Science.gov

Sample records for gravels wad ghoweiba

  1. Wideband Analog Data System (WADS), system design document

    NASA Technical Reports Server (NTRS)

    Brose, J. F.

    1979-01-01

    The Wideband Analog System (WADS) which performs post flight structural dynamic analysis of wideband FM data recorded during orbital flight tests is defined. Screening, reporting, and plotting steady state and transient wave analysis data are provided by WADS.

  2. Identification from a bitemark in a wad of chewing gum.

    PubMed

    Nambiar, P; Carson, G; Taylor, J A; Brown, K A

    2001-06-01

    A wad of used chewing gum recovered from the scene of a burglary contained impressions of human teeth. Casts of these impressions displayed unique morphological characteristics which were found to show concordance with corresponding features present on casts of the posterior teeth of a suspect. PMID:11494677

  3. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  4. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  5. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  6. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  7. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  8. Spectral behavior of gravel dunes

    NASA Astrophysics Data System (ADS)

    Qin, Jie; Wu, Teng; Zhong, Deyu

    2015-02-01

    Spectral behavior of gravel dunes formed under different flow discharges is analyzed with an attempt to verify the '- 3' spectral law that has been confirmed extensively for sand dunes. A schematic spectrum of gravel dunes is proposed based on the spectral analysis as well as results from the literature. The results of spectral analysis show a significant deviation from the '- 3' spectral law for gravel dunes, and the magnitude of deviation correlates with flow discharge. Possible explanations for the deviation from the '- 3' spectral law, being associated with kinetic and geometrical characteristics, have been explored. To investigate the kinetic characteristics of gravel dunes, a wavelet-based method that calculates the celerity of dunes based on a pair of elevational time series is quantitatively tested. Our results suggest that (1) the kinetic explanation based on the relationship between dune celerity and dune length cannot fully explain the spectral behavior of gravel dunes; (2) the geometrical explanation based on the self-similarity hypothesis is confirmed by the relationship between dune length and dune height; and (3) the development of gravel sheets accounts for the differences in kinetic and geometrical characteristics between gravel dunes and sand dunes.

  9. Designing gravel pack for uranium ISL wells

    NASA Astrophysics Data System (ADS)

    Ber, A. A.; Minaev, K. M.; Ber, L. M.; Isaev, Ye D.; Ulyanova, O. S.

    2016-09-01

    The paper describes the improvement of gravel packing technique applied for the production wells. The authors have suggested new design of gravel pack for gravel packing of productive formations. The issue is currently topical because gravel packing at drillhole ISL is less time- and money-consuming. The subject of the research is gravel pack design and content. The purpose defined by the authors is to design the gravel pack and to suggest the composition of gravel cement agent. As a result of the research, the authors have described different designs of the gravel pack, its optimal shape, as well as a choice and justification of cement agents, a hold cover of the gravel pack, and suggested the methods of experimental research.

  10. Unfolding with Maxed and Gravel.

    2004-07-12

    Version: 00 UMG (Unfolding with MAXED and GRAVEL) is a package of seven programs written for the analysis of data measured with spectrometers that require the use of unfolding techniques. See the developers’ website for information on training courses http://www.ptb.de/en/org/6/utc2006/intro.htm. The program MAXED applies the maximum entropy principle to the unfolding problem, and the program GRAVEL uses a modified SAND-II algorithm to do the unfolding. There are two versions of each: MXD_FC33 and GRV_FC33 formore » “few-channel” unfolding (e.g., Bonner sphere spectrometers) and MXD-MC33 and GRV_MC33 for “multi-channel” unfolding (e.g., NE-213). The program IQU can be used to calculate integral quantities for both MAXED and GRAVEL solution spectra and, in the case of MAXED solutions, it can also be used to calculate the uncertainty in these values as well as the uncertainty in the solution spectrum. The uncertainty calculation is handled in the following way: given a solution spectrum generated by MAXED, the program IQU considers variations in the measured data and in the default spectrum and uses standard methods to do sensitivity analysis and uncertainty propagation. There are two versions: IQU_FC33 for “few channel” unfolding and IQU_MC33 for “multi-channel” unfolding. The program UMGPlot can be used to display the results from the unfolding programs MAXED and GRAVEL in graphical form in a quick and easy way.« less

  11. Method of gravel packing a well

    SciTech Connect

    Almond, S. W.; Himes, R. E.

    1985-11-12

    The present invention relates to a thermally stable crosslinked gel gravel packing fluid for use in the treatment of highly deviated well bores penetrating a subterranean formation. The gravel packing fluid comprises an aqueous liquid, a gelling agent comprising a selected modified cellulose ether, a crosslinking agent, a breaker, a particulate agent and any additional additives that may be present.

  12. Combination gravel packing device and method

    SciTech Connect

    Salerni, J. V.; Zachman, J. R.

    1985-09-17

    An apparatus for gravel packing a screen positioned adjacent the casing perforations of a subterranean well incorporates an annular sealing surface immediately above the gravel pack screen. A flapper valve is mounted for movement about a horizontal pivot axis into engagement with the annular valve seat. The flapper valve and the cooperating valve seat are both provided with spherical segment sealing surfaces so as to prevent leakage through the valve due to any misalignment of the pivot axis of the flapper valve with respect to the annular valve seat. With this apparatus, the withdrawal of the gravel packing apparatus at the completion of the gravel packing operations prevents the entry of undesired fluids and contaminates into the producing formation.

  13. Modeling surficial sand and gravel deposits

    USGS Publications Warehouse

    Bliss, J.D.; Page, N.J.

    1994-01-01

    Mineral-deposit models are an integral part of quantitative mineral-resource assessment. As the focus of mineral-deposit modeling has moved from metals to industrial minerals, procedure has been modified and may be sufficient to model surficial sand and gravel deposits. Sand and gravel models are needed to assess resource-supply analyses for planning future development and renewal of infrastructure. Successful modeling of sand and gravel deposits must address (1) deposit volumes and geometries, (2) sizes of fragments within the deposits, (3) physical characteristics of the material, and (4) chemical composition and chemical reactivity of the material. Several models of sand and gravel volumes and geometries have been prepared and suggest the following: Sand and gravel deposits in alluvial fans have a median volume of 35 million m3. Deposits in all other geologic settings have a median volume of 5.4 million m3, a median area of 120 ha, and a median thickness of 4 m. The area of a sand and gravel deposit can be predicted from volume using a regression model (log [area (ha)] =1.47+0.79 log [volume (million m3)]). In similar fashion, the volume of a sand and gravel deposit can be predicted from area using the regression (log [volume (million m3)]=-1.45+1.07 log [area (ha)]). Classifying deposits by fragment size can be done using models of the percentage of sand, gravel, and silt within deposits. A classification scheme based on fragment size is sufficiently general to be applied anywhere. ?? 1994 Oxford University Press.

  14. Radiocarbon dating of the Early Natufian at el-Wad Terrace, Mount Carmel, Israel

    NASA Astrophysics Data System (ADS)

    Eckmeier, E.; Yeshurun, R.; Weinstein-Evron, M.; Mintz, E.; Boaretto, E.

    2012-04-01

    The Natufian culture (15-11.5 kyr BP) of the Levant played an integral role in the transition from nomadic hunter-gatherers to the establishment of sedentism and, finally, to food producing societies of the Neolithic. The Natufian sites in the Southern Levant are characterised by a lack of macrobotanical remains, including charcoal, and a poor preservation of bone collagen. A result of the scarcity of radiocarbon dateable material is that only about 30 reliable radiocarbon dates from the Natufian are available for constructing a chronology of this period, which would enable a better synchronisation of archaeological and environmental data. A key question of Natufian research is if and to what extent past climate changes influenced the lifestyle of the Natufian communities, but the prerequisite for the correlation of cultural and environmental events in time are accurate chronologies. Therefore, a chronological framework with dates from well-defined contexts and samples of good quality is essential for the investigation of the Natufian. We present new C-14 data from the site of el-Wad Terrace, one of the major Natufian hamlets of the 'core area' of this culture. The samples (12 charcoals and 34 bones, of which 6 charcoals and 5 bones were suitable for dating) were derived from Early Natufian (15-13 kyr BP) living surfaces, dwellings and burials. Using FTIR, we investigated the environmental factors that influenced the preservation of material for radiocarbon dating of the site, and we tested a modified pre-treatment method for poorly preserved charcoal samples. We found that the usual pre-treatment protocol for C-14 samples (W-ABA) removed more charcoal material than the method modified by Rebollo et al. (2008) which omits the first acid treatment (W-BA). This first acid step enhanced the extraction of humic substances during the subsequent base step. The modified W-BA method is a promising tool for dating poorly preserved charcoals which needs further testing with

  15. MICROTURBULENCE IN GRAVEL BED STREAMS

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Kramer, C. M.

    2009-12-01

    The overarching objective of this investigation was to evaluate the role of relative submergence on the formation and evolution of cluster microforms in gravel bed streams and its implications to bedload transport. Secondary objectives of this research included (1) a detailed analysis of mean flow measurements around a clast; and (2) a selected number of experimental runs where the mean flow characteristics are linked together with the bed micro-topography observations around a clast. It is hypothesized that the relative submergence is an important parameter in defining the feedback processes between the flow and clasts, which governs the flow patterns around the clasts, thus directly affecting the depositional patterns of the incoming sediments. To examine the validity of the hypothesis and meet the objectives of this research, 19 detailed experimental runs were conducted in a tilting, water recirculating laboratory flume under well-controlled conditions. A fixed array of clast-obstacles were placed atop a well-packed bed with uniform size glass beads. During the runs, multifractional spherical particles were fed upstream of the clast section at a predetermined rate. State-of-the-art techniques/instruments, such as imaging analysis software, Large Scale Particle Velocimeter (LSPIV) and an Acoustic Doppler Velocimetry (ADV) were employed to provide unique quantitative measurements for bedload fluxes, clast/clusters geomorphic patterns, and mean flow characteristics in the vicinity of the clusters. Different flow patterns were recorded for the high relative submergence (HRS) and low relative submergence (LRS) experimental runs. The ADV measurements provided improved insight about the governing flow mechanisms for the HRS runs. These mechanisms were described with flow upwelling at the center of the flume and downwelling occurring along the flume walls. Flow downwelling corresponded to an increase in the free surface velocity. Additionally, the visual observations

  16. Gravel Augmentation Below Dams: California Experiences

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.; Minear, J. T.

    2004-12-01

    Most dams block all coarse sediment traveling downstream, such that reaches downstream are commonly typically depleted of gravel, causing a variety of effects such as incision, bank erosion, coarsening of the bed material, and reduction of salmonid spawning habitiat. To compensate for this reduction in coarse sediment supply, gravel has been artificially added below dams, using techniques such as high flow stock piling, high flow direct injection, artificial riffle construction, riffle supplementation, and construction of side channel or artificial spawning channels. In the Trinity and Sacramento-San Joaquin River systems of northern California, loss of suitable salmonid spawning gravels below dams has motivated augmentation of over 320,000 m3 of gravel in 73 separate projects on 19 rivers since 1978, mostly since 1990. Of the 67 projects for which adequate data were available, 48 involved adding less than 7,500 m3 each. Costs reported for 57 of the projects totaled nearly $8,753,000, but these figures generally did not include the cost of staff time involved in planning, design, and oversight. Despite the magnitude of this experimental intervention, fewer than half of the projects were monitored, and of those few had monitored sufficient parameters pre- and post- project to evaluate project performance. Performance of these projects to date has been mixed: in many cases the imported gravels have promptly washed out, some channel forms created have been unnatural and not heavily used by salmon. In all cases, the volumes of gravel artificially added have been only a small percentage of the annual coarse sediment deficit.

  17. Retroperitoneal decortication of simple renal cysts vs decortication with wadding using perirenal fat tissue: results of a prospective randomized trial.

    PubMed

    Porpiglia, Francesco; Fiori, Cristian; Billia, Michele; Renard, Julien; Di Stasio, Andrea; Vaccino, Davide; Bertolo, Riccardo; Scarpa, Roberto Mario

    2009-06-01

    OBJECTIVES To evaluate, in a pilot prospective randomized trial, the safety, effectiveness and radiological recurrence of retroperitoneal renal cyst decortication compared with retroperitoneal decortication with wadding using perirenal pedicled fat tissue. PATIENTS AND METHODS From March 2004 to December 2007, 40 patients with simple renal cysts were enrolled and randomized; 22 (group A) had a simple retroperitoneal decortication (SRD) and 18 (group B) a decortication with wadding of the cyst using perirenal fat tissue (RDCW). The following variables were recorded: age, gender, side, size on ultrasonography/computed tomography (CT), location, operative duration, blood loss, complications, pathology, presence or absence of flank pain, hypertension, urinary tract compression or urinary infection. The primary endpoint of this trial was to evaluate and compare the efficacy of both treatments. Secondary endpoints were safety and pain, hypertension and the resolution of urinary tract obstruction. RESULTS In all, 40 cysts were treated; there were no bilateral cysts. The mean (sd) size on CT was 11.9 (1.84) cm in group A and 12.8 (1.25) cm in group B (P = 0.1). All the procedures were completed laparoscopically and no conversion was necessary. There were no intraoperative complications. The mean (range) hospital stay was 3.4 (3-6) days. There was no statistically significant difference between the groups for all variables assessed. There was a radiological recurrence in three patients (14%) in group A, but none in group B (all successful). CONCLUSION To be completely successful, with maximum safety and to prevent recurrences in the treatment of renal cysts, RCDW is recommended when a retroperitoneal approach is chosen, especially if the cyst is located anteriorly. When symptom relief is considered, RCDW duplicates the results obtained with SRD.

  18. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, C.P.; Booth, D.B.; Burges, S.J.; Montgomery, D.R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress ??*0 of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to ??*0 with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root-mean-square error of 0.09). Variation in partial entrainment for a given ??*0 demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < ??*0 < 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  19. Characterizing unsaturated diffusion in porous tuff gravel

    SciTech Connect

    Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.

    2003-11-12

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents.

  20. The Flaxville gravel and its relation to other terrace gravels of the northern Great Plains

    USGS Publications Warehouse

    Collier, Arthur J.; Thom, W.T.

    1918-01-01

    In Nebraska and South Dakota there are widespread deposits of gravel and other material, largely superficial and generally uninitiated, known as the White River, Arikaree, Ogalalla, and other formations, which range in age from Oligocene to Pleistocene. West of these deposits, on the flanks of the Rocky Mountains, are several high plateaus covered with gravel, whose age, though not know, is generally regarded as Pleistocene.

  1. Thrusting and gravel progradation in foreland basins: A test of post-thrusting gravel dispersal

    SciTech Connect

    Burbank, D.W.; Beck, R.A.; Hobbs, R. ); Raynolds, R.G.H. ); Tahirkheli, R.A.K. )

    1988-12-01

    The use of gravels as syntectonic indicators of thrusting has recently been questioned by foreland-basin models that assign gravels to a post-thrusting interval of progradation, except in very proximal areas. On the basis of precise temporal control provided by magnetostratigraphically dated sections, the history of gravel progradation after a major thrusting and uplift event in the northwestern Himalaya is shown to be a virtually syntectonic phenomenon. Despite considerable crustal subsidence driven by a thick-skinned thrust, gravels prograded {approximately} 70 km during a 1.5-m.y.-long thrusting event. By 3 m.y. after the start of thrusting, gravels extended more than 110 km into the basin. Although delayed gravel progradation appears appropriate for many Rocky Mountain foreland basins, it is clearly not valid for the Himalaya. The authors attribute the difference in depositional response between these basins to difference in the quantity of sediment supplied to them (sediment starved vs. overfilled), the availability of resistates in the source area, and the size of the antecedent drainage.

  2. Expandable mixing section gravel and cobble eductor

    DOEpatents

    Miller, Arthur L.; Krawza, Kenneth I.

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  3. On why gravel bed streams are paved

    SciTech Connect

    Parker, G.; Klingeman, P.C.

    1982-10-01

    Bedload transport in poorly sorted gravel bed streams downstream of dams is considered. Bedload and typical bed material (subpavement) size distributions are observed to be similar; it follows that the coarse half of the subpavement moves through a reach at a rate near that of the fine half. Since coarser grains are intrinsically less mobile than fine grains, it follows that some mechanism must act to nearly equalize mobility. It is hypothesized that the pavement seen in gravel bed streams at low flow is in fact in place during typical transport events capable of moving all available sizes. This pavement can provide the equalizing mechanism by exposing proportionally more coarse grains to the flow. Field data are used to quantify this concept and to develop a predictive relation for river pavement. The model indicates that pavement should be absent in most sand bed streams, in agreement with observation.

  4. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  5. Characterizing Unsaturated Diffusion in Porous Tuff Gravel

    SciTech Connect

    Hu, Q; Kneafsey, T J; Roberts, J J; Tomutsa, L; Wang, J S

    2003-11-12

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (e.g., the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent of surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents are calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could significantly hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel.

  6. Lessons from a Spawning Gravel Rehabilitation Program

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Wheaton, J. M.; Merz, J.

    2002-12-01

    Altered sediment and flow regimes in dammed and regulated rivers limit available spawning habitat to salmonids. River managers have attempted rehabilitation of spawning habitat with gravel augmentation and riffle construction projects, but often neglect well-established conceptual models of geomorphic and ecologic processes, let alone apply them in a predictive manner. Application of such models could not only improve rehabilitation projects, but also serve to further test and evaluate the underlying scientific theories against the rigors of real-world uncertainties. For the past two years a new science-based approach to rehabilitate spawning gravels for salmonids has been under development and testing to overcome these deficiencies. The approach includes a balance of science-based quantitative tools from multiple disciplines and qualitative local knowledge relevant to the region in which it has been applied. In 2001 and 2002 it was used to design and implement the placement of 907 and 2787 metric tons of gravel, respectively, on separate reaches of the lower Mokelumne River in Central California. A long-term monitoring program to quantify outcomes and assess sustainability is on-going. Lessons from these efforts are providing for adaptive management and will be presented.

  7. Subsurface Flow in Gravel River Bars

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2014-12-01

    The geomorphic and hydraulic characteristics of gravel bars control the direction, magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. Bed undulation, water-surface gradient, alluvial depth, and the spatial variation of hydraulic conductivity (both deterministic trends and stochastic variability) affect the hydrologically-driven groundwater-surface water exchange. In this paper, we use a set of field measurements of morphological and hydrological characteristics along two reaches of the San Joaquin River, California to motivate a systematic analysis of the factors that affect paths and residence times of flow through gravel bars under an observed range of streamflow values. In the field investigation, it is shown that asymmetry of bar morphology is a first-order control on the extent and magnitude of infiltration, which is often represented to produce approximately equal areas of infiltration and seepage under the assumption of sinusoidal bedforms. Infiltration over the length of a bar is shown to be greater at low flow than at high flow because of the effect of water-surface gradient. Hydraulic conductivity (ksat) varies by orders of magnitude and systematic downstream coarsening arises related to the process of bar evolution. The lowest values of ksat were observed where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where the infiltration would be greatest into a uniform bar of homogeneous gravel. Morphology and fine sediment accumulation in recharge zones exert an important control over the mechanisms driving subsurface fluid exchange. Simulations from a numerical groundwater flow model that isolate the signatures of morphology and streambed sediment patterns on subsurface flow corroborate our interpretation that the infiltration patterns and rates are primarily controlled by bed morphology, with ksat playing a secondary role.

  8. Mineral resource of the month: industrial sand and gravel

    USGS Publications Warehouse

    Dolley, Thomas P.

    2007-01-01

    With many diverse uses, industrial sand and gravel, also known as silica sand, is one of the most important nonmetallic minerals in the world. Industrial sand and gravel is a mining industry term used for sands that have a very high percentage of silicon dioxide, or greater than 95 percent quartz. Deposits of industrial sand and gravel can be found virtually everywhere on Earth, but are less widespread than deposits of common construction sand and gravel. Industrial sand and gravel is distinctive in grain size, hardness, inertness and resistance to high temperature and chemical action. Beverage containers, fiberglass insulation, fiber-optic cables and light bulbs are just some of today’s many products produced from industrial sand and gravel.

  9. Overwash threshold experiment for gravel barriers

    NASA Astrophysics Data System (ADS)

    Matias, Ana; Williams, Jon; Bradbury, Andrew; Masselink, Gerhard; Ferreira, Óscar

    2010-05-01

    Field measurements of overwash effects, associated physical forcing, and determination of threshold conditions, are much less common for gravel than for sandy barriers (e.g., field measurements by Lorang, 2002; Bradbury et al., 2005; and laboratory studies by Obhrai et al., 2008). In order to define overwash thresholds for gravel there is a need for measurements under a variety of forcing conditions that include waves, tides and surges. Flume experiments allow the manipulation of physical forcing and can make a valuable contribution to improve the understanding and prediction of overwash. To study gravel barrier overwash processes, BARDEX proto-type scale laboratory experiment was undertaken in the Delta flume (Williams et al., 2009). A 4 m high, 50 m wide gravel barrier composed of sediments with D50 = 10 mm was emplaced in the flume and subjected to a range of water levels, wave heights and wave periods. Barrier morphology was surveyed before and after each run. Two situations were simulated: overwashing and overtopping. Following Orford and Carter (1982) terminology, the distinction between overtopping and overwash was based on the type of morphological change over the barrier crest. Overtopping causes vertical accretion at the crest, whereas overwashing promotes the formation of washover deposits landwards from the crest. Ten overwash experiments were conducted (divided in 63 runs), and overtopping was recorded in 22 runs and overwash in 20 runs. In other runs, only the beach face was reworked by waves. In a systematic series of tests water levels were varied between 3.00 m and 3.75 m (in steps of 0.125 m); wave height was varied between 0.8 m and 1.3 m (in steps of 0.05 or 0.1 m); and wave periods of 4.5, 6, 7 and 8 seconds were used. These hydrodynamic conditions were used to compute wave run-up using several well-known formulae (cf., Powell, 1990; Stockdon et al., 2007). Comparison between run-up estimations and the barrier crest elevation prior to wave

  10. The mechanism of gravel movements --an observation from flume experiments

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Chuan; Cheng, Yeuan-Chang; Yang, Chi-Jen

    2016-04-01

    This study tries to find the mechanism and methods of gravel movements by using the flume at Freie Universitat Berlin. Flume and video recording are applied at different slopes and arrangement of gravel on flume. The diameter of gravels ranged between 3-8 cm. Through repeated experiments, the movements of gravel at the slope between 2-7 degrees had different behaviors. The results show that: 1. The average of flow speed changed when the slope of channel change from 1.5 to 3 m/sec. The hydrologic power also changed. It is also found that the flow speed to remove the gravels is also changed when changing the degree of slope. 2. Through the video recording, the movements of gravels can be recorded every 1/30 seconds. The path of gravel and flow also can be traced. It is found that the gravels behave different according to the arrangement of gravel on flume beds. 3. The threshold value of flow speed to trigger the gravel ranging from 2 to 2.5 m/s. It is also found that the flow speed within the flume can be varied. However the triggering values of flow speed at different slope angles are also found in this study. 4. The flow paths are also interesting. The size and alignment of gravels also change the paths at different flow speed. The width of the flume can change the path of the flow easily. It is needed to prevent the influence of the edge. This paper demonstrates above changes and behaviors.

  11. Can coarse surface layers in gravel-bedded rivers be mobilized by finer gravel bedload?

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Dietrich, W. E.; Nelson, P. A.; Wydzga, M. A.; Fadde, J.; Sklar, L.

    2005-12-01

    In response to reductions in sediment supply, gravel-bed rivers undergo a coarsening of the sediments that comprise the river's bed and, over some longer time scale, a river's grade may also be reduced as sediments are depleted from upstream reaches. Coarse, degraded river reaches are commonly observed downstream of dams across the Western United States. Following dam closure, these riverbeds become immobile under the altered flow and sediment supply regimes, leading to a reduction in the available salmon spawning and rearing habitat. Gravel augmentation to these streams is now common practice. This augmentation is typically seen as resurfacing the static coarse bed. As an alternative, we propose that the addition of appropriately finer gravels to these channels may be capable of mobilizing an otherwise immobile coarse surface layer, creating the potential to release fine material trapped beneath the surface. A series of laboratory experiments are being undertaken to test this hypothesis in a 30 m long and 0.86 m wide gravel-bedded flume channel using a constant discharge and a unimodal bed sediment with a median grain size of 8 mm and no sand present. The channel width-to-depth ratio of ~4 suppresses the development of lateral topography and allows us to focus on grain-to-grain interactions. Experiments proceed by maintaining a constant sediment feed until an equilibrium grade and transport rate are established, starving the flume of sediment for at least 24 hours, and then adding narrowly graded gravel over a period of one to two hours at a rate that is ~4x the bedload rate observed prior to terminating the sediment supply. The bed prior to sediment addition has an armor median grain size that is typically twice that of the subsurface and feed size distribution. The volume and median grain size of the resulting pulses are varied. Pulses move downstream rapidly with well-defined fronts in the form of bedload sheets and cause peaks in the sediment flux

  12. Discrete Element Modeling of the Mobilization of Coarse Gravel Beds by Finer Gravel Particles

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Tan, D.

    2012-12-01

    Recent research has shown that the addition of fine gravel particles to a coarse bed will mobilize the coarser bed, and that the effect is sufficiently strong that a pulse of fine gravel particles can mobilize an impacted coarser bed. Recent flume experiments have demonstrated that the degree of bed mobilization by finer particles is primarily dependent on the particle size ratio of the coarse and fine particles, rather than absolute size of either particle, provided both particles are sufficiently large. However, the mechanism behind the mobilization is not understood. It has previously been proposed that the mechanism is driven by a combination of geometric effects and hydraulic effects. For example, it has been argued that smaller particles fill in gaps along the bed, resulting in a smoother bed over which the larger particles are less likely to be disentrained and a reduced near-bed flow velocity and subsequent increased drag on protruding particles. Altered near-bed turbulence has also been cited as playing an important role. We perform simulations using the discrete element method with one-way fluid-solid coupling to conduct simulations of mobilization of a gravel bed by fine gravel particles. By independently and artificially controlling average and fluctuating velocity profiles, we systematically investigate the relative role that may be played by particle-particle interactions, average near-bed velocity profiles, and near-bed turbulence statistics. The simulations indicate that the relative importance of these mechanisms changes with the degree of mobilization of the bed. For higher bed mobility similar to bed sheets, particle-particle interactions, plays a significant role in an apparent rheology in the bed sheets, not unlike that observed in a dense granular flow of particles of different sizes. For conditions closer to a critical shear stress for bedload transport, the near-bed velocity profiles and turbulence statistics become increasingly important.

  13. Mapping sand and gravel pits in the Patuxent River watershed

    NASA Technical Reports Server (NTRS)

    Schmidt, T. J.; Witt, R. G.

    1981-01-01

    LANDSAT data from July 1973 and June 1978 for the Patuxent River Watershed of Maryland were processed in an effort to devise an economical method of monitoring the reclamation of sand and gravel pits. ASTEP-II and IDIMS software were utilized to derive signatures for sand and gravel pits and other land use/land cover types. Both unsupervised and supervised classifications of the two data sets were produced. Resultant statistics and color output products were compared in order to determine the extent of reclamation and expansion of sand and gravel pits over the five-year time span and to check the locations of more recent sand and gravel pits. Preliminary results indicate that, for a selected northern sub-acre, signatures derived for sand and gravel pits were nearly 90 percent accurate.

  14. Gravel extraction and planform change in a wandering gravel-bed river: The River Wear, Northern England

    NASA Astrophysics Data System (ADS)

    Wishart, Duncan; Warburton, Jeff; Bracken, Louise

    2008-02-01

    Within-channel alluvial gravel extraction is one of the most important forms of anthropogenically induced morphological change in river channels. In British rivers commercial gravel extraction was widespread between the 1930s and 1960s, and limited gravel extraction operations to reduce flood risk or maintain navigation continue to the present day. Despite this, gravel extraction has received little attention in UK river studies. This paper examines the significance of within-channel gravel extraction, during the period 1945-1960, on the planform of the River Wear in northern England. The study focuses on two 3 km piedmont reaches at Wolsingham and Harperley Park, located at the margin of the upland zone. Examination of detailed archival accounts of the gravel extraction operations, supplemented by the analysis of aerial photographs has enabled the impact of gravel extraction on the channel of the River Wear to be determined. Sediment budget calculations suggest large sediment deficits in both study reaches, however, assessing potential impacts simply in terms of a sediment deficit may be misleading as channel adjustments depend on local factors and a detailed consideration of the reach-scale sediment budget. Differences in the nature of channel adjustments of both reaches were found to be primarily a function of the method of gravel extraction employed. Overall patterns of channel change along the extraction reaches, over the past 150 years, were similar to reaches where gravel extraction was not practiced. This highlights the difficulty of trying to establish the significance of different processes where both local (gravel extraction) and catchment-scale factors (climate and land use) are operating.

  15. Hyporheic nitrogen dynamics in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2009-04-01

    Streams often suffer of excessive nitrogen inputs from agricultural and urban areas. These inputs are the major responsible of streamś eutrophication and may be a source of nitrous oxide an important greenhouse gas formed during same hyporheic processes. Consequently, hyporheic exchange, which mixes surface and pore waters, affects both fluvial and terrestrial ecosystems and its inclusion in nutrients and contaminant transport model is necessary. In general, in-stream water continuously exchange between stream and sediment through the ¨p umping¨m echanism, which stems primarily from near-bed pressure gradients. Alternate zones of high (downwelling) and low (upwelling) pressure induce a complex flow pattern within the hyporheic zone with in-stream and pore waters entering the stream and the sediment, respectively. In the present work, we focus on the export of ammonium (NH4+), nitrate (NO3-) and their fate within the streambed of gravel bed rivers with alternate bars. We model hyporheic exchange with analytical solutions of the intra-gravel flows induced by streambed morphology and the fate of the inorganic compounds of nitrogen with a set of transport equations coupled with first order kinetics. Transport is solved by particle tracking, assuming negligible local dispersion and temperature dependant reaction rate coefficients. Through a Lagrangian approach we present the transport equation in term of hyporheic residence time, which is the controlling parameter of both retention and nitrification-denitrificaton processes. We investigate the important factors controlling the export of ammonium, nitrate, and production of nitrogen gases by the hyporheic zone. Our results show that the hyporheic zone acts as a sink of ammonium to an extent that depends on the nitrification rate but it may act as a source or a sink of nitrate. Additionally, it can influence the emission of nitrogen gases (N2 and N2O), depending on the ratio between ammonium and nitrate concentrations

  16. Denitrification in a Sand and Gravel Aquifer

    PubMed Central

    Smith, Richard L.; Duff, John H.

    1988-01-01

    Denitrification was assayed by the acetylene blockage technique in slurried core material obtained from a freshwater sand and gravel aquifer. The aquifer, which has been contaminated with treated sewage for more than 50 years, had a contaminant plume greater than 3.5-km long. Near the contaminant source, groundwater nitrate concentrations were greater than 1 mM, whereas 0.25 km downgradient the central portion of the contaminant plume was anoxic and contained no detectable nitrate. Samples were obtained along the longitudinal axis of the plume (0 to 0.25 km) at several depths from four sites. Denitrification was evident at in situ nitrate concentrations at all sites tested; rates ranged from 2.3 to 260 pmol of N2O produced (g of wet sediment)−1 h−1. Rates were highest nearest the contaminant source and decreased with increasing distance downgradient. Denitrification was the predominant nitrate-reducing activity; no evidence was found for nitrate reduction to ammonium at any site. Denitrifying activity was carbon limited and not nitrate limited, except when the ambient nitrate level was less than the detection limit, in which case, even when amended with high concentrations of glucose and nitrate, the capacity to denitrify on a short-term basis was lacking. These results demonstrate that denitrification can occur in groundwater systems and, thereby, serve as a mechanism for nitrate removal from groundwater. PMID:16347621

  17. Quantification of Gravel Rural Road Sediment Production

    NASA Astrophysics Data System (ADS)

    Silliman, B. A.; Myers Toman, E.

    2014-12-01

    Unbound rural roads are thought to be one of the largest anthropogenic sources of sediment reaching stream channels in small watersheds. This sediment deposition can reduce water quality in the streams negatively impacting aquatic habitat as well as impacting municipal drinking water sources. These roads are thought to see an increase in construction and use in southeast Ohio due to the expansion of shale gas development in the region. This study set out to quantify the amount of sediment these rural roads are able to produce. A controlled rain event of 12.7 millimeters of rain over a half hour period was used to drive sediment production over a 0.03 kilometer section of gravel rural road. These 8 segments varied in many characteristics and produced from 2.0 to 8.4 kilograms of sediment per 0.03 kilometers of road with the average production over the 8 segments being 5.5 kilograms of sediment. Sediment production was not strongly correlated with road segment slope but traffic was found to increase sediment production from 1.1 to 3.9 times as much sediment after traffic use. These results will help inform watershed scale sediment budgeting, and inform best management practices for road maintenance and construction. This study also adds to the understanding of the impacts of rural road use and construction associated with the changing land use from agricultural to natural gas extraction.

  18. Predictive Design Morphologies for Gravel Augmentation

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.

    2004-12-01

    Spawning habitat rehabilitation (SHR) is an interdisciplinary practice merging hydrology, geomorphology, aquatic ecology, and civil engineering to improve existing aquatic habitat and restoring fluvial complexity. Although SHR is widespread, it needs a science-based design process. The Spawning Habitat Integrated Rehabilitation Approach (SHIRA) is a scientifically peer-reviewed framework for doing SHR on regulated rivers. Although SHIRA has shown success with gravel augmentation on the Mokulmne River using hypothesis driven designs, the goal of this study was to evaluate several more natural processes for their potential in SHR, and to do so at the geomorphic-unit scale for the first time. Multiple design hypotheses were included in 6 SHR scenarios for rehabilitating the Lewiston Dam reach of the Trinity River, CA. Morphologies tested for their process mechanics included central bars, transverse-oblique bars, riffles, point bars, and bench-constricted pools. Varying longitudinal and lateral approach slopes for each feature were evaluated as well as feature sequencing. For each design scenario, a 2D model predicted local depth, velocity, shields stress, depth of scour, and habitat suitability for life stages of chinook and steelhead salmon at 300 and 6000 cfs. Data were analyzed to determine if conceptually expected geomorphic and ecological outcomes were in fact predicted by the 2D model. One design will be selected for actual construction in 2005 to evaluate 2D model predictions.

  19. 6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ROCK CLUSTER GARDEN REMINISCENT OF RYOAN-JI TEMPLE GARDEN IN KYOTO - Kykuit, Japanese Gardens, 200 Lake Road, Pocantico Hills, Westchester County, NY

  20. 15. VIEW OF GRAVEL PLANT, WEST SIDE OF RIVER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF GRAVEL PLANT, WEST SIDE OF RIVER AND DOWNSTREAM OF DAM SITE WITH EMPLOYEE HOUSING AT RIGHT. TRAMWAY BUCKETS ARE CLEARLY VISIBLE, November 1, 1927 - Coolidge Dam, Gila River, Peridot, Gila County, AZ

  1. Effects of gravel mulch on emergency of galleta grass seedlings

    SciTech Connect

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-02-01

    Gravel mulches show promise as effective material on the US Dept. of Energy Nevada Test Site for stabilizing erosive soils and aiding plant establishment by conserving soil water. A greenhouse study was implemented to determine the effects of gravel mulch on seedling emergence and soil water, and optimal depths of gravel for various native plant species. Greenhouse flats were sown with seeds of nine species of native grasses, forbs, and shrubs. The flats were then treated with a variety of mulch treatments including, no mulch, a 1-cm layer of soil over seeds, and 2 to 3-cm and 4 to 5-cm layers of 3 to 25-mm mixed gravel. Superimposed over these treatments were 3 irrigation treatments. Seedling density data was collected daily, and soil water was monitored daily with the gravimetric method. This study showed that under a variety of soil water conditions, a 2--3 cm gravel layer may aid emergence of galleta grass. Results from this study also demonstrated that a deeper layer of gravel (4--5 cm) prohibits emergence, probably because it acts as a physical barrier to the seedlings. Galleta grass emergence can be used as a model for how other species might respond to these seedbed and irrigation treatments, provided they have adequate germination and are exposed to similar environmental conditions.

  2. Modification of fluvial gravel size by spawning salmonids

    NASA Astrophysics Data System (ADS)

    Kondolf, G. Mathias; Sale, Michael J.; Wolman, M. Gordon

    1993-07-01

    Salmonids (salmon and trout) winnow fine sediment from streambed gravels during construction of the nest or "redd" used for spawning and incubation of fertilized eggs. The gravels and interstitial fine sediments excavated during this process are exposed to currents and differentially transported: gravels move a short distance, while the fine sediments are swept further downstream from the redd. To quantify the resultant modification of particle size distributions in redds, we sampled redds and adjacent undisturbed gravels to document changes in size distributions. These data were compiled with previously published observations to analyze the general nature of size modification during spawning. The final percentage finer than 1 mm in the gravels, P1f, is related to the initial percentage finer than 1 mm, P1i, by the equation P1f = 0.63 P1i. Hydraulic variables (water surface slope, mean column velocity, depth, shear stress, unit stream power) explained little of the variance and did not appear in the optimal models. Because fisheries biologists are called upon to evaluate gravels as potential spawning sites, these findings should prove useful in such evaluations.

  3. Beaver Dam Effects on Gravel Transport Patterns - a Case Study

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Swingle, K. W.; Potyondy, J. P.; Abt, S. R.

    2011-12-01

    Beaver dams are numerous in mountain streams, but little is known about gravel transport in those streams. The dams may be fully functioning and retain all incoming sediment or partially permeable to sediment or be almost completely removed. Beaver dams in their various states of preservation can have a profound influence on stream morphology and bedload transport. During the spring of 2011, the authors made a time series study of bedload transport in a mountain stream dominated by beavers dams. Dams occurred with a frequency of one every 50 feet and showed a range of decay and fluvial influence. Gravel transport was sampled with bedload traps over a 2-month long snowmelt highflow season. The reach-average gradient was 0.03 and stream widths ranged from 3 to 8 m. The stream bed was incised 0.5 to 1.5 m deep into a floodplain and typically trapezoidal in its cross-sectional shape. Much of the floodplain consisted of filled-in beaver dams. Partially breached dams that were permeable to gravel transport acted as an obstacle, forcing the flow around sharp bends. Complex hydraulic conditions developed in the vicinity of the bends with backwater eddies upstream and downstream of the remnant dam. Wake eddies at the downstream side of dam remnants caused gravel deposits. The tortuous channel course around the bends caused strong secondary currents that forced gravel transport into a narrow pathway along one of the banks causing a strong lateral concentration of transport. The pathway had a bed of fine and medium gravel, while the remainder of the bed consisted mostly of coarse gravel and cobbles that became immobile shortly after peak flows. Tracer experiments indicated that most of the mobile gravel traveled along that bankward path, even though flow velocities and depths were considerably smaller than in the stream center. Over the highflow season, flows increased to about 160% of the 1.5 year recurrence interval (Q1.5) within about a week and then remained within the

  4. Recolonization of gravel habitats on Georges Bank (northwest Atlantic)

    NASA Astrophysics Data System (ADS)

    Collie, Jeremy S.; Hermsen, Jerome M.; Valentine, Page C.

    2009-09-01

    Gravel habitats on continental shelves around the world support productive fisheries but are also vulnerable to disturbance from bottom fishing. We conducted a 2-year in situ experiment to measure the rate of colonization of a gravel habitat on northern Georges Bank in an area closed to fishing (Closed Area II) since December 1994. Three large (0.25 m 2) sediment trays containing defaunated pebble gravel were deployed at a study site (47 m water depth) in July 1997 and recovered in June 1999. The undersides of the tray lids positioned 56 cm above the trays served as settlement panels over the same time period. We observed rapid colonization of the gravel substrate (56 species) and the settlement panels (35 species), indicating that colonization of gravel in this region is not limited by the supply of colonists. The species composition of the taxa found in the trays was broadly similar to that we collected over a 10-year period (1994-2004) in dredge samples from gravel sediments at the same site. The increase in abundance of animals in the gravel colonization trays was rapid and reached a level in 2 years that took 4.5 years to achieve in the surrounding gravel sediments once fishing had stopped, based on data from dredge sampling at this site. The increase in biomass of animals found in the sediment trays paralleled the trend of biomass increase observed in dredge samples over the same period (1997-1999) but was lower in value. These data suggest that after rapid initial increase in abundance of organisms, succession proceeded by increasing individual body size. A comparison of settlement panel and tray faunas revealed that the mean biomass of structure-forming epifauna (sponges, bryozoans, anemones, hydroids, colonial tube worms) on the panels was 8 times that found on the trays. Structure-forming taxa constituted 29% of the mean biomass of the panel fauna but only 5.5% of the tray fauna. By contrast, the mean biomass of scavengers (crabs, echinoderms, nudibranchs

  5. Recolonization of gravel habitats on Georges Bank (northwest Atlantic)

    USGS Publications Warehouse

    Collie, J.S.; Hermsen, J.M.; Valentine, P.C.

    2009-01-01

    Gravel habitats on continental shelves around the world support productive fisheries but are also vulnerable to disturbance from bottom fishing. We conducted a 2-year in situ experiment to measure the rate of colonization of a gravel habitat on northern Georges Bank in an area closed to fishing (Closed Area II) since December 1994. Three large (0.25 m2) sediment trays containing defaunated pebble gravel were deployed at a study site (47 m water depth) in July 1997 and recovered in June 1999. The undersides of the tray lids positioned 56 cm above the trays served as settlement panels over the same time period. We observed rapid colonization of the gravel substrate (56 species) and the settlement panels (35 species), indicating that colonization of gravel in this region is not limited by the supply of colonists. The species composition of the taxa found in the trays was broadly similar to that we collected over a 10-year period (1994-2004) in dredge samples from gravel sediments at the same site. The increase in abundance of animals in the gravel colonization trays was rapid and reached a level in 2 years that took 4.5 years to achieve in the surrounding gravel sediments once fishing had stopped, based on data from dredge sampling at this site. The increase in biomass of animals found in the sediment trays paralleled the trend of biomass increase observed in dredge samples over the same period (1997-1999) but was lower in value. These data suggest that after rapid initial increase in abundance of organisms, succession proceeded by increasing individual body size. A comparison of settlement panel and tray faunas revealed that the mean biomass of structure-forming epifauna (sponges, bryozoans, anemones, hydroids, colonial tube worms) on the panels was 8 times that found on the trays. Structure-forming taxa constituted 29% of the mean biomass of the panel fauna but only 5.5% of the tray fauna. By contrast, the mean biomass of scavengers (crabs, echinoderms, nudibranchs

  6. Liquid filtration properties in gravel foundation of railroad tracks

    NASA Astrophysics Data System (ADS)

    Strelkov, A.; Teplykh, S.; Bukhman, N.

    2016-08-01

    Railway bed gravel foundation has a constant permanent impact on urban ecology and ground surface. It is only natural that larger objects, such as railway stations, make broader impact. Surface run-off waters polluted by harmful substances existing in railroad track body (ballast section) flow along railroad tracks and within macadam, go down into subterranean ground flow and then enter neighbouring rivers and water basins. This paper presents analytic calculations and characteristics of surface run-off liquid filtration which flows through gravel multiple layers (railroad track ballast section). The authors analyse liquids with various density and viscosity flowing in multi-layer porous medium. The paper also describes liquid stationary and non-stationary weepage into gravel foundation of railroad tracks.

  7. Remote identification of a gravel laden Pleistocene river bed

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.

    1993-01-01

    The abundance of gravel deposits is well known in certain areas across the Gulf of Mexico coastal plain, including lands within several National Forests. These Pleistocene gravels were deposited following periods of glacial buildup when ocean levels were down and the main river channels had cut deep gorges, leaving the subsidiary streams with increased gradients to reach the main channels. During the warm interglacial periods that followed each glaciation, melting ice brought heavy rainfall and torrents of runoff carrying huge sediment loads that separated into gravel banks below these steeper reaches where abraiding streams, developed. As the oceans rose again, filling in the main channels, these abraiding areas were gradually flattened and covered over by progressively finer material. Older terraces were uplifted by tectonic movements associated with the Gulf Coastal Plain, and the subsequent erosional processes gradually brought the gravels closer to the surface. The study area is located on the Kisatchie National Forest, in central Louisiana, near Alexandria. Details of the full study have been discussed elsewhere. The nearest source of chert is in the Ouachita Mountains located to the northeast. The Ouachita River flows south, out of these mountains, and in Pleistocene times probably carried these chert gravels into the vicinity of the present day Little River Basin which lies along the eastern boundary of the National Forest. Current day drainages cross the National Forest from west to east, emptying into the Little River on the east side. However, a north-south oriented ridge of hills along the west side of the Forest appears to be a recent uplift associated with the hinge line of the Mississippi River depositional basin further to the east, and 800,000 years ago, when these gravels were first deposited during the Williana interglacial period, the streams probably flowed east to west, from the Little River basin to the Red River basin on the west side of the

  8. On the dynamics of shallow gravel bed flow

    NASA Astrophysics Data System (ADS)

    Mohajeri, Seyed Hossein; Righetti, Maurizio; Wharton, Geraldene; Gurnell, Angela

    2013-04-01

    Flow dynamics on a gravel bed is a popular research subject because of environmental implications and especially in the presence of sediment transport. However, some features of flow dynamics on gravel beds are not completely understood and many questions remain open, especially in the context of the turbulence structure of the flow field and sediment transport. Due to the low submergence characteristics of the flow, the dynamics of the turbulent flow field, especially at the bed region, cannot be regarded as a classical boundary roughness problem, sensu Nikuradse (Nezu and Nakagawa, 1993) due to the strong spatial and temporal variation of the flow field. Over the past decade, in order to properly take into account the spatial heterogeneity, spatial averaging of time averaged values have become common. Besides,recently a trend to understand the role of gravel bed statistical properties, such as structure function of the bed elevation, on the statistics of the near-bed flow has been proposed. Although much research considers gravel beds by spatial averaging and research has been conducted on the effects of bed characteristics on near bed flow and sediment transport, only a few studies consider both together. In the present study, the results of 2D PIV measurement coupled with high accurate measurement of the gravel bed characteristics and the turbulence properties of the low submergence gravel bed flow as related to the bed properties are presented. The double averaging method was used in the analysis. Furthermore, in order to have a better insight into the dynamics of transport processes at the bed, a simple quadrant analysis, based on the Lu and Willmarth method, was implemented (Lu and Willmarth, 1973). Finally, the turbulent integral length scale was calculated both near and far from the gravel bed. The time and double averaged results show an agreement with the previous studies. Moreover, the result of quadrant analysis shows the sweep is dominant between

  9. Fine sediment erosion rate in immobile gravel bed

    NASA Astrophysics Data System (ADS)

    Tarekegn, T. H.

    2015-12-01

    The dynamics of fine sediment transport in immobile gravel bed is a complex process and is a common phenomenon downstream of dams during dam removal and flushing operations. Despite many developments in the field, the direct measurement of fine sediment erosion (entrainment) rates in immobile coarse beds remains challenging. We developed a new approach for measurement of fine sediment erosion rate in coarse immobile bed in laboratory experiment. The method uses single laser line, a video camera and a reflective mirror. It allows a non-intrusive, fast and accurate measurement of fine sediment erosion rate in running water and non-equilibrium transport conditions. The measurement method was conducted for flow depth that ranges from 3.0 cm to 8.0 cm. We present procedures developed to extract laser lines from series of images captured at high temporal resolution and to estimate rapid evolution of fine sediment erosion depth within the roughness layer of the immobile gravel bed. With the use of a reflective mirror the depth of erosion can be measured with sub-millimeter (350μm) resolution. The results of the measurements are used to describe vertical profile of fine sediment erosion rate in the gravel roughness layer and its spatial heterogeneity. The spatial pattern of erosion rates shows good agreement with gravel bed turbulent flow structures.

  10. Disturbance of fluvial gravel substrates by signal crayfish (Pacifastacus leniusculus)

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Rice, Stephen; Reid, Ian

    2010-05-01

    The reworking of substrates by organisms, termed bioturbation, is considered a fundamental processes in marine and terrestrial environments but has remained relatively unstudied in fluvial environments. This studies looks at the bioturbation of fluvial gravel substrates by signal crayfish, an internationally important invasive species. We investigated the impact of signal crayfish activity in a laboratory flume. Bioturbation by crayfish on both loose arrangements of gravel and water-worked surfaces were studied and two sizes of narrowly-graded gravel were used; 11 - 16 mm and 16 - 22 mm. A laser scanner was used to obtain high resolution digital elevation models (DEMs) of gravel surfaces before and after crayfish activity. These DEMs were used to quantify topographic and structural changes to the surfaces due to the activity of crayfish. It was found that crayfish moved substantial quantities of material from all surfaces within six hours of introduction. The majority of the disturbance was associated with small scale (≤ 1 median grain diameter) movements of surface grains due to walking and foraging by crayfish. This textural change resulted in a structural alteration to the substrate surface. After six hours of crayfish activity, there was a 14% reduction in the imbrication of the grains from water-worked surfaces. Crayfish also constructed shallow pits and heaped excavated material into a series of mounds around its edge. Crayfish would always posture in pits in the same way. They would fold their vulnerable tails under their body and place their claws in front of their heads. When in pits crayfish predominately orientated themselves so they were facing an upstream direction. This implies that crayfish dig pits in order to streamline their bodies in the flow and lower their protrusion. Although pits and mounds contributed a relatively small proportion to the overall disturbance of substrates, they significantly increased the roughness of substrates. Pit and

  11. Charred wood remains in the natufian sequence of el-Wad terrace (Israel): New insights into the climatic, environmental and cultural changes at the end of the Pleistocene

    NASA Astrophysics Data System (ADS)

    Caracuta, Valentina; Weinstein-Evron, Mina; Yeshurun, Reuven; Kaufman, Daniel; Tsatskin, Alexander; Boaretto, Elisabetta

    2016-01-01

    The major social and economic changes associated with the rise of a sedentary lifestyle and the gradual transition to food production in the southern Levant are often considered to have been triggered by climate changes at the end of the Pleistocene (∼20,000-11,000 years BP). This explanation, however, is biased by the scarcity of high-resolution climate records directly associated with human activity and the lack of refined palaeoecological studies from multi-stratified sites in the area. Here, we present the results of an anthracological analysis, carried out on charcoals collected along a continuous column of archaeological sediments in the Natufian site of el-Wad Terrace (Mount Carmel, Israel). We also present the carbon isotopes analysis of 14C-dated archaeological remains of Amygdalus sp. The analyses of charcoal shows the predominance of an oak forest including Quercus calliprinos and ithaburensis around the site during the Early Natufian building phase (∼14,600-13,700 cal BP), and the values of Δ13C point to a high rainfall rate. This period is followed by a marked decrease in the local rainfall between ∼13,700 and 12,000 cal BP). The reduction, culturally associated with the latest Early Natufian and the Late Natufian, is independently recorded by the speleothems of the region: Soreq Cave and Jerusalem Cave. This period incorporates an increase in drought tolerant species such as Amygdalus sp. Thermo-Mediterranean species, such as Olea europaea and Ceratonia siliqua, as well as Pistacia palaestina, which dominate the modern landscape, become established in the Holocene. We conclude that the Natufian settlement at el-Wad Terrace flourished in the context of oak forests, and subsequently occupation intensity decreased in concurrence to the drying trend. This shift does not correspond to the cultural typology (i.e. Early Natufian vs. Late Natufian). Human response to climate change at the terminal Pleistocene Levant was multifaceted and localized. Its

  12. The Unified Gravel-Sand (TUGS) Model: Simulating the Transport of Gravel-Sand Mixtures in Rivers

    NASA Astrophysics Data System (ADS)

    Cui, Y.

    2006-12-01

    TUGS Model was developed by employing the surface-based bedload equation of Wilcock and Crowe (2003) and linking grain size distributions in the bedload, surface layer, and subsurface sediment deposit with the gravel transfer function of Hoey and Ferguson (1994) and Toro-Escobar et al. (1996), and a hypothetical sand transfer function. The unmodified model was applied to simulate the sedimentation process in Marmot Reservoir, Sandy River, Oregon and produced similar stratified sediment deposit as observed through coring exercises. The model was also examined with three runs of large-scale flume experiments conducted at St. Anthony Falls Laboratory (SAFL) by Seal et al. (1995). With a very minor modification to Wilcock and Crowe (2003) equation, the model excellently reproduced the longitudinal profiles, gravel grain size distributions and sand fractions in the deposits for all the three SAFL runs. Following its examination, TUGS model was applied to simulate the sediment transport dynamics in the Sandy River, Oregon under a few hypothetical scenarios, focusing on the dynamics of sand fractions in gravel-bedded channel deposits. Results of the exploratory runs on the Sandy River indicate that (a) surface and subsurface sand fractions generally increase in the downstream direction, similar to observed in the field; (b) sand fraction in the deposit is positively correlated with sand supply as expected; (c) extremely high sand supply under similar gravel supply and hydrologic conditions can transform the river into predominantly sand-bedded; (d) increased discharge under the same sand and gravel supply conditions results in decreased sand fraction in the deposit as expected; and (e) there can be significant increase in surface and subsurface sand fractions in the backwater zones near the mouth of the river as expected.

  13. Alluvial fan facies in Death Valley: Contrasts with fluvial gravels and implications for the interpretation of ancient fan'' gravels

    SciTech Connect

    Middleton, G.V. . Dept. of Geology)

    1993-03-01

    Sedimentary environments in Death Valley belong to three major groups: fans, washes, and playas. Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits of the playa, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River, which drains into the south end of Death Valley. The most remarkable features of the fan and wash deposits are the very weak segregation of sand and gravel, and the absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and wash surfaces is steep enough to produce upper regime flows. Most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). Within a fan, facies vary little from proximal to distal regions, but may differ strongly from facies seen in adjacent fans.

  14. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and gravel which is subject to the provisions of 33 CFR part 230 of this chapter will not be governed... construction sand and gravel subcategory. 436.30 Section 436.30 Protection of Environment ENVIRONMENTAL... CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the...

  15. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Disposal plan for embedded gravel, sand or stone. 644.505 Section 644.505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  16. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing of dredged sand and gravel which is subject to the provisions of 33 CFR part 230 of this chapter... construction sand and gravel subcategory. 436.30 Section 436.30 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description...

  17. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Disposal plan for embedded gravel, sand or stone. 644.505 Section 644.505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  18. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing of dredged sand and gravel which is subject to the provisions of 33 CFR part 230 of this chapter... construction sand and gravel subcategory. 436.30 Section 436.30 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description...

  19. 32 CFR 644.505 - Disposal plan for embedded gravel, sand or stone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Disposal plan for embedded gravel, sand or stone. 644.505 Section 644.505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... Gravel, Sand and Stone § 644.505 Disposal plan for embedded gravel, sand or stone. Prior to offering...

  20. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and gravel which is subject to the provisions of 33 CFR part 230 of this chapter will not be governed... construction sand and gravel subcategory. 436.30 Section 436.30 Protection of Environment ENVIRONMENTAL... CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description of the...

  1. 40 CFR 436.30 - Applicability; description of the construction sand and gravel subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... processing of dredged sand and gravel which is subject to the provisions of 33 CFR part 230 of this chapter... construction sand and gravel subcategory. 436.30 Section 436.30 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Construction Sand and Gravel Subcategory § 436.30 Applicability; description...

  2. [Occupational asthma caused by scented gravel in cat litter boxes].

    PubMed

    Jensen, O C; Petersen, I

    1991-03-25

    Perfumes are now added to articles in everyday use to an increasing extent. One example of this is addition of perfume to gravel in cat toilets. It is recognized that perfumes may cause toxic and allergic skin reactions while perfume as the cause of asthma is not so well recognized. In the case described here, exposure to industrial perfume resulted in asthma on account of irritation.

  3. Deschutes River Spawning Gravel Study, Volume I, Final Report.

    SciTech Connect

    Huntington, Charles W.

    1985-09-01

    Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. 53 refs., 40 figs., 21 tabs.

  4. Prevalence of anaemia among Quranic school (Khalawi) students (Heiran)in Wad El Magboul village, rural Rufaa, Gezira State, Central Sudan: a cross sectional study

    PubMed Central

    Eltayeb, Mohammed Saeed Elsamani; Elsaeed, Awad Eseed; Mohamedani, Ahmed Abdalla; Assayed, Abbas Abdalrahman

    2016-01-01

    Introduction This is a cross sectional descriptive community-based study. The aim was to assess the prevalence of anaemia among quranic schoolchildren in khalawi Wad EL Magboul village, rural Rufaa, Gezira State, central Sudan. Methods A sample of 180 male participants were included in the study. Informed consent was obtained. Venous blood samples were obtained to measure the hematological parameters and blood films for malaria parasites. Urine and stool analyses were also done. Data were analyzed using SPSS. Results The mean age of participants was 12.31 years (SD +/- 2.26). The mean Hb value was 11.75g/dl and it was statistically significant correlation when compared with the mean Hb reference value (13.5g/dl) P value 0,000 (95% CI). Regarding period of stay in the khalwa up to the time of the study, 88 (49.28%) for one year, 54 (30.24%) for 2 years, 22 (12.32%) for 3 years and 16 (8.96%) for more than 3 years. About 77 students (42.78%) were pale on clinical examination. The Mean Cell Hemoglobin (MCH) mean value was 25.58 pg ( 3.55). Many conditions known to be associated with anemia were found; 49 students (27.2%) had a positive blood films for falciparum malaria, 14 students (7.8%) were found to have haematuria and ova of S. haematobium, In169 students (93.4%) stool examination was negative , while 11 students (6.6%) had intestinal worms (Enterobius vermicularis). Conclusion Majority of the study participants had iron deficiency anaemia, followed by haemolytic, macrocytic and sickle cell anaemia. This might have negative health and educational implications. PMID:27800099

  5. Development of an active behavioural physiotherapy intervention (ABPI) for acute whiplash-associated disorder (WAD) II management: a modified Delphi study

    PubMed Central

    Wiangkham, Taweewat; Duda, Joan; Haque, M Sayeed; Rushton, Alison

    2016-01-01

    Objective To develop an active behavioural physiotherapy intervention (ABPI) for managing acute whiplash-associated disorder (WAD) II using a modified Delphi method to develop consensus for the basic features of the ABPI. Design Modified Delphi study. Our systematic review and meta-analysis evaluating conservative management for acute WADII found that a combined ABPI may be a useful intervention to prevent patients progressing to chronicity. No previous research has considered a combined behavioural approach and active physiotherapy in the management of acute WADII patients. The ABPI was therefore developed using a rigorous consensus method using international research and local clinical whiplash experts. Descriptive statistics were used to assess consensus in each round. Setting Online international survey. Participants A purposive sample of 97 potential participants (aiming to recruit n=30) consisting of international research whiplash experts, UK private physiotherapists and UK postgraduate musculoskeletal physiotherapy students were invited to participate via electronic mail with an attached participant information sheet and consent form. Results 36 individuals signed and returned the consent form. In round 1, 32/36 participants (response rate=89%, mean age±SD=36.03±13.22 years) across 8 countries (Australia, Finland, Greece, India, Netherlands, Norway, Sweden and UK) contributed to round 1 questionnaire. Response rates were 78% and 75% for rounds 2 and 3, respectively. Following round 3, 12 underlying principles (eg, return to normal function as soon as possible, pain management, encouragement of self-management, reduce fear avoidance and anxiety) achieved consensus. The treatment components reaching consensus included behavioural (eg, education, reassurance, self-management) and physiotherapy components (eg, exercises for stability and mobility). No passive intervention achieved consensus. Conclusions Experts suggested and agreed the underlying principles

  6. Mechanical resistance properties of gravel used in subsurface flow constructed wetlands: implications for clogging.

    PubMed

    Pedescoll, Anna; Passos, Fabiana; Alba, Elisenda; García, Joan; Puigagut, Jaume

    2011-01-01

    Gravel constitutes the filter medium in subsurface flow constructed wetlands (SSF CWs) and its porosity and hydraulic conductivity decrease over time (clogging), limiting the lifespan of the systems. Using gravel of poor quality accelerates clogging in wetlands. In this study, gravel samples from six different wetland systems were compared with regards to their mineral composition and mechanical resistance properties. Results showed that both mineralogy and texture are related to mechanical resistance. Accordingly, gravel with high content of quartz (> 80%) showed a lower percentage of broken particles (0.18-1.03%) than those with lower content of quartz (2.42-4.56% media broken). Although granite is formed by high durability minerals, its non-uniform texture results in a lower resistance to abrasion (ca. 10% less resistance than calcareous gravel). Therefore, it is recommended to use gravels composed mainly of quartz or, when it is not available, limestone gravels (rounded and uniform) are recommended instead. The resistance to abrasion (LAA test) seems to be a good indicator to determine the mechanical properties of gravels used in CWs. It is recommended to use gravels with LAA below 30% in order to avoid a rapid clogging due to gravel crumbling and subsequent mineral solids accumulation.

  7. Gravel sediment routing from widespread, low-intensity landscape disturbance, Current River basin, Missouri

    USGS Publications Warehouse

    Jacobson, R.B.; Gran, K.B.

    1999-01-01

    During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1.8-4.1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches.

  8. Deposition of uranium precipitates in dolomitic gravel fill.

    PubMed

    Phillips, D H; Watson, D B; Kelly, S D; Ravel, B; Kemner, K M

    2008-10-01

    Uranium-containing precipitates have been observed in a dolomitic gravel fill near the Department of Energy (DOE) S-3 Ponds former waste disposal site as a result of exposure to acidic (pH 3.4) groundwater contaminated with U (33 mg L(-1)), Al3+ (900 mg L(-1)), and NO3- (14 000 mg L(-1)). The U containing precipitates fluoresce a bright green under ultraviolet (UV) short-wave light which identify U-rich coatings on the gravel. Scanning electron microscopy (SEM) microprobe analysis show U concentration ranges from 1.6-19.8% (average of 7%) within the coatings with higher concentrations at the interface of the dolomite fragments. X-ray absorption near edge structure spectroscopy (XANES) indicate that the U is hexavalent and extended X-ray absorption fine structure spectroscopy (EXAFS) shows that the uranyl is coordinated by carbonate. The exact nature of the uranyl carbonates are difficult to determine, but some are best described by a split K(+)-like shell similar to grimselite [K4Na(UO2)(CO3)3 x H2O] and other regions are better described by a single Ca(2+)-like shell similar to liebigite [Ca2(UO2)(CO3)3 x 11(H2O)] or andersonite [Na2CaUO2(CO3)3 x 6H2O]. The U precipitates are found in the form of white to light yellow cracked-formations as coatings on the dolomite gravel and as detached individual precipitates, and are associated with amorphous basalumnite [Al4(SO4)(OH)10 x 4H2O]. PMID:18939533

  9. Deposition of uranium precipitates in dolomitic gravel fill.

    SciTech Connect

    Phillips, D. H.; Watson, D. B.; Kelly, S. D.; Ravel, B.; Kemner, K. M.; Biosciences Division; Queens Univ.; ORNL

    2008-01-01

    Uranium-containing precipitates have been observed in a dolomitic gravel fill near the Department of Energy (DOE) S-3 Ponds former waste disposal site as a result of exposure to acidic (pH 3.4) groundwater contaminated with U (33 mg L{sup -1}), Al{sup 3+} (900 mg L{sup -1}), and NO{sub 3}{sup -} (14000 mg L{sup -1}). The U containing precipitates fluoresce a bright green under ultraviolet (UV) short-wave light which identify U-rich coatings on the gravel. Scanning electron microscopy (SEM) microprobe analysis show U concentration ranges from 1.6?19.8% (average of 7%) within the coatings with higher concentrations at the interface of the dolomite fragments. X-ray absorption near edge structure spectroscopy (XANES) indicate that the U is hexavalent and extended X-ray absorption fine structure spectroscopy (EXAFS) shows that the uranyl is coordinated by carbonate. The exact nature of the uranyl carbonates are difficult to determine, but some are best described by a split K{sup +}-like shell similar to grimselite [K{sub 4}Na(UO{sub 2})(CO{sub 3}){sub 3} {center_dot} H{sub 2}O] and other regions are better described by a single Ca{sup 2+}-like shell similar to liebigite [Ca{sub 2}(UO{sub 2})(CO{sub 3}){sub 3} {center_dot} 11(H{sub 2}O)] or andersonite [Na{sub 2}CaUO{sub 2}(CO{sub 3}){sub 3} {center_dot} 6H{sub 2}O]. The U precipitates are found in the form of white to light yellow cracked-formations as coatings on the dolomite gravel and as detached individual precipitates, and are associated with amorphous basalumnite [Al{sub 4}(SO{sub 4})(OH){sub 10} {center_dot} 4H{sub 2}O].

  10. Deposition of uranium precipitaties in dolomitic gravel fill

    SciTech Connect

    Phillips, Debra H.; Watson, David B; Kelly, Shelly D; Ravel, Bruce; Kemner, Kenneth M

    2008-06-01

    Uranium-containing precipitates have been observed in a dolomitic gravel fill near the Department of Energy (DOE) S-3 Ponds former waste disposal site as a result of exposure to acidic (pH 3.4) groundwater contaminated with U (33 mg L{sup -1}), Al{sup 3+} (900 mg L{sup -1}), and NO{sub 3}{sup -} (14000 mg L{sup -1}). The U containing precipitates fluoresce a bright green under ultraviolet (UV) short-wave light which identify U-rich coatings on the gravel. Scanning electron microscopy (SEM) microprobe analysis show U concentration ranges from 1.6-19.8% (average of 7%) within the coatings with higher concentrations at the interface of the dolomite fragments. X-ray absorption near edge structure spectroscopy (XANES) indicate that the U is hexavalent and extended X-ray absorption fine structure spectroscopy (EXAFS) shows that the uranyl is coordinated by carbonate. The exact nature of the uranyl carbonates are difficult to determine, but some are best described by a split K{sup +}-like shell similar to grimselite [K{sub 4}Na(UO{sub 2})(CO{sub 3}){sub 3} {center_dot} H{sub 2}O] and other regions are better described by a single Ca{sup 2+}-like shell similar to liebigite [Ca{sub 2}(UO{sub 2})(CO{sub 3}){sub 3} {center_dot} 11(H{sub 2}O)] or andersonite [Na{sub 2}CaUO{sub 2}(CO{sub 3}){sub 3} {center_dot} 6H{sub 2}O]. The U precipitates are found in the form of white to light yellow cracked-formations as coatings on the dolomite gravel and as detached individual precipitates, and are associated with amorphous basalumnite [Al{sub 4}(SO{sub 4})(OH){sub 10} {center_dot} 4H{sub 2}O].

  11. Salmon as biogeomorphic agents in gravel-bed rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.

    2010-12-01

    Spawning salmon have been known to affect streambed texture, influence sediment transport, and play an important geomorphological role in streams by digging nests or redds. We examined the impact of salmon and floods on channel morphology, bed material dispersion and yield, bed surface texture and stability, fine sediment dynamics and nutrient retention of small gravel bed streams in British Columbia, Canada. Channel morphology and dynamics of a large number of streams in British Columbia are partially or wholly affected by fish bioturbation. The scale of the impact is controlled by the salmon species, population density, and channel size and characteristics. Sediment transport measurements show that salmon play a significant role in erosion and deposition within the channel by promoting vertical and longitudinal mixing of the substrate, as well as by changing the relative mobility of the gravel on the bed. The action of salmon bioturbation promotes distinctive bedforms and packing of sediment grains. In streams with dense populations of sockeye or chum salmon the whole surface of spawning reaches may be modified, as bars are excavated and pools are filled. For chinook salmon the organization of spawning bedforms ranges from scattered mounds or ‘gravel pile-ups’ to well-ordered dunes. Such dunes extend for hundreds of meters to kilometres along the river bed. They exhibit amplitudes of more than one metre and wavelengths of 10 to 15 m. Our conclusion that mass-spawning fish can dominate sediment transport in mountain drainage basins has fundamental implications for understanding channel morphology, aquatic ecosystem dynamics, stream responses to environmental change, and river restoration programs.

