under ambient conditions, by culturing the pathogen with an amoeba under conditions that favor the incorporation of the pathogen into a trophozoite, starving the amoeba until it encysts, then culturing under conditions that favor conversion of the amoeba back to a trophozoite. In one aspect, the conditions that favor incorporation of the pathogen into the cyst of the amoeba comprises contacting the pathogen with the amoeba in an iron rich environment. Virus and/or bacteria are pathogens that can be transported by the disclosed method. Amoeba that are useful in the disclosed methods include, without limitation Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria gruberi. The disclosed methods have utility in: transporting pathogens from military field hospitals and clinics to the laboratory; transporting pathogens from global satellite laboratories to clinical laboratories; long term storage of pathogens; enriching contaminated patient samples for pathogens of interest; biosurveillance and detection efforts.

  18. [Population genetics of plant pathogens].

    PubMed

    Zhu, Wen; Zhan, Jia-Sui

    2012-02-01

    Comparing to natural ecosystems, the evolution of plant pathogens in agricultural ecosystems is generally faster due to high-density monocultures, large-scale application of agrochemicals, and international trade in agricultural products. Knowledge of the population genetics and evolutionary biology of plant pathogens is necessary to understand disease epidemiology, effectively breed and use resistant cultivars, and control plant diseases. In this article, we outlined the aims of population genetic studies in plant pathogens, discuss contributions of five evolutionary forces (i.e., mutation, gene flow, recombination, random genetic drift, and natural selection) to origin, maintenance, and distribution of genetic variation in time and space, and gave an overview of current research status in this field.

  19. The Main Aeromonas Pathogenic Factors

    PubMed Central

    Tomás, J. M.

    2012-01-01

    The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella. PMID:23724321

  20. Acinetobacter: an underrated foodborne pathogen?

    PubMed

    Amorim, Angelo Maximo Batista de; Nascimento, Janaína Dos Santos

    2017-02-28

    The increasing prevalence of foodborne diseases observed in developing countries has been linked to a rise in the consumption of raw foods. However, unlike the classical pathogens that are commonly implicated in foodborne illnesses, members of the genus Acinetobacter are rarely associated with diarrheal disease, probably because of the difficulty in isolating these Gram-negative bacteria from food sources. Nevertheless, several species of Acinetobacter, especially A. baumannii, possess many of the characteristics associated with successful pathogens and exhibit a prodigious ability to acquire the multiple-drug resistance (MDR) phenotype. In this mini-review, we summarize the epidemiological data relating to MDR Acinetobacter and consider evidence suggesting that contaminated dairy products, along with raw fruit and vegetables, constitute extra-hospital reservoirs of this underrated pathogen, and may represent an increased risk to immunocompromised individuals and young children in healthcare settings.

  1. Pathogens and the Placental Fortress

    PubMed Central

    Robbins, Jennifer R.

    2011-01-01

    Summary Placental infections are major causes of maternal and fetal disease. This review introduces a new paradigm for placental infections based on current knowledge of placental defenses and how this barrier can be breached. Transmission of pathogens from mother to fetus can occur at two sites of direct contact between maternal cells and specialized fetal cells (trophoblasts) in the human placenta: (i) maternal immune and endothelial cells juxtaposed to extravillous trophoblasts in the uterine implantation site and (ii) maternal blood surrounding the syncytiotrophoblast. Recent findings suggest that the primary vulnerability is in the implantation site. We explore evidence that the placental syncytiotrophoblast evolved as a defense against pathogens, and that inflammation-mediated spontaneous abortion may benefit mother and pathogen. PMID:22169833