  12. Particulate removal processes and hydraulics of porous gravel media filters

    NASA Astrophysics Data System (ADS)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal

  13. Sand and gravel mine operations and reclamation planning using microcomputers

    SciTech Connect

    Ariffin, J.B.

    1990-02-01

    The purpose of this study is to focus on the application of microcomputers, also known as personal computers, in planning for sand and gravel mine operations and reclamation at a site in Story County, Iowa. This site, called the Arrasmith Pit, is operated by Martin Marietta Aggregates, Inc. The Arrasmith site, which encompasses an area of about 25 acres, is a relatively small site for aggregate mining. However, planning for the concurrent mine operation and reclamation program at this site is just as critical as with larger sites and the planning process is the same.

  14. A combination of gestalt therapy, Rosen Body Work, and Cranio Sacral therapy did not help in chronic whiplash-associated disorders (WAD)--results of a randomized clinical trial.

    PubMed

    Ventegodt, Søren; Merrick, Joav; Andersen, Niels Jørgen; Bendix, Tom

    2004-01-01

    The chronic state of whiplash-associated disorder (WAD) might be understood as a somatization of existential pain. Intervention aimed to improve quality of life (QOL) seemed to be a solution for such situations. The basic idea behind the intervention was holistic, restoring quality of life and relationship with self, in order to diminish tension in the locomotion system, especially the neck. A psychosomatic theory for WAD is proposed. Our treatment was a short 2-day course with teachings in philosophy of life, followed by 6-10 individual sessions in gestalt psychotherapy and body therapy (Rosen therapy and Cranio Sacral therapy), followed by a 1-day course approximately 2 months later, closing the intervention. Two independent institutions did the intervention and the assessments. In a randomized, clinically controlled setting, 87 chronic WAD patients were included with a median duration of 37 months from their whiplash accidents. One patient never started. Forty-three had the above intervention (female/male = 36/7, ages 22-49, median 37 years) and another 43 were assigned to a nontreated control group (female/male = 35/8, ages 18-48, median 38). Six had disability pension and 27 had pending medicolegal issues in each group. Effect variables were pain in neck, arm, and/or head; measures of quality of life and daily activities; as well as general physical or mental health. Wilcoxon test for between-groups comparisons with intention-to-treat analyses was conducted; the square curve paradigm testing for immediate improvements of health and quality of life was also used. The groups were comparable at baseline. From the intervention group, 11 dropped out during the intervention (4 of those later joined the follow-up investigation), 22 of the remaining 32 graduated the course, and 35 of the 43 controls did as well. Approximately 3 months later, we found no clinically relevant or significant increase in any effect measure. The above version of a quality of life

  15. Chemical fate and transport of atrazine in soil gravel materials at agrichemical distribution facilities

    USGS Publications Warehouse

    Roy, W.R.; Krapac, I.G.; Chou, S.-F.J.

    1999-01-01

    The gravel commonly used to cover parking lots and roadways at retail agrichemical facilities may contain relatively large concentrations of pesticides that resulted from past management problems. These pesticides may threaten groundwater quality. Previous studies, however, suggested that the pesticides had not moved from the gravel in several sample profiles. Excavations at a closed facility revealed tremendous variability in pesticide distribution within the site. Pesticides were present below the gravel in two profiles, but the mechanism(s) for their movement were not clear. The objectives of this study were to investigate how the physical and chemical properties of the gravel influence the environmental fate of atrazine. All of the gravel samples collected and characterized contained atrazine and sufficient organic C to adsorb significant amounts of atrazine, thus retarding its movement through the gravel. Laboratory column leaching experiments, however, suggested that much of the atrazine should leach from the gravel within a year or two. A field-scale test plot was constructed to study how atrazine moves through the gravel under controlled conditions. Atrazine was "spilled" in the test plot. Atrazine moved from the gravel both vertically and horizontally. It appears that formulated product spilled on gravel will leach. A single discrete spill can give rise to phantom spills whose occurrence and distribution is not related to any specific pesticide-management practice. The apparent lack of atrazine leaching from gravel appeared to be a transient phenomenon and/or the result of sampling limitations in previous studies. The contaminated gravel clearly poses a risk to groundwater quality.

  16. Scour of Sand-Gravel Beaches in Front of Seawalls

    NASA Astrophysics Data System (ADS)

    Xharde, Regis; Frandsen, Jannette; Gauvin-Tremblay, Olivier

    2015-11-01

    Large-scale physical experiments were conducted in the 5m-wide, 5m-deep and 120m-long wave flume at the Quebec Coastal Laboratory of the national scientific research institute (INRS) to evaluate wave-induced scour depth (ds) at vertical seawalls and on natural beaches. In the initial part of the study, the equilibrium beach profile of a mixed sand-gravel beach with a mean grain size diameter of 12 mm was studied for various beach slopes using regular and irregular waves with intermediate water depths (h0 ∈ [2.3; 3.8] m) and different wave heights. In the second part of the study, a vertical seawall fronted by a 1:10 sloping mixed sand-gravel beach was tested for more than 50 wave trains using regular and irregular waves with various water depths at the seawall (hw) , wave heights and wave periods. The scour depth at the toe of the seawall is highly dependent on the form of wave breaking onto the structure. Sea states where plunging breakers occur directly onto the wall generate jets of water that may penetrate to the seabed and cause a local scour hole immediately adjacent to the seawall. Scour depth is maximum when Hb/hw>1 and Xb/Hb <1, where Hb is the breaker height and Xb the distance from the seawall of the breaking wave. Comparison with existing semi-empirically derived scour prediction equations was performed.

  17. Hydrocarbon removal in an experimental gravel bed constructed wetland.

    PubMed

    Omari, K; Revitt, M; Shutes, B; Garelick, H

    2003-01-01

    Two outdoor subsurface flow beds (control and experimental, 10 m x 1 m) were filled with a substrate of pea gravel (3-6 mm) to a depth of 60 cm. The experimental bed or small-scale constructed wetland was originally planted with Typha seedlings at a density of 7.5 plants/m2. Both beds (experimental and control) were treated with the same aqueous concentrations of diesel oil under identical dosing conditions. The average overall hydrocarbon removal efficiencies at the three monitored depths (top, middle and bottom) in the subsurface systems were 80.1 +/- 9.8%, 78.0 +/- 9.1% and 71.6 +/- 10.0% in the experimental bed and 72.3 +/- 11.9%, 69.1 +/- 10.3% and 63.4 +/- 9.4% in the control bed. The differences in the hydrocarbon removal efficiencies between corresponding months in 1999 and 2000 were statistically analysed and are generally not significant. The individual hydrocarbon removal efficiencies exceeded 60% in the top sections of both beds except for C-11 and C-25 with C-23 and C-26 also reduced in the control bed. Overall differences in the removal efficiencies of the planted and the unplanted beds as well as at different depths in both systems, indicate that Typha related removal processes complementing adsorption onto the gravel substrate are occurring.

  18. Neither the WAD-classification nor the Quebec Task Force follow-up regimen seems to be important for the outcome after a whiplash injury. A prospective study on 186 consecutive patients

    PubMed Central

    Kivioja, Jouko; Jensen, Irene

    2008-01-01

    A classification of injury and a follow-up schedule were proposed by the Quebec Task Force (QTF) in 1995. No general agreement about the clinical usefulness of the WAD-classification or of the suggested follow-up regimen exists. A series of 186 consecutive cases seen in the emergency room during the acute phase after a whiplash injury was prospectively studied for 1 year. All findings including history and physical findings were recorded using standardized QTF protocols. In one group follow-up visits were done according to the QTF regimen: at 1, 3, 6, 12 weeks and 1 year after the accident; in a control group no visit was scheduled. The outcome variable was neck pain at 1 year after the accident. After 1 year, 18% of the total number of patients had significant neck pain. Risk factors for chronic neck pain at 1 year after whiplash injury were: neck pain before the accident and a high degree of emotional distress at the time of the accident; both factors independently associated with a tenfold increased risk of developing chronic neck pain. Neither the WAD classification nor the QTF follow-up regimen could be linked to a better outcome. In this study the outcome was associated with patient-specific characteristics and not with physical signs of injury, the depth of the initial evaluation or the follow-up regimen. PMID:18427841

  19. Reconnaissance of alluvial fans as potential sources of gravel aggregate, Santa Cruz River valley, Southeast Arizona

    USGS Publications Warehouse

    Lindsey, David A.; Melick, Roger

    2002-01-01

    This investigation was conducted to provide information on the aggregate potential of alluvial fan sediments in the Santa Cruz River valley. Pebble lithology, roundness, and particle size were determined in the field, and structures and textures of alluvial fan sediments were photographed and described. Additional measurements of particle size on digital photographs were made on a computer screen. Digital elevation models were acquired and compiled for viewing the areal extent of selected fans. Alluvial fan gravel in the Santa Cruz River valley reflects the lithology of its source. Gravel derived from granitic and gneissic terrane of the Tortolita, Santa Catalina, and Rincon Mountains weathers to grus and is generally inferior for use as aggregate. Gravel derived from the Tucson, Sierrita, and Tumacacori Mountains is composed mostly of angular particles of volcanic rock, much of it felsic in composition. This angular volcanic gravel should be suitable for use in asphalt but may require treatment for alkali-silica reaction prior to use in concrete. Gravel derived from the Santa Rita Mountains is of mixed plutonic (mostly granitic rocks), volcanic (mostly felsic rocks), and sedimentary (sandstone and carbonate rock) composition. The sedimentary component tends to make gravel derived from the Santa Rita Mountains slightly more rounded than other fan gravel. The coarsest (pebble, cobble, and boulder) gravel is found near the heads (proximal part) of alluvial fans. At the foot (distal part) of alluvial fans, most gravel is pebble-sized and interbedded with sand and silt. Some of the coarsest gravel was observed near the head of the Madera Canyon, Montosa Canyon, and Esperanza Wash fans. The large Cienega Creek fan, located immediately south and southeast of Tucson, consists entirely of distal-fan pebble gravel, sand, and silt.

  20. Injury experience in sand and gravel mining, 1991

    SciTech Connect

    Not Available

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of sand and gravel mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, and occupation. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  1. Injury experience in sand and gravel mining, 1992

    SciTech Connect

    Reich, R.B.; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of sand and gravel mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, and occupation. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  2. Injury experience in sand and gravel mining, 1989

    SciTech Connect

    Not Available

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of sand and gravel mining in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, and occupation. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 38 tabs.

  3. Sedimentology of Martian Gravels from Mardi Twilight Imaging: Techniques

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Malin, Michael C.; Minitti, M. E.

    2014-01-01

    Quantitative sedimentologic analysis of gravel surfaces dominated by pebble-sized clasts has been employed in an effort to untangle aspects of the provenance of surface sediments on Mars using Curiosity's MARDI nadir-viewing camera operated at twilight Images have been systematically acquired since sol 310 providing a representative sample of gravel-covered surfaces since the rover departed the Shaler region. The MARDI Twilight imaging dataset offers approximately 1 millimeter spatial resolution (slightly out of focus) for patches beneath the rover that cover just under 1 m2 in area, under illumination that makes clast size and inter-clast spacing analysis relatively straightforward using semi- automated codes developed for use with nadir images. Twilight images are utilized for these analyses in order to reduce light scattering off dust deposited on the front MARDI lens element during the terminal stages of Curiosity's entry, descent and landing. Such scattering is worse when imaging bright, directly-illuminated surfaces; twilight imaging times yield diffusely-illuminated surfaces that improve the clarity of the resulting MARDI product. Twilight images are obtained between 10-30 minutes after local sunset, governed by the timing of the end of the no-heat window for the camera. Techniques were also utilized to examine data terrestrial locations (the Kau Desert in Hawaii and near Askja Caldera in Iceland). Methods employed include log hyperbolic size distribution (LHD) analysis and Delauney Triangulation (DT) inter-clast spacing analysis. This work extends the initial results reported in Yingst et al., that covered the initial landing zone, to the Rapid-Transit Route (RTR) towards Mount Sharp.

  4. 75 FR 68606 - Chetco River Gravel Mining Executive and Technical Teams; Notification of Availability of Documents.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Department of the Army, Corps of Engineers Chetco River Gravel Mining Executive and Technical Teams... Chetco River Gravel Mining Executive and Technical Teams. These work products consist of meeting agendas...: The Executive and Technical Teams were established in 2007 as part of an initiative to evaluate, on...

  5. Blast pressure measurements for the full-scale Gravel Gertie test

    NASA Astrophysics Data System (ADS)

    Esparza, E. D.; Baker, W. E.

    1984-08-01

    The blast and gas pressure data obtained in the full-scale Gravel Gertie test conducted in 1982 have been used by architecture-engineer firms, in conjunction with other data from model experiments, to define the design loads for the new generation of Gravel Gertie and other blast containment facilities.

  6. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining PMID:9175542

  7. Sand and gravel mining: effects on ground water resources in Hancock county, Maine, USA

    NASA Astrophysics Data System (ADS)

    Peckenham, John M.; Thornton, Teresa; Whalen, Bill

    2009-01-01

    Based on this preliminary study, existing sand and gravel mining regulations (in Maine, USA) can be inferred to provide some protection to water resources. Sand and gravel deposits are important natural resources that have dual uses: mining for construction material and pumping for drinking water. How the mining of sand and gravel affects aquifers and change aquifer vulnerability to contamination is not well documented. Mining regulations vary greatly by state and local jurisdiction. This study test metrics to measure the effectiveness of mining regulations. The sand and gravel aquifer system studied is covered with former and active gravel pits to nearly 25% of its areal extent. Data from homeowner interviews and field measurements found scant evidence of changes in water quantity. Water quality analyses collected from springs, streams, ponds and wells indicate that the aquifer was vulnerable to contamination by chloride and nitrate. However, water quality changes can not be related directly to mining activities.

  8. The model test of restoration project of the gravel beach of Chen Village fishing port

    NASA Astrophysics Data System (ADS)

    Wang, D. X.; Gui, J. S.; Sun, J. W.

    2016-08-01

    Gravel beach is a case in coastal landform by wave action. It is more and more crucial for the environment of coastal engineering in recent years. However, it is poorly studied for it in China. And this paper which is based on the model test of Restoration Project of the Gravel Beach of Chen Village Fishing Port, uses two dimensional normal physical models, aiming at exploring the movement of gravel beach under wave action and verifying the stability of the gravel beach section. The test depends on different water levels (designed high water level, designed low water level, and extreme high water level) and return periods (2, 5, 10, 25, 50 years once). Finally, two distinct experimental sections are got under the changed conditions and the movement law of gravels is obtained.

  9. Monitoring and analysis of gravel-packing procedures to explain well performance

    SciTech Connect

    McLeod, H.O. Jr. ); Minarovic, M.J. )

    1994-10-01

    Gravel-packed gas wells completed in the Gulf of Mexico since 1980 were reviewed to build a selective database for a completion-effectiveness study. Gas wells with clean, uniform sands were selected for analysis. Significant monitoring data identified were injectivity tests at different points during the completion and fluid loss rates (barrels per hour). Injectivity before gravel packing and productivity after gravel packing were classified according to sidewall-core permeabilities. Different gravel-pack preparation and execution techniques were reviewed. Fluid-loss-control pills were identified as the greatest source of damage restricting gravel-packed well productivity. Injectivity tests and sidewall-core permeabilities provide valuable information for monitoring well completion procedures.

  10. The Effectiveness of Conservative Management for Acute Whiplash Associated Disorder (WAD) II: A Systematic Review and Meta-Analysis of Randomised Controlled Trials

    PubMed Central

    Wiangkham, Taweewat; Duda, Joan; Haque, Sayeed; Madi, Mohammad; Rushton, Alison

    2015-01-01

    Objective To evaluate the effectiveness of conservative management (except drug therapy) for acute Whiplash Associated Disorder (WAD) II. Design Systematic review and meta-analysis of Randomised Controlled Trials (RCTs) using a pre-defined protocol. Two independent reviewers searched information sources, decided eligibility of studies, and assessed risk of bias (RoB) of included trials. Data were extracted by one reviewer and checked by the other. A third reviewer mediated any disagreements throughout. Qualitative trial and RoB data were summarised descriptively. Quantitative syntheses were conducted across trials for comparable interventions, outcome measures and assessment points. Meta-analyses compared effect sizes with random effects, using STATA version 12. Data Sources PEDro, Medline, Embase, AMED, CINAHL, PsycINFO, and Cochrane Library with manual searching in key journals, reference lists, British National Bibliography for Report Literature, Center for International Rehabilitation Research Information & Exchange, and National Technical Information Service were searched from inception to 15th April 2015. Active researchers in the field were contacted to determine relevant studies. Eligibility Criteria for Selecting Studies RCTs evaluating acute (<4 weeks) WADII, any conservative intervention, with outcome measures important to the International Classification of Function, Disability and Health. Results Fifteen RCTs all assessed as high RoB (n=1676 participants) across 9 countries were included. Meta-analyses enabled 4 intervention comparisons: conservative versus standard/control, active versus passive, behavioural versus standard/control, and early versus late. Conservative intervention was more effective for pain reduction at 6 months (95%CI: -20.14 to -3.38) and 1-3 years (-25.44 to -3.19), and improvement in cervical mobility in the horizontal plane at <3 months (0.43 to 5.60) compared with standard/control intervention. Active intervention was effective

  11. Modeling the soil water retention curves of soil-gravel mixtures with regression method on the Loess Plateau of China.

    PubMed

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel

  12. Hydrogeophysics of gravel-dominated alluvial floodplains in eastern Oklahoma

    NASA Astrophysics Data System (ADS)

    Miller, Ronald B.

    Multi-electrode surface electrical resistivity (ERI) profiles of the floodplains show lenticular features with high resistivity within a domain of lower resistivity. Floodplain subsoil is composed of mixture of coarse and fine fractions (less than 0.25 mm). The proportion of the fine fraction from cores at the sites shows a negative power relationship with both resistivity (R2 = 0.85) and hydraulic conductivity (R 2 = 0.72), suggesting that the fine content is the major factor in the hydraulic and electrical behavior of the gravel subsoil. A linear relationship between hydraulic conductivity and resistivity is significant and the resulting equation Ksat = 0.11rho allows resistivity (rho) to be interpreted as saturated hydraulic conductivity (Ksat). The median hydraulic conductivity on all profiles from all sites was at least 20 m d-1, which is within the range for gravel soils. This high hydraulic conductivity suggests that at least half of the subsurface at each floodplain is likely to behave as a "high-flow domain" with the ability to conduct water at rates of 20 m d-1 or greater. Several ERI profiles at Barren Fork Creek (BFC) had high resistivity values that were significantly higher than the remaining ERI profiles at BFC and the other sites measured at the 84th percentile. Those ERI profiles were obtained from an area within the BFC study site where a trench injection test found a tracer (Rhodamine WT) to move in a manner that suggests preferential flow. A storm runoff pulse passed the BFC site over May 1-5, 2009 featuring 2.2 m of stage increase, which caused the water table to rise into the gravel-dominated vadose zone at the site. Water table maps, corresponding to the times when stream elevation matched the selected hydraulic conductivity elevations, were prepared from pressure transducers placed in monitoring wells at the site. It appeared that there was little attenuation of the energy of the storm pulse even at the furthest point in the study site: at

  13. Hungry water: Effects of dams and gravel mining on river channels

    SciTech Connect

    Kondolf, G.M.

    1997-07-01

    Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream), Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources. 80 refs., 17 figs.

  14. Evolution of coarse gravel bed forms; field measurements at flood stage

    USGS Publications Warehouse

    Dinehart, Randy L.

    1992-01-01

    Field measurements to investigate the origin and growth of mesoscale gravel bed forms in deep flows were made in the North Fork Toutle River, Washington. Sonar observations of the gravel streambed at a stationary point were recorded during two storm flows in December 1989 and January 1990 with concurrent bed load sampling and continuous velocity measurements. Mean diameter of bed load was about 3 cm, flow depths were 1.4–2.4 m, and bed shear stresses were 2–5 times the critical stress of mean bed load diameter, as computed from the depth-slope product. These records document the hydrodynamic conditions under which dunelike coarse gravel bed forms were observed. Coarse gravel dunes (height, 20 cm; length, 6–15 m) evolved more than 24 hours after peak stage, primarily by accretion, as inferred from bed form changes revealed in dual sonar records. Dune heights increased to 40 cm as mean trough elevation rose about 50 cm over several hours. Smaller dunes (wavelength, 1–3 m), transitional from bed load sheets, migrated on the backs of the large dunes. The superposed dunes finally became indistinguishable from the large dunes, which diminished in height by increasing the mean level of troughs. Gravel deposition occurred at the observation point in conjunction with migration of gravel dunes. The direct comparison of known bed form regimes and gravel bar facies provides alternative interpretations of gravelly deposits.

  15. Assessment of the sand and gravel resources of the Lower Boise River Valley area, Idaho: part one: geological framework of the sand and gravel deposits

    USGS Publications Warehouse

    Bliss, James D.; Moyle, Phillip R.

    2001-01-01

    The USGS has undertaken a first order evaluation of sand & gravel resources in the Lower Boise River Valley in response to rapid urban expansion in the Boise-Nampa-Caldwell corridor in southwest Idaho. The study is intended to provide land-use planners and managers, particularly in the Bureau of Land Management, with a foundation of knowledge that will allow them to anticipate and plan for demand for and development of sand and gravel resources on public lands in response to the urban growth. Attributes under study include: regional geology of both alluvial source areas as well as deposits; fluvial processes that led to deposition of the sand and gravel deposits; spatial distribution of the deposits; quantity and quality of materials in the deposits; and the suitability of the deposits for a range of applications. The study will also examine and attempt to model the association between fluvial processes, deposit characteristics, and physical specifications for various applications of sand and gravel. The results will be presented in a series of sand and gravel assessment reports of which this is the first.

  16. Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite.

    PubMed

    Phillips, D H; Watson, D B

    2015-03-21

    The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided a unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al(3+), Ca(2+), NO(3-), and SO4(2-) over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ∼6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration of U and other pH sensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater. PMID:25544493

  17. Distribution of uranium and thorium in dolomitic gravel fill and shale saprolite.

    PubMed

    Phillips, D H; Watson, D B

    2015-03-21

    The objectives of this study were to examine (1) the distribution of U and Th in dolomitic gravel fill and shale saprolite, and (2) the removal of uranium from acidic groundwater by dolomitic gravel through precipitation with amorphous basaluminite at the U.S. DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) field site west of the Oak Ridge Y-12 National Security Complex in East Tennessee. Media reactivity and sustainability are a technical concern with the deployment of any subsurface reactive media. Because the gravel was placed in the subsurface and exposed to contaminated groundwater for over 20 years, it provided a unique opportunity to study the solid and water phase geochemical conditions within the media after this length of exposure. This study illustrates that dolomite gravel can remove U from acidic contaminated groundwater with high levels of Al(3+), Ca(2+), NO(3-), and SO4(2-) over the long term. As the groundwater flows through high pH carbonate gravel, U containing amorphous basaluminite precipitates as the pH increases. This is due to an increase in groundwater pH from 3.2 to ∼6.5 as it comes in contact with the gravel. Therefore, carbonate gravel could be considered as a possible treatment medium for removal and sequestration of U and other pH sensitive metals from acidic contaminated groundwater. Thorium concentrations are also high in the carbonate gravel. Thorium generally shows an inverse relationship with U from the surface down into the deeper saprolite. Barite precipitated in the shallow saprolite directly below the dolomitic gravel from barium present in the acidic contaminated groundwater.

  18. On the structure of turbulent gravel bed flow: Implications for sediment transport

    NASA Astrophysics Data System (ADS)

    Mohajeri, Seyed Hossein; Righetti, Maurizio; Wharton, Geraldene; Romano, Giovanni Paolo

    2016-06-01

    The main objective of this study was to examine the turbulent flow field over gravel particles as a first step towards understanding sediment transport in a gravel bed river. Specifically, the vertical momentum flux in gravel bed turbulent flow was investigated with particular attention to the near-bed region. Spatial organization of vertical momentum flux was studied with stereoscopic Particle Image Velocimetry (PIV) measurements in a horizontal layer 1mm above the gravel crests. The vertical momentum flux through the water column was described with digital PIV measurements in three vertical planes. The data showed that near the gravel bed, net turbulent momentum flux spatially varies with respect to bed topography. Analysis of the vertical velocity data revealed that near the gravel particle crests, there is a significant net vertical form-induced momentum flux approximately with the same order of magnitude as the net vertical turbulent momentum flux. Above the crests, total net vertical momentum flux is positive. However, below the crests, despite noticeable positive form-induced momentum flux, total net vertical momentum flux is negative. Results of quadrant analysis show that variation of turbulent net vertical momentum flux through water column is in agreement with prevalence of upward movement of low velocity flow (known as ejection) above gravel crests and downward movement of high velocity flow (known as sweep) below gravel crests. Below gravel crests (- 0.1 < z / H < 0.0), there is a region where the contribution of second quadrant to Reynolds shear stress is lower than fourth quadrant, while the contribution of second quadrant to vertical momentum flux is higher than fourth quadrant. This can be interpreted that ejection events in this region are strong enough to lift up fine particles but their contribution is not sufficient to move fine particles in the longitudinal direction.

  19. [Genetic characterization of the Wad Medani virus (WMV) (Reoviridae, Orbivirus), isolated from the ticks Hyalomma asiaticum Schulze et Schlottke, 1930 (Ixodidae: Hyalomminae) in Turkmenistan, Kazakhstan, and Armenia and from the ticks H. anatolicum Koch, 1844 in Tajikistan].

    PubMed

    Al'khovskiĭ, S V; L'vov, D K; Shchelkanov, M Iu; Shchetinin, A M; Deriabin, P G; Gitel'man, A K; Aristova, V A; Botikov, A G

    2014-01-01

    Near full-genome sequence of the Wad Medani Virus (WMV) (strain LEIV-8066Tur) (Orbivirus, Reoviridae) isolated from the ticks Hyalomma asiaticum Schulze et Schlottke, 1929, collected from sheep in Baharly district in Turkmenistan, was determined using next generation sequencing approach. The similarity of the RNA-dependent RNA-polymerase (Pol, VP1) amino acid sequence between WMV and the Kemerovo group orbiviruses (KEMV), as well as of the Baku virus (BAKV), was 64%. The similarity of the conserved structural protein VP3 (T2) of WMV with mosquito-borne and tick-borne orbiviruses reaches 46% and 67%, respectively. For the surface proteins VP2, VP5, and VP7 (T13), which have major antigenic determinants of orbiviruses, the similarity of WMV with tickborne orbiviruses (KEMV and BAKV) is 26-30%, 45% and, 57%, respectively (ID GenBank: KJ425426-35). PMID:25549464

  20. Tertiary gold-bearing channel gravel in northern Nevada County, California

    USGS Publications Warehouse

    Peterson, D.W.; Yeend, W.E.; Oliver, H.W.; Mattick, R.E.

    1968-01-01

    The remains of a huge Tertiary gravel-filled channel lie in the area between the South and Middle Yuba Rivers in northern Nevada County, Calif. The deposits in this channel were the site of some of the most productive hydraulic gold mines in California between the 1850's and 1884. The gravel occupies a major channel and parts of several tributaries that in Tertiary time cut into a surface of Paleozoic and Mesozoic igneous and metamorphic rocks. The gravel is partly covered by the remains of an extensive sheet of volcanic rocks, but it crops out along the broad crest of the ridge between the canyons of the South and Middle Yuba Rivers. The lower parts of the gravel deposits generally carry the highest values of placer gold. Traditionally, the richest deposits of all are found in the so-called blue gravel, which, when present, lies just above the bedrock and consists of a very coarse, poorly sorted mixture of cobbles, pebbles, sand, and clay. It is unoxidized, and, at least locally, contains appreciable quantities of secondary sulfide minerals, chiefly pyrite. Information in drill logs from private sources indicates that a 2-mile stretch of the channel near North Columbia contains over half a million ounces of gold dispersed through about 22 million cubic yards of gravel at a grade .averaging about 81 cents per cubic yard. The deposit is buried at depths ranging from 100 to 400 feet. Several geophysical methods have been tested for their feasibility in determining the configuration of the buried bedrock surface, in delineating channel gravel buried under volcanic rocks, and in identifying concentrations of heavy minerals within the gravel. Although the data have not yet been completely processed, preliminary conclusions indicate that some methods may be quite useful. A combination of seismic-refraction and gravity methods was used to determine the depth and configuration of the bottom of the channel to an accuracy within 10 percent as checked by the drill holes

  1. Preliminary report on deposit models for sand and gravel in the Cache la Poudre River valley

    USGS Publications Warehouse

    Langer, W.H.; Lindsey, D.A.

    1999-01-01

    The stratigraphy, sedimentary features, and physical characteristics of gravel deposits in the Cache la Poudre River valley were studied to establish geologic models for these deposits. Because most of the gravel mined in the valley is beneath the low terraces and floodplain, the quality of these deposits for aggregate was studied in detail at eight sites in a 25.5-mile reach between Fort Collins and Greeley, Colorado. Aggregate quality was determined by field and laboratory measurements on samples collected under a consistent sampling plan. The Broadway terrace is underlain by Pleistocene alluvium and, at some places, by fine-grained wind-blown deposits. The Piney Creek terrace, low terraces, and floodplain are primarily underlain by Holocene alluvium. Pleistocene alluvium may underlie these terraces at isolated locations along the river. Gravels beneath the Piney Creek terrace, low terraces, and floodplain are divisible into two units that are poorly distinguishable at the upstream end of the study area, but are readily distinguishable about 7 miles downstream. Where distinguished, the two gravel units are separated by a sharp, locally erosional, contact. The upper gravel is probably of Holocene age, but the lower gravel is considered to be Holocene and Pleistocene. The primary variation in particle size of the gravels beneath the floodplain and low terraces of the Cache la Poudre River valley is the downstream decrease in the proportion of particles measuring 3/4 inch and larger. Above Fort Collins, about 60 pct of the gravel collects on the 3/4 inch sieve, whereas about 50 pct of gravel collects on the same sieve size at Greeley. For 1.5-inch sieves, the corresponding values are about 50 pct for Fort Collins and only about 30 pct for Greeley. Local differences in particle size and sorting between the upper and lower gravel units were observed in the field, but only the coarsest particle sizes appear to have been concentrated in the lower unit. Field

  2. TECHNIQUES TO DETERMINE SPATIAL VARIATIONS IN HYDRAULIC CONDUCTIVITY OF SAND AND GRAVEL

    EPA Science Inventory

    Methods for determining small-scale variations in aquifer properties were investigated for a sand and gravel aquifer on Cape Cod, Massachusetts. easurements of aquifer properties, in particular hydraulic conductivity, are needed for further investigations into the effects of aqui...

  3. Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Soule, James M.; Fitch, Harold R.

    1974-01-01

    An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.

  4. [Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope].

    PubMed

    Zhu, Wei; Xie, San-Tao; Ruan, Ai-Dong; Bian, Xun-Wen

    2008-03-01

    Aiming at the technical difficulties such as the stability and water balance in the ecological rehabilitation of river flinty slope, a gravel mulch technology was proposed, with the effects of different gravel mulch treatments on the soil anti-erosion capacity, soil water retention property, and plant growth investigated by anti-erosion and pot experiments. The results showed that mulching with the gravels 1.5-2 cm in size could obviously enhance the soil anti-erosion capacity, soil water retention property and plant biomass, but no obvious differences were observed between the mulch thickness of 5 cm and 8 cm. It was indicated that mulching with the gravels 1.5-2 cm in size and 5 cm in thickness was an effective and economical technology for the ecological rehabilitation of river flinty slope.

  5. Virtual velocity of tracers in a gravel-bed river using size-based competence duration

    NASA Astrophysics Data System (ADS)

    Milan, David J.

    2013-09-01

    Virtual velocity (Vi) of river gravels is commonly used to determine sediment transport rates and gravel dispersion dynamics. Virtual velocity is calculated from tracer gravel step-length data as the distance travelled divided by the duration of competence. However, no allowance is usually made for differences in competence duration according to grain size. In this investigation, Vi of gravel tracer clasts for the River Rede, Northumberland, UK, is calculated using a method that takes into consideration an approximation of size-based competence duration. Although scaled transport distance data compared favourably to past studies, it was the comparatively smaller clasts that tended to have lower Vi in comparison to coarser clasts, because of their longer competence duration, contrasting with previously published research. The key findings of the study serve as proof of concept and should be adopted in future studies that focus upon Vi estimation.

  6. Statistical analysis of sand and gravel aggregate deposits of late Pleistocene Lake Bonneville, Utah

    USGS Publications Warehouse

    Bliss, James D.; Bolm, K.S.

    2001-01-01

    Sedimentary deposits of pluvial Lake Bonneville are an important source of sand and gravel suitable for aggregate and construction in Utah. Data on Lake Bonneville basin sand and gravel deposit thickness, volume, grain size, percent of fines, and durability were statistically analyzed to detect variations associated with geologic domains, geographic location, Lake Bonneville shorelines, and sand and gravel deposit type, and to construct quantitative deposit models. Analysis showed several trends; (1) sand and gravel in younger shorelines was slightly more durable and the deposits considerably larger in volume, (2) younger shorelines are also more likely to contain more than one genetic deposit type, (3) the volume of terrace deposits is larger than beach deposits, (4) terraces and beaches are generally thicker than spits and bars, (5) the northern part of the Bonneville Basin contains slightly more durable sand and gravel than the southern part of the basin and is more likely to contain deposits composed of more than one genetic deposit type, and (6) the Wasatch domain deposits are composed of more than one genetic deposit type more often than deposits of the Basin and Range domain. Three additional conclusions with immediate economic significance are; (1) the median sand and gravel deposit in the Wasatch domain, 360,000 m3 (275,000 yd3), is three times larger than that of the Basin and Range domain (120,000 m3 [90,000 yd3]), (2) the median deposit thickness in the Wasatch domain, 5.8 m (19.0 ft), is nearly twice that of the Basin and Range domain (3 m [10 ft]), and (3) the Wasatch domain also contains slightly larger diameter gravel. These three conclusions are significant because the trend for sand and gravel development in the Bonneville Basin is to move from the Wasatch domain to the Basin and Range domain. Smaller, thinner deposits with smaller diameter gravel will require more surface area to mine than would have been necessary in the Wasatch domain. The

  7. Macroinvertebrate community responses to gravel augmentation in a high-gradient, Southeastern regulated river

    SciTech Connect

    McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A

    2013-01-01

    Sediment transport, one of the key processes of river systems, is altered or stopped by dams, leaving lower river reaches barren of sand and gravel, both of which are essential habitat for fish and macroinvertebrates. One way to compensate for losses in sediment is to supplement gravel to river reaches below impoundments. Because gravel addition has become a widespread practice, it is essential to evaluate the biotic response to restoration projects in order to improve the efficacy of future applications. The purpose of our study was to evaluate the response of the macroinvertebrate community to gravel addition in a high-gradient, regulated river in western North Carolina. We collected benthic macroinvertebrate samples from gravel-enhanced areas and unenhanced areas for 1 season before gravel addition, and for 4 seasons afterwards. Repeated measures multivariate analysis of variance indicated that the responses of macroinvertebrates to gravel addition were generally specific to individual taxa or particular functional feeding groups and did not lead to consistent patterns in overall family richness, diversity, density, or evenness. Non-metric multi-dimensional scaling showed that shifts in macroinvertebrate community composition were temporary and dependent upon site conditions and season. Correlations between macroinvertebrate response variables and substrate microhabitat variables existed with or without the inclusion of data from enhanced areas, which suggests that substrate-biotic relationships were present before gravel addition. A review of the current literature suggests that the responses of benthic macroinvertebrates to substrate restoration are inconsistent and dependent upon site conditions and the degree habitat improvement of pre-restoration site conditions.

  8. The gravel-sand transition: Sediment dynamics in a diffuse extension

    NASA Astrophysics Data System (ADS)

    Venditti, Jeremy G.; Domarad, Natalia; Church, Michael; Rennie, Colin D.

    2015-06-01

    As gravel-bedded rivers fine in the downstream direction, they characteristically exhibit an abrupt transition from gravel- to sand-bedded conditions. The prevailing theory for why abrupt gravel-sand transitions emerge is based on bed load sorting of a bimodal sediment. The abruptness is thought to be a consequence of sand overwhelming the gravel-sand mixture once it reaches a critical coverage on the bed. The role suspension plays in the development of gravel-sand transitions has not been fully appreciated. The Fraser River, British Columbia, is an archetypical abrupt gravel-sand transition with a "diffuse extension" composed of a sand bed with some patches of gravel. We examine flow, shear stress, and suspended sediment flux in the diffuse extension to better understand sediment dynamics where the sand bed emerges. Sand is carried in suspension upstream of the primary abrupt gravel-sand transition, but in the diffuse extension, sand is moved as both bed load and suspended load. We do not observe downstream gradients in shear stress or suspended sand flux through the diffuse extension that would suggest a gradual "rain out" of sand moving downstream, which raises the question, how is the sand bed formed? Sediment advection length scales indicate that with the exception of very fine sand that moves as wash load in the diffuse extension, fractions coarser than the median sand size cannot be carried in suspension for more than one channel width. This suggests that sand is deposited en masse at the beginning of the diffuse extension, forming a sediment slug at low flood flows that is smeared downstream at high flood flows to form the sand reach.

  9. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.

    PubMed

    Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B

    2016-06-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  10. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    PubMed Central

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria J.; Hebblewhite, Mark; Lowe, Winsor H.; Muhlfeld, Clint C.; Nelson, Cara R.; Proctor, Michael F.; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570

  11. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes

    USGS Publications Warehouse

    Hauer, F. Richard; Locke, Harvey; Dreitz, Victoria; Hebblewhite, Mark; Lowe, Winsor; Muhlfeld, Clint C.; Nelson, Cara; Proctor, Michael F; Rood, Stewart B.

    2016-01-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologicaltering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth.

  12. The physical and mechanical properties of laterite gravels from southeastern Nigeria relative to their engineering performance

    NASA Astrophysics Data System (ADS)

    Okagbue, C. O.

    Laterite gravels are used extensively as aggregates for highway construction, concrete making and fills in SE Nigeria. This paper presents results of laboratory investigations carried out to evaluate the physical and mechanical properties of these gravels. High mechanical strength, as measured by aggregate crushing (AC), and Los Angeles abrasion (LAA) values were found to be significant factors controlling the performance. Results indicate that significant correlations exist between these and specific gravity, water absorption and angularity of the gravels. No clear distinction in physical and mechanical properties could be found between the laterite gravels formed over sandstones and shales, indicating perhaps that effects of parent rock on the physical and mechanical nature of laterite gravels is of secondary importance. It is proposed that laterite gravels with AC and LAA values in the range of 30-40% and 34-45%, respectively and 10% fines value of between 8 and 4 tonnes be used only for medium and light trafficked roads. Those with AC and LAA values of less than 30% and 34%, respectively and 10% fines value of greater than 8 tonnes can be used for heavily trafficked roads, provided that acceptable gradation, plasticity limits (on the fines) and other construction specifications are met.

  13. Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes.

    PubMed

    Hauer, F Richard; Locke, Harvey; Dreitz, Victoria J; Hebblewhite, Mark; Lowe, Winsor H; Muhlfeld, Clint C; Nelson, Cara R; Proctor, Michael F; Rood, Stewart B

    2016-06-01

    Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and terrestrial species from microbes to grizzly bears and provide essential connectivity as corridors for movement for both aquatic and terrestrial species. Paradoxically, gravel-bed river floodplains are also disproportionately unprotected where human developments are concentrated. Structural modifications to floodplains such as roads, railways, and housing and hydrologic-altering hydroelectric or water storage dams have severe impacts to floodplain habitat diversity and productivity, restrict local and regional connectivity, and reduce the resilience of both aquatic and terrestrial species, including adaptation to climate change. To be effective, conservation efforts in glaciated mountain landscapes intended to benefit the widest variety of organisms need a paradigm shift that has gravel-bed rivers and their floodplains as the central focus and that prioritizes the maintenance or restoration of the intact structure and processes of these critically important systems throughout their length and breadth. PMID:27386570

  14. Use of slope creation for rehabilitating incised, regulated, gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Elkins, Eve M.; Pasternack, Gregory B.; Merz, Joseph E.

    2007-05-01

    Gravel-bedded channels often become incised and degraded below dams. Gravel can be added to the channel to rehabilitate hydrogeomorphic conditions, including those promoting salmon spawning. When implemented without increasing bed slope, gravel addition at downstream riffles back floods upstream riffles. A 2-year gravel augmentation project was done to test the efficacy of a new method for "slope creation." Riffle-to-riffle slope was raised from 0.002 to 0.008 by adding gravel to the most upstream riffle. When gravel was added to the next downstream riffle a year later, riffle-to-riffle slope decreased to the sought after 0.004. After the study, the area of high-quality Chinook salmon spawning habitat increased 471%. The number of redds observed went from 62 to 161 during the study despite a 50% decline of in-river spawners. This eliminates variations in migrant population size and hatchery take as alternative explanations. Slope creation can be a useful aid for rehabilitating regulated rivers.

  15. Is There a Link Between Turbulent Fluctuations and Incipient Motion of Gravel Particles in a Gravel-bed River ?

    NASA Astrophysics Data System (ADS)

    Paiement-Paradis, G.; Roy, A. G.

    2004-05-01

    In the turbulent boundary layer over mobile beds, complex interactions exist between turbulence, sediment transport and bedform development. However, in the current literature, there is no consensus concerning the role of turbulence on sediment transport in rivers. In this study, our objective is to establish a link between macro-turbulence and movement of particles in bedload in a gravel-bed river (Eaton-North River, Québec, Canada). We developed an experimental design based on the simultaneous measurements, during more than 10 minutes, of bedload transport and of flow velocity fluctuations (both of the streamwise and vertical components). Velocity fluctuations were recorded at 20 Hz using three electromagnetic current meters (ECMs) mounted on a vertical rod installed 60 cm upstream from a downward looking underwater video camera. The camera filmed the displacement of particles (D50 between 16 and 64 mm) on an area of 30 x 20 cm at the frequency of 30 images per second. The film was subsequently analysed to identify the periods of displacement of individual particles larger than 2 cm. Characteristics of the particles movement (e.g. duration, distance travelled, type - rolling or sliding) were also noted. Velocity measurements were used to estimate average and turbulent characteristics of the flow (e.g. mean velocity, autocorrelation function), to identify the presence and characteristics of turbulent flow structures (using quadrant, u-level and wag analysis) and to determinate instantaneous Reynolds stress components (-u'v', u'2, v'2). Our results did not indicate the presence of any relations between turbulent variables traditionally linked to sediment transport and bedload transport. For example, quadrant 1 and 4 events and the -u'v' Reynolds stress component were not associated with bedload motion. However, fluid acceleration and the normal stress of the vertical velocity component v'2 have an important role to play on the incipient motion of particles. These

  16. Measurement of the bed material of gravel-bed rivers

    USGS Publications Warehouse

    Milhous, R.T.; ,

    2002-01-01

    The measurement of the physical properties of a gravel-bed river is important in the calculation of sediment transport and physical habitat values for aquatic animals. These properties are not always easy to measure. One recent report on flushing of fines from the Klamath River did not contain information on one location because the grain size distribution of the armour could not be measured on a dry river bar. The grain size distribution could have been measured using a barrel sampler and converting the measurements to the same as would have been measured if a dry bar existed at the site. In another recent paper the porosity was calculated from an average value relation from the literature. The results of that paper may be sensitive to the actual value of porosity. Using the bulk density sampling technique based on a water displacement process presented in this paper the porosity could have been calculated from the measured bulk density. The principle topics of this paper are the measurement of the size distribution of the armour, and measurement of the porosity of the substrate. The 'standard' method of sampling of the armour is to do a Wolman-type count of the armour on a dry section of the river bed. When a dry bar does not exist the armour in an area of the wet streambed is to sample and the measurements transformed analytically to the same type of results that would have been obtained from the standard Wolman procedure. A comparison of the results for the San Miguel River in Colorado shows significant differences in the median size of the armour. The method use to determine the porosity is not 'high-tech' and there is a need improve knowledge of the porosity because of the importance of porosity in the aquatic ecosystem. The technique is to measure the in-situ volume of a substrate sample by measuring the volume of a frame over the substrate and then repeated the volume measurement after the sample is obtained from within the frame. The difference in the

  17. Evaluating fine sediment mobilization and storage in a gravel-bed river using controlled reservoir releases

    NASA Astrophysics Data System (ADS)

    Petticrew, E. L.; Krein, A.; Walling, D. E.

    2007-01-01

    Two controlled flow events were generated by releasing water from a reservoir into the Olewiger Bach, located near Trier, Germany. This controlled release of near bank-full flows allowed an investigation of the fine sediment (<63 μm) mobilized from channel storage. Both a winter (November) and a summer (June) release event were generated, each having very different antecedent flow conditions. The characteristics of the release hydrographs and the associated sediment transport indicated a reverse hysteresis with more mass, but smaller grain sizes, moving on the falling limb. Fine sediment stored to a depth of 10 cm in the gravels decreased following the release events, indicating the dynamic nature and importance of channel-stored sediments as source materials during high flow events. Sediment traps, filled with clean natural gravel, were buried in riffles before the release of the reservoir water and the total mass of fine sediment collected by the traps was measured following the events. Twice the mass of fine sediment was retained by the gravel traps compared with the natural gravels, which may be due to their altered porosity. Although the amount of fine sediment collected by the traps was not significantly related to measures of gravel structure, it was found to be significantly correlated to measures of local flow velocity and Froude number. A portion of the traps were fitted with lids to restrict surface exchange of water and sediment. These collected the highest amounts of event-mobilized sediments, indicating that inter-gravel lateral flows, not just surface infiltration of sediments, are important in replenishing and redistributing the channel-stored fines. These findings regarding the magnitude and direction of fine sediment movement in gravel beds are significant in both a geomorphic and a biological context. Copyright

  18. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent.

  19. Gravel admix, vegetation, and soil water interactions in protective barriers: Experimental design, construction, and initial conditions

    SciTech Connect

    Waugh, W.J.

    1989-05-01

    The purpose of this study is to measure the interactive effects of gravel admix and greater precipitation on soil water storage and plant abundance. The study is one of many tasks in the Protective Barrier Development Program for the disposal of Hanford defense waste. A factorial field-plot experiment was set up at the site selected as the borrow area for barrier topsoil. Gravel admix, vegetation, and enhanced precipitation treatments were randomly assigned to the plots using a split-split plot design structure. Changes in soil water storage and plant cover were monitored using neutron probe and point intercept methods, respectively. The first-year results suggest that water extraction by plants will offset gravel-caused increases in soil water storage. Near-surface soil water contents were much lower in graveled plots with plants than in nongraveled plots without plants. Large inherent variability in deep soil water storage masked any effects gravel may have had on water content below the root zone. In the future, this source of variation will be removed by differencing monthly data series and testing for changes in soil water storage. Tests of the effects of greater precipitation on soil water storage were inconclusive. A telling test will be possible in the spring of 1988, following the first wet season during which normal precipitation is doubled. 26 refs., 9 figs., 9 tabs.

  20. Treatment of domestic wastewater by subsurface flow constructed wetlands filled with gravel and tire chip media.

    PubMed

    Richter, A Y; Weaver, R W

    2003-12-01

    Subsurface flow constructed wetlands (SFCWs) are becoming increasingly common in on-site treatment of wastewater. Gravel is the most popular form of wetland fill medium, but tire chips provide more porosity, are less dense, and less expensive. This study determines the treatment efficiency of SFCWs filled with gravel or tire chip media to treat domestic wastewater. The influent and effluent of six SFCWs filled with tire chip medium and six SFCWs filled with gravel were monitored for 5 to 16 consecutive months. Parameters measured included pH, biochemical oxygen demand (BOD5), total and volatile suspended solids, NH4, P, and fecal and total coliforms. The only clear difference between medium types in wetland performance was for P. Soluble P in the effluent averaged 1.6 +/- 1.0 mg l(-1) in the tire chip-filled wetlands and 4.8 +/- 3.2 mg l(-1) in the gravel-filled wetlands. Most likely, Fe from exposed wires in shredded steel-belted tires complexed with P to create an insoluble compound. Tire chips may be a better fill medium for SFCWs than gravel because of higher porosity, lower cost, and greater reduction of P in effluent. PMID:14977152

  1. Assessing potential abiotic and biotic complications of crayfish-induced gravel transport in experimental streams

    NASA Astrophysics Data System (ADS)

    Statzner, Bernhard; Peltret, Odile

    2006-03-01

    Biogeomorphology adds the element "biological dynamics" (of populations or communities) to chemical and physical geomorphic factors and thus complicates the framework of geomorphic processes. Such biological complications of the animal-induced transport of solids in streams should be particularly important in crayfish, as crayfish affect this transport through their overall activity and intraspecific aggression levels, which could be modified by shelter availability or the establishment of dominance hierarchies among individuals not knowing each other. Using experimental streams, we tested these hypotheses by measuring how shelter availability or residential crayfish group invasion by unknown individuals affected the impact of the crayfish Orconectes limosus on the (i) transport of gravel at baseflow (during 12 experimental days); (ii) sediment surface characteristics (after 12 days); and (iii) critical shear stress causing incipient gravel motion during simulated floods (after 12 days). The two potentially important factors shelter availability or residential group invasion negligibly affected the crayfish impact on gravel sediments, suggesting that habitat unfamiliarity (a third potentially important factor affecting crayfish activity) should increase the crayfish-induced sediment transport. Because habitat unfamiliarity is associated with sporadic long-distance migrations of a few crayfish individuals, this third factor should play a minor role in real streams, where crayfish biomass should be a key factor in relations with crayfish effects on sediments. Therefore, we combined the results of this study with those of previous crayfish experiments to assess how crayfish biomass could serve in modelling the gravel transport. Crayfish biomass explained 47% of the variability in the baseflow gravel transport and, in combination with the coefficient of variation of the bed elevation and algal cover, 72% of the variability in the critical gravel shear stress. These

  2. Several 1992 astronaut candidates brush the sand and gravel off one another following one of several

    NASA Technical Reports Server (NTRS)

    1992-01-01

    1992 ASCAN TRAINING --- Several 1992 astronaut candidates brush the sand and gravel off one another following one of several phases of parachute familiarization and survival training at Vance Air Force Base in Oklahoma. Recognizable in the picture are Wendy B. Lawrence, Michael E. Lopez-Alegria, Chris A. Hadfield, Winston E. Scott and Koichi Wakata. The trainees had just completed an exercise which required their jumping off a box into a gravel pit, in order to familiarize them the proper way to meet the ground following an emergency parachute drop.

  3. Kinetic analysis of strontium and potassium sorption onto sands and gravels in a natural channel.

    USGS Publications Warehouse

    Bencala, K.E.; Jackman, A.P.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.

    1983-01-01

    A kinetic, first-order mass transfer model was used to describe the sorption of strontium onto sand-and gravel-sized streambed sediments. Rate parameters, empirically determined for strontium, allowed for the prediction of potassium sorption with moderate success. The model parameters varied significantly with particle size. The sorption data were collected during an experimental injection of several elements into a small mountain pool-and- riffle stream. The sorption process onto sand- and gravel-sized sediment was relatively slow compared to changes in the dissolved concentrations. -Authors

  4. Effects of Surface and Subsurface Bed Material Composition on Gravel Transport and Flow Competence Relations—Possibilities for Prediction

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Gaeuman, D. A.

    2014-12-01

    Bedload transport and flow competence relations are difficult to predict in coarse-bedded steep streams where widely differing sediment supply, bed stability, and complex flow hydraulics greatly affect amounts and sizes of transported gravel particles. This study explains how properties of bed material surface and subsurface size distributions are directly related to gravel transport and may be used for prediction of gravel transport and flow competence relations. Gravel transport, flow competence, and bed material size were measured in step-pool and plane-bed streams. Power functions were fitted to gravel transport QB=aQb and flow competence Dmax=cQd relations; Q is water discharge. Frequency distributions of surface FDsurf and subsurface FDsub bed material were likewise described by power functions FDsurf=hD j and FDsub=kDm fitted over six 0.5-phi size classes within 4 to 22.4 mm. Those gravel sizes are typically mobile even in moderate floods. Study results show that steeper subsurface bed material size distributions lead to steeper gravel transport and flow competence relations, whereas larger amounts of sediment contained in those 6 size bedmaterial classes (larger h and k) flatten the relations. Similarly, steeper surface size distributions decrease the coefficients of the gravel transport and flow competence relations, whereas larger amounts of sediment within the six bed material classes increase the intercepts of gravel transport and flow competence relations. Those relations are likely causative in streams where bedload stems almost entirely from the channel bed as opposed to direct (unworked) contributions from hillslopes and tributaries. The exponent of the subsurface bed material distribution m predicted the gravel transport exponent b with r2 near 0.7 and flow competence exponent d with r2 near 0.5. The intercept of bed surface distributions h increased the intercept a of gravel transport and c of the flow competence relations with r2 near 0.6.

  5. Groundwater and surface water interaction in flow-through gravel pit lakes.

    NASA Astrophysics Data System (ADS)

    Nella Mollema, Pauline; Antonellini, Marco

    2015-04-01

    Gravel pits are excavated in aquifers to fulfill the need for construction materials. Flow-through lakes form when the gravel pits are below the water table and fill with groundwater. In certain areas there are more than 60 of these lakes close together and their presence changes the drainage patterns and water- and hydrochemical budgets of a watershed. In flow-through gravel pit lakes, groundwater mixes with surface water and interacts with the atmosphere; outflow occurs only via groundwater. The lifespan of gravel pit lakes may be up to thousands of years as their depth to surface ratio is typically large and sedimentation rates are low. We have studied two gravel pit lake systems, a fluvial freshwater system in the Netherlands and a coastal brackish lake system in Italy. One Dutch gravel pit lake studied in detail is in part artificially replenished with Meuse River water for drinking water production that occurs downstream of the lake by water pumps. The Italian gravel pit lakes are fed by brackish groundwater that is a mix of freshwater from precipitation, Apennine Rivers and brackish (Holocene) Adriatic Sea water. Here, the drainage system of the low lying land enhances groundwater flow into the lake. Surface water evaporation is larger in temperate and Mediterranean climates than the actual evapotranspiration of pre-existing grassland and forests. The lakes, therefore, cause a loss of freshwater. The creation of water surfaces allows algae and other flora and fauna to develop. In general, water becomes gradually enriched in certain chemical constituents on its way through the hydrological cycle, especially as groundwater due to water-rock interactions. When groundwater ex-filtrates into gravel pit lakes, the natural flow of solutes towards the sea is interrupted. Hydrochemical analysis of ground- and surface waters, as well as chemical analysis of lake bottom sediments and stable H and O isotope data, show that gravel pit lake water is characterized (among

  6. Impact of gravel mining on benthic invertebrate communities in a highly dynamic gravel-bed river: an integrated methodology to link geomorphic disturbances and ecological status

    NASA Astrophysics Data System (ADS)

    Béjar, María; Gibbins, Chris; Vericat, Damià; Batalla, Ramon J.; Buendia, Cristina; Lobera, Gemma

    2014-05-01

    Water and sediments are transported along river channels. Their supply, transport and deposition control river morphology and sedimentary characteristics, which in turn support habitat. Floods disturb river channels naturally although anthropogenic impacts may also contribute. River channel disturbance is considered the main factor affecting the organization of riverine communities and contributes to key ecological processes. In this paper we present an integrated methodology designed to analyze the impacts of in-channel gravel mining on benthic invertebrate communities. The study is conducted in the Upper River Cinca (Southern Pyrenees). A 11 km river reach is being monitored in order to understand the effects of floods and gravel mining on channel morphodynamics and invertebrate communities. The study reach is located in and upland gravel-bed system historically and currently affected by periodical episodes of in-channel sediment mining. This methodology has been developed in the background of the research project MorphSed. An integrated methodology of four components (Co) has been designed and is being implemented: (Co1) acquisition of high resolution imagery to generate topographic models before and after channel disturbances. Floods and in-channel gravel mining are considered natural and anthropogenic disturbances, respectively. Topographic models are obtained by means of combining automated digital photogrammetry (SfM) and optical bathymetric models. Event-scale models are used to assess the spatial extent and magnitude of bed disturbance. (Co2) Invertebrate sampling in 5 representative reaches along the study site. Invertebrate surber samples are providing data to define assemblages and their characteristics (composition, density, distribution, traits). These data is used to assess the spatial extent of channel disturbance impacts on the taxonomic and trait structure of communities. (Co3) Monitoring flow and sediment transport in the upstream and downstream

  7. 32 CFR 644.551 - Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Equal opportunity-sales of timber, embedded sand... § 644.551 Equal opportunity—sales of timber, embedded sand, gravel, stone, and surplus structures...) Sale of standing timber. (b) Sale of embedded sand, gravel, and stone in their natural state. (c)...

  8. 32 CFR 644.551 - Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Equal opportunity-sales of timber, embedded sand... § 644.551 Equal opportunity—sales of timber, embedded sand, gravel, stone, and surplus structures...) Sale of standing timber. (b) Sale of embedded sand, gravel, and stone in their natural state. (c)...

  9. 32 CFR 644.551 - Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Equal opportunity-sales of timber, embedded sand... § 644.551 Equal opportunity—sales of timber, embedded sand, gravel, stone, and surplus structures...) Sale of standing timber. (b) Sale of embedded sand, gravel, and stone in their natural state. (c)...

  10. Resistivity Profiling for Mapping Gravel Layers That May Control Contaminant Migration at the Amargosa Desert Research Site, Nevada

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Abraham, Jared D.; Burton, Bethany L.

    2008-01-01

    Gaseous contaminants, including CFC 113, chloroform, and tritiated compounds, move preferentially in unsaturated subsurface gravel layers away from disposal trenches at a closed low-level radioactive waste-disposal facility in the Amargosa Desert about 17 kilometers south of Beatty, Nevada. Two distinct gravel layers are involved in contaminant transport: a thin, shallow layer between about 0.5 and 2.2 meters below the surface and a layer of variable thickness between about 15 and 30 meters below land surface. From 2003 to 2005, the U.S. Geological Survey used multielectrode DC and AC resistivity surveys to map these gravel layers. Previous core sampling indicates the fine-grained sediments generally have higher water content than the gravel layers or the sediments near the surface. The relatively higher electrical resistivity of the dry gravel layers, compared to that of the surrounding finer sediments, makes the gravel readily mappable using electrical resistivity profiling. The upper gravel layer is not easily distinguished from the very dry, fine-grained deposits at the surface. Two-dimensional resistivity models, however, clearly identify the resistive lower gravel layer, which is continuous near the facility except to the southeast. Multielectrode resistivity surveys provide a practical noninvasive method to image hydrogeologic features in the arid environment of the Amargosa Desert.

  11. 32 CFR 644.551 - Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Equal opportunity-sales of timber, embedded sand... § 644.551 Equal opportunity—sales of timber, embedded sand, gravel, stone, and surplus structures...) Sale of standing timber. (b) Sale of embedded sand, gravel, and stone in their natural state. (c)...

  12. 32 CFR 644.551 - Equal opportunity-sales of timber, embedded sand, gravel, stone, and surplus structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Equal opportunity-sales of timber, embedded sand... § 644.551 Equal opportunity—sales of timber, embedded sand, gravel, stone, and surplus structures...) Sale of standing timber. (b) Sale of embedded sand, gravel, and stone in their natural state. (c)...

  13. TRANSPORT OF CHROMIUM AND SELENIUM IN A PRISTINE SAND AND GRAVEL AQUIFER: ROLE OF ADSORPTION PROCESSES

    EPA Science Inventory

    Field transport experiments were conducted in an oxic sand and gravel aquifer using Br (bromide ion), Cr (chromium, injected as Cr(VI)), Se (selenium, injected as Se(VI)), and other tracers. The aquifer has mildly acidic pH values and low concentrations of dissolved salts. Within...

  14. Preliminary Assessment of Vertical Stability and Gravel Transport along the Umpqua River, Southwestern Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Wallick, J. Rose; Sobieszczyk, Steven; Cannon, Charles; Anderson, Scott W.

    2009-01-01

    This report addresses physical channel issues related to instream gravel mining on the Umpqua River and its two primary tributaries, the North and South Umpqua Rivers. This analysis constitutes a 'Phase I' investigation, as designated by an interagency team cochaired by the U.S. Army Corps of Engineers, Portland District, and the Oregon Department of State Lands to address instream gravel mining issues across Oregon. Phase I analyses rely primarily on existing datasets and cursory analysis to determine the vertical stability of a channel to ascertain whether a particular river channel is aggrading, degrading, or at equilibrium. Additionally, a Phase I analysis identifies other critical issues or questions pertinent to physical channel conditions that may be related to instream gravel mining activities. This analysis can support agency permitting decisions as well as possibly indicating the need for additional studies. This specific analysis focuses on the mainstem Umpqua River from the Pacific Ocean at River Mile (RM) 0 to the confluence of the North and South Umpqua Rivers (at RM 111.8), as well as the lower 29 mi of the North Umpqua River and the lower 80 mi of the South Umpqua River (fig. 1). It is within these reaches where mining of gravel bars for aggregate has been most prevalent.

  15. Extraction Method of Scallop Area in Gravel Seabed Images for Fishery Investigation

    NASA Astrophysics Data System (ADS)

    Enomoto, Koichiro; Toda, Masashi; Kuwahara, Yasuhiro

    The quantity and state of fishery resources must be known so that they can be sustained. The fish culture industry is also planning to investigate resources. The results of investigations are used to estimate the catch size, times fish are caught, and future stocks. We have developed a method for extracting scallop areas from gravel seabed images to assess fish resources and also developed an automatic system that measures their quantities, sizes, and states. Japanese scallop farms for fisheries are found on gravel and sand seabeds. The seabed images are used for fishery investigations, which are absolutely necessary to visually estimate, and help us avoid using the acoustic survey. However, there is no automatic technology to measure the quantities, sizes, and states of resources, and so the current investigation technique is the manual measurement by experts. There are varied problems in automating technique. The photography environments have a high degree of noise, including large differences in lighting. Gravel, sand, clay, and debris are also included in the images. In the gravel field, we can see scallop features, such as colors, striped patterns, and fan-like shapes. This paper describes the features of our image extracting method, presents the results, and evaluates its effectiveness.

  16. Turbulence measurements over immobile gravel with additions of sand from supply limited to capacity transport conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of the turbulence that drives sand transport over and through immobile gravels is relevant to efforts to model sediment movement downstream of dams, where fine sediments are eroded from coarse substrates and are not replaced due to the presence of the upstream dam. The relative elevatio...

  17. Runoff and Sediment Delivery from Bare and Graveled Forest Road Approaches to Stream Crossings

    NASA Astrophysics Data System (ADS)

    Brown, K. R.; McGuire, K. J.; Aust, W. M.

    2012-12-01

    Forested watersheds are typically associated with high quality water yield, yet forest roads and trails can adversely impact water quality draining forested watersheds. Increased stream sedimentation from forest road stream crossings often represents the most significant water quality threat associated with forestry operations. Quantification of sediment delivery rates is essential for the prescription of Best Management Practices (BMPs) that adequately address forest road stormwater runoff. Two different field experiments were implemented in the Virginia Piedmont to achieve the objectives of quantifying sediment delivery from forest roads where the road meets the stream (the road approach) and evaluating the sediment reduction efficacy of partially graveling road approaches. A forest operational experiment that included sediment traps and differential leveling was used to measure sediment delivery from five bare and four fully graveled road approaches for one year (August 2011 through July 2012). Rainfall simulation experiments were performed on six additional approaches to measure stormwater runoff volume, infiltration, and sediment delivery for 10 to 50-minute rain events with rainfall recurrence intervals of < 1 to 5-year return periods. Rainfall simulations were performed on newly-reopened bare approaches, with subsequent simulations on partially graveled approaches. The sediment trap study provides annual sediment delivery rates for bare and fully graveled road approaches. The rainfall simulation experiments characterize sediment delivery during storm events and provide an evaluation of different levels of Best Management Practice (BMP) implementation (i.e. ¼ to full gravel coverage) to minimize sediment inputs from road approaches. Sediment delivery from both experiments was related to rainfall amount, timing, and intensity, as well as road approach characteristics such as length, slope, and percentage of bare soil through stepwise multiple regression

  18. Transient and steady State Patterns in Gravel Bars Following Sediment Supply Increases

    NASA Astrophysics Data System (ADS)

    Podolak, C.; Wilcock, P.

    2011-12-01

    Bedforms in a gravel-bed river respond to a combination of water discharge, sediment supply, and valley-scale geometry. The bed configuration can also vary between transient and steady-state conditions. Field and flume observations of gravel bedform responses to changes in sediment supply have focused primarily on decreased sediment supply, and those that have dealt with increased sediment supply have found cases of both increasing relief and decreasing relief. We present gravel bedform configurations under conditions of increased sediment supply in both field and laboratory conditions. The field study tracked the response of the Sandy River, Oregon after an increase in sediment flux due to the 2007 Marmot Dam removal in which nearly 750,000 m3 of impounded sediment which was made available for transport and resulted in a several-fold increase in annual sediment flux. The flume experiments introduced perturbation in a planar gravel bed (gravel D50 = 10mm, 15% sand) prompting alternate bar formation. Sediment was then manually added to the recirculating flume (in essence operating it as a feed flume) increasing flux rates by 50%. Upon reaching a steady state, the upstream flux was then augmented again to double the steady state rate. In response to the increased sediment supply the bed topography steepened to transport the imposed sediment flux. In both flume and field, the final bed response to increased sediment supply was deposition of a sediment wedge, steeping the channel slope with little change in bar morphology. Although the location and morphology of the bedforms were similar as the bed configuration stabilized, the transient response showed different patterns of deposition across the stream. A pattern of decreasing relief both from bar tops eroding and pools filling was observed as well as the migration of smaller wavelength high-celerity gravel bars as the bed decreased in relief. To explore the transient response we modeled both cases with a 2-D depth

  19. Ecological significance of riverine gravel bars in regulated river reaches below dams

    NASA Astrophysics Data System (ADS)

    Ock, G.; Takemon, Y.; Sumi, T.; Kondolf, G. M.

    2012-12-01

    A gravel bar has been recognized as ecologically significant in that they provide simplified habitat with topographical, hydrological and thermo-chemical diversity, while enhancing material exchanges as interfaces laterally between aquatic and terrestrial habitats, and vertically between surface and subsurface waters. During past several decades, regulated rivers below dams have been loss of a number of the geomorphological features due to sediment starvation by upstream dams, accompanied by a subsequent degradation of their ecological functions. Despite a growing concern for gravel bar management recognizing its importance in recovering riverine ecosystem services, the ecological roles of gravel bars have not been assessed enough from the empirical perspectives of habitat diversity and organic matter interactions. In this study, we investigate the 'natural filtering effects' for reducing lentic plankton and contaminants associated with self-purification, and 'physicochemical habitat complexity' of gravel bars, focusing on reach-scaled gravel bars in rivers located in three different countries; First is the Uji River in central Japan, where there has been a loss of gravel bars in the downstream reaches since an upstream dam was constructed in 1965; second is the Tagliamento River in northeast Italy, which shows morphologically intact braided bar channels by natural flooding events and sediment supply; third is the Trinity River in the United States (located in northern California), the site of ongoing restoration efforts for creating new gravel bars through gravel augmentation and channel rehabilitation activities. We traced the downstream changes in particulate organic matter (POM) trophic sources (composed of allochthonous terrestrial inputs, autochthonous instream production and lentic plankton from dam outflows) in order to evaluate the roles of the geomorphological features in tailwater ecosystem food-resources shifting. We calculated suspended POM

  20. Estimated sand and gravel resources of the South Merrimack, Hillsborough County, New Hampshire, 7.5-minute quadrangle

    USGS Publications Warehouse

    Sutphin, D.M.; Drew, L.J.; Fowler, B.K.

    2006-01-01

    A computer methodology is presented that allows natural aggregate producers, local governmental, and nongovernmental planners to define specific locations that may have sand and gravel deposits meeting user-specified minimum size, thickness, and geographic and geologic criteria, in areas where the surficial geology has been mapped. As an example, the surficial geologic map of the South Merrimack quadrangle was digitized and several digital geographic information system databases were downloaded from the internet and used to estimate the sand and gravel resources in the quadrangle. More than 41 percent of the South Merrimack quadrangle has been mapped as having sand and (or) gravel deposited by glacial meltwaters. These glaciofluvial areas are estimated to contain a total of 10 million m3 of material mapped as gravel, 60 million m3 of material mapped as mixed sand and gravel, and another 50 million m3 of material mapped as sand with minor silt. The mean thickness of these areas is about 1.95 meters. Twenty tracts were selected, each having individual areas of more than about 14 acres4 (5.67 hectares) of stratified glacial-meltwater sand and gravel deposits, at least 10-feet (3.0 m) of material above the watertable, and not sterilized by the proximity of buildings, roads, streams and other bodies of water, or railroads. The 20 tracts are estimated to contain between about 4 and 10 million short tons (st) of gravel and 20 and 30 million st of sand. The five most gravel-rich tracts contain about 71 to 82 percent of the gravel resources in all 20 tracts and about 54-56 percent of the sand. Using this methodology, and the above criteria, a group of four tracts, divided by narrow areas sterilized by a small stream and secondary roads, may have the highest potential in the quadrangle for sand and gravel resources. ?? Springer Science+Business Media, LLC 2006.

  1. Modeling flows over gravel beds by a drag force method and a modified S-A turbulence closure

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Li, C. W.

    2012-09-01

    A double-averaged Navier-Stokes equations (DANS) model has been developed for depth-limited open channel flows over gravels. Three test cases are used to validate the model: an open-channel flow over a densely packed gravel bed with small-scale uniform roughness (D/d50 ˜ 13, d50 = median diameter of roughness elements, D = water depth), open-channel flows over large-scale sparsely distributed roughness elements (D/Δ ˜ 2.3-8.7, Δ = roughness height) and steep slope gravel-bed river flows with D/d50 ˜ 7-25. Various methods of treatment of the gravel-induced resistance effect have been investigated. The results show that the wall function approach (WFA) is successful in simulating flows over small gravels but is not appropriate for large gravels since the vertical profile of the longitudinal velocity does not follow the logarithmic-linear relationship. The drag force method (DFM) performs better but the non-logarithmic velocity distribution generated by sparsely distributed gravels cannot be simulated accurately. Noting that the turbulence length scale within the gravel layer is governed by the gravel size, the DANS model incorporating the DFM and a modified Spalart-Allmaras (S-A) turbulence closure is proposed. The turbulence length scale parameter in the S-A model is modified to address the change in the turbulence structure within the gravel layer. The computed velocity profiles agree well with the corresponding measured profiles in all cases. Particularly, the model reproduces the S-shape velocity profile for sparsely distributed large size roughness elements. The modeling methodology is robust and can be easily integrated into the existing numerical models.

  2. Effects of gravel mulch on emergence of galleta grass seedlings. Oral summary report

    SciTech Connect

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-03-01

    The Department of Energy Nevada Operations Office, Technology Development and Program Management Division, has identified the need to clean up several sites on the Nevada Test Site and Tonopah Test Range contaminated with surface plutonium. An important objective of the project identified as the Plutonium In Soils Integrated Demonstration is to develop technologies to stabilize and restore the disturbed sites after decontamination. Revegetation of these contaminated sites will be difficult due to their location in the arid Mojave and Great Basin Deserts. The major factors which will affect successful plant establishment and growth at these sites are limited and sporadic precipitation, limited soil water, extreme air and soil temperatures, limited topsoil, and herbivory . Research has shown that providing microsites for seed via mulching can aid in plant emergence and establishment. Since many of the soils at the sites slated for plutonium decontamination have a large percentage of gravel in the upper 10 cm of soil, the use of gravel as mulch could provide microsites for seed and stabilize soils during subsequent revegetation of the sites. In July 1992, EG&G/EM Environmental Sciences Department initiated a greenhouse study to examine the possible benefits of gravel mulch. The specific objectives of this greenhouse study were to: (1) determine the effects seedling emergence and soil water, and (2) determine effects of irrigation rates on seedling emergence for gravel mulches and other conventional seedbed preparation techniques. A secondary objective was to determine the depth of gravel mulch that was optimal for seedling emergence. Results from this greenhouse study will assist in formulating specific reclamation plans for sites chosen for cleanup.

  3. Gravel Bars Can Be Critical for Biodiversity Conservation: A Case Study on Scaly-Sided Merganser in South China

    PubMed Central

    Zeng, Qing; Shi, Linlu; Wen, Li; Chen, Junzhu; Duo, Hairui; Lei, Guangchun

    2015-01-01

    Gravel bars are characteristic components of river landscapes and are increasingly recognized as key sites for many waterbirds, though detailed studies on the ecological function of gravel bars for waterbirds are rare. In this study, we surveyed the endangered Scaly-sided Merganser Mergus squamatus along a 40 km river section of Yuan River, in Central China, for three consecutive winters. We derived the landscape metrics of river gravel bars from geo-rectified fine resolution (0.6 m) aerial image data. We then built habitat suitability models (Generalized Linear Models—GLMs) to study the effects of landscape metrics and human disturbance on Scaly-sided Merganser presence probability. We found that 1) the Scaly-sided Merganser tended to congregate at river segments with more gravel patches; 2) the Scaly-sided Merganser preferred areas with larger and more contiguous gravel patches; and 3) the number of houses along the river bank (a proxy for anthropogenic disturbance) had significantly negative impacts on the occurrence of the Scaly-sided Merganser. Our results suggest that gravel bars are vital to the Scaly-sided Merganser as shelters from disturbance, as well as sites for feeding and roosting. Therefore, maintaining the exposure of gravel bars in regulated rivers during the low water period in winter might be the key for the conservation of the endangered species. These findings have important implications for understanding behavioral evolution and distribution of the species and for delineating between habitats of different quality for conservation and management. PMID:25996671

  4. Paleocurrent and fabric analyses of the imbricated fluvial gravel deposits in Huangshui Valley, the northeastern Tibetan Plateau, China

    USGS Publications Warehouse

    Miao, X.; Lu, H.; Li, Z.; Cao, G.

    2008-01-01

    Gravel deposits on fluvial terraces contain a wealth of information about the paleofluvial system. In this study, flow direction and provenance were determined by systematic counts of more than 2000 clasts of imbricated gravel deposits in the Xining Region, northeastern Tibetan Plateau, China. These gravel deposits range in age from the modern Huangshui riverbed to Miocene-aged deposits overlain by eolian sediments. Our major objectives were not only to collect first-hand field data on the fluvial gravel sediments of the Xining Region, but also to the reconstruct the evolution of the fluvial system. These data may offer valuable information about uplift of the northeastern Tibetan Plateau during the late Cenozoic era. Reconstructed flow directions of the higher and lower gravel deposits imply that the river underwent a flow reversal of approximately 130-180??. In addition, the lithological compositions in the higher gravel deposits differ significantly from the lower terraces, suggesting that the source areas changed at the same time. Eolian stratigraphy overlying the gravel deposits and paleomagnetic age determination indicate that this change occurred sometime between 1.55??Ma and 1.2??Ma. We suggest that tectonic activity could explain the dramatic changes in flow direction and lithological composition during this time period. Therefore, this study provides a new scenario of fluvial response to tectonic uplift: a reversal of flow direction. In addition, field observation and statistical analyses reveal a strong relationship between rock type, size and roundness of clasts. ?? 2007 Elsevier B.V. All rights reserved.

  5. Gravel bars can be critical for biodiversity conservation: a case study on scaly-sided Merganser in South china.

    PubMed

    Zeng, Qing; Shi, Linlu; Wen, Li; Chen, Junzhu; Duo, Hairui; Lei, Guangchun

    2015-01-01

    Gravel bars are characteristic components of river landscapes and are increasingly recognized as key sites for many waterbirds, though detailed studies on the ecological function of gravel bars for waterbirds are rare. In this study, we surveyed the endangered Scaly-sided Merganser Mergus squamatus along a 40 km river section of Yuan River, in Central China, for three consecutive winters. We derived the landscape metrics of river gravel bars from geo-rectified fine resolution (0.6 m) aerial image data. We then built habitat suitability models (Generalized Linear Models-GLMs) to study the effects of landscape metrics and human disturbance on Scaly-sided Merganser presence probability. We found that 1) the Scaly-sided Merganser tended to congregate at river segments with more gravel patches; 2) the Scaly-sided Merganser preferred areas with larger and more contiguous gravel patches; and 3) the number of houses along the river bank (a proxy for anthropogenic disturbance) had significantly negative impacts on the occurrence of the Scaly-sided Merganser. Our results suggest that gravel bars are vital to the Scaly-sided Merganser as shelters from disturbance, as well as sites for feeding and roosting. Therefore, maintaining the exposure of gravel bars in regulated rivers during the low water period in winter might be the key for the conservation of the endangered species. These findings have important implications for understanding behavioral evolution and distribution of the species and for delineating between habitats of different quality for conservation and management.

  6. Gravel bars can be critical for biodiversity conservation: a case study on scaly-sided Merganser in South china.

    PubMed

    Zeng, Qing; Shi, Linlu; Wen, Li; Chen, Junzhu; Duo, Hairui; Lei, Guangchun

    2015-01-01

    Gravel bars are characteristic components of river landscapes and are increasingly recognized as key sites for many waterbirds, though detailed studies on the ecological function of gravel bars for waterbirds are rare. In this study, we surveyed the endangered Scaly-sided Merganser Mergus squamatus along a 40 km river section of Yuan River, in Central China, for three consecutive winters. We derived the landscape metrics of river gravel bars from geo-rectified fine resolution (0.6 m) aerial image data. We then built habitat suitability models (Generalized Linear Models-GLMs) to study the effects of landscape metrics and human disturbance on Scaly-sided Merganser presence probability. We found that 1) the Scaly-sided Merganser tended to congregate at river segments with more gravel patches; 2) the Scaly-sided Merganser preferred areas with larger and more contiguous gravel patches; and 3) the number of houses along the river bank (a proxy for anthropogenic disturbance) had significantly negative impacts on the occurrence of the Scaly-sided Merganser. Our results suggest that gravel bars are vital to the Scaly-sided Merganser as shelters from disturbance, as well as sites for feeding and roosting. Therefore, maintaining the exposure of gravel bars in regulated rivers during the low water period in winter might be the key for the conservation of the endangered species. These findings have important implications for understanding behavioral evolution and distribution of the species and for delineating between habitats of different quality for conservation and management. PMID:25996671

  7. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China.

    PubMed

    Li, Tianyang; He, Binghui; Chen, Zhanpeng; Zhang, Yi; Liang, Chuan; Wang, Renxin

    2016-06-01

    Amounts of landslide deposits were triggered by the Wenchuan earthquake with magnitude 8.0 on May 12, 2008. The landslide deposits were composed of soil and rock fragments, which play important roles in hydrological and erosion processes in the steep slope of landslide deposits. The mixtures of soil and gravels are common in the top layers of landslide deposits, and its processes are obviously different with the soil without gravels. Based on the data of field investigation, a series of simulated scouring flow experiments with four proportion of gravel (0, 25, 33.3, and 50 %) and three scouring flow rates (4, 8, 12 L/min) under two steep slopes (67.5, 72.7 %) were conducted sequentially to know the effects of proportion of gravel on infiltration capacity, runoff generation, and sediment production in the steep slope of landslide deposit. Results indicated that gravel had promoted or reduced effects on infiltration capacity which could affect further the cumulative runoff volume and cumulative sediment mass increase or decrease. The cumulative infiltration volume in 25 % proportion of gravel was less than those in 0, 33.3, and 50 % proportion of gravel. The cumulative runoff volume was in an order of 25 > 0 > 33.3 > 50 % while cumulative sediment mass ranked as 25 > 33.3 > 0 > 50 % with different proportions of gravel. A significant power relationship was found between scouring time and cumulative runoff volume as well as cumulative sediment mass. The relationship between average soil and water loss rate and proportion of gravel was able to express by quadratic function, with a high degree of reliability. The results have important implications for soil and water conservation and modeling in landslide deposit but also provide useful information for the similar conditions.

  8. Effects of gravel on infiltration, runoff, and sediment yield in landslide deposit slope in Wenchuan earthquake area, China.

    PubMed

    Li, Tianyang; He, Binghui; Chen, Zhanpeng; Zhang, Yi; Liang, Chuan; Wang, Renxin

    2016-06-01

    Amounts of landslide deposits were triggered by the Wenchuan earthquake with magnitude 8.0 on May 12, 2008. The landslide deposits were composed of soil and rock fragments, which play important roles in hydrological and erosion processes in the steep slope of landslide deposits. The mixtures of soil and gravels are common in the top layers of landslide deposits, and its processes are obviously different with the soil without gravels. Based on the data of field investigation, a series of simulated scouring flow experiments with four proportion of gravel (0, 25, 33.3, and 50 %) and three scouring flow rates (4, 8, 12 L/min) under two steep slopes (67.5, 72.7 %) were conducted sequentially to know the effects of proportion of gravel on infiltration capacity, runoff generation, and sediment production in the steep slope of landslide deposit. Results indicated that gravel had promoted or reduced effects on infiltration capacity which could affect further the cumulative runoff volume and cumulative sediment mass increase or decrease. The cumulative infiltration volume in 25 % proportion of gravel was less than those in 0, 33.3, and 50 % proportion of gravel. The cumulative runoff volume was in an order of 25 > 0 > 33.3 > 50 % while cumulative sediment mass ranked as 25 > 33.3 > 0 > 50 % with different proportions of gravel. A significant power relationship was found between scouring time and cumulative runoff volume as well as cumulative sediment mass. The relationship between average soil and water loss rate and proportion of gravel was able to express by quadratic function, with a high degree of reliability. The results have important implications for soil and water conservation and modeling in landslide deposit but also provide useful information for the similar conditions. PMID:26965277

  9. [Runoff and sediment yielding processes on red soil engineering accumulation containing gravels by a simulated rainfall experiment].

    PubMed

    Shi, Qian-hua; Wang, Wen-long; Guo, Ming-ming; Bai, Yun; Deng, Li-qiang; Li, Jian-ming; Li, Yao-lin

    2015-09-01

    Engineering accumulation formed in production and construction projects is characterized by unique structure and complex material composition. Characteristics of soil erosion on the engineering accumulation significantly differ from those on farmland. An artificially simulated rainfall experiment was carried out to investigate the effects of rainfall intensity on the processes of runoff and sediment yielding on the engineering accumulation of different gravel contents (0%, 10%, 20% and 30%) in red soil regions. Results showed that the initial time of runoff generation decreased with increases in rainfall intensity and gravel content, the decreased amplitudes being about 48.5%-77.9% and 4.2%-34.2%, respectively. The initial time was found to be a power function of rainfall intensity. Both runoff velocity and runoff rate manifested a trend of first rising and then in a steady state with runoff duration. Rainfall intensity was found to be the main factor influencing runoff velocity and runoff rate, whereas the influence of gravel content was not significant. About 10% of gravel content was determined to be a critical value in the influence of gravel content on runoff volume. For the underlying surface of 10% gravel content, the runoff volume was least at rainfall intensity of 1.0 mm · min(-1) and maximum at rainfall intensity of greater than 1.0 mm · min(-1). The runoff volume in- creased 10%-60% with increase in rainfall intensity. Sediment concentration showed a sharp decline in first 6 min and then in a stable state in rest of time. Influence of rainfall intensity on sediment concentration decreased as gravel content increased. Gravels could reduce sediment yield significantly at rainfall intensity of greater than 1.0 mm · min(-1). Sediment yield was found to be a linear function of rainfall intensity and gravel content.

  10. Unfolding the fast neutron spectra of a BC501A liquid scintillation detector using GRAVEL method

    NASA Astrophysics Data System (ADS)

    Chen, YongHao; Chen, XiMeng; Lei, JiaRong; An, Li; Zhang, XiaoDong; Shao, JianXiong; Zheng, Pu; Wang, XinHua

    2014-10-01

    Accurate knowledge of the neutron energy spectra is useful in basic research and applications. The overall procedure of measuring and unfolding the fast neutron energy spectra with BC501A liquid scintillation detector is described. The recoil proton spectrum of 241Am-Be neutrons was obtained experimentally. With the NRESP7 code, the response matrix of detector was simulated. Combining the recoil proton spectrum and response matrix, the unfolding of neutron spectra was performed by GRAVEL iterative algorithm. A MatLab program based on the GRAVEL method was developed. The continuous neutron spectrum of 241Am-Be source and monoenergetic neutron spectrum of D-T source have been unfolded successfully and are in good agreement with their standard reference spectra. The unfolded 241Am-Be spectrum are more accurate than the spectra unfolded by artificial neural networks in recent years.

  11. Penetration and survival of riparian tree roots in compacted coarse gravel mixtures

    NASA Astrophysics Data System (ADS)

    Muellner, Michael; Weissteiner, Clemens; Konzel, Christoph; Rauch, Hans Peter

    2016-04-01

    Root growth and penetration of riparian trees along paved cycling paths and service roads of rivers causes often traffic safety problems. Damages occur mostly on street surfaces with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. Analyses of the dominating process mechanisms demonstrated that mainly the naturally growing pioneer vegetation along rivers is responsible for the asphalt damages caused by their constant and rapid growth. The investigations of the root growth characteristics showed that tree roots mostly penetrate the road structure between the gravel sublayer and the asphalt because of the high compaction of the layer itself. In a second step of the research project the influence of different gravel size mixtures on the root penetration and survival are analysed. Coarse gravel size mixtures with the lowest possible fine granular fraction are suposed to inhibit root growth due to the mechanical impedance and air pruning of roots. Furthermore coarse gravel size mixtures could influence the presence of condensate formed at the underside of the asphalt layer. Therefore seven different compositions of matrix stone gravel size mixtures (0/32, 4/32, 8/32, 16/32, 0/64, 8/64 hydraulic bound mixture and 16/64) as sublayer material were tested in a small scale experimental set-up. Wooden boxes with a dimension of 1x1.5x0.5 m and 0.5x0.5x0.5 m were used as frames for the different matrix stone mixtures. On one side the boxes were delimited to the surrounding soil with a steel mesh followed by a wire mesh and a geotextile. Boxes were located in an 80 cm deep hole on a 30 cm thick drainage layer. Willow and poplar cuttings were planted laterally to the root penetrable side of the boxes. Large boxes were filled and compacted with 6 different gravel size mixtures (all but 4/32) and

  12. Improving the behavior of body roads by the use of gravel-slag mixture

    NASA Astrophysics Data System (ADS)

    Hadinane, Hocine; Oucief, Hocine; Merzoud, Mouloud

    2016-07-01

    The accumulation of wastes industrial stemming of the iron and steel industry has influenced negatively the environment. The adopted policy had for mission to eliminate these undesirable wastes by recycling them by their utilization in adequate areas. The objective of this work is to study the mechanical behavior of a gravel-slag based on crystallized and granulated slag, activated by lime. One will be interested in the study of resistance to punching and the bearing ratio of this slag through Proctor tests, CBR and by compression, tensile tests, for use in the layers of pavement (Foundation and base layers). The obtained result on gravel-slag show considerable performances, compared with natural aggregates point of resistance and thickness of the layers. Its utilization in the road area has allowed therefore the recycling these industrial wastes, to decrease the pollution, to use a minimum noble product requiring important exploitation energy and an economy on layers of surface realized with costly materials (bituminous concrete).

  13. Troll oil pipeline: Assessment of slope and gravel sleeper stability in steep fjord areas

    SciTech Connect

    Eide, A.; Gudmestad, O.T.; Nadim, F.

    1996-12-01

    This paper describes the slope stability evaluation in the steep areas of the Fensfjord. The main focus in the study has been to establish appropriate undrained shear strength for static and dynamic stability analyses, make a reasonable prediction of the earthquake induced permanent deformation and evaluate the post-earthquake static stability. The special laboratory testing and analysis conducted showed that the only consequence of earthquake loading is limited permanent deformations. Analysis of gravel supports on soft clay showed that three supports needed counter fills in order to fulfill the design requirements. At the tunnel entrance point of the pipeline at Mongstad, the soft clay at the seabed had to be excavated in order to attain satisfactory stability for the gravel support.

  14. Vegetation control of gravel-bed channel morphology and adjustment: the case of Carex nudata

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2010-12-01

    In the high energy, gravel- to cobble-bed Middle Fork John Day River of eastern Oregon, C. nudata (torrent sedge) germinates on gravel bars and forms tussocks 0.5 m across by 0.3m high or larger, with dense, tough root masses that are very resistant to erosion. Tussocks may be uprooted during floods (probably >Q-5yr), travel as boulder-sized masses, and may re-root where deposited. Individual tussocks, however, commonly persist for more than a decade in one position. When established, these tussocks behave more like channel obstructions than typical stream side sedges. Lines of C. nudata tussocks form on the stream side margin of former bare gravel bars, creating a secondary flow path and an eroding bank on their landward side. C. nudata also forms small mid-channel islets with bed scour at their base and occasional lee depositional zones. Chains of mid-channel islets can anchor pool boundaries. Observations in the field and from aerial photo time sequences suggest the following evolutionary model for channels with C. nudata. C. nudata establishes on a bare gravel bar, and can stabilize the bar surface or create erosional forms as described above. C. nudata fosters weaker sedges and other species that help extend stabilization of the bar surface. Mid-channel islets form through selective uprooting of tussocks. Observations of a reach where cattle grazing was eliminated in 2000 show that C. nudata has expanded. It has stabilized some formerly active bar surfaces but is now causing bank erosion and channel widening in some locations. In this case, C. nudata mediated the potentially stabilizing effects of management change by increasing channel instability in some respects.

  15. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    SciTech Connect

    Waugh, W.J.; Link, S.O. )

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  16. Experimental evidence for the effect of hydrographs on sediment pulse dynamics in gravel-bedded rivers

    NASA Astrophysics Data System (ADS)

    Humphries, Robert; Venditti, Jeremy G.; Sklar, Leonard S.; Wooster, John K.

    2012-01-01

    Gravel augmentation is a river restoration technique applied to channels downstream of dams where size-selective transport and lack of gravel resupply have created armored, relatively immobile channel beds. Augmentation sediment pulses rely on flow releases to move the material downstream and create conditions conducive to salmon spawning and rearing. Yet how sediment pulses respond to flow releases is often unknown. Here we explore how three types of dam releases (constant flow, small hydrograph, and large hydrograph) impact sediment transport and pulse behavior (translation and dispersion) in a channel with forced bar-pool morphology. We use the term sediment "pulse" generically to refer to the sediment introduced to the channel, the zone of pronounced bed material transport that it causes, and the sediment wave that may form in the channel from the additional sediment supply, which can include input sediment and bed material. In our experiments, we held the volume of water released constant, which is equivalent to holding the cost of purchasing a water volume constant in a stream restoration project. The sediment pulses had the same grain size as the bed material in the channel. We found that a constant flow 60% greater than the discharge required to initiate sediment motion caused a mixture of translation and dispersion of the sediment pulse. A broad crested hydrograph with a peak flow 2.5 times the discharge required for entrainment caused pulse dispersion, while a more peaked hydrograph >3 times the entrainment threshold discharge caused pulse dispersion with some translation. The hydrographs produced a well-defined clockwise hysteresis effecting sediment transport, as is often observed for fine-sediment transport and transport-limited gravel bed rivers. The results imply a rational basis for design of water releases associated with gravel augmentation that is directly linked to the desired sediment behavior.

  17. Topographic disturbance of subaqueous gravel substrates by signal crayfish ( Pacifastacus leniusculus)

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew F.; Rice, Stephen P.; Reid, Ian

    2010-11-01

    The impact of signal crayfish ( Pacifastacus leniusculus) on the topography and fabric of six narrowly graded, gravel substrates was investigated using repeat laser scanning of sediment surfaces in still-water aquaria. Digital Elevation Models (DEMs) of the gravel surfaces were obtained before and after exposure to crayfish for five predetermined periods. The impact on the substrate was quantified by establishing topographic and volumetric changes using DEMs of difference (DoD). The presence of an individual, medium sized crayfish for 24 h resulted in an average volume change in surface topography of 450 cm 3 over an area of 2400 cm 2, giving a sediment displacement of 1.7 kg m -2 d - 1 . The majority (78%) of this volume change was associated with small scale (≤ 1 median grain diameter) movements of surface grains. This fabric adjustment altered grain orientations and friction angles. Crayfish also constructed pits and mounds that increased significantly the roughness of the gravel substrates and altered the protrusion of individual grains. Crayfish were able to move material up to 38 mm in diameter that had a submerged weight six times that of the individuals used in this study. By modifying the arrangement of grains on the surface of fluvial substrates, signal crayfish may counteract the low flow physical consolidation of gravel beds and reduce the entrainment stresses required to move river bed material. The results of this study suggest that signal crayfish, an internationally widespread invasive species, may have substantial impacts on the physical environment of streams and rivers, as well as on local benthic ecological communities.

  18. 133. ARAII SL1 burial ground. Shows gravel path from ARAII ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. ARA-II SL-1 burial ground. Shows gravel path from ARA-II compound to the burial ground, detail of security fence and entry gate, and sign "Danger radiation hazard." F. C. Torkelson Company 842-area-101-1. Date: October 1961. Ineel index code no. 059-0101-00-851-150723. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Reconstructing late Cenozoic stream gradients from high-level chert gravels in central Eastern Kansas

    USGS Publications Warehouse

    Harbaugh, J.W.; Merriam, D.F.; Howard, H.H.

    2007-01-01

    Interpreting the evolution of Kansas' landscape east of the Flint Hills provides major challenges. In the Neogene (late Tertiary) and perhaps part of the Pleistocene, streams transported a variety of sedimentary materials, including chert gravels derived from the Flint Hills. Gentle intermittent uplift stimulated the system system to cut down, locally removing and reworking the gravels to create stream-terrace deposits that consist mostly of chert pebbles, which now lie well above the floodplains of modern streams. By correlating the elevations of these gravels, the gradients of the trunk streams that deposited them can be reconstructed. Interestingly, these ancient streams flowed southeast at a little more than a foot per mile (0.2 m/km), roughly the same as the gradient of the trunk streams in the region today. The evolving landscape in eastern Kansas also has been strongly influenced by an extensive network of fractures that is widespread in the midcontinent region and may be worldwide in extent. In northeastern Kansas, glaciation during the Pleistocene disrupted the southeasterly drainage and established the present location of the Kansas River. South of the Kansas River and its immediate tributaries, however, the general southeasterly drainage has been preserved. We have made use of the wealth of topographic-elevation data now available in digital form known as DEMs or digital elevation models. Coupled with GIS procedures, the DEMs helped link the mapped distribution of chert gravels with hypothetical fitted surfaces that represent ancient stream gradients. Furthermore, DEM data placed in shaded-relief map form emphasize the influence of fractures in evolution of the drainage system.

  20. Gravel and sand resources of the New England-New York region

    USGS Publications Warehouse

    Currier, Louis W.

    1955-01-01

    Deposits of sand and gravel are widespread in the New England-New York regions and constitute one of its principal mineral resources. Most of the pits are operated intermittently to supply local needs. Because of the great number and variety of known deposits, and because they have been worked at countless points it is impracticable to describe in detail either the deposits or the individual pits. On the other hand, a broad description of the geologic modes of occurrence with relation to the regional geology will serve adequately to indicate the importance of the resource in the regional economy and development. Except for some special sands, such as "glass sand", certain molding and foundry sands, et. al., for which restrictive textural, compositional and physical properties are required, sand and gravel are used chiefly for local construction and are not commonly transported for long distances. Sand and gravel deposits of the region fall into four principal genetic categories - e.g., glacial, alluvial, marine, and aeolian. Of these, deposits of glacial origin are by far the most widespread and important.

  1. The grain size gap and abrupt gravel-sand transitions in rivers due to suspension fallout

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Venditti, Jeremy G.

    2016-04-01

    Median grain sizes on riverbeds range from boulders in uplands to silt in lowlands; however, rivers with ~1-5 mm diameter bed sediment are rare. This grain size gap also marks an abrupt transition between gravel- and sand-bedded reaches that is unlike any other part of the fluvial network. Abrupt gravel-sand transitions have been attributed to rapid breakdown or rapid transport of fine gravel, or a bimodal sediment supply, but supporting evidence is lacking. Here we demonstrate that rivers dramatically lose the ability to transport sand as wash load where bed shear velocity drops below ~0.1 m/s, forcing an abrupt transition in bed-material grain size. Using thresholds for wash load and initial motion, we show that the gap emerges only for median bed-material grain sizes of ~1-5 mm due to Reynolds number dependencies in suspension transport. The grain size gap, therefore, is sensitive to material properties and gravity, with coarser gaps predicted on Mars and Titan.

  2. Suppressing immature house and stable flies in outdoor calf hutches with sand, gravel, and sawdust bedding.

    PubMed

    Schmidtmann, E T

    1991-11-01

    Sand, gravel, sawdust, and pine shavings were used as bedding in outdoor calf hutches and compared with straw relative to the density of immature (maggot) house flies, Musca domestica, and stable flies, Stomoxys calcitrans. In 6-wk field trials, average densities of house and stable fly maggots in concrete mix sand ranged from only .3 to 1.6 and 0 to .1 maggots/L, respectively; pea size gravel bedding also strongly suppressed densities from less than .1 to .3 and less than .1 to .1 maggots/L, respectively. These densities represent reductions of 76 to greater than 99% relative to straw bedding, but both sand and gravel compacted and became soiled with calf feces, which resulted in unacceptable bedding sanitation and foul odors. Densities of house and stable fly maggots in pine shavings did not differ from those in straw bedding. Nevertheless, in sawdust bedding, maggot density was limited to averages of 1.4 to 8.3 house and 9.8 to 11.8 stable fly maggots/L; this represented reductions of 45 to 91% relative to straw. In a follow-up trial, house and stable fly maggot densities in sawdust averaged 11.3 and 43.9 maggots/L, respectively, reductions of 77 and 46%. These findings suggest that bedding calf hutches with sawdust during warm weather can be useful as an ecologically sound approach to controlling muscoid fly populations on dairy farms.

  3. Deschutes River Spawning Gravel Study, Volume II, Appendices I-XIV, Final Report.

    SciTech Connect

    Huntington, Charles W.

    1985-09-01

    Spawning habitat in the Deschutes River was inventoried, gravel permeability and composition were sampled at selected gravel bars, historical flow records for the Deschutes were analyzed, salmon and trout utilization of spawning habitat was examined, and potential methods of enhancing spawning habitat in the river were explored. Some changes in river conditions since the mid-1960's were identified, including a reduction in spawning habitat immediately downstream from the hydroelectric complex. The 1964 flood was identified as a factor which profoundly affected spawning habitat in the river, and which greatly complicated efforts to identify recent changes which could be attributed to the hydrocomplex. A baseline on present gravel quality at both chinook and steelhead spawning areas in the river was established using a freeze-core methodology. Recommendations are made for enhancing spawning habitat in the Deschutes River, if it is independently determined that spawning habitat is presently limiting populations of summer steelhead or fall chinook in the river. Volume II contains appendices to the study.

  4. Analysis of convergent flow tracer tests in a heterogeneous sandy box with connected gravel channels

    NASA Astrophysics Data System (ADS)

    Molinari, Antonio; Pedretti, D.; Fallico, C.

    2015-07-01

    We analyzed the behavior of convergent flow tracer tests performed in a 3-D heterogeneous sandbox in presence of connected gravel channels under laboratory-controlled conditions. We focused on the evaluation of connectivity metrics based on characteristic times calculated from experimental breakthrough curves (BTCs), and the selection of upscaling model parameters related to connectivity. A conservative compound was injected from several piezometers in the box, and depth-integrated BTCs were measured at the central pumping well. Results show that transport was largely affected by the presence of gravel channels, which generate anomalous transport behavior such as BTC tailing and double peaks. Connectivity indicators based on BTC peak times provided better information about the presence of connected gravel channels in the box. One of these indicators, β, was defined as the relative temporal separation of the BTCs peaks from the BTCs centers of mass. The mathematical equivalence between β and the capacity coefficient adopted in mass transfer-based formulations suggests how connectivity metrics could be directly embedded in mass transfer formulations. This finding is in line with previous theoretical studies and was corroborated by reproducing a few representative experimental BTCs using a 1-D semianalytical bimodal solution embedding a mass transfer term. Model results show a good agreement with experimental BTCs when the capacity coefficient was constrained by measured β. Models that do not embed adequate connectivity metrics or do not adequately reproduce connectivity showed poor matching with observed BTCs.

  5. Evaluation of long-term bedload virtual velocity in gravel-bed rivers (Ardenne, Belgium)

    NASA Astrophysics Data System (ADS)

    Houbrechts, Geoffrey; Levecq, Yannick; Peeters, Alexandre; Hallot, Eric; Van Campenhout, Jean; Denis, Anne-Cécile; Petit, François

    2015-12-01

    In many gravel-bed rivers, bed material transfer has been interrupted or perturbed by anthropogenic activities. Currently, restoration projects are being conducted in many countries in order to re-establish bedload continuity. However, until now, few studies have provided indications of the velocity of bed material over the long-term (at least decade to century time-scale). In the context of river restoration projects (e.g. weir removal, addition of spawning gravel), these data are nevertheless crucial to predict the downstream propagation of the geomorphological and biological benefits (e.g. supply-transport equilibrium, morphological and substratum diversity). In our study, PIT-tag tracers were used in eight medium-sized gravel-bed rivers (Ardenne Region, Belgium) to propose a flow competence relationship based on specific stream power, on the one hand, and to determine the long-term virtual velocity of the bed material corresponding to the median diameter (D50) of the surface layer of riffles, on the other hand. After each flow event that exceeded the threshold for sediment entrainment, tagged particles were sought and located, even when they were buried in the subsurface layer. Afterwards, all of the data were used to estimate the virtual velocity of the bed material over the long-term using three approaches. Finally, the results were compared with long-term transport estimations based on iron slag dispersed by the rivers since the end of the middle ages.

  6. Laboratory evidence for short and long-term damage to pink salmon incubating in oiled gravel

    SciTech Connect

    Heintz, R.; Rice, S.; Wiedmer, M.

    1995-12-31

    Pink salmon, incubating in gravel contaminated with crude oil, demonstrated immediate and delayed responses in the laboratory at doses consistent with the concentrations observed in oiled streams in Prince William Sound. The authors incubated pink salmon embryos in a simulated intertidal environment with gravel contaminated by oil from the Exxon Valdez. During the incubation and emergence periods the authors quantified dose-response curves for characters affected directly by the oil. After emergence, fish were coded wire tagged and released, or cultured in netpens. Delayed responses have been observed among the cultured fish, and further observations will be made when coded wire tagged fish return in September 1995. The experiments have demonstrated that eggs need not contact oiled gravel to experience increased mortality, and doses as low as 17 ppb tPAH in water can have delayed effects on growth. A comparison of sediment tPAH concentrations from streams in Prince William Sound with these laboratory data suggests that many 1989 brood pink salmon were exposed to deleterious quantities of oil.

  7. Utilization of LANDSAT multispectral data in geobotanical investigations: The location of ironstone gravel in the Sam Houston National Forest

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.

    1982-01-01

    Practical techniques were developed and evaluated for deriving geobotanical information from LANDSAT MSS data acquired for a test site in the Sam Houston National Forest near Cleveland, Texas where gravel deposits exist in sufficient quantity that economical extraction would be feasible. A correlation was shown between a single spectral class and the presence of ironstone gravel. Field data indicates that this class relates to upland pine which was probably under stress as the result of a prolonged drought which was in progress at the time of data acquisition. It is suggested that the subsurface gravel produces a soil which has less field capacity for water retention, causing early appearance of water stress in the surface vegetation over these soils. In all areas within the QMC formation where this class occurred, gravel was located when borings were made.

  8. Wall-Friction Support of Vertical Loads in Submerged Sand and Gravel Columns

    SciTech Connect

    Walton, O. R.; Vollmer, H. J.; Hepa, V. S.

    2015-08-25

    Laboratory studies of the ‘floor-loads’ under submerged vertical columns of sand and/or gravel indicate that such loads can be approximated by a buoyancy-corrected Janssen-silo-theory-like relationship. Similar to conditions in storage silos filled with dry granular solids, most of the weight of the sand or gravel is supported by wall friction forces. Laboratory measurements of the loads on the floor at the base of the water-filled columns (up to 25-diameters tall) indicate that the extra floor-load from the addition of the granular solid never exceeded the load that would exist under an unsupported (wide) bed of submerged sand or gravel that has a total depth corresponding to only two column-diameters. The measured floorloads reached an asymptotic maximum value when the depth of granular material in the columns was only three or four pipe-diameters, and never increased further as the columns were filled to the top (e.g. up to heights of 10 to 25 diameters). The floor-loads were stable and remained the same for days after filling. Aggressive tapping (e.g. hitting the containing pipe on the outside, manually with a wrench up and down the height and around the circumference) could increase (and occasionally decrease) the floor load substantially, but there was no sudden collapse or slumping to a state without significant wall friction effects. Considerable effort was required, repeatedly tapping over almost the entire column wall periphery, in order to produce floor-loads that corresponded to the total buoyancy-corrected weight of granular material added to the columns. Projecting the observed laboratory behavior to field conditions would imply that a stable floor-load condition, with only a slightly higher total floor pressure than the preexisting hydrostatic-head, would exist after a water-filled bore-hole is filled with sand or gravel. Significant seismic vibration (either a large nearby event or many micro-seismic events over an extended period) would likely

  9. Measuring Gravel Transport in an Active Natural System: An Analytical Framework

    NASA Astrophysics Data System (ADS)

    Sanfilippo, J. D.; Lancaster, S. T.

    2014-12-01

    In order to measure sediment flux in Porter Creek, a small tributary to the North Fork of the Siuslaw River near Florence Oregon, we have deployed ~600 pieces of tracer gravel embedded with passive integrated transponder (PIT) tags, 8 fixed antennas, and 9 logging pressure transducers spaced along 130 m of channel comprising 3 wood jams and substrates of sand, gravel, cobble, and bedrock. Tracer deployment is uniform along the instrumented reach, analogous to constant-source solute or dye injection, so that sediment flux [L3/T] for the ith grain size class is Qi = niVpiFi/fTi, where ni is count rate, [T-1], Vpi is particle volume, and Fi and fTi are fractional coverage of the ith size class of grains and tracers, respectively. Tracer concentrations, fTi, must be large enough for accurate estimation of ni = 1/TAi where TAi is the mean inter-arrival time of tracers at an antenna, during a period of nearly constant discharge. A square wave or constant sediment injection is undertaken by placing a concentration of tracers dispersed upstream of the study reach, such that it will add to the concentration within the study reach as gravels migrate downstream, replacing the gravels within the antenna network. Preliminary results show dispersion values ranging from ~7 m2/month for 8-16mm size fraction, to ~0.2 m2/month for 32-64mm size fraction, with travel distances of 60 meters for the 8-16mm, 16 meters for the 16-32mm, 8 meters for the 32-64mm, and 4 meters for the >64mm for 1 water year. Since there is a high level of variability in dispersion within the antennae array given the heterogeneity of substrates and wood placed within the system, it is likely that some tracers will need to be added within the regions between antennae after high water events. The tracer concentration within the regions occupied between antennae must remain at such a level as to provide viable statistical relationships between tracer and non-tracer gravels, and percent mobile versus percent

  10. THE CONFIGURATION AND THE FORMING PROCESS OF RIVER CHANNEL INFLUENCED BY RIVER CROSSING STRUCTURES AND GRAVEL MINING

    NASA Astrophysics Data System (ADS)

    Harada, Daisuke; Chibana, Takeyoshi; Yamashita, Kimiko

    In many Japanese gravel-bed rivers, during these 30 years, river morphology has changed from single channel to compound channel, and the black locust has been rapidly spreading its habitat in the flood channel. It is said that this change has been caused by past gravel mining and the construction of river-crossing structures. This study aims to reveal how these human impacts affected and altered the river configuration. Previous study pointed out that theriver slope is determined by the size of sediment and the flow condition. In the Tama River, however, it was pointed out that the loss of cobbles and boulders due to gravel mining made the riverbed slope in low flow channel milder than before and formed compound channel. The low flow channel width was narrowest just downstream of a river-crossing structure but increased in the flow direction and was largest upstream of the next structure. This situation was also seen in other gravel-bed rivers, and its ecosystem was strongly related to the height of the weir and the length between a structure and a structure. In the upstream area of the alluvial fan of the Tama river, in 1968, when gravel mining had finished, bedrock was exposed in a lot of places due to gravel mining. This bedrock was firstly eroded just downstream of each structure, and the erosion progressed in the flow direction. This erosion formed low flow channel, and in its flood channel, the suitable condition for the black locust, which was revealed in this paper, was formed during several heavy floods and caused sudden expansion of blacklocust. On the other hand, from the upstream of the next structure, deposited sediment has formed gravel-bed river toward upstream direction. As a result, boundary of eroded channel and gravel-bed channel was formed between the structures.

  11. Adaptive radiation of gobies in the interstitial habitats of gravel beaches accompanied by body elongation and excessive vertebral segmentation

    PubMed Central

    Yamada, Tomohiko; Sugiyama, Tomoshige; Tamaki, Nana; Kawakita, Atsushi; Kato, Makoto

    2009-01-01

    Background The seacoasts of the Japanese Arc are fringed by many gravel beaches owing to active tectonic uplift and intense denudation caused by heavy rainfall. These gravel beaches are inhabited by gobies of the genus Luciogobius that burrow into the gravel sediment and live interstitially. Although their habitat and morphology (e. g., reduced fins, elongated, scale-less body, and highly segmented vertebral column) are highly unusual among fishes, little is known on how their morphological evolution has facilitated the colonization of interstitial habitats and promoted extensive diversification. We conducted thorough sampling of Luciogobius and related species throughout Japan, and performed molecular phylogenetic analysis to explore the patterns of morphological evolution associated with gravel beach colonization. Results An analysis of the mitochondrial cytochrome b gene suggested a remarkable diversity of previously unrecognized species. The species-level phylogeny based on six protein-coding nuclear genes clearly indicated that interstitial species cluster into two distinct clades, and that transitions from benthic or demersal habits to interstitial habits are strongly correlated with an increase in vertebral number. Colonization of gravel beach habitats is estimated to have occurred ca. 10 Ma, which coincides with the period of active orogenesis of the Japanese landmass. Different species of interstitial Luciogobius inhabit sediments with different granulometric properties, suggesting that microhabitat partitioning has been an important mechanism facilitating speciation in these fishes. Conclusion This is the first study to document the adaptation to interstitial habitats by a vertebrate. Body elongation and excessive vertebral segmentation had been the key aspects enhancing body flexibility and fishes' ability to burrow into the gravel sediment. The rich diversity of coastal gravel habitats of the Japanese Arc has likely promoted the adaptive radiation of

  12. Sheet-gravel evidence for a late Holocene tsunami run-up on beach dunes, Great Barrier Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Nichol, Scott L.; Lian, Olav B.; Carter, Charles H.

    2003-01-01

    A semi-continuous sheet of granule to cobble-size clasts forms a distinctive deposit on sand dunes located on a coastal barrier in Whangapoua Bay, Great Barrier Island, New Zealand. The gravel sheet extends from the toe of the foredune to 14.3 m above mean sea level and 200 m landward from the beach. Clasts are rounded to sub-rounded and comprise lithologies consistent with local bedrock. Terrestrial sources for the gravel are considered highly unlikely due to the isolation of the dunes from hillslopes and streams. The only source for the clasts is the nearshore to inner shelf of Whangapoua Bay, where gravel sediments have been previously documented. The mechanism for transport of the gravel is unlikely to be storm surge due to the elevation of the deposit; maximum-recorded storm surge on this coast is 0.8 m above mean high water spring tide. Aeolian processes are also discounted due to the size of clasts and the elevation at which they occur. Tsunami is therefore considered the most probable mechanism for gravel transport. Minimum run-up height of the tsunami was 14.3 m, based on maximum elevation of gravel deposits. Optical ages on dune sands beneath and covering the gravel allow age bracketing to 0-4.7 ka. Within this time frame, numerous documented regional seismic and volcanic events could have generated the tsunami, notably submarine volcanism along the southern Kermadec arc to the east-southeast of Great Barrier Island where large magnitude events are documented for the late Holocene. Radiocarbon ages on shell from Maori middens that appear to have been reworked by tsunami run-up constrain the age of this event to post ca. 1400 AD. Regardless of the precise age of this event, the well-preserved nature of the Whangapoua gravel deposit provides for an improved understanding of the high degree of spatial variability in tsunami run-up.

  13. Formation of gravel pavements during fluvial erosion as an explanation for persistence of ancient cratered terrain on Titan and Mars

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.; Breton, Sylvain; Moore, Jeffrey M.

    2016-05-01

    In many terrestrial channels the gravel bed is only transported during rare floods (threshold channels), and rates of erosion are very slow. In this paper we explore how coarse debris delivered to channels on Mars and Titan from erosion may inhibit further erosion once a coarse gravel channel bed develops. Portions of the equatorial region of Titan are fluvially eroded into banded (crenulated) terrain, some of which contains numerous circular structures that are likely highly degraded large impact craters surviving from the late heavy bombardment. No mechanism that can chemically or physically break down ice (likely the most important component of Titans crust) has been unambiguously identified. This paper examines a scenario in which fluvial erosion on Titan has largely involved erosion into an impact-generated megaregolith that contains a modest component of gravel-sized debris. As the megaregolith is eroded, coarse gravel gradually accumulates as a lag pavement on channel beds, limiting further erosion and creating a dissected, but largely inactive, or senescent, landscape. Similar development of gravel pavements occur in ancient mountain belts on Earth, and partially explain the persistence of appreciable relief after hundreds of millions of years. Likewise, coarse gravel beds may have limited the degree to which erosion could modify the heavily cratered terrains on Mars, particularly if weathering were largely due to physical, rather than chemical weathering processes in a relatively cold and/or arid environment.

  14. An evaluation of sand and gravel resources in and near the Prescott National Forest in the Verde Valley, Arizona; with a section on evaluation of sand and gravel resources using selected engineering variables

    USGS Publications Warehouse

    Cox, Leslie J.; Bliss, James D.; Miller, Robert J.

    1999-01-01

    This study was based on available published literature. Although no field investigation was conducted in the Prescott National Forest to the west of the Verde River, a field investigation was conducted in the summer of 1994 by this author on the Coconino National Forest, to the east of the Verde River, where units of surficial materials of the same age and similar character are found (Cox, 1995). The intent of this evaluation of sand and gravel resources in the Prescott National Forest and adjacent areas in the Verde Valley, is to provide the land managers of the U.S. Forest Service with a map that delineates sand- and gravel-bearing geologic units. The map distinguishes (1) sand-and gravel-bearing units that are limited to channels from those that are not, (2) sand-and gravel-bearing units that are thin (generally less than 40 feet thick which is one contour interval on the topographic maps) from those that are locally thick (generally 40 feet or more), (3) sand- and gravel-bearing units that are poorly sorted from those that are well-sorted4, (4) sand- and gravel-bearing units that have little or no soil development from those that have greater degrees of soil development and lithification, (5) and sand- and gravel-bearing units that support riparian vegetation from those that do not. These distinctive characteristics are related to the geologic age or depositional setting of the rock materials and can be distinguished where areas are mapped in detail.

  15. The role of a coarse surface layer in impeding evaporation from gravel bars

    NASA Astrophysics Data System (ADS)

    Edmaier, Katharina; Peter, Molnar; Clémentine, Cyprien; Paolo, Burlando

    2010-05-01

    The presence of a coarse surface layer (CSL) on bars in gravel bed rivers is expected to have an influence on evaporation rates from these surfaces and thereby on the water content in the underlying gravel-sand matrix. A statistically significant increase in soil water content in the presence of a CSL has recently been demonstrated in outdoor experiments by Meier and Hauer (2010). The authors argued that the CSL leads to a reduction in available energy for evaporation, decreases the advection of water vapour from the evaporating surface and reduces the supply of water from the underlying matrix to the evaporating surface. These findings are important because the germination of seeds and vegetative reproduction of riparian species on gravel bars are presumed to be driven by local soil moisture availability. Therefore local conditions of erosion-deposition which lead to the presence or absence of a CSL could be a crucial parameter for successful vegetation establishment on gravel bars. We conducted a simple laboratory experiment to verify the findings of Meier and Hauer (2010) under more controlled conditions. In the experiment 6 cylindrical buckets with a surface area of 720 cm2 and total volume of 19500 cm3 were filled with a sand-gravel mixture to replicate the sediment composition in the Thur River, Switzerland (d50 = 8 mm). This site is part of the research project RECORD (www.record.ethz.ch), which focuses on river restoration issues. Three treatments were investigated, each with a CSL of different thickness (H = 0, 40 and 80 mm) with one replicate each, roughly corresponding to 2 and 4 layers of typical CSL gravel diameters in the Thur River. We also measured the temperature in the sediment matrix underneath the CSL. The samples were saturated over several days and subsequently gravitationally drained in order to retain water held only by capillary forces as the initial condition. The samples were then weighed daily for 47 days and the evaporation rates and

  16. Suspended sediment transport during in-channel gravel mining: spatial and temporal dynamics

    NASA Astrophysics Data System (ADS)

    Tena, Alvaro; Béjar, María; Muñoz, Efrén; Ramos, Ester; Lobera, Gemma; Andrés López-Tarazón, Jose; Gibbins, Chris; Batalla, Ramon J.; Piqué, Gemma; Vericat, Damià

    2015-04-01

    Rivers in natural conditions tend to maintain long-term morphosedimentary equilibrium, however, natural and human induced disturbances (e.g. flooding, damming, gravel mining, etc.) may alter this equilibrium by modifying physical and ecological processes and dynamics. Gravel mining activities cause major changes in the channel mass and energy balances, that in turn affect morphology, bed sedimentology and habitat conditions. In-channel gravel extractions also increase suspended sediment concentrations, locally but with downstream associated effects. The excess of sediments can clog the interstices between substrate clasts, increasing the invertebrate drift, and reducing the available habitat for benthic organisms. The Upper River Cinca (Southern Pyrenees, Iberian Peninsula) has experienced gravel mining activities in the active channel and floodplain since the middle of the last century, although their morpho-sedimentary impacts have never been fully investigated. Nowadays, these practices are still carried out in the upper Cinca, but mainly to prevent damages in infrastructures. One of these extractions has been experimentally monitored in the background of the research project MorphSed (www.morphsed.es). Suspended sediment transport has been monitored before, during and after the gravel extraction in order to assess the spatial and temporal dynamics and their potential impacts in the downstream reaches. Suspended sediment samples were collected manually (Depth integrated sampler DH49) and automatically (ISCO 3700 automatic sampler) at four sampling locations, one just downstream from the mining (M1) and the other two sections (M2, M3) located 100 and 300 m downstream. Additionally, turbidity was continuously registered (every 15 minutes) in the last section (M3). Preliminary results show as during the first field day, when the channel was partially diverted, sediment concentrations increased locally and decreased downstream. Mean suspended sediment concentrations

  17. Activation Pattern of Lower Leg Muscles in Running on Asphalt, Gravel and Grass.

    PubMed

    Dolenec, Aleš; Štirn, Igor; Strojnik, Vojko

    2015-07-01

    Running is performed on different natural surfaces (outdoor) and artificial surfaces (indoor). Different surface characteristics cause modification of the lower leg muscle activation pattern to adopt ankle stiffness to these characteristics. So the purpose of our investigation was to study changes of lower leg muscles activation pattern in running on different natural running surfaces. Six male and two female runners participated. The participants ran at a freely chosen velocity in trials on asphalt while in trials on gravel, and grass surfaces they were attempting to reach similar velocities as in the trials on asphalt. Muscle activation of the peroneus brevis, tibialis anterior, soleus, and gastrocnemius medialis of the right leg was recorded. Running on asphalt increased average EMG amplitude of the m. tibialis anterior in the pre-activation phase and the m. gastrocnemius medialis in the entire contact phase compared to running on grass from 0.222 ± 0.113 V to 0.276 ± 0.136 V and from 0.214 ± 0.084 V to 0.238 ± 0.088 V, respectively. The average EMG of m. peroneus brevis in pre-activation phase increased from 0.156 ± 0.026 V to 0.184 ± 0.455 V in running on grass in comparison to running on gravel. Running on different surfaces is connected with different activation patterns of lower leg muscles. Running on asphalt requires stiff ankle joints, running on gravel requires greater stability in ankle joints, while running on grass is the least demanding on lower leg muscles. PMID:26434026

  18. Self-potential investigations of a gravel bar in a restored river corridor

    USGS Publications Warehouse

    Linde, N.; Doetsch, J.; Jougnot, D.; Genoni, O.; Durst, Y.; Minsley, B.J.; Vogt, T.; Pasquale, N.; Luster, J.

    2011-01-01

    Self-potentials (SP) are sensitive to water fluxes and concentration gradients in both saturated and unsaturated geological media, but quantitative interpretations of SP field data may often be hindered by the superposition of different source contributions and time-varying electrode potentials. Self-potential mapping and close to two months of SP monitoring on a gravel bar were performed to investigate the origins of SP signals at a restored river section of the Thur River in northeastern Switzerland. The SP mapping and subsequent inversion of the data indicate that the SP sources are mainly located in the upper few meters in regions of soil cover rather than bare gravel. Wavelet analyses of the time-series indicate a strong, but non-linear influence of water table and water content variations, as well as rainfall intensity on the recorded SP signals. Modeling of the SP response with respect to an increase in the water table elevation and precipitation indicate that the distribution of soil properties in the vadose zone has a very strong influence. We conclude that the observed SP responses on the gravel bar are more complicated than previously proposed semi-empiric relationships between SP signals and hydraulic head or the thickness of the vadose zone. We suggest that future SP monitoring in restored river corridors should either focus on quantifying vadose zone processes by installing vertical profiles of closely spaced SP electrodes or by installing the electrodes within the river to avoid signals arising from vadose zone processes and time-varying electrochemical conditions in the vicinity of the electrodes. ?? 2011 Author(s).

  19. How Much Gravel? Use of Ground Penetrating Radar for Aggregate Resource Evaluation

    NASA Astrophysics Data System (ADS)

    McCuaig, S. J.; Ricketts, J.

    2004-05-01

    Ground penetrating radar (GPR) was tested in two gravel quarries in eastern Newfoundland, Canada, to determine its usefulness for aggregate resource evaluation. In Mercer's Pit, near Tors Cove, GPR profiles show irregular, discontinuous reflections that extend to depths of more than 30 m. Boulders are common at depth (identified on the profiles by numerous individual diffractions). The area is interpreted as a much thicker gravel deposit than had been estimated by previous methods, however, the presence of boulders could indicate a lower quality resource. Analysis of a peat bog near the pit shows a prominent contact on the GPR profiles. It is interpreted as the hummocky surface of the gravel deposit (continuous, high amplitude reflections), which underlies a much weaker reflective zone of peat. At Snow's Pit, near Bay Roberts, a series of overlapping diffractions at depth are interpreted as representing the bedrock surface, which varies from 5 to 15 m below the surface. Aggregate deposits overlie the bedrock (irregular, discontinuous reflections) and contain very few boulders. This deposit also was found to be larger than previously thought, and is low in boulder content throughout. GPR was found to be an effective tool for delineating the extent and volume of aggregate resources in these examples. It provides a detailed view of the subsurface and large amounts of information are gathered quickly and easily. GPR can be used to revise volume calculations of quarries already in operation and to estimate the volume of potential new deposits. It is also useful for planning pit development and analysing prospective areas that quarry operators do not yet own or have rights to, with virtually no environmental impact on the land surveyed.

  20. Gravel transport by ice in a subarctic river from accurate laser scanning

    NASA Astrophysics Data System (ADS)

    Lotsari, Eliisa; Wang, Yunsheng; Kaartinen, Harri; Jaakkola, Anttoni; Kukko, Antero; Vaaja, Matti; Hyyppä, Hannu; Hyyppä, Juha; Alho, Petteri

    2015-10-01

    For decades the importance of ice and the effects of cold-region processes on river channel morphology have been discussed, with a general consensus as to their importance emerging only recently. River ice cover, anchor ice, frazil ice, and ice jams may not only scour the channel bed and banks but also pick up, transport, and deposit fine sediments and gravels during winter, especially during the spring ice breakup period. However, knowledge of the interactions between coarse sediment transport and ice processes remains insufficient, particularly in rockier river reaches, with a lack of accurate and sufficiently extensive data hindering their quantification. The aim of this study was to quantify and analyse the impact of river ice on gravel transport in a subarctic river during one winter via the acquisition of laser scanning data for the river channel and ice surface. Terrestrial and mobile laser scanning were performed in 2012-2013 on the Tana River in northern Finland. Both of these techniques are considered accurate and applicable for detecting elevation and volumetric changes in river bed, defining gravel clast sizes, and detecting the movement of individual clasts. More importantly, ice surface, thickness, and decay during spring were also captured via laser scanning. In the winter of 2012-2013, a period characterised by an absence of ice jams and mid-winter ice-decay periods, with spring ice breakup discharges close to average yearly conditions, ice had the most significant role, greater than that of flowing water, in erosion and transport of coarse sediment from the channel bed and gently sloping banks. Changes in river bed elevation and volume were recorded throughout the study site, and erosion predominated. In addition to broader scale erosion, the movement of single clasts up to 2 m in size occurred. However, the observed overall channel change patterns did not coincide with the areas of fastest ice decay. The obtained results could also be applied to

  1. Activation Pattern of Lower Leg Muscles in Running on Asphalt, Gravel and Grass.

    PubMed

    Dolenec, Aleš; Štirn, Igor; Strojnik, Vojko

    2015-07-01

    Running is performed on different natural surfaces (outdoor) and artificial surfaces (indoor). Different surface characteristics cause modification of the lower leg muscle activation pattern to adopt ankle stiffness to these characteristics. So the purpose of our investigation was to study changes of lower leg muscles activation pattern in running on different natural running surfaces. Six male and two female runners participated. The participants ran at a freely chosen velocity in trials on asphalt while in trials on gravel, and grass surfaces they were attempting to reach similar velocities as in the trials on asphalt. Muscle activation of the peroneus brevis, tibialis anterior, soleus, and gastrocnemius medialis of the right leg was recorded. Running on asphalt increased average EMG amplitude of the m. tibialis anterior in the pre-activation phase and the m. gastrocnemius medialis in the entire contact phase compared to running on grass from 0.222 ± 0.113 V to 0.276 ± 0.136 V and from 0.214 ± 0.084 V to 0.238 ± 0.088 V, respectively. The average EMG of m. peroneus brevis in pre-activation phase increased from 0.156 ± 0.026 V to 0.184 ± 0.455 V in running on grass in comparison to running on gravel. Running on different surfaces is connected with different activation patterns of lower leg muscles. Running on asphalt requires stiff ankle joints, running on gravel requires greater stability in ankle joints, while running on grass is the least demanding on lower leg muscles.

  2. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  3. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    PubMed Central

    Langhans, Simone D.; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60–100 m, and 5 m within the riparian forest), and time of the year (February–November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct – yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity. PMID:25545280

  4. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    PubMed

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  5. Hyporheic Exchange in Gravel-Bed Rivers with Pool-Riffle Morphology: A 3D Model

    NASA Astrophysics Data System (ADS)

    Tonina, D.; Buffington, J. M.

    2004-12-01

    The hyporheic zone is a saturated band of sediment that surrounds river flow and forms a linkage between the river and the aquifer. It is a rich ecotone where benthic, hyporheic, and groundwater species temporarily or permanently reside. Head gradients along the streambed draw river water into the hyporheic zone and expel pore water into the stream. This process, known as hyporheic exchange, is important for delivering nutrients, oxygen and other solutes to the sediment, and for washing away waste products to support this ecotone. It is an essential component of the carbon and nitrogen cycles, and it controls in-stream contaminant transport. Although hyporheic exchange has been studied in sand-bed rivers with two-dimensional dune morphology, few studies have been conducted for gravel-bed rivers with three-dimensional pool-riffle geometry. The hyporheic zone of gravel-bed rivers is particularly important for salmonids, many of which are currently at risk world wide. Salmon and trout lay their eggs within the hyporheic zone for incubation. After hatching, the alevins live in the gravel before emerging into the stream. The upwelling and downwelling hyporheic fluxes are intense in these streams due to the highly permeable sediment and strong head variations forced by shallow flow over high-amplitude bed forms. Moreover, gravel-bed rivers show a wide range of flow regimes that change seasonally and have strong effects on hyporheic exchange. To study this exchange, we used four sets of pool-riffle geometries in twelve recirculating flume experiments. We kept a constant bed-form wavelength, but changed the bed-form amplitude and imposed three discharges, covering a wide range of hydraulic and geometric characteristics. Hyporheic exchange was predicted from a three-dimensional model based on bedform-induced pumping transport, where the boundary head profile is the pressure head distribution at the sediment interface, measured with an array of mini-piezometers buried within

  6. Enhanced removal of Exxon Valdez spilled oil Alaskan gravel by a microbial surfactant

    SciTech Connect

    Harvey, S.; Elashvili, I.; Valdes, J.J.; Kamely, D.; Chakrabarty, A.M. )

    1990-03-01

    Remediation efforts for the oil spill from the Exxon Valdez tanker in Alaska have focused on the use of pressurized water at high temperature to remove oil from the beaches. We have tested a biological surfactant from Pseudomonas aeruginosa for its ability to remove oil from contaminated Alaskan gravel samples under various conditions, including concentration of the surfactant, time of contact, temperature of the wash, and presence or absence of xanthan gum. The results demonstrate the ability of the microbial surfactant to release oil to a significantly greater extent (2 to 3 times) than water alone, particularly at temperatures of 30{degree}C and above.

  7. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant.

    PubMed

    Harvey, S; Elashvili, I; Valdes, J J; Kamely, D; Chakrabarty, A M

    1990-03-01

    Remediation efforts for the oil spill from the Exxon Valdez tanker in Alaska have focused on the use of pressurized water at high temperature to remove oil from the beaches. We have tested a biological surfactant from Pseudomonas aeruginosa for its ability to remove oil from contaminated Alaskan gravel samples under various conditions, including concentration of the surfactant, time of contact, temperature of the wash, and presence or absence of xanthan gum. The results demonstrate the ability of the microbial surfactant to release oil to a significantly greater extent (2 to 3 times) than water alone, particularly at temperatures of 30 degrees C and above. PMID:1367420

  8. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant.

    PubMed

    Harvey, S; Elashvili, I; Valdes, J J; Kamely, D; Chakrabarty, A M

    1990-03-01

    Remediation efforts for the oil spill from the Exxon Valdez tanker in Alaska have focused on the use of pressurized water at high temperature to remove oil from the beaches. We have tested a biological surfactant from Pseudomonas aeruginosa for its ability to remove oil from contaminated Alaskan gravel samples under various conditions, including concentration of the surfactant, time of contact, temperature of the wash, and presence or absence of xanthan gum. The results demonstrate the ability of the microbial surfactant to release oil to a significantly greater extent (2 to 3 times) than water alone, particularly at temperatures of 30 degrees C and above.

  9. Fluvial sediment inputs to upland gravel bed rivers draining forested catchments: potential ecological impacts

    NASA Astrophysics Data System (ADS)

    Marks, S. D.; Rutt, G. P.

    As identified by the detailed long-term monitoring networks at Plynlimon, increased sediment supply to upland fluvial systems is often associated with forestry land-use and practice. Literature is reviewed, in the light of recent results from Plynlimon sediment studies, to enable identification of the potential ecological impacts of fluvial particulate inputs to upland gravel bed rivers draining forested catchments similar to the headwaters of the River Severn. Both sediment transport and deposition can have significant impacts upon aquatic vertebrates, invertebrates and plants.

  10. Field study of gravel admix, vegetation, and soil water interactions: Protective Barrier Program Status Reprt - FY 1989

    SciTech Connect

    Waugh, W.J.; Thiede, M.E.; Kemp, C.J.; Cadwell, L.L. Link, S.O.

    1990-08-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (Westinghouse Hanford) are collaborating on a field study of the effects of gravel admixtures on plant growth and soil water storage in protective barriers. Protective barriers are engineered earthern covers designed to prevent water, plants, and animals from contacting buried waste and transporting contaminants to groundwater or the land surface. Some of the proposed designs include gravel admixtures or gravel mulches on the barrier surface to control soil loss by wind and runoff. The purpose of this study is to measure, in a field setting, the influence of surface gravel additions on soil water storage and plant cover. The study plots are located northwest of the Yakima Gate in the McGee Ranch old field. Here we report the status of work completed in FY 1989 on the creation of a data management system, a test of water application uniformity, field calibration of neutron moisture gages, and an analysis of the response of plants to various combinations of gravel admixtures and increased rainfall. 23 refs., 11 figs., 6 tabs.

  11. Pliocene terrace gravels of the ancestral Yukon River near Circle, Alaska: Palynology, paleobotany, paleoenvironmental reconstruction and regional correlation

    USGS Publications Warehouse

    Ager, T.A.; Matthews, J.V.; Yeend, W.

    1994-01-01

    Gravels deposited by the ancestral Yukon River are preserved in terrace remnants on the margins of the Yukon River valley near the village of Circle in east-central Alaska. Plant fossils recovered from sandy silt lenses within these gravels include cones and needles of Picea and Larix and a variety of seeds. Seed types include several taxa which no longer grow in Alaska, such as Epipremnum, Prunus and Weigela. Pollen types recovered from these deposits represent tree and shrub taxa that grow in interior Alaska today, such as Picea, Larix, Betula and Alnus, as well as several taxa that no longer grow in interior Alaska today, such as Pinus, Tsuga, Abies and Corylus. Pollen of herb taxa identified include Gramineae, Cyperaceae, Caryophyllaceae, Compositae, Polemonium and Epilobium. The fossil flora from the gravels near Circle are similar and probably age-equivalent to the flora recovered from the Nenana Gravel in the Alaska Range 250 km to the south. Palynological and tectonic evidence summarized in this paper now suggests that the Nenana Gravel was deposited during the early and middle Pliocene. The presence of plant fossils of Tsuga, Abies, Pinus, Weigela and Prunus suggests that the mean annual temperature (MAT) of eastern interior Alaska during the early and middle Pliocene was perhaps 7-9??C warmer and less continental than today's MAT of -6.4??C. ?? 1994.

  12. Gravel pit lake ecosystems reduce nitrate and phosphate concentrations in the outflowing groundwater.

    PubMed

    Weilhartner, Andreas; Muellegger, Christian; Kainz, Martin; Mathieu, Francine; Hofmann, Thilo; Battin, Tom J

    2012-03-15

    Gravel excavation often bears conflicts with the use of drinking water as under-water-table mining can directly impact groundwater quality downstream of the open gravel pit lake due to exposure of the groundwater aquifer to the atmosphere and to human activities. To assess this potential impact of GPLs on groundwater, we assessed the mass balance for nitrate (NO(3)) and phosphate (PO(4)) and whole-ecosystem metabolism of five post-excavation GPLs in Austria. GPLs differed in both age and residence time of lake water. We found that GPLs significantly reduced the concentration of NO(3) and PO(4) as groundwater passes through the lake ecosystem, which in most cases acted as a net sink for these nutrients. Groundwater-derived nutrients enhanced both epilithic and pelagic net primary production in the GPLs, which ultimately leads to biomass accrual. Our data also suggest that this biomass accrual may induce, at least in part, clogging of the GPLs and their successive hydrodynamic isolation from the adjacent groundwater. Despite continuous biomass build-up and elevated concentrations of dissolved organic carbon (DOC) in the lake water compared to the inflowing groundwater, DOC export into the outflowing groundwater remained low. Our data suggest that GPLs could contribute to groundwater amelioration where agricultural land use increases nutrient concentrations in the groundwater given a proper management of these man-made ecosystems.