  2. Picturing pathogen infection in plants.

    PubMed

    Barón, Matilde; Pineda, Mónica; Pérez-Bueno, María Luisa

    2016-09-01

    Several imaging techniques have provided valuable tools to evaluate the impact of biotic stress on host plants. The use of these techniques enables the study of plant-pathogen interactions by analysing the spatial and temporal heterogeneity of foliar metabolism during pathogenesis. In this work we review the use of imaging techniques based on chlorophyll fluorescence, multicolour fluorescence and thermography for the study of virus, bacteria and fungi-infected plants. These studies have revealed the impact of pathogen challenge on photosynthetic performance, secondary metabolism, as well as leaf transpiration as a promising tool for field and greenhouse management of diseases. Images of standard chlorophyll fluorescence (Chl-F) parameters obtained during Chl-F induction kinetics related to photochemical processes and those involved in energy dissipation, could be good stress indicators to monitor pathogenesis. Changes on UV-induced blue (F440) and green fluorescence (F520) measured by multicolour fluorescence imaging in pathogen-challenged plants seem to be related with the up-regulation of the plant secondary metabolism and with an increase in phenolic compounds involved in plant defence, such as scopoletin, chlorogenic or ferulic acids. Thermal imaging visualizes the leaf transpiration map during pathogenesis and emphasizes the key role of stomata on innate plant immunity. Using several imaging techniques in parallel could allow obtaining disease signatures for a specific pathogen. These techniques have also turned out to be very useful for presymptomatic pathogen detection, and powerful non-destructive tools for precision agriculture. Their applicability at lab-scale, in the field by remote sensing, and in high-throughput plant phenotyping, makes them particularly useful. Thermal sensors are widely used in crop fields to detect early changes in leaf transpiration induced by both air-borne and soil-borne pathogens. The limitations of measuring photosynthesis by

  3. From multiple pathogenicity islands to a unique organized pathogenicity archipelago

    PubMed Central

    Bouyioukos, Costas; Reverchon, Sylvie; Képès, François

    2016-01-01

    Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall. Here we show that their multiple pathogenicity islands form together a coherently organized, single “archipelago” at the genome scale. Furthermore, in half of the species, most genes encoding secreted pectinases are expressed from the same DNA strand (transcriptional co-orientation). This genome architecture favors DNA conformations that are conducive to genes spatial co-localization, sometimes complemented by co-orientation. As proteins tend to be synthetized close to their encoding genes in bacteria, we propose that this architecture would favor the efficient funneling of pectinases at convergent points within the cell. The underlying functional hypothesis is that this convergent funneling of the full blend of pectinases constitutes a crucial strategy for successful degradation of the plant cell wall. Altogether, our work provides a new approach to describe and predict, at the genome scale, the full virulence complement. PMID:27302835

  4. Pathogenic rickettsiae as bioterrorism agents.

    PubMed

    Azad, Abdu F

    2007-07-15

    Because of their unique biological characteristics, such as environmental stability, small size, aerosol transmission, persistence in infected hosts, low infectious dose, and high associated morbidity and mortality, Rickettsia prowazekii and Coxiella burnetii have been weaponized. These biological attributes would make the pathogenic rickettsiae desirable bioterrorism agents. However, production of highly purified, virulent, weapon-quality rickettsiae is a daunting task that requires expertise and elaborate, state-of-the art laboratory procedures to retain rickettsial survival and virulence. Another drawback to developing rickettsial pathogens as biological weapons is their lack of direct transmission from host to host and the availability of very effective therapeutic countermeasures against these obligate intracellular bacteria.

  5. New trends in emerging pathogens.

    PubMed

    Skovgaard, Niels

    2007-12-15

    The emergence of pathogens is the result of a number of impact in all parts of the food chain. The emerging technologies in food production explain how new pathogens can establish themselves in the food chain and compromise food safety. The impact of the food technology is analysed for several bacteria, such as Yersinia, Campylobacter, Arcobacter, Helicobacter pullorum, Enterobacter sakazakii, Mycobacterium avium spp. paratuberculosis, prions related to vCJD and others. The importance of the ability of many microbes to form VBNC forms is elaborated on. Research on culture independent methods may address this outstanding issue to the better understanding of emerging pathogens. The "demerging" of pathogens also occur, and examples of this are explained. The reaction of bacteria to stresses and sublethal treatments, and how exposure to one stress factor can confer resistance to other stresses, literally speaking causing contagious resistance, are explained. The implication of this e.g. in modern approaches of food preservation, such as Minimally processed Foods, is considerable. Intestinal colonization of EHEC may be regulated by Quorum sensing, and this ability of microbes plays an important role in the colonization of microbes in food and on food processing equipment, an important factor in the emergence of pathogens. The emergence of Saccharomyces cerevisiae, as an opportunistic human pathogen, used for centuries for food and production of alcoholic beverages, calls for research in molecular tools to distinguish between probiotic and clinical strains. Cyclospora cayetanensis and Norovirus outbreaks can no longer be designated as emerging pathogens, they share however one characteristic in the epidemiology of emerging nature, the importance of the hygiene in the primary production stage, including supply of potable water, and the application of GMP and the HACCP principles in the beginning of the food chain. Hepatitis E virus is a potential emerging food borne