  13. A feasibility study of a Salix viminalis gravel hydroponic system to renovate primary settled wastewater.

    PubMed

    Mant, Catherine; Peterkin, John; May, Eric; Butler, John

    2003-10-01

    A Salix viminalis/gravel system based on hydroponics was developed for wastewater renovation in order to avoid the problems of soil damage and pollution associated with long-term application of wastewater to soil. For such a system to work the mineral elements applied must match closely the requirements of the tree species. To examine this the growth and nutrient uptake of S. viminalis in wastewater was compared with that in Long Ashton nutrient solution (1/4 strength). S. viminalis grew more slowly in wastewater than in Long Ashton solution, but exhibited no obvious deficiency or toxicity symptoms. Since industrial wastewaters often contain metals, the extent to which copper might inhibit wastewater treatment in this system was also examined. S. viminalis was grown in wastewater amended with 10 and 100 ppm copper. Trees were unaffected by wastewater with 10 ppm copper when compared to trees grown in wastewater alone. Wastewater containing with 100 ppm copper was too toxic for the trees to thrive and wastewater treatment was reduced. Treatment efficiencies for unamended wastewater were 57.7% for nitrogen, 90.6% for phosphorus and 24.9% for potassium. These efficiencies are much greater than those quoted for a Salix/soil system, and thus Salix/gravel systems may have potential for wastewater treatment in environmentally sensitive areas or situations.

  14. Lithology of gravel deposits of the Front Range urban corridor, Colorado: data and multivariate statistical analysis

    USGS Publications Warehouse

    Lindsey, David A.

    2001-01-01

    Pebble count data from Quaternary gravel deposits north of Denver, Colo., were analyzed by multivariate statistical methods to identify lithologic factors that might affect aggregate quality. The pebble count data used in this analysis were taken from the map by Colton and Fitch (1974) and are supplemented by data reported by the Front Range Infrastructure Resources Project. This report provides data tables and results of the statistical analysis. The multivariate statistical analysis used here consists of log-contrast principal components analysis (method of Reyment and Savazzi, 1999) followed by rotation of principal components and factor interpretation. Three lithologic factors that might affect aggregate quality were identified: 1) granite and gneiss versus pegmatite, 2) quartz + quartzite versus total volcanic rocks, and 3) total sedimentary rocks (mainly sandstone) versus granite. Factor 1 (grain size of igneous and metamorphic rocks) may represent destruction during weathering and transport or varying proportions of rocks in source areas. Factor 2 (resistant source rocks) represents the dispersion shadow of metaquartzite detritus, perhaps enhanced by resistance of quartz and quartzite during weathering and transport. Factor 3 (proximity to sandstone source) represents dilution of gravel by soft sedimentary rocks (mainly sandstone), which are exposed mainly in hogbacks near the mountain front. Factor 1 probably does not affect aggregate quality. Factor 2 would be expected to enhance aggregate quality as measured by the Los Angeles degradation test. Factor 3 may diminish aggregate quality.

  15. Instream sand and gravel mining: Environmental issues and regulatory process in the United States

    USGS Publications Warehouse

    Meador, M.R.; Layher, A.O.

    1998-01-01

    Sand and gravel are widely used throughout the U.S. construction industry, but their extraction can significantly affect the physical, chemical, and biological characteristics of mined streams. Fisheries biologists often find themselves involved in the complex environmental and regulatory issues related to instream sand and gravel mining. This paper provides an overview of information presented in a symposium held at the 1997 midyear meeting of the Southern Division of the American Fisheries Society in San Antonio, Texas, to discuss environmental issues and regulatory procedures related to instream mining. Conclusions from the symposium suggest that complex physicochemical and biotic responses to disturbance such as channel incision and alteration of riparian vegetation ultimately determine the effects of instream mining. An understanding of geomorphic processes can provide insight into the effects of mining operations on stream function, and multidisciplinary empirical studies are needed to determine the relative effects of mining versus other natural and human-induced stream alterations. Mining regulations often result in a confusing regulatory process complicated, for example, by the role of the U.S. Army Corps of Engineers, which has undergone numerous changes and remains unclear. Dialogue among scientists, miners, and regulators can provide an important first step toward developing a plan that integrates biology and politics to protect aquatic resources.

  16. Flood duration and chute cutoff formation in a wandering gravel-bed river

    NASA Astrophysics Data System (ADS)

    Sawyer, A.; Wilcox, A. C.

    2015-12-01

    Chute cutoffs occur when a bypass or "chute" channel incises across a bar or low floodplain area, re-distributing water and sediment. Cutoffs result from a setup and a triggering event, typically during overbank flow, but the combined effect of magnitude and duration on potential erosion in in-channel and overbank areas is still poorly constrained. Here we investigated how overbank flow duration impacts cutoff formation and spatiotemporal shear stress patterns in a wandering gravel-bed river. We applied a two-dimensional hydraulic model to a recently reconstructed reach of the Clark Fork River in western Montana that experienced chute cutoffs during a long-duration flood in 2011. Hydrographs with increasing durations exceeding overbank were simulated; for each magnitude-duration combination, various metrics were quantified for in-channel and overbank areas separately. We confirm the hypothesized importance of floodplain elevation, vegetation presence, chute-channel inlet entrance location, and high overbank shear stress zones at bend apexes on cutoff occurrence. Floodplain width plays an important role in controlling unit discharge such that overbank areas are more competent in a narrower floodplain conveyance corridor. Duration controls cumulative flow exceeding sediment mobility thresholds, having the largest effect in overbank areas. Side channels at the reconstructed study site act like naturally formed incipient chutes. This work describes a complex floodplain system characteristic of wandering gravel-bed rivers with implications for understanding morphodynamic evolution, river restoration, and flow management in regulated rivers.

  17. Sounds and vibrations in the frozen Beaufort Sea during gravel island construction.

    PubMed

    Greene, Charles R; Blackwell, Susanna B; McLennan, Miles Wm

    2008-02-01

    Underwater and airborne sounds and ice-borne vibrations were recorded from sea-ice near an artificial gravel island during its initial construction in the Beaufort Sea near Prudhoe Bay, Alaska. Such measurements are needed for characterizing the properties of island construction sounds to assess their possible impacts on wildlife. Recordings were made in February-May 2000 when BP Exploration (Alaska) began constructing Northstar Island about 5 km offshore, at 12 m depth. Activities recorded included ice augering, pumping sea water to flood the ice and build an ice road, a bulldozer plowing snow, a Ditchwitch cutting ice, trucks hauling gravel over an ice road to the island site, a backhoe trenching the sea bottom for a pipeline, and both vibratory and impact sheet pile driving. For all but one sound source (underwater measurements of pumping) the strongest one-third octave band was under 300 Hz. Vibratory and impact pile driving created the strongest sounds. Received levels of sound and vibration, as measured in the strongest one-third octave band for different construction activities, reached median background levels <7.5 km away for underwater sounds, <3 km away for airborne sounds, and <10 km away for in-ice vibrations.

  18. The timing of scour and fill in a gravel-bedded river measured with buried accelerometers

    NASA Astrophysics Data System (ADS)

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.

    2013-07-01

    A device that measures the timing of streambed scour and the duration of sediment mobilization at specific depths of a streambed was developed using data-logging accelerometers placed within the gravel substrate of the Cedar River, Washington, USA. Each accelerometer recorded its orientation every 20 min and remained stable until the surrounding gravel matrix mobilized as sediment was transported downstream and scour reached the level of the accelerometer. The accelerometer scour monitors were deployed at 26 locations in salmon-spawning habitat during the 2010-2011 flood season to record when the streambed was scoured to the depth of typical egg-pocket deposition. Scour was recorded at one location during a moderate high-flow event (65 m3/s; 1.25-1.5-year recurrence interval) and at 17 locations during a larger high-flow event (159 m3/s; 7-year recurrence interval). Accelerometer scour monitors recorded periods of intermittent sediment mobilization and stability within a high-flow event providing insight into the duration of scour. Most scour was recorded during the rising limb and at the peak of a flood hydrograph, though some scour occurred during sustained high flows following the peak of the flood hydrograph.

  19. A GIS approach to model sediment reduction susceptibility of mixed sand and gravel beaches.

    PubMed

    Eikaas, Hans S; Hemmingsen, Maree A

    2006-06-01

    The morphological form of mixed sand and gravel beaches is distinct, and the process/response system and complex dynamics of these beaches are not well understood. Process response models developed for pure sand or gravel beaches cannot be directly applied to these beaches. The Canterbury Bight coastline is apparently abundantly supplied with sediments from large rivers and coastal alluvial cliffs, but a large part of this coastline is experiencing long-term erosion. Sediment budget models provide little evidence to suggest sediments are stored within this system. Current sediment budget models inadequately quantify and account for the processes responsible for the patterns of erosion and accretion of this coastline. We outline a new method to extrapolate from laboratory experiments to the field using a geographical information system approach to model sediment reduction susceptibility for the Canterbury Bight. Sediment samples from ten representative sites were tumbled in a concrete mixer for an equivalent distance of 40 km. From the textural mixture and weight loss over 40 km tumbling, we applied regression techniques to generate a predictive equation for Sediment Reduction Susceptibility (SRS). We used Inverse Distance Weighting (IDW) to extrapolate the results from fifty-five sites with data on textural sediment composition to field locations with no data along the Canterbury Bight, creating a continuous sediment reductions susceptibility surface. Isolines of regular SRS intervals were then derived from the continuous surface to create a contour map of sediment reductions susceptibility for the Canterbury Bight. Results highlighted the variability in SRS along this coastline.

  20. Influence of surface layer on hydrology and biology of gravel bed vertical flow constructed wetlands.

    PubMed

    Chazarenc, F; Merlin, G

    2005-01-01

    In France, gravel vertical flow constructed wetlands (gVFCWs) were adapted to treat raw wastewater, which led to important accumulations of matter in filters (organic and mineral). To prevent clogging, large gravel sizes were employed (O 2-6 mm). The aim of this paper was to present the influences of matter accumulation on the hydraulic and biological behaviour of the system. A one-year survey of accumulated matter content and potential respiration activities was completed in three gVFCWs (operating for 3, 4 and 8 years). Cores were sampled into filters. Results showed a vertical stratification of accumulated matter and respiration rates. Dry accumulated matter quantities ranged from 20 kg m(-2) (3 and 4 years operating) to 80 kg m(-2) in the oldest plant (8 years). Potential respiration was larger in the oldest plant (75g O2m(-2)h(-1)) than in the most recent one (15g O2m(-2)h(-1)). Accumulated matter seemed to play a role both on the water retention (enhancing initial percolation time by 5 times) and biological profile (enhancing microfauna's diversity). Contrary to what is generally proposed in the literature, accumulated matter in French gVFCWs seemed to provide better treatment efficiency without leading to surface clogging compared to systems using sand.

  1. Large submarine sand waves and gravel lag substrates on Georges Bank off Atlantic Canada

    USGS Publications Warehouse

    Todd, B.J.; Valentine, Page C.; Harris, Peter T; Baker, E.K.

    2012-01-01

    Georges Bank is a large, shallow, continental shelf feature offshore of New England and Atlantic Canada. The bank is mantled with a veneer of glacial debris transported during the late Pleistocene from continental areas lying to the north. These sediments were reworked by marine processes during postglacial sea-level transgression and continue to be modified by the modern oceanic regime. The surficial geology of the Canadian portion of the bank is a widespread gravel lag overlain in places by well sorted sand occurring as bedforms. The most widespread bedforms are large, mobile, asymmetrical sand waves up to 19 m in height formed through sediment transport by strong tidal-driven and possibly storm-driven currents. Well-defined curvilinear bedform crests up to 15 km long form a complex bifurcating pattern having an overall southwest–northeast strike, which is normal to the direction of the major axis of the semidiurnal tidal current ellipse. Minor fields of immobile, symmetrical sand waves are situated in bathymetric lows. Rare mobile, asymmetrical barchan dunes are lying on the gravel lag in areas of low sand supply. On Georges Bank, the management of resources and habitats requires an understanding of the distribution of substrate types, their surface dynamics and susceptibility to movement, and their associated fauna.

  2. Evaluation of flow resistance in gravel-bed rivers through a large field data set

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter; Recking, Alain

    2011-07-01

    A data set of 2890 field measurements was used to test the ability of several conventional flow resistance equations to predict mean flow velocity in gravel bed rivers when used with no calibration. The tests were performed using both flow depth and discharge as input since discharge may be a more reliable measure of flow conditions in shallow flows. Generally better predictions are obtained when using flow discharge as input. The results indicate that the Manning-Strickler and the Keulegan equations show considerable disagreement with observed flow velocities for flow depths smaller than 10 times the characteristic grain diameter. Most equations show some systematic deviation for small relative flow depth. The use of new definitions for dimensionless variables in terms of nondimensional hydraulic geometry equations allows the development of a new flow resistance equation. The best overall performance is obtained by the Ferguson approach, which combines two power law flow resistance equations that are different for deep and shallow flows. To use this approach with flow discharge as input, a logarithmic matching equation in terms of the new dimensionless variables is proposed. For the domains of intermediate and large-scale roughness, the field data indicate a considerable increase in flow resistance as compared with the domain of small-scale roughness. The Ferguson approach is used to discuss the importance of flow resistance partitioning for bed load transport calculations at flow conditions with intermediate- and large-scale roughness in natural gravel, cobble, and boulder bed streams.

  3. The timing of scour and fill in a gravel-bedded river measured with buried accelerometers

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.

    2013-01-01

    A device that measures the timing of streambed scour and the duration of sediment mobilization at specific depths of a streambed was developed using data-logging accelerometers placed within the gravel substrate of the Cedar River, Washington, USA. Each accelerometer recorded its orientation every 20 min and remained stable until the surrounding gravel matrix mobilized as sediment was transported downstream and scour reached the level of the accelerometer. The accelerometer scour monitors were deployed at 26 locations in salmon-spawning habitat during the 2010–2011 flood season to record when the streambed was scoured to the depth of typical egg-pocket deposition. Scour was recorded at one location during a moderate high-flow event (65 m3/s; 1.25–1.5-year recurrence interval) and at 17 locations during a larger high-flow event (159 m3/s; 7-year recurrence interval). Accelerometer scour monitors recorded periods of intermittent sediment mobilization and stability within a high-flow event providing insight into the duration of scour. Most scour was recorded during the rising limb and at the peak of a flood hydrograph, though some scour occurred during sustained high flows following the peak of the flood hydrograph.

  4. Effects of hydraulic roughness on surface textures of gravel-bed rivers

    USGS Publications Warehouse

    Buffington, J.M.; Montgomery, D.R.

    1999-01-01

    Field studies of forest gravel-bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed-surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach-average median grain size (D50) to that predicted from the total bank-full boundary shear stress (??0(bf)), representing a hypothetical reference condition of low hydraulic roughness. For a given ??0(bf), channels with progressively greater hydraulic roughness have systematically finer bed surfaces, presumably due to reduced bed shear stress, resulting in lower channel competence and diminished bed load transport capacity, both of which promote textural fining. In channels with significant hydraulic roughness, observed values of D50 can be up to 90% smaller than those predicted from ??0(bf). We find that wood debris plays an important role at our study sites, not only providing hydraulic roughness but also influencing pool spacing, frequency of textural patches, and the amplitude and wavelength of bank and bar topography and their consequent roughness. Our observations also have biological implications. We find that textural fining due to hydraulic roughness can create usable salmonid spawning gravels in channels that otherwise would be too coarse.

  5. Data report for the geologic and scenic quality evaluation of selected sand and gravel sites on the Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Langer, William H.; Van Gosen, Bradley S.; Arbogast, Belinda; Lindsey, David A.

    2011-01-01

    In April 2005, the U.S. Geological Survey (USGS) conducted field studies on the Wind River Indian Reservation, Wyoming, to inventory and evaluate sand and gravel deposits underlying river terraces on tribal lands along the Wind River. This report contains the results for 12 sites of sand and gravel deposits evaluated for their potential use as aggregate in Portland cement concrete, asphalt, and base course. The report provides the results of: * The USGS geologic studies and engineering tests. * A conclusion and recommendation for the best use of sand and gravel materials. * Calculations of available sand and gravel materials. * A scenic quality landscape inventory and evaluation.

  6. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses.

    PubMed

    Feyereisen, Gary W; Francesconi, Wendy; Smith, Douglas R; Papiernik, Sharon K; Krueger, Erik S; Wente, Christopher D

    2015-03-01

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentrations and loads when open surface inlets were replaced with blind (in gravel capped with 30 cm of soil) or gravel (in very coarse sand/fine gravel) inlets. In Indiana, a pair of closed depressions in adjacent fields was fitted with open inlet tile risers and blind inlets in 2005 and monitored for flow and water chemistry. Paired comparisons on a storm event basis during the growing season for years 2006 to 2013 showed that TSS loads were 40.4 and 14.4 kg ha event for tile risers and blind inlets, respectively. Total P (TP) and soluble reactive P (SRP) loads were 66 and 50% less for the blind inlets, respectively. In Minnesota, TSS and SRP concentrations were monitored for 3 yr before and after modification of 24 open inlets to gravel inlets in an unreplicated large-field on-farm study. Median TSS concentrations were 97 and 8.3 mg L and median SRP concentrations were 0.099 and 0.064 mg L for the open inlet and gravel inlet periods, respectively. Median TSS and SRP concentrations were elevated for snowmelt vs. non-snowmelt seasons for open and gravel inlets. Both replacement designs reduced suspended sediment and P concentrations and loads. The Indiana study suggests blind inlets will be effective beyond a 10-yr service life. PMID:26023978

  7. Effect of replacing surface inlets with blind or gravel inlets on sediment and phosphorus subsurface drainage losses.

    PubMed

    Feyereisen, Gary W; Francesconi, Wendy; Smith, Douglas R; Papiernik, Sharon K; Krueger, Erik S; Wente, Christopher D

    2015-03-01

    Open surface inlets that connect to subsurface tile drainage systems provide a direct pathway for movement of sediment, nutrients, and agrochemicals to surface waters. This study was conducted to determine the reduction in drainage effluent total suspended sediment (TSS) and phosphorus (P) concentrations and loads when open surface inlets were replaced with blind (in gravel capped with 30 cm of soil) or gravel (in very coarse sand/fine gravel) inlets. In Indiana, a pair of closed depressions in adjacent fields was fitted with open inlet tile risers and blind inlets in 2005 and monitored for flow and water chemistry. Paired comparisons on a storm event basis during the growing season for years 2006 to 2013 showed that TSS loads were 40.4 and 14.4 kg ha event for tile risers and blind inlets, respectively. Total P (TP) and soluble reactive P (SRP) loads were 66 and 50% less for the blind inlets, respectively. In Minnesota, TSS and SRP concentrations were monitored for 3 yr before and after modification of 24 open inlets to gravel inlets in an unreplicated large-field on-farm study. Median TSS concentrations were 97 and 8.3 mg L and median SRP concentrations were 0.099 and 0.064 mg L for the open inlet and gravel inlet periods, respectively. Median TSS and SRP concentrations were elevated for snowmelt vs. non-snowmelt seasons for open and gravel inlets. Both replacement designs reduced suspended sediment and P concentrations and loads. The Indiana study suggests blind inlets will be effective beyond a 10-yr service life.

  8. Three Storm Surge Events during Late Holocene in Shelly Gravel Sediments of the most Southern Coast of Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Yang, Dong Yoon

    2015-04-01

    Super Typhoon Haiyan which occurred in November, 2013 left as many as 5,200 people dead and destroyed towns across the Philippines. However, because of rapid climate change, we cannot disregard such a super typhoon strike probability in Korean Peninsula. If we can detect the frequency and periodicity of paleo-geohazards recorded in sediments, the extreme geohazards can be predicted and its damage can be somewhat mitigated. The geology, geochemistry and mineralogy of the island sediments ahead of Yeongjeon coast, Haenam-gun, the most southern part, Korean peninsula were investigated. Shells from the three shelly gravel layers were used for 14C age dating and cube samples were collected at 5-10cm intervals for measuring the magnetic susceptibility, grain size distribution and geochemical analyses at the study site. Granitic gneiss clasts of debris flow mixed with the weathered tuffaceous materials on the eroded face of tuff rock. The sediments of Pleistocene were also eroded almost horizontally and unconformably covered by late Holocene shelly gravel deposits characterized by some kind of shells and unsorted sub-rounded or rounded gravels to pebbles. The horizontal erosion face is 2.2m in elevation and the current erosion face of beach was observed at 1.2m in elevation. This indicates that the former erosion face would have been formed at higher sea level than those of latter one by the similar mechanism of current erosion in the study site. Three shelly gravel layers overlie the erosion face from 2.2m to 2.9m in elevation. The reflected water energy caused by stronger storm would have been needed for delivering gravels and cobbles to the erosion face. Three shell layers dated as 3200 yr BP, 1900 yr BP, and 1700 yr BP, respectively. Four sedimentary units, from unit 1 to 4 in ascending order, are distinguished on the basis of sedimentary textures, shell contents, grain size distribution and vertical color variations. The sand ratios in the grain size distribution

  9. Functions of slags and gravels as substrates in large-scale demonstration constructed wetland systems for polluted river water treatment.

    PubMed

    Ge, Yuan; Wang, Xiaochang; Zheng, Yucong; Dzakpasu, Mawuli; Zhao, Yaqian; Xiong, Jiaqing

    2015-09-01

    The choice of substrates with high adsorption capacity, yet readily available and economical is vital for sustainable pollutants removal in constructed wetlands (CWs). Two identical large-scale demonstration horizontal subsurface flow (HSSF) CWs (surface area, 340 m(2); depth, 0.6 m; HLR, 0.2 m/day) with gravel or slag substrates were evaluated for their potential use in remediating polluted urban river water in the prevailing climate of northwest China. Batch experiments to elucidate phosphorus adsorption mechanisms indicated a higher adsorption capacity of slag (3.15 g/kg) than gravel (0.81 g/kg), whereby circa 20 % more total phosphorus (TP) removal was recorded in HSSF-slag than HSSF-gravel. TP removal occurred predominantly via CaO-slag dissolution followed by Ca phosphate precipitation. Moreover, average removals of chemical oxygen demand and biochemical oxygen demand were approximately 10 % higher in HSSF-slag than HSSF-gravel. Nevertheless, TP adsorption by slag seemed to get quickly saturated over the monitoring period, and the removal efficiency of the HSSF-slag approached that of the HSSF-gravel after 1-year continuous operation. In contrast, the two CWs achieved similar nitrogen removal during the 2-year monitoring period. Findings also indicated that gravel provided better support for the development of other wetland components such as biomass, whereby the biomass production and the amount of total nitrogen (TN; 43.1-59.0 g/m(2)) and TP (4.15-5.75 g/m(2)) assimilated by local Phragmites australis in HSSF-gravel were higher than that in HSSF-slag (41.2-52.0 g/m(2) and 3.96-4.07 g/m(2), respectively). Overall, comparable pollutant removal rates could be achieved in large-scale HSSF CWs with either gravel or slag as substrate and provide a possible solution for polluted urban river remediation in northern China.

  10. Transient Responses of Gravel Bars to Increases in Sediment Supply - Field & Flume

    NASA Astrophysics Data System (ADS)

    Podolak, C.

    2010-12-01

    Bedforms in a gravel-bed river respond to a combination of water discharge, the rate and size of sediment supply, and valley-scale geometry. This study investigates bar response to an increase in sediment supply. In a large flume (2.75 m wide) with a plane bed of mixed sand and gravel (gravel D50 = 10 mm; 15% sand), alternate bars were formed by inducing a slight perturbation in the flow at the upstream end. After the bars and sediment flux reached a steady state, sediment supply was increased (from 45 kg/min to 70 kg/min). After the bed and sediment flux reached steady state, sediment supply was again increased (from 70 kg/min to 140 kg/min). Throughout the experiment high-frequency (1 Hz) measurements of the sediment flux, as well as moderate frequency (every 90 minutes) measurements of the bed topography were made. As the channel increased transport capacity to match the increased sediment supply, the initial bed adjustment was an increase in slope with near uniform deposition in the cross-stream direction. The bed then evolved to a steady-state configuration in which the locations and dimensions of the bars and pools were very similar to the pre-augmentation condition. During the adjustment process, the cross-stream relief initially decreased, the bar wavelengths decreased, and the bar celerity increased. The evolution from the lower-relief interim state to the post-augmentation steady state was reminiscent of initial bar development from a plane bed. A similar sequence of bed adjustment was observed on the Sandy River, Oregon, following a large increase in sediment flux due to the 2007 Marmot Dam removal. Measurements of bedform evolution immediately downstream of the dam show a transition from a long high-relief lateral bar along the right bank, to a lower-relief multiple short wavelength mid-channel bars, finally back to a long high-relief lateral bar along the right bank, albeit 4-5 meters higher than the original. Previous work on bedform response to

  11. The impact of aquatic animals on sediment transport in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew; Rice, Stephen; Pledger, Andrew

    2014-05-01

    Invertebrate animals have an important and complex role in altering the physical and biochemical environment of marine and freshwater sediments. A database has been compiled which aims to include all published articles that consider how macroinvertebrates alter aquatic systems. The database contains 2300 entries spanning over 120 years of study and representing 800 species. However, only 24 studies focus on invertebrate animals altering geomorphic processes in streams. This is despite the fact that invertebrates are ubiquitous in temperate and tropical rivers; they regularly occur in high densities; and are known to interact with substrates in a multitude of ways; for example when burrowing, moving and foraging for food. Here, we present two examples that demonstrate the potential biogeomorphic significance of invertebrates in rivers. First, the activity of signal crayfish (Pacifastacus leniusculus), a globally widespread invasive crustacean, altered the structure and topography of fluvial substrates in flume experiments. As a result of crayfish destroying grain-scale structures, twice as much material was entrained from disturbed gravel substrates in comparison to control surfaces that had not been exposed to crayfish. Second, Hydropsychid caddisfly larvae bind grains together with silk, which is spun for a variety of purposes including the creation of nets to catch organic matter from the flow. Fine gravels (2-6 mm) that were colonised by natural densities of caddisfly, required significantly greater shear stresses to be mobilised in comparison to uncolonised, control gravels. Whilst these examples demonstrate the potential for invertebrates to alter sediment transport in rivers, their impacts need to be assessed in field environments and at larger scales in order to fully appreciate their significance. Long-term monitoring of radio-tagged crayfish and suspended sediment transport in the Brampton arm of the River Nene suggests that signal crayfish are important

  12. Leaching of Natural Gravel and Concrete by CO2 - Experimental Design, Leaching Behaviour and Dissolution Rates

    NASA Astrophysics Data System (ADS)

    Fuchs, Rita; Leis, Albrecht; Mittermayr, Florian; Harer, Gerhard; Wagner, Hanns; Reichl, Peter; Dietzel, Martin

    2015-04-01

    The durability of building material in aggressive aqueous environments is a key factor for evaluating the product quality and application as well as of high economic interest. Therefore, aspects of durability have been frequently investigated with different approaches such as monitoring, modelling and experimental work. In the present study an experimental approach based on leaching behaviour of natural calcite-containing siliceous gravel used as backfill material in tunnelling and sprayed concrete by CO2 was developed. CO2 was introduced to form carbonic acid, which is known as an important agent to induce chemical attack. The goals of this study were (i) to develop a proper experimental design to survey the leaching of building materials on-line, (ii) to decipher individual reaction mechanisms and kinetics and (iii) to estimate time-resolved chemical resistance of the used material throughout leaching. A combined flow through reactor unit was successfully installed, where both open and closed system conditions can be easily simulated by changing flow directions and rates. The chemical compositions of the experimental solutions were adjusted by CO2 addition at pHstat conditions and monitored in-situ by pH/SpC electrodes and by analysing the chemical composition of samples throughout an experimental run. From the obtained data e.g. dissolution rates with respect to calcite were obtained for the gravel material, which were dependent on the individual calcite content of the leached material. The rates were found to reflect the flow rate conditions, and the kinetic data lay within the range expected from dissolution experiments in the CaCO3-CO2-H2O system. In case of concrete the reactions throughout the leaching experiment were complex. Coupled dissolution and precipitation phenomena (e.g. portlandite dissolution, calcite formation) occurred. The coupled reactions can be followed by the evolution of the solution chemistry. The overall rates of elemental removal from

  13. Impact of gravels and organic matter on the thermal properties of grassland soils in southern France

    NASA Astrophysics Data System (ADS)

    Calvet, J.-C.; Fritz, N.; Berne, C.; Piguet, B.; Maurel, W.; Meurey, C.

    2015-06-01

    Soil moisture is the main driver of temporal changes in values of the soil thermal conductivity. The latter is a key variable in land surface models (LSMs) used in hydrometeorology, for the simulation of the vertical profile of soil temperature in relation to soil moisture. Shortcomings in soil thermal conductivity models tend to limit the impact of improving the simulation of soil moisture in LSMs. Models of the thermal conductivity of soils are affected by uncertainties, especially in the representation of the impact of soil properties such as the volumetric fraction of quartz (q), soil organic matter, and gravels. As soil organic matter and gravels are often neglected in LSMs, the soil thermal conductivity models used in most LSMs represent the mineral fine earth, only. Moreover, there is no map of q and it is often assumed that this quantity is equal to the volumetric fraction of sand. In this study, q values are derived by reverse modelling from the continuous soil moisture and soil temperature sub-hourly observations of the Soil Moisture Observing System - Meteorological Automatic Network Integrated Application (SMOSMANIA) network at 21 grassland sites in southern France, from 2008 to 2015. The soil temperature observations are used to retrieve the soil thermal diffusivity (Dh) at a depth of 0.10 m in unfrozen conditions, solving the thermal diffusion equation. The soil moisture and Dh values are then used together with the measured soil properties to retrieve soil thermal conductivity (λ) values. For ten sites, the obtained λ value at saturation (λsat) cannot be retrieved or is lower than the value corresponding to a null value of q, probably in relation to a high density of grass roots at these sites or to the presence of stones. For the remaining eleven sites, q is negatively correlated with the volumetric fraction of solids other than sand. The impact of neglecting gravels and organic matter on λsat is assessed. It is shown that these factors have a

  14. Invertebrate drift during in-channel gravel mining: the Upper River Cinca (Southern Pyrenees)

    NASA Astrophysics Data System (ADS)

    Béjar, Maria; Gibbins, Chris; Vericat, Damià; Batalla, Ramon J.; Muñoz, Efrén; Ramos, Ester; Lobera, Gemma; Andrés López-Tarazón, Jose; Piqué, Gemma; Tena, Álvaro; Buendía, Cristina; Rennie, Colin D.

    2015-04-01

    Invertebrate drift has been widely studied as an important mechanism to structure the benthic assemblages and as a part of invertebrate behavior in fluvial systems. River channel disturbance is considered the main factor affecting the organization of riverine communities and contributes to key ecological processes. However, little is known about involuntary drift associated to bed disturbance due to the difficulties associated with sampling during floods. In-channel gravel mining offers an opportunity to study involuntary drift associated not only to local bed disturbances but also to sudden changes on suspended sediment concentrations and flow. High suspended sediment concentrations and sudden changes in flow also prompt drift due to the limiting conditions (i.e. lack of oxygen, hydric stress). Within this context, invertebrate drift was monitored in the Upper River Cinca (Southern Pyrenees) during two gravel mining activities performed in summer 2014. The data acquisition design includes: drift, suspended sediment, bedload, bed mobility and flow. Data was acquired before, during and after mining at different sampling locations located upstream and downstream the perturbation. Drift and suspended sediment transport were sampled at 5 sections: 1 control site upstream the mining and 4 downstream. Bedload samples were collected just downstream the channel where gravels were extracted. Bed mobility and changes on topography were assessed by means of GPS-aDcp and repeat topographic surveys. Discharge was continuously recorded 2.5 km downstream the mining location. Additionally, two turbidity meters registered water turbidity at 15 minute intervals in two of the four sampling sections located downstream. This experimental design provides data on the spatial and temporal variability of drift associated to a local bed disturbance that (i) changes the distribution of flow across the section where mining was performed, (ii) increase substantially suspended sediment

  15. Performance of a half-saturated vertical flow wetland packed with volcanic gravel in stormwater treatment.

    PubMed

    Chen, Yaoping; Park, Kisoo; Niu, Siping; Kim, Youngchul

    2014-01-01

    A half-saturated pilot-scale wetland planted with Acorus calamus was built to treat urban stormwater. The design comprises a sedimentation tank for pretreatment, and a vertical flow volcanic gravel wetland bed equipped with a recirculation device. Eighteen rainfall events were monitored in 2012. The treatment system achieved total removal efficiencies of 99.4, 81, 50, and 86% for suspended solids, organic matter, nitrogen and phosphorus, respectively, and 29, 68, and 25% for copper, zinc, and lead, respectively, at a 3-day hydraulic residence time. In the wetland bed, the removal of ammonia, total nitrogen, and zinc were improved by recirculation. Plant uptake provided 18% of nitrogen removal and 39% of phosphorus removal. During the experimental stage, only 1.4% of the pore volume in substrate was reduced due to clogging, implying that the wetland can operate without clogging for a relatively long period.

  16. Comparison of mineral resources calculation methods for different genetic types of gravel and sand deposits

    NASA Astrophysics Data System (ADS)

    Patašova, Tatjana; Jurgaitis, Algirdas

    2008-01-01

    Calculation of mineral resources and their proper assessment is relevant, since the stock of resources determines the economic independence of the state. The present work discusses gravel and sand deposits of different genetic type (kames, eskers, marginal glaciofluvial ridges, sandurs, glaciofluvial deltas and redrifted glaciofluvial aeolian formations). Their geological structure and formation conditions have been assessed; quality characteristics of mineral resources have been analysed; calculation of resources has been performed by applying old methods used in Lithuania up to now, such as those of geological blocks, profiles and isolines, as well as the up-to-date GRID method created on the basis of the triangle method in GIS environment. Comparison of resources assessed by different methods has revealed their advantages and disadvantages.

  17. Comparison of mineral resources calculation methods for different genetic types of gravel and sand deposits

    NASA Astrophysics Data System (ADS)

    Patashova, T.

    2009-04-01

    Calculation of mineral resources and their proper assessment is relevant, since the stock of resources determines the economic independence of the state. I would like present the work wherein discusses gravel and sand deposits of different genetic type (kames, eskers, marginal glaciofluvial ridges, sandurs, glaciofluvial deltas and redrifted glaciofluvial aeolian formations). Their geological structure and formation conditions have been assessed; quality characteristics of mineral resources have been analysed; calculation of resources has been performed by applying most popular resources calculating methods used in Lithuania up to now, such as those of geological blocks, profiles and isolines, as well as the up-to-date GRID method created on the basis of triangle method in GIS environment. Comparison of resources assessed by different methods has revealed their advantages and disadvantages, their availability subject to deposits‘genetic types.

  18. A study of radioactivity in modern stream gravels and its possible application as a prospecting method

    USGS Publications Warehouse

    Chew, Randall T., III

    1955-01-01

    Traverses along some streams of the Colorado Plateau in areas known to contain minable uranium deposits show that anomalous radiation in the stream gravels can be detected with a suitable counter downstream from the deposits. The amount of radiation is influenced by the size of the uranium deposit, the size of the drainage area of the stream, the grain size of the sediments, and the lithology of the rocks over which the stream flows. The spacing of the stations where readings are taken is controlled by the size of the stream, and special readings are also taken directly downstream from important tributaries. An anomaly is empirically defined as a 10 percent rise over background. Radioactive material from large uranium deposits has been detected as much as 1 mile downstream. Radioactive material from smaller deposits is detachable over shorter distances. The method is slow but appears to be a useful prospecting tool under restricted conditions.

  19. Coral-gravel storm ridges: examples from the tropical Pacific and Caribbean

    USGS Publications Warehouse

    Richmond, Bruce M.; Morton, Robert A.

    2007-01-01

    Extreme storms in reef environments have long been recognized as a mechanism for depositing ridges of reef-derived coarse clastic sediment. This study revisits the storm ridges formed by Tropical Cyclone Bebe on Funafuti, Tuvalu and Tropical Cyclone Ofa on Upolu, Western Samoa in the South Pacific, and Hurricane Lenny on Bonaire, Netherlands Antilles in the Caribbean. Ridge characteristics produced by these storms include: heights of 1–4 m, widths of 8–50 m, and lengths up to 18 km. The ridges tend to be higher and steeper on their landward margins than on their seaward margins and are composed mostly of re-worked coral rubble derived from reef front settings with smaller amounts of fresh broken coral (5–30%). Characteristics of these modern gravel storm ridges can be used to help identify ancient storm deposits and to differentiate between other coarse-grained deposits such as those created by tsunamis.

  20. The impact of hydrograph variability and frequency on the morphodynamics of gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Plumb, Ben; Franca, Mário; Juez, Carmelo; Schleiss, Anton; Annable, William

    2016-04-01

    Hydromodification is the alteration of natural watershed hydrologic processes, which is known to change the way that water naturally enters watercourses. In the case of urbanization, this change has manifested through individual hydrograph characteristics (resulting in a decrease in duration and in the time-to-peak), as well as through the increase of the frequency of morphologically significant flood events. These hydrologic changes have been documented to impact the morphology of gravel-bed rivers, often resulting in channel degradation. However, the actual extent that urbanization changes bedload transport characteristics, which is known to be the most important driver of channel morphology, are not yet known. A laboratory experiment was undertaken in a 0.5m gravel-bed flume with sediment feed using a single poorly sorted bimodal sediment mixture in order to evaluate the impacts of changing hydrograph characteristics and frequencies on bedload transport and bed morphology. The hydrograph characteristics and frequencies were derived from long term stream-gauge records of urbanizing gravel-bed watercourses. These records are long enough to therefore be representative of the actual relative changes of the hydrologic regime; from an unaltered to a highly hydromodified system. A series of four hydrologic scenarios were established, representing 10 years of morphologically significant discharge events for four different stages of urban land-use, and corresponding hydrologic regimes. Each scenario begins with the same initial conditions and is allowed to evolve naturally with each successive hydrograph. For each scenario, the hydrograph duration and unsteadiness were varied, while peak discharge remained constant for all scenarios. In addition, the number of hydrographs ranged from nine to 33 for the unaltered to the most hydromodified scenarios, respectively. Discharge was measured constantly with a v-notch weir, and varied with a calibrated valve relationship

  1. Comparison of Machine Learning methods for incipient motion in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos

    2013-04-01

    Soil erosion and sediment transport of natural gravel bed streams are important processes which affect both the morphology as well as the ecology of earth's surface. For gravel bed rivers at near incipient flow conditions, particle entrainment dynamics are highly intermittent. This contribution reviews the use of modern Machine Learning (ML) methods implemented for short term prediction of entrainment instances of individual grains exposed in fully developed near boundary turbulent flows. Results obtained by network architectures of variable complexity based on two different ML methods namely the Artificial Neural Network (ANN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are compared in terms of different error and performance indices, computational efficiency and complexity as well as predictive accuracy and forecast ability. Different model architectures are trained and tested with experimental time series obtained from mobile particle flume experiments. The experimental setup consists of a Laser Doppler Velocimeter (LDV) and a laser optics system, which acquire data for the instantaneous flow and particle response respectively, synchronously. The first is used to record the flow velocity components directly upstream of the test particle, while the later tracks the particle's displacements. The lengthy experimental data sets (millions of data points) are split into the training and validation subsets used to perform the corresponding learning and testing of the models. It is demonstrated that the ANFIS hybrid model, which is based on neural learning and fuzzy inference principles, better predicts the critical flow conditions above which sediment transport is initiated. In addition, it is illustrated that empirical knowledge can be extracted, validating the theoretical assumption that particle ejections occur due to energetic turbulent flow events. Such a tool may find application in management and regulation of stream flows downstream of dams for stream

  2. Remote Mapping of River Gravel Interstitial Spaces Availability for Juvenile Salmon Sheltering (Invited)

    NASA Astrophysics Data System (ADS)

    Bergeron, N.; Calsamiglila, A.; Dugdale, S. J.; Bérubé, F.

    2013-12-01

    Juvenile salmonid use interstitial gravel spaces to shelter from predators and adverse hydroclimatic conditions. Shelter availability is therefore a key habitat factor to consider in habitat quality mapping. Finstad et al. (2007) developed a method for the measurement of shelter availability in the field using PVC tubes of various diameter and length. The method, which involves probing the bed with the tubes, provides high quality measurements of shelter abundance and size distribution but it is laborious and exceedingly time consuming to apply at large spatial scales. We tested two different remote methods for estimating substrate shelter availability at a large number of sampled locations over a test gravel bed reach of the Restigouche river, an Atlantic salmon river of the Gaspésie peninsula, Québec, Canada. At each sampled location, Finstad's method was first used to measure "true" reference shelter characteristics. Then, the two remote methods were used to estimate shelter characteristics over the same sampled locations. The first remote method used Agisoft Photoscan to produce hi-resolution 3D models of river bed surfaces from close-range (<150 cm from the bed) digital images of the sampled bed areas. Various methods were developed and tested for extracting shelters from these models. The second remote method used high-resolution airborne imagery to extract textural properties of the images over the sampled locations and to calibrate relationships between texture values and shelter characteristics as measured with Finstad's method. In this presentation, the performance of these two methods is analysed with regards to their ability to provide adequate estimates of shelter availability over large spatial scales.

  3. On the evaluation of sediment transport in gravel-bed rivers with alternate bars

    NASA Astrophysics Data System (ADS)

    Francalanci, S.; Solari, L.; Toffolon, M.; Parker, G.

    2012-04-01

    In natural gravel-bed streams, the complex topography of the bed can cause variation of flow resistance and sediment transport. Previous studies have shown that in addition to grain resistance (skin friction), flow resistance is also caused by bank roughness, channel bars, bed undulations and channel curvature. Sediment transport is similarly influenced by the complex topography, and the transport rate can vary spatially. A 3D numerical models was used to generate a detailed description of the flow and bedload transport fields in gravel bed rivers. Here we quantify the reach-averaged hydraulic resistance and sediment transport regime that prevails when self-formed alternate river bars are present, and compare with the regime that would prevail were no bars are present. We do this by comparing the results of (a) a 3D morphodynamic model in which bars form as a consequence of flow-bed interaction and (b) an "equivalent" 1D case, which refers to flat bed conditions, but otherwise corresponding to identical average velocity and bed slope. The 3D numerical model is applied to generate different bed topographies of alternate bars at regime morphological equilibrium, then extended to non equilibrium conditions for decreasing shear stress within a sensitivity analysis context. The contribution of grain resistance is estimated with the local values of the bed shear stress, while bar resistance results from the overall deviation of the flow field from that occurring in the flat bed configuration. The local sediment transport in both the longitudinal and transverse directions is computed with the local Shields stress and local bed inclination. The calculations result in a method for correcting 1D models to account for the total sediment transport and resistance in a cross-section due to 3D effects of alternate bars. We term the resulting relations "morphologically averaged" sediment transport and resistance equations.

  4. The importance of fires and floods on tree ages along mountainous gravel-bed streams.

    PubMed

    Charron, I; Johnson, E A

    2006-10-01

    This paper examines the commonly accepted assumption in the riparian literature that areas adjacent to streams do not burn. Using time-since-fire distributions, derived from stand-origin maps for a watershed in the front ranges of the Canadian Rocky Mountains, we found that the areas adjacent to streams and the whole study watershed have similar fire frequencies. In addition, the relative importance of fires and floods is regulated by a change in channel morphology associated with the creation of bars. The results demonstrate that fires solely control tree establishment along straight streams without bars, while the influence of floods is observed at the onset of lateral- and point-bar formation. This occurs because bars are formed in-channel and require smaller discharges in order to be flooded, compared to higher terraces. Consequently, bars are the only surfaces being flooded more frequently than they are being burned. Thus, overall the results indicate that, on this watershed, areas adjacent to streams are not less likely to burn than the uplands, except for lateral and point bars. The generality of these results to other systems should be tested as they have important implications for current forest ecological definition of "riparian zones," which typically include all fluvially derived landforms, from the channel banks to the terraces. Indeed, this study suggests that along smaller, headwater, gravel-bed mountain watersheds, the forests found on terraces are only influenced by fire and not fluvial processes and should therefore not be included in the riparian zone, while the forests on bars are the only surfaces currently being influenced by fluvial processes. Such a change in definition has implications for both ecologists and forest managers aiming to protect areas along streams as they now must take into account the effects of two disturbances on these small gravel-bed streams. PMID:17069369

  5. Survival of Ancylostoma caninum on bare ground, pea gravel, and concrete.

    PubMed

    Mark, D L

    1975-12-01

    Studies were done to determine the survival of infective Ancylostoma caninum 3rd-stage larvae on 3 ground covers commonly used in dog run construction: bare ground, pea gravel, and concrete. Changes in numbers of recovered larvae were compared to meterologic data and the most significant weather variables were determined. Larvae were recovered 1 to 7 days on bare ground. Larvae survived longer in the fecal mass (mean of 3 days) than on the bare ground (mean of 2 days). Rain was the most significant variable, in that it was positive in its effects (higher larval count) early in the experiment (causing fecal mass breakdown and release of larvae) and negative (lower larval count) later in the experiment (spreading larvae away from test site). Larvae were also recovered 1 to 7 days on pea gravel. They were recovered for a mean 2.6 days from the fecal sample, a mean of 1.5 days from the rocks directly below the fecal mass, and a mean of 1.3 days from the remaining rocks. Here also, rain was the most significant weather factor. It was negatively significant (lower larval count) for the fecal mass (spreading of the larvae) and positive for those in the pebbles (increasing the moisture in the pebbles). Survival time of larvae on concrete was shorter than that on the other 2 substrates: from 0 to 2 days. Larvae were recovered a mean of 1.3 days from the fecal mass and a mean of 0., days from the surrounding concrete. Rain was positively significant early in the experiments in that it released trapped larvae from the fecal mass. Sunlight consistently was negatively significant (lower larval count) due to its lethality to the unprotected larvae.

  6. Evolution of gravel-bed channels in response to flash floods in dry environments

    NASA Astrophysics Data System (ADS)

    Salomon, Reut; Morin, Efrat; Enzel, Yehouda; Haviv, Itai

    2016-04-01

    Longitudinal profiles of alluvial channels may be altered rapidly in response to base-level lowering or changes in streamflow regime. Previous models simulating the response to such changes assumed steady and uniform streamflow discharge, or used a calibrated diffusion coefficient as a proxy for stream discharge. Such models do not account for intra and inter annual variance of flash flood volume and peak discharge which is typically high in channels of dry environments. We developed a new model for evolution of longitudinal profiles of gravel-bed channels combining kinematic wave flood routing with sediment transport based on the Meyer-Peter-Muller equation. The model predicts changes in channel longitudinal profile in response to changing streamflow regimes and base-level lowering rates. We have adopted a stochastic approach by formulating a "flash flood generator" which produces a synthetic data series of floods based on the probability distribution of peak discharge and hydrograph properties in a specific basin. The model was applied to the lower reach of Nahal Darga gravel-bed channel which drains into the Dead Sea Lake and is located in a dry climate regime. During the last 40 years, the initial uniform-gradient profile of this reach has changed to a convex profile as a result of a drastic artificial lowering of the Dead Sea level at a rate of 1 m/y. Measured channel profiles at several points in time were used for the model evaluation. The effect of different scenarios of lake level drop and of flash flood regime on the channel profile has been examined. The modeling results indicate a wide range of possible channel profiles due to the natural flow variance under a given flow regime. Extreme flow events play a major role on the channel profile evolution. Nevertheless, the effective discharge at the Darga channel, consists of floods with medium peak discharge and a recurrence interval of ~10 years.

  7. Positive and negative impacts of five Austrian gravel pit lakes on groundwater quality.

    PubMed

    Muellegger, Christian; Weilhartner, Andreas; Battin, Tom J; Hofmann, Thilo

    2013-01-15

    Groundwater-fed gravel pit lakes (GPLs) affect the biological, organic, and inorganic parameters of inflowing groundwater through combined effects of bank filtration at the inflow, reactions within the lake, and bank filtration at the outflow. GPLs result from wet dredging for sand and gravel and may conflict with groundwater protection programs by removing the protective soil cover and exposing groundwater to the atmosphere. We have investigated the impact on groundwater of five GPLs with different sizes, ages, and mean residence times, and all having low post-excavation anthropogenic usage. The results revealed highly active biological systems within the lake water, in which primary producers significantly reduced inflowing nitrate concentrations. Decalcification also occurred in lake water, reducing water hardness, which could be beneficial for waterworks in hard groundwater areas. Downgradient groundwater nitrate and calcium concentrations were found to be stable, with only minor seasonal variations. Biological degradation of organic material and organic micropollutants was also observed in the GPLs. For young GPLs adequate sediment deposits may not yet have formed and degradation processes at the outflow may consequently not yet be well established. However, our results showed that within 5 years from the cessation of excavation a protective sediment layer is established that is sufficient to prevent the export of dissolved organic carbon to downgradient groundwater. GPLs can improve groundwater quality in anthropogenically (e.g., pesticides and nitrate) or geologically (e.g., hardness) challenging situations. However, post-excavation usage of GPLs is often dominated by human activities such as recreational activities, water sports, or fish farming. These activities will affect lake and groundwater quality and the risks involved are difficult to predict and monitor and can lead to overall negative impacts on groundwater quality. PMID:23178886

  8. The importance of fires and floods on tree ages along mountainous gravel-bed streams.

    PubMed

    Charron, I; Johnson, E A

    2006-10-01

    This paper examines the commonly accepted assumption in the riparian literature that areas adjacent to streams do not burn. Using time-since-fire distributions, derived from stand-origin maps for a watershed in the front ranges of the Canadian Rocky Mountains, we found that the areas adjacent to streams and the whole study watershed have similar fire frequencies. In addition, the relative importance of fires and floods is regulated by a change in channel morphology associated with the creation of bars. The results demonstrate that fires solely control tree establishment along straight streams without bars, while the influence of floods is observed at the onset of lateral- and point-bar formation. This occurs because bars are formed in-channel and require smaller discharges in order to be flooded, compared to higher terraces. Consequently, bars are the only surfaces being flooded more frequently than they are being burned. Thus, overall the results indicate that, on this watershed, areas adjacent to streams are not less likely to burn than the uplands, except for lateral and point bars. The generality of these results to other systems should be tested as they have important implications for current forest ecological definition of "riparian zones," which typically include all fluvially derived landforms, from the channel banks to the terraces. Indeed, this study suggests that along smaller, headwater, gravel-bed mountain watersheds, the forests found on terraces are only influenced by fire and not fluvial processes and should therefore not be included in the riparian zone, while the forests on bars are the only surfaces currently being influenced by fluvial processes. Such a change in definition has implications for both ecologists and forest managers aiming to protect areas along streams as they now must take into account the effects of two disturbances on these small gravel-bed streams.

  9. Convergent Hydraulics and Knickpoint Migration in an Incising Gravel-Cobble River

    NASA Astrophysics Data System (ADS)

    Wyrick, J. R.; Pasternack, G. B.

    2007-12-01

    Regulated gravel-cobble rivers are known to incise, but the mechanism of incision is not well documented by process-based research. Widespread use of simple "stream power law" equations assumes that incision is caused by continuous downcutting that increases with discharge. To provide an alternate explanation that recognizes the inherent non-uniformity of natural channels, we hypothesize that regulated rivers experience waves of migrating knickpoints that retreat through riffles during low flow when riffle crests function as supercritical weirs and are rejuvenated by floods that downcut the intervening width-constricted pools. To test this new hypothesis, monitoring was performed on the rapidly incising 7-km Timbuctoo Bend of the lower Yuba River, CA, where 463,000 cubic meters of sediment have been scoured out in just the last seven years alone. Direct field measurements of velocity and depth fields were obtained at three migrating, horseshoe-shaped knickpoints in this reach. Also, detailed channel DEMs were obtained at different stages of knickpoint migration to track geomorphic change over seven years. At one of the knickpoints, a special torque sensor was deployed to map near-bed lift and drag stress components. Velocity fields reveal convergent hydraulics controlled by the horseshoe morphology that focus scour in the upstream center of the U-shape. At a relatively low discharge, supercritical flow and near-critical standing waves were observed. Furthermore, the peak near-bed drag stress that was directly measured exceeded 1000 Pa during this relatively low discharge regime, which explains why the bedforms are retreating so rapidly. These direct measurements were compared to similar measurements previously reported for horseshoe waterfalls analyzed in a flume, and will aid in determining the real mechanism for knickpoint migration and channel incision in regulated gravel-cobble rivers.

  10. Image analysis for measuring the size stratification in sand-gravel laboratory experiments

    NASA Astrophysics Data System (ADS)

    Orrú, C.; Chavarrías, V.; Uijttewaal, W. S. J.; Blom, A.

    2014-04-01

    Measurements of spatial and temporal changes in the grain-size distribution of the bed surface and substrate are crucial to improving the modelling of sediment transport and associated grain-size selective processes. We present three complementary techniques to determine such variations in the grain-size distribution of the bed surface in sand-gravel laboratory experiments, as well as the resulting size stratification: (1) particle colouring, (2) removal of sediment layers, and (3) image analysis. The resulting stratification measurement method was evaluated in two sets of experiments. In both sets three grain-size fractions within the range of coarse sand to fine gravel were painted in different colours. Sediment layers are removed using a wet vacuum cleaner. Subsequently areal images are taken of the surface of each layer. The areal fraction content, that is, the relative presence of each size fraction over the bed surface, is determined using a colour segmentation algorithm which provides the areal fraction content of a specific colour (i.e. grain size) covering the bed surface. Particle colouring is not only beneficial to this type of image analysis but also to the observation and understanding of grain-size selective processes. The size stratification based on areal fractions is measured with sufficient accuracy. Other advantages of the proposed size stratification measurement method are (a) rapid collection and processing of a large amount of data, (b) a very high spatial density of information on the grain-size distribution, (c) the lack of disturbances to the bed surface, (d) only minor disturbances to the substrate due to the removal of sediment layers, and (e) the possibility to return a sediment layer to its original elevation and continue the flume experiment. The areal fractions are converted into volumetric fractions using an existing conversion model.

  11. Channel adjustments to a succession of water pulses in gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Ferrer-Boix, Carles; Hassan, Marwan A.

    2015-11-01

    Gravel bed rivers commonly exhibit a coarse surface armor resulting from a complex history of interactions between flow and sediment supply. The evolution of the surface texture under single storm events or under steady flow conditions has been studied by a number of researchers. However, the role of successive floods on the surface texture evolution is still poorly understood. An experimental campaign in an 18 m-long 1 m-wide flume has been designed to study these issues. Eight consecutive runs, each one consisting of a low-flow period of variable duration followed by a sudden flood (water pulse) lasting 1.5 h, have been conducted. The total duration of the experiment was 46 h. The initial bed surface was created during a 280 h-long experiment focused on the influence of episodic sediment supply on channel adjustments. Our experiments represent a realistic armored and structured beds found in mountain gravel bed rivers. The armor surface texture persists over the duration of the experiment. The experiment exhibits downstream fining of the bed-surface texture. It was found that sorting processes were affected by the duration of low-flow between flood pulses. Since bed load transport is influenced by sediment sorting, the evolution of bed load transport is impacted by the frequency of the water pulses: short interpulse durations reduce the time over which fine material (transported as bed load) can be winnowed. This, in turn, contributes to declining reduction of the bed load transport over time while the sediment storage increases.

  12. 43 CFR 3503.16 - May I obtain permits or leases for sand and gravel in Nevada under the terms of this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false May I obtain permits or leases for sand... Leasing Available Areas Under Blm Management § 3503.16 May I obtain permits or leases for sand and gravel...; BLM will consider any new applications for sand and gravel under the regulations at part 3600 of...

  13. 43 CFR 3503.16 - May I obtain permits or leases for sand and gravel in Nevada under the terms of this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false May I obtain permits or leases for sand... Leasing Available Areas Under Blm Management § 3503.16 May I obtain permits or leases for sand and gravel...; BLM will consider any new applications for sand and gravel under the regulations at part 3600 of...

  14. 43 CFR 3503.16 - May I obtain permits or leases for sand and gravel in Nevada under the terms of this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false May I obtain permits or leases for sand... Leasing Available Areas Under Blm Management § 3503.16 May I obtain permits or leases for sand and gravel...; BLM will consider any new applications for sand and gravel under the regulations at part 3600 of...

  15. 43 CFR 3503.16 - May I obtain permits or leases for sand and gravel in Nevada under the terms of this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false May I obtain permits or leases for sand... Leasing Available Areas Under Blm Management § 3503.16 May I obtain permits or leases for sand and gravel...; BLM will consider any new applications for sand and gravel under the regulations at part 3600 of...

  16. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltrati...

  17. CHARACTERIZATION OF METAL ADSORPTION VARIABILITY IN A SAND & GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS, U.S.A.

    EPA Science Inventory

    Several geochemical properties of an aquifer sediment that control metal-ion adsorption were investigated to determine their potential use as indicators of the spatial variability of metal adsorption. Over the length of a 4.5-m-long core from a sand and gravel aquifer, lead (Pb2+...

  18. Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Spagnuolo, M. G.; de Silva, S. L.; Zimbelman, J. R.; Neely, E. M.

    2015-06-01

    Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development. Combined with results from a field meteorological station, it is found that the gravel components can initially only move under gusty conditions, with the impact of saltating pumice and sand lowering threshold. Pumices can saltate without the impact of sand, implying that they are both an impelling force for other pumices and lithics, and are the most likely clast constituent to undergo transport. Accumulation into bedforms in the tunnel occurs when clasts self organize, with larger, more immobile particles holding others in place, a process that is accentuated in the field on local topographic highs of the undulating ignimbrite bedrock surface. In such an arrangement, pumices and especially lithics remain largely stable, with vibration the dominant mode of motion. This results in sand and silt entrapment and growth of the bedform through infiltration and uplift of the gravel. Resulting bedforms are gravel-mantled ripple-like forms cored with fine grained sediment. The Martian aeolian environment is similar to the Puna in terms of having grains of variable size, infrequent wind gusts, and saltating sand, implying that some TARs on the planet may have formed in a similar way.

  19. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

    PubMed Central

    2014-01-01

    Background Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. Methods The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). Results Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. Conclusion The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm. PMID:24397917

  20. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.

    PubMed

    Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching

    2010-10-01

    Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.

  1. Sedimentology and depositional history of Neogene gravel deposits in lower Tornillo Creek area of Big Bend National Park, Texas

    SciTech Connect

    Thurwachter, J.E.

    1984-04-01

    Neogene gravel deposits in the lower Tornillo Creek area of Big Bend National Park, Texas, record the filling of a small structural basin formed during Basin and Range tectonism. Four lithofacies are recognized in the Late Miocene La Noria member (informal name): (1) a medial braided-stream lithofacies consisting of upward-fining packages of cross-bedded gravel, sandstone, and siltstone; (2) a distal braided-stream lithofacies consisting of poorly-defined upward-fining packages of fine gravel, sandstone, and mudstone; (3) a calcrete-rich gravel and sandstone lithofacies representing strike-valley and alluvial-fan deposition, and (4) and ephemeral lake-plain lithofacies consisting of massive and burrowed mudstones with sheet-like sandstone interbeds. Upward-fining packages in the braided-stream lithofacies represent the lateral migration and avulsion of the stream tract across the basin; together with the strike-valley and alluvial-fan deposits, these record the initial stages of basin filling. Provenance studies show that much of this sediment was derived from northern Mexico. Overlying ephemeral-lake deposits record the structural tilting and closing of the downstream (north) end of the basin. Gravels and minor sandstones of the Pleistocene Estufa member (informal name) represent basinward progradation of alluvial fans. Deposition of the Estufa member resulted from: (1) Quaternary tectonic activity in the Chisos Mountains area; (2) lowering of local base level by post-Miocene development of the Rio Grande drainage through the area; and (3) Pleistocene pluvial-period climatic changes. Subsequent Quaternary faulting has caused minor deformation of the deposits.

  2. Innovative Bed Load Measurement System for Large Alpine Gravel-Bed Rivers

    NASA Astrophysics Data System (ADS)

    Seitz, H.; Habersack, H. M.

    2009-04-01

    The aim of the work is to figure out the bed load transport processes using direct and surrogate measurement methods for the free flowing reach of the Drau River and its most important tributary Isel River, both large Alpine gravel-bed rivers, situated in the south western part of Austria. There are some techniques for bed load measurements in natural streams; we used collecting moving particles and indirectly determining transport intensity at the study sites. Former measurements in the study reach were performed also using mobile bed load samplers and fixed bed load samplers. Individually they all are adequate bed load measurement instruments - used in combination they are complementing one another, whereas each applied separately leads to specific deficits. The investigation payed special attention on results out of the geophone installations, whereas steel plate vibrations (the plates are mounted on top of concrete structures even with the river bed surface) caused by bed load particles with a diameter larger than about 20 mm are inducing a signal into the geophones. The signal above a defined threshold voltage than is recorded in a computer system as the sum of impacts during one minute intervals. The spatio-temporal distribution of the transported bed load material, its amount and the transport processes itself could be figured out for the first time out of continuous data collection since 2006 for large alpine gravel-bed rivers. Before building up the gauging stations there were no continuous recordings of bed load transport processes in large alpine rivers over their entire cross section, hence the investigation promises a better process understanding and the possibility to determine bed load transport rates and a rough approximation of the grain size distributions of the transported bed load material under different flow conditions. A relation between detected geophone records, the flow discharge and direct bed load sampling methods (Large Helley Smith

  3. Large Wood recruitment and transport along a piedmont gravel bed river

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Tonon, Alessia; Ravazzolo, Diego; Aristide Lenzi, Mario

    2015-04-01

    In recent years an increasing attention has been devoted on Large Wood (LW), focusing to its role and impact along riverine systems. However there is still a lack of knowledge about many aspects of its recruitment and displacement from the vegetated patches (e.g. floodplain and island) of a riverine environment. This research aims to analyse and consider the differences in LW recruitment during a flood event along a reach of a piedmont gravel bed river. The study has been carried out along a 3 km - long study reach located into the middle course of the gravel bed Piave River (North-Eastern Italian Alps). A buffer zone of 20 m - wide was considered along the floodplains and islands. Into this stripe every standing tree, with diameter ≥ 0.10 m, was measured manually (Diameter Breast Height-DBH; Height). Moreover, for each tree the GPS position was recorded and a numbered tag was installed to simplify the post event recovery. In November 2014 an over bankfull flood (Q=1039 m3 s-1; R.I=3.5 years) occurred. Preliminary results shows that 668 trees were recruited during the flood event thanks to both bank erosion processes along the floodplain banks and along the island shores. Analysing the origin, it is possible to define as 401 (60.03 %) trees were recruited from the floodplain, 244 (36.53%) from fluvial islands and, finally, 23 (3.44%) trees were not completely moved into the active channel area and recruited by the flood, but were just uprooted. Thanks to the accurate dendrometric measurements, it has been possible to define the dimensions for both category of LW, recruited from floodplain and island respectively. Looking to the minimum, maximum and mean height detected were defined values of 2.00, 20.00 and 8.98 m, and 2.20, 15.00 and 6.64 m, for floodplain and island, respectively. The DBH show minimum, maximum and mean values of about 0.10, 0.54 and 0.14 m, and 0.10, 0.44 and 0.14 m for floodplain and island, respectively. These dendrometric measurements

  4. Using Pneumatics to Perform Laboratory Hydraulic Conductivity Tests on Gravel with Underdamped Responses

    NASA Astrophysics Data System (ADS)

    Judge, A. I.

    2011-12-01

    A permeameter has been designed and built to perform laboratory hydraulic conductivity tests on various kinds of gravel samples with hydraulic conductivity values ranging from 0.1 to 1 m/s. The tests are commenced by applying 200 Pa of pneumatic pressure to the free surface of the water column in a riser connected above a cylinder that holds large gravel specimens. This setup forms a permeameter specially designed for these tests which is placed in a barrel filled with water, which acts as a reservoir. The applied pressure depresses the free surface in the riser 2 cm until it is instantly released by opening a ball valve. The water then flows through the base of the cylinder and the specimen like a falling head test, but the water level oscillates about the static value. The water pressure and the applied air pressure in the riser are measured with vented pressure transducers at 100 Hz. The change in diameter lowers the damping frequency of the fluctuations of the water level in the riser, which allows for underdamped responses to be observed for all tests. The results of tests without this diameter change would otherwise be a series of critically damped responses with only one or two oscillations that dampen within seconds and cannot be evaluated with equations for the falling head test. The underdamped responses oscillate about the static value at about 1 Hz and are very sensitive to the hydraulic conductivity of all the soils tested. These fluctuations are also very sensitive to the inertia and friction in the permeameter that are calculated considering the geometry of the permeameter and verified experimentally. Several gravel specimens of various shapes and sizes are tested that show distinct differences in water level fluctuations. The friction of the system is determined by calibrating the model with the results of tests performed where the cylinder had no soil in it. The calculation of the inertia in the response of the water column for the typical testing

  5. Spatial characterization of hydraulic conductivity of perialpine alluvial gravel-and-sand aquifers

    NASA Astrophysics Data System (ADS)

    Diem, Samuel; Vogt, Tobias; Höhn, Eduard

    2010-05-01

    For many hydrogeological and modeling problems on a scale of the order of 10-100 m, an assessment of the spatial distribution of hydraulic conductivity is of great importance. This is one of the tasks of the RECORD project (Restored Corridor Dynamics) of CCES (Competence Center Environment and Sustainability of the ETH Domain). This project aims to understand, how river restoration measures affect river - river corridor - groundwater systems in hydrologic and ecologic terms. The river Thur and the alluvial gravel-and-sand aquifer of the perialpine Thur valley flood plain were chosen for field investigations. In this aquifer, the distribution of hydraulic conductivity at the required scale has not yet been investigated. Thus, the aim of this work is to assess the spatial distribution of hydraulic conductivity of the aquifer on a scale of the order of 10-100 m. To accomplish this, four methods were applied on different scales. Comparing the results of the different methods should lead to an optimization of future hydraulic investigations in alpine and perialpine alluvial gravel-and-sand aquifers. The different methods were applied at a test site in the central part of the valley (Widen, Felben-Wellhausen/TG), which was instrumented with a total of 18 piezometers, covering an approximately 10×20 m area (aquifer thickness, 7 m). The gravel samples of the pre-liminary core drillings were sieved and out of the grain size distributions hydraulic conductivity was calculated (decimeter scale). Further, work included the conduction and analysis of a pumping test (decameter scale), flowmeter logs and multilevel slug tests (meter scale) with appropriate methods. A statistical evaluation of the values of hydraulic conductivity from the above methods showed that the results are quite diverse. Thus, the choice of the method to assess the distribution of hydraulic conductivity has to be done according to the problem and the required level of detail. The following recommendations

  6. The impact of aquatic animals on bedload transport in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Johnson, M.; Rice, S. P.

    2012-12-01

    Grain-scale processes are known to have large impacts on the transport of bed material in rivers. The structure, topography and distribution of grain sizes that make up a bed, all contribute to the mobility of fluvial substrates. Animals in rivers interact with the substrate in a multitude of ways, for example, when burrowing, moving and foraging for food. Alterations to the arrangement of grains that result from these activities have a demonstrable impact on particle stability and critical entrainment stresses. This raises the intriguing possibility that aquatic fauna have large, cumulative impacts on the structure of river bed material and, consequently, on the transport of bed material. The activities of signal crayfish (Pacifastacus leniusculus), a globally important invasive crustacean, alter the arrangement of surface grains in fluvial substrates. They also construct pits and mounds across surfaces within which they shelter. These structural and topographic alterations to surfaces were quantified using repeat laser scans to create Digital Elevation Models (DEMs) before and after crayfish activity. Crayfish moved grains up to 32 mm in diameter and with a submerged weight six times that of average adult crayfish. As a result of crayfish destroying grain-scale structures, 50% more material was entrained from disturbed fluvial substrates in comparison to control surfaces that had not been exposed to crayfish. Animals can also stabilise substrates. Hydropsychid caddisfly larvae bind grains together with silk, which is spun for a variety of purposes including the creation of nets to catch organic matter from the flow. Fine gravels (2-6 mm) that were colonised by natural densities of caddisfly, required 20% increases in shear stress to be mobilised in comparison to uncolonised, control gravels. Whilst these results demonstrate the potential for animals to affect grain-scale processes, their river-scale impact needs to be assessed in field environments, in the

  7. Quantifying the Role of Hyporheic Zone of Gravel Bed Rivers in the Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Marzadri, A.; Tonina, D.; Bellin, A.

    2008-12-01

    The hyporheic exchange resulting from the interaction between the stream and its surrounding saturated streambed sediments, has a profound impact on fluvial ecosystems. Bedforms cause near bed pressure gradients that induce a complex flow pattern within the hyporheic zone. This surface-subsurface water exchange influences important processes occurring at the interface between surface and subsurface waters, including nutrients and solute export. In the present work, we focus on the export of ammonium (NH4+), nitrate (NO3-) and their fate within the streambed of a gravel bed river. We modelled the hyporheic exchange by combining analytical solutions of the intra-gravel flows induced by alternate bars with a set of transport equations for NH4+ and NO3- coupled with first order kinetics. Transport is solved by particle tracking, assuming that local dispersion is negligible and considering that temperature affects the reaction rate coefficients. With this simple, yet powerful, model, we studied the interplay between streambed morphology and nitrogen fate within the hyporheic zone. We observed that while the hyporheic zone acts as a sink of ammonium to an extent that depends on the nitrification rate, it may act as a source or a sink of nitrate. Additionally, it can influence the emission of nitrogen gases (N2 and N2O), depending on the ratio between ammonium and nitrate concentrations in the stream and on the role of biomass uptake. We also observed that because of the shorter residence time nitrification dominates in small steep streams, while denitrification plays a major role in low-gradient large streams. Furthermore, the emission of nitrogen gases increases with the pore water temperature in small steep streams, but not with the thickness of alluvium depth, due to fact that the hyporheic flow mostly develops near the surface. On the other hand, the emission of nitrogen gases increases with both temperature and alluvium depth in low-gradient streams. The overall

  8. A procedure for classifying textural facies in gravel-bed rivers

    USGS Publications Warehouse

    Buffington, J.M.; Montgomery, D.R.

    1999-01-01

    Textural patches (i.e., grain-size facies) are commonly observed in gravel-bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified using a two-tier system of ternary diagrams that identifies the relative abundance of major size classes and subcategories of the dominant size. An iterative procedure of visual identification and quantitative grain-size measurement is used. A field test of our classification indicates that it affords reasonable statistical discrimination of median grain size and variance of bed-surface textures. We also explore the compromise between classification simplicity and accuracy. We find that statistically meaningful textural discrimination requires use of both tiers of our classification. Furthermore, we find that simplified variants of the two-tier scheme are less accurate but may be more practical for field studies which do not require a high level of textural discrimination or detailed description of grain-size distributions. Facies maps provide a natural template for stratifying other physical and biological measurements and produce a retrievable and versatile database that can be used as a component of channel monitoring efforts.Textural patches (i.e., grain-size facies) are commonly observed in gravel-bed channels and are of significance for both physical and biological processes at subreach scales. We present a general framework for classifying textural patches that allows modification for particular study goals, while maintaining a basic degree of standardization. Textures are classified using a two-tier system of ternary diagrams that identifies the relative abundance of major size classes and subcategories of the dominant size. An iterative procedure of visual identification and quantitative grain

  9. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the

  10. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Oswald, Sascha E.; Fleckenstein, Jan H.

    2015-04-01

    Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.

  11. Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column

    NASA Astrophysics Data System (ADS)

    Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan

    2015-12-01

    The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.

  12. Biofilm growth in gravel bed streams controls solute residence time distributions

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Hanrahan, Brittany; Bolster, Diogo; Tank, Jennifer

    2016-07-01

    Streambed substrates harbor a rich biome responsible for biogeochemical processing in riverine waters. Beyond their biological role, the presence of benthic and hyporheic biofilms can play an important role in influencing large-scale transport of solutes, even for conservative tracers. As biofilms grow and accumulate biomass, they actively interact with and influence surface and subsurface flow patterns. To explore this effect, we conducted experiments at the Notre Dame Linked Ecosystems Experimental Facility in four outdoor streams, each with different gravel beds. Over the course of 20 weeks we conducted transport experiments in each of these streams and observed different patterns in breakthrough curves as biofilms grew on the substrate. Biofilms played a major role in shaping the observed conservative transport patterns. Overall, while the presence of biofilms led to a decreased exchange rate between the fast (mobile) and slow (immobile) parts of the flow domain, water that was exchanged tended to be stored in the slow regions for longer times once biofilms had established. More specifically, we observed enhanced longitudinal dispersion in breakthrough curves as well as broader residence time distributions when biofilms were present. Biofilm colonization over time homogenized transport patterns across the four streams that were originally very distinct. These results indicate that stream biofilms exert a strong control on conservative solute transport in streams, a role that to date has not received enough attention.

  13. Effects of HRT and water temperature on nitrogen removal in autotrophic gravel filter.

    PubMed

    Xu, Jing-hang; He, Sheng-bing; Wu, Su-qing; Huang, Jung-Chen; Zhou, Wei-li; Chen, Xue-chu

    2016-03-01

    Organic Carbon added to low ratio of carbon to nitrogen (C/N ratio) wastewater to enhance heterotrophic denitrification performance might lead to higher operating costs and secondary pollution. In this study, sodium thiosulfate (Na2S2O3) was applied as an electron donor for a gravel filter (one kind of constructed wetland) to investigate effects of hydraulic retention time (HRT) and water temperature on the nitrate removal efficiency. The results show that with an HRT of 12 h, the average total nitrogen (TN) removal efficiencies were 91% at 15-20 °C and 18% at 3-6 °C, respectively. When HRT increased to 24 h, the average TN removal increased accordingly to 41% at 3-6 °C, suggesting denitrification performance was improved by extended HRT at low water temperatures. Due to denitrification, 96% of added nitrate nitrogen (NO3(-)-N) was converted to nitrogen gas, with a mean flux of nitrous oxide (N2O) was 0.0268-0.1500 ug m(-2) h(-1), while 98.86% of thiosulfate was gradually converted to sulfate throughout the system. Thus, our results show that the sulfur driven autotrophic denitrification constructed wetland demonstrated an excellent removal efficiency of nitrate for wastewater treatment. The HRT and water temperature proved to be two influencing factors in this constructed wetland treatment system.

  14. Water in sand and gravel deposits in McHenry County, Illinois

    SciTech Connect

    Nicholas, J.R.; Krohelski, J.T.

    1984-01-01

    Two general types of sand and gravel occur in McHenry County - unconfined aquifers, which are at or near the land surface, and semiconfined aquifers, which are overlain by one or more till members. Water levels in both types of aquifers are mapped from measurements made in the spring of 1979. The water-level configuration roughly parallels the land surface. Moraines and other topographically high features coincide with ground-water divides of local flow systems. Flow paths from divides to low-lands are relatively short - a few miles or less. Recharge predominates in uplands, whereas discharge predominates in lowlands. Water levels change seasonally in response to variations in recharge and discharge conditions. The highest water levels occur during spring and decline during the rest of the year. Ground water is of the calcium magnesium bicarbonate type and is of acceptable quality for most uses. However, for domestic and some industrial uses, treatment may be required to reduce hardness and to remove iron. Hardness ranged from 130 to 600 milligrams per liter as calcium carbonate, and dissolved iron concentrations ranges from less than 10 to 6200 micrograms per liter. The specific conductance of ground water ranged from 260 to 1170 micromhos per centimeter. Specific conductance exceeded 1000 micromhos per centimeter near Huntley and Hebron. Nitrate concentration was generally less than 0.68 milligrams per liter. 22 refs., 9 figs., 3 tabs.

  15. Efficacy of a vacuum benthos sampler for collecting demersal fish eggs from gravel substratum

    USGS Publications Warehouse

    Ruetz, C. R.; Jennings, C.A.

    1997-01-01

    We used two densities of eggs (low=900 eggs/m2; high=5100 eggs/m2) in laboratory experiments to estimate the recovery efficiency of the Brown benthos sampler for collecting fish eggs from gravel substrate and to determine if differences (e.g., 5-fold) in egg density in the substratum could be detected with the sampler. The mean egg recovery efficiency of the sampler in the low and high density treatments was 30% (SE=8.7) and 35% (SE=3.8), respectively. The difference between the treatment means was not significant. Therefore, data from the two treatments were pooled and used to estimate the recovery efficiency of the sampler (32.7%, SE=4.4). However, we were able to detect a 5?? difference in the number of eggs collected with the sampler between the two treatments. Our estimate of the recovery efficiency of the sampler for collecting fish eggs was less than those reported for the sampler's efficiency for collecting benthic macroinvertebrates. The low recovery efficiency of the sampler for collecting fish eggs does not lessen the utility of the device. Rather, ecologists planning to use the sampler must estimate the recovery efficiency of target fauna, especially if density estimates are to be calculated, because recovery efficiency probably is less than 100%. ?? Munksgaard, 1997.

  16. Groundwater resources and quality variations caused by gravel mining in coastal streams

    NASA Astrophysics Data System (ADS)

    Mas-Pla, J.; Montaner, J.; Solà, J.

    1999-03-01

    We study the effects of gravel mining on the aquifer-river system in the Baix Fluvià area (NE Spain). Field data show that instream mining has caused a decline of the water-table head of the unconfined aquifer along the Fluvià river. Further, dredging in its lowermost reaches reduces its stage and decreases its slope to zero, which facilitates mixing with sea-water, and thus salty-water intrusion from the river into the aquifer. A dimensionless solution of the Boussinesq's equation is derived to estimate the water-table shape and the amount of groundwater lost as runoff for any given decline of the river stage. A flow and solute transport finite-element model is also used to calculate groundwater loses for the Fluvià case. We find that results of the general analytical solution are consistent with those of the numerical model, which reproduces the actual layered aquifer and a more appropriate domain geometry. Finally, the observed chloride distribution and time evolution are broadly reproduced using the numerical model. It shows that significant chloride plumes develop after the cone of depression of the nearby wells reaches the river. However, a natural clean-up takes place in the absence of pumping when the natural water gradient turns completely towards the river.

  17. Channel dynamics and habitat development in a meandering, gravel bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Wydzga, M. A.; Dunne, T.

    2011-04-01

    We investigated how channel morphology, flow complexity, and habitat characteristics in a meandering gravel bed river evolved over time from a simple, reconfigured initial condition. Using a time series of topographic data, we measured rates of channel migration and morphologic change, documented patterns of sediment storage, and estimated rates of sediment supply. We constructed, calibrated, and validated hydrodynamic models to quantify how the evolving morphology influenced hydraulic conditions, flow complexity, and habitat suitability for Chinook salmon spawning and rearing. For a series of meander bends with constant curvature, similar bank materials, and an identical flow history, sediment supply and bar storage directly influenced channel migration rates. Habitat modeling indicated that the availability of Chinook salmon spawning habitat increased over time, whereas the majority of the reach continues to provide only low- to medium-quality rearing habitat for juvenile salmonids, primarily because of a lack of low-velocity refuge zones. However, other metrics of flow complexity indicate that areas of favorable flow conditions gradually expanded as point bars developed along the inner bank of each bend. These results indicate that although sediment supply can stimulate channel change and diversify river morphology, which acts to promote flow complexity and provide spawning habitat, these sediment-driven morphological changes might not create bioenergetically favorable habitat for juvenile salmonids.

  18. Critical shear stress for incipient motion of sand/gravel streambeds

    NASA Astrophysics Data System (ADS)

    Shvidchenko, Audrey B.; Pender, Gareth; Hoey, Trevor B.

    2001-08-01

    Results of an experimental study of the incipient motion of streambeds composed of sand/gravel sediment mixtures are reported and compared with the earlier findings for uniform sediments. The experiments were conducted in an 8 m long by 0.30 m wide glass-walled tilting flume and an 18 m long by 0.80-1.10 m wide trapezoidal concrete channel. A reference transport method is used to define the beginning of bed material movement. The experiments demonstrate that the incipient motion of individual size fractions within a mixture is controlled by their relative size with respect to median size (intergranular effects), mixture standard deviation (effect of the shape of grain-size distribution), absolute value of median size (absolute size effect), and bed slope (effect of relative depth on overall flow resistance). The shear stress at incipient motion of median-sized grains in mixtures is found to be the same as for uniform sediment of this size. The present findings are consistent with available flume and field data. A technique for calculating the critical shear stress of different grain sizes in coarse uniform sediments and unimodal/weakly bimodal sediment mixtures is proposed.

  19. The impact of ellipsoidal particle shape on pebble breakage in gravel

    PubMed Central

    Tuitz, Christoph; Exner, Ulrike; Frehner, Marcel; Grasemann, Bernhard

    2012-01-01

    We have studied the influence of particle shape and consequently loading configuration on the breakage load of fluvial pebbles. Unfortunately, physical strength tests on pebbles, i.e., point-load tests, can only be conducted under one specific stable loading configuration. Therefore, the physical uniaxial strength tests performed in this study were extended by a two-dimensional finite-element stress analysis, which is capable of investigating those scenarios that are not possible in physical tests. Breakage load, equivalent to that measured in unidirectional physical tests, was determined from the results of the stress analysis by a maximum tensile stress-based failure criterion. Using this assumption, allows the determination of breakage load for a range of different kind of synthetic loading configurations and its comparison with the natural breakage load distribution of the physical strength tests. The results of numerical modelling indicated that the configuration that required the least breakage load corresponded with the minor principal axis of the ellipsoidal pebbles. In addition, most of the simulated gravel-hosted loading configurations exceeded the natural breakage load distribution of fluvial pebbles obtained from the physical strength tests. PMID:26321870

  20. Geologie study off gravels of the Agua Fria River, Phoenix, AZ

    USGS Publications Warehouse

    Langer, W.H.; Dewitt, E.; Adams, D.T.; O'Briens, T.

    2010-01-01

    The annual consumption of sand and gravel aggregate in 2006 in the Phoenix, AZ metropolitan area was about 76 Mt (84 million st) (USGS, 2009), or about 18 t (20 st) per capita. Quaternary alluvial deposits in the modern stream channel of the Agua Fria River west of Phoenix are mined and processed to provide some of this aggregate to the greater Phoenix area. The Agua Fria drainage basin (Fig. 1) is characterized by rugged mountains with high elevations and steep stream gradients in the north, and by broad alluvial filled basins separated by elongated faultblock mountain ranges in the south. The Agua Fria River, the basin’s main drainage, flows south from Prescott, AZ and west of Phoenix to the Gila River. The Waddel Dam impounds Lake Pleasant and greatly limits the flow of the Agua Fria River south of the lake. The southern portion of the watershed, south of Lake Pleasant, opens out into a broad valley where the river flows through urban and agricultural lands to its confluence with the Gila River, a tributary of the Colorado River.

  1. Performance evaluation and modelling studies of gravel--coir fibre--sand multimedia stormwater filter.

    PubMed

    Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C

    2012-09-01

    A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.

  2. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2006-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning aerial extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  3. An Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits

    USGS Publications Warehouse

    Lucius, Jeffrey E.; Langer, William H.; Ellefsen, Karl J.

    2007-01-01

    This report is an introduction to surface geophysical techniques that aggregate producers can use to characterize known deposits of sand and gravel. Five well-established and well-tested geophysical methods are presented: seismic refraction and reflection, resistivity, ground penetrating radar, time-domain electromagnetism, and frequency-domain electromagnetism. Depending on site conditions and the selected method(s), geophysical surveys can provide information concerning areal extent and thickness of the deposit, thickness of overburden, depth to the water table, critical geologic contacts, and location and correlation of geologic features. In addition, geophysical surveys can be conducted prior to intensive drilling to help locate auger or drill holes, reduce the number of drill holes required, calculate stripping ratios to help manage mining costs, and provide continuity between sampling sites to upgrade the confidence of reserve calculations from probable reserves to proved reserves. Perhaps the greatest value of geophysics to aggregate producers may be the speed of data acquisition, reduced overall costs, and improved subsurface characterization.

  4. Hydrodynamics in a gravel beach and its impact on the Exxon Valdez oil

    NASA Astrophysics Data System (ADS)

    Guo, Qiaona; Li, Hailong; Boufadel, Michel C.; Sharifi, Youness

    2010-12-01

    This paper investigated the interaction of groundwater and seawater in a tidally influenced gravel beach. Field observations of water table, pore water salinity were performed. The two-dimensional finite element model MARUN was used to simulate observed water table and salinity. Based on field observations and model calibrations, a two-layered beach structure was identified which is characterized by a high-permeability surface layer underlain by a low-permeability lower layer. The salt wedge seaward of the low tide line was almost invariant in comparison with the strong fluctuations of the salinity plume in the surface layer of the intertidal zone. The presence of the two layers prevented the presence of a freshwater discharge "tube" between the upper saline plume and salt wedge. This is in contrast with the previous works where freshwater discharge tube was observed. The tide-induced submarine groundwater discharge (SGD) was estimated at 9 m3 d-1 m-1, a large value that is probably due to the large tidal range of ˜4.8 m and the very permeable surface layer. The freshwater-seawater dynamics revealed here may provide new insights into the complexity, intensity, and time scales of mixing between fresh groundwater and seawater in tidal beaches. The simulated water table of the beach was higher than the interface between the surface layer and the lower layer, which prevented Exxon Valdez oil from penetrating into the lower layer in 1989.

  5. Niche-partitioning of edaphic microbial communities in the Namib Desert gravel plain Fairy Circles.

    PubMed

    Ramond, Jean-Baptiste; Pienaar, Annelize; Armstrong, Alacia; Seely, Mary; Cowan, Don A

    2014-01-01

    Endemic to the Namib Desert, Fairy Circles (FCs) are vegetation-free circular patterns surrounded and delineated by grass species. Since first reported the 1970's, many theories have been proposed to explain their appearance, but none provide a fully satisfactory explanation of their origin(s) and/or causative agent(s). In this study, we have evaluated an early hypothesis stating that edaphic microorganisms could be involved in their formation and/or maintenance. Surface soils (0-5 cm) from three different zones (FC center, FC margin and external, grass-covered soils) of five independent FCs were collected in April 2013 in the Namib Desert gravel plains. T-RFLP fingerprinting of the bacterial (16S rRNA gene) and fungal (ITS region) communities, in parallel with two-way crossed ANOSIM, showed that FC communities were significantly different to those of external control vegetated soil and that each FC was also characterized by significantly different communities. Intra-FC communities (margin and centre) presented higher variability than the controls. Together, these results provide clear evidence that edaphic microorganisms are involved in the Namib Desert FC phenomenon. However, we are, as yet, unable to confirm whether bacteria and/or fungi communities are responsible for the appearance and development of FCs or are a general consequence of the presence of the grass-free circles.

  6. Groundwater Flow and Solute Transport in a Tidally influenced gravel beach in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Bobo, A. M.; Boufadel, M. C.; Abdollahi Nasab, A.

    2009-12-01

    We investigated beach hydraulics in a gravel beach on Eleanor Island, Prince William Sound, Alaska that was previously polluted with the Exxon Valdez oil spill in 1989. The beach contains trace amounts of oil such that they don’t affect beach hydraulics. Measurements of water pressure and salinity were analyzed and simulated using the model SUTRA (Saturated-Unsaturated Groundwater Flow and Solute Transport). The results indicated that the beach consists of two layers with contrasting hydraulic properties: an upper layer with a hydraulic conductivity of 10-2 m/s, and a lower layer with a hydraulic conductivity of 10-5 m/s. The presence of the layer of low hydraulic conductivity constrained the fall of the water table resulting in a water table fluctuation that is almost independent of distance from the shoreline. This is unlike previous studies, which occurred in sandy beaches, and where the fluctuation decreased going landward. The water table remained above the layers’ interface, which suggests that the oil did not penetrate the lower layer. This could explain the presence of only tracer amount of oil in the beach. A sudden seaward increase of the slope of the two layers’ interface resulted in water leaving the lower layer near the mid-intertidal zone, and draining to the sea through the upper layer. This created the effect of a hydraulic rupture separating the hydraulics in the seaward portion of the beach from the rest of beach, especially at low tide.

  7. Comparison of alternative remediation technologies for recycled gravel contaminated with heavy metals.

    PubMed

    Gao, Xiaofeng; Gu, Yilu; Huang, Sheng; Zhen, Guangyin; Deng, Guannan; Xie, Tian; Zhao, Youcai

    2015-11-01

    To evaluate the effects of different remediation methods on heavy metals contaminated recycled gravel, three immobilization agents (monopotassium phosphate, lime, nano-iron) and two mobilization agents (glyphosate, humic acid (HA)) were studied and compared. Results indicated that nano-iron powder was found to be more effective to immobilize Zn, Cu, Pb and Cd. Meanwhile, glyphosate presents a higher mobilization effect than HA with removal rates of about 66.7% for Cd, more than 80% for Cr, Cu and Zn, and the highest removal percentage of 85.9% for Cr. After the mobilization by glyphosate, the leaching rates of Zn, Cu and Cr were about 0.8%, and below 0.2% for Pb and Cd. The leaching rates after nano-iron powder treatment were 1.18% for Zn, 0.96% for Cr, 0.61% for Cu, 0.45% for Pb and Cd not detected. The formation and disappearance of metal (Zn/Cu/Cr/Pb/Cd) compounds were firmly confirmed through X-ray diffraction and scanning electron microscopy analyses on crystalline phases and morphological surface structures. PMID:26416851

  8. A balefill facility in a sand/gravel quarry and a question of wetland jurisdiction

    SciTech Connect

    Collins, G.

    1998-12-31

    The Solid Waste Agency of Northern Cook County (SWANCC), a municipal corporation of 26 city members, proposed to construct and operate a baled waste landfill facility as part of a comprehensive solid waste management and disposal program which included recycling. After a lengthy site selection process, SWANCC informed the US Army Corps of Engineers Chicago District of its intentions to convert a 298-acre sand/gravel pit to construct a state-of-the-art sanitary balefill facility. After twice determining it did not have jurisdiction, the Corps informed SWANCC that Waters of the United States, as defined in 33 CFR part 328.3(a), were present on the property. The Corps in its 404 permit review denied the permit because the mined landscape represented significant natural character and supported valuable wetland aquatic ecosystem. This paper presents the details of this project, the mined landscape`s environmental conditions based upon a multidisciplinary team site investigations of soils, hydrology, vegetation, wildlife, and wetland functions, and the extraordinary Corps decision that has sent this case to the federal district courts. This court case outcome may profoundly affect future mining and rehabilitation activities.

  9. Effects of sediment supply on surface textures of gravel-bed rivers

    USGS Publications Warehouse

    Buffington, J.M.; Montgomery, D.R.

    1999-01-01

    Using previously published data from flume studies, we test a new approach for quantifying the effects of sediment supply (i.e., bed material supply) on surface grain size of equilibrium gravel channels. Textural response to sediment supply is evaluated relative to a theoretical prediction of competent median grain size (D'50). We find that surface median grain size (D50) varies inversely with sediment supply rate and systematically approaches the competent value (D'50) at low equilibrium transport rates. Furthermore, equilibrium transport rate is a power function of the difference between applied and critical shear stresses and is therefore a power function of the difference between competent and observed median grain sizes (D'50 and D50). Consequently, we propose that the difference between predicted and observed median grain sizes can be used to determine sediment supply rate in equilibrium channels. Our analysis framework collapses data from different studies toward a single relationship between sediment supply rate and surface grain size. While the approach appears promising, we caution that it has been tested only on a limited set of laboratory data and a narrow range of channel conditions.

  10. Development of channel organization and roughness following sediment pulses in single-thread, gravel bed rivers

    USGS Publications Warehouse

    Madej, Mary Ann

    2001-01-01

    Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self-organizing behavior to various degrees based on channel gradient, presence of large in-channel wood or other forcing elements, the size of the sediment pulse, and the number of bed-mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.

  11. Niche-Partitioning of Edaphic Microbial Communities in the Namib Desert Gravel Plain Fairy Circles

    PubMed Central

    Ramond, Jean-Baptiste; Pienaar, Annelize; Armstrong, Alacia; Seely, Mary; Cowan, Don A.

    2014-01-01

    Endemic to the Namib Desert, Fairy Circles (FCs) are vegetation-free circular patterns surrounded and delineated by grass species. Since first reported the 1970's, many theories have been proposed to explain their appearance, but none provide a fully satisfactory explanation of their origin(s) and/or causative agent(s). In this study, we have evaluated an early hypothesis stating that edaphic microorganisms could be involved in their formation and/or maintenance. Surface soils (0–5cm) from three different zones (FC center, FC margin and external, grass-covered soils) of five independent FCs were collected in April 2013 in the Namib Desert gravel plains. T-RFLP fingerprinting of the bacterial (16S rRNA gene) and fungal (ITS region) communities, in parallel with two-way crossed ANOSIM, showed that FC communities were significantly different to those of external control vegetated soil and that each FC was also characterized by significantly different communities. Intra-FC communities (margin and centre) presented higher variability than the controls. Together, these results provide clear evidence that edaphic microorganisms are involved in the Namib Desert FC phenomenon. However, we are, as yet, unable to confirm whether bacteria and/or fungi communities are responsible for the appearance and development of FCs or are a general consequence of the presence of the grass-free circles. PMID:25279514

  12. Hydrogeology and water quality of significant sand and gravel aquifers in parts of Androscoggin, Cumberland, Franklin, Kennebec, Lincoln, Oxford, Sagadahoc, and Somerset Counties, Maine: Sand and gravel aquifer maps 10, 11, 16, 17 and 32

    SciTech Connect

    Tepper, D.H.; Williams, J.S.; Tolman, A.L.; Prescott, G.C.

    1985-01-01

    A reconnaissance level geohydrologic study was made of 2,408 sq mi in Androscoggin, Cumberland, Franklin, Kennebec, Lincoln, Oxford, Sagadahoc and Somerset Counties in Maine. This area is included in Maps 10, 11, 16, 17, and 32 of the Sand and Gravel Aquifer Map Series published by the Maine Geological Survey. The significant sand and gravel aquifers, consist of glacial ice-contact and outwash deposits which occur primarily in the valleys of the major rivers and along their tributaries. Significant aquifers comprise almost 109 sq mi, but yields that exceed 50 gal/min are estimated to be available within only 21% of this area. Typically, the water table is within 20 ft of the land surface. Based on seismic data, the great known depth to bedrock is 340 ft. The regional groundwater quality has the following characteristics: It is slightly acidic to slightly basic; calcium and sodium are the most abundant cations; bicarbonate is the most abundant anion; and the water is soft. In some localities concentrations of iron and manganese are high enough to limit use of the water without treatment. Sixty-six sites, including 32 solid waste facilities and 18 salt-storage lots were identified as potential sources of groundwater contamination to the sand and gravel aquifers in the study area. 79 refs., 11 figs., 9 tabs.

  13. Nitrogen removal in micro-polluted surface water by the combined process of bio-filter and ecological gravel bed.

    PubMed

    Sheng-Bing, He; Jian-Wen, Gao; Xue-Chu, Chen; Ding-Li, Dai

    2013-01-01

    Nitrogen removal in micro-polluted surface water by the combined process of a bio-filter and an ecological gravel bed was studied. Sodium acetate was added into micro-polluted surface water as carbon source and the nitrogen removal under different C/N ratio, hydraulic load and temperature were investigated. The results showed that the variations in C/N ratio, hydraulic load and temperature have significant influence on nitrogen removal in bio-filter. It was found that the denitrification rate was above 90% when C/N ratio reached 10; also, the denitrification was inhibited at low water temperature (2-10 °C); at the condition of water temperature above 20 °C, C/N ratio 10, hydraulic load 8 m(3)/(m(2) h), the combined process obtained the nitrogen removal of more than 90%, and the residual organics could be removed in ecological gravel bed.

  14. High Variance within Salmonid Spawning Gravels at Restoration Sites Creates More Suitable Habitat within the Hyporheic Zone

    NASA Astrophysics Data System (ADS)

    Janes, M. K.; Heffernan, J. E.; Rosenberry, J. W.; Horner, T.

    2012-12-01

    The Lower American River has historically provided natural spawning habitat for approximately one third of Northern California's salmon population. However, since the construction of Folsom and Nimbus Dams, downstream reaches have become sediment starved and periodic high outflow from the dam has caused channel armoring and incision, thereby degrading the natural spawning habitat. Restoration work on spawning sites in the Lower American River has consisted primarily of importing gravel to create riffles during periods of moderate flow. This is an effort to mitigate armoring of the riverbed and to rehabilitate salmonid spawning habitat by providing suitable grain size for all stages of spawning (redd construction, incubation, and emergence). Since restoration activities began, all rehabilitated sites have not been equally used for spawning. This study attempts to examine and compare the physical properties of each site in order to ascertain which characteristics create more suitable rehabilitated habitat. To do this, we compared restored areas to pre-restoration conditions through the assessment of three main aspects of the restored spawning habitat; grain size and its natural mobility, water flow in the surface and subsurface, and intragravel water quality. We found that some augmentation sites are more heterogeneous than others, and this correlates with higher spawning use. Most spawning was at fin height, and salmonids tend to use sites with higher depth variance (surface features) and higher variance in flow directions and velocities. With time, salmonids alter the spawning sites, creating small ridges and valleys perpendicular to flow. This creates more variable subsurface flow and generates hyporheic flow through the new gravel. This may have an effect on spawning as the more seasoned additions have a higher frequency of spawning than the newer augmentations. In order to efficiently rehabilitate a site and expedite the "seasoning process", creating variance

  15. A New Method for Tracking Individual Particles During Bed Load Transport in a Gravel-Bed River

    NASA Astrophysics Data System (ADS)

    Tremblay, M.; Marquis, G. A.; Roy, A. G.; Chaire de Recherche Du Canada En Dynamique Fluviale

    2010-12-01

    Many particle tracers (passive or active) have been developed to study gravel movement in rivers. It remains difficult, however, to document resting and moving periods and to know how particles travel from one deposition site to another. Our new tracking method uses the Hobo Pendant G acceleration Data Logger to quantitatively describe the motion of individual particles from the initiation of movement, through the displacement and to the rest, in a natural gravel river. The Hobo measures the acceleration in three dimensions at a chosen temporal frequency. The Hobo was inserted into 11 artificial rocks. The rocks were seeded in Ruisseau Béard, a small gravel-bed river in the Yamaska drainage basin (Québec) where the hydraulics, particle sizes and bed characteristics are well known. The signals recorded during eight floods (Summer and Fall 2008-2009) allowed us to develop an algorithm which classifies the periods of rest and motion. We can differentiate two types of motion: sliding and rolling. The particles can also vibrate while remaining in the same position. The examination of the movement and vibration periods with respect to the hydraulic conditions (discharge, shear stress, stream power) showed that vibration occurred mostly before the rise of hydrograph and allowed us to establish movement threshold and response times. In all cases, particle movements occurred during floods but not always in direct response to increased bed shear stress and stream power. This method offers great potential to track individual particles and to establish a spatiotemporal sequence of the intermittent transport of the particle during a flood and to test theories concerning the resting periods of particles on a gravel bed.

  16. Seed retention by pioneer trees enhances plant diversity resilience on gravel bars: Observations from the river Allier, France

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Vidal, Vincent; Cabanis, Manon; Steiger, Johannes; Garófano-Gómez, Virginia; Garreau, Alexandre; Hortobágyi, Borbála; Otto, Thierry; Roussel, Erwan; Voldoire, Olivier

    2016-07-01

    Pioneer riparian trees which establish in river active tracts on gravel bars enhance fine sediment retention during high flows within their stands and in their lee side, forming obstacle marks. Fine sediment retention can be accompanied by deposition of seeds transported by water dispersal, i.e. by hydrochory. We tested the hypothesis that pioneer riparian trees significantly control seed deposition on gravel bars by forming sediment obstacle marks. We described the seed bank structure and compared samples collected from obstacle marks and bare coarse-grained bar surfaces. At the surface (at 2 cm depth), seed abundance (N) and richness (S) (expressed as mean ± sd) were significantly higher in areas directly affected by riparian trees, i.e. obstacle marks, (N: 693 ± 391; S: 17 ± 3) than in bare surfaces (N: 334 ± 371; S: 13 ± 5). Surface and sub-surface (at 20 cm depth) samples were also significantly different, with the sub-surface samples almost devoid of seeds (respectively N: 514 ± 413; S: 15 ± 5 and N: 3 ± 6; S: 1 ± 2). These results suggest a biogeomorphic feedback between sediment and associated seed retention mediated by hydrochory, vegetation growth and local seed dispersal mediated by barochory. Such feedback may improve plant diversity resilience on gravel alluvial bars of high-energy rivers.

  17. Hydrogeology and flow of water in a sand and gravel aquifer contaminated by wood-preserving compounds, Pensacola, Florida

    USGS Publications Warehouse

    Franks, B.J.

    1988-01-01

    The sand and gravel aquifer in southern Escambia County, Florida , is a typical surficial aquifer composed of quartz sands and gravels interbedded locally with silts and clays. Problems of groundwater contamination from leaking surface impoundments are common in surficial aquifers and are a subject of increasing concern and attention. A potentially widespread contamination problem involves organic chemicals from wood-preserving processes. Because creosote is the most extensively used industrial preservative in the United States, an abandoned wood-treatment plant near Pensacola was chosen for investigation. This report describes the hydrogeology and groundwater flow system of the sand and gravel aquifer near the plant. A three-dimensional simulation of groundwater flow in the aquifer was evaluated under steady-state conditions. The model was calibrated on the basis of observed water levels from January 1986. Calibration criteria included reproducing all water levels within the accuracy of the data (one-half contour interval in most cases). Sensitivity analysis showed that the simulations were most sensitive to recharge and vertical leakance of the confining units between layers 1 and 2, and relatively insensitive to changes in hydraulic conductivity and transmissivity and to other changes in vertical leakance. Applications of the results of the calibrated flow model in evaluation of solute transport may require further discretization of the contaminated area, including more sublayers, than were needed for calibration of the groundwater flow system itself. (USGS)

  18. A study of the influence of a gravel subslab layer on radon entry rate using two basement structures

    SciTech Connect

    Robinson, A.L.; Sextro, R.G.; Fisk, W.J.; Garbesi, K.; Wooley, J.; Wollenberg, H.A.

    1993-01-01

    In buildings with elevated radon concentrations, the dominant transport mechanism of radon is advective flow of soil gas into the building substructure. However, the building-soil system is often complex, making detailed studies of the radon source term difficult. In order to examine radon entry into buildings, the authors have constructed two room-size, precisely-fabricated basement structures at a site with relatively homogeneous, moderately permeable soil. The basements are identical except that one lies directly on native soil whereas the other lies on a high permeability aggregate layer. The soil pressure field and radon entry rate have been measured for different basement pressures and environmental conditions. The subslab gravel layer greatly enhances the advective entry of radon into the structure; when the structures are depressurized, the radon entry rate into the structure with the subslab gravel layer is more than a factor of 3 times the radon entry rate into the other structure for the same depressurization. The gravel subslab layer also spreads the pressure field around the structure, extending the field of influence of the structure and the region from which it draws radon.

  19. Assessment of Large Wood budget in the gravel-bed Piave River: first attempt

    NASA Astrophysics Data System (ADS)

    Tonon, Alessia; Picco, Lorenzo; Ravazzolo, Diego; Aristide Lenzi, Mario

    2015-04-01

    During the last decades, the dynamics of large wood (LW) in rivers were analyzed to consider and define the LW budget. The space-time variations of LW amount results from the differences among input (e.g. fluvial transport, lateral recruitment) and output (e.g. fluvial transport, overbank deposition, natural chronic dead) of LW along a riverine environment. Different methodologies were applied in several fluvial environments, however in large river systems characterized by complex LW dynamics, the processes are still poor quantified. Aim of this contribution is to perform a LW budget estimation over the short period, assessing the effect of an over bankfull flood (Q=1039 m3 s-1; R.I=3.5 years). The research was carried out along a 1 km-long reach (around 15 ha) located into the middle course of the large gravel-bed Piave River (North East of Italy). The LW budget has been defined considering the recruitment through bank erosion and the fluvial transport of LW into and out of the study reach. The former factor was achieved integrating field data on riparian vegetation with the monitoring of riverbanks with a Differential Global Positioning System (DGPS). The latter was obtained detecting all LW elements (diameter ≥ 0.10 m and/or length ≥ 1 m) stored along the study reach, before and after the flood. For each LW the GPS position was recorded and a numbered tag was installed with the addition of colored paint to permit a rapid post-event recovery. Preliminary results indicate that, along the study area, the floating transport of LW is one of the most significant processes able to modify the amount of LW deposited along a riverine system. In fact, considering the input of LW, the 99.4 % (102 m3 km-1) comes from upstream due to floating, whereas the 0.6% (0.17 m3 km-1) was recruited through bank erosion. Analyzing the output, 94.3% (40.26 m3 km-1) of LW was transported downstream of the study area, whereas only the 5.7 % (2.43 m3 km-1) of LW was involved in the

  20. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, Denis R.

    1984-01-01

    Secondarily treated domestic sewage has been disposed of on surface sand beds at the sewage treatment facility at Otis Air Force Base, Massachusetts, since 1936. Infiltration of the sewage through the sand beds into the underlying unconfined sand and gravel aquifer has resulted in a plume of sewage-contaminated ground water that is 2,500 to 3,500 feet wide, 75 feet thick, and more than 11,000 feet long. The plume extends south and southwest of the sand beds in the same direction as the regional flow of ground water, and is overlain by 20 to 50 feet of ground water derived from precipitation that recharges the aquifer. The bottom of the plume generally coincides with the contact between the permeable sand and gravel and underlying finer grained sediments. The distributions in the aquifer of specific conductance, temperature, boron, chloride, sodium, phosphorus, nitrogen (total of all species), ammonia, nitrate, dissolved oxygen, and detergents are used to delineate the plume. In ground water outside the plume, the detergent concentration is less than 0.1 milligrams per liter as MBAS (methylene blue active substances), the ammonia-nitrogen concentration is less than 0.1 milligrams per liter, the boron concentration is less than 50 micrograms per liter, and specific conductance is less than 80 mircromhos per centimeter. In the center of the plume, detergent concentrations as high as 2.6 milligrams per liter as MBAS, ammonia-nitrogen concentrations as high as 20 milligrams per liter, boron concentrations as high as 400 micrograms per liter, and specific conductance as high as 405 micromhos per centimeter were measured. Chloride, sodium, and boron are transported by the southward-flowing ground water without significant retardation, and seem to be diluted only by hydrodynamic dispersion. The movement of phosphorus is greatly restricted by sorption. Phosphorus concentrations do not exceed 0.05 milligrams per liter farther than 2,500 feet from the sand beds. Detergent

  1. Fingerprints of environmental stressors in three selected Slovenian gravel-bed rivers: geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Kocman, David; Debeljak, Barbara; Mori, Nataša

    2016-04-01

    Rivers are severely impacted by a range of simultaneous processes including water pollution, flow and channel alteration, over-fishing, invasive species and climate change. Systematic studies of river water geochemistry provide important information on chemical weathering of bedrock/soil and natural anthropogenic processes that may control the dissolved chemical loads, while the isotopic studies of biological components of river systems (macrophytes, periphyton, heterotrophic biofilm, invertebrates, fish) contribute to the understanding how the system response to human impacts by means of functional response. In this contribution, insights in the fingerprints of various environmental stressors in three gravel-bed rivers (River Kamni\\vska Bistrica, River Idrijca and River Sava) in Slovenia, using geochemical and stable isotope approach are discussed. Gravel bed of all three rivers investigated is composed of carbonates and clastic rocks. The Sava and Kamni\\vska Bistrica Rivers have alpine high mountain snow-rain regime. The Idrijca River is a boundary river between the Adriatic and Black Sea catchments and has rain-snow discharge regime with torrential character. Geochemical methods (ICP-OES, IC, total alkalinity after Gran) and isotope mass - spectrometric methods (isotopic composition of dissolved inorganic carbon, particulate organic carbon and isotopic composition of carbon in carbonates) were used to evaluate biogeochemical processes in rivers. Isotopic composition of carbon and nitrogen of the moss Fontinalis antipyretica (the whole vegetative shoot) and isotopic composition of carbon of heterotrophic biofilm was also analyzed in order to better understand the fluxes and fractionation of carbon and nitrogen across trophic levels. Geochemical composition of all investigated rivers is HCO3--Ca2+-Mg2+ with different Mg2+/Ca2+ ratios as follows: around 0.33 for Kamni\\vska Bistrica and River Sava in Slovenia and above 0.75 for River Idrijca. In the Kamni

  2. Fingerprints of environmental stressors in three selected Slovenian gravel-bed rivers: geochemical and isotopic approach

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Kocman, David; Debeljak, Barbara; Mori, Nataša

    2016-04-01

    Rivers are severely impacted by a range of simultaneous processes including water pollution, flow and channel alteration, over-fishing, invasive species and climate change. Systematic studies of river water geochemistry provide important information on chemical weathering of bedrock/soil and natural anthropogenic processes that may control the dissolved chemical loads, while the isotopic studies of biological components of river systems (macrophytes, periphyton, heterotrophic biofilm, invertebrates, fish) contribute to the understanding how the system response to human impacts by means of functional response. In this contribution, insights in the fingerprints of various environmental stressors in three gravel-bed rivers (River Kamni\\vska Bistrica, River Idrijca and River Sava) in Slovenia, using geochemical and stable isotope approach are discussed. Gravel bed of all three rivers investigated is composed of carbonates and clastic rocks. The Sava and Kamni\\vska Bistrica Rivers have alpine high mountain snow-rain regime. The Idrijca River is a boundary river between the Adriatic and Black Sea catchments and has rain-snow discharge regime with torrential character. Geochemical methods (ICP-OES, IC, total alkalinity after Gran) and isotope mass - spectrometric methods (isotopic composition of dissolved inorganic carbon, particulate organic carbon and isotopic composition of carbon in carbonates) were used to evaluate biogeochemical processes in rivers. Isotopic composition of carbon and nitrogen of the moss Fontinalis antipyretica (the whole vegetative shoot) and isotopic composition of carbon of heterotrophic biofilm was also analyzed in order to better understand the fluxes and fractionation of carbon and nitrogen across trophic levels. Geochemical composition of all investigated rivers is HCO3‑-Ca2+-Mg2+ with different Mg2+/Ca2+ ratios as follows: around 0.33 for Kamni\\vska Bistrica and River Sava in Slovenia and above 0.75 for River Idrijca. In the Kamni

  3. Changes to channel sediments resulting from complex human impacts in a gravel-bed river, Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Zawiejska, Joanna; Wyżga, Bartłomiej; Hajdukiewicz, Hanna; Radecki-Pawlik, Artur; Mikuś, Paweł

    2016-04-01

    During the second half of the twentieth century, many sections of the Czarny Dunajec River, Polish Carpathians, were considerably modified by channelization as well as gravel-mining and the resultant channel incision (up to 3.5 m). This paper examines changes to the longitudinal pattern of grain size and sorting of bed material in an 18-km-long river reach. Surface bed-material grain size was established on 47 gravel bars and compared with a reference downstream fining trend of bar sediments derived from the sites with average river width and a vertically stable channel. Contrary to expectations, the extraction of cobbles from the channel bed in the upper part of the study reach, conducted in the past decades, has resulted in the marked coarsening of bed material in this river section. The extraction facilitated entrainment of exposed finer grains and has led to rapid bed degradation, whereas the concentration of flood flows in the increasingly deep and narrow channel has increased their competence and enabled a delivery of the coarse particles previously typical of the upstream reach. The middle section of the study reach, channelized to prevent sediment delivery to a downstream reservoir, now transfers the bed material flushed out from the incising upstream section. With considerably increased transport capacity of the river and with sediment delivery from bank erosion eliminated by bank reinforcements, bar sediments in the channelized section are typified by increased size of the finer fraction and better-than-average sorting. In the wide, multi-thread channel in the lower part of the reach, low unit stream power and high channel-form roughness facilitate sediment deposition and are reflected in relatively fine grades of bar gravels. The study showed that selective extraction of larger particles from the channel bed leads to channel incision at and upstream of the mining site. However, unlike bulk gravel mining, selective extraction does not result in sediment

  4. An experimental analysis of bed load transport in gravel-bed braided rivers with high grain Reynolds numbers

    NASA Astrophysics Data System (ADS)

    De Vincenzo, Annamaria; Brancati, Francesco; Pannone, Marilena

    2016-08-01

    Laboratory experiments were performed with nearly uniform fluvial gravel (D50=9 mm, D10=5 mm and D90=13 mm) to analyse the relationship between stream power and bed load transport rate in gravel-bed braided rivers at high grain Reynolds numbers. The values of the unit-width dimensionless bed-load rate qb* and unit-width dimensionless stream power ω* were evaluated in equilibrium conditions based on ten different experimental runs. Then, they were plotted along with values obtained during particularly representative field studies documented in the literature, and a regression law was derived. For comparison, a regression analysis was performed using the data obtained from laboratory experiments characterized by smaller grain sizes and, therefore, referring to relatively low grain Reynolds numbers. A numerical integration of Exner's equation was performed to reconstruct the local and time-dependent functional dependence of qb* and ω*. The results led to the following conclusions: 1) At equilibrium, the reach-averaged bed load transport rate is related to the reach-averaged stream power by different regression laws at high and low grain Reynolds numbers. Additionally, the transition from bed to suspended load transport is accelerated by low Re*, with the corresponding bed load discharge increasing with stream power at a lower, linear rate. 2) When tested against the gravel laboratory measurements, the high Re* power law derived in the present study performs considerably better than do previous formulas. 3) The longitudinal variability of the section-averaged equilibrium stream power is much more pronounced than that characterizing the bed load rate, at least for high Re*. Thus, the stream power and its local-scale heterogeneity seem to be directly responsible for transverse sediment re-distribution and, ultimately, for the determination of the spatial and temporal scales that characterize the gravel bedforms. 4) Finally, the stochastic interpretation of the wetted

  5. Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA

    USGS Publications Warehouse

    Lindsey, D.A.; Langer, W.H.; Van Gosen, B. S.

    2007-01-01

    Clast populations in piedmont fluvial systems are products of complex histories that complicate provenance interpretation. Although pebble counts of lithology are widely used, the information provided by a pebble count has been filtered by a potentially large number of processes and circumstances. Counts of pebble lithology and roundness together offer more power than lithology alone for the interpretation of provenance. In this study we analyze pebble counts of lithology and roundness in two contrasting fluvial systems of Pleistocene age to see how provenance varies with drainage size. The two systems are 1) a group of small high-gradient incised streams that formed alluvial fans and terraces and 2) a piedmont river that formed terraces in response to climate-driven cycles of aggradation and incision. We first analyze the data from these systems within their geographic and geologic context. After this is done, we employ contingency table analysis to complete the interpretation of pebble provenance. Small tributary streams that drain rugged mountains on both sides of the Santa Cruz River, southeast Arizona, deposited gravel in fan and terrace deposits of Pleistocene age. Volcanic, plutonic and, to a lesser extent, sedimentary rocks are the predominant pebble lithologies. Large contrasts in gravel lithology are evident among adjacent fans. Subangular to subrounded pebbles predominate. Contingency table analysis shows that hard volcanic rocks tend to remain angular and, even though transport distances have been short, soft tuff and sedimentary rocks tend to become rounded. The Wind River, a major piedmont stream in Wyoming, drains rugged mountains surrounding the northwest part of the Wind River basin. Under the influence of climate change and glaciation during the Pleistocene, the river deposited an extensive series of terrace gravels. In contrast to Santa Cruz tributary gravel, most of the Wind River gravel is relatively homogenous in lithology and is rounded to

  6. Multi-scale investigation of fine-sediment ingress in gravel-bed rivers using experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Lamparter, Gabriele; Collins, Adrian; Nicholas, Andrew

    2015-04-01

    Increased suspended sediment loads in gravel-bed rivers, potentially leading to clogging of the pores in the river bed, is a problem acknowledged since at least the 1980s. Early research was concerned with declining salmonid production along the North American Pacific coast due to siltation processes. Since then, research has expanded and includes a wider geographical and ecological coverage. Despite this long history of research into gravel-clogging by fine sediment, the relationship between enhanced suspended sediment loads and sediment ingress is still poorly quantified. The research presented here seeks to address this gap and has a two scale approach to improve the quantification of fine-sediment ingress into river gravels under a range of flow, fine sediment and gravel framework conditions. Laboratory scale flume experiments mimicking natural conditions were used to measure flow and the character of fine sediment both above and ingressing into custom-made basket traps. At a larger scale, the same basket traps were installed in a field setting (the gravel-bed River Culm in South-West England) in three river reaches, in conjunction with continuous monitoring of suspended sediment concentration and flow discharge (to estimate sediment loads). The data were evaluated with regards to the Krone formulation for deposition (Krone, 1962), an equation generally believed to include the main physical determinants driving fine-sediment deposition. The formulation states that rise in suspended sediment concentration, settling velocity and also decline of flow velocity or bed shear stress all lead to an increase in suspended sediment deposition. This evaluation was achieved by setting up a numerical model, which was initially applied to the flume experiments and subsequently up-scaled to the field scale. Data generated by both the flume and the field experiments do not agree well with the predictions of the Krone formulations. This agreement was especially weak for fine

  7. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    USGS Publications Warehouse

    Morin, R.H.; LeBlanc, D.R.; Troutman, B.M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ??, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ??, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity ?? that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of ??, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ?? on K. Copyright ?? 2009 The Author(s) are Federal Government Employees. Journal compilation ?? 2009 National Ground Water Association.

  8. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel

    SciTech Connect

    Ligotke, M.W.; Klopfer, D.C.

    1990-08-01

    Protective barriers have been identified as integral components of plans to isolate defense waste on the Hanford Site. The use of natural materials to construct protective barriers over waste site is being considered. Design requirements for protective barriers include preventing exposure of buried waste, and restricting penetration or percolation of surface waters through the waste zone. Studies were initiated to evaluate the effects of wind erosion on candidate protective barrier surfaces. A wind tunnel was used to provide controlled erosive stresses and to investigate the erosive effects of wind forces on proposed surface layers for protective barriers. Mixed soil and gravel surfaces were prepared and tested for resistance to wind erosion at the Pacific Northwest Laboratory Aerosol Wind Tunnel Research Facility. These tests were performed to investigate surface deflation caused by suspension of soil from various surface layer configurations and to provide a comparison of the relative resistance of the different surfaces to wind erosion. Planning, testing, and analyzing phases of this wind erosion project were coordinated with other tasks supporting the development of protective barriers. These tasks include climate-change predictions, field studies and modeling efforts. This report provides results of measurements of deflation caused by wind forces over level surfaces. Section 2.0 reviews surface layer characteristics and previous relevant studies on wind erosion, describes effects of erosion, and discusses wind tunnel modeling. Materials and methods of the wind tunnel tests are discussed in Section 3.0. Results and discussion are presented in Section 4.0, and conclusions and recommendations Section 5.0. 53 refs., 29 figs., 7 tabs.

  9. Heat as a tracer for examining depth-decaying permeability in gravel deposits.

    PubMed

    Sakata, Yoshitaka

    2015-04-01

    Depth dependence of permeability can appear in any geologic setting; however, vertical trends in alluvial gravel deposits are poorly understood because of the high variability of hydraulic conductivity K in monotonic sequences. This paper examines the sensitivity of depth-decaying permeability through heat transport simulation around a river's losing reach in the Toyohira River alluvial fan, Japan. Observed variations in groundwater temperature indicate that heat fluxes are dominant in the shallow zone, despite a vertical hydraulic gradient. In eight cases with different conditions (presence or absence of exponential decay trend, large or small variogram range, and cell isotropy or anisotropy) 1000 K realizations are stochastically generated throughout a cross-sectional model. The groundwater flow and heat transport are transiently calculated, and the averaged root mean square error RMSE‾ is used for sensitivity comparison. The variance of RMSE‾ shows that small RMSE‾ realizations are effectively reproduced with vertical trend assumed. Plausible realizations of RMSE‾ below a given threshold were obtained only when a vertical trend was assumed. The most plausible realization almost completely matched the observations. However, the number of plausible realizations per case was ≤10 and the median RMSE‾ were insensitive to all the conditions. Statistical testing suggested that these plausible realizations may be statistically significant, aiding in generating a connected K zone for high heat flows. The cell anisotropy condition had the smallest effect on the simulation. Thus, effective modeling of the vertical trend contributes to heat transport; however, the model's efficiency is low without detailed information about the sedimentary structure. PMID:25047679

  10. Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls

    NASA Astrophysics Data System (ADS)

    Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.

    2012-12-01

    In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.

  11. Establishment of woody riparian species from natural seedfall at a former gravel pit

    USGS Publications Warehouse

    Roelle, J.E.; Gladwin, D.N.

    1999-01-01

    Establishment of native riparian communities through natural seedfall may be a viable reclamation alternative at some alluvial sand and gravel mines where water level can be controlled in the abandoned pit. We experimented with this approach at a pit in Fort Collins, Colorado, where a drain culvert equipped with a screw gate allows water levels to be manipulated. From 1994 to 1996 we conducted a series of annual drawdowns during the period of natural seedfall of Populus deltoides subsp. monilifera (plains cottonwood), Salix amygdaloides (peachleaf willow), and S. exigua (sand-bar willow), thus providing the bare, moist substrate conducive to establishment of these species. Establishment was highly variable from year to year; in the fall following establishment, frequency of occurrence on 0.5-m2 sample plots ranged from 8.6% to 50.6% for cottonwood, 15.9% to 22.0% for peachleaf willow, and 21.7% to 50.0% for sandbar willow. Mean densities, however, were comparable to those reported for other locations. Concurrent establishment of the undesirable exotic Tamarix ramosissima (saltcedar) was a problem, but we were able to eradicate most saltcedar seedlings by reflooding the lower elevations of the annual drawdown zones each fall. At the end of the 3-year period, at least one of the three native woody species survived on 41.1% of the plots, while saltcedar was present on only 6.1%. In addition to the potential for establishing valuable native habitats, adaptations of the techniques described may require less earth moving than other reclamation approaches.

  12. Dynamics of a gravel bed stream in transition: Fishtrap Creek, British Columbia

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.; Eaton, B. C.; Giles, T.

    2006-12-01

    In August 2003, a forest fire burnt the entire floodplain and most of the contributing drainage basin of Fishtrap Creek, British Columbia. The riparian vegetation, which consisted primarily of mature cottonwoods and redcedar trees, suffered nearly 100% mortality due to the fire: none of the dead trees have since been removed, following the fire. The post-fire riparian vegetation comprises various herbaceous species, as well as some small shrubs and trees. The UBC regime model predicts that such a change in bank vegetation will result in an eventual transition from a narrow, stable, single thread stream channel to an unstable, multiple- thread channel about twice as wide as the original. During the snowmelt freshet of 2006, the first signs of significant channel change were documented in the field. We use three years of repeated cross sectional surveys and low level aerial photography from before and after the freshet to characterize the changes in channel geometry. We also documented the patterns of sediment transfer during the freshet using data from magnetic tracers. The tracers were deployed at four locations throughout the 300 m-long study reach: the distribution of transport distances for each tracer stone population were strongly conditioned by the sequence of morphologic changes occurring along the stream channel. Our results suggest that typical step lengths in gravel bed streams can be much larger than the bar-to-bar spacing and furthermore that they are quite variable, even over short distances. These results are the first stages of a long-term study of stream channel response to, and recovery from, a catastrophic disturbance. The project will eventually allow us to test and calibrate the UBC regime model and to identify the characteristic timescales associated with these sorts of channel adjustments.

  13. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D.R.

    1982-01-01

    Secondarily treated domestic sewage has been disposed of to a sand and gravel aquifer by infiltration through sand beds at Otis Air Force Base, Massachusetts, since 1936. The disposal has formed a plume of contaminated ground water that is more than 11 ,000 feet long, is 2,500 to 3,500 feet wide and 75 feet thick, and is overlain by 20 to 50 feet of uncontaminated ground water derived from precipitation. The distributions of specific conductance, temperature, boron chloride, sodium, phosphorus, nitrogen, ammonia, nitrate, dissolved oxygen, and detergents are used to delineate the plume. The center of the plume contains up to 2.6 milligrams per liter detergents as MBAS (methylene blue active substances), 0.4 milligram per liter boron, 20 milligrams per liter ammonia-nitrogen, and specific conductance as high as 405 micromhos per centimeter. Corresponding levels in uncontaminated ground water are less than 0.1 milligram per liter detergents, less than 0.1 ammonia-nitrogen, less than 0.05 milligram per liter boron, and less than 80 micromhos per centimeter specific conductance. Chloride, sodium, and boron concentrations seem to be affected only by hydrodynamic dispersion. Phosphorus movement is greatly retarded by sorption. Detergent concentrations exceed 0.5 milligram per liter from 3 ,000 to 10,000 feet from the sand beds and reflect the use of nonbiodegradable detergents from 1946 through 1964. The center of the plume as far as 5,000 feet from the sand beds contains nitrogen as ammonia, no nitrate, and no dissolved oxygen. Ammonia is oxidized to nitrate gradually with distance from the center of the plume. (USGS)

  14. Bedform morphology of salmon spawning areas in a large gravel-bed river

    SciTech Connect

    Hanrahan, Timothy P.

    2007-05-01

    While the importance of river channel morphology to salmon spawning habitat is increasingly recognized, quantitative measures of the relationships between channel morphology and habitat use are lacking. Such quantitative measures are necessary as management and regulatory agencies within the Pacific Northwestern region of the USA, and elsewhere, seek to quantify potential spawning habitat and develop recovery goals for declining salmon populations. The objective of this study was to determine if fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Snake River, Idaho, USA, were correlated with specific bed form types at the pool-riffle scale. A bed form differencing technique was used to objectively quantify the longitudinal riverbed profile into four distinct pool-riffle units that were independent of discharge. The vertical location of thalweg points within these units was quantified with a riffle proximity index. Chinook salmon spawning areas were mapped and correlated with the pool-riffle units through the use of cross-tabulation tables. The results indicate that 84% of fall Chinook salmon spawning areas were correlated with riffles (Chi-square=152.1, df=3, p<0.001), with 53% of those areas located on the upstream side of riffle crests. The majority of Snake River fall Chinook salmon spawning occurred at a vertical location within 80% of the nearest riffle crest elevation. The analyses of bed form morphology will assist regional fish mangers in quantifying existing and potential fall Chinook salmon spawning habitat, and will provide a quantitative framework for evaluating general ecological implications of channel morphology in large gravel-bed rivers.

  15. Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.

    PubMed

    Trzepla-Nabaglo, Krystyna; Shiraki, Ryoji; Holmén, Britt A

    2006-04-30

    Light detection and ranging (Lidar) remote sensing two-dimensional vertical and horizontal scans collected downwind of a sand and gravel plant were used to evaluate the generation and transport of geologic fugitive dust emitted by quarry operations. The lidar data give unsurpassed spatial resolution of the emitted dust, but lack quantitative particulate matter (PM) mass concentration data. Estimates of the airborne PM10 and crystalline silica concentrations were determined using linear relationships between point monitor PM10 and quartz content data with the lidar backscatter signal collected from the point monitor location. Lidar vertical profiles at different distances downwind from the plant were used to quantify the PM10 and quartz horizontal fluxes at 2-m vertical resolution as well as off-site emission factors. Emission factors on the order of 65-110 kg of PM10 (10-30 kg quartz) per daily truck activity or 2-4 kg/t product shipped (0.5-1 kg quartz/t) were quantified for this facility. The lidar results identify numerous elevated plumes at heights >30 m and maximum plume heights of 100 m that cannot be practically sampled by conventional point sampler arrays. The PM10 and quartz mass flux was greatest at 10-25 m height and decreased with distance from the main operation. Measures of facility activity were useful for explaining differences in mass flux and emission rates between days. The study results highlight the capabilities of lidar remote sensing for determining the spatial distribution of fugitive dust emitted by area sources with intermittent and spatially diverse dust generation rates.

  16. Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.

    PubMed

    Trzepla-Nabaglo, Krystyna; Shiraki, Ryoji; Holmén, Britt A

    2006-04-30

    Light detection and ranging (Lidar) remote sensing two-dimensional vertical and horizontal scans collected downwind of a sand and gravel plant were used to evaluate the generation and transport of geologic fugitive dust emitted by quarry operations. The lidar data give unsurpassed spatial resolution of the emitted dust, but lack quantitative particulate matter (PM) mass concentration data. Estimates of the airborne PM10 and crystalline silica concentrations were determined using linear relationships between point monitor PM10 and quartz content data with the lidar backscatter signal collected from the point monitor location. Lidar vertical profiles at different distances downwind from the plant were used to quantify the PM10 and quartz horizontal fluxes at 2-m vertical resolution as well as off-site emission factors. Emission factors on the order of 65-110 kg of PM10 (10-30 kg quartz) per daily truck activity or 2-4 kg/t product shipped (0.5-1 kg quartz/t) were quantified for this facility. The lidar results identify numerous elevated plumes at heights >30 m and maximum plume heights of 100 m that cannot be practically sampled by conventional point sampler arrays. The PM10 and quartz mass flux was greatest at 10-25 m height and decreased with distance from the main operation. Measures of facility activity were useful for explaining differences in mass flux and emission rates between days. The study results highlight the capabilities of lidar remote sensing for determining the spatial distribution of fugitive dust emitted by area sources with intermittent and spatially diverse dust generation rates. PMID:16442218

  17. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    SciTech Connect

    Roberts, Anel A. Shimaoka, Takayuki

    2008-12-15

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m{sup 3}. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10{sup -10} cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  18. Entrainment of riparian gravel and cobbles in an alluvial reach of a regulated canyon river

    USGS Publications Warehouse

    Elliotp, J.G.; Hammack, L.A.

    2000-01-01

    Many canyon rivers have channels and riparian zones composed of alluvial materials and these reaches, dominated by fluvial processes, are sensitive to alterations in streamflow regime. Prior to reservoir construction in the mid-1960s, banks and bars in alluvial reaches of the Gunnison River in the Black Canyon National Monument, Colorado, USA, periodically were reworked and cleared of riparian vegetation by mainstem floods. Recent interest in maintaining near-natural conditions in the Black Canyon using reservoir releases has created a need to estimate sediment-entraining discharges for a variety of geomorphic surfaces composed of sediment ranging in size from gravel to small boulders. Sediment entrainment potential was studied at eight cross-sections in an alluvial reach of the Gunnison River in the Black Canyon in 1994 and 1995. A one-dimensional water-surface profile model was used to estimate water-surface elevations, flow depths, and hydraulic conditions on selected alluvial surfaces for discharges ranging from 57 to 570 m3/s. Onsite observations before and after a flood of 270 m3/s confirmed sediment entrainment on several surfaces inundated by the flood. Selective entrainment of all but the largest particle sizes on the surface occurred at some locations. Physical evidence of sediment entrainment, or absence of sediment entrainment, on inundated surfaces generally was consistent with critical shear stresses estimated with a dimensionless critical shear stress of 0.030. Sediment-entrainment potential over a range of discharges was summarized by the ratio of the local boundary shear stress to the critical shear stress for d50, given hydraulic geometry and sediment-size characteristics. Differing entrainment potential for similar geomorphic surfaces indicates that estimation of minimum streamflow requirements based on sediment mobility is site-specific and that there is no unique streamflow that will initiate movement of d50 at every geomorphically similar

  19. Geomorphic changes resulting from floods in reconfigured gravel-bed river channels in Colorado, USA

    USGS Publications Warehouse

    Elliott, J.G.; Capesius, J.P.

    2009-01-01

    Geomorphic changes in reconfi gured reaches of three Colorado rivers in response to floods in 2005 provide a benchmark for "restoration" assessment. Sedimententrainment potential is expressed as the ratio of the shear stress from the 2 yr, 5 yr, 10 yr, and 2005 floods to the critical shear stress for sediment. Some observed response was explained by the excess of flood shear stress relative to the resisting force of the sediment. Bed-load entrainment in the Uncompahgre River and the North Fork Gunnison River, during 4 and 6 yr floods respectively, resulted in streambed scour, streambed deposition, lateral-bar accretion, and channel migration at various locations. Some constructed boulder and log structures failed because of high rates of bank erosion or bed-material deposition. The Lake Fork showed little or no net change after the 2005 flood; however, this channel had not conveyed floods greater than the 2.5 yr flood since reconfi guration. Channel slope and the 2 yr flood, a surrogate for bankfull discharge, from all three reconfi gured reaches plotted above the Leopold and Wolman channel-pattern threshold in the "braided channel" region, indicating that braiding, rather than a single-thread meandering channel, and midchannel bar formation may be the natural tendency of these gravel-bed reaches. When plotted against a total stream-power and median-sediment-size threshold for the 2 yr flood, however, the Lake Fork plotted in the "single-thread channel" region, the North Fork Gunnison plotted in the " multiplethread" region, and the Uncompahgre River plotted on the threshold. All three rivers plotted in the multiple-thread region for floods of 5 yr recurrence or greater. ?? 2009 Geological Society of America.

  20. Mapping water surface roughness in a shallow, gravel-bed river using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Overstreet, B. T.; Legleiter, C. J.

    2014-12-01

    Rapid advances in remote sensing are narrowing the gap between the data available for characterizing physical and biological processes in rivers and the information needed to guide river management decisions. The availability and quality of hyperspectral imagery have increased drastically over the past 20 years and hyperspectral data is now used in a number of different capacities that range from classifying riverine environments to measuring river bathymetry. A fundamental challenge in relating the spectral data from images to biophysical processes is the difficulty of isolating individual contributions to the at-sensor radiance, each associated with a different component of the fluvial environment. In this presentation we describe a method for isolating the contribution of light reflected from the water surface, or sun glint, from a hyperspectral image of a shallow gravel-bed river. We show that isolation and removal of sun glint can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. Observed-vs.-predicted R2 values for depth retrieval improved from 0.56 to 0.68 following sun glint removal. In addition to clarifying the signal associated with the water column and bed, isolating sun glint could unlock important hydraulic information contained within the topography of the water surface. We present data from flume and field experiments suggesting that the intensity of sun glint is a function of water surface roughness. In rivers, water surface roughness depends on local flow hydraulics: depth, velocity, and bed material grain size. To explore this relationship, we coupled maps of image-derived sun glint with hydraulic measurements collected with a kayak-borne acoustic Doppler current profiler along 2 km of the Snake River in Grand Teton National Park. Spatial patterns of sun glint are spatially correlated with field observations of near-surface velocity and depth, suggesting that reach scale hydraulics

  1. Characterizing channel change along a multithread gravel-bed river using random forest image classification

    NASA Astrophysics Data System (ADS)

    Overstreet, B. T.; Legleiter, C. J.

    2012-12-01

    The Snake River in Grand Teton National Park is a dam-regulated but highly dynamic gravel-bed river that alternates between a single thread and a multithread planform. Identifying key drivers of channel change on this river could improve our understanding of 1) how flow regulation at Jackson Lake Dam has altered the character of the river over time; 2) how changes in the distribution of various types of vegetation impacts river dynamics; and 3) how the Snake River will respond to future human and climate driven disturbances. Despite the importance of monitoring planform changes over time, automated channel extraction and understanding the physical drivers contributing to channel change continue to be challenging yet critical steps in the remote sensing of riverine environments. In this study we use the random forest statistical technique to first classify land cover within the Snake River corridor and then extract channel features from a sequence of high-resolution multispectral images of the Snake River spanning the period from 2006 to 2012, which encompasses both exceptionally dry years and near-record runoff in 2011. We show that the random forest technique can be used to classify images with as few as four spectral bands with far greater accuracy than traditional single-tree classification approaches. Secondly, we couple random forest derived land cover maps with LiDAR derived topography, bathymetry, and canopy height to explore physical drivers contributing to observed channel changes on the Snake River. In conclusion we show that the random forest technique is a powerful tool for classifying multispectral images of rivers. Moreover, we hypothesize that with sufficient data for calculating spatially distributed metrics of channel form and more frequent channel monitoring, this tool can also be used to identify areas with high probabilities of channel change. Land cover maps of a portion of the Snake River produced from digital aerial photography from 2010 and

  2. Linkages between sediment supply and channel morphology in gravel-bed river systems

    NASA Astrophysics Data System (ADS)

    Pitlick, John; Recking, Alain; Liebault, Fred

    2013-04-01

    Mountain river systems are characterized by a wide range of channel patterns and varying levels of instability. In steeper channels- torrents and cascades- resistant bed and bank materials tend to limit entrainment and transport, except during large floods or debris flows. In lower-gradient channels, with meandering or braided planforms, bed and bank materials are mobilized more frequently, consequently channel geometry is maintained by a long-term balance between bank erosion and the lateral migration and growth of bars. These differences in stability are largely a reflection of position with the drainage network, but other factors, such as valley confinement and drainage basin sediment supply (both quantity and grain size), play equally strong roles in the downstream evolution of channel morphology. In this talk we present data and preliminary results from a comparative study of the influences of sediment supply on channel morphology in rivers draining high-elevation basins in the Rocky Mountains and the French Alps. Study sites are located in river basins with high to very high relief (1000-3000 m), and hydrologic cycles dominated by snowmelt runoff. The scaling between peak flows and drainage basin area is very similar in both regions. There are sharp contrasts, however, in the underlying rock types, and the connectivity between hillslopes and channels, such that the sediment supply to rivers in high-relief areas of the French Alps is orders of magnitude higher than in the Rocky Mountain region. Rock type also influences the grain size and durability of the sediment delivered from hillslopes, thus sand and fine gravel are abundant in French alpine channels. The net effect of finer grain sizes in channels with steep slopes is to produce Shields numbers that are 2-3 times the threshold for motion at channel-forming discharges. These conditions are quite different from conditions in Rocky Mountain channels where the Shields numbers at bankfull flows are typically

  3. Colloid-Associated Phosphorus Transport in Heterogeneous Alluvial Gravel Aquifer Media

    NASA Astrophysics Data System (ADS)

    Lafogler, M.; Pang, L.; McGill, E.; Baumann, T.; Close, M.

    2012-04-01

    Phosphorus is a fertilizer and commonly present in groundwater aquifers. Higher concentrations of phosphorus can lead to subsurface eutrophication and aid microbial growth. In former studies phosphorus was considered to be immobile. Recently, it was reported that phosphorus can be mobilized in the presence of colloids. In this study the impact of colloid-associated phosphorus transport is investigated in a heterogeneous porous medium using inorganic colloids (Kaolinite, Goethite) and E. coli bacteria to get a better understanding of phosphorus transport in aquifer media. A 2 m column was filled with heterogeneous alluvial gravel aquifer material from the Canterbury Plains/New Zealand with a grain size in the range of 2-40 mm. Injected solutions contained a conservative tracer (Bromide), phosphate, and either Kaolinite, Goethite, or E. coli bacteria. Eight experiments were conducted at flow rates of 20 m/day and 40 m/day, respectively. The effluent of the column was collected and analyzed. To distinguish dissolved and colloid associated phosphorous, unfiltered and filtered samples were compared. As recovery rates for the conservative tracer bromide we observed full recovery at the column effluent. For total phosphorus varying recovery rates were found depending on the type of colloid that was present in the solution. Together with Kaolinite we observed recovery rates of phosphorous of 42.5% at low flow conditions and 69.3% at high flow conditions. Together with Goethite we found recovery rates of 22.3% at low flow conditions and 57.6% at high flow conditions. With E. coli bacteria we documented recovery rates of 80.7% at low flow conditions and 61.0% at high flow conditions. For dissolved phosphorus the observed recovery rates were in general higher between 73.4% and 92.3%. The breakthrough curves showed that a significant fraction of mobile phosphorus was attached to colloids. At low flow conditions this fraction was higher than at high flow conditions. For

  4. Modeling wood dynamics, jam formation, and sediment storage in a gravel-bed stream

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Hassan, M. A.; Davidson, S. L.

    2012-12-01

    In small and intermediate sized streams, the interaction between wood and bed material transport often determines the nature of the physical habitat, which in turn influences the health of the stream's ecosystem. We present a stochastic model that can be used to simulate the effects on physical habitat of forest fires, climate change, and other environmental disturbances that alter wood recruitment. The model predicts large wood (LW) loads in a stream as well as the volume of sediment stored by the wood; while it is parameterized to describe gravel bed streams similar to a well-studied field prototype, Fishtrap Creek, British Columbia, it can be calibrated to other systems as well. In the model, LW pieces are produced and modified over time as a result of random tree-fall, LW breakage, LW movement, and piece interaction to form LW jams. Each LW piece traps a portion of the annual bed material transport entering the reach and releases the stored sediment when the LW piece is entrained and moved. The equations governing sediment storage are based on a set of flume experiments also scaled to the field prototype. The model predicts wood loads ranging from 70 m3/ha to more than 300 m3/ha, with a mean value of 178 m3/ha: both the range and the mean value are consistent with field data from streams with similar riparian forest types and climate. The model also predicts an LW jam spacing that is consistent with field data. Furthermore, our modeling results demonstrate that the high spatial and temporal variability in sediment storage, sediment transport, and channel morphology associated with LW-dominated streams occurs only when LW pieces interact and form jams. Model runs that do not include jam formation are much less variable. These results suggest that river restoration efforts using engineered LW pieces that are fixed in place and not permitted to interact will be less successful at restoring the geomorphic processes responsible for producing diverse, productive

  5. Monitoring Sediment Size Distributions in a Regulated Gravel-Bed Coastal Stream

    NASA Astrophysics Data System (ADS)

    O'Connor, M. D.; Lewis, J.; Andrew, G.

    2014-12-01

    Lagunitas Creek drains 282 km2 in coastal Marin County, California. The watershed contains water supply reservoirs, urban areas, parks and habitat for threatened species (e.g. coho salmon). Water quality is impaired by excess fine sediment, and a plan to improve water quality (i.e. TMDL) was adopted by State authorities in 2014. The TMDL asserts changes in sediment delivery, transport, and storage contributed to the decline of coho. A sediment source analysis found a 2x increase in sediment supply. Concentrations of sand and fine gravel in the channel are elevated and, during high flows, more mobile. The Federal Coho Salmon Recovery Plan (2012) describes sediment conditions affecting coho habitat as "fair". Reservoir managers were directed by the State in 1995 to reduce sedimentation and improve riparian vegetation and woody debris to improve fish habitat. Prior sediment monitoring found variability related primarily to intense winter runoff without identifying clear trends. A new sediment monitoring program was implemented in 2012 for ongoing quantification of sediment conditions. The goal of monitoring is to determine with specified statistical certainty changes in sediment conditions over time and variation among reaches throughout the watershed. Conditions were compared in 3 reaches of Lagunitas Cr. and 2 tributaries. In each of the 5 channel reaches, 4 shorter reaches were sampled in a systematic grid comprised of 30 cross-channel transects spaced at intervals of 1/2 bankfull width and 10 sample points per transect; n=1200 in 5 channel reaches. Sediment diameter class (one clast), sediment facies (a patch descriptor), and habitat type were observed at each point. Fine sediment depth was measured by probing the thickness of the deposit, providing a means to estimate total volume of fine sediment and a measure of rearing habitat occupied by fine sediment (e.g. V*). Sub-surface sediment samples were collected and analyzed for size distribution at two scales: a

  6. Channel dynamics and habitat complexity in a meandering, gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Pecquerie, L.; Dunne, T.

    2009-12-01

    River channel dynamics play an important role in creating and maintaining diverse habitat conditions for multiple life stages of aquatic organisms. As a result, many river restoration projects seek to re-establish ecosystems in which an enhanced degree of habitat complexity is sustained through natural fluvial processes of flow, sediment transport, and channel change. Few field cases have effectively quantified the evolution of channel morphology and habitat complexity in restored rivers, however, and the outcomes of restoration actions remain difficult to predict. Our objective was to quantify the extent to which morphology, flow complexity and salmonid spawning and rearing habitat develop from the simplified initial conditions commonly observed in re-configured meandering channels. Using a time-series of topographic data, we measured rates of morphologic change in a recently restored gravel-bed reach of the Merced River, California, USA. We constructed two-dimensional (2D) hydrodynamic models to quantify how the evolving morphology influenced hydraulic conditions, flow complexity and suitability for Chinook salmon spawning and rearing. Following two large flood events, point bar development led to order-of-magnitude increases in modeled flow complexity, as quantified via the metrics of kinetic energy gradient, vorticity and hydraulic strain. On a bend-averaged scale, morphologic changes produced up to a two-fold increase in flow circulation, indicating a direct linkage between geomorphic processes and the development of habitat complexity at both the local (1.0 m2 grid cell) and meander wavelength scale. Habitat modeling indicated that the availability of Chinook salmon spawning habitat has increased over time, whereas the majority of the reach provides low-medium quality rearing habitat for juvenile salmonids, primarily due to a lack of low velocity refuge zones. These results demonstrate the ability of geomorphic processes to increase flow complexity and

  7. Type Region of the Ione Formation (Eocene), Central California: Stratigraphy, Paleogeography, and Relation to Auriferous Gravels

    USGS Publications Warehouse

    Creely, Scott; Force, Eric R.

    2007-01-01

    The middle Eocene Ione Formation extends over 200 miles (320 km) along the western edge of the Sierra Nevada. Our study was concentrated in the type region, 30 miles (48 km) along strike. There a bedrock ridge forms the seaward western side of the Ione depositional tract, defining a subbasin margin. The eastern limit of the type Ione is locally defined by high-angle faults. Ione sediments were spread over Upper Mesozoic metamorphic and plutonic bedrock, fed by gold-bearing streams dissecting the western slope of the ancestral Sierra Nevada. By middle Eocene time, a tropical or subtropical climate prevailed, leading to deep chemical weathering (including laterization) and a distinctively mature mineral assemblage was fed to and generated within Ione deposits. The Ione is noted for its abundant kaolinitic clay, some of it coarsely crystalline; the clay is present as both detrital grains and authigenic cement. Quartz is abundant, mostly as angular grains. Heavy mineral fractions are dominated by altered ilmenite and zircon. Distribution of feldspar is irregular, both stratigraphically and areally. Non-marine facies are most voluminous, and include conglomerates, especially at the base and along the eastern margins of the formation where they pass into Sierran auriferous gravels. Clays, grading into lignites, and gritty sands are also common facies. Both braided and meandering fluvial facies have been recognized. Shallow marine waters flooded the basin probably twice. Tongues of sediment exhibiting a variety of estuarine to marine indicators are underlain and overlain by fluvial deposits. Marine body fossils are found at only a few localities, but burrows identified as Ophiomorpha and cf. Thalassinoides are abundant in many places. Other clues to marginal marine deposition are the occurrence of glauconite in one bed, typical relations of lagoonal to beach (locally heavy-mineral-rich) lithofacies, closed-basin three-dimensional morphology of basinal facies, and high

  8. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    SciTech Connect

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at

  9. Bedload Transport Processes in Armored, Gravel-bed Channels: Impacts of Hydrograph Form

    NASA Astrophysics Data System (ADS)

    Kenworthy, M.; Yager, E.; Yarnell, S. M.

    2014-12-01

    Accurately predicting bed load transport rates remains challenging, with many influential factors still poorly understood, including unsteady flows and stream bed armoring. Nearly all natural channels experience unsteady flows, and hydrograph form varies significantly from gradually (i.e. snowmelt) to rapidly changing flows (i.e. rain driven or many regulated flows). However, most predictive methods neglect hydrograph impacts, and nearly all bedload transport experiments use steady flows. Stream bed armoring likely influences bedload transport rates as well, with the coarser surface limiting the availability of the finer, more mobile grain sizes in the subsurface. It remains uncertain whether armor persists, breaks up, or exchanges particles with bedload during high flow events. Coupled effects of hydrograph form and armor may also be significant, and previous work indicates that more gradual changes in flow promote more significant armoring compared to rapid changes in flow. To better understand the impacts of hydrograph form and armoring on bedload transport processes in gravel-bed rivers, flume experiments were conducted at the University of Idaho's Stream Lab. An armored, equilibrium bed was established as the initial condition for all experiments, which included steady-state discharges and a variety of hydrograph forms from gradually to rapidly changing. Steady-state runs allowed for comparison of bedload transport for a given discharge run singularly and in the context of various hydrographs. Though hydrograph form varied, minimum and peak flow rates and the total estimated transport capacity were held constant between runs. Armor ratios were estimated before and after runs by sampling the surface and subsurface separately. Armor behavior during runs was tracked by spray-painting the bed surface in three cross-sections that were repeatedly photographed then excavated after runs. Additional data collection during runs included photos for bed grain size

  10. Modeling of replenishment of sediments on a water-worked gravel bed channel

    NASA Astrophysics Data System (ADS)

    Juez, Carmelo; Battisacco, Elena; Schleiss, Anton J.; Franca, Mário J.

    2016-04-01

    the area percentage that is covered by the replenishment material, (iii) travel distance of the center of the pulse mass and (iv) effect of the bed fining in the bed shear stress. The results of these experiments assist in further evaluating how water-worked gravel bed channels evolve with artificial replenishment of sediments. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement n_607394-SEDITRANS. The sediment replenishment experiments were funded by FOEN (Federal Office for the Environment, Switzerland).

  11. Gravel-bed deposition and erosion by bedform migration observed ultrasonically during storm flow, North Fork Toutle River, Washington

    NASA Astrophysics Data System (ADS)

    Dinehart, Randy L.

    1992-08-01

    Ultrasonic depth sounding provides useful and unexpected information about peak discharge and sediment transport when applied during storm flow in channels with erodible beds. Streambed elevation was measured with dual ultrasonic depth sounders during the rise, crest, and recession of a storm flow in the North Fork Toutle River, Washington, on 3 December 1987. The sounder transducers were held in the flow on a rigid pipe which was suspended from a boom over the channel thalweg. The 12 h episode of depth sounding detected the superposition of fine-gravel dunes on large bed waves, the depth-limited growth of mean dune heights from 13 to 25 cm, and bedform-related deposition and erosion in the channel thalweg. The streambed elevation rose 0.3 m in 2 h with increasing stream discharge. Dune heights diminished for about an hour before the peak river stage was attained. Scour of the streambed continued through the peak stage and recession, with 0.7 m of scour over 10 h. Rapid scour of the streambed produced a falling stage while discharge was still rising. Dune heights grew as flow depth increased after peak stage. Streambed elevation was lowered as large bed waves of fine gravel migrated along the thalweg with successively lower troughs leading each bed wave. Bed elevation records from the dual depth sounders were used to calculate dune celerities of 3-6 cm s -1 and bedform wavelengths of 2-11 m. The large bed waves were subtle, dune-like gravel bedforms with wavelengths of 25-30 m. The celerities and bedform dimensions yielded bedform transport weight rates between 3 and 20 kg s -1 m -1 and grain shear stresses between 40 and 100 N m -2 for the depth-sounding episode.

  12. What Happens During a Minor Flood: Observations of Bedload Transport in a Gravel Bed River using New Methods

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2015-12-01

    The question of "does the streambed change over a flood" does not have a clear answer due to lack of measurement methods during high flows. We seek to inform our understanding of bedload transport by linking field measurements using fiber optic distributed temperature sensing (DTS) cable, calculations of disentrainment over time and distance, and in situ measurements of streambed permeability with sediment transport theory and an existing explicit analytical solution to predict depth of sediment deposition and one-dimensional fluid velocity from amplitude and phase information. The method facilitates the study of gravel transport by using near-bed temperature time series to estimate rates of sediment deposition continuously over the duration of a minor flood coinciding with bar formation, including (1) a field method for measuring local rates of deposition and bed elevation change during a minor flood to compute rates of bedload transport, (2) use of an existing analytical solution to quantify the depth of sediment deposition over distance and time from temperature amplitude and phase information, (3) observational and theoretical evidence that incipient motion occurs during a minor flood, (4) observational evidence that suggests rates of sediment transport are not necessarily constant during a constant flow, and (5) field evidence for the persistence of armor layers in gravel bed rivers during a minor flood. These observations of partial bedload transport, taken along a 2 km gravel bed reach of the San Joaquin River, CA, USA during an experimental flow release, suggest that the discharge needed to create the boundary shear is lower than previous estimates, and that partial transport of grain sizes on the bed, including the median particle size, occurs during a minor flood with a current recurrence interval of approximately 1-2 years.

  13. Development of an integrated sediment transport model and application at a large gravel bed river

    NASA Astrophysics Data System (ADS)

    Tritthart, M.; Schober, B.; Liedermann, M.; Habersack, H.

    2009-04-01

    This paper presents the development, validation and application of iSed, an integrated numerical sediment transport and morphology model. The model was specifically designed to suit the needs of large gravel bed rivers, such as the Danube East of Vienna. It is coupled with external 2-D or 3-D hydrodynamic codes to obtain the flow field and bed shear stress patterns driving sediment transport processes. This approach is of particular advantage for an investigation into sediment dynamics based on hydrodynamics of different dimensionality. The model is capable of calculating both suspended and bed load transport. It solves a convection-diffusion equation to account for suspended load; in addition, four different transport formulae - the relations of Meyer-Peter/Müller, Hunziker, van Rijn and Egiazaroff - are implemented for the computation of bed load. The well-known Exner equation is solved for deriving resulting bed level differences for every node of the computation mesh based on the sediment balance. All equations are evaluated for an unlimited number of sediment size fractions, allowing for the investigation of sorting processes. The river bed is organized into an active layer, where sorting takes place, and an unlimited number of bed layers below the active layer. The sediment transport model was validated using results from three different laboratory experiments: (i) morphodynamics of a 180 degree channel bend, based on hydraulics of a 3-D numerical model; (ii) erosion and deposition patterns due to a channel contraction, using a 2-D model to provide the flow field; (iii) incipient motion and erosion processes due to different sediment materials in a straight laboratory channel, coupled with a 3-D numerical model. The results of the numerical code were in satisfactory agreement with the experimental measurements, demonstrating the general validity of the sediment transport model. After successful validation, the model was applied to a 4 kilometre reach of the

  14. Runoff and drainage water quality from geotextile and gravel pads used in livestock feeding and loafing areas.

    PubMed

    Singh, Anshu; Bicudo, José R; Workman, Stephen R

    2008-05-01

    Geotextile and gravel pads offer a low-cost alternative to concrete for providing all-weather surfaces for cattle and vehicle traffic, and are used in many livestock facilities to minimize mud, runoff and erosion of heavy traffic areas. The objective of this study was to compare different combinations of geotextile and gravel used in heavy livestock traffic areas that minimize the potential for water pollution. Three different pad combinations were constructed in 2.4 x 6-m plots as follows: (i) woven geotextile+100mm of gravel+50mm Dense Grade Aggregate (DGA); (ii) woven geotextile + geoweb+100 mm DGA; and (iii) non-woven geotextile+152 mm of gravel+50mm DGA; (iv) mud lots as control. The third combination was equivalent to one of the base treatments specified by the Kentucky Natural Resource and Conservation Service (NRCS). All treatment combinations were duplicated. Lysimeter pans were installed in four out of eight plots for the collection of leachate or drainage water. Runoff was collected at the lower end of the plots. About 14 kg of beef cattle manure were added evenly to the plots. Rainfall at 50mm/h was applied using rainfall simulators. In the first five of ten experiments, manure was removed from the surface of the pads after each experiment. In the remaining five experiments manure accumulated on the surface of the pads. The effect of pad treatment was significant on the electrical conductivity (EC), total solids (TS), chemical oxygen demand (COD), nitrite (NO2-N), total nitrogen (TN) and total phosphorus (TP) values in surface runoff at the 5% level. Manure removal did not have any significant effect on the nutrient content of runoff or leachate samples except for ammonia (NH4-N) values. Although a mass balance indicated relatively small amounts of organic matter and nutrients were lost by runoff and leaching, the actual contamination level of both runoff and leachate samples were high; TP levels as high as 12 mg/l (5.4 mg/m2) in runoff and nitrate (NO3

  15. Influences on Bed Sorting and Armoring in an Upland Gravel-Cobble Bed River, Middle Fork John Day River, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2014-12-01

    The Middle Fork is an unconfined to partly confined upland river with channel length of 34 km, drainage area of 250-850 km2, and channel gradients of 0.004 to 0.006 in the study area. Geology is dominated by Tertiary volcanic and volcaniclastic rocks that yield abundant coarse clasts. Surface and subsurface bed material was sampled volumetrically at twenty-five sites. The textural types range from gravelly cobbles to sandy cobbly gravels, sand content is low (2 to 13%), mud content is very low, and sorting is poor to very poor. Generally the surface layer is an open framework gravel or cobble, while the subsurface layer is a filled or partially filled framework gravel or cobble. Despite an armored appearance, only 20% of the sites are armored using the standard armor ratio (surface D50/subsurface D50). While surface layers are not coarser than their subsurface layers in terms of the median or coarse end of the distribution, they are coarser in terms of fines (ratios based on D25, D16, % sand), suggesting that alternatives to the D50armor ratio might be useful. Multivariate analysis of size fraction data reveals four distinct groups of samples, distinguished mainly by differences in proportions of coarse to fine gravels, and in abundance of sand. While one group comprises only surface samples and another subsurface samples, two of the groups are mixed. One goal of the project is to evaluate the effects of land use history on bed material characteristics and mobility. Sediment characteristics were examined in relation to distance downstream, geology, relation to debris-flow sources, land use history, and other potential influences. There are no geologic associations or downstream trends in fining or other grain size parameters. Differences in land use history, such as former dredged-mined reaches and reaches with recent restoration projects also do not explain patterns of armoring or other sediment characteristics. High variability within each reach suggests that

  16. Gravel-bed deposition and erosion by bedform migration observed ultrasonically during storm flow, North Fork Toutle River, Washington

    USGS Publications Warehouse

    Dinehart, R.L.

    1992-01-01

    Bed elevation records from the dual depth sounders were used to calculate dune celerities of 3–6 cm s−1 and bedform wavelengths of 2–11 m. The large bed waves were subtle, dune-like gravel bedforms with wavelengths of 25–30 m. The celerities and bedform dimensions yielded bedform transport weight rates between 3 and 20 kg s−1 m−1 and grain shear stresses between 40 and 100 N m−2 for the depth-sounding episode.

  17. Application of surface-geophysical methods to investigations of sand and gravel aquifers in the glaciated Northeastern United States

    USGS Publications Warehouse

    Haeni, F.P.

    1995-01-01

    Combined use of seismic-refraction, direct-current resistivity, very-low-frequency terrain-resistivity, and inductive terrain-conductivity methods were demonstrated at sites in Connecticut, New York, and Maine. Although no single method can define both the hydrogeologic boundaries and general grain-size characteristics of sand and gravel aquifers, a combination of these methods can. Comparisons of measured electrical properties of aquifers with logs of test holes and wells indicate that, for a given conductivity of ground water, the bulk electrical resistivity of aquifers in the glaciated Northeast increases with grain size.

  18. Quantifying Upper Particle-size Limits of Salmonid Spawning Gravel: Analysis of Fall-run Chinook Salmon of the Sacramento River

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.

    2008-12-01

    Reversing the decline of historically prolific runs of Chinook salmon (Oncorhynchus tshawytscha) remains a high priority of river restoration along the US Pacific Coast. One routinely implemented strategy is gravel injection, to supplement spawning habitat which has been depleted by gravel mining and bed coarsening below dams. Gravel augmentation is generally designed around a qualitatively assessed "preferred" median particle size. Implementation sites are not always ecologically ideal, because there often is little quantitative basis for determining where added gravel would be most suitable. Although gravel augmentation may increase spawning habitat, a more mechanistic design basis could reduce costs, improve efficiency, and make results more predictable. One key to developing better designs is a better method for characterizing existing spawning gravel deposits. Here we propose a series of mechanistically oriented hypotheses about the spawning suitability of natural gravels. One hypothesis is that there is an upper size limit on particles that can be moved by salmon. We expect that this limit depends on salmon size, water velocity and the size (and embeddedness) of surrounding rocks. Another hypothesis is that spawning success is related to percent coverage by immovable particles. A corollary hypothesis is that redds become irregular (and less productive) as percent coverage by immovable particles increases. Another related hypothesis is that redd-building success should approach zero at an upper threshold of coverage by immovable particles. We explored our hypotheses for fall-run Chinook in the Sacramento River. We collected grain size data, constructed facies maps of the bed, and delineated boundaries of spawning use at the peak of spawning, prior to the run's recent population decline. Our observations suggest that particles with intermediate axes diameters bigger than about 130 mm are not generally movable by fall run Chinook. Moreover we observed no

  19. Liftable Bedload Trap for Large Alpine Gravel-Bed Rivers - Experiences and Goals

    NASA Astrophysics Data System (ADS)

    Seitz, Hugo; Strahlhofer, Lukas; Habersack, Helmut

    2010-05-01

    The aim of the work is to figure out the bedload transport processes for the free flowing reach of the Drau River in Dellach, Drau Valley, amongst other measurement techniques also under the use of a recently invented liftable bedload trap. In general, there are some techniques for measuring transported debris in natural streams; we use collecting moving particles (Birkbeck-type traps, Large Helley Smith sampler) and indirectly determining transport intensity (geophones) at the study sites in Austria. In addition hydrological, geological, meteorological and other related data are collected. Two further almost fully equipped measurement stations in Lienz at the Drau River and its most important tributary Isel River, both large Alpine gravel-bed rivers, situated in the south western part of Austria are completing the integrative and innovative bedload measurement system. Former measurements in the study reach were performed also using mobile bedload samplers and fixed bedload samplers. Individually they all are adequate bedload measurement instruments - used in combination they are complementing one another, whereas each applied separately leads to specific deficits. In general the investigation pays special attention on results out of the geophone installations. The spatio-temporal distribution of the transported bedload material, its amount and the transport processes itself could be figured out. But for calibration purposes direct moving particle sampling is essential. Compared to Large Helley-Smith sampling fixed bedload traps are flood protected and robust to withstand the strain during flood conditions and so are capable to take bedload samples of e.g. a flood peak. The disadvantage of this type of direct bedload measurement is that in perennial alpine rivers the only chance to empty them and analyze their content is during the wintertime at very low water stages. Therefore a liftable bedload trap was installed direct downstream the geophone installation into

  20. Interaction of Bar Morphology and Riparian Vegetation in Gravel-Bed Rivers

    NASA Astrophysics Data System (ADS)

    Francalanci, S.; Bertoldi, W.; Siviglia, A.; Solari, L.; Toffolon, M.; Vetsch, D.

    2013-12-01

    Gravel-bed rivers are often characterized by complex bed topography, including single- and multiple-row alternate bars, bed undulations associated with channel curvature, riffle and pool sequences, presence of riparian vegetation in the floodplain, etc. The interaction of these features results in different morphologies with complex patterns and dynamics. The present work investigates the effect of the riparian vegetation on the bar dynamics, in particular it is investigated how the vegetation, which grows during the dry season on the bars, can alter the topographic patterns evolution during flood conditions. Performing two-dimensional numerical simulations we try to answer to the following research questions: which is the interaction of vegetation with bar morphology? which are the changes in sediment discharge and flow resistance, at cross-sectional and reach scale? Which are the changes in distribution of emerged and submerged areas, and potential feedbacks for vegetation growth? Which is the effect of vegetation on bar wave-length? The code BASEMENT (Faeh et al., 2010) has been used for performing the numerical runs. It has been properly modified in order to deal with the numerical description of the vegetation. The vegetation was allowed to grow during the dry season on the top of dry emergent areas, and the vertical distribution of vegetation in equilibrium condition was modeled as a function of the bed elevation using a simple analytical formulation, following Marani et al (2013). Then, during the flood events we assume that the vegetation distribution does not change, and that it can only be uprooted if the bed is eroded.The flow resistance was divided into a resistance exerted by the soil and a resistance exerted by the plants (Crosato and Saleh, 2010; Li and Millar, 2011); in this way it was possible to reproduce both the decrease in bed shear stress, reducing the sediment transport capacity of the flow within the plants, and the increase in hydraulic

  1. Relationships between woody vegetation and geomorphological patterns in three gravel-bed rivers with different intensities of anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Sitzia, T.; Picco, L.; Ravazzolo, D.; Comiti, F.; Mao, L.; Lenzi, M. A.

    2016-07-01

    We compared three gravel-bed rivers in north-eastern Italy (Brenta, Piave, Tagliamento) having similar bioclimate, geology and fluvial morphology, but affected by different intensities of anthropogenic disturbance related particularly to hydropower dams, training works and instream gravel mining. Our aim was to test whether a corresponding difference in the interactions between vegetation and geomorphological patterns existed among the three rivers. In equally spaced and sized plots (n = 710) we collected descriptors of geomorphic conditions, and presence-absence of woody species. In the less disturbed river (Tagliamento), spatial succession of woody communities from the floodplain to the channel followed a profile where higher elevation floodplains featured more developed tree communities, and lower elevation islands and bars were covered by pioneer communities. In the intermediate-disturbed river (Piave), islands and floodplains lay at similar elevation and both showed species indicators of mature developed communities. In the most disturbed river (Brenta), all these patterns were simplified, all geomorphic units lay at similar elevations, were not well characterized by species composition, and presented similar persistence age. This indicates that in human-disturbed rivers, channel and vegetation adjustments are closely linked in the long term, and suggests that intermediate levels of anthropogenic disturbance, such as those encountered in the Piave River, could counteract the natural, more dynamic conditions that may periodically fragment vegetated landscapes in natural rivers.

  2. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.

    PubMed

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans. PMID:25910870

  3. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts

    USGS Publications Warehouse

    Herrick, J.E.; Van Zee, J. W.; Belnap, J.; Johansen, J.R.; Remmenga, M.

    2010-01-01

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltration rate and total infiltration and increased sediment generation from small (0.5m2) rainfall simulation plots (p<0.01). Trampling had no effect on time to runoff or time to peak runoff. Trampling had similar effects at sites with both low and very low levels of cyanobacterial biomass, as indicated by chlorophyll a concentrations. We concluded that trampling effects are relatively independent of differences in the relatively low levels of cyanobacterial biomass in this environment. Instead, trampling appears to reduce infiltration by significantly reducing the cover of gravel and coarse sand on the soil surface, facilitating the development of a physical crust during rainfall events. The results of this study underscore the importance of carefully characterizing both soil physical and biological properties to understand how disturbance affects ecosystem processes. ?? 2010.

  4. Bed stability in unconfined gravel bed mountain streams: With implications for salmon spawning viability in future climates

    NASA Astrophysics Data System (ADS)

    McKean, Jim; Tonina, Daniele

    2013-09-01

    Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning salmon in mountain watersheds such as the Middle Fork Salmon River (MFSR), Idaho. In one of the most important MFSR spawning tributaries, near-bed shear stresses were relatively low at all discharges from base flows to 300% of bankfull. The highest stresses were found only in small areas of the central flow core and not at spawning sites. Median shear stresses did not increase in overbank flow conditions because poor channel confinement released the excess water into adjacent floodplains. Channel and floodplain topography, rather than discharge, control the maximum near-bed shear stresses. Over the modeled range of discharges, ~2% of the total surface area of the main stem channel bed was predicted to be mobile. Even in known spawning areas, where shear stresses are higher, ≤20% of the spawning surface area was mobile during overbank flows with a 2 year recurrence interval. Field measurements of little gravel transport during flows that were 93% of bankfull support the numerical model predictions. Regardless of some uncertainty in future climates in these watersheds, there appears to be relatively limited risk of extensive scour at salmon spawning sites in any likely hydrologic regimes.

  5. Characterization of metal adsorption variability in a sand and gravel aquifer, Cape Cod, Massachusetts, U.S.A

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.; Coston, J.A.; Dixon, E.

    1996-01-01

    Several geochemical properties of an aquifer sediment that control metal-ion adsorption were investigated to determine their potential use as indicators of the spatial variability of metal adsorption. Over the length of a 4.5-m-long core from a sand and gravel aquifer, lead (Pb2+) and zinc (Zn2+) adsorption at constant chemical conditions (pH 5.3) varied by a factor of 2 and 4, respectively. Pb2+ and Zn2+ were adsorbed primarily by Fe- and Al-oxide coatings on quartz-grain surfaces. Per unit surface area, both Pb2+ and Zn2+ adsorption were significantly correlated with the amount of Fe and Al that dissolved from the aquifer material in a partial chemical extraction. The variability in conditional binding constants for Pb2+ and Zn2+ adsorption (log KADS) derived from a simple non-electrostatic surface complexation model were also predicted by extracted Fe and Al normalized to surface area. Because the abundance of Fe- and Al-oxide coatings that dominate adsorption does not vary inversely with grain size by a simple linear relationship, only a weak, negative correlation was found between the spatial variability of Pb2+ adsorption and grain size in this aquifer. The correlation between Zn2+ adsorption and grain size was not significant. Partial chemical extractions combined with surface-area measurements have potential use for estimating metal adsorption variability in other sand and gravel aquifers of negligible carbonate and organic carbon content.

  6. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal.

    PubMed

    Tee, H C; Seng, C E; Noor, A Md; Lim, P E

    2009-05-15

    This study aims to compare the performance of planted and unplanted constructed wetlands with gravel- and raw rice husk-based media for phenol and nitrogen removal. Four laboratory-scale horizontal subsurface-flow constructed wetland units, two of which planted with cattail (Typha latifolia) were operated outdoors. The units were operated at a nominal hydraulic retention time of 7 days and fed with domestic wastewater spiked with phenol concentration at 300 mg/L for 74 days and then at 500 mg/L for 198 days. The results show that planted wetland units performed better than the unplanted ones in the removal and mineralization of phenol. This was explained by the creation of more micro-aerobic zones in the root zone of the wetland plants which allow a faster rate of phenol biodegradation, and the phenol uptake by plants. The better performance of the rice husk-based planted wetland compared to that of the gravel-based planted wetland in phenol removal could be explained by the observation that more rhizomes were established in the rice husk-based wetland unit thus creating more micro-aerobic zones for phenol degradation. The role of rice husk as an adsorbent in phenol removal was considered not of importance.

  7. The evolution of gravel bed channels after dam removal: Case study of the Anaconda and Union City Dam removals

    NASA Astrophysics Data System (ADS)

    Wildman, Laura A. S.; MacBroom, James G.

    2005-10-01

    The Anaconda and Union City Dams on the Naugatuck River in Connecticut were removed in February and October 1999. A detailed study of the sites prior to removal was undertaken including sediment testing and predictions of upstream channel formation post-dam removal. The 3.35-m-high timber crib/rock fill spillway of the Anaconda Dam partially breached during a storm prior to the dam's scheduled removal allowing a portion of the impounded sediment to move down through the river system. This event changed the removal plans and the remainder of the spillway was removed under an emergency order in the course of 4 days. The Union City Dam, a 2.44-m-high timber crib/rock fill dam capped with concrete and stone, was removed on schedule. A portion of the impounded sediment was removed by mechanical means during the deconstruction of the structure. The evolution of the two upstream channels post-project provided unique challenges and valuable insights as to what kind of channel transition can be expected in gravel bed river systems after a low head dam has been removed. This paper describes the initial engineering analysis and design, the subsequent removal of the two dams, and compares observations on the transition of the upstream channels following dam removal to the initial engineering predictions and other models. The relatively steep gravel bed channels evolved in a predictable manner, except where anthropogenic barriers (sanitary sewer, rock weir) interrupted.

  8. A field experiment and numerical modeling of a tracer at a gravel beach in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Guo, Qiaona; Li, Hailong; Boufadel, Michel C.; Liu, Jin

    2014-12-01

    Oil from the 1989 Exxon Valdez oil spill persists in many gravel beaches in Prince William Sound (Alaska, USA), despite great remedial efforts. A tracer study using lithium at a gravel beach on Knight Island, Prince William Sound, during the summer of 2008 is reported. The tracer injection and transport along a transect were simulated using the two-dimensional numerical model MARUN. Model results successfully reproduced the tracer concentrations observed at wells along the transect. A sensitivity analysis revealed that the estimated parameters are well determined. The simulated spatial distribution of tracer indicated that nutrients applied along the transect for bioremediation purposes would be washed to the sea very quickly (within a semi-diurnal tidal cycle) by virtue of the combination of the two-layered beach structure, the tidal fluctuation and the freshwater flow from inland. Thus, pore-water samples in the transect were found to be clean due to factors other than bioremediation. This may explain why the oil did not persist within the transect.

  9. Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.

    PubMed

    DeVries, Paul; Aldrich, Robert

    2015-08-01

    A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.

  10. Qualitative Analysis of Rock Avalanches Propagation by Means of Physical Modelling of Non-Constrained Gravel Flows

    NASA Astrophysics Data System (ADS)

    Manzella, I.; Labiouse, V.

    2008-02-01

    This paper presents an experimental study of rock avalanches run-out and propagation carried out with a small-scale physical model at the EPFL Rock Mechanics Laboratory. Fall height, volume, releasing geometry and materials used for testing have been varied and their influence on deposit characteristics (such as length, width, height and morphology) and run-out has been studied. The experiments have shown that deposit morphology is dependent on the type of material used: sand or gravel. Sand deposit shape, regular and compact, is in accordance with many tests described in the literature, while Aquarium gravel deposit is closer to real cases such as the Six des Eaux Froides event (Switzerland). There is also a considerable difference in deposit morphology and dimensions when the event is the consequence of one large volume released at once or when the same volume is released at different times. In this latter case the final deposit characteristics do not depend on the entire failed volume but on the individual smaller ones. This behaviour is in agreement with the Randa event (Swiss Alps) which occurred over several hours. For all-in-once releases, run-out distance depends primarily on the volume. Fall height and releasing geometry have a small influence on run-out, but on the other hand a higher fall height leads to a different lateral spreading and to the development of two different propagation mechanisms of the sliding mass.

  11. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-01-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  12. Retardation of ammonium and potassium transport through a contaminated sand and gravel aquifer: The Role of cation exchange

    USGS Publications Warehouse

    Ceazan, M.L.; Thurman, E.M.; Smith, R.L.

    1989-01-01

    The role of cation exchange in the retardation of ammonium (NH4+) and potassium (K+) transport in a shallow sand and gravel aquifer was evaluated by use of observed distributions of NH4+ and K+ within a plume of sewage-contaminated groundwater, small-scale tracer injection tests, and batch sorption experiments on aquifer material. Both NH4+ and K+ were transported ???2 km in the 4-km-long contaminant plume (retardation factor, Rf = 2.0). Sediments from the NH4+-containing zone of the plume contained significant quantities of KCl-extractable NH4+ (extraction distribution coefficient, Kd,extr = 0.59-0.87 mL/g of dry sediment), and when added to uncontaminated sediments, NH4+ sorption followed a linear isotherm. Small-scale tracer tests demonstrated that NH4+ and K+ were retarded (Rf =3.5) relative to a nonreactive tracer (Br-). Sorption of dissolved NH4+ was accompanied by concomitant release of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) from aquifer sediments, suggesting involvement of cation exchange. In contrast, nitrate (NO3-) was not retarded and cleanly separated from NH4+ and K+ in the small-scale tracer tests. This study demonstrates that transport of NH4+ and K+ through a sand and gravel aquifer can be markedly affected by cation-exchange processes even at a clay content less than 0.1%.

  13. Geospatial organization of fluvial landforms in a gravel-cobble river: Beyond the riffle-pool couplet

    NASA Astrophysics Data System (ADS)

    Wyrick, J. R.; Pasternack, G. B.

    2014-05-01

    Morphological units (MU) are landforms with distinct local form-process associations at ~ 1-10 channel widths scale that may be the fundamental building blocks describing the geomorphic structure of a river. Past research has disproportionately focused on the two MUs of pool and riffle, conjecturing that they are the central linked couplet in the process-form association. The goal of this study was to delineate and map spatially explicit fluvial landforms in two-dimensional planview within a gravel-cobble bed river using two-dimensional hydrodynamic delineation and then to statistically examine MU geospatial patterns for indicators of deterministic geomorphic control. This procedure is not discharge-dependent like mesohabitat methods, but gets at the geometry of underlying landforms. Statistical testing confirmed that eight delineated in-channel MU types comprise a complex and diverse channel morphology in which pools and riffles are not directly coupled. Specifically, gravel-cobble river channels (1) exhibit nonrandom spatial organization of their longitudinally and laterally variable landform morphology; (2) consist of a variety of MU types, not just pools and riffles; and (3) show distinct MU collocations and avoidances, with riffles linked to chutes and runs, while pools are linked to slackwaters and glides. Planview MU delineation with two-dimensional hydrodynamic modeling provides a 'bottom-up' approach to understanding and linking channel morphology with ecosystem services and geomorphic processes and is being used to guide river management and rehabilitation strategies.

  14. Geometry of meandering and braided gravel-bed threads from the Bayanbulak Grassland, Tianshan, P. R. China

    NASA Astrophysics Data System (ADS)

    Métivier, François; Devauchelle, Olivier; Chauvet, Hugo; Lajeunesse, Eric; Meunier, Patrick; Blanckaert, Koen; Ashmore, Peter; Zhang, Zhi; Fan, Yuting; Liu, Youcun; Dong, Zhibao; Ye, Baisheng

    2016-03-01

    The Bayanbulak Grassland, Tianshan, P. R. China, is located in an intramontane sedimentary basin where meandering and braided gravel-bed rivers coexist under the same climatic and geological settings. We report and compare measurements of the discharge, width, depth, slope and grain size of individual threads from these braided and meandering rivers. Both types of threads share statistically indistinguishable regime relations. Their depths and slopes compare well with the threshold theory, but they are wider than predicted by this theory. These findings are reminiscent of previous observations from similar gravel-bed rivers. Using the scaling laws of the threshold theory, we detrend our data with respect to discharge to produce a homogeneous statistical ensemble of width, depth and slope measurements. The statistical distributions of these dimensionless quantities are similar for braided and meandering threads. This suggests that a braided river is a collection of intertwined threads, which individually resemble those of meandering rivers. Given the environmental conditions in Bayanbulak, we furthermore hypothesize that bedload transport causes the threads to be wider than predicted by the threshold theory.

  15. Regulated flushing in a gravel-bed river for channel habitat maintenance: A Trinity River fisheries case study

    NASA Astrophysics Data System (ADS)

    Nelson, R. Wayne; Dwyer, John R.; Greenberg, Wendy E.

    1987-08-01

    The operation of Trinity and Lewiston Dams on the Trinity River in northern California in the United States, combined with severe watershed erosion, has jeopardized the existence of prime salmonid fisheries. Extreme streamflow depletion and stream sedimentation below Lewiston have resulted in heavy accumulation of coarse sediment on riffle gravel and filling of streambed pools, causing the destruction of spawning, nursery, and overwintering habitat for prized chinook salmon ( Salmo gairdnerii) and steelhead trout ( Oncorhynchus tschawytscha). Proposals to restore and maintain the degraded habitat include controlled one-time remedial peak flows or annual maintenance peak flows designed to flush the spawning gravel and scour the banks, deltas, and pools. The criteria for effective channel restoration or maintenance by streambed flushing and scouring are examined here, as well as the mechanics involved. The liabilities of releasing mammoth scouring-flushing flows approximating the magnitude that preceded reservoir construction make this option unviable. The resulting damage to fish habitat established under the postproject streamflow regime, as well as damage to human settlements in the floodplain, would be unacceptable, as would the opportunity costs to hydroelectric and irrigation water users. The technical feasibility of annual maintenance flushing flows depends upon associated mechanical and structural measures, particularly instream maintenance dredging of deep pools and construction of a sediment control dam on a tributary where watershed erosion is extreme. The cost effectiveness of a sediment dam with a limited useful economic life, combined with perpetual maintenance dredging, is questionable.

  16. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    NASA Astrophysics Data System (ADS)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano

  17. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: Implications in the estimation of setback distances

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Close, Murray; Goltz, Mark; Noonan, Mike; Sinton, Lester

    2005-04-01

    Filtration of Bacillus subtilis spores and the F-RNA phage MS2 (MS2) on a field scale in a coarse alluvial gravel aquifer was evaluated from the authors' previously published data. An advection-dispersion model that is coupled with first-order attachment kinetics was used in this study to interpret microbial concentration vs. time breakthrough curves (BTC) at sampling wells. Based on attachment rates ( katt) that were determined by applying the model to the breakthrough data, filter factors ( f) were calculated and compared with f values estimated from the slopes of log ( cmax/ co) vs. distance plots. These two independent approaches resulted in nearly identical filter factors, suggesting that both approaches are useful in determining reductions in microbial concentrations over transport distance. Applying the graphic approach to analyse spatial data, we have also estimated the f values for different aquifers using information provided by some other published field studies. The results show that values of f, in units of log ( cmax/ co) m -1, are consistently in the order of 10 -2 for clean coarse gravel aquifers, 10 -3 for contaminated coarse gravel aquifers, and generally 10 -1 for sandy fine gravel aquifers and river and coastal sand aquifers. For each aquifer category, the f values for bacteriophages and bacteria are in the same order-of-magnitude. The f values estimated in this study indicate that for every one-log reduction in microbial concentration in groundwater, it requires a few tens of meters of travel in clean coarse gravel aquifers, but a few hundreds of meters in contaminated coarse gravel aquifers. In contrast, a one-log reduction generally only requires a few meters of travel in sandy fine gravel aquifers and sand aquifers. Considering the highest concentration in human effluent is in the order of 10 4 pfu/l for enteroviruses and 10 6 cfu/100 ml for faecal coliform bacteria, a 7-log reduction in microbial concentration would comply with the drinking

  18. Sedimentology of rocky shorelines: 1. A review of the problem, with analytical methods, and insights gained from the Hulopoe Gravel and the modern rocky shoreline of Lanai, Hawaii

    NASA Astrophysics Data System (ADS)

    Felton, E. Anne

    2002-10-01

    Hypotheses advanced concerning the origin of the Pleistocene Hulopoe Gravel on Lanai include mega-tsunami, abandoned beach, 'multiple event,' rocky shoreline, and for parts of the deposit, Native Hawaiian constructions and degraded lava flow fronts. Uplift of Lanai shorelines has been suggested for deposits occurring up to at least 190 m. These conflicting hypotheses highlight problems with the interpretation of coarse gravel deposits containing marine biotic remains. The geological records of the processes implied by these hypotheses should look very different. Discrimination among these or any other hypotheses for the origins of the Hulopoe Gravel will require careful study of vertical and lateral variations in litho- and biofacies, facies architecture, contact relationships and stratal geometries of this deposit. Observations of modern rocky shorelines, particularly on Lanai adjacent to Hulopoe Gravel outcrops, have shown that distinctive coarse gravel facies are present, several of which occur in specific geomorphic settings. Tectonic, isostatic and eustatic changes which cause rapid shoreline translations on steep slopes favour preservation of former rocky shorelines and associated sedimentary deposits both above and below sea level. The sedimentary record of those shorelines is likely to be complex. The modern rocky shoreline sedimentary environment is a hostile one, largely neglected by sedimentologists. A range of high-energy processes characterize these shorelines. Long-period swell, tsunami and storm waves can erode hard bedrock and generate coarse gravel. They also erode older deposits, depositing fresh ones containing mixtures of materials of different ages. Additional gravelly material may be contributed by rivers draining steep hinterlands. To fully evaluate rocky shoreline deposition in the broadest sense, for both the Hulopoe Gravel and other deposits, sedimentary facies models are needed for rocky shorelines occurring in a range of settings

  19. Map showing potential sources of gravel and crushed-rock aggregate in the greater Denver area, Front Range urban corridor, Colorado

    USGS Publications Warehouse

    Trimble, D.E.; Fitch, H.R.

    1974-01-01

    Gravel and (or) crushed-rock aggregates are essential commodities for urban development, but supplies in many places are exhausted or otherwise eliminated by urban growth. Gravel resources may be exhausted by exploitation, covered by urban spread, or eliminated from production by zoning. this conflict between a growing need and a progressively reduced supply can be forestalled by informed land-use planning. Fundamental to intelligent decisions on land use is knowledge of the physical character, distribution, and quantity of the gravel resources of an area, and of the alternative resource of rock suitable for crushing. This map has been prepared to supply data basic to land-use planning in the Front Range Urban Corridor.

  20. Hillslope deposits in gravel-bed rivers and their effects on the evolution of alluvial channel forms: A case study from the Sudetes and Carpathian Mountains

    NASA Astrophysics Data System (ADS)

    Owczarek, Piotr

    2008-06-01

    This paper describes initiation and development of specific alluvial channel forms, connected with the supply of coarse-grained hillslope sediment. The study was carried out in gravel-bed rivers, located in mid-mountain areas (the Sudetes and the Carpathian Mountains) in Central Europe. In the river channels studied, where input of hillslope material is abundant, patterns of sedimentation and erosion are determined by hillslope processes. Two types of primary sediment source in mountain temperate rivers, with flat valley floors, were identified: mass movements, in particular landslides, and supply of angular coarse-grained slope material to streams from cut-bank sections. The introduced coarsest hillslope sediment is only entrained during floods which destabilize the river systems downstream of the supply points. At these river channel sections, development of new, and transformation of existing, alluvial channel forms is observed. Sediment accretion and progradation of bars downstream of the hillslope sediment delivery zones (HSD zones) is connected with: activity of these zones (frequency of hillslope sediment supply), size of coarse-grained, angular deposits introduced into the river channels and frequency of flood events. The largest depositional forms, such as gravel-rich debris longitudinal bars, lateral bars with a rock block core and lateral bars downstream of an HSD zone, comprise coarse, usually gravel-sized sediment. The main feature of their initiation and progradation is deposition of large rock blocks within or at a short distance downstream of the supply points. Lateral sediment accretion of the bars leads to river channel constriction during subsequent floods and development of other alluvial channel forms such as transverse gravel-rich debris ribs, diffuse gravel-rich debris sheets, side debris bars and small sandy-rich gravel separation bars. These forms create depositional complexes which are observed in the river channel within the zone of the

  1. Coupling Hydrodynamic Modeling and Empirical Measures of Bed Mobility: Implications for Restoring Spawning Gravel Quality on a Large Regulated River

    NASA Astrophysics Data System (ADS)

    May, C. L.; Smith, B. J.; Lisle, T. E.; Lang, M. M.

    2005-05-01

    Flow releases are increasingly being used as a tool to restore spawning gravel quality downstream of large dams. Often times, the primary goal of a peak flow release is to flush fine sediment from incubation habitat and restore active river processes; thus understanding the portion of the bed that is entrained and the flow required for full mobility is important. However, a critical knowledge gap for implementing these experimental floods is predicting the potential scouring of spawning redds in downstream reaches. To address these questions we need to understand the relationships between river discharge, bed mobility, and scour depths in areas heavily utilized by spawning salmon. Our approach couples numerical flow modeling and empirical data to quantify spatially explicit zones of differential bed mobility and identify specific areas where scour is deep enough to impact redd viability. Boundary shear stress values were predicted using the USGS's Multi-Dimensional Surface Water Modeling System for a segment of the Trinity River below Lewiston Dam. From model-generated shear stress and fine-scale mapping of local particle size distributions, Shields stress values were calculated to identify areas of differential bed mobility. Our data suggest that full mobility is limited to a central, yet discontinuous core along the thalweg, which expands with increasing flow strengths. Spatial analysis revealed that Chinook salmon tend not to spawn in areas that became fully mobile during bankfull flood events. Scour depths in areas preferentially used for spawning were less than in other portions of the bed and were not deep enough to impact incubating eggs or embryos. This site-selection preference allows fish to spawn in areas that are relatively safe from deep scour. However, the trade-off for spawning in stable areas is that flushing of fine sediment from the subsurface occurs very infrequently and gravel permeability is likely to become limiting for egg and embryo survival

  2. Geomorphic controls on fine sediment reinfiltration into salmonid spawning gravels and the implications for spawning habitat rehabilitation

    NASA Astrophysics Data System (ADS)

    Franssen, Jan; Lapointe, Michel; Magnan, Pierre

    2014-04-01

    Anthropogenic activities often increase the flux of fine sediment to fluvial environments. In gravel-bed streams the extent to which augmented fines loading causes the degradation of vital interstitial habitats is determined by factors controlling fines infiltration into channel substratum. Previous research suggests that substrate pore constriction size, intensity of upwelling interstitial flow, and the quantity of fines transported across the bed surface (i.e., exposure dose) are three important factors controlling substrate fines content. Few field studies have investigated the interactive effects of these physical factors. We constructed 17 experimental redds in brook trout spawning microhabitats in a boreal forest stream in Quebec, Canada, to investigate the role of pore constriction size, hyporheic flow, and exposure dose on substrate fines content. To simulate the effect of spawning in coarsening the substrates, redds were partially cleaned of coarse sand and of all fine sediment (< 0.5 mm). Results show that coarse sands and fine gravel (0.5-4 mm; filter class) acted as a filter of percolating fine sediment (< 0.5 mm). We found that this filtering effect (i.e., lower fines density at egg pocket depth) occurred at sites where the proportion of the filter class in the substratum above egg pocket depth exceeded a threshold value of 18%, as indicated by a statistically significant step-function response between fines gradient with depth and the filter class content in the uppermost layers of the bed. Results also indicated that fines content at depth was unrelated to fines exposure. Estimated upward seepage rates were well below the threshold velocity that would inhibit the percolation of medium-grained sand (i.e., 0.5 mm) into the bed. These results suggest that within these gravel-bed spawning substrates the abundance of filter classes was the primary determinant of fines content at depth. This study highlights the importance of considering filter class

  3. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment

    PubMed Central

    El-Serehy, Hamed A.; Bahgat, Magdy M.; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2013-01-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water. PMID:24955010

  4. Cilioprotists as biological indicators for estimating the efficiency of using Gravel Bed Hydroponics System in domestic wastewater treatment.

    PubMed

    El-Serehy, Hamed A; Bahgat, Magdy M; Al-Rasheid, Khaled; Al-Misned, Fahad; Mortuza, Golam; Shafik, Hesham

    2014-07-01

    Interest has increased over the last several years in using different methods for treating sewage. The rapid population growth in developing countries (Egypt, for example, with a population of more than 87 millions) has created significant sewage disposal problems. There is therefore a growing need for sewage treatment solutions with low energy requirements and using indigenous materials and skills. Gravel Bed Hydroponics (GBH) as a constructed wetland system for sewage treatment has been proved effective for sewage treatment in several Egyptian villages. The system provided an excellent environment for a wide range of species of ciliates (23 species) and these organisms were potentially very useful as biological indicators for various saprobic conditions. Moreover, the ciliates provided excellent means for estimating the efficiency of the system for sewage purification. Results affirmed the ability of this system to produce high quality effluent with sufficient microbial reduction to enable the production of irrigation quality water.

  5. A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil.

    PubMed

    Li, Hailong; Boufadel, Michel C

    2011-06-01

    Despite great efforts including bioremediation, the 1989 Exxon Valdez oil spills persist in many gravel beaches in Prince William Sound, Alaska, USA. To explore this mystery, a lithium tracer study was conducted along two transects on one of these beaches. The tracer injections and transports were successfully simulated using the 2-dimensional numerical model MARUN. The tracer stayed much longer in the oil-persisting, right transect (facing landwand) than in the clean, left transect. If the tracer is approximately regarded as oils, oils in the upper layer would have more opportunities to enter the lower layer in the right transect than in the left one. This may qualitatively explain the oil persistence within the right transect. When the tracer is regarded as nutrients, the long stay of nutrients within the right transect implies that the oil persistence along the right transect was not due to the lack of nutrients during the bioremediation. PMID:21492883

  6. Mechanisms of vegetation removal by floods on bars of a heavily managed gravel bed river (The Isere River, France)

    NASA Astrophysics Data System (ADS)

    Jourdain, Camille; Belleudy, Philippe; Tal, Michal; Malavoi, Jean-René

    2016-04-01

    In natural alpine gravel bed rivers, floods and their associated bedload transport maintain channels active and free of mature woody vegetation. In managed rivers, where flood regime and sediment supply have been modified by hydroelectric infrastructures and sediment mining, river beds tend to stabilize. As a result, in the recent past, mature vegetation has established on gravel bars of many gravel bed rivers worldwide. This established vegetation increases the risk of flooding by decreasing flow velocity and increasing water levels. In addition, the associated reduction in availability of pioneer habitats characteristic of these environments typically degrades biodiversity. Managing hydrology in a way that would limit vegetation establishment on bars presents an interesting management option. In this context, our study aims at understanding the impacts of floods of varying magnitude on vegetation removal, and identifying and quantifying the underlying mechanisms. Our study site is the Isère River, a heavily managed gravel bed river flowing in the western part of the French Alps. We studied the impact of floods on sediment transport and vegetation survival at the bar scale through field monitoring from 2014 to 2015, focusing on young salicaceous vegetation (<2 yr old). Measurements were made before and after floods. Vegetation was monitored on 16m² plots through repeat photographs. Sediment transport was assessed using painted plots, scour chains, and topographic surveys. Hourly water discharge was obtained from the national gauging network. The hydraulics of monitored floods was characterized using a combination of field measurements and 2D hydraulic modeling: water levels were measured with pressure sensors and Large Scale Particle Velocimetry was used to measure flow velocities. These data were used to calibrate 2D hydrodynamic model using TELEMAC2D. At the reach scale, removal of mature vegetation was assed using a series of historical aerial photographs

  7. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.

    PubMed

    Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray

    2016-04-15

    Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate. PMID:26803685

  8. The role of hydrologic processes and geomorphology on the morphology and evolution of sediment clusters in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Hendrick, Ross R.; Ely, Lisa L.; Papanicolaou, A. N.

    2010-01-01

    The effect of geomorphic features and hydraulic conditions on the formation, evolution, and morphology of sediment cluster microforms in an unregulated gravel-bed stream were investigated at field sites on the Entiat River, which drains the eastern slopes of the Cascade Mountains in central Washington state, USA. Sediment clusters were marked, described, and photographed before and after a series of moderate to high discharges over an 18-month period to quantify the evolution of the cluster morphologies. Individual sediment particles were tracked to calculate the range of flows and bed shear stresses that maintain and destroy clusters. Examination of geomorphic settings, channel morphology, and particle size distributions documented the conditions that favor cluster formation. The investigation tested the hypotheses that clusters in this environment delay sediment entrainment and that their morphology and evolution follow a predictable evolution similar to that found in laboratory studies. Clusters formed on gravel bars adjacent to riffles with slopes ≥ 1%, poor to moderate sorting, and mean and maximum particle size values 1.5 times greater than those associated with noncluster bars. Clusters were more stable under the bimodal sediment size distribution contributed by a tributary alluvial fan and were destroyed with and without anchor clast mobilization at sites where sediment size was more uniform. The six cluster morphologies identified in the field were similar to those in flume studies, but did not follow the same evolutionary cycle over multiple flow events. This contrast was attributed to the flow events resetting the cluster cycle, leading to a high percentage of upstream triangles. The dimensionless critical shear stress required to entrain the mean grain size ranged from 0.06 to 0.08. The hydraulic thresholds and geomorphic features that result in stable vs. mobilized cluster microforms in this setting can serve as a model for regulated rivers and

  9. The role of attached kelp (seaweed) fronds in lowering threshold of coarse gravel entrainment in tidal flows.

    NASA Astrophysics Data System (ADS)

    Carling, Paul

    2014-05-01

    There is a long history of reports of attached kelp (seaweed) fronds aiding entrainment of coarse sediment by flotation. In the intertidal zone of the Severn Estuary (UK) cobbles were observed to overpass fine gravel plane-beds and pebble-gravel dunes in those instances where seaweed fronds were attached. However, overpassing clasts without attached fronds were rare. Flume experiments were conducted to measure the reduction in velocity and shear stresses required for initial motion when fronds were attached. A range of factors influence entrainment including the ratio of seaweed weight:clast weight and length:width ratio of the seaweed frond. Reynolds stresses for entrainment, and the critical velocity for entrainment were reduced by around a factor of two for attached fronds in contrast to stones without fronds. Reductions in the critical velocity were associated with an increase in the values of drag coefficients for clasts with attached fronds; the majority of the drag being associated with the frond widths rather than the frond lengths. The significance of this study is manifold with respect to deposition of outsized clasts in the modern marine environment and in the geological record. The reduced entrainment values explain the presence of large clasts in near-shore and off-shore environments where measured velocities otherwise are not competent. In addition, when clasts are deposited and buried by sediment the seaweed fronds decay and so the role of kelp is not immediately evident. Thus in the geological marine sedimentary record buried outsized clasts may be related to kelp transport in some instances.

  10. Estimations of soil fertility in physically degraded agricultural soils through selective accounting of fine earth and gravel fractions

    NASA Astrophysics Data System (ADS)

    Nagaraja, Mavinakoppa S.; Bhardwaj, Ajay Kumar; Prabhakara Reddy, G. V.; Srinivasamurthy, Chilakunda A.; Kumar, Sandeep

    2016-06-01

    Soil fertility and organic carbon (C) stock estimations are crucial to soil management, especially that of degraded soils, for productive agricultural use and in soil C sequestration studies. Currently, estimations based on generalized soil mass (hectare furrow basis) or bulk density are used which may be suitable for normal agricultural soils, but not for degraded soils. In this study, soil organic C, available nitrogen (N), available phosphorus (P2O5) and available potassium (K2O), and their stocks were estimated using three methods: (i) generalized soil mass (GSM, 2 million kg ha-1 furrow soil), (ii) bulk-density-based soil mass (BDSM) and (iii) the proportion of fine earth volume (FEV) method, for soils sampled from physically degraded lands in the eastern dry zone of Karnataka State in India. Comparative analyses using these methods revealed that the soil organic C, N, P2O and K2O stocks determined by using BDSM were higher than those determined by the GSM method. The soil organic C values were the lowest in the FEV method. The GSM method overestimated soil organic C, N, P2O and K2O by 9.3-72.1, 9.5-72.3, 7.1-66.6 and 9.2-72.3 %, respectively, compared to FEV-based estimations for physically degraded soils. The differences among the three methods of estimation were lower in soils with low gravel content and increased with an increase in gravel volume. There was overestimation of soil organic C and soil fertility with GSM and BDSM methods. A reassessment of methods of estimation was, therefore, attempted to provide fair estimates for land development projects in degraded lands.

  11. Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers

    USGS Publications Warehouse

    Mueller, E.R.; Pitlick, J.; Nelson, J.M.

    2005-01-01

    The present study examines variations in the reference shear stress for bed load transport (??r) using coupled measurements of flow and bed load transport in 45 gravel-bed streams and rivers. The study streams encompass a wide range in bank-full discharge (1-2600 m3/s), average channel gradient (0.0003-0.05), and median surface grain size (0.027-0.21 m). A bed load transport relation was formed for each site by plotting individual values of the dimensionless transport rate W* versus the reach-average dimensionless shear stress ??*. The reference dimensionless shear stress ??r* was then estimated by selecting the value of ??* corresponding to a reference transport rate of W* = 0.002. The results indicate that the discharge corresponding to ?? r* averages 67% of the bank-full discharge, with the variation independent of reach-scale morphologic and sediment properties. However, values of ??r* increase systematically with average channel gradient, ranging from 0.025-0.035 at sites with slopes of 0.001-0.006 to values greater than 0.10 at sites with slopes greater than 0.02. A corresponding relation for the bank-full dimensionless shear stress ??bf*, formulated with data from 159 sites in North America and England, mirrors the relation between ??r* and channel gradient, suggesting that the bank-full channel geometry of gravel- and cobble-bedded streams is adjusted to a relatively constant excess shear stress, ??bf* - ??r*, across a wide range of slopes. Copyright 2005 by the American Geophysical Union.

  12. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer.

    PubMed

    Schaider, Laurel A; Rudel, Ruthann A; Ackerman, Janet M; Dunagan, Sarah C; Brody, Julia Green

    2014-01-15

    Approximately 40% of U.S. residents rely on groundwater as a source of drinking water. Groundwater, especially unconfined sand and gravel aquifers, is vulnerable to contamination from septic systems and infiltration of wastewater treatment plant effluent. In this study, we characterized concentrations of pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds (OWCs) in the unconfined sand and gravel aquifer of Cape Cod, Massachusetts, USA, where septic systems are prevalent. Raw water samples from 20 public drinking water supply wells on Cape Cod were tested for 92 OWCs, as well as surrogates of wastewater impact. Fifteen of 20 wells contained at least one OWC; the two most frequently-detected chemicals were sulfamethoxazole (antibiotic) and perfluorooctane sulfonate (perfluorosurfactant). Maximum concentrations of sulfamethoxazole (113 ng/L) and the anticonvulsant phenytoin (66 ng/L) matched or exceeded maximum reported concentrations in other U.S. public drinking water sources. The sum of pharmaceutical concentrations and the number of detected chemicals were both significantly correlated with nitrate, boron, and extent of unsewered residential and commercial development within 500 m, indicating that wastewater surrogates can be useful for identifying wells most likely to contain OWCs. Septic systems appear to be the primary source of OWCs in Cape Cod groundwater, although wastewater treatment plants and other sources were potential contributors to several wells. These results show that drinking water supplies in unconfined aquifers where septic systems are prevalent may be among the most vulnerable to OWCs. The presence of mixtures of OWCs in drinking water raises human health concerns; a full evaluation of potential risks is limited by a lack of health-based guidelines and toxicity assessments.

  13. Transport of Escherichia coli and F-RNA bacteriophages in a 5 m column of saturated pea gravel

    NASA Astrophysics Data System (ADS)

    Sinton, Lester W.; Mackenzie, Margaret L.; Karki, Naveena; Braithwaite, Robin R.; Hall, Carollyn H.; Flintoft, Mark J.

    2010-09-01

    The relative transport and attenuation of bacteria, bacteriophages, and bromide was determined in a 5 m long × 0.3 m diameter column of saturated pea gravel. The velocity ( V), longitudinal dispersivity ( αx) and total removal rate ( λ) were calculated from the breakthrough curves at 1 m, 3 m, and 5 m, at a flow rate of 32 L h - 1 . Inactivation ( μ) rates were determined in survival chambers. Two pure culture experiments with Escherichia coli J6-2 and F-RNA phage MS2 produced an overall V ranking of E. coli J6-2 > MS2 > bromide, consistent with velocity enhancement, whereby larger particles progressively move into faster, central streamlines of saturated pores. Removal rates were near zero for MS2, but were higher for E. coli J6-2. In two sewage experiments, E. coli and F-RNA phage Vs were similar (but > bromide). This was attributed to phage adsorption to colloids similar in size to E. coli cells. Sewage phage removal rates were higher than for the pure MS2 cultures. The application of filtration theory suggested that, whereas free phage were unaffected by settling, this was the primary removal mechanism for the colloid-associated phage. However, cultured and sewage E. coli removal rates were similar, suggesting the dominance of free E. coli cells in the sewage. When MS2 was attached to kaolin particles, it was transported faster than free MS2, but at similar rates to sewage phage. The μ values indicated little contribution of inactivation to removal of either cultured or sewage microorganisms. The results showed the importance of association with colloids in determining the relative transport of bacteria and viruses in gravels.

  14. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.

    PubMed

    Pang, Liping; Lafogler, Mark; Knorr, Bastian; McGill, Erin; Saunders, Darren; Baumann, Thomas; Abraham, Phillip; Close, Murray

    2016-04-15

    Phosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters. Here we investigated attenuation and transport of orthophosphate-P in gravel aquifer and vadose zone media in the presence and absence of model colloids (Escherichia coli, kaolinite, goethite). Experiments were conducted using repacked aquifer media in a large column (2m long, 0.19m in diameter) and intact cores (0.4m long, 0.24m in diameter) of vadose zone media under typical field flow rates. In the absence of the model colloids, P was readily traveled through the aquifer media with little attenuation (up to 100% recovery) and retardation, and P adsorption was highly reversible. Conversely, addition of the model colloids generally resulted in reduced P concentration and mass recovery (down to 28% recovery), and increased retardation and adsorption irreversibility in both aquifer and vadose zone media. The degree of colloid-assisted P attenuation was most significant in the presence of fine material and Fe-containing colloids at low flow rate but was least significant in the presence of coarse gravels and E. coli at high flow rate. Based on the experimental results, setback distances of 49-53m were estimated to allow a reduction of P concentrations in groundwater to acceptable levels in the receiving water. These estimates were consistent with field observations in the same aquifer media. Colloid-assisted P attenuation can be utilized to develop mitigation strategies to better manage effluent applications in gravelly soils. To efficiently retain P within soil matrix and reduce P leaching to groundwater, it is recommended to select soils that are rich in iron oxides, to periodically disturb soil preferential flow paths by tillage, and to apply a low irrigation rate.