  6. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    PubMed

    Lau, Han Yih; Palanisamy, Ramkumar; Trau, Matt; Botella, Jose R

    2014-01-01

    Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  7. Host ecotype generates evolutionary and epidemiological divergence across a pathogen metapopulation

    PubMed Central

    Laine, Anna-Liisa; Burdon, Jeremy J.; Nemri, Adnane; Thrall, Peter H.

    2014-01-01

    The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when—and where—pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space. PMID:24870042

  8. Immune response to a variable pathogen: a stochastic model with two interlocked Darwinian entities.

    PubMed

    Kuhn, Christoph

    2012-01-01

    This paper presents the modeling of a host immune system, more precisely the immune effector cell and immune memory cell population, and its interaction with an invading pathogen population. It will tackle two issues of interest; on the one hand, in defining a stochastic model accounting for the inherent nature of organisms in population dynamics, namely multiplication with mutation and selection; on the other hand, in providing a description of pathogens that may vary their antigens through mutations during infection of the host. Unlike most of the literature, which models the dynamics with first-order differential equations, this paper proposes a Galton-Watson type branching process to describe stochastically by whole distributions the population dynamics of pathogens and immune cells. In the first model case, the pathogen of a given type is either eradicated or shows oscillatory chronic response. In the second model case, the pathogen shows variational behavior changing its antigen resulting in a prolonged immune reaction.

  9. Differential gearing

    SciTech Connect

    Tamiya, S.

    1986-07-29

    A differential for motor vehicles is described and the like comprising, an input drive shaft, a pair of coaxially spaced drive gears simultaneously driven by the input shaft in a same direction at a same speed of rotation about a common axis of rotation, a driven gear driven peripherally by the pair of drive gears for transmission of power from the input drive shaft, two coaxial opposed bevel sun gears having an axis of rotation concentric with an axis of rotation of the driven gear, two planetary gears disposed between the sun gears for differential driving thereof during turns of the vehicle to the right and to the left of each meshing with the sun gears for driving the suns gears. Each planetary gear has a separate axis of rotation carried by the driven gear disposed therein radially and symmetrically relative to the axis of rotation of the sun gears, and each sun gear having a respective power output shaft connected thereto for rotation therewith.

  10. A mouse model for testing the pathogenicity of equine herpes virus-1 strains.

    PubMed

    van Woensel, P A; Goovaerts, D; Markx, D; Visser, N

    1995-07-01

    A mouse model was developed for testing the pathogenicity of equine herpes virus-1 (EHV-1) strains. The model was validated with EHV-1 strains that are known to be of a low or high pathogenicity in horses. From all parameters tested, the safety index, which was calculated from the body weights of the mice after infection, proved to be the best predictive parameter. When this parameter was used, good and reliable correlations were found with the pathogenicity of the EHV-1 strains in horses. This method enabled the differentiation between the two experimental EHV-1 strains whose genetic backgrounds were supposedly equal.

  11. Pathogen pollution and the emergence of a deadly amphibian pathogen.

    PubMed

    McKenzie, Valerie J; Peterson, Anna C

    2012-11-01

    Imagine a single pathogen that is responsible for mass mortality of over a third of an entire vertebrate class. For example, if a single pathogen were causing the death, decline and extinction of 30% of mammal species (including humans), the entire world would be paying attention. This is what has been happening to the world's amphibians - the frogs, toads and salamanders that are affected by the chytrid fungal pathogen, Batrachochytrium dendrobatidis (referred to as Bd), which are consequently declining at an alarming rate. It has aptly been described as the worst pathogen in history in terms of its effects on biodiversity (Kilpatrick et al. 2010). The pathogen was only formally described about 13 years ago (Longcore et al. 1999), and scientists are still in the process of determining where it came from and investigating the question: why now? Healthy debate has ensued as to whether Bd is a globally endemic organism that only recently started causing high mortality due to shifting host responses and/or environmental change (e.g. Pounds et al. 2006) or whether a virulent strain of the pathogen has rapidly disseminated around the world in recent decades, affecting new regions with a vengeance (e.g. Morehouse et al. 2003; Weldon et al. 2004; Lips et al. 2008). We are finally beginning to shed more light on this question, due to significant discoveries that have emerged as a result of intensive DNA-sequencing methods comparing Bd isolates from different amphibian species across the globe. Evidence is mounting that there is indeed a global panzootic lineage of Bd (BdGPL) in addition to what appear to be more localized endemic strains (Fisher et al. 2009; James et al. 2009; Farrer et al. 2011). Additionally, BdGPL appears to be a hypervirulent strain that has resulted from the hybridization of different Bd strains that came into contact in recent decades, and is now potentially replacing the less-virulent endemic strains of the pathogen (Farrer et al. 2011

  12. Microbial Forensics and Plant Pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New awareness of the vulnerability of a nation's agricultural infrastructure to the intentional introduction of pathogens or pests has led to the enhancement of programs for prevention and preparedness. A necessary component of a balanced bio-security plan is the capability to determine whether an ...

  13. Biosignatures of Pathogen and Host

    SciTech Connect

    Fitch, J P; Chromy, B A; Forde, C E; Garcia, E; Gardner, S N; Gu, P P; Kuczmarksi, T A; Melius, C F; McCutchen-Maloney, S L; Milanovich, F P; Motin, V L; Ott, L L; Quong, A A; Quong, J N; Rocco, J M; Slezak, T R; Sokhansanj, B A; Vitalis, E A; Zemla, A T; McCready, P M

    2002-08-27

    In information theory, a signature is characterized by the information content as well as noise statistics of the communication channel. Biosignatures have analogous properties. A biosignature can be associated with a particular attribute of a pathogen or a host. However, the signature may be lost in backgrounds of similar or even identical signals from other sources. In this paper, we highlight statistical and signal processing challenges associated with identifying good biosignatures for pathogens in host and other environments. In some cases it may be possible to identify useful signatures of pathogens through indirect but amplified signals from the host. Discovery of these signatures requires new approaches to modeling and data interpretation. For environmental biosignal collections, it is possible to use signal processing techniques from other applications (e.g., synthetic aperture radar) to track the natural progression of microbes over large areas. We also present a computer-assisted approach to identify unique nucleic-acid based microbial signatures. Finally, an understanding of host-pathogen interactions will result in better detectors as well as opportunities in vaccines and therapeutics.

  14. The Evolution of Foodborne Pathogens

    NASA Astrophysics Data System (ADS)

    Abu-Ali, Galeb S.; Manning, Shannon D.

    Despite continuous advances in food safety and disease surveillance, control, and prevention, foodborne bacterial infections remain a major public health concern. Because foodborne pathogens are commonly exposed to multiple environmental stressors, such as low pH and antibiotics, most have evolved specific mechanisms to facilitate survival in adverse environments.