  15. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.; Legleiter, Carl J.

    2016-01-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study sought to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8-km reach. Aerial photographs from 1994 to 2012 and ground-based surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and DEM developed from LiDAR data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Collectively, we refer to these methods as the stream power gradient (SPG) framework. The results of this study were compromised by methodological limitations of the SPG framework and revealed some complications likely to arise when applying this framework to small, wandering, gravel-bed rivers. Correlations between stream power gradients and sediment flux were generally weak, highlighting the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote

  16. A search for aquifers of sand and gravel by electrical-resistivity methods in north-central New Castle County, Delaware

    USGS Publications Warehouse

    Spicer, H. Cecil; McCullough, Richard A.; Mack, Frederick K.

    1955-01-01

    A search for aquifers in an area immediately north of the Chesapeake and Delaware Canal in New Castle, Del., has been made by an electrical resistivity study.  The search located 32 sites that may be underlain by sand and gravel. The thicker deposits are significant with respect to the occurrence of ground water, and all of them are of interest as possible sources of sand and gravel for construction purposes, such as for highway construction.  The thickness of these deposits ranges from 4.4 feet to 77 feet, and the computed resistivity for these ranges from a low of 97,800 ohm-cms to a high of 423,800 ohm-cms.  The study located with certainty one buried channel filled with sand and gravel deposits and pointed out the possibility of others that may be aquifers.  The interpretations show that a large deposit of sand and gravel is present in the eastern part of the area investigated and it is tentatively assumed that this deposit is continuous and may yield large quantities of ground water.  Places where the deposit was found to be the thickest and of high resistivity are described.

  17. WATER QUALITY CHANGES IN HYPORHEIC FLOW PATHS BETWEEN A LARGE GRAVEL BED RIVER AND OFF-CHANNEL ALCOVES IN OREGON, USA

    EPA Science Inventory

    Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...

  18. MULTISPECIES REACTIVE TRACER TEST IN A SAND AND GRAVEL AQUIFER, CAPE COD, MASSACHUSETTS: PART 1: EXPERIMENTAL DESIGN AND TRANSPORT OF BROMIDE AND NICKEL-EDTA TRACERS

    EPA Science Inventory

    In this report, we summarize a portion of the results of a large-scale tracer test conducted at the U. S. Geological Survey research site on Cape Cod, Massachusetts. The site is located on a large sand and gravel glacial outwash plain in an unconfined aquifer. In April 1993, ab...

  19. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE CODE, MASSACHUSETTS 3. HYDRAULIC CONDUCTI- VITY AND CALCULATED MACRODISPERSIVITIES

    EPA Science Inventory

    Hydraulic conductivity (K) variability in a sand and gravel aquifer on Cape Cod, Massachusetts, was measured and subsequently used in stochastic transport theories to estimate macrodispersivities. Nearly 1500 K measurements were obtained by borehole flowmeter tests ...

  20. LARGE-SCALE NATURAL GRADIENT TRACER TEST IN SAND AND GRAVEL, CAPE COD, MASSACHUSETTS - 1. EXPERIMENTAL DESIGN AND OBSERVED TRACER MOVEMENT

    EPA Science Inventory

    A large-scale natural gradient tracer experiment was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. The nonreactive tracer, bromide, and the reactive tracers, lithium and molybdate, were injected as a pulse i...

  1. Influence of vegetation cover on bars morpho-dynamics in sinuous gravel-bed channels of the Northern Marche rivers (central Italy): cues for research.

    NASA Astrophysics Data System (ADS)

    Tiberi, Valentina

    2010-05-01

    Sinuous gravel-bed channels are well represented in the Northern Marche river basins (central Italy), both in main streams and along several tributaries. In both cases, lozenge bars divide flow into a main branch (always active) and secondary channels (characterized by episodic reactivations). In the study area, this fluvial pattern characterized several river reaches during the last three decades and seems to be evolved from wandering configurations. Researches in progress are mainly investigating the role played by catchment controls (i.e. land use and climate changes, gravel removal, human alterations of longitudinal profiles) on major channel transformations (i.e. with regard to bankfull width, channel downcutting, pattern changes) applying a geomorphological methodology but, detailed studies carried out in order to define sinuous gravel-bed channel at the reach scale, suggest the need of an eco-morphological approach. These considerations result particularly appropriate for the Foglia River Basin where, in some cases, vegetation covers up to the 70% of the channel surface and shows a high stability during several bankfull discharge occurrences. Field surveys and monitoring also seem to demonstrate an impulsive evolution of meso-morphologies and different time-space behaviours of vegetate bars compared to the non-vegetate ones. The aim of this contribution is to provide some preliminary considerations about influence of vegetation cover on bars morpho-dynamics of some sinuous gravel-bed channels and promote specific eco-morphologic researches.

  2. The Influence of a Subslab Gravel Layer and Open Area on Soil-Gas and Radon Entry into Two Experimental Basements

    SciTech Connect

    Robinson, Allen L.; Sextro, R.G.

    1995-03-01

    Measurements of steady-state soil-gas and {sup 222}Rn entry rates into two room-sized, experimental basement structures were made for a range of structure depressurizations (0-40 Pa) and open floor areas (0-165 x 10{sup -4} m{sup 2}). The structures are identical except that in one the floor slab lies directly on native soil whereas in the other the slab lies on a high-permeability gravel layer. The subslab gravel layer greatly enhances the soil-gas and radon entry rate into the structure. The radon entry rate into the structure with the subslab gravel layer is four times greater than the entry rate into the structure without the gravel layer with an open floor area of 165 x 10{sup -4}m{sup 2}; however the ratio increases to 30 for an open floor area of 5.0 x 10{sup -4} m{sup 2}. The relationship between open area and soil-gas entry rate is complex. It depends on both the amount and distribution of the open area as well as the permeability of the soil near the opening. The entry rate into the experimental structures is largely determined by the presence or absence of a subslab gravel layer. Therefore open area is a poor indicator of radon and soil-gas entry into the structures. The extension of the soil-gas pressure field created by structure depressurization is a good measure of the radon entry. The measured normalized radon entry rate into both structures has the same linear relationship with the average subslab pressure coupling regardless of open area or the presence or absence of a subslab gravel layer. The average subslab pressure coupling is an estimate of the extension of the soil-gas pressure field. A three-dimensional finite-difference model correctly predicts the effect of a subslab gravel layer and different open area configurations on radon and soil-gas entry rate; however, the model underpredicts the absolute entry rate into each structure by a factor of 1.5.

  3. Coupling channel evolution monitoring and RFID tracking in a large, wandering, gravel-bed river: Insights into sediment routing on geomorphic continuity through a riffle-pool sequence

    NASA Astrophysics Data System (ADS)

    Chapuis, Margot; Dufour, Simon; Provansal, Mireille; Couvert, Bernard; de Linares, Matthieu

    2015-02-01

    Bedload transport and bedform mobility in large gravel-bed rivers are not easily monitored, especially during floods. Large reaches present difficulties in bed access during flows for flow measurements. Because of these logistical issues, the current knowledge about bedload transport processes and bedform mobility lacks field-based information, while this missing information would precisely match river management needs. The lack of information linking channel evolution and particle displacements is even more striking in wandering reaches. The Durance River is a large, wandering, gravel-bed river (catchment area: 14,280 km2; mean width: 240 m), located in the southern French Alps and highly impacted by flow diversion and gravel mining. In order to improve current understanding of the link between sediment transport processes and river bed morphodynamics, we set up a sediment particle survey in the channel using Radio Frequency Identification (RFID) tracking and topographic surveys (GPS RTK and scour chains) for a 4-year recurrence interval flood. By combining topographic changes before and after a flood, intraflood erosion/deposition patterns from scour chains, differential routing of tracer particles, and spatial distribution of bed shear stress through a complex reach, this paper aims to define the critical shear stress for significant sediment mobility in this setting. Gravel tracking highlights displacement patterns in agreement with bar downstream migration and transport of particles across the riffle within this single flood event. Because no velocity measurements were possible during flood, a TELEMAC three-dimensional model helped interpret particle displacements by estimating spatial distribution of shear stresses and flow directions at peak flow. Although RFID tracking in a large, wandering, gravel-bed river does have some technical limitations (burial, recovery process time-consuming), it provides useful information on sediment routing through a riffle

  4. Large wood budget assessment along a gravel bed river affected by volcanic eruption: the Rio Blanco study case (Chile).

    NASA Astrophysics Data System (ADS)

    Oss-Cazzador, Daniele; Iroume, Andres; Lenzi, Mario; Picco, Lorenzo

    2016-04-01

    Wood in riverine environments exerts different functions on ecological and geomorphic settings, influencing morphological processes, and increasing risks for sensitive structures. Large wood (LW) is defined as wood material, dead or alive, larger than 10 cm in diameter and 1 m in length. Natural hazards can strongly increase the presence of LW in waterways and flood events can transport it affecting the ecosystem and landscape. This study aims to increase the knowledge of wood budget, considering the effects of two subsequent slight flood events along a sub-reach of the Rio Blanco gravel bed river , in Chilean Patagonia, strongly affected by the eruption of Chaiten volcano in 2008. The volcanic eruption affected almost 3,5 km 2 of evergreen forest on the southern (left) bank, because of primary direct effects from pyroclastic density currents and lahar-floods that caused deposition up to 8 m of reworked tephra, alluvium, and wood on floodplains and terrace along the Rio Blanco. After the eruption, there was a considerable increase of LW into the main channel: into the bankfull channel, volume exceeds 100 m 3 /ha. Field surveys were carried out in January and March 2015, before and after two slight flood events (Recurrence Intervals lower than 1 year). The pre-event phase permitted to detect and analyze the presence of LW into the study area, along a 80 m-long reach of Rio Blanco (7500 m 2 . Every LW element was manually measured and described, a numbered metal tag was installed, and the position was recorded by GPS device. In January, there was a total amount of 113 m 3 /ha, 90% accumulated in LW jams (WJ) and 10% as single logs. The LW was characterized by mean dimensions of 3,36 m height, 0,25 m diameter and 0,26 m 3 volume, respectively. The WJ are characterized by wide range of dimension: volume varies from 0,28 m 3 to 672 m 3 , length from 1,20 m to 56 m, width from 0,40 m to 8,70 m and height from 0,20 m to 3 m, respectively. After the flood events, field

  5. Clay minerals and gravels of late Pleistocene interstadial coastal sediments above the current sea level, south coast of Korea

    NASA Astrophysics Data System (ADS)

    Yang, D. Y.; Kim, J. C.; Lim, J.; Yi, S.; Nahm, W. H.; Kim, J. Y.; Han, M.

    2015-12-01

    At nowadays, the severe greenhouse effect causes rapid sea level rise around the Korea Peninsula. Paleo-climate researches have been concentrating on hydrological activities during the mid-Holocene optimum and the last interglacial period to use the paleo-analogues data in predicting the future hydrological environments. The previous studies on the late Pleistocene interstadial coastal sediments have primarily been biased towards the terraces of the east coast in the Korean Peninsula. According to the results, the last interglacial marine terraces of the east coast were existed at 18 m in elevation. Uplift rate of them was presumed to be 0.1mm/year (Choi, 2006). Also, the stratigraphy of the Quaternary coastal deposits of the Yellow Sea has been suggested by Park et al. (1998) and Lim et al. (2003). In recent, Jang et al. (2014) reported the OSL dated Eemian marine deposit along the southwest coast of Korea. However, the age-equivalent outcrops of the south coast are not discovered yet. The first outcrops of the late Pleistocene interstadial coastal sediment above the present sea level were discovered at IJin-ri site of Haenam, south coast of Korea. It would be very useful for calculating the rates of Eemian sea level rise and uplift of south coast of Korea. 62 cubic samples were collected at 6 cm intervals from the section (4.8-8.83m in elevation). Four sedimentary units, from Unit 1 to 4 in ascending order, are distinguished based on sedimentary textures and grain size distribution as follows: Unit 1 (sand, 4.8 m-5.32 m in elevation), Unit 2 (silty clay, 5.32 m-6.8 m in elevation), Unit 3 (gravelly sand, 6.8m-7.8m in elevation) and, Unit 4(sandy gravel, 7.8m-8.83m in elevation). The sediments which included rounded or semi-rounded gravels are thought to be transported from marine. Also, the assemblages of clay minerals from the sections are similar to those of Yellow Sea. It shows the possibility that the sediments originated from marine during high sea level

  6. Channel morphodynamics and habitat recovery in a river reach affected by gravel-mining (River Ésera, Ebro basin)

    NASA Astrophysics Data System (ADS)

    Lopez-Tarazon, J. A.; Lobera, G.; Andrés-Doménech, I.; Martínez-Capel, F.; Muñoz-Mas, R.; Vallés, F.; Tena, A.; Vericat, D.; Batalla, R. J.

    2012-04-01

    Physical processes in rivers are the result of the interaction between flow regime and hydraulics, morphology, sedimentology and sediment transport. The frequency and magnitude of physical disturbance (i.e. bed stability) control habitat integrity and, consequently, ecological diversity of a particular fluvial system. Most rivers experience human-induced perturbations that alter such hydrosedimentary equilibrium, thus affecting the habitat of aquatic species. A dynamic balance may take long time to be newly attained. Within this context, gravel mining is well known to affect channel characteristics mostly at the local scale, but its effect may also propagate downstream and upstream. Sedimentary forms are modified during extraction and habitat features are reduced or even eliminated. Effects tend to be most acute in contrasted climatic environments, such as the Mediterranean areas, in which climatic and hydrological variability maximises effects of impacts and precludes short regeneration periods. Present research focuses on the evolution of a river reach, which has experienced an intense gravel extraction. The selected area is located in the River Ésera (Ebro basin), where interactions between morphodynamics and habitat recovery are examined. Emphasis is put on monitoring sedimentary, morphological and hydraulic variables to later compare pre (t0) and post (t1, t2... tn) extraction situations. Methodology for all time monitoring steps (i.e. ti) includes: i) characterization of grain size distribution at all of the different hydromorphological units within the reach; ii) description of channel morphology (together with changes before and after floods) by means of close-range aerial photographs, which are taken with a digital camera attached to a 1m3 helium balloon (i.e. BLIMP); and iii) determination of flow parameters from 2D hydraulic modelling that is based on detailed topographical data obtained from Leica® GNSS/GPS and robotic total station, and River

  7. In situ quantification of spatial and temporal variability of hyporheic exchange in static and mobile gravel-bed rivers

    USGS Publications Warehouse

    Rosenberry, D.O.; Klos, P.Z.; Neal, A.

    2012-01-01

    Seepage meters modified for use in flowing water were used to directly measure rates of exchange between surface and subsurface water in a gravel- and cobble bed river in western Pennsylvania, USA (Allegheny River, Q mean = 190 m 3/s) and a sand- and gravel-bed river in Colorado, USA (South Platte River, Q mean = 9??7 m 3/s). Study reaches at the Allegheny River were located downstream from a dam. The bed was stable with moss, algae, and river grass present in many locations. Median seepage was + 0??28 m/d and seepage was highly variable among measurement locations. Upward and downward seepage greatly exceeded the median seepage rate, ranging from + 2??26 (upward) to - 3??76 (downward) m/d. At the South Platte River site, substantial local-scale bed topography as well as mobile bedforms resulted in spatial and temporal variability in seepage greatly in exceedence of the median groundwater discharge rate of 0??24 m/d. Both upward and downward seepage were recorded along every transect across the river with rates ranging from + 2??37 to - 3??40 m/d. Despite a stable bed, which commonly facilitates clogging by fine-grained or organic sediments, seepage rates at the Allegheny River were not reduced relative to those at the South Platte River. Seepage rate and direction depended primarily on measurement position relative to local- and meso-scale bed topography at both rivers. Hydraulic gradients were small at nearly all seepage-measurement locations and commonly were not a good indicator of seepage rate or direction. Therefore, measuring hydraulic gradient and hydraulic conductivity at in-stream piezometers may be misleading if used to determine seepage flux across the sediment-water interface. Such a method assumes that flow between the well screen and sediment-water interface is vertical, which appears to be a poor assumption in coarse-grained hyporheic settings. ?? 2011 John Wiley & Sons, Ltd.

  8. Geochemical heterogeneity in a sand and gravel aquifer: Effect of sediment mineralogy and particle size on the sorption of chlorobenzenes

    USGS Publications Warehouse

    Barber, L.B.; Thurman, E.M.; Runnells, D.R.; ,

    1992-01-01

    The effect of particle size, mineralogy and sediment organic carbon (SOC) on solution of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is < 0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and

  9. Neogene transpressional foreland basin development on the north side of the central alaska range, usibelli group and nenana gravel, tanana basin

    USGS Publications Warehouse

    Ridgway, K.D.; Thoms, E.E.; Layer, P.W.; Lesh, M.E.; White, J.M.; Smith, S.V.

    2007-01-01

    Neogene strata of the Tanana basin provide a long-term record of a northwardpropagating, transpressional foreland-basin system related to regional shortening of the central Alaska Range and strike-slip displacement on the Denali fault system. These strata are ???2 km thick and have been deformed and exhumed in thrust faults that form the foothills on the north side of the Alaska Range. The lower part of the sedimentary package, the Usibelli Group, consists of 800 m of mainly Miocene strata that were deposited in fluvial, lacustrine, and peat bog environments of the foredeep depozone of the foreland-basin system. Compositional data from conglomerate and sandstone, as well as recycled Upper Cretaceous palynomorphs, indicate that the Miocene foreland-basin system was supplied increasing amounts of sediment from lithologies currently exposed in thrust sheets located south of the basin. The upper part of the sedimentary package, the Nenana Gravel, consists of 1200 m of mainly Pliocene strata that were deposited in alluvial-fan and braidplain environments in the wedge-top depozone of the foreland-basin system. Compositional data from conglomerate and sandstone, as well as 40Ar/39Ar dating of detrital feldspars in sandstone and from granitic clasts in conglomerate, indicate that lithologies exposed in the central Alaska Range provided most of the detritus to the Pliocene foreland-basin system. 40Ar/39Ar dates from detrital feldspar grains also show that two main suites of plutons contributed sediment to the Nenana Gravel. Detrital feldspars with an average age of 56 Ma are interpreted to have been derived from the McKinley sequence of plutons located south of the Denali fault. Detrital feldspars with an average age of 34 Ma are interpreted to have been derived from plutons located north of the Denali fault. Plutons located south of the Denali fault provided detritus for the lower part of the Nenana Gravel, whereas plutons located north of the Denali fault began to

  10. Comparison of hydraulic conductivities by grain-size analysis pumping, and slug tests in Quaternary gravels, NE Slovenia

    NASA Astrophysics Data System (ADS)

    Pucko, Tatjana; Verbovšek, Timotej

    2015-08-01

    Hydraulic conductivities (K) can be obtained from pumping and slug tests as well as grain size analysis. Although empirical methods for such estimations are longstanding, there is still insufficient comparison of K values among the various approaches. Six grain-size analysis methods were tested on coarse-grained alluvial sediments from 12 water wells in NE Slovenia. Values of K from grainsize methods were compared to those of pumping tests and slug tests. Six grain-size methods (USBR, Slichter, Hazen, Beyer, Kozeny-Carman, and Terzaghi) were used for comparison with the Theis and Neuman pumping test method and the Bouwer-Rice method for slug tests. The results show that the USBR (US Bureau of Reclamation) method overestimates K values and there is no correlation with other results, so its use is not advised. Conversely, whilst the Slichter method gives much lower estimates of K, it is the only one to completely fulfill the grain size requirements. Other methods (Hazen, Beyer, Kozeny- Carman, and Terzaghi) result in intermediate values and are similar to the Slichter method; however they should be used for smaller-sized sediments. Due to their high transmissivity and small radius of inffiuence, slug tests should be avoided in the analysis of gravels, as they only test a small portion of the aquifer compared to pumping tests. This is confirmed by the low correlation coefficients between hydraulic conductivities obtained from pumping tests and slug tests.

  11. A functional collapse of persistent shell-gravel benthic ecosystem on the California shelf within the last century

    NASA Astrophysics Data System (ADS)

    Tomasovych, Adam; Kidwell, Susan M.

    2016-04-01

    Death assemblages sampled from the muddy seabed of the inner and middle mainland Southern California continental shelf frequently contain dead shells of epifaunal terebratulid brachiopod and large-bodied scallop species that have not been encountered alive during annual surveys of this area over the last four decades. Instead, live-collected shelly benthos is dominated by infaunal species, especially chemosynthetic and deposit-feeding bivalves. Postmortem age-frequency distributions based on 190 individuals of the brachiopod Laqueus show (1) a mode between 100 and 300 years, (2) the absence of shells younger than 100 years old, and (3) the continuous presence of shells older than 300 years, ranging up to six thousands of years old, implying the relatively continuous active production of shells by this brachiopod species over millennia. The localized occurrence of small living populations of this brachiopod and of the scallops Chlamys and Euvola under the reduced sedimentation conditions along the outermost edge of the mainland shelf, and their occurrence on the sandy shelves of the isolated, offshore Channel Islands less affected by natural and anthropogenic runoff, indicates that, up until the last century, the inner and middle mainland shelf had also been characterized by extensive areas of mud-free, shell-gravel habitat. The shift in community structure to the spatially pervasive, infauna-dominated muddy habitats encountered today implies a change to higher siltation and sediment loading due to increased land clearance within recent centuries.

  12. Transport and recovery of bacteriophage PRD1 in a sand and gravel aquifer: Effect of sewage-derived organic matter

    USGS Publications Warehouse

    Pieper, A.P.; Ryan, J.N.; Harvey, R.W.; Amy, G.L.; Illangasekare, T.H.; Metge, D.W.

    1997-01-01

    To test the effects of sewage-derived organic matter on virus attachment, 32P-labeled bacteriophage PRD1, linear alkylbenzene sulfonates (LAS), and tracers were injected into sewage-contaminated (suboxic, elevated organic matter) and uncontaminated (oxic, low organic matter) zones of an iron oxide-coated quartz sand and gravel aquifer on Cape Cod, MA. In the uncontaminated zone, 83% of the PRD1 were attenuated over the first meter of transport by attachment to aquifer grains. In the contaminated zone, 42% of the PRD1 were attenuated over the first meter of transport. Sewage-derived organic matter contributed to the difference in PRD1 attenuation by blocking attachment sites in the contaminated zone. At greater distances down gradient (to a total transport distance of 3.6 m), a near-constant amount of PRD1 continued to break through, suggesting that aquifer grain heterogeneities allowed a small amount of reversible attachment. Injection of an LAS mixture (25 mg L-1), a common sewage constituent, remobilized 87% of the attached PRD1 in the contaminated zone, but only 2.2% in the uncontaminated zone. LAS adsorption promoted virus recovery in the contaminated zone by altering the PRD1-surface interactions; however, the amount of LAS adsorbed was not sufficient to promote release of the attached PRD1 in the uncontaminated zone.

  13. Health assessment for Sand, Gravel and Stone, Elkton, Maryland, Region 3. CERCLIS No. MDD980705099. Preliminary report

    SciTech Connect

    Not Available

    1989-02-02

    The Sand, Gravel and Stone site is located near Elkton in Cecil County, Maryland. It was reported that 3 acres of the northeast portion of the site were used for disposal of waste processing water, sludge, still bottoms, 90 drums of solid and semi-solid waste, and 700,000 gallons of wastes. Sampling identified wastes, predominantly in solid and semisolid form, containing acetone, benzene, bis(2-ethylhexyl)phthalate, butylbenzylphthalate, chlorobenzene, chloroform, diethylphthalate, di-n-butylphthalate, ethylbenzene, 1,1,1-trichloroethane, and xylenes. Concentrations of heavy metals, pesticides, and volatile organic compounds (VOCs), exceeding USEPA Drinking Water Standards/Health Advisory Levels, were reported in the surface water on-site. Concentrations of heavy metals, pesticides, and VOCs were found in sediments. The shallow groundwater aquifer contained heavy metals and VOCs at concentrations above USEPA Drinking Water Standard levels. Lead concentrations measured in the deep groundwater aquifer were substantially above the USEPA proposed Maximum Contaminant Level for drinking water. In addition, several VOCs were detected, but at concentrations below their respective drinking water limits. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances. Potential environmental pathways include those related to human exposure to contaminated soil, sludge, surface water, groundwater, air, and the food chain.

  14. Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA

    USGS Publications Warehouse

    Morin, R.H.

    2006-01-01

    Although it may be intuitive to think of the hydraulic conductivity K of unconsolidated, coarse-grained sediments as increasing monotonically with increasing porosity ??, studies have documented a negative correlation between these two parameters under certain grain-size distributions and packing arrangements. This is confirmed at two sites on Cape Cod, Massachusetts, USA, where groundwater investigations were conducted in sand-and-gravel aquifers specifically to examine the interdependency of several aquifer properties using measurements from four geophysical well logs. Along with K and ??, the electrical resistivity R0 and the natural gamma activity ?? of saturated deposits were determined as functions of depth. Qualitative examination of results from the first site implies a negative correlation between K and ?? that is substantiated by a rigorous multivariate analysis of log data collected from the second site. A principal components analysis describes an over-determined system of inversion equations, with approximately 92% of the cumulative proportion of the total variance being accounted for by only three of the four eigenvectors. A subsequent R-mode factor analysis projects directional trends among the four variables (K, ??, R0 and ??), and a negative correlation between K and ?? emerges as the primary result. ?? 2005 Elsevier B.V. All rights reserved.

  15. Inter-Granular Relationships and Characterization of Bed Structures for Fluvial Sediment in Gravel-Bed Rivers Using Computed Tomography

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.

    2015-12-01

    Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we derive inter-granular relationships to compare and contrast bed structure and stability at a macro-scale. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics and inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty.

  16. Chapter J: Issues and challenges in the application of geostatistics and spatial-data analysis to the characterization of sand-and-gravel resources

    USGS Publications Warehouse

    Hack, Daniel R.

    2005-01-01

    Sand-and-gravel (aggregate) resources are a critical component of the Nation's infrastructure, yet aggregate-mining technologies lag far behind those of metalliferous mining and other sectors. Deposit-evaluation and site-characterization methodologies are antiquated, and few serious studies of the potential applications of spatial-data analysis and geostatistics have been published. However, because of commodity usage and the necessary proximity of a mine to end use, aggregate-resource exploration and evaluation differ fundamentally from comparable activities for metalliferous ores. Acceptable practices, therefore, can reflect this cruder scale. The increasing use of computer technologies is colliding with the need for sand-and-gravel mines to modernize and improve their overall efficiency of exploration, mine planning, scheduling, automation, and other operations. The emergence of megaquarries in the 21st century will also be a contributing factor. Preliminary research into the practical applications of exploratory-data analysis (EDA) have been promising. For example, EDA was used to develop a linear-regression equation to forecast freeze-thaw durability from absorption values for Lower Paleozoic carbonate rocks mined for crushed aggregate from quarries in Oklahoma. Applications of EDA within a spatial context, a method of spatial-data analysis, have also been promising, as with the investigation of undeveloped sand-and-gravel resources in the sedimentary deposits of Pleistocene Lake Bonneville, Utah. Formal geostatistical investigations of sand-and-gravel deposits are quite rare, and the primary focus of those studies that have been completed is on the spatial characterization of deposit thickness and its subsequent effect on ore reserves. A thorough investigation of a gravel deposit in an active aggregate-mining area in central Essex, U.K., emphasized the problems inherent in the geostatistical characterization of particle-size-analysis data. Beyond such factors

  17. The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat: ecological observations and potential effects on groundfish and scallop fisheries

    USGS Publications Warehouse

    Valentine, P.C.; Collie, J.S.; Reid, R.N.; Asch, R.G.; Guida, V.G.; Blackwood, D.S.

    2007-01-01

    The colonial ascidian Didemnum sp. is present on the Georges Bank fishing grounds in a gravel habitat where the benthic invertebrate fauna has been monitored annually since 1994. The species was not noted before 2002 when large colonies were first observed; and by 2003 and 2004 it covered large areas of the seabed at some locations. The latest survey in 2005 documented the tunicate's presence in two gravel areas that total more than 67 nm2 (230 km2). The affected area is located on the Northern Edge of the bank in United States waters near the U.S./Canada boundary ( Fig. 1). This is the first documented offshore occurrence of a species that has colonized eastern U.S. coastal waters from New York to Maine during the past 15–20 years ( U.S. Geological Survey, 2006). Video imagery shows colonies coalescing to form large mats that cover more than 50% of the seabed along some video/photo transects. The affected area is an immobile pebble and cobble pavement that lies at water depths of 40 to 65 m where strong semidiurnal tidal currents reach speeds of 1 to 2 kt (50–100 cm/s). The water column is mixed year round, ensuring a constant supply of nutrients to the seabed. Annual temperatures range from 4 to 15 °C ( Mountain and Holzwarth, 1989). The gravel areas are bounded by sand ridges whose mobile surfaces are moved daily by the strong tidal currents. Studies commenced here in 1994 to characterize the gravel habitat and to document the effects of fishing disturbance on it ( Collie et al., 2005).

  18. Study of extrabasinal-sourced rock clasts in Mesozoic and Cenozoic conglomerates and stream terrace gravels from the Colorado River Basin upstream from the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Stoffer, P. W.; Dearaujo, J.; Li, A.; Adam, H.; White, L.

    2008-12-01

    Far-travelled durable, extrabasinal pebbles occur in Mesozoic and Tertiary conglomerate-bearing rock formations and in unconsolidated stream terrace gravels and mesa-capping gravel deposits of Late Tertiary and Quaternary age throughout the Colorado Plateau. Pebble collections were made from each of the major modern tributaries of the Colorado River for possible correlation of remnant gravel deposits remaining from the ancestral regional drainage system that existed prior to the formation of the Grand Canyon. Pebble collecting and sorting techniques were used to make representative collections with both representative and eye-catching lithologies that can be most useful for correlation. Pebbles found in the conglomerate and younger gravel deposits were evaluated to determine general sediment source areas based on unique lithologies, pebble-shape characteristics, and fossils. Chert pebbles derived from source areas in the Great Basin region during the Mesozoic are perhaps the most common, and many of these display evidence of tectonic fracturing during deep burial sometime during their geologic journey. Unique chert pebble lithologies correlate to specific rock units including chert-bearing horizons within the Triassic Shinarump Formation, the Jurassic Morrison and Navajo Formations, and the Cretaceous Mancos Shale. Quartzite, metaconglomerate, and granitic rocks derived from Precambrian rocks of the Rocky Mountain region are also common. Reworked rounded and flattened quartzite cobbles probably derived from shingled beaches along the western shoreline of the Late Cretaceous Western Interior Seaway are also common along the Green River drainage. Xenolith-bearing volcanic rocks, fossil wood, and shell fossils preserved in concretion matrix can be linked to other unique source areas and stratigraphic units across the region. By correlating the pebbles with their sources we gain insight into the erosional history of the Colorado Plateau and the evolution of the

  19. Preliminary hydrologic budget of the sand-and-gravel aquifer under unstressed conditions : with a section on water-quality monitoring, Pensacola, Florida

    USGS Publications Warehouse

    Trapp, Henry

    1978-01-01

    The sand-and-gravel aquifer is the only freshwater aquifer in southern Escambia County, Fla. Problems related to the development of the aquifer include sustained yield, contamination, and saltwater intrusion. A digital model was applied to the sand-and-gravel aquifer in central and southern Escambia County treating the aquifer 's 'main producing zone ' as a discrete, leaky, confined aquifer. Under conditions of no pumping, most values for the final-head matrix agreed with assumed values within 4 feet in the area of principal interest. Discharge per unit land area was 1.04 cubic feet per second per square mile, in close agreement with the base runoff streams maintained by the aquifer. Total natural aquifer discharge within the area of principal interest determined by the model was 159 million gallons per day. The applicability of the present non-unique calibration for predicting the effects of pumping is questionable; a multilayered model may be required. Effluent infiltrating from holding lagoons for spray irrigation at the Scenic Hills Sewage Plant may have affected the quality of local perched ground water in the sand-and-gravel aquifer. Observation wells drilled near areas of heavy pumping around Bayou Chico indicated no saltwater intrusion. (Woodard-USGS)

  20. Steep Gravel Bedload Rating Curves Obtained From Bedload Traps Shift Effective Discharge to Flows Much Higher Than "Bankfull"

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Swingle, K. W.; Abt, S. R.; Cenderelli, D.

    2012-12-01

    Effective discharge (Qeff) is defined as the flow at which the product of flow frequency and bedload transport rates obtains its maximum. Qeff is often reported to correspond with bankfull flow (Qbf), where Qeff approximates the 1.5 year recurrence interval flow (Q1.5). Because it transports the majority of all bedload, Qeff is considered a design flow for stream restoration and flow management. This study investigates the relationship between Qeff and Q1.5 for gravel bedload in high elevation Rocky Mountain streams. Both the flow frequency distribution (FQ = a × Qbin-b) where Qbin is the flow class, and the bedload transport rating curve (QB = c × Qd) can be described by power functions. The product FQ × QB = (a × c × Q(-b + d)) is positive if d + -b >0, and negative if d + -b <0. FQ × QB can only attain a maximum (=Qeff) if either FQ or QB exhibit an inflection point. In snowmelt regimes, low flows prevail for much of the year, while high flows are limited to a few days, and extreme floods are rare. In log-log plotting scale, this distribution causes the longterm flow frequency function FQ to steepen in the vicinity of Q1.5. If the bedload rating curve exponent is small, e.g., = 3 as is typical of Helley-Smith bedload samples, d + -b shifts from >0 to <0, causing FQ × QB to peak, and Qeff to be around Q1.5. For measurements thought to be more representative of actual gravel transport obtained using bedload traps and similar devices, large rating curve exponents d of 6 - 16 are typical. In this case, d + -b remains >0, and FQ × QB reaches its maximum near the largest flow on record (Qeff,BT = Qmax). Expression of FQ by negative exponential functions FQ = k × e(Qbin×-m) smooths the product function FQ × QB that displays its maximum as a gentle hump rather than a sharp peak, but without drastically altering Qeff. However, a smooth function FQ × QB allows Qeff to react to small changes in rating curve exponents d. As d increases from <1 to >10, Qeff

  1. Effects of fault propagation on superficial soils/gravel aquifer properties: The Chihshang Fault in Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Mu, C.; Lee, J.; guglielmi, Y.

    2013-12-01

    A mature bedrock fault zone generally consists of a fault core, a damage zone, and a surrounding host rock with different permeabilities, which mainly depend on the fracture density. However, near the surface, when an active thrust fault propagates from bedrocks into an unconsolidated surface cover, it results in a diffused fault zone, which may influence the hydraulic and mechanical properties around the fault zone. It is thus of great concern to understand to which extent surface soil/gravel hydraulic properties modifications by continuously active faulting can impact geotechnical projects in countries under active tectonic context, such as Taiwan, where active faults often are blinded beneath thick soil/gravel covers. By contrast, it is also interesting to decipher those fault-induced permeability modifications to estimate potential activity precursors to large earthquakes. Here, we combined a variety of measurements and analyses on the Chihshang fault, located at the plate suture between the Philippine Sea and Eurasian plates, which converge at a rapid rate of 8 cm/yr in Taiwan. At the Chinyuan site, the Chihshang fault is propagating from depth to emerge through thick alluvial deposits. We characterized the fault geometry and slip behavior at the shallow level by measuring and analyzing horizontal, vertical displacements, and groundwater table across the surface fault zone. The yielded fault dip of 45o in the shallow alluvium is consistent with the observations from surface ruptures and subsurface core logging. The 7-year-long groundwater table record shows that the piezometric level in the hanging wall is about 8 meter higher than that in the footwall in the summer; and about 10 meter higher in the winter. Repeated slug tests have been monthly conducted since 2007 to provide the average permeability within the fault zone and the presumably low-deformed zone outside of the diffused fault zone. Based on in-situ measurements at four wells across the fault zone

  2. The Devil is in the Details: Using X-Ray Computed Tomography to Develop Accurate 3D Grain Characteristics and Bed Structure Metrics for Gravel Bed Rivers

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Hodge, R. A.; Leyland, J.; Sear, D. A.; Ahmed, S. I.

    2014-12-01

    Uncertainty for bedload estimates in gravel bed rivers is largely driven by our inability to characterize the arrangement and orientation of the sediment grains within the bed. The characteristics of the surface structure are produced by the water working of grains, which leads to structural differences in bedforms through differential patterns of grain sorting, packing, imbrication, mortaring and degree of bed armoring. Until recently the technical and logistical difficulties of characterizing the arrangement of sediment in 3D have prohibited a full understanding of how grains interact with stream flow and the feedback mechanisms that exist. Micro-focus X-ray CT has been used for non-destructive 3D imaging of grains within a series of intact sections of river bed taken from key morphological units (see Figure 1). Volume, center of mass, points of contact, protrusion and spatial orientation of individual surface grains are derived from these 3D images, which in turn, facilitates estimates of 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we can compare and contrast bed stability at a macro-scale with respect to stream bed morphology. Understanding differences in bed stability through representative metrics derived at the grain-scale will ultimately lead to improved bedload estimates with reduced uncertainty and increased understanding of interactions between grain-scale properties on channel morphology. Figure 1. CT-Scans of a water worked gravel-filled pot. a. 3D rendered scan showing the outer mesh, and b. the same pot with the mesh removed. c. vertical change in porosity of the gravels sampled in 5mm volumes. Values are typical of those measured in the field and lab. d. 2-D slices through the gravels at 20% depth from surface (porosity = 0.35), and e. 75% depth from

  3. Stream discharge events increase the reaction efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Trauth, N.; Schmidt, C.

    2015-12-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has not been studied so far. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally variable hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, generating in combination with the stream water level, losing, neutral, or gaining stream conditions. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate into the modelling domain across the top boundary and can react with each other by aerobic respiration and denitrification. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone are deeper than under base flow conditions and small events where gaining conditions prevail. Consequently, stream discharge events may

  4. Stream discharge events increase the reactive efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2016-04-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has received less attention to date. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally varying hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, resulting in losing, neutral, or gaining conditions in the stream with respect to exchange with groundwater. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate across the top of the modelling domain, where aerobic respiration and denitrification are simulated. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone deeper than under base flow conditions and small hydrologic events where gaining conditions prevail. Consequently, stream discharge events may

  5. Experiences with a top layer of gravel to enhance the performance of vertical flow constructed wetlands at cold temperatures.

    PubMed

    Langergraber, Guenter; Pressl, Alexander; Leroch, Klaus; Rohrhofer, Roland; Haberl, Raimund

    2009-01-01

    In a first phase of this study it was shown that the Austrian effluent standards for organic matter could not be met in winter for vertical flow (VF) beds designed for and loaded with 27 g COD.m(-2).d(-1) (3 m2 per person equivalent). The aim of this second phase of the study was to investigate, if the performance of a constructed wetland can be enhanced, i.e. if the effluent requirements can be met, when an additional gravel layer (15 cm, 4-8 mm) is added on top of the main layer of the VF bed. The hypothesis was that this top layer would increase the thermal insulation and consequently the temperatures in the filter bed during cold periods, thus resulting in higher removal efficiencies during winter. Two VF beds were operated in parallel; one bed with such a 15 cm top layer, one without. Otherwise the construction of both beds was identical: surface area of about 20 m2, 50 cm main layer (grain size 0.06-4 mm, d10=0.2 mm; d60=0.8 mm), planted with common reed (Phragmites australis). The beds were intermittently loaded 4 times per day with mechanically pre-treated wastewater (hydraulic loading: 47 mm.d(-1); median value of the influent concentration: 505 mg COD.L(-1)). Despite a better performance during the first winter, the bed with additional top layer showed in general a very unstable performance. It is assumed that the main reason for this was that the oxygen transfer was reduced by the additional top layer so far that suspended organic matter could not any longer be degraded in between loadings. Therefore clogging of the filter occurred.

  6. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    PubMed

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study.

  7. Three-dimensional steady-state simulation of flow in the sand-and-gravel aquifer, southern Escambia County, Florida

    USGS Publications Warehouse

    Trapp, Henry; Geiger, L.H.

    1986-01-01

    The sand-and-gravel aquifer is the only freshwater aquifer in southern Escambia County, Florida and is the source of public water supply for the area, including the City of Pensacola. The aquifer was simulated by a two-layer, digital model to provide hydrologic information for water resource planning. The lower layer represents the main-producing zone; the upper layer represents all of the aquifer above the main-producing zone including an unconfined zone and discontinuous perched, confined , and confining zones. The model was designed for steady-state simulation and predicts the response of the aquifer (changes in water levels) to groundwater pumping where steady-state conditions have been reached. Input to the model includes matrices representing constant-head nodes, starting head, transmissivity of layer 1, leakance between layers 1 and 2, lateral hydraulic conductivity of layer 2, and altitude of the base layer 2. The sources of water to the model are from recharge by infiltrated precipitation (estimated from base runoff), inflow across boundaries, and induced recharge from river leakance in periods of prolonged groundwater pumping. Model output includes final head and drawdown for each layer and total values for discharge and recharge in the model area. The model was calibrated for 1972 pumping and tested by simulating pumpages during 1939-40, 1958, and 1977. Sensitivity analyses showed water levels in both layers were most sensitive to changes in the recharge matrix and least sensitive to river leakage. Suggestions for further development of the model include subdivision and expansion of the grid, assignment of storage coefficients for transient simulations, more intensive study of the stream-aquifer relations, and consideration of the effects of infiltration basins on recharge. (Author 's abstract)

  8. [Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field].

    PubMed

    Ma, Zhong-ming; Du, Shao-ping; Xue, Liang

    2015-11-01

    The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.

  9. Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modeling in anoxic groundwater

    USGS Publications Warehouse

    Baedecker, M.J.; Cozzarelli, I.M.; Eganhouse, R.P.; Siegel, D.I.; Bennett, P.C.

    1993-01-01

    Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the ??13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction. Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume. ?? 1993.

  10. Flume Experiments on the Influence of Salmon Spawning Density on Grain Stability and Bedload Transport in Gravel-bed Streams

    NASA Astrophysics Data System (ADS)

    Buxton, T. H.

    2015-12-01

    Salmon spawning in streams involves the female salmon digging a pit in the bed where she deposits eggs for fertilization before covering them with gravel excavated from the next pit upstream. Sequences of pit excavation and filling winnow fines, loosen sediment, and move bed material into a tailspill mound resembling the shape of a dune. Research suggests salmonid nests (redds) destabilize streambeds by reducing friction between loosened grains and converging flow that elevates shear stress on redd topography. However, bed stability may be enhanced by form drag from redds in clusters that lower shear stress on the granular bed, but this effect will vary with the proportion of the bed surface that is occupied by redds (P). I used simulated redds and water-worked ("unspawned") beds in a laboratory flume to evaluate these competing influences on grain stability and bedload transport rates with P=0.12, 0.34, and 0.41. Results indicate that competence (largest-grain) and reference transport rate estimates of critical conditions for particle entrainment inversely relate to P. Bedload transport increased as exponential functions of P and excess boundary shear stress. Therefore, redd form drag did not overcome the destabilizing effects of spawning. Instead, grain mobility and bedload transport increased with P because larger areas of the bed were composed of relatively loose, unstable grains and redd topography that experienced elevated shear stress. Consequently, the presence of redds in fish-bearing streams likely reduces the effects of sedimentation from landscape disturbance on stream habitats that salmon use for reproduction.

  11. Comparison of hydraulic conductivities for a sand and gravel aquifer in southeastern Massachusetts, estimated by three methods

    USGS Publications Warehouse

    Warren, L.P.; Church, P.E.; Turtora, Michael

    1996-01-01

    Hydraulic conductivities of a sand and gravel aquifer were estimated by three methods: constant- head multiport-permeameter tests, grain-size analyses (with the Hazen approximation method), and slug tests. Sediment cores from 45 boreholes were undivided or divided into two or three vertical sections to estimate hydraulic conductivity based on permeameter tests and grain-size analyses. The cores were collected from depth intervals in the screened zone of the aquifer in each observation well. Slug tests were performed on 29 observation wells installed in the boreholes. Hydraulic conductivities of 35 sediment cores estimated by use of permeameter tests ranged from 0.9 to 86 meters per day, with a mean of 22.8 meters per day. Hydraulic conductivities of 45 sediment cores estimated by use of grain-size analyses ranged from 0.5 to 206 meters per day, with a mean of 40.7 meters per day. Hydraulic conductivities of aquifer material at 29 observation wells estimated by use of slug tests ranged from 0.6 to 79 meters per day, with a mean of 32.9 meters per day. The repeatability of estimated hydraulic conductivities were estimated to be within 30 percent for the permeameter method, 12 percent for the grain-size method, and 9.5 percent for the slug test method. Statistical tests determined that the medians of estimates resulting from the slug tests and grain-size analyses were not significantly different but were significantly higher than the median of estimates resulting from the permeameter tests. Because the permeameter test is the only method considered which estimates vertical hydraulic conductivity, the difference in estimates may be attributed to vertical or horizontal anisotropy. The difference in the average hydraulic conductivities estimated by use of each method was less than 55 percent when compared to the estimated hydraulic conductivity determined from an aquifer test conducted near the study area.

  12. Effect of geometrical configuration of sediment replenishment on the development of bed form patterns in a gravel bed channel

    NASA Astrophysics Data System (ADS)

    Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.

    2016-04-01

    Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The

  13. Quantifying the co-evolution of morphology, hydraulics and spawning habitat in a recently restored gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Wydzga, A. M.; Dunne, T.

    2008-12-01

    An emergent paradigm within restoration science is that restoration of natural physical processes is the best way to restore habitat for native organisms in degraded rivers. This concept, which underpins many restoration projects, is based on the notion that the establishment of an actively migrating, alluvial river channel-floodplain system will provide a number of desired ecological functions, each related to specific physical processes that occur at the habitat-scale. Here we quantify the rates of morphologic change, channel migration and the development of high-quality habitat, using a recently restored gravel-bed reach of the Merced River, California, USA. DEM-derived differences in bed elevation indicate that sediment storage accelerated processes of bar-building, pool scour, and bank erosion, leading to more asymmetric cross- sectional geometry. The volume of sediment stored on developing point bars was correlated with the migration distance of the outer bank, whereas in bends that have not accumulated sediment there has been little erosion, suggesting that channel migration was influenced by sediment supply as well as by channel curvature. The documented channel changes have had marked results on flow hydraulics, leading to decreased velocities over riffles and increased velocities in pools during low flow spawning conditions. Habitat modeling indicates that the quality of Chinook salmon (Oncorhynchus tshawytscha) spawning habitat has improved following the initial channel construction. These changes in morphology, hydraulics and habitat availability occurred primarily during two sustained periods of overbank flow. Collectively, these results highlight the importance of overbank flows and a sediment supply sufficient for bar growth in meander migration and creating channel complexity and high-quality habitat.

  14. Influence of bed patchiness, slope, grain hiding, and form drag on gravel mobilization in very steep streams

    NASA Astrophysics Data System (ADS)

    Scheingross, Joel S.; Winchell, Eric W.; Lamb, Michael P.; Dietrich, William E.

    2013-06-01

    streams are a major portion of channel networks and provide a link to transport sediment from hillslopes to lower gradient rivers. Despite their importance, key unknowns remain, perhaps foremost of which is evaluating in steep streams empirical laws for fluvial sediment transport developed for low-gradient rivers. To address this knowledge gap, we painted sediment in situ over 3 years to monitor incipient sediment motion and sediment-patch development in five small (drainage areas of 0.04-2 km2) and steep (slopes of 5-37%) tributaries of Elder Creek, California, United States. We found that channel beds organized into size-sorted sediment patches which displayed active fluvial transport of gravel annually, consistent year-to-year patch median grain sizes, partial transport of bed material, and significantly higher values of critical Shields stress for incipient sediment motion compared to that observed for lower gradient rivers. The high critical Shields stresses (up to ≈0.5 for the median grain size) agree within a factor of ~3 to theoretical predictions which account for slope-dependent hydraulics, grain hiding, and sediment patches. For grains of approximately the same size as the roughness length scale, slope-dependent hydraulics and bed patchiness are the dominant controls on critical Shields stress values, while grain hiding is important for grains larger or smaller than the roughness length scale. Form drag exists in our monitored tributaries but has a smaller influence than the above effects. Our field observations show fluvial processes contribute to sediment mobilization in steep channels which are often considered to be dominated by debris flows.

  15. Polar gravel beach-ridge systems as archive of climate variations (South Shetland Islands / Western Antarctic Peninsula)

    NASA Astrophysics Data System (ADS)

    Lindhorst, Sebastian; Schutter, Ilona; Betzler, Christian

    2014-05-01

    The architecture of polar gravel beach-ridge systems is presented and their potential as archive of past wave-climate conditions is evaluated. Raised beaches are common on paraglacial coasts which experienced a net uplift during the Holocene as the result of postglacial isostatic rebound. Ground-penetrating radar data obtained along the coasts of Potter Peninsula (King George Island) show that beach ridges unconformably overlie seaward-dipping strata of the strand plain. Whereas strand-plain progradation is the result of swash sedimentation at the beach face under enduring calm conditions, ridge construction reflects enhanced wave action at the beach as the result of increased storminess or reduced nearshore sea ice. The number of individual ridges which are preserved from a given time interval varies along the coast depending on the morphodynamic setting: Sheltered coasts are characterized by numerous small ridges, whereas fewer but larger ridges develop on exposed beaches. The sedimentary architecture of individual beach ridges is interpreted to reflect maximum wave-runup height during the time of ridge construction. Ridges at sheltered parts of the coast exhibit either seaward-dipping beds, interpreted to result from swash deposition, or an aggradational stacking pattern being the result of wave overtopping. At exposed beaches, larger ridges develop composed of seaward- as well as landward-dipping beds. Radiocarbon data indicate that the frequency of ridge building ranges from decades in low-energy settings to more than 1500 years under high-energy conditions. In the study area, beach ridges group into four distinct levels: up to 4 m, 5.5 m, 7.5 m, and 10 m above the present day storm beach. Hence, these levels are interpreted to reflect periods of increased wave activity in the area of the South Shetland Islands at about 4.3, 3.1, 1.9, and 0.35 ka cal BP.

  16. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    PubMed

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. PMID:26822473

  17. Change in bedload transport frequency with climate warming in gravel-bed streams of the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Lewis, S.; Safeeq, M.

    2014-12-01

    Previous modeling studies have predicted that high flows in the Oregon Cascades will become larger and shift towards earlier in the winter season with climate warming. The impact of those changes on bedload transport frequency and channel morphology remains unknown, however. We examined changes in the timing and magnitude of bedload transport under modeled flow scenarios to identify which rivers draining the Cascades with different hydrologic regimes are most vulnerable to increased frequency of bedload transport. Such increases in the frequency or magnitude of gravel entrainment might lead to disturbance of fragile salmon or bull trout habitat. We calculated bedload transport rates using field measurements of surface sediment size, channel geometry, and channel slope along 14 reaches that included streams with a range of drainage areas and flow regimes (i.e., spring-fed and surface-runoff dominated). Our findings suggest that both spring-fed and surface-runoff streams are vulnerable to predicted changes in the flow regime, but in different ways. Spring-fed streams, characterized by relatively uniform discharge, will likely experience changes in both the timing and magnitude of transport. Spring-fed streams are poised just above the critical transport threshold for a large portion of the year, therefore small changes in the highest flows may lead to marked changes in transport rates. Transport events in surface-runoff streams, which are already characterized by flashy flows, will likely become larger and more frequent. Changes in the frequency and timing of bedload transport in both spring-fed and surface runoff streams will impact bed stability and texture and should be considered for managing these watersheds in the future.

  18. Comparisons of Derived Metrics from Computed Tomography (CT) Scanned Images of Fluvial Sediment from Gravel-Bed Flume Experiments

    NASA Astrophysics Data System (ADS)

    Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David

    2016-04-01

    Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.

  19. A mechanistic model linking insect (Hydropsychidae) silk nets to incipient sediment motion in gravel-bedded streams

    NASA Astrophysics Data System (ADS)

    Albertson, Lindsey K.; Sklar, Leonard S.; Pontau, Patricia; Dow, Michelle; Cardinale, Bradley J.

    2014-09-01

    Plants and animals affect stream morphodynamics across a range of scales, yet including biological traits of organisms in geomorphic process models remains a fundamental challenge. For example, laboratory experiments have shown that silk nets built by caddisfly larvae (Trichoptera: Hydropsychidae) can increase the shear stress required to initiate bed motion by more than a factor of 2. The contributions of specific biological traits are not well understood, however. Here we develop a theoretical model for the effects of insect nets on the threshold of sediment motion, τ*crit, that accounts for the mechanical properties, geometry, and vertical distribution of insect silk, as well as interactions between insect species. To parameterize the model, we measure the tensile strength, diameter, and number of silk threads in nets built by two common species of caddisfly, Arctopsyche californica and Ceratopsyche oslari. We compare model predictions with new measurements of τ*crit in experiments where we varied grain size and caddisfly species composition. The model is consistent with experimental results for single species, which show that the increase in τ*crit above the abiotic control peaks at 40-70% for 10-22 mm sediments and declines with increasing grain size. For the polyculture experiments, however, the model underpredicts the measured increase in τ*crit when two caddisfly species are present in sediments of larger grain sizes. Overall, the model helps explain why the presence of caddisfly silk can substantially increase the forces needed to initiate sediment motion in gravel-bedded streams and also illustrates the challenge of parameterizing the behavior of multiple interacting species in a physical model.

  20. Mapping spatial patterns of stream power and channel change along a gravel-bed river in northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, Devin M.

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing or field surveys. This study used remote sensing and GIS tools along with field data to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to develop a locational probability map and morphologic sediment budget to assess lateral channel mobility and changes in net sediment flux. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from light detection and ranging (LiDAR) data were used to obtain the discharge and slope values needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of sediment sources and sinks. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volumetric change in each time increment. Results indicated a lack of strong correlation between stream power gradients and sediment response, highlighting the geomorphic complexity of Soda Butte Creek and the inability of relatively simple statistical approaches to link sub-budget cell-scale sediment dynamics to larger-scale driving forces such as stream power gradients. Improving the moderate spatial resolution techniques used in this study and acquiring very-high resolution data from recently developed methods in fluvial remote sensing could help improve understanding of the spatial organization of stream power, sediment transport, and channel change in

  1. Mapping Spatial Distributions of Stream Power and Channel Change along a Gravel-Bed River in Northern Yellowstone

    NASA Astrophysics Data System (ADS)

    Lea, D. M.; Legleiter, C. J.

    2014-12-01

    Stream power represents the rate of energy expenditure along a river and can be calculated using topographic data acquired via remote sensing. This study used remotely sensed data and field measurements to quantitatively relate temporal changes in the form of Soda Butte Creek, a gravel-bed river in northeastern Yellowstone National Park, to stream power gradients along an 8 km reach. Aerial photographs from 1994-2012 and cross-section surveys were used to assess lateral channel mobility and develop a morphologic sediment budget for quantifying net sediment flux for a series of budget cells. A drainage area-to-discharge relationship and digital elevation model (DEM) developed from LiDAR data were used to obtain the discharge and slope values, respectively, needed to calculate stream power. Local and lagged relationships between mean stream power gradient at median peak discharge and volumes of erosion, deposition, and net sediment flux were quantified via spatial cross-correlation analyses. Similarly, autocorrelations of locational probabilities and sediment fluxes were used to examine spatial patterns of channel mobility and sediment transfer. Energy expended above critical stream power was calculated for each time period to relate the magnitude and duration of peak flows to the total volume of sediment eroded or deposited during each time increment. Our results indicated a lack of strong correlation between stream power gradients and sediment flux, which we attributed to the geomorphic complexity of the Soda Butte Creek watershed and the inability of our relatively simple statistical approach to link sediment dynamics expressed at a sub-budget cell scale to larger-scale driving forces such as stream power gradients. Future studies should compare the moderate spatial resolution techniques used in this study to very-high resolution data acquired from new fluvial remote sensing technologies to better understand the amount of error associated with stream power

  2. [Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field].

    PubMed

    Ma, Zhong-ming; Du, Shao-ping; Xue, Liang

    2015-11-01

    The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field. PMID:26915190

  3. River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Wilkinson, P. B.; Penn, S.; Meldrum, P. I.; Kuras, O.; Loke, M. H.; Gunn, D. A.

    2013-06-01

    We describe the application of 3D electrical resistivity tomography (ERT) to the characterisation and reserve estimation of an economic fluvial sand and gravel deposit. Due to the smoothness constraints used to regularise the inversion, it can be difficult to accurately determine the geometry of sharp interfaces. We have therefore considered two approaches to interface detection that we have applied to the 3D ERT results in an attempt to provide an accurate and objective assessment of the bedrock surface elevation. The first is a gradient-based approach, in which the steepest gradient of the vertical resistivity profile is assumed to correspond to the elevation of the mineral/bedrock interface. The second method uses an intrusive sample point to identify the interface resistivity at a location within the model, from which an iso-resistivity surface is identified that is assumed to define the interface. Validation of these methods has been achieved through direct comparison with observed bedrock surface elevations that were measured using real-time-kinematic GPS subsequent to the 3D ERT survey when quarrying exposed the bedrock surface. The gradient-based edge detector severely underestimated the depth to bedrock in this case, whereas the interface resistivity method produced bedrock surface elevations that were in close agreement with the GPS-derived surface. The failure of the gradient-based method is attributed to insufficient model sensitivity in the region of the bedrock surface, whereas the success of the interface resistivity method is a consequence of the homogeneity of the mineral and bedrock, resulting in a consistent interface resistivity. These results highlight the need for some intrusive data for model validation and for edge detection approaches to be chosen on the basis of local geological conditions.

  4. Evolution of Fine-Grained Channel Margin Deposits behind Large Woody Debris in an Experimental Gravel-Bed Flume

    NASA Astrophysics Data System (ADS)

    ONeill, B.; Marks, S.; Skalak, K.; Puleo, J. A.; Wilcock, P. R.; Pizzuto, J. E.

    2014-12-01

    Fine grained channel margin (FGCM) deposits of the South River, Virginia sequester a substantial volume of fine-grained sediment behind large woody debris (LWD). FGCM deposits were created in a laboratory setting meant to simulate the South River environment using a recirculating flume (15m long by 0.6m wide) with a fixed gravel bed and adjustable slope (set to 0.0067) to determine how fine sediment is transported and deposited behind LWD. Two model LWD structures were placed 3.7 m apart on opposite sides of the flume. A wire mesh screen with attached wooden dowels simulated LWD with an upstream facing rootwad. Six experiments with three different discharge rates, each with low and high sediment concentrations, were run. Suspended sediment was very fine grained (median grain size of 3 phi) and well sorted (0.45 phi) sand. Upstream of the wood, water depths averaged about 0.08m, velocities averaged about 0.3 m/s, and Froude numbers averaged around 0.3. Downstream of the first LWD structure, velocities were reduced tenfold. Small amounts of sediment passed through the rootwad and fell out of suspension in the area of reduced flow behind LWD, but most of the sediment was carried around the LWD by the main flow and then behind the LWD by a recirculating eddy current. Upstream migrating dunes formed behind LWD due to recirculating flow, similar to reattachment bars documented in bedrock canyon rivers partially obstructed by debouching debris fans. These upstream migrating dunes began at the reattachment point and merged with deposits formed from sediment transported through the rootwad. Downstream migrating dunes formed along the channel margin behind the LWD, downstream of the reattachment point. FGCM deposits were about 3 m long, with average widths of about 0.8 m. Greater sediment concentration created thicker FGCM deposits, and higher flows eroded the sides of the deposits, reducing their widths.

  5. Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system

    NASA Astrophysics Data System (ADS)

    Kawanisi, K.; Razaz, M.; Ishikawa, K.; Yano, J.; Soltaniasl, M.

    2012-05-01

    The continuous measurement of river discharge for long periods of time is crucial in water resource studies. However, the accurate estimation of river discharge is a difficult and labor-intensive procedure; thus, a robust and efficient method of measurement is required. Continuous measurements of flowrate have been carried out in a wide, shallow gravel bed river (water depth ≈ 0.6 m under low-flow conditions, width ≈ 115 m) using Fluvial Acoustic Tomography System (FATS) that has 25 kHz broadband transducers with horizontally omnidirectional and vertically hemispherical beam patterns. Reciprocal sound transmissions were performed between the two acoustic stations located diagonally on both sides of the river. The horizontal distance between the transducers was 301.96 m. FATS enabled the measurement of the depth- and range-averaged sound speed and flow velocity along the ray path. In contrast to traditional point/transect measurements of discharge, in a fraction of a second, FATS covers the entire cross section of river in a single measurement. The flow rates measured by FATS were compared to those estimated by moving boat Acoustic Doppler Current Profiler (ADCP) and rating curve (RC) methods. FATS estimates were in good agreement with ADCP estimates over a range of 20 to 65 m3 s-1. The RMS of residual between the two measurements was 2.41 m3 s-1. On the other hand the flowrate by RC method fairly agreed with FATS estimates for greater discharges than around 40 m3 s-1. This inconsistency arises from biased RC estimates in low flows. Thus, the flow rates derived from FATS could be considered reliable.

  6. The Formation and Growth of Gravel Bars in Response to Increased Sediment Supply Following the Marmot Dam Removal

    NASA Astrophysics Data System (ADS)

    Podolak, C.; Wilcock, P.

    2009-12-01

    What makes some bars grow downstream, others grow upstream, while still others primarily grow in height with a nearly constant planform? The October 2007 removal of the Marmot Dam from the Sandy River, OR, and the subsequent liberation of nearly 750,000 cubic meters of sand and gravel served as an experimental setting to observe these various trajectories of bar growth. In the 2 kilometer reach immediately below the former dam site nearly 350,000 cubic meters were deposited during the first year following the removal. The sediment deposited downstream such that there exists a spatial as well as time variation in the amount of deposition seen by the downstream bars, providing an opportunity to measure different responses to various sediment supplies. This deposit both created bars where there were none the previous year, and increased the size of pre-existing bars. The formation and growth of the bars were analyzed using LIDAR, ground surveys, ground-level photographs, and aerial photography. Throughout the two year study period, new bars formed in an alternating lateral-bar sequence; a pre-existing point bar migrated downstream from the apex of a bend, and subsequently reset to the apex; and small riffle zones containing large (greater than 1 meter) boulders formed the skeleton for mid-channel bars which filled in and elongated upstream. The observations can be generalized by characterizing the pre-removal topography with a suite of topographic measures and observing relationships between the pre-removal measures, the post-removal measures, and the increased sediment supply. Newly formed bars in the portion of the reach with the highest rate of deposition had the greatest change in relief (measured from the thalweg to the top of the bar) while growth of the pre-existing bars was characterized by greater changes in length than in height or width. This study's observation of a small number of bars over a two-year period provides a base to which further observations

  7. Infiltration and solute transport experiments in unsaturated sand and gravel, Cape Cod, Massachusetts: Experimental design and overview of results

    USGS Publications Warehouse

    Rudolph, D.L.; Kachanoski, R.G.; Celia, M.A.; LeBlanc, D.R.; Stevens, J.H.

    1996-01-01

    A series of infiltration and tracer experiments was conducted in unsaturated sand and gravel deposits on Cape Cod, Massachusetts. A network of 112 porous cup lysimeters and 168 time domain reflectometry (TDR) probes was deployed at depths from 0.25 to 2.0 m below ground surface along the centerline of a 2-m by 10-m test plot. The test plot was irrigated at rates ranging from 7.9 to 37.0 cm h-1 through a sprinkler system. Transient and steady state water content distributions were monitored with the TDR probes and spatial properties of water content distributions were determined from the TDR data. The spatial variance of the water content tended to increase as the average water content increased. In addition, estimated horizontal correlation length scales for water content were significantly smaller than those estimated by previous investigators for saturated hydraulic conductivity. Under steady state flow conditions at each irrigation rate, a sodium chloride solution was released as a tracer at ground surface and tracked with both the lysimeter and TDR networks. Transect-averaged breakthrough curves at each monitoring depth were constructed both from solute concentrations measured in the water samples and flux concentrations inferred from the TDR measurements. Transport properties, including apparent solute velocities, dispersion coefficients, and total mass balances, were determined independently from both sets of breakthrough curves. The dispersion coefficients tended to increase with depth, reaching a constant value with the lysimeter data and appearing to increase continually with the TDR data. The variations with depth of the solute transport parameters, along with observations of water and solute mass balance and spatial distributions of water content, provide evidence of significant three-dimensional flow during the irrigation experiments. The TDR methods are shown to efficiently provide dense spatial and temporal data sets for both flow and solute transport

  8. The hyporheitron - a tool for measuring hyporheic processes along a discrete flow path in gravel bed streams

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Wondzell, S. M.; Haggerty, R.

    2012-12-01

    Respiration in streams and rivers occurs primarily in streambed sediment due to the presence of microbial colonies growing as biofilms on sediment surfaces. Hyporheic exchange through this sediment is thus critical to stream ecosystem processes. However, attempts to study the respiration and other biogeochemical processes in the hyporheic zone continues to prove challenging. We developed a hyporheic mesocosm - or hyporheitron - allowing us to sample pore water along a defined hyporheic flowpath. The hyporheitron consists of a 15.24 cm (6 in) I. D. PVC pipe with a total length of 5.5 m packed with hyporheic sediment. Along the length of the pipe, set 1 m apart, are 5 fully penetrating vertical sampling pipes made from 3.81 cm (1.5 in) I. D. PVC slotted well screen which allow for instruments to be used to measure various hydrologic parameters in the streamtube. The hyporheitron was installed in a large gravel bar spanning a pool-riffle-pool sequence in Lookout Creek, at the H. J. Andrews Experimental Forest, Oregon, USA. The hyporheitron was naturally irrigated, provided a controlled environment for transport studies in the hyporheic zone, and could be altered to allow experiments at different residence times and pore water velocities. Performance of the hyporheitron was evaluated using a conservative tracer (NaCl) injection by measuring the electrical conductivity (EC) breakthrough curves at the sampling locations (1, 2, 3, and 4 m down gradient from injection site) allowing calculation of residence time and pore water velocity in the streamtube. We then examined the effects of stream temperature and residence time on metabolism. By changing the outflow rate of the hyporheitron, the pore water residence time and water temperature signal also changes. Hyporheic water with fast flow rates and short residence times can carry the diurnal fluctuations of the stream water temperature, while water with slow flow rates and longer residence times may have less fluctuation

  9. Implications of a Dynamic Hydromorphic Regime For Environmental Management on a Disturbed Large Gravel-Bed River

    NASA Astrophysics Data System (ADS)

    Moir, H. J.; Pasternack, G. B.

    2006-12-01

    demonstrate the importance of understanding the geomorphic and ecological context of a system before developing strategies for restoration. In the case of the LYR, a dynamic sediment supply and hydrological regime produce a heterogeneous channel morphology with associated hydraulic and sedimentary complexity that drive a diverse assemblage of habitats through the majority of the reach. Restoration measures would be most cost-effective in the ~1 km of the river immediately downstream from the dam where there is a net deficit of spawning caliber sediment. Restoration efforts (e.g., gravel augmentation) in this location may provide a disproportionately important to spawning habitat that results in a benefit to production in the system. Furthermore, the results also demonstrate that specific restoration approaches must also consider the geomorphic regime of the system. In the case of the Yuba, this means that sculpting the channel to provide specific habitat units is unlikely to be a sustainable practice given the dynamic regime of the system.

  10. Imaging high contrast layers within a gravel aquifer using full-waveform cross-hole GPR inversion

    NASA Astrophysics Data System (ADS)

    Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.

    2011-12-01

    Cross-hole ground penetrating radar (GPR) is widely used in geological, hydrological and engineering investigations to map the distribution of dielectric permittivity and electrical conductivity. These electromagnetic parameters are closely linked to hydrogeological parameters. Traditionally, ray-based methods are used to invert cross-hole GPR data using first arrival travel times and first cycle amplitudes and only a fraction of the information contained in the radar data is used such that the resolution of conventional standard ray-based inversion schemes is limited. For example, late arrivals that have large amplitudes can be completely ignored by the ray-based techniques. On the other hand, the full-waveform inversion considers the entire waveform and can therefore significantly improve imaging results of cross-hole GPR data. Especially, for improved characterisation of preferential flow paths, high resolution images of the aquifer are necessary. We recently inverted cross-hole GPR data measured in the saturated zone of a gravel aquifer (4m - 10m depth) in the Thur valley, Switzerland using the full-waveform inversion. Here, we demonstrate that the full-waveform inversion is able to identify high contrast waveguide layers between two boreholes using cross-hole GPR measurements. Our full-waveform inversion returns high-resolution images throughout the model domain including the upper part of the aquifer which contains a high permittivity layer between 5m - 6m depth. A detailed analysis for sources and receivers that were present at the depth of the high permittivity layer shows high amplitudes for late arrivals of the measured data forming elongated wave trains that are consistent with the presence of a low velocity waveguide. These wave trains are formed due to total internal reflections beyond the critical angle within this layer which results in a trapping of most of the energy. The same characteristics have been observed for dispersive surface GPR data

  11. Gravel deposit produced by a flash paleoflood in a succession of Quaternary terraces in the Plain of Vic (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castelltort, Xavier; Colombo, Ferran; Carles Balasch, Josep; Barriendos, Mariano; Mazón, Jordi; Pino, David; Lluís Ruiz-Bellet, Josep; Tuset, Jordi

    2016-04-01

    In contrast with the abundance of studies of fluvial terraces, caused by river dynamics, there are very few descriptions of alluvial deposits produced by flash floods and mass movements. This study describes a late Pleistocene sedimentary deposit produced by a flash paleoflood and attempts to explain its genesis and its source areas. The Plain of Vic, drained by the river Ter and its tributaries, is one of the eastern erosive basins bordering the sedimentary Ebre basin (NE Iberian Peninsula). This plain has a length of 35 km and an average width of 8 km with a N-S direction and lies mainly on the Marls of Vic Fm. These materials are the less resistant lithologic members of the monocline Paleogene stratigraphic succession that dips to the west. The basal resistant bed that forms the eastern cuesta is the Sandstones of Folgueroles Fm. On the top, the resistant lithologic beds that form the scarp face are the sandstones of La Noguera in the Vidrà Fm. On the scarp face, various coalescent alluvial bays have been developed, which have accumulated up to eight levels of alluvial terraces. In one of them, formed by the river Mèder and the Muntanyola stream, a gravel deposit up to 5 m thick formed in a single episode outcrops, in a position T4,. A dating of the river Ter T5 has obtained an age of 117.9 ± 9.5 Ky. The accumulation of gravel erodes another level of metric thickness of the same lithological characteristics and texture. The deposit does not have any internal structure or organization of pebbles. At its base, there are several metric blocks coming directly from the slopes. The accumulation of gravel is block-supported with a sandy matrix. The pebbles size is centimetric to decimetric (90%). Its texture is subrounded. Lithologically, the deposit consists mostly of sandstone and limestone from the top of the series. On the ground, the accumulation of gravel is elongated, with a maximum length and width of 550 m by 160 m and a slope surface of 2.54%. With an area

  12. Evaluating the Effects of Constriction by Levees on a Dynamic Gravel-Bed River through Morphological Sediment Budgeting and Bed Mobility Studies, Snake River, WY

    NASA Astrophysics Data System (ADS)

    Leonard, C.; Legleiter, C. J.

    2014-12-01

    High-energy gravel-bed rivers are subject to a range of management practices used to control the system's dynamic behavior. The Snake River, near Jackson, WY, offers an opportunity to study the morphological effects of management practices through a comparison of a reach confined by levees to an unmanaged reach just upstream within Grand Teton National Park (GTNP). I hypothesize that levees have reduced sediment supply by disconnecting the river from its banks and increased transport capacity by increasing flow velocity. Together, these effects accentuate the sediment deficit in the leveed reach. To test this I am developing a morphological sediment budget from GTNP to Wilson, WY, using LiDAR data from 2007 and 2012. This analysis will yield insight as to how sediment transport varies between the relatively natural reach in GTNP and the leveed reach downstream. A problem inherent to morphological budgets is the inability to decipher when change occurs within the budget timeframe. To combat this, a partial mobility study was executed using 300 PIT tagged gravels within the leveed reach. Gravels were relocated to decipher how bed mobility and sediment transport varied with grain size under a range of hydraulic conditions. These results are then used to estimate a critical discharge representing the inception of bed motion and geomorphic change. The critical discharge will be used to reconstruct the timing of bed mobility based on streamflow records and thus deconvolve when morphological change occurred during the sediment budget period. I further hypothesize that a greater imbalance between transport capacity and sediment supply in the leveed reach causes the bed to armor, resulting in larger critical shear stresses and implying that the bed will be mobilized only during greater discharge events. To test this hypothesis I will measure armor ratios within the leveed reach and examine how bed mobility differs between the two reaches by comparing the results of our

  13. Sedimentation and preservation of the Miocene Atacama Gravels in the Pedernales Chañaral Area, Northern Chile: Climatic or tectonic control?

    NASA Astrophysics Data System (ADS)

    Nalpas, T.; Dabard, M.-P.; Ruffet, G.; Vernon, A.; Mpodozis, C.; Loi, A.; Hérail, G.

    2008-11-01

    In recent years, longitudinal changes on the thin/thick-skinned tectonic styles of the Central Andes has been intensively discussed while other studies have considered the role of mass transfers on the unloading of the orogen, and on the stress regime along the plate interface arising from changes on the volume of sediment arriving into the Peru-Chile trench. The search for paleo-climate records is therefore crucial for our understanding of the history of the Central Andes. In this paper, we focus on the Atacama Gravels, an extensive blanket of Miocene continental deposits filling a Neogene paleo-valley system along the southern Atacama Desert in northern Chile. An east-west transect, between Pedernales and Chañaral (26°30'S), enabled us to carry out a sedimentological and tectonic study of the Atacama Gravels, based on logging and field observations along the Rio Salado canyon. New 39Ar- 40Ar ages obtained on intercalated and overlying ignimbrites date the beginning of the Atacama Gravels sedimentation at around the Oligocene-Miocene boundary and cessation of sedimentation in the Late Miocene. Thirteen lithofacies, included within five facies associations (A1 to A5) were identified. Depositional environments vary from proximal alluvial fan (A1, A2) in the Precordillera through ephemeral fluvial (A3, A4) to distal playa lake (A5) in the Coastal Cordillera. No evidences of synsedimentary deformation have been found, showing that the change from sediment removal to sediment preservation cannot be explained by tectonic causes, and climate change appears to be the dominant controlling factor of sediment preservation. A progressive change from semi-arid towards hyper-arid climatic conditions during the Miocene, led to a reduction on the transport capacity of the fluvial system and sediment preservation along the paleo-valley system formed during the Oligocene.

  14. Hydrodynamic controls on the downstream elimination of gravel, and implications for fluvial-deltaic stratigraphy: two end-member case studies from the Selenga River, Russia, and the Mississippi River, U.S.A.

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.

    2015-12-01

    The downstream termination of gravel is measured for two fluvial-deltaic systems: the Selenga and Mississippi rivers. These end-members vary by an order of magnitude for slope, water and sediment discharge, and delta area. Moreover, the contrast between the tectonic regimes of the receiving basins is stark: the Selenga delta is located along the deep-water margin of Lake Baikal, which is an active half-graben rift basin, while the Mississippi discharges onto a passive margin with little tectonic influence. Nevertheless, the two rivers share a striking sedimentological similarity: near the delta apex, gravel is eliminated from the downstream dispersal system, and so sediment reaching the land-water interface is exclusively sand and mud. Field data for both rivers, including sediment samples and water discharge and flow velocity measurements, are used to validate morphodynamic models that assess the downstream changes in fluid stress and gravel transport. The analyses show that there are two distinct mechanisms that drive gravel deposition and prohibit dispersal throughout the delta. For the Selenga, water partitioning among bifurcating channels produces a non-linear reduction in shear stress and gravel deposition. For the Mississippi, backwater flow arrests the downstream movement of gravel during low and moderate water discharges, and although floods overcome backwater and produce uniform flow to the outlet, the duration of floods is too short to disperse gravel throughout the delta. Given sufficient time, model results indicate that both rivers should approach morphodynamic equilibrium, whereby aggradation due to sediment deposition raises local bed slope and sediment transport capacity, thereby facilitating downstream gravel movement. However, both systems possess unique characteristics that prevent this process from occurring. For the Selenga, tectonically induced movements regularly down drop portions of the delta below base level, forcing renewed delta

  15. Erosion and Deposition in a Dynamic Gravel-Cobble River are Dominated by Vertical Channel Change Processes

    NASA Astrophysics Data System (ADS)

    Wyrick, J. R.; Pasternack, G. B.

    2012-12-01

    create these MU landforms. With this in mind, it is notable that areas that became pools experienced high scour rates by downcutting, as compared to riffles which formed by channel widening and filling, an indication of channel self-maintenance and resilience. This is in contrast to other rivers in the region where scour is usually focused on narrow, high riffle crests and pools fill in, yielding long glides with poor habitat and inadequate habitat heterogeneity. In a broader context, it is usually assumed for gravel-cobble rivers that lateral processes (e.g. avulsion and migration) are a greater mechanism for change than vertical processes (e.g. aggradation and incision); however, this assumption is rarely quantified. For this study, we can quantify that lateral processes are net scour, whereas vertical processes are net fill. However, the scour and fill volumes are both dominated by vertical processes (58% and 82%, respectively).

  16. Simulation of ground-water flow in an unconfined sand and gravel aquifer at Marathon, Cortland County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2000-01-01

    The Village of Marathon, in Cortland County, N.Y., has three municipal wells that tap a relatively thin (25 to 40 feet thick) and narrow (less than 0.25 mile wide) unconfined sand and gravel aquifer in the Tioughnioga River valley. Only one of the wells is in use because water from one well has been contaminated by petroleum chemicals from a leaking storage tank, and water from the other well contains high concentrations of manganese. The operating well pumps about 0.1 million gallons per day and supplies about 1,000 people. A three-dimensional, finite-difference ground-water-flow model was used to (1) compute hydraulic heads in the aquifer under steady-state conditions, (2) develop a water budget, and (3) delineate the areas contributing recharge to two simulated wells that represent two of the municipal wells: one 57 feet east of the Tioughnioga River, the other 4,000 feet to the south and 75 feet from a man-made pond. The water budget for simulated long-term average, steady-state conditions with two simulated pumping wells indicates that the principal sources of recharge to the unconfined aquifer are unchanneled runoff and ground-water inflow from the uplands (41 percent of total recharge), precipitation that falls directly on the aquifer (34 percent), and stream leakage (23 percent). Only 2 percent of the recharge to the aquifer is from ground-water underflow into the northern end of the modeled area. Most of the simulated groundwater discharge from the modeled area (78 percent of total discharge) is to the Tioughnioga River; the rest discharges to the two simulated wells (19 percent) and as underflow at the southern end of the modeled area (3 percent). Results of a particle-tracking analysis indicate that the aquifer contributing area of the northern (simulated) well is 0.10 mile wide and 0.15 mile long and encompasses 0.015 square miles; the contributing area of the southern (simulated) well is 0.20 mile wide and 0.11 mile long and encompasses 0.022 square

  17. A 1-D Size Specific Numerical Model for Gravel Transport That Includes Sediment Exchange with a Floodplain

    NASA Astrophysics Data System (ADS)

    Lauer, Wesley; Viparelli, Enrica; Piegay, Herve

    2014-05-01

    bed armor near the upstream end of the study reach, where sediment load has been disrupted. The inclusion of active exchange with the floodplain allows the floodplain evolve into a net source of bed material sediment as the channel incises. This effect prevents the sediment deficit from reaching the confluence with the Rhone for several simulated decades. When spatially variable migration rates similar to those measured from aerial photography are used to drive sediment exchange, the model shows complex interaction between bed and bank sediment, with the relatively fine-grained bank sediment supply mobilizing the coarser fraction of the active layer within rapidly shifting portions of the channel. This increases overall transport rates and leads to additional channel incision relative to what is simulated without bank sediment supply in these rapidly shifting reaches. The model is also helpful for evaluating the potential reach-scale effects of gravel augmentation downstream of the dams.

  18. The influence of groundwater chemistry on arsenic concentrations and speciation in a quartz sand and gravel aquifer

    USGS Publications Warehouse

    Kent, D.B.; Fox, P.M.

    2004-01-01

    We examined the chemical reactions influencing dissolved concentrations, speciation, and transport of naturally occurring arsenic (As) in a shallow, sand and gravel aquifer with distinct geochemical zones resulting from land disposal of dilute sewage effluent. The principal geochemical zones were: (1) the uncontaminated zone above the sewage plume [350 ??M dissolved oxygen (DO), pH 5.9]; (2) the suboxic zone (5 ??M DO, pH 6.2, elevated concentrations of sewage-derived phosphate and nitrate); and (3) the anoxic zone [dissolved iron(II) 100-300 ??M, pH 6.5-6.9, elevated concentrations of sewage-derived phosphate]. Sediments are comprised of greater than 90% quartz but the surfaces of quartz and other mineral grains are coated with nanometer-size iron (Fe) and aluminum (Al) oxides and/or silicates, which control the adsorption properties of the sediments. Uncontaminated groundwater with added phosphate (620 ??M) was pumped into the uncontaminated zone while samples were collected 0.3 m above the injection point. Concentrations of As(V) increased from below detection (0.005 ??M) to a maximum of 0.07 ??M during breakthrough of phosphate at the sampling port; As(III) concentrations remained below detection. These results are consistent with the hypothesis that naturally occurring As(V) adsorbed to constituents of the coatings on grain surfaces was desorbed by phosphate in the injected groundwater. Also consistent with this hypothesis, vertical profiles of groundwater chemistry measured prior to the tracer test showed that dissolved As(V) concentrations increased along with dissolved phosphate from below detection in the uncontaminated zone to approximately 0.07 and 70 ??M, respectively, in the suboxic zone. Concentrations of As(III) were below detection in both zones. The anoxic zone had approximately 0.07 ??M As(V) but also had As(III) concentrations of 0.07-0.14 ??M, suggesting that release of As bound to sediment grains occurred by desorption by phosphate, reductive

  19. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent

  20. A pilot scale trickling filter with pebble gravel as media and its performance to remove chemical oxygen demand from synthetic brewery wastewater*

    PubMed Central

    Habte Lemji, Haimanot; Eckstädt, Hartmut

    2013-01-01

    Evaluating the performance of a biotrickling filter for the treatment of wastewaters produced by a company manufacturing beer was the aim of this study. A pilot scale trickling filter filled with gravel was used as the experimental biofilter. Pilot scale plant experiments were made to evaluate the performance of the trickling filter aerobic and anaerobic biofilm systems for removal of chemical oxygen demand (COD) and nutrients from synthetic brewery wastewater. Performance evaluation data of the trickling filter were generated under different experimental conditions. The trickling filter had an average efficiency of (86.81±6.95)% as the hydraulic loading rate increased from 4.0 to 6.4 m3/(m2∙d). Various COD concentrations were used to adjust organic loading rates from 1.5 to 4.5 kg COD/(m3∙d). An average COD removal efficiency of (85.10±6.40)% was achieved in all wastewater concentrations at a hydraulic loading of 6.4 m3/(m2∙d). The results lead to a design organic load of 1.5 kg COD/(m3∙d) to reach an effluent COD in the range of 50–120 mg/L. As can be concluded from the results of this study, organic substances in brewery wastewater can be handled in a cost-effective and environmentally friendly manner using the gravel-filled trickling filter. PMID:24101209

  1. Geophysical and GIS study of gravel layer on Gyöngyös plain and Kőszeghegyalja, W-Hungary

    NASA Astrophysics Data System (ADS)

    Szabó, Vera; Kovács, Gabor

    2014-05-01

    The Western-Hungarian Gravel Cover (WHCG) is located between the Eastern Alps and the Danube Basin, surrounded by the Rába, Ikva, Pinka rivers, Kőszeg-Rechnitz and Sopron Mountains. The extension of the gravelly sediment coverage is approximately 3000 km2, the volume is ~30 million cubicmeter. The layers thickness changes between 5-35 m. My research area is limited to the Gyöngyös Plain which northern side belongs to the Kőszeghegyalja is also the part of the WHGC. The western boundary of this region is the wide, flat valley of the Gyöngyös stream, the northern is the Répce's asimmetric, steep valley. The plain itself has a very low angle, even slope to southeastern direction. The elevation of the plain is 190-260 meter above sea level. The northern side is more fragmented, incised by asimmetric valleys. The hight of this area could form a contiguous flat tilted surface with a consistent slope. The slope conditions of the plain are changing nearby Acsád village, becoming slightly steeper and tilted to east immediately next to a narrow ridge extending northward. This ridge is the eastern boundary of a 2 km wide depression with a steeper northern side flattened to southward. The purpose of my study is to explore the geometry of gravel layer and to infer the processes that could create it. Firstly I made a database from borehole descriptions collected from the research area. This database as basis for interpolated GIS models, show the gravels material properties, extension, distribution of thickness in a large scale depend on a borehole density. I compared these surfaces with Digital Terrain Models with SRTM- and a more detailed model, created from Hungarian National Grid map sheets (1:10 000). Golden Software Surfer and Global Mapper were used to interpolate, represent and interpret these surfaces. The models with the detailed borehole data show a 1-3 meter thick unsorted, unstratified gravel layer with reddish brown coloured clay or brown loam matrix. The

  2. Areal distribution of /sup 60/Co, /sup 137/Cs, and /sup 90/Sr in streambed gravels of White Oak Creek Watershed, Oak Ridge, Tennessee

    SciTech Connect

    Cerling, T.E.; Spalding, B.P.

    1981-01-01

    The concentrations of /sup 90/Sr, /sup 60/Co, and /sup 137/Cs in streambed gravels from contaminated drainages in White Oak Creek Watershed were determined. Methods to determine the relative contributions of various sources to the total discharge from the watershed were developed. Principal sources of /sup 90/Sr were: ORNL plant effluents (50%), leaching from solid waste disposal area (SWDA) 4 (30%), and leaching from SWDA 5 (10%). Minor sources included SWDA 3, the Molten Salt Reactor Facility, and intermediate-level liquid waste pit 1 with each representing 4% or less of the total basin discharge. The cooling water effluent from the High-Flux Isotope Reactor was the dominant source of /sup 60/Co contamination in the watershed. ORNL plant effluents accounted for almost all the /sup 137/Cs discharge from White Oak Creek basin. Downstream radionuclide concentrations were constant until significant dilution by other tributaries occurred. Any future activities giving rise to additional contamination can now be identified. Distribution coefficients between streambed gravels and streamwater for /sup 85/Sr, /sup 60/Co, and /sup 137/Cs were 50, 560, and 8460 ml/g, respectively. An abridged radiochemical fractionation developed for /sup 90/Sr was found to be as accurate and precise for these samples as the standard /sup 90/Sr method above levels of 2 dpm/g. (ERB)

  3. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  4. Analytical and numerical simulation of the steady-state hydrologic effects of mining aggregate in hypothetical sand-and-gravel and fractured crystalline-rock aquifers

    USGS Publications Warehouse

    Arnold, L.R.; Langer, William H.; Paschke, Suzanne Smith

    2003-01-01

    Analytical solutions and numerical models were used to predict the extent of steady-state drawdown caused by mining of aggregate below the water table in hypothetical sand-and-gravel and fractured crystalline-rock aquifers representative of hydrogeologic settings in the Front Range area of Colorado. Analytical solutions were used to predict the extent of drawdown under a wide range of hydrologic and mining conditions that assume aquifer homogeneity, isotropy, and infinite extent. Numerical ground-water flow models were used to estimate the extent of drawdown under conditions that consider heterogeneity, anisotropy, and hydrologic boundaries and to simulate complex or unusual conditions not readily simulated using analytical solutions. Analytical simulations indicated that the drawdown radius (or distance) of influence increased as horizontal hydraulic conductivity of the aquifer, mine penetration of the water table, and mine radius increased; radius of influence decreased as aquifer recharge increased. Sensitivity analysis of analytical simulations under intermediate conditions in sand-and-gravel and fractured crystalline-rock aquifers indicated that the drawdown radius of influence was most sensitive to mine penetration of the water table and least sensitive to mine radius. Radius of influence was equally sensitive to changes in horizontal hydraulic conductivity and recharge. Numerical simulations of pits in sand-and- gravel aquifers indicated that the area of influence in a vertically anisotropic sand-and-gravel aquifer of medium size was nearly identical to that in an isotropic aquifer of the same size. Simulated area of influence increased as aquifer size increased and aquifer boundaries were farther away from the pit, and simulated drawdown was greater near the pit when aquifer boundaries were close to the pit. Pits simulated as lined with slurry walls caused mounding to occur upgradient from the pits and drawdown to occur downgradient from the pits. Pits

  5. Sediment tracing from small torrential channels to gravel-bed rivers using pit tags method. A case study from the upper Guil catchment.

    NASA Astrophysics Data System (ADS)

    Graff, Kévin; Viel, Vincent; Carlier, Benoit; Lissak, Candide; Arnaud-Fassetta, Gilles; Fort, Monique; Madelin, Malika

    2016-04-01

    In mountainous areas, especially in large catchments with torrential tributaries, the production and sediment transport significantly increase flood impacts in the valley bottoms. The quantification and characterisation of sedimentary transfers are therefore major challenges to provide better flood risk management. As a part of SAMCO (ANR 12 SENV-0004 SAMCO) project, for mountain hazard assessment in a context of global changes, we tried to improve the knowledge of these hydromorphological systems at both spatial and temporal scales, by identifying sediment supply and sediment dynamics from torrential tributaries to the main channel. A sediment budget was used as a tool for quantifying erosion, transport and deposition processes. This research is focused on the upper Guil catchment (Queyras, Southern French Alps - 317 km2) entrenched in "schistes lustrés" and ophiolitic bedrock. This catchment is prone to catastrophic summer floods [June 1957 (>R.I. 100 yr), June 2000 (R.I. 30 yr)] characterised by huge sediment transport from tributaries to downvalley, very much facilitated by strong hillslope-channel connectivity (about 12,000 m3 volume of sediment aggraded in the Peyronnelle fan during the June 2000 RI-30 year flood event). We intend to highlight sediment dynamics on small torrential channels and its connection with gravel-bed streams. Four study sites characterised by avalanche and debris flow-dominated channels located in the upper Guil catchment were investigated. In order to better assess sediment movement, we used the pit-tags technique. In total, 560 pit-tags (pt) have been implemented in four catchments: Peyronnelle (320pt), Combe Morel (40pt), Bouchouse (120pt), and Maloqueste (80pt). Distances and trajectories of gravels sediments have been monitored since two years during summer periods. We specifically describe results obtained along the Peyronnelle channel affected by a large debris-flow during august 2015. Data are used to discuss lag time

  6. Thermal variability within the hyporheic zone of an Alpine stream gravel bar is influenced by solar radiation and other climatic factors

    NASA Astrophysics Data System (ADS)

    Boodoo, Kyle; Schelker, Jakob; Battin, Tom

    2016-04-01

    Gravel bars with largely unsubmerged surface areas exposed to the atmosphere are recipient to high levels of incoming radiation during the day, particularly during summer months. Transfer of heat from the atmosphere downward into the hyporheic zone (HZ) below a gravel bar (GB) can thus possibly lead to the alteration of the vertical temperature profile within its HZ, with implications for physical and biogeochemical processes therein. Here we present results from the analysis of seasonal, high frequency spatio-temporal data including, vertical hyporheic temperature, physical parameters and climatic data for a GB located within an Alpine cold water stream (Oberer Seebach, Austria). Vertical temperature profiles throughout the GB were analyzed together with corresponding climatic data for different seasons to elucidate the spatio-temporal variability of HZ temperature gradients in relation to air temperature, incoming global radiation and stream discharge.Initial analyses indicate a clear seasonal difference between Summer and Autumn temperature profiles throughout the GB, with a strongly developed, exponentially decreasing temperature-depth gradient throughout the GB during summer months. In contrast, this observed gradient substantially weakened or collapsed during autumn months. Furthermore, the highest absolute temperatures and steepest depth gradients within the HZ occurred during summer days, coinciding with the falling hydrograph,where hyporheic temperatures exceeded that of both surface water and groundwater. These findings point to the effect of solar radiation and/or air temperature as a contributor to GB temperatures, possibly influencing diurnal and seasonal GB temperature profiles.Overall, our results suggest that not only the mixing of groundwater and streamwater, but also heat transfer associated with solar radiation and/or air temperature may act as an important driver of HZ temperature, particularly during summer months. This may have implications

  7. Pesticides and nitrate in surficial sand and gravel aquifers as related to modeled contamination susceptibility in part of the Upper Mississippi River Basin

    USGS Publications Warehouse

    Hanson, Paul E.

    1998-01-01

    The occurrence of pesticides and nitrate (nitrite plus nitrate as nitrogen) in surficial sand and gravel aquifers in parts of Minnesota and Wisconsin was summarized as part of an analysis of historical water-quality data for the Upper Mississippi River Basin study unit of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. Water samples were collected by State and Federal agencies for pesticides (366) and nitrate (410) between 1971 and 1994 from wells completed in surficial sand and gravel aquifers. State agencies in Minnesota and Wisconsin have developed models to determine areas where ground water is susceptible to contamination based on geologic and hydrologic conditions (Schmidt, 1987, and Porcher, 1989). Water-quality data is evaluated with respect to the ground-water susceptibility models. The results also are evaluated with respect to overlying land use and land cover. Samples from wells with detectable levels of one or more pesticides or nitrate concentrations exceeding the U.S. Environmental Protection Agency's (USEPA) Maximum Contaminant Level (MCL) of 10 milligrams per liter (mg/L) generally coincided with areas of high contamination susceptibility. Furthermore, samples from wells located in areas of high contamination susceptibility had pesticide detection frequencies and nitrate concentrations that correlated to overlying land use and land cover. Samples from wells located in high susceptibility areas that were surrounded by cropland had greater pesticide detection frequencies and greater nitrate concentrations than wells located in similar susceptibility areas but surrounded by different land use and land cover types such as forest, urban, and wetlands.

  8. Storm recovery on two Italian coarse-grained beaches: a comparison between a mixed sand and gravel and a pebble beach

    NASA Astrophysics Data System (ADS)

    Bertoni, Duccio; Grottoli, Edoardo; Ciavola, Paolo; Sarti, Giovanni; Pozzebon, Alessandro

    2014-05-01

    High energy events emphasize beach erosion processes, sometimes leading to huge volume deficits not balanced by recovery under fair-weather conditions. In this scenario, artificial replenishments are frequently used as a form of coastal protection with large volumes of sediments re-injected in the system without strongly altering the environment as it happens with hard structures. Since climate change is expected to accentuate in the near future erosion effects, the need to artificially feed beaches is likely to increase. Gravel and pebbles are more and more often used as beach fill, on some occasions replacing sandy sediments. That was the case for two beaches located at either sides of the Italian Peninsula (Portonovo, Adriatic Sea; Marina di Pisa, Ligurian Sea), which constitute the study area of the present research. Portonovo is a 500 m-long mixed sand and gravel beach with a significant pebble-sized content (about 40%), unloaded on the beach during multiple replenishments. Marina di Pisa is an artificial, 180 m-long beach, mainly composed of 40-to-90 mm pebbles; it was built in 2008 as a part of a larger protection scheme. Groins or headlands that prevent any sediment exchange with adjacent areas bound both beaches. Periodic topographic surveys were carried out to evaluate the response of these human-altered beaches to high-energy events. The topographic surveys, undertaken with a DGPS-RTK instrument along cross-shore transects (from the landward end of the backshore to about 1.5 m depth seaward), were done following intense storm events occurred during the time period of the research. Transects were done out every 10 m along the entire length of the beaches. Prior to the first topographic survey, a sediment tracing experiment was set up as a form of control of the results provided by the geomorphologic analysis. Pebbles directly sampled from the beaches were marked by means of the RFID technology and injected back all along the beachface. As expected

  9. Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, J. L.; Tu, Y. T.; Chiang, P. C.; Chen, S. H.; Kao, C. M.

    2015-06-01

    The Ju-Liao Stream is one of the most contaminated streams in Kaohsiung City, Taiwan. A constructed wetland (CW) system was built in 2010 for polluted stream water purification and ecosystem improvement. An aerated gravel-packed contact bed (CB) system was built in 2011 and part of the stream water was treated by the CB before discharging to the CW. The influent rates of the CW and CB were approximately 5570 and 900 m3/d, respectively. The CW contained one free-water surface basin planted with emergent wetland plants, followed by the plug-flow channel-shaped free-water surface basin planted with emergent and floating wetland plants. The mean measured hydraulic loading rate (HLR), hydraulic retention time (HRT), water depth, and total volume of wetland system were 1.7 m/d, 0.68 d, 0.7 m, and 4400 m3, respectively. The aeration zone of the CB system had a dimension of 24 m (L) × 8 m (W) × 3 m (H), which was filled with gravels (average diameter = 5 cm) with a porosity of 0.4, and the aeration rate was 7.8 m3/min. Results show that the CB system was able to remove 69% of suspended solid (SS), 86% of biochemical oxygen demand (BOD), and 58% of total nitrogen (TN). Up to 82% of BOD and 27% of TN could be removed in the CW system. Removal efficiency of SS was affected by the growth of chlorophyll a in the CW system due to the growth of algae. The observed first-order decay rates (k) for BOD and TN in CB were 9.3 and 4.2 1/d, and the k values for BOD and TN removal in CW were 2.5 and 0.45 1/d. The high pollutant removal efficiencies in the CB system indicate that the system could enhance the organic and nutrient removal through the biological processes effectively. Sediments contained high total organic matter (1.9-4.5%), sediment total nitrogen (6.4-10.1 g/kg), sediment total phosphorus (0.59-0.94 g/kg), and sediment oxygen demand (0.9-4.1 g O2/m2 d). The organic and nutrient-abundant sediments resulted in reduced conditions (oxidation-reduction potential measurements

  10. Redox transformations and transport of cesium and iodine (-1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer

    USGS Publications Warehouse

    Fox, P.M.; Kent, D.B.; Davis, J.A.

    2010-01-01

    Tracer tests were performed in distinct biogeochemical zones of a sand and gravel aquifer in Cape Cod, MA, to study the redox chemistry (I) and transport (Cs, I) of cesium and iodine in a field setting. Injection of iodide (I -) into an oxic zone of the aquifer resulted in oxidation of I - to molecular iodine (I2) and iodate (IO3-) over transport distances of several meters. Oxidation is attributed to Mn-oxides present in the sediment. Transport of injected IO 3- and Cs+ was retarded in the mildly acidic oxic zone, with retardation factors of 1.6-1.8 for IO3- and 2.3-4.4for Cs. Cs retardation was likely due to cation exchange reactions. Injection of IO3- into a Fe-reducing zone of the aquifer resulted in rapid and complete reduction to I- within 3 m of transport. The nonconservative behavior of Cs and I observed during the tracer tests underscores the necessity of taking the redox chemistry of I as well as sorption properties of I species and Cs into account when predicting transport of radionuclides (e.g., 129I and 137Cs) in the environment.

  11. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    SciTech Connect

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  12. Analysis of conservative tracer measurement results using the Frechet distribution at planted horizontal subsurface flow constructed wetlands filled with coarse gravel and showing the effect of clogging processes.

    PubMed

    Dittrich, Ernő; Klincsik, Mihály

    2015-11-01

    A mathematical process, developed in Maple environment, has been successful in decreasing the error of measurement results and in the precise calculation of the moments of corrected tracer functions. It was proved that with this process, the measured tracer results of horizontal subsurface flow constructed wetlands filled with coarse gravel (HSFCW-C) can be fitted more accurately than with the conventionally used distribution functions (Gaussian, Lognormal, Fick (Inverse Gaussian) and Gamma). This statement is true only for the planted HSFCW-Cs. The analysis of unplanted HSFCW-Cs needs more research. The result of the analysis shows that the conventional solutions (completely stirred series tank reactor (CSTR) model and convection-dispersion transport (CDT) model) cannot describe these types of transport processes with sufficient accuracy. These outcomes can help in developing better process descriptions of very difficult transport processes in HSFCW-Cs. Furthermore, a new mathematical process can be developed for the calculation of real hydraulic residence time (HRT) and dispersion coefficient values. The presented method can be generalized to other kinds of hydraulic environments.

  13. Beachrock formation in temperate coastlines: examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain).

    PubMed

    Arrieta, N; Goienaga, N; Martínez-Arkarazo, I; Murelaga, X; Baceta, J I; Sarmiento, A; Madariaga, J M

    2011-10-01

    Beachrocks are coastal sedimentary formations resulting from a relative rapid cementation of beach sediments by the precipitation of carbonate cements. These lithified structures are not usually observed at temperate settings. The present work is focused on the occurrence of a significant intertidal cementation in sand-gravel beaches formed among 43°N latitude coastline, close to the Nerbioi-Ibaizabal estuary (Bilbao, Bay of Biscay, North of Spain). Raman micro-spectroscopy combined with SEM-EDX analyses and petrographic descriptions have been applied for the determination of the cement generations and the cemented materials compositions of the beachrock outcrops. In general terms, the cements described were: Cement Generation 1 (CG 1, aragonite, high-magnesium calcite and silicate mixtures), Cement Generation 2 (CG 2, aragonite) and Cement Generation 3 (CG 3, mixtures of CaCO(3) polymorphs and iron oxides). The rest of the interstitial porosity of the rocks appeared either empty or filled with heterogeneous cemented mixtures of previously reworked compounds. The mineralogy, the regular distribution and the isopachous character of the carbonate cements together with the accurate cementation at advanced seaward bands propose a possible marine-phreatic context for the beachrock formation. However, the impure cements and the materials covering the interstitial porosity seem to be the result of both, the weathering actions consequences and the surface alterations of specific grains. Moreover, the presence of modern cemented materials (e.g. slag, bricks and pebbles) suggest a recent formation of the phenomenon. PMID:21420895

  14. Appearance of Planktothrix rubescens Bloom with [D-Asp3, Mdha7]MC–RR in Gravel Pit Pond of a Shallow Lake-Dominated Area

    PubMed Central

    Vasas, Gábor; Farkas, Oszkár; Borics, Gábor; Felföldi, Tamás; Sramkó, Gábor; Batta, Gyula; Bácsi, István; Gonda, Sándor

    2013-01-01

    Blooms of toxic cyanobacteria are well-known phenomena in many regions of the world. Microcystin (MC), the most frequent cyanobacterial toxin, is produced by entirely different cyanobacteria, including unicellular, multicellular filamentous, heterocytic, and non-heterocytic bloom-forming species. Planktothrix is one of the most important MC-producing genera in temperate lakes. The reddish color of cyanobacterial blooms viewed in a gravel pit pond with the appearance of a dense 3 cm thick layer (biovolume: 28.4 mm3 L−1) was an unexpected observation in the shallow lake-dominated alluvial region of the Carpathian Basin. [d-Asp3, Mdha7]MC–RR was identified from the blooms sample by MALDI-TOF and NMR. Concentrations of [d-Asp3, Mdha7]MC–RR were measured by capillary electrophoresis to compare the microcystin content of the field samples and the isolated, laboratory-maintained P. rubescens strain. In analyzing the MC gene cluster of the isolated P. rubescens strain, a deletion in the spacer region between mcyE and mcyG and an insertion were located in the spacer region between mcyT and mcyD. The insertion elements were sequenced and partly identified. Although some invasive tropical cyanobacterial species have been given a great deal of attention in many recent studies, our results draw attention to the spread of the alpine organism P. rubescens as a MC-producing, bloom-forming species. PMID:24351711

  15. Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud.

    PubMed

    Iqbal, Muhammad; Puschenreiter, Markus; Oburger, Eva; Santner, Jakob; Wenzel, Walter W

    2012-11-01

    As phytoextraction implementation may be limited by metal toxicity and leaching, we investigated the idea of in situ metal immobilization in bulk soil, while increasing metal bioavailability in the rhizosphere. Salix smithiana was grown in a pot experiment on two Cd/Zn polluted soils. Treatments with or without willows included: no additives; gravel sludge + red mud kg(-1); acidification with S to pH 3.5; and metal immobilization combined with soil acidification. Salix smithiana removed up to 0.78 ± 0.06% total Cd and 0.34% (±0.02) total Zn from the non-treated soils. The phytoextraction efficiency in the S treatments was enhanced by up to ~50% in response to metal solubility that was magnified by reductive co-dissolution from Mn (IV) and Fe(III) (oxy)hydroxides during microbial S oxidation in the willow rhizosphere. The proposed technique proved to enhance phytoextraction efficiency while controlling the risk of metal leaching from the root zone and phytotoxicity.

  16. Improving classification of hydrogeomorphic features in a gravel-bed river using an object-oriented fuzzy classification of multispectral satellite and LiDAR terrain data

    NASA Astrophysics Data System (ADS)

    Aggett, G. R.

    2012-12-01

    Recent attempts to map hydrogeomorphic objects by automatically classifying high spatial and spectral resolution data have tended to yield somewhat unsatisfactory results. This paper suggests that the main reason for this is the inherent limitations of image processing techniques that use a per-pixel approach to spectral classification, and their tendency to ignore spatial characteristics and relationships of hydrogeomorphic objects in the classification process. Pixel-based classifications have problems adequately or conveniently exploiting contextual information or expert knowledge. Object-based image-processing techniques may overcome these difficulties by first segmenting the image into meaningful multi-pixel objects of various sizes, based on both spectral and spatial characteristics of groups of pixels. Objects are assigned classes using fuzzy logic and a hierarchical decision key. This is tested here in the fluvial domain by comparing a per-pixel classification of a gravel-bed river to an object-oriented fuzzy classifier, using a readily available and relatively inexpensive high resolution satellite dataset that can be ordered for a specific date either in the future, or from an image library. Despite improved results using the object-oriented method, we also assert and demonstrate that the fusion of image data with detailed terrain modeled information is required if we are to make strides in reducing classification ambiguities in complex river systems. Thus a second experiment investigates the utility of fusing a LiDAR dataset with multispectral imagery to enhance the object-oriented image classification.

  17. 10Be in Quartz Gravel from the Gobi Desert and Evolutionary History of Alluvial Sedimentation in the Ejina Basin, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Lyu, Y.

    2014-12-01

    Reconstructing the evolutionary history of the Gobi deserts developed from alluvial sediments in arid regions has great significance in unraveling changes in both tectonic activity and climate. However, such work is limited by a lack of suitable dating material preserved in the Gobi Desert, but cosmogenic 10Be has great potential to date the Gobi deserts. In the present study, 10Be in quartz gravel from the Gobi deserts of the Ejina Basin in Inner Mongolia of China has been measured to assess exposure ages. Results show that the Gobi Desert in the northern margin of the basin developed 420 ka ago, whereas the Gobi Desert that developed from alluvial plains in the Heihe River drainage basin came about during the last 190 ka. The latter developed gradually northward and eastward to modern terminal lakes of the river. These temporal and spatial variations in the Gobi deserts are a consequence of alluvial processes influenced by Tibetan Plateau uplift and tectonic activities within the Ejina Basin. Possible episodes of Gobi Desert development within the last 420 ka indicate that the advance/retreat of alpine glaciers during glacial/interglacial cycles might have been the dominant factor to influencing the alluvial intensity and water volume in the basin. Intense floods and large water volumes would mainly occur during the short deglacial periods.

  18. Beachrock formation in temperate coastlines: examples in sand-gravel beaches adjacent to the Nerbioi-Ibaizabal Estuary (Bilbao, Bay of Biscay, North of Spain).

    PubMed

    Arrieta, N; Goienaga, N; Martínez-Arkarazo, I; Murelaga, X; Baceta, J I; Sarmiento, A; Madariaga, J M

    2011-10-01

    Beachrocks are coastal sedimentary formations resulting from a relative rapid cementation of beach sediments by the precipitation of carbonate cements. These lithified structures are not usually observed at temperate settings. The present work is focused on the occurrence of a significant intertidal cementation in sand-gravel beaches formed among 43°N latitude coastline, close to the Nerbioi-Ibaizabal estuary (Bilbao, Bay of Biscay, North of Spain). Raman micro-spectroscopy combined with SEM-EDX analyses and petrographic descriptions have been applied for the determination of the cement generations and the cemented materials compositions of the beachrock outcrops. In general terms, the cements described were: Cement Generation 1 (CG 1, aragonite, high-magnesium calcite and silicate mixtures), Cement Generation 2 (CG 2, aragonite) and Cement Generation 3 (CG 3, mixtures of CaCO(3) polymorphs and iron oxides). The rest of the interstitial porosity of the rocks appeared either empty or filled with heterogeneous cemented mixtures of previously reworked compounds. The mineralogy, the regular distribution and the isopachous character of the carbonate cements together with the accurate cementation at advanced seaward bands propose a possible marine-phreatic context for the beachrock formation. However, the impure cements and the materials covering the interstitial porosity seem to be the result of both, the weathering actions consequences and the surface alterations of specific grains. Moreover, the presence of modern cemented materials (e.g. slag, bricks and pebbles) suggest a recent formation of the phenomenon.

  19. Redox transformations and transport of cesium and iodine (-1, 0, +5) in oxidizing and reducing zones of a sand and gravel aquifer.

    PubMed

    Fox, Patricia M; Kent, Douglas B; Davis, James A

    2010-03-15

    Tracer tests were performed in distinct biogeochemical zones of a sand and gravel aquifer in Cape Cod, MA, to study the redox chemistry (I) and transport (Cs, I) of cesium and iodine in a field setting. Injection of iodide (I(-)) into an oxic zone of the aquifer resulted in oxidation of I(-) to molecular iodine (I(2)) and iodate (10(3)(-)) over transport distances of several meters. Oxidation is attributed to Mn-oxides present in the sediment Transport of injected 10(3)(-) and Cs(+) was retarded in the mildly acidic oxic zone, with retardation factors of 1.6-1.8 for 10(3)(-) and 2.3-4.4 for Cs. Cs retardation was likely due to cation exchange reactions. Injection of 10(3)(-) into a Fe-reducing zone of the aquifer resulted in rapid and complete reduction to I(-) within 3 m of transport. Then on conservative behavior of Cs and I observed during the tracer tests underscores the necessity of taking the redox chemistry of I as well as sorption properties of I species and Cs into account when predicting transport of radionuclides (e.g., (129)I and (137)Cs) in the environment.

  20. Numerical Model for Channel/Floodplain Exchange on a Gravel Bed River: Relative Importance of Upstream and Downstream Boundaries and of Lateral Exchange (Invited)

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.

    2013-12-01

    The centennial-scale evolution of a meandering gravel-bed river has been represented using a size-specific 1-D sediment transport model. The model differs from other 1-D morphodynamic models for gravel-bed rivers in that it allows for sediment storage in and remobilization from an off-channel sediment storage reservoir representing the floodplain. Hydraulics is represented using a 1-D gradually varied flow model that assumes a rectangular cross-section for the channel zone and a constant elevation for the floodplain. Because the solution for steady uniform flow is necessarily iterative in this framework, the gradually varied hydraulic model is not significantly more computationally intensive than is a normal flow solution. The model is parameterized primarily based on the assumption that the channel creates point bars at a constant elevation above the bed. Bar progradation rate is assumed equal to a specified lateral migration rate (which can vary as a function of sediment load). The return of sediment from floodplain to channel is assumed equal to the lateral migration rate times the average bank elevation. Any net imbalance in sediment storage within the floodplain zone results in a change in average elevation and size distribution for the floodplain. This in turn affects the partition of flow between channel and floodplain and the net flux of sediment from the floodplain to channel, eventually causing the model to evolve toward a steady state bankfull capacity. The model is applied to the Ain River, France, a tributary of the Rhône River. The Ain River underwent significant geomorphic transformations over the course of the 20th century in response to changes in climate, vegetation, floodplain management, and, especially, because of the installation of a series of hydroelectric dams. In general, the channel became more incised and less laterally active during this period. However, bank erosion and sediment deposition in bars and floodplain channels continues to

  1. Aggradation of gravels in tidally influenced fluvial systems: Upper Albian (Lower Cretaceous) on the cratonic margin of the North American Western Interior foreland basin

    USGS Publications Warehouse

    Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.L.; Phillips, P.L.; White, T.S.; Ufnar, David F.; Gonzalez, Luis A.; Joeckel, R.M.; Goettemoeller, A.; Shirk, B.R.

    2003-01-01

    Alluvial conglomerates were widely distributed around the margin of the Early Cretaceous North American Cretaceous Western Interior Seaway (KWIS). Conglomerates, sandstones, and lesser amounts of mudstones of the upper Albian Nishnabotna Member of the Dakota Formation were deposited as fill-in valleys that were incised up to 80 m into upper Paleozoic strata. These paleovalleys extended southwestward across present-day northwestern Iowa into eastern Nebraska. Conglomerate samples from four localities in western Iowa and eastern Nebraska consist mostly of polycrystalline quartz with lesser amounts of microcrystalline (mostly chert), and monocrystalline quartz. Previous studies discovered that some chert pebbles contain Ordovician-Pennsylvanian invertebrate fossils. The chert clasts analyzed in this study were consistent with these findings. In addition, we found that non-chert clasts consist of metaquartzite, strained monocrystalline quartz and 'vein' quartz from probable Proterozic sources, indicating that parts of the fluvial system's sediment load must have travelled distances of 400-1200 km. The relative tectonic stability of this subcontinent dictated that stream gradients were relatively low with estimates ranging from 0.3 to 0.6 m/km. Considering the complex sedimentologic relationships that must have been involved, the ability of low-gradient easterly-sourced rivers to entrain gravel clasts was primarily a function of paleodischarge rather than a function of steep gradients. Oxygen isotopic evidence from Albian sphaerosiderite-bearing paleosols in the Dakota Formation and correlative units from Kansas to Alaska suggest that mid-latitude continental rainfall in the Albian was perhaps twice that of the modern climate system. Hydrologic fluxes may have been related to wet-dry climatic cycles on decade or longer scales that could account for the required water supply flux. Regardless of temporal scale, gravels were transported during 'high-energy' pulses, under

  2. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  3. On the evolution and form of coherent flow structures over a gravel bed: Insights from whole flow field visualization and measurement

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Best, J. L.; Parsons, D. R.; Marjoribanks, T. I.

    2016-08-01

    The microtopography of a gravel bed river has been shown to generate turbulent flow structures that originate from shear flow generated in the near-bed region. Although field and laboratory measurements have shown that such flows contain a range of coherent flow structures (CFS), the origin, evolution, and characteristics of the turbulent structures are poorly understood. Here we apply a combined experimental methodology using planar laser-induced fluorescence and particle imaging velocimetry (LIF-PIV) to measure simultaneously the geometric, kinematic, and dynamic characteristics of these CFS. The flow structures were analyzed by applying standard Reynolds decomposition and Lagrangian vortex detection methods to understand their evolution, propagation, and growth in the boundary layer and characterize their internal dynamical complexity. The LIF results identify large, individual, fluid packets that are initiated at the bed through shear that generate a bursting mechanism. When these large individual fluid packets are analyzed through direct flow measurement, they are found to contain several smaller scales of fluid motion within the one larger individual fluid parcel. Flow measurements demonstrate that near-bed shear controls the initiation and evolution of these CFS through merging with vortex chains that originate at the bed. The vortex chains show both the coalescence in the formation of the larger structures and also the shedding of vortices from the edges of these packets, which may influence the life span and mixing of CFS in open channels. The life span and geometric characteristics of such CFS are critical in influencing the duration and intensity of near-bed stresses that are responsible for the entrainment of sediment.

  4. Linking River Management-Induced Perturbations of Hydrologic and Sediment Regimes to Geomorphic Processes Along a Highly-Dynamic Gravel-Bed River: Snake River, WY.

    NASA Astrophysics Data System (ADS)

    Leonard, C.; Legleiter, C. J.

    2015-12-01

    Encroachment of human development onto river floodplains creates a need to stabilize rivers and provide flood protection. Structural interventions, such as levees, often perturb hydrologic and sediment regimes and thus can initiate morphological responses. An understanding of how human activities affect river morphodynamics and trigger channel change is needed to anticipate future river responses and facilitate effective restoration. This study examines approximately 66 km of the Snake River, WY, USA, and links sediment transport processes to channel form and behavior by developing a morphological sediment budget that spans both a natural, unconfined reach and a reach confined by artificial levees. Sediment transport rates are inferred from the morphological sediment budget and a bed mobility study is used to estimate entrainment thresholds that allow us to link the hydrological regime during the sediment budget period to the observed channel changes. Results indicate that lateral constriction by levees triggers a positive feedback mechanism by incising the bed, focusing flow energy, thus increasing transport capacity, and leading to armoring of the bed. In other systems, armoring promotes widening of the channel but in this case levees prevent widening and the channel instead migrates across the braidplain rapidly, producing further erosion of bars and vegetated islands that is expressed as negative net volumetric changes and increased sediment transport rates. Furthermore, decreased slopes and reduced discharges due to dam regulation in the upstream unconfined reach cause gravel sheets to stall on bars and in other areas of storage, creating a spatial discontinuity in sediment conveyance downstream, and thus contributing to the sediment deficit within the leveed reach.

  5. New insights into the potential of seismic measurements as bedload monitoring technique for a wide range of gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Barrière, J.; Oth, A.; Hostache, R.; Krein, A.

    2015-12-01

    Bedload monitoring based on seismological observations has recently emerged as a viable non-invasive measurement technique. However, its applications have only been shown for sediment transport in steep mountain rivers. We evaluated for the first time the potential of seismology for bedload transport monitoring in a rural gravel bed stream (Koulbich river in Luxembourg), characterized by low gradient (around 0.6%), small flowrate (<2.3 m3/s) and D50 transported (around 5 mm on average). The dominant anthropogenic noise in the area of investigation greatly complexified the seismic analysis but was successfully eliminated in order to extract the river's imprint on the ambient seismic field. Additional in-situ hydroacoustic measurements of bedload motion (co-located impact-plate device) and 3D hydro-morphodynamic modeling were performed to help interpreting this river's seismic signature likely dominated by water turbulences. From previous laboratory flume experiments, a calibration model was obtained between the amplitude/spectral attributes of impact measurements and the grain size of transported material, leading to an unprecedented estimation of bedload median grain size (D50) at high temporal resolution (minutes ranges) using impact-plate system. For the studied natural flood event, both simulated and estimated D50 from impact-plate measurements exhibit near-simultaneous increases, a similar temporal evolution and the same order of magnitude. The joint analysis of seismic data with hydroacoustic records and sediment transport simulation showed that the seismic records in close proximity of the stream contain evidence of bedload transport, especially in form of hysteresis behavior. These results underline the potential of non-invasive seismic measurements to estimate the triggering of bedload transport for a broader range of river systems and grain sizes than previously investigated. This study also confirms the potential of impact-plate device as robust

  6. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media.

    PubMed

    Walshe, Gillian E; Pang, Liping; Flury, Markus; Close, Murray E; Flintoft, Mark

    2010-02-01

    Viruses are often associated with colloids in wastewater and could be transported with colloids into groundwater from land disposal of human and animal effluent and sludge, causing contamination of groundwater. To investigate the role of colloids in the transport of viruses in groundwater, experiments were conducted using a 2m long column packed with heterogeneous gravel aquifer media. Bacteriophage MS2 was used as the model virus and kaolinite as the model colloid. Experimental data were analyzed using Temporal Moment Analysis and Filtration Theory. In the absence of kaolinite colloid, MS2 phage traveled slightly faster than the conservative tracer bromide (Br), with little differences observed between unfiltered and filtered MS2 phage (0.22 microm as the operational cut-off for colloid-free virus). In the presence of kaolinite colloids, MS2 phage breakthrough occurred concurrently with that of the colloidal particles and the time taken to reach the peak virus concentration was reduced, suggesting a colloid-facilitated virus transport in terms of peak-concentration time and velocity. Meanwhile mass recovery and magnitude of concentrations of the phages were significantly reduced, indicating colloid-assisted virus attenuation in terms of concentrations and mass. Decreasing the pH or increasing the ionic strength increased the level of virus attachment to the aquifer media and colloids, and virus transport became more retarded, resulting in lower peak-concentration, lower mass recovery, longer peak-concentration time, and greater apparent collision efficiency. Increasing the concentration of dissolved organic matter (DOM) or flow rate resulted in faster virus transport velocity, higher peak-concentrations and mass recoveries, and lower apparent collision efficiencies. The dual-role of colloids in transport viruses has important implications for risk analysis and remediation of virus-contaminated sites.

  7. [Interactive impact of water and nitrogen on yield, quality of watermelon and use of water and nitrogen in gravel-mulched field].

    PubMed

    Du, Shao-ping; Ma, Zhong-ming; Xue, Liang

    2015-12-01

    In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen

  8. Effects of marine-derived organic matter on fine sediment transport: implications for sediment and nutrient storage in gravel beds. (Invited)

    NASA Astrophysics Data System (ADS)

    Petticrew, E. L.; Rex, J. F.; Albers, S. J.

    2010-12-01

    Fine sediment transport from stream headwaters to downstream estuaries is often mediated by the interaction of sediment with organic matter. Particulate organic matter can move independently downstream or alternately combine via flocculation and aggregation with inorganic sediments. The generation of flocs allows an increase in the channel-bed delivery and retention of both the inorganic and organic portions as these larger particles are more likely to settle or be intercepted by the bed along the channel. The quality of organic matter available in stream systems has been identified as an important factor in the ability of flocs to form in situ. Marine-derived nutrients (MDN) are a significant source of high quality organic matter which is delivered from oceanic environments to freshwater streams as a pulse during carcass decay which follows the in-channel die-off of spawners. A study using a 30 m re-circulating flume simulated the mixing of salmon decay products and fine sediment following the active spawning event. Results indicate that MDN is delivered and retained in gravel beds for up to seven days due to settling and capture of flocs implying that the salmon spawning cycle is an important ecological component of these inland aquatic systems. A salmon-floc feedback loop was postulated emphasizing the significance of salmon actively resuspending sediments during redd building and contributing MDN via decay,such that nutrients are retained in the channel bed for continued productivity. In 2009, a regulated sockeye salmon spawning channel in the Horsefly River (B.C, Canada) was used experimentally to quantify both marine derived nutrients (MDN) and fine sediment trapped by benthic biofilms during salmon spawning and die-off. Biofilm abundance was monitored during salmon arrival, spawning activity and die-off to determine the magnitude of MDN uptake and sediment retention by biofilm. A strong correlation between biofilm abundance and sediment retention indicates

  9. Polar gravel beach-ridge systems: Sedimentary architecture, genesis, and implications for climate reconstructions (South Shetland Islands/Western Antarctic Peninsula)

    NASA Astrophysics Data System (ADS)

    Lindhorst, Sebastian; Schutter, Ilona

    2014-09-01

    The sedimentary architecture of polar gravel-beach ridges is presented and it is shown that ridge internal geometries reflect past wave-climate conditions. Ground-penetrating radar (GPR) data obtained along the coasts of Potter Peninsula (King George Island) show that beach ridges unconformably overlie the prograding strand plain. Development of individual ridges is seen to result from multiple storms in periods of increased storm-wave impact on the coast. Strand-plain progradation, by contrast, is the result of swash sedimentation at the beach-face under persistent calm conditions. The sedimentary architecture of beach ridges in sheltered parts of the coast is characterized by seaward-dipping prograding beds, being the result of swash deposition under stormy conditions, or aggrading beds formed by wave overtopping. By contrast, ridges exposed to high-energy waves are composed of seaward- as well as landward-dipping strata, bundled by numerous erosional unconformities. These erosional unconformities are the result of sediment starvation or partial reworking of ridge material during exceptional strong storms. The number of individual ridges which are preserved from a given time interval varies along the coast depending on the morphodynamic setting: sheltered coasts are characterized by numerous small ridges, whereas fewer but larger ridges develop on exposed beaches. The frequency of ridge building ranges from decades in the low-energy settings up to 1600 years under high-energy conditions. Beach ridges in the study area cluster at 9.5, 7.5, 5.5, and below 3.5 m above the present-day storm beach. Based on radiocarbon data, this is interpreted to reflect distinct periods of increased storminess and/or shortened annual sea-ice coverage in the area of the South Shetland Islands for the times around 4.3, c. 3.1, 1.9 ka cal BP, and after 0.65 ka cal BP. Ages further indicate that even ridges at higher elevations can be subject to later reactivation and reworking. A

  10. Microbial aerobic and anaerobic degradation of acrylamide in sludge and water under environmental conditions--case study in a sand and gravel quarry.

    PubMed

    Guezennec, A G; Michel, C; Ozturk, S; Togola, A; Guzzo, J; Desroche, N

    2015-05-01

    Polyacrylamides (PAMs) are used in sand and gravel quarries as water purification flocculants for recycling process water in a recycling loop system where the flocculants remove fine particles in the form of sludge. The PAM-based flocculants, however, contain residual amounts of acrylamide (AMD) that did not react during the polymerization process. This acrylamide is released into the environment when the sludge is discharged into a settling basin. Here, we explore the microbial diversity and the potential for AMD biodegradation in water and sludge samples collected in a quarry site submitted to low AMD concentrations. The microbial diversity, analyzed by culture-dependent methods and the denaturing gradient gel electrophoresis approach, reveals the presence of Proteobacteria, Cyanobacteria, and Actinobacteria, among which some species are known to have an AMD biodegradation activity. Results also show that the two main parts of the water recycling loop-the washing process and the settling basin-display significantly different bacterial profiles. The exposure time with residual AMD could, thus, be one of the parameters that lead to a selection of specific bacterial species. AMD degradation experiments with 0.5 g L(-1) AMD showed a high potential for biodegradation in all parts of the washing process, except the make-up water. The AMD biodegradation potential in samples collected from the washing process and settling basin was also analyzed taking into account on-site conditions: low (12 °C) and high (25 °C) temperatures reflecting the winter and summer seasons, and AMD concentrations of 50 μg L(-1). Batch tests showed rapid (as little as 18 h) AMD biodegradation under aerobic and anaerobic conditions at both the winter and summer temperatures, although there was a greater lag time before activity started with the AMD biodegradation at 12 °C. This study, thus, demonstrates that bacteria present in sludge and water samples exert an in situ and rapid

  11. [Interactive impact of water and nitrogen on yield, quality of watermelon and use of water and nitrogen in gravel-mulched field].

    PubMed

    Du, Shao-ping; Ma, Zhong-ming; Xue, Liang

    2015-12-01

    In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen

  12. Using LIDAR and UAV-derived point clouds to evaluate surface roughness in a gravel-bed braided river (Vénéon river, French Alps)

    NASA Astrophysics Data System (ADS)

    Vázquez Tarrío, Daniel; Borgniet, Laurent; Recking, Alain; Liebault, Frédéric; Vivier, Marie

    2016-04-01

    The present research is focused on the Vénéon river at Plan du Lac (Massif des Ecrins, France), an alpine braided gravel bed stream with a glacio-nival hydrological regime. It drains a catchment area of 316 km2. The present research is focused in a 2.5 km braided reach placed immediately upstream of a small hydropower dam. An airbone LIDAR survey was accomplished in October, 2014 by EDF (the company managing the small hydropower dam), and data coming from this LIDAR survey were available for the present research. Point density of the LIDAR-derived 3D-point cloud was between 20-50 points/m2, with a vertical precision of 2-3 cm over flat surfaces. Moreover, between April and Juin, 2015, we carried out a photogrammetrical campaign based in aerial images taken with an UAV-drone. The UAV-derived point-cloud has a point density of 200-300 points/m2, and a vertical precision over flat control surfaces comparable to that of the LIDAR point cloud (2-3 cm). Simultaneously to the UAV campaign, we took several Wolman samples with the aim of characterizing the grain size distribution of bed sediment. Wolman samples were taken following a geomorphological criterion (unit bars, head/tail of compound bars). Furthermore, some of the Wolman samples were repeated with the aim of defining the uncertainty of our sampling protocol. LIDAR and UAV-derived point clouds were treated in order to check whether both point-clouds were correctly co-aligned. After that, we estimated bed roughness using the detrended standard deviation of heights, in a 40-cm window. For all this data treatment we used CloudCompare. Then, we measured the distribution of roughness in the same geomorphological units where we took the Wolman samples, and we compared with the grain size distributions measured in the field: differences between UAV-point cloud roughness distributions and measured-grain size distribution (~1-2 cm) are in the same order of magnitude of the differences found between the repeated Wolman

  13. Geochemical and hydrologic controls on phosphorus transport in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, D.A.; Rea, B.A.; Stollenwerk, K.G.; Savoie, Jennifer G.

    1995-01-01

    The disposal of secondarily treated sewage onto rapid infiltration sand beds at the Massachusetts Military Reservation, Cape Cod, Massachusetts, has created a sewage plume in the underlying sand and gravel aquifer; the part of the\\x11sewage plume that contains dissolved phosphorus extends about 2,500 feet downgradient of the sewage-disposal beds. A part of the plume that\\x11contains nearly 2 milligrams per liter of phosphorus currently (1993) discharges into Ashumet Pond along about 700 feet of shoreline. The sewage plume discharges from about 59 to about 76 kilograms of phosphorus per year into the pond. Hydraulic-head measurements indicate that the north end of Ashumet Pond is a ground-water sink and an increased component of ground-water discharge and phosphorus flux into\\x11the pond occurs at higher water levels. Phosphorus was mobile in ground water in two distinct geochemical environments-an anoxic zone that contains no dissolved oxygen and as much as 25\\x11milligrams per liter of dissolved iron, and a more areally extensive suboxic zone that contains little or no iron, low but detectable dissolved oxygen, and as much as 12 milligrams per liter of dissolved manganese. Dissolved phosphorus is mobile in the suboxic geochemical environment because continued phosphorus loading has filled available sorption sites in the aquifer. Continued disposal of sewage since 1936 has created a large reservoir of sorbed phosphorus that is much greater than the mass of dissolved phosphorus in the ground water; the average ratio of sorbed to dissolved phosphorus in the anoxic and suboxic parts of the sewage plume were 31:1 and 155:1, respectively. Column experiments indicate that phosphorus in the anoxic core of the plume containing dissolved iron may be immobilized within 17 years by sorption and coprecipitation with new iron oxyhydroxides following the cessation of sewage disposal and the introduction of uncontaminated oxygenated ground water into the aquifer in December

  14. Spatial patterns of groundwater-surface water interactions at the meander-bend scale in a gravel-bed lowland river during a large-scale flow experiment

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2012-12-01

    Improved characterization of 1) streambed hydraulic conductivity and 2) near-bed and subsurface water temperatures allows better understanding of the spatial patterns of groundwater-surface water exchange in rivers. We measured the effects of a large-scale flow experiment on groundwater-surface water exchange and temperature using fiber optic distributed temperature sensing (DTS), measured temperature in the shallow hyporheic zone (46 cm), and measured streambed saturated hydraulic conductivity (Ksat) over the length of three river meander bends (2 km). Measured channel bed elevation, flow depth, velocity, and bed-material grain size were used to develop a two-dimensional numerical model of the flow field as boundary conditions for a model of the hyporheic flow field. We deployed 2 km of fiber-optic cable directly on top of the riverbed over three pool-riffle sequences each with a different degree of bed mobility. DTS data were collected every 2 m for 32 days (1.5 days at 10 cms, 10 days at 20 cms, 16 days at 10 cms, and 4.5 days at 2-4 cms). Three installations of six hyporheic zone sensors, located near the upstream and downstream ends of the DTS cable, recorded interstitial pore water temperature at depths of 46 cm. During flows of 10 cms, we measured Ksat in the streambed at depths of 60 cm using a groundwater standpipe and backpack permeameter over the length of two meander bends. DTS results showed relatively uniform temperature over the 2-km reach during the initial flow of 10 cms. Near-bed temperatures averaged 15.6°C while pore water temperatures averaged 15.4°C. The 20 cms flow decreased near-bed temperatures to 14.9°C and pore water temperatures averaged 14.7°C. However, during the 20 cms flow, the bed became mobile causing local scour and deposition at three locations and buried the DTS cable with gravel/sand up to 26 cm deep. Our DTS results allowed us to record the transition from near-bed temperatures to shallow subsurface temperatures during a

  15. Tracing the contribution of debris flow-dominated channels to gravel-bed torrential river channel: implementing pit-tags in the upper Guil River (French Alps)

    NASA Astrophysics Data System (ADS)

    Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe

  16. Health assessment for FMC Pesticide Pit, Yakima, Washington, Region 10. CERCLIS No. WAD009039785. Preliminary report

    SciTech Connect

    Not Available

    1988-07-07

    The FMC Pesticide Pit (FMC) is on the National Priorities List. FMC, a former pesticide-formulation facility, disposed of wastes in an unlined pit area from 1952 to 1969. Preliminary on-site sampling results have identified pesticides and herbicides present in all soil. They include various organochlorines such as aldrin (1 to 110 ppm), benzene hydrochloride (BHC) (1 to 2,000 ppm), DDT (1 to 120,000), Ovex (1 to 19,000 ppm), and organophosphate compounds such as ethion (1 to 12,000), and ethyl parathion (1 to 16,000 ppm). In addition, carbamates were detected as carbaryl (1 to 1,800 ppm), and chromium (6 to 440 ppm) was also found. On-site ground water monitoring data demonstrated concentrations of BHC (0.04 to 0.09 ppb), DDT derivatives (0.02 to 9.9 ppb), endosulfan isomers (0.02 to 1.1 ppb), and derivatives (0.02 to 9.9 ppb), endosulfan isomers (0.02 to 1.1 ppb), and acetone (17 to 16,000 ppb). The site is considered to be of potential public health concern because of exposure to contaminated ground water. However, there are other pesticide manufacturing plants in the area that probably contribute to the off-site ground water contamination.

  17. Creating and coupling a high-resolution DTM with a 1-D hydraulic model in a GIS for scenario-based assessment of avulsion hazard in a gravel-bed river

    NASA Astrophysics Data System (ADS)

    Aggett, G. R.; Wilson, J. P.

    2009-12-01

    In this paper we explore the development and assimilation of a high resolution topographic surface with a one-dimensional hydraulic model for investigation of avulsion hazard potential on a gravel-bed river. A detailed channel and floodplain digital terrain model (DTM) is created to define the geometry parameter required by the 1D hydraulic model HEC-RAS. The ability to extract dense and optimally located cross-sections is presented as a means to optimize HEC-RAS performance. A number of flood scenarios are then run in HEC-RAS to determine the inundation potential of modeled events, the post-processed output of which facilitates calculation of spatially explicit shear stress ( τ) and level of geomorphic work (specific stream power per unit bed area, ω) for each of these. Further enhancing this scenario-based approach, the DTM is modified to simulate a large woody debris (LWD) jam and active-channel sediment aggradation to assess impact on innundation, τ, and ω, under previously modeled flow conditions. The high resolution DTM facilitates overlay and evaluation of modeled scenario results in a spatially explicit context containing considerable detail of hydrogeomorphic and other features influencing hydraulics (bars, secondary and scour channels, levees). This offers advantages for: (i) assessing the avulsion hazard potential and spatial distribution of other hydrologic and fluvial geomorphic processes; and (ii) exploration of the potential impacts of specific management strategies on the channel, including river restoration activities.

  18. Effects of LiDAR-derived, spatially distributed vegetation roughness on two-dimensional hydraulics in a gravel-cobble river at flows of 0.2 to 20 times bankfull

    NASA Astrophysics Data System (ADS)

    Abu-Aly, T. R.; Pasternack, G. B.; Wyrick, J. R.; Barker, R.; Massa, D.; Johnson, T.

    2014-02-01

    The spatially distributed effects of riparian vegetation on fluvial hydrodynamics during low flows to large floods are poorly documented. Drawing on a LiDAR-derived, meter-scale resolution raster of vegetation canopy height as well as an existing algorithm to spatially distribute stage-dependent channel roughness, t