  15. Pathogenicity of Aseptic Bursaphelenchus xylophilus

    PubMed Central

    Zhu, Li-hua; Ye, Jianren; Negi, Sapna; Xu, Xu-ling; Wang, Zhang-li; Ji, Jin-yi

    2012-01-01

    Pine wilt is a disease of pine (Pinus spp.) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus. However, the pathogenic mechanism of pine wilt disease (PWD) remains unclear. Although the PWN was thought to be the only pathogenic agent associated with this disease, a potential role for bacterial symbionts in the disease process was recently proposed. Studies have indicated that aseptic PWNs do not cause PWD in aseptic pine trees, while PWNs associated with bacteria cause wilting symptoms. To investigate the pathogenicity of the PWN and its associated bacteria, 3-month-old microcuttings derived from certain clones of Pinus densiflora Siebold & Zucc. produced in vitro were inoculated under aseptic conditions with aseptic PWNs, non-aseptic PWNs and bacteria isolated from the nematodes. Six-month-old aseptic P. densiflora microcuttings and 7-month-old P. massoniana seedlings were also inoculated under aseptic conditions with aseptic PWNs and non-aseptic PWNs. The results showed that the aseptic microcuttings and seedlings inoculated with aseptic PWNs or non-aseptic PWNs wilted, while those inoculated with bacterial isolates did not wilt. Nematodes were recovered from wilted microcuttings and seedlings inoculated with aseptic PWNs and non-aseptic PWNs, and the asepsis of nematodes recovered from aseptic PWN-inoculated microcuttings and seedlings was reconfirmed by culturing them in NB liquid medium at 30°C for more than 7 days. Taken together, the results indicate that the asepsis of PWN did not cause the loss of pathogenicity. PMID:22662271

  16. Pathogenicity of Shigella in chickens.

    PubMed

    Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing

    2014-01-01

    Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.

  17. Pathogenicity of aseptic Bursaphelenchus xylophilus.

    PubMed

    Zhu, Li-hua; Ye, Jianren; Negi, Sapna; Xu, Xu-ling; Wang, Zhang-li; Ji, Jin-yi

    2012-01-01

    Pine wilt is a disease of pine (Pinus spp.) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus. However, the pathogenic mechanism of pine wilt disease (PWD) remains unclear. Although the PWN was thought to be the only pathogenic agent associated with this disease, a potential role for bacterial symbionts in the disease process was recently proposed. Studies have indicated that aseptic PWNs do not cause PWD in aseptic pine trees, while PWNs associated with bacteria cause wilting symptoms. To investigate the pathogenicity of the PWN and its associated bacteria, 3-month-old microcuttings derived from certain clones of Pinus densiflora Siebold & Zucc. produced in vitro were inoculated under aseptic conditions with aseptic PWNs, non-aseptic PWNs and bacteria isolated from the nematodes. Six-month-old aseptic P. densiflora microcuttings and 7-month-old P. massoniana seedlings were also inoculated under aseptic conditions with aseptic PWNs and non-aseptic PWNs. The results showed that the aseptic microcuttings and seedlings inoculated with aseptic PWNs or non-aseptic PWNs wilted, while those inoculated with bacterial isolates did not wilt. Nematodes were recovered from wilted microcuttings and seedlings inoculated with aseptic PWNs and non-aseptic PWNs, and the asepsis of nematodes recovered from aseptic PWN-inoculated microcuttings and seedlings was reconfirmed by culturing them in NB liquid medium at 30°C for more than 7 days. Taken together, the results indicate that the asepsis of PWN did not cause the loss of pathogenicity.

  18. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This document is written as a resource for state and local watershed managers who have the responsibility of managing pathogen contamination in urban watersheds. In addition it can be an information source for members of the public interested in watershed mitigation efforts aime...

  19. MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION

    EPA Science Inventory

    This presentation is a summary of the EPA National Risk Management Research Laboratory (NRMRL) publication entitled Managing Urban Watershed Pathogen Contamination, EPA/600/R-03/111 (September 2003). It is available on the internet at http://www.epa.gov/ednnrmrl/repository/water...

  20. USEPA PERSPECTIVE ON CONTROLLING PATHOGENS

    EPA Science Inventory

    EPA minimizes the risk of infectious diseases from the beneficial use of sludge by requiring its treatment to reduce pathogen levels below the detection limit. How new treatment processes can be shown equivalent to ones specified in 40CFR503 will be discussed together with ways t...

  1. Bloodborne Pathogens Exposure Control Plan.

    ERIC Educational Resources Information Center

    National Child Care Association, Atlanta, GA.

    This sample exposure control plan is a guide to assist child care providers in complying with the blood-borne pathogens standard issued by the Occupational Safety and Health Administration (OSHA). The standard requires employers to establish a written exposure control plan by May 5, 1992 (for exposure to microorganisms in human blood that cause…

  2. Regulation of virulence gene expression in pathogenic Listeria.

    PubMed

    Brehm, K; Kreft, J; Ripio, M T; Vázquez-Boland, J A

    1996-06-01

    Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.

  3. Iron Availability Increases the Pathogenic Potential of Salmonella Typhimurium and Other Enteric Pathogens at the Intestinal Epithelial Interface

    PubMed Central

    Kortman, Guus A. M.; Boleij, Annemarie; Swinkels, Dorine W.; Tjalsma, Harold

    2012-01-01

    Recent trials have questioned the safety of untargeted oral iron supplementation in developing regions. Excess of luminal iron could select for enteric pathogens at the expense of beneficial commensals in the human gut microflora, thereby increasing the incidence of infectious diseases. The objective of the current study was to determine the effect of high iron availability on virulence traits of prevalent enteric pathogens at the host-microbe interface. A panel of enteric bacteria was cultured under iron-limiting conditions and in the presence of increasing concentrations of ferric citrate to assess the effect on bacterial growth, epithelial adhesion, invasion, translocation and epithelial damage in vitro. Translocation and epithelial integrity experiments were performed using a transwell system in which Caco-2 cells were allowed to differentiate to a tight epithelial monolayer mimicking the intestinal epithelial barrier. Growth of Salmonella typhimurium and other enteric pathogens was increased in response to iron. Adhesion of S. typhimurium to epithelial cells markedly increased when these bacteria were pre-incubated with increasing iron concentration (P = 0.0001), whereas this was not the case for the non-pathogenic Lactobacillus plantarum (P = 0.42). Cellular invasion and epithelial translocation of S. typhimurium followed the trend of increased adhesion. Epithelial damage was increased upon incubation with S. typhimurium or Citrobacter freundii that were pre-incubated under iron-rich conditions. In conclusion, our data fit with the consensus that oral iron supplementation is not without risk as iron could, in addition to inducing pathogenic overgrowth, also increase the virulence of prevalent enteric pathogens. PMID:22272265

  4. Hepcidin Induction by Pathogens and Pathogen-Derived Molecules Is Strongly Dependent on Interleukin-6

    PubMed Central

    Rodriguez, Richard; Jung, Chun-Ling; Gabayan, Victoria; Deng, Jane C.; Ganz, Tomas; Nemeth, Elizabeta

    2014-01-01

    Hepcidin, the iron-regulatory hormone, is increased during infection or inflammation, causing hypoferremia. This response is thought to be a host defense mechanism that restricts iron availability to invading pathogens. It is not known if hepcidin is differentially induced by bacterial versus viral infections, whether the stimulation of pattern recognition receptors directly regulates hepcidin transcription, or which of the proposed signaling pathways are essential for hepcidin increase during infection. We analyzed hepcidin induction and its dependence on interleukin-6 (IL-6) in response to common bacterial or viral infections in mice or in response to a panel of pathogen-derived molecules (PAMPs) in mice and human primary hepatocytes. In wild-type (WT) mice, hepcidin mRNA was induced several hundred-fold both by a bacterial (Streptococcus pneumoniae) and a viral infection (influenza virus PR8) within 2 to 5 days. Treatment of mice and human primary hepatocytes with most Toll-like receptor ligands increased hepcidin mRNA within 6 h. Hepcidin induction by microbial stimuli was IL-6 dependent. IL-6 knockout mice failed to increase hepcidin in response to S. pneumoniae or influenza infection and had greatly diminished hepcidin response to PAMPs. In vitro, hepcidin induction by PAMPs in primary human hepatocytes was abolished by the addition of neutralizing IL-6 antibodies. Our results support the key role of IL-6 in hepcidin regulation in response to a variety of infectious and inflammatory stimuli. PMID:24478088

  5. Stress signaling pathways for the pathogenicity of Cryptococcus.

    PubMed

    Bahn, Yong-Sun; Jung, Kwang-Woo

    2013-12-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas.