Lincoln, Don
2016-07-12
In a long line of intellectual triumphs, Einsteinâs theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilabâs Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
Lincoln, Don
2015-06-24
In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.
Turner, E.L.
1988-07-01
For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.
Gravitational lensing of gravitational wave
NASA Astrophysics Data System (ADS)
Kei Wong, Wang; Ng, Kwan Yeung
2017-01-01
Gravitational lensing phenomena are widespread in electromagnetic astrophysics, and in principle may also be uncovered with gravitational waves. We examine gravitational wave events lensed by elliptical galaxies in the limit of geometric optics, where we expect to see multiple signals from the same event with different arrival times and amplitudes. By using mass functions for compact binaries from population-synthesis simulations and a lensing probability calculated from Planck data, we estimate the rate of lensed signals for future gravitational wave missions.
TOPICAL REVIEW Gravitational lensing
NASA Astrophysics Data System (ADS)
Bartelmann, Matthias
2010-12-01
Gravitational lensing has developed into one of the most powerful tools for the analysis of the dark universe. This review summarizes the theory of gravitational lensing, its main current applications and representative results achieved so far. It has two parts. In the first, starting from the equation of geodesic deviation, the equations of thin and extended gravitational lensing are derived. In the second, gravitational lensing by stars and planets, galaxies, galaxy clusters and large-scale structures is discussed and summarized.
NASA Astrophysics Data System (ADS)
Yushchenko, A.; Kim, C.; Sergeev, A.
2003-04-01
Quasar-galaxy associations can be explained as gravitational lensing by globular clusters, located in the halos of the foreground galaxies and dwarf galaxies in small groups of galaxies. We propose an observational test for checking this hypothesis. We used the SUPERCOSMOS sky survey to find the overdensities of star-like sources with zero proper motions in the vicinities of the~foreground galaxies from the CfA3 catalog. The results obtained for 19413 galaxies are presented. We show the results of calculations of number densities of star-like sources with zero proper motions in the vicinity of 19413 galaxies. Two different effects can explain the observational data: lensing by globular clusters and lensing by dwarf galaxies. We carried out the CCD 3-color photometry with the 2.0-m telescope of the~Terskol Observatory and the 1.8-m telescope of the Bohyunsan Observatory (South Korea) to select extremely lensed objects around several galaxies for future spectroscopic observations. From ads Wed Jan 12 06:25:17 2005 Return-Path:
Influence of gravitational lensing on gravitational radiation
NASA Astrophysics Data System (ADS)
Zakharov, Alexander F.
In a paper by [Wang, Y., Stebbins, A., Turner, E.L. Gravitational lensing of gravitational waves from merging neutron star binaries. Phys. Rev. Lett. 77, 2875 2878, 1996] an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the geometrical optics approximation model for gravitational lensing and thus they gave an overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that a more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as [Wang, Y., Stebbins, A., Turner, E.L. Gravitational lensing of gravitational waves from merging neutron star binaries. Phys. Rev. Lett. 77, 2875 2878, 1996] concluded.
Gravitational lensing in cosmology
NASA Astrophysics Data System (ADS)
Futamase, Toshifumi
2015-02-01
Gravitational lensing is a unique and direct probe of mass in the universe. It depends only on the law of gravity and does not depend on the dynamical state nor the composition of matter. Thus, it is used to study the distribution of the dark matter in the lensing object. Combined with the traditional observations such as optical and X-ray, it gives us useful informations of the structure formation in the universe. The lensing observables depend also on the global geometry as well as large scale structure of the universe. Therefore it is possible to withdraw useful constraints on the cosmological parameters once the distribution of lensing mass is accurately known. Since the first discovery of the lensing event by a galaxy in 1979, various kinds of lensing phenomena caused by star, galaxy, cluster of galaxies and large scale structure have been observed and are used to study mass distribution in various scales and cosmology. Thus, the gravitational lensing is now regarded as an indispensable research field in the observational cosmology. In this paper, we give an instructive introduction to gravitational lensing and its applications to cosmology.
NASA Astrophysics Data System (ADS)
Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre
2012-03-01
This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy
Influence of gravitational lensing on gravitational radiation
NASA Astrophysics Data System (ADS)
Zakharov, A.
In a paper by Wang, Turner and Stebbins (PRL, Phys. Rev. Lett. 77 (1996) p.2875) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA. Recently, the Galactic center was considered by Ruffa (ApJ, 1999) as a gravitational lens that focuses a gravitational wave energy to the Earth. The author used the wave optic approximation to solve this problem and concluded that amplification due to the gravitational lens focusing could be very huge. The conclusion is based on the perfect location of the gravitational wave source, namely the source lies very close to the line passing through the Earth and the gravitational lens (the Galactic Center), therefore the probability of the huge magnification of gravitational wave sources is negligible.
NASA Astrophysics Data System (ADS)
Liesenborgs, J.; de Rijcke, S.; Dejonghe, H.; Bekaert, P.
2011-03-01
Gravitational lenses are a spectacular astrophysical phenomenon, a cosmic mirage caused by the gravitational deflection of light in which multiple images of a same background object can be seen. Their beauty is only exceeded by their usefulness, as the gravitational lens effect is a direct probe of the total mass of the deflecting object. Furthermore, since the image configuration arising from the gravitational lens effect depends on the exact gravitational potential of the deflector, it even holds the promise of learning about the distribution of the mass. In this presentation, a method for extracting the information encoded in the images and reconstructing the mass distribution is presented. Being a non-parametric method, it avoids making a priori assumptions about the shape of the mass distribution. At the core of the procedure lies a genetic algorithm, an optimization strategy inspired by Darwin's principle of ``survival of the fittest''. One only needs to specify a criterion to decide if one particular trial solution is deemed better than another, and the genetic algorithm will ``breed'' appropriate solutions to the problem. In a similar way, one can create a multi-objective genetic algorithm, capable of optimizing several fitness criteria at the same time. This provides a very flexible way to incorporate all the available information in the gravitational lens system: not only the positions and shapes of the multiple images are used, but also the so-called ``null space'', i.e. the area in which no such images can be seen. The effectiveness of this approach is illustrated using simulated data, which allows one to compare the reconstruction to the true mass distribution.
Gravitational Lensing at Millimeter Wavelengths
NASA Astrophysics Data System (ADS)
Wiklind, Tommy; Alloin, Danielle
The study of gas and dust at high redshift gives an unbiased view of star formation in obscured objects as well as the chemical evolution history of galaxies. With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z > 1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z ~~1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0. 1, ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Now affiliated at: STScI ESA Space Telescope Division, 3700 San Martin Dr., Baltimore, MD 21218, USA
The Optical Gravitational Lensing Experiment
NASA Technical Reports Server (NTRS)
Udalski, A.; Szymanski, M.; Kaluzny, J.; Kubiak, M.; Mateo, Mario
1992-01-01
The technical features are described of the Optical Gravitational Lensing Experiment, which aims to detect a statistically significant number of microlensing events toward the Galactic bulge. Clusters of galaxies observed during the 1992 season are listed and discussed and the reduction methods are described. Future plans are addressed.
Gravitational Lenses in the Classroom
ERIC Educational Resources Information Center
Ros, Rosa M.
2008-01-01
It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…
Gravitational Lenses in the Classroom
ERIC Educational Resources Information Center
Ros, Rosa M.
2008-01-01
It is not common to introduce current astronomy in school lessons. This article presents a set of experiments about gravitational lenses. It is normal to simulate them by means of computers, but it is very simple to simulate similar effects using a drinking glass full of liquid or using only the glass base. These are, of course, cheap and easy…
Tuning Gravitationally Lensed Standard Sirens
NASA Astrophysics Data System (ADS)
Jönsson, J.; Goobar, A.; Mörtsell, E.
2007-03-01
Gravitational waves emitted by chirping supermassive black hole binaries could in principle be used to obtain very accurate distance determinations. Provided they have an electromagnetic counterpart from which the redshift can be determined, these standard sirens could be used to build a high-redshift Hubble diagram. Errors in the distance measurements will most likely be dominated by gravitational lensing. We show that the (de)magnification due to inhomogeneous foreground matter will increase the scatter in the measured distances by a factor of ~10. We propose to use optical and IR data of the foreground galaxies to minimize the degradation from weak lensing. We find that the net effect of correcting the estimated distances for lensing is comparable to increasing the sample size by a factor of 3 when using the data to constrain cosmological parameters.
Gravitational Lensing Illustration
Simulation of a gravitational lens moving against a background field of galaxy. The gravity of the mass of the foreground object warps space. This bends the light of background galaxies making them...
Influence of Gravitational Lensing on Sources of Gravitational Radiation
NASA Astrophysics Data System (ADS)
Zakharov, A. F.
In a recent paper by Wang, Turner and Stebbins (1996) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA.
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368
HUBBLE'S TOP TEN GRAVITATIONAL LENSES
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA Hubble Space Telescope serendipitous survey of the sky has uncovered exotic patterns, rings, arcs and crosses that are all optical mirages produced by a gravitational lens, nature's equivalent of having giant magnifying glass in space. Shown are the top 10 lens candidates uncovered in the deepest 100 Hubble fields. Hubble's sensitivity and high resolution allow it to see faint and distant lenses that cannot be detected with ground-based telescopes whose images are blurred by Earth's atmosphere. [Top Left] - HST 01248+0351 is a lensed pair on either side of the edge-on disk lensing galaxy. [Top Center] - HST 01247+0352 is another pair of bluer lensed source images around the red spherical elliptical lensing galaxy. Two much fainter images can be seen near the detection limit which might make this a quadruple system. [Top Right] - HST 15433+5352 is a very good lens candidate with a bluer lensed source in the form of an extended arc about the redder elliptical lensing galaxy. [Middle Far Left] - HST 16302+8230 could be an 'Einstein ring' and the most intriguing lens candidate. It has been nicknamed the 'the London Underground' since it resembles that logo. [Middle Near Left] - HST 14176+5226 is the first, and brightest lens system discovered in 1995 with the Hubble telescope. This lens candidate has now been confirmed spectroscopically using large ground-based telescopes. The elliptical lensing galaxy is located 7 billion light-years away, and the lensed quasar is about 11 billion light-years distant. [Middle Near Right] - HST 12531-2914 is the second quadruple lens candidate discovered with Hubble. It is similar to the first, but appears smaller and fainter. [Middle Far Right] - HST 14164+5215 is a pair of bluish lensed images symmetrically placed around a brighter, redder galaxy. [Bottom Left] - HST 16309+8230 is an edge-on disk-like galaxy (blue arc) which has been significantly distorted by the redder lensing elliptical galaxy. [Bottom Center] - HST 12368
Gravitational lensing in plasmic medium
Bisnovatyi-Kogan, G. S. Tsupko, O. Yu.
2015-07-15
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Gravitational lensing in plasmic medium
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.
2015-07-01
The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.
Towards noiseless gravitational lensing simulations
NASA Astrophysics Data System (ADS)
Angulo, Raul E.; Chen, Ruizhu; Hilbert, Stefan; Abel, Tom
2014-11-01
The microphysical properties of the dark matter (DM) particle can, in principle, be constrained by the properties and abundance of substructures in galaxy clusters, as measured through strong gravitational lensing. Unfortunately, there is a lack of accurate theoretical predictions for the lensing signal of these substructures, mainly because of the discreteness noise inherent to N-body simulations. Here, we present a method, dubbed as Recursive-TCM, that is able to provide lensing predictions with an arbitrarily low discreteness noise. This solution is based on a novel way of interpreting the results of N-body simulations, where particles simply trace the evolution and distortion of Lagrangian phase-space volume elements. We discuss the advantages and limitations of this method compared to the widely used density estimators based on cloud-in-cells and adaptive-kernel smoothing. Applying the new method to a cluster-sized DM halo simulated in warm and cold DM scenarios, we show how the expected differences in their substructure population translate into differences in convergence and magnification maps. We anticipate that our method will provide the high-precision theoretical predictions required to interpret and fully exploit strong gravitational lensing observations.
Numerical simulation of gravitational lenses
NASA Astrophysics Data System (ADS)
Cherniak, Yakov
Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.
Gravitational Lensing Extends SETI Range
NASA Astrophysics Data System (ADS)
Factor, Richard
Microwave SETI (The Search for Extraterrestrial Intelligence) focuses on two primary strategies, the "Targeted Search" and the "All-Sky Survey." Although the goal of both strategies is the unequivocal discovery of a signal transmitted by intelligent species outside our solar system, they pursue the strategies in very different manners and have vastly different requirements. This chapter introduces Gravitational Lensing SETI (GL-SETI), a third strategy. Its goal is the unequivocal discovery of an extraterrestrial signal, with equipment and data processing requirements that are substantially different from the commonly-used strategies. This strategy is particularly suitable for use with smaller radio telescopes and has budgetary requirements suitable for individual researchers.
Natural wormholes as gravitational lenses
Cramer, J.G.; Forward, R.L.; Morris, M.S.; Visser, M.; Benford, G.; Landis, G.A. Forward Unlimited, P.O. Box 2783, Malibu, California 90265 Department of Physics and Astronomy, Butler University, Indianapolis, Indiana 46208 Physics Department, Washington University, St. Louis, Missouri 63130-4899 Physics Department, University of California at Irvine, Irvine, California 92717-4575 NASA Lewis Research Center, Mail Code 302-1, Cleveland, Ohio 44135-3191 )
1995-03-15
Once quantum mechanical effects are included, the hypotheses underlying the positive mass theorem of classical general relativity fail. As an example of the peculiarities attendant upon this observation, a wormhole mouth embedded in a region of high mass density might accrete mass, giving the other mouth a net [ital negative] mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHO's) of positive mass. While the analysis is discussed in terms of wormholes, the observational test proposed is more generally a search for compact negative mass objects of any origin. We recommend that MACHO search data be analyzed for GNACHO's.
EDITORIAL: Focus on Gravitational Lensing
NASA Astrophysics Data System (ADS)
Jain, Bhuvnesh
2007-11-01
Gravitational lensing emerged as an observational field following the 1979 discovery of a doubly imaged quasar lensed by a foreground galaxy. In the 1980s and '90s dozens of other multiply imaged systems were observed, as well as time delay measurements, weak and strong lensing by galaxies and galaxy clusters, and the discovery of microlensing in our galaxy. The rapid pace of advances has continued into the new century. Lensing is currently one of best techniques for finding and mapping dark matter over a wide range of scales, and also addresses broader cosmological questions such as understanding the nature of dark energy. This focus issue of New Journal of Physics presents a snapshot of current research in some of the exciting areas of lensing. It provides an occasion to look back at the advances of the last decade and ahead to the potential of the coming years. Just about a decade ago, microlensing was discovered through the magnification of stars in our galaxy by invisible objects with masses between that of Jupiter and a tenth the mass of the Sun. Thus a new component of the mass of our galaxy, dubbed MACHOs, was established (though a diffuse, cold dark matter-like component is still needed to make up most of the galaxy mass). More recently, microlensing led to another exciting discovery—of extra-solar planets with masses ranging from about five times that of Earth to that of Neptune. We can expect many more planets to be discovered through ongoing surveys. Microlensing is the best technique for finding Earth mass planets, though it is not as productive overall as other methods and does not allow for follow up observations. Beyond planet hunting, microlensing has enabled us to observe previously inaccessible systems, ranging from the surfaces of other stars to the accretion disks around the black holes powering distant quasars. Galaxies and galaxy clusters at cosmological distances can produce dramatic lensing effects: multiple images of background galaxies
Braneworld Black Hole Gravitational Lensing
NASA Astrophysics Data System (ADS)
Liang, Jun
2017-04-01
A class of braneworld black holes, which I called as Bronnikov-Melnikov-Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio-Fabbri-Mazzacurati (CFM) black holes. Supported by Natural Science Foundation of Education Department of Shannxi Provincial Government under Grant No. 15JK1077, and Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No. BJ12-02
Influence of gravitational lensing on sources of gravitational radiation
NASA Astrophysics Data System (ADS)
Zakharov, Alexander F.; Baryshev, Yuri V.
2002-04-01
In a recent paper by Wang et al (Wang Y, Stebbins A, and Turner E L 1996 Phys. Rev. Lett. 77 2875) the influence of gravitational lensing on increasing the estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave an overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We also show that if we use a more correct model of gravitational lensing, one could conclude that stronger influence on increasing rate of estimated events of gravitational radiation for the advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form templates, especially the gravitational wave template of periodic sources, and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector such as LISA.
Investigations of galaxy clusters using gravitational lensing
NASA Astrophysics Data System (ADS)
Wiesner, Matthew P.
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
Strong Gravitational Lensing: Relativity in Action
NASA Astrophysics Data System (ADS)
Wambsganss, Joachim
2009-05-01
Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a "relativistic eclipse" as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated since: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications -- with both photometric and astrometric signatures of lensing being discussed -- will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.
Investigations of Galaxy Clusters Using Gravitational Lensing
Wiesner, Matthew P.
2014-08-01
In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.
Gravitational lenses and dark matter - Theory
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1987-01-01
Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.
Strong gravitational lensing: relativity in action
NASA Astrophysics Data System (ADS)
Wambsganss, Joachim
2010-01-01
Deflection of light by gravity was predicted by Einstein's Theory of General Relativity and observationally confirmed in 1919. In the following decades, various aspects of the gravitational lens effect were explored theoretically, among them measuring the Hubble constant from multiple images of a background source, making use of the magnifying effect as a gravitational telescope, or the possibility of a “relativistic eclipse” as a perfect test of GR. Only in 1979, gravitational lensing became an observational science when the first doubly imaged quasar was discovered. Today lensing is a booming part of astrophysics and cosmology. A whole suite of strong lensing phenomena have been investigated: multiple quasars, giant luminous arcs, Einstein rings, quasar microlensing, and galactic microlensing. The most recent lensing application is the detection of extrasolar planets. Lensing has contributed significant new results in areas as different as the cosmological distance scale, mass determination of galaxy clusters, physics of quasars, searches for dark matter in galaxy halos, structure of the Milky Way, stellar atmospheres and exoplanets. A guided tour through some of these applications will illustrate how gravitational lensing has established itself as a very useful universal astrophysical tool.
A photometric survey of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Hesterly, Katie
Strong gravitational lenses of active galactic nuclei are useful tools for studying many astrophysical issues including the rate of expansion of the universe and the equation of state of dark energy. These issues are highly dependent on the mass distribution near or in the line-of-sight of the lens. Because gravitational lenses often lie in poorly-studied complex environments, models for the mass distribution have been poorly constructed. Over the past decade, our team has been involved in a large study to fully characterize the environments of and line-of-sight structures toward a number of strong gravitational lenses. One vexing problem has been that nearby structures are important contributors to lensing potentials, but our photometry of these is incomplete due to saturation of galaxy cores on the deep images from the project. The purpose of this thesis is to complete a photometric survey of 28 lenses found by CASTLEs that will be combined with a previous study done by Williams et al. (2006). The previous study's data and my data are combined to form a large catalog of strong gravitational lenses that will be used for further studies.
Trapping light by mimicking gravitational lensing
NASA Astrophysics Data System (ADS)
Liu, Hui; Sheng, Chong; Zhu, Shining; Genov, Dentcho; Nanjing Unversity Collaboration; Louisiana Tech University Collaboration
2014-03-01
One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking's radiation. However, the development of experiments 'toy' models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications. This work is published at Nature Photonics 2013, DOI: 10.1038/NPHOTON.2013.247.
Trapping light by mimicking gravitational lensing
NASA Astrophysics Data System (ADS)
Sheng, C.; Liu, H.; Wang, Y.; Zhu, S. N.; Genov, D. A.
2013-11-01
One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking radiation. However, the development of experimental `toy' models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications.
Gravitational Lensing from a Spacetime Perspective.
Perlick, Volker
2004-01-01
The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.
Weak gravitational lensing theory and data analysis
NASA Astrophysics Data System (ADS)
Hirata, Christopher Michael
2005-12-01
This thesis describes methodology for analysis of weak gravitational lensing data. Weak lensing, i.e. the perturbative distortion of the images of distant objects by the gravitational deflection of light, is an important tool for understanding the distribution of matter in the universe. This is interesting because a number of extentions to the standard cosmological model, including dynamical dark energy and neutrino masses, affect the growth of structure and hence may be detectable using weak lensing. Studies of weak lensing are also motivated by lensing's ability to affect the modes in the cosmic microwave background (CMB) polarization that are sensitive to primordial gravitational waves. Both lensing of galaxies and lensing of the CMB are considered here. The section devoted to galaxies is principally concerned with measuring the lensing-induced shape distortions from galaxy images in the Sloan Digital Sky Survey (SDSS), although the methodology will be applicable to future projects. We investigate in detail the problem of separating lensing from other shape distortions such as those induced by the atmosphere, the telescope, and photon Poisson noise. Since the intrinsic shapes of observed galaxies are not known, weak lensing observations always attempt some sort of statistical averaging over galaxies that presumably have independent orientations. We investigate the extent to which this process "averages down" the intrinsic shapes and identify a new type of bias that can affect the weak lensing power spectrum. Selection biases are considered and their importance in SDSS estimated. We present some recent cosmological results using the SDSS analysis, including new upper limits on the neutrino mass. Lensing of the CMB has not yet been detected, nevertheless several experiments are being built that should have the sensitivity to see it. The statistical problem of extracting lensing information from the distortion of the CMB anisotropy is considered, and in the case of
Astrophysical Applications of Gravitational Lensing
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Muñoz, Jose A.; Garzón, Francisco; Mahoney, Terence J.
2016-10-01
Contributors; Participants; Preface; Acknowledgements; 1. Lensing basics Sherry H. Suyu; 2. Exoplanet microlensing Andrew Gould; 3. Case studies of microlensing Veronica Motta and Emilio Falco; 4. Microlensing of quasars and AGN Joachim Wambsganss; 5. DM in clusters and large-scale structure Peter Schneider; 6. The future of strong lensing Chris Fassnacht; 7. Methods for strong lens modelling Charles Keeton; 8. Tutorial on inverse ray shooting Jorge Jimenez-Vicente.
The conceptual origins of gravitational lensing
NASA Astrophysics Data System (ADS)
Valls-Gabaud, David
2006-11-01
We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a widespread but baseless claim, Newton was not the precursor to the idea, and the first Query in his Opticks is totally unrelated to this phenomenon. We briefly review the roles of Voltaire, Marat, Cavendish, Soldner and Einstein in their attempts to quantify the gravitational deflection of light. The first, but unpublished, calculations of the lensing effect produced by this deflection are found in Einstein's 1912 notebooks, where he derived the lensing equation and the formation of images in a gravitational lens. The brief 1924 paper by Chwolson which presents, without calculations, the formation of double images and rings by a gravitational lens passed mostly unnoticed. The unjustly forgotten and true pioneer of the subject is F. Link, who not only published the first detailed lensing calculations in 1936, nine months prior to Einstein's famous paper in Science, but also extended the theory to include the effects of finite-size sources and lenses, binary sources, and limb darkening that same year. Link correctly predicted that the microlensing effect would be easier to observe in crowded fields or in galaxies, as observations confirmed five decades later. The calculations made by Link are far more detailed than those by Tikhov and Bogorodsky. We discuss briefly some papers of the early 1960s which marked the renaissance of this theoretical subject prior to the first detection of a gravitational lens in 1979, and we conclude with the unpublished chapter of Petrou's 1981 PhD thesis addressing the microlensing of stars in the Magellanic clouds by dark objects in the Galactic halo.
BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING
Anderes, Ethan; Wandelt, Benjamin D.; Lavaux, Guilhem
2015-08-01
The Planck satellite, along with several ground-based telescopes, has mapped the cosmic microwave background (CMB) at sufficient resolution and signal-to-noise so as to allow a detection of the subtle distortions due to the gravitational influence of the intervening matter distribution. A natural modeling approach is to write a Bayesian hierarchical model for the lensed CMB in terms of the unlensed CMB and the lensing potential. So far there has been no feasible algorithm for inferring the posterior distribution of the lensing potential from the lensed CMB map. We propose a solution that allows efficient Markov Chain Monte Carlo sampling from the joint posterior of the lensing potential and the unlensed CMB map using the Hamiltonian Monte Carlo technique. The main conceptual step in the solution is a re-parameterization of CMB lensing in terms of the lensed CMB and the “inverse lensing” potential. We demonstrate a fast implementation on simulated data, including noise and a sky cut, that uses a further acceleration based on a very mild approximation of the inverse lensing potential. We find that the resulting Markov Chain has short correlation lengths and excellent convergence properties, making it promising for applications to high-resolution CMB data sets in the future.
Gravitational Lensing of STU Black Holes
NASA Astrophysics Data System (ADS)
Saadat, H.
2013-12-01
In this paper we study gravitational lensing by STU black holes. We considered extremal limit of two special cases of zero-charged and one-charged black holes, and obtain the deflection angle. We find that the black hole charge increases the deflection angle.
Cosmological test using strong gravitational lensing systems
NASA Astrophysics Data System (ADS)
Yuan, C. C.; Wang, F. Y.
2015-09-01
As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay Δτ of images, the velocity dispersion σ of the lensing galaxies and the combination of these two effects, Δτ/σ2. In this paper, in order to carry out one-on-one comparisons between ΛCDM universe and Rh = ct universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the Sloan Lens Advanced Camera for Surveys (SLACS) and Lens Structure and Dynamic survey (LSD) survey. Concerning the time-delay effect, 12 two-image lensing systems with Δτ are also used. In addition, Monte Carlo simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the 99.7 per cent confidence level. Comparing with constraints from Δτ and the velocity dispersion σ, we find that using Δτ/σ2 can improve the discrimination between cosmological models. Despite the independence tests of these methods reveal a correlation between Δτ/σ2 and σ, Δτ/σ2 could be considered as an improved method of σ if more data samples are available.
Astrophysical Applications of Gravitational Micro-Lensing /
NASA Astrophysics Data System (ADS)
Kayser, R.; Refsdal, S.; Stabell, R.; Grieger, B.
Gravitational micro-lensing due to stars in the deflecting galaxy influences the brightness and the spectra of the macro-images. Furthermore changes in the spectra due to micro-lensing may give informations on the quasar structure. From high amplification events the brightness profile of the source may be obtained. The time scale of the high amplification event is proportional to the source radius and inverse proportional to the transversal velocity. Due to the large brightness gradient by a high amplification event, a "parallax-effect" occurs, from which the transversal velocity may be obtained, and thereby the source radius (R = ΔtmVT). The authors roughly estimate 0.3 high amplication events per year for all gravitationally lensed quasars.
Gravitational Lensing of Supernova Neutrinos
Mena, Olga; Mocioiu, Irina; Quigg, Chris; /Fermilab
2006-10-01
The black hole at the center of the galaxy is a powerful lens for supernova neutrinos. In the very special circumstance of a supernova near the extended line of sight from Earth to the galactic center, lensing could dramatically enhance the neutrino flux at Earth and stretch the neutrino pulse.
Regular Magnetic Black Hole Gravitational Lensing
NASA Astrophysics Data System (ADS)
Liang, Jun
2017-05-01
The Bronnikov regular magnetic black hole as a gravitational lens is studied. In nonlinear electrodynamics, photons do not follow null geodesics of background geometry, but move along null geodesics of a corresponding effective geometry. To study the Bronnikov regular magnetic black hole gravitational lensing in the strong deflection limit, the corresponding effective geometry should be obtained firstly. This is the most important and key step. We obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. The influence of the magnetic charge on the black hole gravitational lensing is also discussed. Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
CONSTRAINING SOURCE REDSHIFT DISTRIBUTIONS WITH GRAVITATIONAL LENSING
Wittman, D.; Dawson, W. A.
2012-09-10
We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that {approx}40 massive ({sigma}{sub v} = 1200 km s{sup -1}) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to {approx}11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N{sub lens}{sup -1/2}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.
Strong gravitational lensing of gravitational waves in Einstein Telescope
Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl
2013-10-01
Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.
Precision cosmology with weak gravitational lensing
NASA Astrophysics Data System (ADS)
Hearin, Andrew P.
In recent years, cosmological science has developed a highly predictive model for the universe on large scales that is in quantitative agreement with a wide range of astronomical observations. While the number and diversity of successes of this model provide great confidence that our general picture of cosmology is correct, numerous puzzles remain. In this dissertation, I analyze the potential of planned and near future galaxy surveys to provide new understanding of several unanswered questions in cosmology, and address some of the leading challenges to this observational program. In particular, I study an emerging technique called cosmic shear, the weak gravitational lensing produced by large scale structure. I focus on developing strategies to optimally use the cosmic shear signal observed in galaxy imaging surveys to uncover the physics of dark energy and the early universe. In chapter 1 I give an overview of a few unsolved mysteries in cosmology and I motivate weak lensing as a cosmological probe. I discuss the use of weak lensing as a test of general relativity in chapter 2 and assess the threat to such tests presented by our uncertainty in the physics of galaxy formation. Interpreting the cosmic shear signal requires knowledge of the redshift distribution of the lensed galaxies. This redshift distribution will be significantly uncertain since it must be determined photometrically. In chapter 3 I investigate the influence of photometric redshift errors on our ability to constrain dark energy models with weak lensing. The ability to study dark energy with cosmic shear is also limited by the imprecision in our understanding of the physics of gravitational collapse. In chapter 4 I present the stringent calibration requirements on this source of uncertainty. I study the potential of weak lensing to resolve a debate over a long-standing anomaly in CMB measurements in chapter 5. Finally, in chapter 6 I summarize my findings and conclude with a brief discussion of my
The geometry of gravitational lensing magnification
NASA Astrophysics Data System (ADS)
Aazami, Amir Babak; Werner, Marcus C.
2016-02-01
We present a definition of unsigned magnification in gravitational lensing valid on arbitrary convex normal neighborhoods of time oriented Lorentzian manifolds. This definition is a function defined at any two points along a null geodesic that lie in a convex normal neighborhood, and foregoes the usual notions of lens and source planes in gravitational lensing. Rather, it makes essential use of the van Vleck determinant, which we present via the exponential map, and Etherington's definition of luminosity distance for arbitrary spacetimes. We then specialize our definition to spacetimes, like Schwarzschild's, in which the lens is compact and isolated, and show that our magnification function is monotonically increasing along any geodesic contained within a convex normal neighborhood.
Gravitational lensing statistics of amplified supernovae
NASA Technical Reports Server (NTRS)
Linder, Eric V.; Wagoner, Robert V.; Schneider, P.
1988-01-01
Amplification statistics of gravitationally lensed supernovae can provide a valuable probe of the lensing matter in the universe. A general probability distribution for amplification by compact objects is derived which allows calculation of the lensed fraction of supernovae at or greater than an amplification A and at or less than an apparent magnitude. Comparison of the computed fractions with future results from ongoing supernova searches can lead to determination of the mass density of compact dark matter components with masses greater than about 0.001 solar mass, while the time-dependent amplification (and polarization) of the expanding supernovae constrain the individual masses. Type II supernovae are found to give the largest fraction for deep surveys, and the optimum flux-limited search is found to be at approximately 23d magnitude, if evolution of the supernova rate is neglected.
Probing satellite haloes with weak gravitational lensing
NASA Astrophysics Data System (ADS)
Gillis, Bryan R.; Hudson, Michael J.; Hilbert, Stefan; Hartlap, Jan
2013-02-01
We demonstrate the possibility of detecting tidal stripping of dark matter subhaloes within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups using various models with different distributions of mass between galaxy and group haloes to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites' lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 1012-1015 M⊙.
Invariants of simple gravitational lenses
NASA Astrophysics Data System (ADS)
Kassiola, Aggeliki; Kovner, Israel
1995-01-01
We present approximate tests which can be applied to a newly observed quadruple QSO, or to a quadruplet of extended objects distorted by a foreground cluster of galaxies. These tests indicate whether the responsible gravitational lens may have a simple mass distribution. If the lens galaxy is detected, the tests give an approximate orientation for it, which can be compared with the observed orientation of the galaxy. The tests do not require construction of an explicit lens model, and therefore can save time and effort. In the case of many objects distorted by a cluster, these diagnostics can help to select possible quadruplet candidates.
The Theory of Multiscale Gravitational Lensing
NASA Astrophysics Data System (ADS)
Keeton, Charles
2005-07-01
Strong gravitational lensing probes the mass distributions of distant galaxies on scales from tens of kiloparsecs {dark matter halos and "macrolensing"} through parsecs {dark matter substructure and "millilensing"} all the way down to individual stars {"microlensing"}. Wonderful data are now available, thanks in large part to HST. However, the theoretical understanding of lensing on different scales is much less mature, which has complicated efforts to interpret the data. We have begun a comprehensive theoretical study of multiscale lensing, to develop a formalism that will enable us both to interpret existing data and to inspire and guide new observations. In this proposal, we specifically seek to develop the first code that simultaneously includes macro-, milli-, and microlensing. We will then use it to: {1} Find clear observational signatures that reveal the scale{s} being probed in data, and then resolve the debate about whether millilensing truly reveals Cold Dark Matter substructure. {2} Show how observations at different scales can constrain the mass function of stars in lens galaxies, and apply the method to existing HST data for seven distant galaxies. {3} Examine non-linearities that link micro-, milli-, and macrolensing, and use the combined analysis to open a new window on dark matter studies with strong lensing. We will also make the code available to the community as part of PI Keeton's public lensing software.
Gravitational Lensing: Recent Progress & Future Goals
NASA Technical Reports Server (NTRS)
Brainerd, Tereasa
2001-01-01
This award was intended to provide financial support for an international astrophysics conference on gravitational lensing which was held at Boston University from July 25 to July 30, 1999. Because of the nature of the award, no specific research was proposed, nor was any carried out. The participants at the conference presented results of their on-going research efforts, and written summaries of their presentations have been published by the Astronomical Society of the Pacific as part of their conference series. The reference to the conference proceedings book is Gravitational Lensing: Recent Progress and Future Goals, ASP Conference Series volume 237, eds. T. G. Brainerd and C. S. Kochanek (2001). The ISBN number of this book is 1-58381-074-9. The goal of the conference was to bring together both senior and junior investigators who were actively involved in all aspects of gravitational lensing research. This was the first conference in four years to address gravitational lensing from such a broad perspective (the previous such conference being IAU Symposium 173 held in Melbourne, Australia in July 1995). The conference was attended by 190 participants, who represented of order 70 different institutions and of order 15 different countries. The Scientific Organizing Committee members were Matthias Bartelmann (co-chair), Tereasa Brainerd (co-chair), Ian Browne, Richard Ellis, Nick Kaiser, Yannick Mellier, Sjur Refsdal, HansWalter Rix, Joachim Wambsganss, and Rachel Webster. The Local Organizing Committee members were Tereasa Brainerd (chair), Emilio Falco, Jacqueline Hewitt, Christopher Kochanek, and Irwin Shapiro. The oral sessions were organized around specific applications of gravitational lensing and included invited reviews, invited 'targeted talks', and contributed talks. The review speakers were Roger Blandford, Tereasa Brainerd, Gus Evrard, Nick Kaiser, Guinevere Kaufmann, Chris Kochanek, Charley Lineweaver, Gerry Luppino, Shude Mao, Paul Schechter, Peter
Multi-wavelength applications of gravitational lensing
NASA Astrophysics Data System (ADS)
Fadely, Ross
2010-12-01
Using an array of multi-wavelength data, we examine a variety of astrophysical problems with gravitational lensing. First, we seek to understand the mass distribution of an early-type galaxy with an analysis of the lens Q0957+561. We dissect the lens galaxy into luminous and dark components, and model the environment using results from weak lensing. Combining constraints from newly-discovered lensed images and stellar population models, we find the lens has a density profile which is shallower than isothermal, unlike those of typical early-type galaxies. Finally, using the measured time delay between the quasar images we find the Hubble constant to be H 0 = 79.3+6.7-8.5 km s-1 Mpc-1 . One intriguing application of lensing is to exploit the lens magnification boost to study high-redshift objects in greater detail than otherwise possible. Here, we analyze the mid-infrared properties of two lensed z ˜ 2 star-forming galaxies, SDSS J120602.09+514229.5 and SDSS J090122.37+181432.3, using Spitzer /IRS spectra to study their rest-frame ˜ 5-12 μm emission. Both systems exhibit strong polycyclic aromatic hydrocarbon (PAH) features in the spectra, indicating strong star formation and the absence of significant AGN activity. For SDSS J090122.37+181432.3, this detection belies that inferred from optical measurements, indicating mid-IR spectroscopy provides key information needed to understand the properties of high-redshift star-forming galaxies. While lensing provides measurements of the macroscopic properties of lens systems, it can also shed light on small-scale structure of galaxies. To identify and understand lens substructure, we examine the multi-wavelength properties of flux ratios for six lenses. Variations of the flux ratios with wavelength can be used to study the lensed quasars and the small-scale mass distribution of lens galaxies. We detect strong multi-wavelength variations in the lenses HE 0435-1223 and SDSS 0806+2006. For HE 0435-1223, we study its
Gravitational lensing and the Lyman-alpha forest
NASA Technical Reports Server (NTRS)
Ikeuchi, Satoru; Turner, Edwin L.
1991-01-01
Possible connections between the inhomogeneities responsible for the Lyman-alpha forest in quasar spectra and gravitational lensing effects are investigated. For most models of the Lyman-alpha forest, no significant lensing is expected. For some versions of the CDM model-based minihalo hypothesis, gravitational lensings on scales less than abour 0.1 arcsec would occur with a frequency approaching that with which ordinary galaxies cause arcsecond scale lensing.
Weak gravitational lensing in fourth order gravity
NASA Astrophysics Data System (ADS)
Stabile, A.; Stabile, An.
2012-02-01
For a general class of analytic functions f(R,RαβRαβ,RαβγδRαβγδ) we discuss the gravitational lensing in the Newtonian limit of theory. From the properties of the Gauss-Bonnet invariant it is enough to consider only one curvature invariant between the Ricci tensor and the Riemann tensor. Then, we analyze the dynamics of a photon embedded in a gravitational field of a generic f(R,RαβRαβ) gravity. The metric is time independent and spherically symmetric. The metric potentials are Schwarzschild-like, but there are two additional Yukawa terms linked to derivatives of f with respect to two curvature invariants. Considering first the case of a pointlike lens, and after the one of a generic matter distribution of the lens, we study the deflection angle and the angular position of images. Though the additional Yukawa terms in the gravitational potential modifies dynamics with respect to general relativity, the geodesic trajectory of the photon is unaffected by the modification if we consider only f(R) gravity. We find different results (deflection angle smaller than the angle of general relativity) only due to the introduction of a generic function of the Ricci tensor square. Finally, we can affirm that the lensing phenomena for all f(R) gravities are equal to the ones known for general relativity. We conclude the paper by showing and comparing the deflection angle and position of images for f(R,RαβRαβ) gravity with respect to the gravitational lensing of general relativity.
Masses of Galaxy Clusters from Gravitational Lensing
NASA Astrophysics Data System (ADS)
Hoekstra, Henk; Bartelmann, Matthias; Dahle, Håkon; Israel, Holger; Limousin, Marceau; Meneghetti, Massimo
2013-08-01
Despite consistent progress in numerical simulations, the observable properties of galaxy clusters are difficult to predict ab initio. It is therefore important to compare both theoretical and observational results to a direct measure of the cluster mass. This can be done by measuring the gravitational lensing effects caused by the bending of light by the cluster mass distribution. In this review we discuss how this phenomenon can be used to determine cluster masses and study the mass distribution itself. As sample sizes increase, the accuracy of the weak lensing mass estimates needs to improve accordingly. We discuss the main practical aspects of these measurements. We review a number of applications and highlight some recent results.
Strong gravitational lensing and dark energy complementarity
Linder, Eric V.
2004-01-21
In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w{sub 0} and time variation w{sub a}. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1 percent accuracy can improve equation of state characterization by 15-50 percent. Next generation surveys should provide data on roughly 105 lens systems, though systematic errors will remain challenging.
Probing Galaxy Clusters and Substructures using Gravitational Lensing
NASA Astrophysics Data System (ADS)
Choi, Miyoung; Nguyen, Hoang; King, Lindsay; Lee, Brandyn E.; McCarthy, Ian
2017-01-01
Gravitational lensing is one of the most promising methods of analyzing massive astronomical objects such as galaxy clusters. The weak gravitational lensing signal, which is called shear, is a measurement of the weak distortion of background galaxies in the linear regime of the lensing field. Shear analysis effectively estimates the main properties of galaxy clusters such as the mass and scale of the lensing system. The second order gravitational lensing signal, flexion, is dominant in the non-linear regime of the lensing field that bridges the strong and weak lensing regimes. It has also recently arisen as a robust method to detect substructures in galaxy clusters due to its sensitivity to the gradient of convergence and shear field. In this poster we propose that combining the shear and flexion analysis can give more information about the detailed structure of the lensing system.
Multimessenger time delays from lensed gravitational waves
NASA Astrophysics Data System (ADS)
Baker, Tessa; Trodden, Mark
2017-03-01
We investigate the potential of high-energy astrophysical events, from which both massless and massive signals are detected, to probe fundamental physics. In particular, we consider how strong gravitational lensing can induce time delays in multimessenger signals from the same source. Obvious messenger examples are massless photons and gravitational waves, and massive neutrinos, although more exotic applications can also be imagined, such as to massive gravitons or axions. The different propagation times of the massive and massless particles can, in principle, place bounds on the total neutrino mass and probe cosmological parameters. Whilst measuring such an effect may pose a significant experimental challenge, we believe that the "massive time delay" represents an unexplored fundamental physics phenomenon.
The CASTLES Imaging Survey of Gravitational Lenses
NASA Astrophysics Data System (ADS)
Peng, C. Y.; Falco, E. E.; Lehar, J.; Impey, C. D.; Kochanek, C. S.; McLeod, B. A.; Rix, H.-W.
1997-12-01
The CASTLES survey (Cfa-Arizona-(H)ST-Lens-Survey) is imaging most known small-separation gravitational lenses (or lens candidates), using the NICMOS camera (mostly H-band) and the WFPC2 (V and I band) on HST. To date nearly half of the IR imaging survey has been completed. The main goals are: (1) to search for lens galaxies where none have been directly detected so far; (2) obtain photometric redshift estimates (VIH) for the lenses where no spectroscopic redshifts exist; (3) study and model the lens galaxies in detail, in part to study the mass distribution within them, in part to identify ``simple" systems that may permit accurate time delay estimates for H_0; (3) measure the M/L evolution of the sample of lens galaxies with look-back time (to z ~ 1); (4) determine directly which fraction of sources are lensed by ellipticals vs. spirals. We will present the survey specifications and the images obtained so far.
Gravitational lensing of Type Ia supernovae
NASA Astrophysics Data System (ADS)
Goliath, M.; Mörtsell, E.
2000-08-01
Recently, Holz and Wald [Phys. Rev. D 58 (1998) 063501] have presented a method for determining gravitational lensing effects in inhomogeneous universes. Their use of realistic galaxy models has been limited to the singular, truncated isothermal sphere with a fixed mass. In this paper, their method is generalized to allow for matter distributions more accurately describing the actual properties of galaxies, as derived from observations and /N-body simulations. This includes the density profile proposed by Navarro, Frenk and White, as well as a distribution of galaxy masses. As an example of the possible applications of the method, we consider lensing effects on supernova luminosity distributions. We find that results for different mass distributions of smooth dark matter halos are very similar, making lensing effects predictable for a broad range of halo profiles. We also note, in agreement with other investigations, that one should be able to discriminate smooth halos from a dominant component of dark matter in compact objects. For instance, a sample of 100 supernovae at redshift /z=1 can, with 99% certainty, discriminate the case where all matter is in compact objects from the case where matter is in smooth halos.
Not only Gravitational Lensing, but in general Medium Lensing
NASA Astrophysics Data System (ADS)
Smarandache, Florentin
2013-05-01
According to the General Theory of Relativity the gravity curves the spacetime and everything over there follows a curved path. The space being curved near massive cosmic bodies is just a metaphor, not a fact. We dough that gravity is only geometry. The deflection of light (Gravitational Lensing) near massive cosmic bodies is not due because of a ``curved space'', but because of the medium composition (medium that could be formed by waves, particles, plasma, dust, gaseous, fluids, solids, etc.), to the medium density, medium heterogeneity, and to the electromagnetic and gravitational fields contained in that medium that light passes through. This medium deviates the light direction, because of the interactions of photons with other particles. The space is not empty; it has various nebulae and fields and corpuscles, etc. Light bends not only because of the gravity but also because of the medium gradient and refraction index, similarly as light bends when it leaves or enters a liquid, a plastic, a glass, or a quartz. The inhomogeneous medium may act as an optical lens such that its refractive index varies in a fashion, alike the Gradient-Index Lens. We talk about a Medium Lensing, which means that photons interact with other particles in the medium. For example, the interaction between a photon of electromagnetic radiation with a charged particle (let's say with a free electron), which is known as Compton Effect, produces an increase in the photon's wavelength. In the Inverse Compton Effect the low-energy photons gain energy because they were scattered by much-higher energy free electrons.
Fitting gravitational lenses: truth or delusion
NASA Astrophysics Data System (ADS)
Evans, N. Wyn; Witt, Hans J.
2003-11-01
The observables in a strong gravitational lens are usually just the image positions and sometimes the flux ratios. We develop a new and simple algorithm which allows a set of models to be fitted exactly to the observations. Taking our cue from the strong body of evidence that early-type galaxies are close to isothermal, we assume that the lens is scale-free with a flat rotation curve. External shear can be easily included. Our algorithm allows full flexibility regarding the angular structure of the lensing potential. Importantly, all the free parameters enter linearly into the model and so the lens and flux ratio equations can always be solved by straightforward matrix inversion. The models are only restricted by the fact that the surface mass density must be positive. We use this new algorithm to examine some of the claims made for anomalous flux ratios. It has been argued that such anomalies betray the presence of substantial amounts of substructure in the lensing galaxy. We demonstrate by explicit construction that some of the lens systems for which substructure has been claimed can be well fitted by smooth lens models. This is especially the case when the systematic errors in the flux ratios (caused by microlensing or differential extinction) are taken into account. However, there is certainly one system (B1422+231) for which the existing smooth models are definitely inadequate and for which substructure may be implicated. Within a few tens of kpc of the lensing galaxy centre, dynamical friction and tidal disruption are known to be very efficient at dissolving any substructure. Very little substructure is projected within the Einstein radius. The numbers of strong lenses for which substructure is currently being claimed may be so large that this contradicts rather than supports cold dark matter theories.
Strong gravitational lensing by Kiselev black hole
NASA Astrophysics Data System (ADS)
Younas, Azka; Jamil, Mubasher; Bahamonde, Sebastian; Hussain, Saqib
2015-10-01
We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We work for the special case of Kiselev black hole where we take the state parameter wq=-2/3 . For the detailed derivation and analysis of the bending angle involved in the deflection of light, we discuss three special cases of Kiselev black hole: nonextreme, extreme, and naked singularity. We also calculate the approximate bending angle and compare it with the exact bending angle. We found the relation of bending angles in the decreasing order as: naked singularity, extreme Kiselev black hole, nonextreme Kiselev black hole, and Schwarzschild black hole. In the weak field approximation, we compute the position and total magnification of relativistic images as well.
Gravitational lensing by ring-like structures
NASA Astrophysics Data System (ADS)
Lake, Ethan; Zheng, Zheng
2017-02-01
We study a class of gravitational lensing systems consisting of an inclined ring/belt, with and without an added point mass at the centre. We show that a common feature of such systems are so-called pseudo-caustics, across which the magnification of a point source changes discontinuously and yet remains finite. Such a magnification change can be associated with either a change in image multiplicity or a sudden change in the size of a lensed image. The existence of pseudo-caustics and the complex interplay between them and the formal caustics (which correspond to points of infinite magnification) can lead to interesting consequences, such as truncated or open caustics and a non-conservation of total image parity. The origin of the pseudo-caustics is found to be the non-differentiability of the solutions to the lens equation across the ring/belt boundaries, with the pseudo-caustics corresponding to ring/belt boundaries mapped into the source plane. We provide a few illustrative examples to understand the pseudo-caustic features, and in a separate paper consider a specific astronomical application of our results to study microlensing by extrasolar asteroid belts.
Gravitational lensing by rotating naked singularities
Gyulchev, Galin N.; Yazadjiev, Stoytcho S.
2008-10-15
We model massive compact objects in galactic nuclei as stationary, axially symmetric naked singularities in the Einstein-massless scalar field theory and study the resulting gravitational lensing. In the weak deflection limit we study analytically the position of the two weak field images, the corresponding signed and absolute magnifications as well as the centroid up to post-Newtonian order. We show that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the scalar charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly for the weakly naked and vastly for the strongly naked singularities with the increase of the scalar charge. The pointlike caustics drift away from the optical axis and do not depend on the scalar charge. In the strong deflection limit approximation, we compute numerically the position of the relativistic images and their separability for weakly naked singularities. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as Janis-Newman-Winicour naked singularities.
GLAMER - II. Multiple-plane gravitational lensing
NASA Astrophysics Data System (ADS)
Petkova, Margarita; Metcalf, R. Benton; Giocoli, Carlo
2014-12-01
We present an extension to multiple planes of the gravitational lensing code GLAMER. The method entails projecting the mass in the observed light-cone on to a discrete number of lens planes and inverse ray-shooting from the image to the source plane. The mass on each plane can be represented as haloes, simulation particles, a projected mass map extracted form a numerical simulation or any combination of these. The image finding is done in a source-oriented fashion, where only regions of interest are iteratively refined on an initially coarse image plane grid. The calculations are performed in parallel on shared memory machines. The code is able to handle different types of analytic haloes (NFW, NSIE, power law, etc.), haloes extracted from numerical simulations and clusters constructed from semi-analytic models (MOKA). Likewise, there are several different options for modelling the source(s) which can be distributed throughout the light-cone. The distribution of matter in the light-cone can be either taken from a pre-existing N-body numerical simulations, from halo catalogues, or are generated from an analytic mass function. We present several tests of the code and demonstrate some of its applications such as generating mock images of galaxy and galaxy cluster lenses.
NASA Astrophysics Data System (ADS)
Tsukamoto, Naoki; Kitamura, Takao; Nakajima, Koki; Asada, Hideki
2014-09-01
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/rn fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n =1) and the Ellis wormhole (n =2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kockanek, Christopher; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
This grant has supported papers which present a new direction in the theory and interpretation of gravitational lenses. During the second year we have focused more closely on the relationship of baryons and dark matter.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko
2009-07-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing?(LBNL Summer Lecture Series)
Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States
2016-07-12
July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie; Nakajima, Reiko [Berkeley Center for Cosmological Physics
2016-07-12
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Exciting discoveries of strong gravitational lenses from the HSC Survey
NASA Astrophysics Data System (ADS)
More, Anupreeta; Team 1: Masayuki Tanaka, Kenneth Wong, et al.; Team 2: Chien-Hsiu Lee, Masamune Oguri, et al.
2017-01-01
Strong gravitational lenses have numerous applications in astrophysics and cosmology. We expect to discover thousands of strong gravitational lenses from the Hyper Suprime-Cam (HSC) Survey, thanks to its unique combination of deep and wide imaging. I will give highlights on a few interesting gravitational lenses that were discovered recently from early HSC data, for example, the first spectroscopically confirmed double source plane (DSP) lens system dubbed ''Eye of Horus'' and the highest-redshift quadruply-lensed low-luminosity Active Galactic Nucleus (LLAGN).DSP lenses such as ''Eye of Horus'' are even more rare than ordinary lenses but provide tighter constraints on the lens mass distribution and can also be useful to measure cosmological parameters such as Dark Energy and Matter density parameter. The lensed LLAGN discovered recently from HSC is only the second such lens system in our knowledge. LLAGNs are thought to have differentmechanisms driving their nuclear activity compared to their brighter counterparts i.e. quasars. Our knowledge about this abundant but faint population of AGNs is limited to the local universe so far. But lensing magnification will allow studies of distant LLAGNs which should be discovered in large numbers from a deep survey like HSC for the first time. Also, owing to the variable nature of LLAGNs, they could potentially be used as a cosmological probe similar to the lensed quasars.
Macro- and micromodels for gravitational lenses
Kayser, R. )
1990-07-01
General aspects of the modeling of gravitationally lensed objects are discussed. A new superposition principle for deflector models is introduced, and the consequences of the nonuniqueness of lens models are discussed. Special emphasis is placed on the time delay and on the determination of the Hubble parameter and the lens mass. Contrary to common belief, the determination of the lens mass is not independent of the shear due to the distribution of the matter around the lens. In general, the use of macrolensing as a cosmological tool is limited by ignorance of the distribution of (especially dark) matter. If time delay ratios can be measured, the parameter space of the lens model can be significantly reduced, thereby allowing more acurate estimates of the lens mass. Possible parameters for describing microlensing light curves are discussed and analyzed with respect to their usefulness for obtaining information on the macromodel and on the distribution of compact objects in the lens. New lens models are presented for the classical double quasar 0957 + 561A, B, from which a lens mass of 6 x 10 to the 11th solar masses is derived. 55 refs.
Atomic Inference from Weak Gravitational Lensing Data
Marshall, Phil; /KIPAC, Menlo Park
2005-12-14
We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.
Setting limits on q0 from gravitational lensing
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III; Park, Myeong-Gu; Lee, Hyung Mok
1989-01-01
Gravitational lensing by galaxies in a wide variety of cosmological models is considered. For closed models, the lensing depends on the parameter beta(crit). If beta(crit) is greater than zero, a normal lensing case can be obtained with two bright images separated by an angle twice beta(crit) and a third, arbitrarily dim image between them coincident with the position of the lensing galaxy nucleus. As the QSO approaches the antipodal redshift, which can occur in models with large values of the cosmological constant, the cross sections for lensing blow up. An overfocused case where beta(crit) is less than zero can be obtained for a QSO beyond the antipodal redshift. In this case, when a lensing event occurs, only one arbitrarily dim image coincident with the position of the lensing galaxy nucleus is seen. If galaxy rotation curves are always flat or slowly rising, the overfocused case always produces one image.
Scaling the universe: gravitational lenses and the Hubble constant.
Myers, S T
1999-04-13
Gravitational lenses, besides being interesting in their own right, have been demonstrated to be suitable as "gravitational standard rulers" for the measurement of the rate of expansion of the Universe (Ho), as well as to constrain the values of the cosmological parameters such as Omegao and Lambdao that control the evolution of the volume of the Universe with cosmic time.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Kochanek, Christopher
2003-01-01
The grant has supported the completion of 16 papers and 4 conference proceedings to date. During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, "The Importance of Einstein Rings", we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. We applied the theory to three lenses with lensed host galaxies. For the time delay lens PG 1115+080 we found that the structure of the Einstein ring ruled out models of the gravitational potential which permitted a large Hubble constant (70 km/s Mpc). In the second paper, :Cusped Mass Models Of Gravitational Lenses", we introduced a new class of lens models where the central density is characterized by a cusp ( rho proportional to tau(sup -gamma), 1 less than gamma less than 2) as in most modern models and theories of galaxies rather than a finite core radius. In the third paper, "Global Probes of the Impact of Baryons on Dark Matter Halos", we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. We show that the key physics for the origin of the sharp separation cutoff in the separation distribution near 3 arc sec is the effect of the cooling baryons in galaxies on the density structure of the system.
Gravitational lensing, time delay, and gamma-ray bursts
NASA Technical Reports Server (NTRS)
Mao, Shude
1992-01-01
The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.
Gravitational lensing by black holes: The case of Sgr A*
Bozza, V.
2014-01-14
The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.
Constraints on cosmological models from strong gravitational lensing systems
Cao, Shuo; Pan, Yu; Zhu, Zong-Hong; Biesiada, Marek; Godlowski, Wlodzimierz E-mail: panyu@cqupt.edu.cn E-mail: godlowski@uni.opole.pl
2012-03-01
Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structure, formation, and evolution). Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning the Hubble constant independent ratio between two angular diameter distances D{sub ds}/D{sub s} from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations, and check the possibility to use it in the future as complementary to other cosmological probes. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 70 data points from Sloan Lens ACS (SLACS) and Lens Structure and Dynamics survey (LSD). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 carefully selected from strong gravitational lensing systems with both X-ray satellite observations and optical giant luminous arcs, is also used to constrain three dark energy models (ΛCDM, constant w and CPL) under a flat universe assumption. For the full sample (n = 80) and the restricted sample (n = 46) including 36 two-image lenses and 10 strong lensing arcs, we obtain relatively good fitting values of basic cosmological parameters, which generally agree with the results already known in the literature. This results encourages further development of this method and its use on larger samples obtained in the future.
Model-free analysis of quadruply imaged gravitationally lensed systems
NASA Astrophysics Data System (ADS)
Woldesenbet, Addishiwot Girma
Gravitational lensing has proven to be a very valuable tool as a probe to better understand our universe. Parametric modeling of one multiple image gravitational lens system at a time is a common practice in the field of lensing. Instead of individual lens modeling, an alternative approach is to use symmetries in different spaces to make conclusions about families of lenses. The latter method is the focus of this thesis. Three types of lenses are defined based on whether they do or do not obey two-fold and double mirror symmetries. The analysis concentrates on quadruply imaged systems, or quads, and uses only the relative polar angles of quads around the center of the lens. The analysis is statistical in nature, and model-free because its conclusions relate to whole classes of models, instead of specific models. The work done here is twofold. Firstly, exploratory analysis is done to check for possible existence of degeneracies. Type I lenses which obey both symmetries mentioned above are found to form a nearly invariant surface in the 3D space of relative image angles. In the same space, lenses that break the double mirror symmetry, grouped as Type II, form two distinct surfaces. In addition, degeneracy in this class of lenses is discovered. A preliminary study of the last group of lenses, Type III, that break both symmetries, is done. Secondly, quad distributions in the 3D space from each of the three families were compared to observed galaxy-lens quads. Three quarters of observed quads were inconsistent with the distribution of quads of Type I lenses. Type II lenses reproduce most individual lens systems but fail to reproduce the population properties of observed quads. Preliminary exploration of Type III lenses shows a very promising agreement with observations. Examples of Type IIIs are lenses with substructure (with clump masses larger than those responsible for flux ratio anomalies in quads), and lenses with luminous or dark nearby perturber galaxies, or line
Data mining for gravitationally lensed quasars
NASA Astrophysics Data System (ADS)
Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.
2015-04-01
Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.
Is There a Quad Problem Among Pptical Gravitational Lenses?
Oguri, Masamune
2007-06-06
Most of optical gravitational lenses recently discovered in the Sloan Digital Sky Survey Quasar Lens Search (SQLS) have two-images rather than four images, in marked contrast to radio lenses for which the fraction of four-image lenses (quad fraction) is quite high. We revisit the quad fraction among optical lenses by taking the selection function of the SQLS into account. We find that the current observed quad fraction in the SQLS is indeed lower than, but consistent with, the prediction of our theoretical model. The low quad fraction among optical lenses, together with the high quad fraction among radio lenses, implies that the quasar optical luminosity function has a relatively shallow faint end slope.
PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS
Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia
2016-09-01
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.
PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Li, Nan; Gladders, Michael D.; Rangel, Esteban M.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman; Fasel, Patricia
2016-09-01
Gravitational lensing has become one of the most powerful tools available for investigating the “dark side” of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group- and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical—to the eye (expert or otherwise)—to real observations in various imaging surveys.
NUCLEAR QUANTUM GRAVITATION - Further Explanations and Proofs
NASA Astrophysics Data System (ADS)
Kotas, Ronald R.
2002-04-01
It is obvious that Electromagnetism encompasses all of physical nature, including gravity. Electromagnetism is the only entity in nature that propagates force at a distance. This extends and couples into the Universe, and is based on Atoms and Nuclei of Matter. NUCLEAR QUANTUM GRAVITATION states that Electromagnetic functions in Nuclei, Electromagnetically couple between Nuclei and Matter to produce Gravity - Gravitation. Some indications and proofs of this are: the levitation of glass spheres with an argon laser producing far greater results than explained by light pressure; Naval Seasat measurements of ocean elevations showing seawater dynamically collecting around sea mounts; the 13.5 degree shift of Foucault Pendulum during a solar eclipse; Fischbach studies of Evotos data showing a variation in the rate of gravitational accelerations equal to the Electromagnetic Force Constant; variation in gravity measurement devices when near more mass; accomplishment of faster than light speed by Doctor Ishii of Marquette University; accomplishment of faster than light speed by the University of California; Electromagnetic levitations by National High Magnetic Field Laboratory; laser tweezers equivalent to a traction beam, Scientific American; studies by the Naval Research Labs showing the neutron beam defraction pattern difference between Earth days and nights respective to the Sun and Moon; the Mercury two-thirds ratio phase locked to the Sun's gravity; and the 1 to 1 Electromagnetic gravitational locking of our own Moon to the Earth. It is very apparent that Gravity and Gravitation are Electromagnetic - NUCLEAR QUANTUM GRAVITATION.
Planck 2015 results. XV. Gravitational lensing
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.
Planck 2015 results: XV. Gravitational lensing
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-09-20
Here, we present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤more » L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck’s sensitivity to this known sky signal. Finally, we also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.« less
An analytical approach to gravitational lensing by an ensemble of axisymmetric lenses
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Spergel, David N.
1990-01-01
The problem of gravitational lensing by an ensemble of identical axisymmetric lenses randomly distributed on a single lens plane is considered and a formal expression is derived for the joint probability density of finding shear and convergence at a random point on the plane. The amplification probability for a source can be accurately estimated from the distribution in shear and convergence. This method is applied to two cases: lensing by an ensemble of point masses and by an ensemble of objects with Gaussian surface mass density. There is no convergence for point masses whereas shear is negligible for wide Gaussian lenses.
Lensing of 21-cm fluctuations by primordial gravitational waves.
Book, Laura; Kamionkowski, Marc; Schmidt, Fabian
2012-05-25
Weak-gravitational-lensing distortions to the intensity pattern of 21-cm radiation from the dark ages can be decomposed geometrically into curl and curl-free components. Lensing by primordial gravitational waves induces a curl component, while the contribution from lensing by density fluctuations is strongly suppressed. Angular fluctuations in the 21-cm background extend to very small angular scales, and measurements at different frequencies probe different shells in redshift space. There is thus a huge trove of information with which to reconstruct the curl component of the lensing field, allowing tensor-to-scalar ratios conceivably as small as r~10(-9)-far smaller than those currently accessible-to be probed.
Gravitational lensing by a smoothly variable surface mass density
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan; Wambsganss, Joachim
1989-01-01
The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.
On the probability of magnification by cosmologically distributed gravitational lenses
NASA Technical Reports Server (NTRS)
Pei, Yichuan C.
1993-01-01
An analytical method for calculating the statistical properties of source magnification caused by gravitational lenses randomly distributed throughout the universe is presented. Two lenses are considered at different redshifts to show that such an assumption is a statistically adequate approximation. The derived general formulas are applied to point-mass lenses with both point and extended sources. Analytical results of the magnification probability for point sources are accurate to within 10 percent in comparison with the available numerical simulations to moderate redshifts of less than about 2. In terms of the flux conservation, the results are accurate to within 18 percent at a redshift of 6 with respect to the Dyer-Roeder model of a clumpy universe. It is concluded that the present formulas are adequate for statistical studies of magnification by random gravitational lenses on cosmological scales.
Gravitational lensing by a smoothly variable surface mass density
NASA Technical Reports Server (NTRS)
Paczynski, Bohdan; Wambsganss, Joachim
1989-01-01
The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.
Gravitational Lenses and the Structure and Evolution of Galaxies
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Kochanek, Christopher
2004-01-01
During the first year of the project we completed five papers, each of which represents a new direction in the theory and interpretation of gravitational lenses. In the first paper, The Importance of Einstein Rings, we developed the first theory for the formation and structure of the Einstein rings formed by lensing extended sources like the host galaxies of quasar and radio sources. In the second paper, Cusped Mass Models Of Gravitational Lenses, we introduced a new class of lens models. In the third paper, Global Probes of the Impact of Baryons on Dark Matter Halos, we made the first globally consistent models for the separation distribution of gravitational lenses including both galaxy and cluster lenses. The last two papers explore the properties of two lenses in detail. During the second year we have focused more closely on the relationship of baryons and dark matter. In the third year we have been further examining the relationship between baryons and dark matter. In the present year we extended our statistical analysis of lens mass distributions using a self-similar model for the halo mass distribution as compared to the luminous galaxy.
Scaling the universe: Gravitational lenses and the Hubble constant
Myers, Steven T.
1999-01-01
Gravitational lenses, besides being interesting in their own right, have been demonstrated to be suitable as “gravitational standard rulers” for the measurement of the rate of expansion of the Universe (Ho), as well as to constrain the values of the cosmological parameters such as Ωo and Λo that control the evolution of the volume of the Universe with cosmic time. PMID:10200245
Direct probe of dark energy through gravitational lensing effect
NASA Astrophysics Data System (ADS)
He, Hong-Jian; Zhang, Zhen
2017-08-01
We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w. We find that it generates w-dependent and position-dependent modification to the conventional light orbital equation of w=‑1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident light rays. We demonstrate that the dark-energy-induced deflection angle ΔαDEpropto M(1+1/3w) (with 1+1/3w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M→ 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect. This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w=‑1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of ΔαDE → 0 (under 0M→ ) at the leading order.
Strong biases in infrared-selected gravitational lenses
NASA Astrophysics Data System (ADS)
Serjeant, Stephen
2012-08-01
Bright submillimetre-selected galaxies have been found to be a rich source of strong gravitational lenses. However, strong gravitational lensing of extended sources leads inevitably to differential magnification. In this paper I quantify the effect of differential magnification on simulated far-infrared and submillimetre surveys of strong gravitational lenses, using a foreground population of Navarro-Frenk-White plus de Vaucouleurs' density profiles, with a model source resembling the Cosmic Eyelash and quasi-stellar object J1148+5251. Some emission-line diagnostics are surprisingly unaffected by differential magnification effects: for example, the bolometric fractions of [CII] 158 μm and CO(J = 1 - 0), often used to infer densities and ionization parameters, have typical differential magnification effects that are smaller than the measurement errors. However, the CO ladder itself is significantly affected. Far-infrared lensed galaxy surveys (e.g. at 60 μm) strongly select for high-redshift galaxies with caustics close to active galactic nuclei (AGNs), boosting the apparent bolometric contribution of AGN. The lens configuration of IRAS F10214+4724 is naturally explained in this context. Conversely, submillimetre/millimetre-wave surveys (e.g. 500-1400 μm) strongly select for caustics close to knots of star formation boosting the latter's bolometric fraction. In general, estimates of bolometric fractions from spectral energy distributions of strongly lensed infrared galaxies are so unreliable as to be useless, unless a lens mass model is available to correct for differential magnification.
Strong lensing of gravitational waves as seen by LISA.
Sereno, M; Sesana, A; Bleuler, A; Jetzer, Ph; Volonteri, M; Begelman, M C
2010-12-17
We discuss strong gravitational lensing of gravitational waves from the merging of massive black hole binaries in the context of the LISA mission. Detection of multiple events would provide invaluable information on competing theories of gravity, evolution and formation of structures and, possibly, constraints on H0 and other cosmological parameters. Most of the optical depth for lensing is provided by intervening massive galactic halos, for which wave optics effects are negligible. Probabilities to observe multiple events are sizable for a broad range of formation histories. For the most optimistic models, up to ≲ 4 multiple events with a signal to noise ratio ≳ 8 are expected in a 5-year mission. Chances are significant even for conservative models with either light (≲ 60%) or heavy (≲ 40%) seeds. Because of lensing amplification, some intrinsically too faint signals are brought over threshold (≲ 2 per year).
PBL: Particle-Based Lensing for Gravitational Lensing Mass Reconstructions of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Deb, Sanghamitra; Goldberg, David M.; Ramdass, Vede J.
2011-02-01
We present Particle-Based Lensing (PBL), a new technique for gravitational lensing mass reconstructions of galaxy clusters. Traditionally, most methods have employed either a finite inversion or gridding to turn observational lensed galaxy ellipticities into an estimate of the surface mass density of a galaxy cluster. We approach the problem from a different perspective, motivated by the success of multi-scale analysis in smoothed particle hydrodynamics. In PBL, we treat each of the lensed galaxies as a particle and then reconstruct the potential by smoothing over a local kernel with variable smoothing scale. In this way, we can tune a reconstruction to produce constant signal-noise throughout, and maximally exploit regions of high information density. PBL is designed to include all lensing observables, including multiple image positions and fluxes from strong lensing, as well as weak lensing signals including shear and flexion. In this paper, however, we describe a shear-only reconstruction, and apply the method to several test cases, including simulated lensing clusters, as well as the well-studied ``Bullet Cluster'' (1E0657-56). In the former cases, we show that PBL is better able to identify cusps and substructures than are grid-based reconstructions, and in the latter case, we show that PBL is able to identify substructure in the Bullet Cluster without even exploiting strong lensing measurements.
Gravitational lensing of the CMB: A Feynman diagram approach
NASA Astrophysics Data System (ADS)
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Waalewijn, Wouter J.; Yadav, Amit P. S.
2014-09-01
We develop a Feynman diagram approach to calculating correlations of the Cosmic Microwave Background (CMB) in the presence of distortions. As one application, we focus on CMB distortions due to gravitational lensing by Large Scale Structure (LSS). We study the Hu-Okamoto quadratic estimator for extracting lensing from the CMB and derive the noise of the estimator up to O(ϕ4) in the lensing potential ϕ. By identifying the diagrams responsible for the previously noted large O(ϕ4) term, we conclude that the lensing expansion does not break down. The convergence can be significantly improved by a reorganization of the ϕ expansion. Our approach makes it simple to obtain expressions for quadratic estimators based on any CMB channel, including many previously unexplored cases. We briefly discuss other applications to cosmology of this diagrammatic approach, such as distortions of the CMB due to patchy reionization, or due to Faraday rotation from primordial axion fields.
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding Chikun; Kang Shuai; Chen Changyong; Chen Songbai; Jing Jiliang
2011-04-15
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant {theta} by the astronomical instruments in the future.
Compact Groups analysis using weak gravitational lensing
NASA Astrophysics Data System (ADS)
Chalela, Martín; Johana Gonzalez, Elizabeth; Garcia Lambas, Diego; Foëx, Gael
2017-01-01
We present a weak lensing analysis of a sample of SDSS Compact Groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the Singular Isothermal Spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1}Mpc. We test three different definitions of CGs centres to identify which best traces the true dark matter halo centre, concluding that a luminosity weighted centre is the most suitable choice. We also study the lensing signal dependence on CGs physical radius, group surface brightness, and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yields σV ≈ 230 km s-1 in agreement with our lensing results.
Compact Groups analysis using weak gravitational lensing
NASA Astrophysics Data System (ADS)
Chalela, Martín; Gonzalez, Elizabeth Johana; Garcia Lambas, Diego; Foëx, Gael
2017-05-01
We present a weak lensing analysis of a sample of Sloan Digital Sky Survey compact groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the singular isothermal spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1} Mpc. We test three different definitions of CG centres to identify which best traces the true dark matter halo centre, concluding that a luminosity-weighted centre is the most suitable choice. We also study the lensing signal dependence on CG physical radius, group surface brightness and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yield σV ≈ 230 km s-1 in agreement with our lensing results.
Testing gravity with halo density profiles observed through gravitational lensing
Narikawa, Tatsuya; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp
2012-05-01
We present a new test of the modified gravity endowed with the Vainshtein mechanism with the density profile of a galaxy cluster halo observed through gravitational lensing. A scalar degree of freedom in the galileon modified gravity is screened by the Vainshtein mechanism to recover Newtonian gravity in high-density regions, however it might not be completely hidden on the outer side of a cluster of galaxies. Then the modified gravity might yield an observational signature in a surface mass density of a cluster of galaxies measured through gravitational lensing, since the scalar field could contribute to the lensing potential. We investigate how the transition in the Vainshtein mechanism affects the surface mass density observed through gravitational lensing, assuming that the density profile of a cluster of galaxies follows the original Navarro-Frenk-White (NFW) profile, the generalized NFW profile and the Einasto profile. We compare the theoretical predictions with observational results of the surface mass density reported recently by other researchers. We obtain constraints on the amplitude and the typical scale of the transition in the Vainshtein mechanism in a subclass of the generalized galileon model.
Weak shear study of galaxy clusters by simulated gravitational lensing
NASA Astrophysics Data System (ADS)
Coss, David
Gravitational lensing has been simulated for numerical galaxy clusters in order to characterize the effects of substructure and shape variations of dark matter halos on the weak lensing properties of clusters. In order to analyze realistic galaxy clusters, 6 high-resolution Adaptive Refinement Tree N-body simulations of clusters with hydrodynamics are used, in addition to a simulation of one group undergoing a merger. For each cluster, the three-dimensional particle distribution is projected perpendicular to three orthogonal lines of sight, providing 21 projected mass density maps. The clusters have representative concentration and mass values for clusters in the concordance cosmology. Two gravitational lensing simulation methods are presented. In the first method, direct integration is used to calculate deflection angles. To overcome computational constraints inherent in this method, a distributed computing project was created for parallel computation. In addition to its use in gravitational lensing simulation, a description of the setup and function of this distributed computing project is presented as an alternative to in-house computing clusters, which has the added benefit of public enrollment in science and low cost. In the second method, shear maps are created using a fast Fourier transform method. From these shear maps, the effects of substructure and shape variation are related to observational gravitational lensing studies. Average shear in regions less than and greater than half of the virial radius demonstrates distinct dispersion, varying by 24% from the mean among the 21 maps. We estimate the numerical error in shear calculations to be of the order of 5%. Therefore, this shear dispersion is a reliable consequence of shape dispersion, correlating most strongly with the ratio of smallest-to-largest principal axis lengths of a cluster isodensity shell. On the other hand, image ellipticities, which are of great importance in mass reconstruction, are shown
The general theory of secondary weak gravitational lensing
Clarkson, Chris
2015-09-01
Weak gravitational lensing is normally assumed to have only two principle effects: a magnification of a source and a distortion of the sources shape in the form of a shear. However, further distortions are actually present owing to changes in the gravitational field across the scale of the ray bundle of light propagating to us, resulting in the familiar arcs in lensed images. This is normally called the flexion, and is approximated by Taylor expanding the shear and magnification across the image plane. However, the physical origin of this effect arises from higher-order corrections in the geodesic deviation equation governing the gravitational force between neighbouring geodesics— so involves derivatives of the Riemann tensor. We show that integrating the second-order geodesic deviation equation results in a 'Hessian map' for gravitational lensing, which is a higher-order addition to the Jacobi map. We derive the general form of the Hessian map in an arbitrary spacetime paying particular attention to the separate effects of local Ricci versus non-local Weyl curvature. We then specialise to the case of a perturbed FLRW model, and give the general form of the Hessian for the first time. This has a host of new contributions which could in principle be used as tests for modified gravity.
Gravitational Lensing in the metric theory proposed by Sobouti
NASA Astrophysics Data System (ADS)
Bernal, Tula; Mendoza, Sergio
2008-12-01
Recently, Y. Sobouti (2007) has provided a metric theory f(R) that can account for certain dynamical anomalies observed in spiral galaxies. Mendoza & Rosas-Guevara (2007) have shown that in this theory there is an extra-bending as compared to standard general relativity. In the present work we have developed in more specific detail this additional lensing effect and we have made evaluations of the α parameter used in the model adjusting the theory to observations in X-rays of 13 clusters of galaxies with gravitational lensing ([6]).
NASA Astrophysics Data System (ADS)
Collett, Thomas E.; Bacon, David
2017-03-01
Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080, 10.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on cGW/cγ at the 10-7 level, if a high-energy EM counterpart is observed within the field of view of an observing γ -ray burst monitor.
Observable properties of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Tessore, Nicolas
2017-01-01
It is shown which properties of a strong gravitational lens can in principle be recovered from observations of multiple extended images when no assumptions are made about the deflector or sources. The mapping between individual multiple images is identified as the carrier of information about the gravitational lens and it is shown how this information can be extracted from a hypothetical observation. The derivatives of the image map contain information about convergence ratios and reduced shears over the regions of the multiple images. For two observed images, it is not possible to reconstruct the convergence ratio and shear at the same time. For three observed images, it is possible to recover the convergence ratios and reduced shears identically. For four or more observed images, the system of constraints is overdetermined, but the same quantities can theoretically be recovered.
Weak gravitational lensing with the Hyper Suprime-Cam survey
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel; Hyper Suprime-Cam (HSC) Collaboration
2017-01-01
Data from the Hyper Suprime-Cam (HSC) survey on the Subaru telescope show great promise for weak gravitational lensing science. The unprecedented combination of area, depth, and imaging quality of this survey (with median i-band seeing of 0.6 arcsec) will enable a wide array of weak lensing measurements, with significant contributions from lenses up to redshift z~1. Applications include cosmological weak lensing measurements from shear-shear and galaxy-shear correlations, which will be especially powerful when combined with the overlapping SDSS-III spectroscopic datasets; and studies of the dark matter halos of galaxies and galaxy clusters. In this talk, I will demonstrate the imaging quality and the tests used to validate the weak lensing measurements. These include null tests internal to the data, comparisons with external datasets, and image simulation-based tests. I will also show the lensing mass profiles of spectroscopic galaxies from the SDSS-III, illustrating the current signal-to-noise ratio on small and large scales and demonstrating the potential for innovative galaxy and cosmological science with the complete survey area.
A search for closely spaced gravitational lenses
Crampton, D.; Mcclure, R.D.; Fletcher, J.M.; Hutchings, J.B. National Research Council of Canada, Herzberg Institute of Astrophysics, Ottawa )
1989-10-01
A new image-stabilizing camera was used to search for closely spaced images of a sample of 25 intrinsically luminous quasars with z greater than 1.6 and m smaller than 19. Observations of seven similarly selected quasars with the regular CCD camera in good seeing conditions are also reported. Of the 32 quasars, seven are gravitational lens candidates. Two of these have subarcsecond separations. Additional information on all these candidates is required. 22 refs.
Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.
Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong
2017-03-03
We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4} s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.
Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals
NASA Astrophysics Data System (ADS)
Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong
2017-03-01
We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 1 04 s . This uncertainty can be suppressed by a factor of ˜1 010, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ -ray bursts and fast radio bursts.
Weak Gravitational Lensing in Practice: Instrumentation, Systematics, and Null Tests
NASA Astrophysics Data System (ADS)
Bradshaw, Andrew
2017-06-01
Weak gravitational lensing has enormous potential for mapping the growth of large scale structure of our Universe by surveying the way distant galaxy images are slightly distorted by foreground gravitational potentials. However, in the scientific quest for sub-percent precision in cosmological measurements, a multitude of questions have been raised about particular systematic errors which could dominate the accuracy of weak lensing in the era of Stage IV experiments like the LSST. This thesis talk will discuss a few recently discovered instrumental & observational artifacts that have now been extensively measured using a novel benchtop simulation of LSST observing. In particular, systematics such as astrometric error patterns, pixelization biases, and the Brighter-Fatter effect will be discussed, as well as their estimated impact on cosmological parameters. Additionally, examples of these systematics and others will be shown using on-sky data, and the applicability of B-mode systematics null testing will be discussed.
Galilean-invariant scalar fields can strengthen gravitational lensing.
Wyman, Mark
2011-05-20
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
Higher-order gravitational lensing reconstruction using Feynman diagrams
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Yadav, Amit P.S.; Waalewijn, Wouter J. E-mail: amanohar@ucsd.edu E-mail: ayadav@physics.ucsd.edu
2014-09-01
We develop a method for calculating the correlation structure of the Cosmic Microwave Background (CMB) using Feynman diagrams, when the CMB has been modified by gravitational lensing, Faraday rotation, patchy reionization, or other distorting effects. This method is used to calculate the bias of the Hu-Okamoto quadratic estimator in reconstructing the lensing power spectrum up to O (φ{sup 4}) in the lensing potential φ. We consider both the diagonal noise TT TT, EB EB, etc. and, for the first time, the off-diagonal noise TT TE, TB EB, etc. The previously noted large O (φ{sup 4}) term in the second order noise is identified to come from a particular class of diagrams. It can be significantly reduced by a reorganization of the φ expansion. These improved estimators have almost no bias for the off-diagonal case involving only one B component of the CMB, such as EE EB.
Resolving high energy emission of jets using strong gravitational lensing
NASA Astrophysics Data System (ADS)
Barnacka, Anna
2014-11-01
Chandra observations of M87 in 2004 uncovered an outburst originating in distant knot along the jet hundreds of parsecs from the core. This discovery challenges our understanding of the origin of high energy flares. Current technology is inadequate to resolve jets at distances greater than M87, or observed at higher energies. We propose to use gravitationally lensed jets to investigate the structure of more distant sources. Photons emitted at different sites cross the lens plane at different distances, thus magnification ratios and time delays differ between the mirage images. Monitoring of flares from lensed jets reveals the origin of the emission. With detectors like Chandra, lensed systems are a tool for resolving the structure of the jets and for investigating their cosmic evolution.
Gravitational lensing in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Narayan, Ramesh; White, Simon D. M.
1988-01-01
Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.
Gravitational lensing in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Narayan, Ramesh; White, Simon D. M.
1988-01-01
Gravitational lensing due to mass condensations in a biased cold dark matter (CDM) universe is investigated using the Press-Schechter (1974) theory with density fluctuation amplitudes taken from previous N-body work. Under the critical assumption that CDM haloes have small core radii, a distribution of image angular separations for high-z lensed quasars with a peak at about 1 arcsec and a half-width of a factor of about 10. Allowing for selection effects at small angular separations, this is in good agreement with the observed separations. The estimated frequency of lensing is somewhat lower than that observed, but the discrepancy can be removed by invoking amplification bias and by making a small upward adjustment to the density fluctuation amplitudes assumed in the CDM model.
Strong gravitational lensing with Gauss-Bonnet correction
Sadeghi, J.; Vaez, H. E-mail: h.vaez@umz.ac.ir
2014-06-01
In this paper we investigate the strong gravitational lensing in a five dimensional background with Gauss-Bonnet gravity, so that in 4-dimensions the Gauss-Bonnet correction disappears. By considering the logarithmic term for deflection angle, we obtain the deflection angle α-circumflex and corresponding parameters ā and b-bar . Finally, we estimate some properties of relativistic images such as θ{sub ∞}, s and r{sub m}.
Gravitational lensing by an ensemble of isothermal galaxies
NASA Astrophysics Data System (ADS)
Katz, Neal; Paczynski, Bohdan
1987-06-01
Calculation of 28,000 models of gravitational lensing of a distant quasar by an ensemble of randomly placed galaxies, each having a singular isothermal mass distribuiton, is reported. The average surface mass density was 0.2 of the critical value in all models. It is found that the surface mass density averaged over the area of the smallest circle that encompasses the multiple images is 0.82, only slightly smaller than expected from a simple analytical model of Turner et al. (1984). The probability of getting multiple images is also as large as expected analytically. Gravitational lensing is dominated by the matter in the beam; i.e., by the beam convergence. The cases where the multiple imaging is due to asymmetry in mass distribution (i.e., due to shear) are very rare. Therefore, the observed gravitational-lens candidates for which no lensing object has been detected between the images cannot be a result of asymmetric mass distribution outside the images, at least in a model with randomly distributed galaxies. A surprisingly large number of large separations between the multiple images is found: up to 25 percent of multiple images have their angular separation 2 to 4 times larger than expected in a simple analytical model.
Weak gravitational lensing analysis of Sloan Digital Sky Survey data
NASA Astrophysics Data System (ADS)
Mandelbaum, Rachel
Weak gravitational lensing, the distortion of images of distant galaxies due to gravitational deflection of light by more nearby masses, is a powerful tool that can address a wide variety of problems in astrophysics and cosmology. Observation of weak lensing requires large amounts of data since it can only be measured as an average over millions of galaxy shapes. This thesis focuses on lensing-related science that can be addressed using data from the Sloan Digital Sky Survey (SDSS), an excellent source of high-quality data. First, we discuss technical issues related to observing lensing in the data, with a description of our Reglens pipeline and constraints on systematic errors in current data. This is followed by a comparison of an analytical model known as the halo model (which can be used to relate the observed lensing signal to properties of the lens galaxies) against the lensing signal in N-body simulations. After these preliminaries, we address several very different science questions using our reductions of the SDSS data. The first is the question of intrinsic alignments of galaxies (alignments of galaxies on the sky due to local structure), which may be a contaminant for future lensing surveys that seek to determine the cosmological model to high precision. Second, we use a halo model analysis of the lensing signal to determine the relationship between galaxy luminosity, stellar mass, and halo mass, and to measure satellite fractions, all of which can help distinguish between models of galaxy formation. The third application we consider is methodology for the detection of dark matter halo ellipticity, including a first attempt at detecting it with SDSS lensing data, these results may be used to distinguish between cosmological models and learn more about galaxy intrinsic alignments. Finally, we measure the matter distributions around Luminous Red Galaxies (LRGs), which not only teaches us about the properties of these galaxies, but also gives us information
Faint radio sources and gravitational lensing
Langston, G.I.; Conner, S.R.; Heflin, M.B.; Lehar, J.; Burke, B.F. MIT, Cambridge, MA )
1990-04-01
Measurements of the surface density of radio sources resulting from a deep VLA integration at 5 GHz and the MIT-Green Bank (MG) II 5 GHz survey are summarized. The faint source counts are combined with previous observations and fitted to a power-law function of surface density vs. limiting flux density. The surface density of radio sources brighter than 1 mJy is k = 0.019 + or - 0.004/arcmin. The power-law exponent is best fit by -0.93 + or - 0.14. Between 15 and 100 mJy, the surface density of radio sources varies nearly as predicted by Euclidian models of the universe. Estimates are given for the number of chance alignments of radio sources in the VLA snapshot observations of the MIT-Princeton-Caltech gravitational lens search. The probability of lens candidate configurations occurring by chance alignment is calculated. 28 refs.
Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong; Piórkowska, Aleksandra E-mail: dingxuheng@mail.bnu.edu.cn E-mail: zhuzh@bnu.edu.cn
2014-10-01
Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previous paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.
QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES
Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S. E-mail: joelbrownstein@astro.utah.edu
2012-07-01
Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.
Strong gravitational lensing statistics as a test of cosmogonic scenarios
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.
1994-01-01
Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the
Strong gravitational lensing statistics as a test of cosmogonic scenarios
NASA Technical Reports Server (NTRS)
Cen, Renyue; Gott, J. Richard, III; Ostriker, Jeremiah P.; Turner, Edwin L.
1994-01-01
Gravitational lensing statistics can provide a direct and powerful test of cosmic structure formation theories. Since lensing tests, directly, the magnitude of the nonlinear mass density fluctuations on lines of sight to distant objects, no issues of 'bias' (of mass fluctuations with respect to galaxy density fluctuations) exist here, although lensing observations provide their own ambiguities of interpretation. We develop numerical techniques for generating model density distributions with the very large spatial dynamic range required by lensing considerations and for identifying regions of the simulations capable of multiple image lensing in a conservative and computationally efficient way that should be accurate for splittings significantly larger than 3 seconds. Applying these techniques to existing standard Cold dark matter (CDM) (Omega = 1) and Primeval Baryon Isocurvature (PBI) (Omega = 0.2) simulations (normalized to the Cosmic Background Explorer Satellite (COBE) amplitude), we find that the CDM model predicts large splitting (greater than 8 seconds) lensing events roughly an order-of-magnitude more frequently than the PBI model. Under the reasonable but idealized assumption that lensing structrues can be modeled as singular isothermal spheres (SIS), the predictions can be directly compared to observations of lensing events in quasar samples. Several large splitting (Delta Theta is greater than 8 seconds) cases are predicted in the standard CDM model (the exact number being dependent on the treatment of amplification bias), whereas none is observed. In a formal sense, the comparison excludes the CDM model at high confidence (essentially for the same reason that CDM predicts excessive small-scale cosmic velocity dispersions.) A very rough assessment of low-density but flat CDM model (Omega = 0.3, Lambda/3H(sup 2 sub 0) = 0.7) indicates a far lower and probably acceptable level of lensing. The PBI model is consistent with, but not strongly tested by, the
Testing the Dark Energy with Gravitational Lensing Statistics
NASA Astrophysics Data System (ADS)
Cao, Shuo; Covone, Giovanni; Zhu, Zong-Hong
2012-08-01
We study the redshift distribution of two samples of early-type gravitational lenses, extracted from a larger collection of 122 systems, to constrain the cosmological constant in the ΛCDM model and the parameters of a set of alternative dark energy models (XCDM, Dvali-Gabadadze-Porrati, and Ricci dark energy models), in a spatially flat universe. The likelihood is maximized for ΩΛ = 0.70 ± 0.09 when considering the sample excluding the Sloan Lens ACS systems (known to be biased toward large image-separation lenses) and no-evolution, and ΩΛ = 0.81 ± 0.05 when limiting to gravitational lenses with image separation Δθ > 2'' and no-evolution. In both cases, results accounting for galaxy evolution are consistent within 1σ. The present test supports the accelerated expansion, by excluding the null hypothesis (i.e., ΩΛ = 0) at more than 4σ, regardless of the chosen sample and assumptions on the galaxy evolution. A comparison between competitive world models is performed by means of the Bayesian information criterion. This shows that the simplest cosmological constant model—that has only one free parameter—is still preferred by the available data on the redshift distribution of gravitational lenses. We perform an analysis of the possible systematic effects, finding that the systematic errors due to sample incompleteness, galaxy evolution, and model uncertainties approximately equal the statistical errors, with present-day data. We find that the largest sources of systemic errors are the dynamical normalization and the high-velocity cutoff factor, followed by the faint-end slope of the velocity dispersion function.
TESTING THE DARK ENERGY WITH GRAVITATIONAL LENSING STATISTICS
Cao Shuo; Zhu Zonghong; Covone, Giovanni
2012-08-10
We study the redshift distribution of two samples of early-type gravitational lenses, extracted from a larger collection of 122 systems, to constrain the cosmological constant in the {Lambda}CDM model and the parameters of a set of alternative dark energy models (XCDM, Dvali-Gabadadze-Porrati, and Ricci dark energy models), in a spatially flat universe. The likelihood is maximized for {Omega}{sub {Lambda}} = 0.70 {+-} 0.09 when considering the sample excluding the Sloan Lens ACS systems (known to be biased toward large image-separation lenses) and no-evolution, and {Omega}{sub {Lambda}} = 0.81 {+-} 0.05 when limiting to gravitational lenses with image separation {Delta}{theta} > 2'' and no-evolution. In both cases, results accounting for galaxy evolution are consistent within 1{sigma}. The present test supports the accelerated expansion, by excluding the null hypothesis (i.e., {Omega}{sub {Lambda}} = 0) at more than 4{sigma}, regardless of the chosen sample and assumptions on the galaxy evolution. A comparison between competitive world models is performed by means of the Bayesian information criterion. This shows that the simplest cosmological constant model-that has only one free parameter-is still preferred by the available data on the redshift distribution of gravitational lenses. We perform an analysis of the possible systematic effects, finding that the systematic errors due to sample incompleteness, galaxy evolution, and model uncertainties approximately equal the statistical errors, with present-day data. We find that the largest sources of systemic errors are the dynamical normalization and the high-velocity cutoff factor, followed by the faint-end slope of the velocity dispersion function.
Creating images by adding masses to gravitational point lenses
NASA Astrophysics Data System (ADS)
Sète, Olivier; Luce, Robert; Liesen, Jörg
2015-04-01
A well-studied maximal gravitational point lens construction of S. H. Rhie produces images of a light source using deflector masses. The construction arises from a circular, symmetric deflector configuration on masses (producing only images) by adding a tiny mass in the center of the other mass positions (and reducing all the other masses a little bit). In a recent paper we studied this "image creating effect" from a purely mathematical point of view (Sète, Luce & Liesen, Comput. Methods Funct. Theory 15(1), 2014). Here we discuss a few consequences of our findings for gravitational microlensing models. We present a complete characterization of the effect of adding small masses to these point lens models, with respect to the number of images. In particular, we give several examples of maximal lensing models that are different from Rhie's construction and that do not share its highly symmetric appearance. We give generally applicable conditions that allow the construction of maximal point lenses on masses from maximal lenses on masses.
Galactic Internet made possible by star gravitational lensing
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2013-02-01
In this paper we study how to create a radio bridge between the Sun and any other star made up by both the gravitational lenses of the Sun and that star. The alignment for this radio bridge to work is very strict, but the power-saving is enormous, due to the huge contributions of the two stars' lenses to the overall antenna gain of the system. In particular, we study in detail: The Sun-Alpha Centauri A radio bridge. The Sun-Barnard's star radio bridge. The Sun-Sirius A radio bridge. The radio bridge between the Sun and any Sun-like star located in the Galactic Bulge. The radio bridge between the Sun and a similar Sun-like star located inside the Andromeda galaxy (M31). Finally, we find the information channel capacity for each of the above radio bridges, putting thus a physical constraint to the maximum information transfer that will be enabled even by exploiting the stars as gravitational lenses. The conclusion is that a Galactic Internet is indeed physically possible. May be the Galactic Internet already is in existence, and was created long ago by civilizations more advanced than ours. But the potential for creating such a system has only recently been realized by Humans.
Testing the DGP model with gravitational lensing statistics
NASA Astrophysics Data System (ADS)
Zhu, Zong-Hong; Sereno, M.
2008-09-01
Aims: The self-accelerating braneworld model (DGP) appears to provide a simple alternative to the standard ΛCDM cosmology to explain the current cosmic acceleration, which is strongly indicated by measurements of type Ia supernovae, as well as other concordant observations. Methods: We investigate observational constraints on this scenario provided by gravitational-lensing statistics using the Cosmic Lens All-Sky Survey (CLASS) lensing sample. Results: We show that a substantial part of the parameter space of the DGP model agrees well with that of radio source gravitational lensing sample. Conclusions: In the flat case, Ω_K=0, the likelihood is maximized, L=L_max, for ΩM = 0.30-0.11+0.19. If we relax the prior on Ω_K, the likelihood peaks at Ω_M,Ωr_c ≃ 0.29, 0.12, slightly in the region of open models. The confidence contours are, however, elongated such that we are unable to discard any of the close, flat or open models.
Constraining dark energy from the abundance of weak gravitational lenses
NASA Astrophysics Data System (ADS)
Weinberg, Nevin N.; Kamionkowski, Marc
2003-05-01
We examine the prospect of using the observed abundance of weak gravitational lenses to constrain the equation-of-state parameter w=p/ρ of dark energy. Dark energy modifies the distance-redshift relation, the amplitude of the matter power spectrum, and the rate of structure growth. As a result, it affects the efficiency with which dark-matter concentrations produce detectable weak-lensing signals. Here we solve the spherical-collapse model with dark energy, clarifying some ambiguities found in the literature. We also provide fitting formulae for the non-linear overdensity at virialization and the linear-theory overdensity at collapse. We then compute the variation in the predicted weak-lens abundance with w. We find that the predicted redshift distribution and number count of weak lenses are highly degenerate in w and the present matter density Ω0. If we fix Ω0 the number count of weak lenses for w=-2/3 is a factor of ~2 smaller than for the Λ cold dark matter (CDM) model w=-1. However, if we allow Ω0 to vary with w such that the amplitude of the matter power spectrum as measured by the Cosmic Background Explorer (COBE) matches that obtained from the X-ray cluster abundance, the decrease in the predicted lens abundance is less than 25 per cent for -1 <=w< -0.4. We show that a more promising method for constraining dark energy - one that is largely unaffected by the Ω0-w degeneracy as well as uncertainties in observational noise - is to compare the relative abundance of virialized X-ray lensing clusters with the abundance of non-virialized, X-ray underluminous, lensing haloes. For aperture sizes of ~15 arcmin, the predicted ratio of the non-virialized to virialized lenses is greater than 40 per cent and varies by ~20 per cent between w=-1 and -0.6. Overall, we find that, if all other weak-lensing parameters are fixed, a survey must cover at least ~40 deg2 in order for the weak-lens number count to differentiate a ΛCDM cosmology from a dark-energy model with w
SPITZER IMAGING OF HERSCHEL-ATLAS GRAVITATIONALLY LENSED SUBMILLIMETER SOURCES
Hopwood, R.; Negrello, M.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Barton, E.; Da Cunha, E.; Cooke, J.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Dannerbauer, H.
2011-02-10
We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 {mu}m, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 {mu}m data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A{sub V} {approx} 4-5 and star formation rates of {approx}100 M{sub sun} yr{sup -1}. They have low gas fractions and low dynamical masses compared with 850 {mu}m selected galaxies.
Spitzer Imaging of Herschel-atlas Gravitationally Lensed Submillimeter Sources
NASA Astrophysics Data System (ADS)
Hopwood, R.; Wardlow, J.; Cooray, A.; Khostovan, A. A.; Kim, S.; Negrello, M.; da Cunha, E.; Burgarella, D.; Aretxaga, I.; Auld, R.; Baes, M.; Barton, E.; Bertoldi, F.; Bonfield, D. G.; Blundell, R.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooke, J.; Dannerbauer, H.; Dariush, A.; de Zotti, G.; Dunlop, J.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Frayer, D.; Gurwell, M. A.; Hughes, D. H.; Ibar, E.; Ivison, R. J.; Jarvis, M. J.; Lagache, G.; Leeuw, L.; Maddox, S.; Michałowski, M. J.; Omont, A.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Scott, D.; Serjeant, S.; Smail, I.; Smith, D. J. B.; Temi, P.; Thompson, M. A.; Valtchanov, I.; van der Werf, P.; Verma, A.; Vieira, J. D.
2011-02-01
We present physical properties of two submillimeter selected gravitationally lensed sources, identified in the Herschel Astrophysical Terahertz Large Area Survey. These submillimeter galaxies (SMGs) have flux densities >100 mJy at 500 μm, but are not visible in existing optical imaging. We fit light profiles to each component of the lensing systems in Spitzer IRAC 3.6 and 4.5 μm data and successfully disentangle the foreground lens from the background source in each case, providing important constraints on the spectral energy distributions (SEDs) of the background SMG at rest-frame optical-near-infrared wavelengths. The SED fits show that these two SMGs have high dust obscuration with A V ~ 4-5 and star formation rates of ~100 M sun yr-1. They have low gas fractions and low dynamical masses compared with 850 μm selected galaxies.
Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters
NASA Technical Reports Server (NTRS)
Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei
2014-01-01
We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
Effects of supermassive binary black holes on gravitational lenses
NASA Astrophysics Data System (ADS)
Li, Nan; Mao, Shude; Gao, Liang; Loeb, Abraham; di Stefano, R.
2012-01-01
Recent observations indicate that many, if not all, galaxies host massive central black holes (BHs). In this paper, we explore the influence of supermassive binary black holes (SMBBHs) on their actions as gravitational lenses. When lenses are modelled as singular isothermal ellipsoids, binary BHs change the critical curves and caustics differently as a function of distance. Each BH can in principle create at least one additional image, which, if observed, provides evidence of BHs. By studying how SMBBHs affect the cumulative distribution of magnification for images created by BHs, we find that the cross-section for at least one such additional image to have a magnification larger than 10-5 is comparable to the cross-section for producing multiple images in singular isothermal lenses. Such additional images may be detectable with high-resolution and large dynamic range maps of multiply imaged systems from future facilities, such as the Square Kilometre Array. The probability of detecting at least one image (two images) with magnification above 10-3 is ˜0.2fBH (˜0.05fBH) in a multiply imaged lens system, where fBH is the fraction of galaxies housing binary BHs. We also study the effects of SMBBHs on the core images when galaxies have shallower central density profiles (modelled as non-singular isothermal ellipsoids). We find that the cross-section of the usually faint core images is further suppressed by SMBBHs. Thus, their presence should also be taken into account when one constrains the core radius from the lack of central images in gravitational lenses.
Quasar Structure from Microlensing in Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Morgan, Christopher W.
2007-12-01
I investigate microlensing in gravitationally lensed quasars and discuss the use of its signal to probe quasar structure on small angular scales. I describe our lensed quasar optical monitoring program and RETROCAM, the optical camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I use the microlensing variability observed in 11 gravitationally lensed quasars to show that the accretion disk size at 2500Å is related to the black hole mass by log(R2500/cm) = (15.70±0.16) + (0.64±0.18)log(MBH/109M⊙). This scaling is consistent with the expectation from thin disk theory (R ∝ MBH2/3), but it implies that black holes radiate with relatively low efficiency, log(η) = -1.54±0.36 + log(L/LE) where η=L/(Mdotc2). With one exception, these sizes are larger by a factor of 4 than the size needed to produce the observed 0.8µm quasar flux by thermal radiation from a thin disk with the same T ∝ R-3/4 temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate. This research made extensive use of a Beowulf computer cluster obtained through the Cluster Ohio program of the Ohio Supercomputer Center. Support for program HST-GO-9744 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26666.
A comparison of cosmological models using strong gravitational lensing galaxies
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng E-mail: jjwei@pmo.ac.cn E-mail: fmelia@email.arizona.edu E-mail: xfwu@pmo.ac.cn
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually
A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies
NASA Astrophysics Data System (ADS)
Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng
2015-01-01
Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the {{R}h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ˜ 99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ˜ 200 strong gravitational lenses would be sufficient to rule out {{R}h}=ct at this level of accuracy, while ˜ 300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead {{R}h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the {{R}h}=ct universe eventually emerge as
A note on a linearized approach to gravitational lensing
NASA Astrophysics Data System (ADS)
Walters, S. J.; Forbes, L. K.
2011-10-01
A recent paper by Walters, Forbes and Jarvis presented new kinematic formulae for ray tracing in gravitational lensing models. The approach can generate caustic maps, but is computationally expensive. Here, a linearized approximation to that formulation is presented. Although still complicated, the linearized equations admit a remarkable closed-form solution. As a result, linearized approximations to the caustic patterns may be generated extremely rapidly, and are found to be in good agreement with the results of full non-linear computation. The usual Einstein-angle approximation is derived as a small angle approximation to the solution presented here.
Quasi-Analytical Method for Images Construction from Gravitational Lenses
NASA Astrophysics Data System (ADS)
Kotvytskiy, A. T.; Bronza, S. D.
One of the main problems in the study of system of equations of the gravitational lens, is the computation of coordinates from the known position of the source. In the process of computing finds the solution of equations with two unknowns. The problem is that, in general, there is no analytical method that can find all of the roots (lens) of system over the field of real numbers. In this connection, use numerical methods like the method of tracing. For the N-point gravitational lenses we have a system of polynomial equations. The methods of algebraic geometry, we transform the system to another system, which splits into two equations. Each equation of the transformed system is a polynomial in one variable. Finding the roots of these equations is the standard computing task.
Limits on Cosmological Models from Radio-selected Gravitational Lenses
NASA Astrophysics Data System (ADS)
Falco, E. E.; Kochanek, C. S.; Muñoz, J. A.
1998-02-01
We are conducting a redshift survey of 177 flat-spectrum radio sources in three samples covering the 5 GHz flux ranges 50-100, 100-200, and 200-250 mJy. So far, we have measured 124 redshifts with completenesses of 80%, 68%, and 58% for the bright, intermediate, and faint flux ranges. Using the newly determined redshift distribution, we can derive cosmological limits from the statistics of the six gravitational lenses in the Jodrell Bank-VLA Astrometric Survey sample of 2500 flat-spectrum radio sources brighter than 200 mJy at 5 GHz. For flat cosmological models with a cosmological constant, the limit using only radio data is Ω0 > 0.27 at 2 σ (0.47 < Ω0 < 1.38 at 1 σ). The limits are statistically consistent with those for lensed quasars, and the combined radio + optical sample requires Ω0 > 0.38 at 2 σ (0.64 < Ω0 < 1.66 at 1 σ) for our most conservative redshift completeness model, assuming that there are no quasar lenses produced by spiral galaxies. Our best-fit model improves by approximately 1 σ if extinction in the early-type galaxies makes the lensed quasars fainter by Δm = 0.58 +/- 0.45 mag, but we still find a limit of Ω0 > 0.26 at 2 σ in flat cosmologies. The increasing fraction of radio galaxies as compared to quasars at fainter radio fluxes (rising from ~10% at 1 Jy to ~50% at 0.1 Jy) explains why lensed optical emission is common for radio lenses and partly explains the red color of radio-selected lenses. This research made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration. We have made use in part of finder chart(s) obtained using the Guide Stars Selection System Astrometric Support Program developed at the Space Telescope Science Institute (STScI is operated by the Association of Universities for Research in Astronomy, Inc., for NASA).
NASA Astrophysics Data System (ADS)
Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.
2016-06-01
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg2 of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of zmed ˜ 0.7, while the CMB lensing kernel is broad and peaks at z ˜ 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z ˜ 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DES×SPT cross-power is found to be ASPT = 0.88 ± 0.30 and that from DES×Planck to be APlanck = 0.86 ± 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9σ and 2.2σ, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 ± 0.36 for DES×SPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.
Kirk, D.; Omori, Y.; Benoit-Levy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T.M.; Dodelson, S.; Bleem, L. E.
2016-06-11
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.
A gravitationally lensed water maser in the early Universe.
Impellizzeri, C M Violette; McKean, John P; Castangia, Paola; Roy, Alan L; Henkel, Christian; Brunthaler, Andreas; Wucknitz, Olaf
2008-12-18
Water masers are found in dense molecular clouds closely associated with supermassive black holes at the centres of active galaxies. On the basis of the understanding of the local water-maser luminosity function, it was expected that masers at intermediate and high redshifts would be extremely rare. However, galaxies at redshifts z > 2 might be quite different from those found locally, not least because of more frequent mergers and interaction events. Here we use gravitational lensing to search for masers at higher redshifts than would otherwise be possible, and find a water maser at redshift 2.64 in the dust- and gas-rich, gravitationally lensed type-1 quasar MG J0414+0534 (refs 6-13). The isotropic luminosity is 10,000 (, solar luminosity), which is twice that of the most powerful local water maser and half that of the most distant maser previously known. Using the locally determined luminosity function, the probability of finding a maser this luminous associated with any single active galaxy is 10(-6). The fact that we see such a maser in the first galaxy we observe must mean that the volume densities and luminosities of masers are higher at redshift 2.64.
Are some BL Lacs artefacts of gravitational lensing?
Ostriker, J P; Vietri, M
1990-03-01
WE suggested in 1985 that a significant fraction of BL Lacertae objects, a kind of lineless quasar, seen in nearby galaxies are in fact images, gravitationally lensed and substantially amplified by stars in the nearby galaxy, of background objects, optically violent variable (OVV) quasars at redshifts z > 1 (ref. 1). This hypothesis was made on the basis of certain general similarities between BL Lacs and O Ws, but for two recently observed BL Lacs(2,3) a strong case can be made that the accompanying elliptical galaxy is a foreground object. In addition, we argue that the distribution of BL Lac redshifts is hard to understand without gravitational lensing, unless we happen to be at a very local maximum of the spatial cosmic distribution of BL Lacs. Our analysis also indicates that the galaxies whose stars are likely to act as microlenses will be found in two peaks, one nearby, with redshift 0.05-0.10, and the other near the distant quasar.
NASA Astrophysics Data System (ADS)
Takahashi, Ryuichi
2017-01-01
In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 105 M⊙(f/Hz)‑1, where f is the GW frequency. The arrival time difference can reach ∼0.1 s (f/Hz)‑1 if the signals have passed by a lens of mass ∼8000 M⊙(f/Hz)‑1 with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.
X-RAY MONITORING OF GRAVITATIONAL LENSES WITH CHANDRA
Chen Bin; Dai Xinyu; Kochanek, Christopher S.; Blackburne, Jeffrey A.; Chartas, George; Morgan, Christopher W.
2012-08-10
We present Chandra monitoring data for six gravitationally lensed quasars: QJ 0158-4325, HE 0435-1223, SDSS 0924+0219, SDSS 1004+4112, HE 1104-1805, and Q 2237+0305. X-ray microlensing variability is detected in all six lenses with high confidence. We furthermore detect energy-dependent microlensing in HE 0435-1223, SDSS 0924+0219, SDSS 1004+4112, and Q 2237+0305. Through a detailed spectral analysis for each lens we find that simple power-law models plus Gaussian emission lines give good fits to the spectra. We detect intrinsic spectral variability in two epochs of Q 2237+0305, and differential absorption between images in QJ 0158-4325 and Q2237+0305. We also detect the Fe K{alpha} emission line in all six lenses, and the Ni XXVII K{alpha} line in two images of Q 2237+0305. The rest-frame equivalent widths of the Fe K{alpha} lines are measured to be 0.4-1.2 keV, significantly higher than those measured in typical active galactic nuclei of similar X-ray luminosities. This suggests that the Fe K{alpha} emission region is more compact or centrally concentrated than the continuum emission region.
The central image of a gravitationally lensed quasar.
Winn, Joshua N; Rusin, David; Kochanek, Christopher S
2004-02-12
A galaxy can act as a gravitational lens, producing multiple images of a background object. Theory predicts that there should be an odd number of images produced by the lens, but hitherto almost all lensed objects have two or four images. The missing 'central' images, which should be faint and appear near the centre of the lensing galaxy, have long been sought as probes of galactic cores too distant to resolve with ordinary observations. There are five candidates for central images, but in one case the third image is not necessarily the central one, and in the others the putative central images might be foreground sources. Here we report a secure identification of a central image, based on radio observations of one of the candidates. Lens models using the central image reveal that the massive black hole at the centre of the lensing galaxy has a mass of <2 x 10(8) solar masses (M(o)), and the galaxy's surface density at the location of the central image is > 20,000M(o) pc(-2), which is in agreement with expections based on observations of galaxies that are much closer to the Earth.
Strong field gravitational lensing by a charged Galileon black hole
NASA Astrophysics Data System (ADS)
Zhao, Shan-Shan; Xie, Yi
2016-07-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
Collett, Thomas E; Bacon, David
2017-03-03
Probing the relative speeds of gravitational waves and light acts as an important test of general relativity and alternative theories of gravity. Measuring the arrival time of gravitational waves (GWs) and electromagnetic (EM) counterparts can be used to measure the relative speeds, but only if the intrinsic time lag between emission of the photons and gravitational waves is well understood. Here we suggest a method that does not make such an assumption, using future strongly lensed GW events and EM counterparts; Biesiada et al. [J. Cosmol. Astropart. Phys.10 (2014) 080JCAPBP1475-751610.1088/1475-7516/2014/10/080] forecast that 50-100 strongly lensed GW events will be observed each year with the Einstein Telescope. A single strongly lensed GW event would produce robust constraints on c_{GW}/c_{γ} at the 10^{-7} level, if a high-energy EM counterpart is observed within the field of view of an observing γ-ray burst monitor.
How to Find Gravitationally Lensed Type Ia supernovae
Goldstein, Daniel A.; Nugent, Peter E.
2016-12-29
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H_{0}, w, and Ω_{m} via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.
How to Find Gravitationally Lensed Type Ia supernovae
Goldstein, Daniel A.; Nugent, Peter E.
2016-12-29
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hostedmore » by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts' photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. Finally, we also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search - despite the fact that this survey will not resolve a single system.« less
How to Find Gravitationally Lensed Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Goldstein, Daniel A.; Nugent, Peter E.
2017-01-01
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search—despite the fact that this survey will not resolve a single system.
NASA Astrophysics Data System (ADS)
Tagore, Amitpal Singh
Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that can involve many observational constraints and model parameters. I present a new software package, pixsrc, that works in conjunction with the lensmodel software and builds on established pixel-based source reconstruction (PBSR) algorithms for de-lensing a source and constraining lens model parameters. Using test data, I explore statistical and systematic uncertainties associated with gridding, source regularization, interpolation errors, noise, and telescope pointing. I compare two gridding schemes in the source plane: a fully adaptive grid and an adaptive Cartesian grid. I also consider regularization schemes that minimize derivatives of the source and introduce a scheme that minimizes deviations from an analytic source profile. Careful choice of gridding and regularization can reduce "discreteness noise" in the chi2 surface that is inherent in the pixel-based methodology. With a gridded source, errors due to interpolation need to be taken into account (especially for high S/N data). Different realizations of noise and telescope pointing lead to slightly different values for lens model parameters, and the scatter between different "observations" can be comparable to or larger than the model uncertainties themselves. The same effects create scatter in the lensing magnification at the level of a few percent for a peak S/N of 10. I then apply pixsrc to observations of lensed, high-redshift galaxies. SDSS J0901+1814, is an ultraluminous infrared galaxy at z=2.26 that is also UV-bright, and it is lensed by a foreground group of galaxies at z=0.35. I constrain the lens model using maps of CO(3-2) rotational line emission and optical imaging and apply the lens model to observations of CO(1-0), H-alpha, and [NII] line emission as well. Using the de-lensed images, I calculate properties of the source, such as the gas mass fraction and dynamical mass. Finally, I examine a
Mapping gravitational lensing of the CMB using local likelihoods
Anderes, Ethan; Knox, Lloyd; Engelen, Alexander van
2011-02-15
We present a new estimation method for mapping the gravitational lensing potential from observed CMB intensity and polarization fields. Our method uses Bayesian techniques to estimate the average curvature of the potential over small local regions. These local curvatures are then used to construct an estimate of a low pass filter of the gravitational potential. By utilizing Bayesian/likelihood methods one can easily overcome problems with missing and/or nonuniform pixels and problems with partial sky observations (E- and B-mode mixing, for example). Moreover, our methods are local in nature, which allow us to easily model spatially varying beams, and are highly parallelizable. We note that our estimates do not rely on the typical Taylor approximation which is used to construct estimates of the gravitational potential by Fourier coupling. We present our methodology with a flat sky simulation under nearly ideal experimental conditions with a noise level of 1 {mu}K-arcmin for the temperature field, {radical}(2) {mu}K-arcmin for the polarization fields, with an instrumental beam full width at half maximum (FWHM) of 0.25 arcmin.
A Bayesian Analysis of Regularised Source Inversions in Gravitational Lensing
Suyu, Sherry H.; Marshall, P.J.; Hobson, M.P.; Blandford, R.D.; /Caltech /KIPAC, Menlo Park
2006-01-25
Strong gravitational lens systems with extended sources are of special interest because they provide additional constraints on the models of the lens systems. To use a gravitational lens system for measuring the Hubble constant, one would need to determine the lens potential and the source intensity distribution simultaneously. A linear inversion method to reconstruct a pixellated source distribution of a given lens potential model was introduced by Warren and Dye. In the inversion process, a regularization on the source intensity is often needed to ensure a successful inversion with a faithful resulting source. In this paper, we use Bayesian analysis to determine the optimal regularization constant (strength of regularization) of a given form of regularization and to objectively choose the optimal form of regularization given a selection of regularizations. We consider and compare quantitatively three different forms of regularization previously described in the literature for source inversions in gravitational lensing: zeroth-order, gradient and curvature. We use simulated data with the exact lens potential to demonstrate the method. We find that the preferred form of regularization depends on the nature of the source distribution.
Three Gravitational Lenses for the Price of One: Enhanced Strong Lensing Through Galaxy Clustering
Fassnacht, Chris D.; McKean, J.P.; Koopmans, L.V.E.; Treu, T.; Blandford, R.D.; Auger, M.W.; Jeltema, T.E.; Lubin, L.M.; Margoniner, V.E.; Wittman, D.; /UC, Davis /Kapteyn Astron. Inst., Groningen /UC, Santa Barbara /KIPAC, Menlo Park /Carnegie Inst. Observ.
2006-04-03
We report the serendipitous discovery of two strong gravitational lens candidates (ACS J160919+6532 and ACS J160910+6532) in deep images obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, each less than 40'' from the previously known gravitational lens system CLASS B1608+656. The redshifts of both lens galaxies have been measured with Keck and Gemini: one is a member of a small galaxy group at z {approx} 0.63, which also includes the lensing galaxy in the B1608+656 system, and the second is a member of a foreground group at z {approx} 0.43. By measuring the effective radii and surface brightnesses of the two lens galaxies, we infer their velocity dispersions based on the passively evolving Fundamental Plane (FP) relation. Elliptical isothermal lens mass models are able to explain their image configurations within the lens hypothesis, with a velocity dispersion compatible with that estimated from the FP for a reasonable source-redshift range. Based on the large number of massive early-type galaxies in the field and the number-density of faint blue galaxies, the presence of two additional lens systems around CLASS B1608+656 is not unlikely in hindsight. Gravitational lens galaxies are predominantly early-type galaxies, which are clustered, and the lensed quasar host galaxies are also clustered. Therefore, obtaining deep high-resolution images of the fields around known strong lens systems is an excellent method of enhancing the probability of finding additional strong gravitational lens systems.
The gravitationally lensed galaxy IRAS FSC10214+4724
NASA Astrophysics Data System (ADS)
Deane, Roger Paul
2013-12-01
We present a multi-wavelength analysis of IRAS FSC10214+4724 from radio to X-ray wavelengths. This is a gravitationally lensed galaxy at a redshift z=2.3 (3 Gyr after the Big Bang) which hosts prodigious star formation as well as an obscured active nucleus. We derive a new lens model for the system employing a Bayesian Markov Chain Monte Carlo algorithm with extended-source, forward ray-tracing. An array of spatially resolved maps (radio, millimetre, near-infrared, optical) trace different physical components which enables a high resolution, multi-wavelength view of a high-redshift galaxy beyond the capabilities of current telescopes. The spatially-resolved molecular gas total intensity and velocity maps reveal a reasonably ordered system, however there is evidence for minor merger activity. We show evidence for an extended, low-excitation gas reservoir that either contains roughly half the total gas mass or has a different CO-to-H_2 conversion ratio. Very Long Baseline Interferometry (VLBI) is used to detect what we argue to be the obscured active nucleus with an effective angular resolution of <50 pc at z=2.3. The source plane inversion places the VLBI detection to within milli-arcseconds of the modeled cusp caustic, resulting in a very large magnification (mu > 70) which is over an order of magnitude larger than the derived co magnification. This implies an equivalent magnification difference between the starburst and AGN components, yielding significant distortion to the global continuum spectral energy distribution (SED). A primary result of this work is therefore the demonstration that emission regions of differing size and position within a galaxy can experience significantly different magnification factors (> 1 dex) and therefore distort our view of high-redshift, gravitationally lensed sources. This not only raises caution against unsophisticated uses of IRAS FSC10214+4724 as an archetype high-redshift Ultra-Luminous Infra-Red Galaxy (ULIRG), but also
Karhunen-Loeve Analysis for Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Vanderplas, Jacob T.
In the past decade, weak gravitational lensing has become an important tool in the study of the universe at the largest scale, giving insights into the distribution of dark matter, the expansion of the universe, and the nature of dark energy. This thesis research explores several applications of Karhunen-Loève (KL) analysis to speed and improve the comparison of weak lensing shear catalogs to theory in order to constrain cosmological parameters in current and future lensing surveys. This work addresses three related aspects of weak lensing analysis: Three-dimensional Tomographic Mapping: (Based on work published in Vanderplas et al 2011) We explore a new fast approach to three-dimensional mass mapping in weak lensing surveys. The KL approach uses a KL-based filtering of the shear signal to reconstruct mass structures on the line-of-sight, and provides a unified framework to evaluate the efficacy of linear reconstruction techniques. We find that the KL-based filtering leads to near-optimal angular resolution, and computation times which are faster than previous approaches. We also use the KL formalism to show that linear non-parametric reconstruction methods are fundamentally limited in their ability to resolve lens redshifts. Shear Peak Statistics with Incomplete Data: (Based on work published in Vanderplas et al 2012) We explore the use of KL eigenmodes for interpolation across masked regions in observed shear maps. Mass mapping is an inherently non-local calculation, meaning gaps in the data can have a significant effect on the properties of the derived mass map. Our KL mapping procedure leads to improvements in the recovery of detailed statistics of peaks in the mass map, which holds promise of improved cosmological constraints based on such studies. Two-point parameter estimation with KL modes: The power spectrum of the observed shear can yield powerful cosmological constraints. Incomplete survey sky coverage, however, can lead to mixing of power between
Gravitational light-bending prevents γγ absorption in gravitational lenses
NASA Astrophysics Data System (ADS)
Böttcher, Markus; Thiersen, Hannes
2016-10-01
The magnification effect that is due to gravitational lensing enhances the chances of detecting moderate-redshift (z ~ 1) sources in very high-energy (VHE; E > 100 GeV) γ-rays by ground-based atmospheric Cherenkov telescope facilities. It has been shown in previous work that this prospect is not hampered by potential γ-γ absorption effects by the intervening (lensing) galaxy, nor by any individual star within the intervening galaxy. In this paper, we expand this study to simulate the light-bending effect of a realistic ensemble of stars. We first demonstrate that for realistic parameters of the galaxy's star field, it is extremely unlikely (probability ≲10-6) that the direct line of sight between the γ-ray source and the observer passes by any star in the field close enough to be subject to significant γγ absorption. Our simulations then focus on the rare cases where γγ absorption by (at least) one individual star might be non-negligible. We show that gravitational light-bending will have the effect of avoiding the γ-γ absorption spheres around massive stars in the intervening galaxy. This confirms previous results and re-inforces arguments in favour of VHE γ-ray observations of lensed moderate-redshift blazars to extend the redshift range of objects detected in VHE γ-rays, and to probe the location of the γ-ray emission region in these blazars.
Kaluza-Klein magnetized cylindrical wormhole and its gravitational lensing
NASA Astrophysics Data System (ADS)
Hashemi, S. Sedigheh; Riazi, Nematollah
2016-10-01
A new exact vacuum solution in five dimensions, which describes a magnetized cylindrical wormhole in 3+1 dimensions is presented. The magnetic field lines are stretched along the wormhole throat and are concentrated near to it. We study the motion of neutral and charged test particles under the influence of the magnetized wormhole. The effective potential for a neutral test particle around and across the magnetized wormhole has a repulsive character. The gravitational lensing for the magnetized wormhole for various lens parameters are calculated and compared. The total magnetic flux on either side of the wormhole is obtained. We present analytic expressions which show regions in which the null energy condition is violated.
Gravitational lensing by clusters of galaxies - Constraining the mass distribution
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The possibility of placing constraints on the mass distribution of a cluster of galaxies by analyzing the cluster's gravitational lensing effect on the images of more distant galaxies is investigated theoretically in the limit of weak distortion. The steps in the proposed analysis are examined in detail, and it is concluded that detectable distortion can be produced by clusters with line-of-sight velocity dispersions of over 500 km/sec. Hence it should be possible to determine (1) the cluster center position (with accuracy equal to the mean separation of the background galaxies), (2) the cluster-potential quadrupole moment (to within about 20 percent of the total potential if velocity dispersion is 1000 km/sec), and (3) the power law for the outer-cluster density profile (if enough background galaxies in the surrounding region are observed).
The correlation function of galaxy ellipticities produced by gravitational lensing
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.
Gravitational lensing beyond the weak-field approximation
Perlick, Volker
2014-01-14
Gravitational lensing is considered in the full spacetime formalism of general relativity, assuming that the light rays are lightlike geodesics in a Lorentzian manifold. The review consists of three parts. The first part is devoted to spherically symmetric and static spacetimes. In particular, an exact lens map for this situation is discussed. The second part is on axisymmetric and stationary spacetimes. It concentrates on the investigation of the photon region, i.e., the region filled by spherical lightlike geodesics, in the Kerr spacetime. The photon region is of crucial relevance for the formation of a shadow. Finally, the third part briefly addresses two topics that apply to spacetimes without symmetry, namely Fermat’s principle and the exact lens map of Frittelli and Newman.
Three quasi-stellar objects acting as strong gravitational lenses
NASA Astrophysics Data System (ADS)
Courbin, F.; Faure, C.; Djorgovski, S. G.; Rérat, F.; Tewes, M.; Meylan, G.; Stern, D.; Mahabal, A.; Boroson, T.; Dheeraj, R.; Sluse, D.
2012-04-01
We report the discovery of three new cases of quasi-stellar objects (QSOs) acting as strong gravitational lenses on background emission line galaxies: SDSS J0827+5224 (zQSO = 0.293, zs = 0.412), SDSS J0919+2720 (zQSO = 0.209, zs = 0.558), SDSS J1005+4016 (zQSO = 0.230, zs = 0.441). The selection was carried out using a sample of 22,298 SDSS spectra displaying at least four emission lines at a redshift beyond that of the foreground QSO. The lensing nature is confirmed from Keck imaging and spectroscopy, as well as from HST/WFC3 imaging in the F475W and F814W filters. Two of the QSOs have face-on spiral host galaxies and the third is a QSO+galaxy pair. The velocity dispersion of the host galaxies, inferred from simple lens modeling, is between σ = 210 and 285 km s-1, making these host galaxies comparable in mass with the SLACS sample of early-type strong lenses. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #GO12233.
Measuring angular diameter distances of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Jee, Inh; Komatsu, Eiichiro; Suyu, Sherry H.
2014-10-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential ($GM/r$) and a mass ($GM$) of the lens, respectively, dividing them gives a physical size ($r$) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 ($z_{\\rm L}=0.6304$) and RXJ1131$-$1231 ($z_{\\rm L}=0.295$), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, $\\sigma^2$, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in $D_A$ per object. This improves to 13% when we measure $\\sigma^2$ at the so-called sweet-spot radius. Achieving 7% is possible if we can determine $\\sigma^2$ with 5% precision.
Measuring angular diameter distances of strong gravitational lenses
NASA Astrophysics Data System (ADS)
Jee, I.; Komatsu, E.; Suyu, S. H.
2015-11-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.
Measuring angular diameter distances of strong gravitational lenses
Jee, I.; Komatsu, E.; Suyu, S.H. E-mail: komatsu@mpa-garching.mpg.de
2015-11-01
The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.
SPACE WARPS - I. Crowdsourcing the discovery of gravitational lenses
NASA Astrophysics Data System (ADS)
Marshall, Philip J.; Verma, Aprajita; More, Anupreeta; Davis, Christopher P.; More, Surhud; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Wilcox, Julianne; Baeten, Elisabeth; Macmillan, Christine; Cornen, Claude; Baumer, Michael; Simpson, Edwin; Lintott, Chris J.; Miller, David; Paget, Edward; Simpson, Robert; Smith, Arfon M.; Küng, Rafael; Saha, Prasenjit; Collett, Thomas E.
2016-01-01
We describe SPACE WARPS, a novel gravitational lens discovery service that yields samples of high purity and completeness through crowdsourced visual inspection. Carefully produced colour composite images are displayed to volunteers via a web-based classification interface, which records their estimates of the positions of candidate lensed features. Images of simulated lenses, as well as real images which lack lenses, are inserted into the image stream at random intervals; this training set is used to give the volunteers instantaneous feedback on their performance, as well as to calibrate a model of the system that provides dynamical updates to the probability that a classified image contains a lens. Low-probability systems are retired from the site periodically, concentrating the sample towards a set of lens candidates. Having divided 160 deg2 of Canada-France-Hawaii Telescope Legacy Survey imaging into some 430 000 overlapping 82 by 82 arcsec tiles and displaying them on the site, we were joined by around 37 000 volunteers who contributed 11 million image classifications over the course of eight months. This stage 1 search reduced the sample to 3381 images containing candidates; these were then refined in stage 2 to yield a sample that we expect to be over 90 per cent complete and 30 per cent pure, based on our analysis of the volunteers performance on training images. We comment on the scalability of the SPACE WARPS system to the wide field survey era, based on our projection that searches of 105 images could be performed by a crowd of 105 volunteers in 6 d.
Towards the Ronchi test for gravitational lenses: the gravitoronchigram
NASA Astrophysics Data System (ADS)
Bretón, Nora; de Jesús Cabrera-Rosas, Omar; Espíndola-Ramos, Ernesto; Alejandro Juárez-Reyes, Salvador; Julián-Macías, Israel; Montiel, Ariadna; Ortega-Vidals, Paula; Román-Hernández, Edwin; Silva-Ortigoza, Gilberto; Silva-Ortigoza, Ramón; Sosa-Sánchez, Citlalli Teresa; Suárez-Xique, Román
2017-06-01
The aim of this work is to present a Ronchi test for a gravitational lens. To this end, we use the geometrical optics point of view of the Ronchi test and the definition of the exact lens equation without reference to a background space-time to introduce the analog of the ideal ronchigram, which we named the gravitoronchigram. We first present the ideal ronchigram for an axicon lens and then using the space-time perspective of the lensing phenomenon we obtain analytical equations of the ideal gravitoronchigram for the Schwarzschild lens in the thin lens approximation and in an exact way. Finally, because the caustic associated with the deflected light by the axicon and the Schwarzschild lenses is a line along the optical axis we conjecture the generation of a gravitoBessel beam by illuminating the Schwarzschild lens with a point light source analogous to that generated by an axicon lens. That is, a particular example of the so-called non-diffracting light fields.
Red nuggets grow inside-out: evidence from gravitational lensing
NASA Astrophysics Data System (ADS)
Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; Treu, Tommaso; Brewer, Brendon J.; Koopmans, L. V. E.; Lagattuta, David; Marshall, Philip; McKean, John; Vegetti, Simona
2017-03-01
We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4 ≲ z ≲ 0.7, lying systematically below the size-mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two Sérsic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. We also find that the sources can be characterized by red-to-blue colour gradients as a function of radius which are stronger at low redshift - indicative of ongoing accretion - but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are pre-dominantly associated with clusters.
The Distance Duality Relation from Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Liao, Kai; Li, Zhengxiang; Cao, Shuo; Biesiada, Marek; Zheng, Xiaogang; Zhu, Zong-Hong
2016-05-01
Under very general assumptions of the metric theory of spacetime, photons traveling along null geodesics and photon number conservation, two observable concepts of cosmic distance, i.e., the angular diameter and the luminosity distances are related to each other by the so-called distance duality relation (DDR) {D}L={D}A{(1+z)}2. Observational validation of this relation is quite important because any evidence of its violation could be a signal of new physics. In this paper we introduce a new method to test the DDR based on strong gravitational lensing systems and type Ia supernovae (SNe Ia) under a flat universe. The method itself is worth attention because unlike previously proposed techniques, it does not depend on all other prior assumptions concerning the details of cosmological model. We tested it using a new compilation of strong lensing (SL) systems and JLA compilation of SNe Ia and found no evidence of DDR violation. For completeness, we also combined it with previous cluster data and showed its power on constraining the DDR. It could become a promising new probe in the future in light of forthcoming massive SL surveys and because of expected advances in galaxy cluster modeling.
Red nuggets grow inside-out: evidence from gravitational lensing
Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; Treu, Tommaso; Brewer, Brendon J.; Koopmans, L. V. E.; Lagattuta, David; Marshall, Philip; McKean, John; Vegetti, Simona
2016-11-03
Here, we present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4 ≲ z ≲ 0.7, lying systematically below the size–mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two Sérsic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. Lastly, we also find that the sources can be characterized by red-to-blue colour gradients as a function of radius which are stronger at low redshift – indicative of ongoing accretion – but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are pre-dominantly associated with clusters.
Gravitational lensing of massive particles in Schwarzschild gravity
NASA Astrophysics Data System (ADS)
Liu, Xionghui; Yang, Nan; Jia, Junji
2016-09-01
Both massless light ray and objects with nonzero mass experience trajectory bending in a gravitational field. In this work the bending of trajectories of massive objects in a Schwarzschild spacetime and the corresponding gravitational lensing (GL) effects are studied. A particle sphere for Schwarzschild black hole (BH) is found with its radius a simple function of the particle velocity and proportional to the BH mass. A single master formula for both the massless and massive particle bending angle is found, in the form of an elliptic function depending only on the velocity and impact parameter. This bending angle is expanded in both large and small velocity limits and large and small impact parameter limits. The corresponding deflection angle for weak and strong GL of massive particles are analyzed, and their corrections to the light ray deflection angles are obtained. The dependence of the deflection angles on the source angle and the particle speed is investigated. Finally we discuss the potential applications of the results in hypervelocity star observations and in determining mass/mass hierarchy of slow particles/objects.
Observing Gravitational Lensing Effects by Sgr A* with GRAVITY
NASA Astrophysics Data System (ADS)
Bozza, V.; Mancini, L.
2012-07-01
The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D LS, γ, K], where D LS is the distance between the lens and the source, γ is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.
OBSERVING GRAVITATIONAL LENSING EFFECTS BY Sgr A* WITH GRAVITY
Bozza, V.; Mancini, L. E-mail: mancini@mpia-hd.mpg.de
2012-07-01
The massive black hole Sgr A* at the Galactic center is surrounded by a cluster of stars orbiting around it. Light from these stars is bent by the gravitational field of the black hole, giving rise to several phenomena: astrometric displacement of the primary image, the creation of a secondary image that may shift the centroid of Sgr A*, and magnification effects on both images. The soon-to-be second-generation Very Large Telescope Interferometer instrument GRAVITY will perform observations in the near-infrared of the Galactic center at unprecedented resolution, opening the possibility of observing such effects. Here we investigate the observability limits for GRAVITY of gravitational lensing effects on the S-stars in the parameter space 1[D{sub LS}, {gamma}, K], where D{sub LS} is the distance between the lens and the source, {gamma} is the alignment angle of the source, and K is the source's apparent magnitude in the K band. The easiest effect to observe in future years is the astrometric displacement of primary images. In particular, the shift of the star S17 from its Keplerian orbit will be detected as soon as GRAVITY becomes operative. For exceptional configurations, it will be possible to detect effects related to the spin of the black hole or post-Newtonian orders in the deflection.
Gravitational lensing: a unique probe of dark matter and dark energy
Ellis, Richard S.
2010-01-01
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743
Gravitational lensing: a unique probe of dark matter and dark energy.
Ellis, Richard S
2010-03-13
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe-the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects.
On the use of measured time delays in gravitational lenses to determine the Hubble constant
NASA Technical Reports Server (NTRS)
Alcock, C.; Anderson, N.
1985-01-01
Gravitational lenses are rare in the known samples of quasars, indicating that the conditions involved in their formation are unusual. In particular, the distribution of matter along the light rays from the observer through the deflector to the quasar may be very different from mean conditions. It is shown that reasonable deviations in the density of matter along the beams can significantly alter the relationship between time delays and the Hubble constant, and it is concluded that gravitational lenses are not promising estimators of this constant. However, should an independent, precise determination of the Hubble constant become available, gravitational lenses could be used to probe long-range density fluctuations.
Quasar structure from microlensing in gravitationally lensed quasars
NASA Astrophysics Data System (ADS)
Morgan, Christopher Warren
2008-02-01
I analyze microlensing in gravitationally lensed quasars to yield measurements of the structure of their continuum emission regions. I first describe our lensed quasar monitoring program and RETROCAM, the auxiliary port camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I describe the application of our Monte Carlo microlensing analysis technique to SDSS 0924+0219, a system with a highly anomalous optical flux ratio. For an inclination angle i, I find an optical scale radius log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] . I extrapolate the best-fitting light curves into the future to find a roughly 45% probability that the anomalous image (D) will brighten by at least an order of magnitude during the next decade. I expand our method to make simultaneous estimates of the time delays and structure of HE1104-1805 and QJ0158-4325, two doubly-imaged quasars with microlensing and intrinsic variability on comparable time scales. For HE1104- 1805 I find a time delay of D t AB = t A - t B = [Special characters omitted.] days and estimate a scale radius of log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] at 0.2mm in the rest frame. I am unable to measure a time delay for QJ0158-4325, but the scale radius is log[( r s /cm) [Special characters omitted.] ] = 14.9 ±1 0.3 at 0.3mm in the rest frame. I then apply our Monte Carlo microlensing analysis technique to the optical light curves of 11 lensed quasar systems to show that quasar accretion disk sizes at 2500Å are related to black hole mass ( M BH ) by log( R 2500 /cm) = (15.7 ± 0.16) + (0.64± 0.18) log( M BH /10 9 [Special characters omitted.] ). This scaling is consistent with the expectation from thin disk theory (R 0( [Special characters omitted.] ), but it implies that black holes radiate with relatively low efficiency, log(e) = -1.54 ± 0.36 + log( L/L E ) where e=3D L / ( M c 2 ). These sizes are also larger, by a factor of ~ 3, than
Gravitational lensing in the supernova legacy survey (SNLS)
NASA Astrophysics Data System (ADS)
Kronborg, T.; Hardin, D.; Guy, J.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Jönsson, J.; Pain, R.; Pedersen, K.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Sullivan, M.; Palanque-Delabrouille, N.; Ruhlmann-Kleider, V.
2010-05-01
Aims: The observed brightness of type Ia supernovae is affected by gravitational lensing caused by the mass distribution along the line of sight, which introduces an additional dispersion into the Hubble diagram. We look for evidence of lensing in the SuperNova Legacy Survey 3-year data set. Methods: We investigate the correlation between the residuals from the Hubble diagram and the gravitational magnification based on a modeling of the mass distribution of foreground galaxies. A deep photometric catalog, photometric redshifts, and well established mass luminosity relations are used. Results: We find evidence of a lensing signal with a 2.3σ significance. The current result is limited by the number of SNe, their redshift distribution, and the other sources of scatter in the Hubble diagram. Separating the galaxy population into a red and a blue sample has a positive impact on the significance of the signal detection. On the other hand, increasing the depth of the galaxy catalog, the precision of photometric redshifts or reducing the scatter in the mass luminosity relations have little effect. We show that for the full SuperNova Legacy Survey sample (~400 spectroscopically confirmed type Ia SNe and ~200 photometrically identified type Ia SNe), there is an 80% probability of detecting the lensing signal with a 3σ significance. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on
NASA Astrophysics Data System (ADS)
Egami, Eiichi; Rawle, Timothy; Cava, Antonio; Clement, Benjamin; Dessauges-Zavadsky, Miroslava; Ebeling, Harald; Kneib, Jean-Paul; Perez-Gonzalez, Pablo; Richard, Johan; Rujopakarn, Wiphu; Schaerer, Daniel; Walth, Gregory
2015-10-01
Using the Herschel Space Observatory, our team has been conducting a large survey of the fields of massive galaxy clusters, 'The Herschel Lensing Survey (HLS)' (PI: Egami; 419 hours). The main scientific goal is to penetrate the confusion limit of Herschel by taking advantage of the strong gravitational lensing power of these massive clusters and study the population of low-luminosity and/or high-redshift dusty star-forming galaxies that are beyond the reach of field Herschel surveys. In the course of this survey, we have obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 clusters (HLS-deep) as well as shallower (but nearly confusion-limited) SPIRE images for 527 clusters (HLS-snapshot). The goal of this proposal is to obtain shallow (500 sec/band) 3.6/4.5 um images of 266 cluster fields that have been observed by the HLS-snapshot survey but do not have any corresponding IRAC data. The HLS-snapshot SPIRE images are deep enough to detect a large number of sources in the target cluster fields, many of which are distant star-forming galaxies lensed by the foreground clusters, and the large sample size of HLS-snapshot promises a great potential for making exciting discoveries. Yet, these Herschel images would be of limited use if we could not identify the counterparts of the Herschel sources accurately and efficiently. The proposed IRAC snapshot program will greatly enhance the utility of these Herschel data, and will feed powerful gound observing facilities like ALMA and NOEMA with interesting targets to follow up.
Red nuggets grow inside-out: evidence from gravitational lensing
Oldham, Lindsay; Auger, Matthew W.; Fassnacht, Christopher D.; ...
2016-11-03
Here, we present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from Hubble Space Telescope (HST)/Advanced Camera for Studies (ACS) and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4 ≲ z ≲ 0.7, lying systematically below the size–mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly evolved descendants. We exploit the magnifying effect of lensing to investigate themore » structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two Sérsic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. Lastly, we also find that the sources can be characterized by red-to-blue colour gradients as a function of radius which are stronger at low redshift – indicative of ongoing accretion – but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are pre-dominantly associated with clusters.« less
NASA Astrophysics Data System (ADS)
Nord, Brian
2017-01-01
Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.
HST Observations of the Luminous IRAS Source FSC10214+4724: A Gravitationally Lensed Infrared Quasar
NASA Technical Reports Server (NTRS)
Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.
1995-01-01
Hubble Space Telescope (HST) data taken of the IRAS source FSC 10214+4724 suggest that the object has been gravitationally lensed by a galaxy in the foreground and that this lensing may be magnifying the apparent brightness by roughly 100 times.
Virbhadra, K. S.; Keeton, C. R.
2008-06-15
We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.
Magnification of light from many distant quasars by gravitational lenses.
Wyithe, J Stuart B; Loeb, Abraham
2002-06-27
Exceptionally bright quasars with redshifts up to z = 6.28 have recently been discovered. Quasars are thought to be powered by the accretion of gas onto supermassive black holes at the centres of galaxies. Their maximum (Eddington) luminosity depends on the mass of the black hole, and the brighter quasars are inferred to have black holes with masses of more than a few billion solar masses. The existence of such massive black holes poses a challenge to models for the formation of structures in the early Universe, as it requires their formation within one billion years of the Big Bang. Here we show that up to one-third of known quasars with z approximately equal to 6 will have had their observed flux magnified by a factor of ten or more, as a consequence of gravitational lensing by galaxies along the line of sight. The inferred abundance of quasar host galaxies, as well as the luminosity density provided by the quasars, has therefore been substantially overestimated.
Moving gravitational lenses: imprints on the cosmic microwave background
NASA Astrophysics Data System (ADS)
Aghanim, N.; Prunet, S.; Forni, O.; Bouchet, F. R.
1998-06-01
With the new generation of instruments for Cosmic Microwave Background (CMB) observations aiming at an accuracy level of a few percent in the measurement of the angular power spectrum of the anisotropies, the study of the contributions due to secondary effects has gained impetus. Furthermore, a reinvestigation of the main secondary effects is crucial in order to predict and quantify their effects on the CMB and the errors that they induce in the measurements. In this paper, we investigate the contribution, to the CMB, of secondary anisotropies induced by the transverse motions of clusters of galaxies. This effect is similar to the Kaiser-Stebbins effect. In order to address this problem, we model the gravitational potential well of an individual structure using the Navarro, Frenk & White profile. We generalise the effect of one structure to a population of objects predicted using the Press-Schechter formalism. We simulate maps of these secondary fluctuations, compute the angular power spectrum and derive the average contributions for three cosmological models. We then investigate a simple method to separate this new contribution from the primary anisotropies and from the main secondary effect, the Sunyaev-Zel'dovich kinetic effect from the lensing clusters.
Strong gravitational lensing by a charged Kiselev black hole
NASA Astrophysics Data System (ADS)
Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Jamil, Mubasher
2017-06-01
We study the gravitational lensing scenario where the lens is a spherically symmetric charged black hole (BH) surrounded by quintessence matter. The null geodesic equations in the curved background of the black hole are derived. The resulting trajectory equation is solved analytically via perturbation and series methods for a special choice of parameters, and the distance of the closest approach to black hole is calculated. We also derive the lens equation giving the bending angle of light in the curved background. In the strong field approximation, the solution of the lens equation is also obtained for all values of the quintessence parameter w_q. For all w_q, we show that there are no stable closed null orbits and that corrections to the deflection angle for the Reissner-Nordström black hole when the observer and the source are at large, but finite, distances from the lens do not depend on the charge up to the inverse of the distances squared. A part of the present work, analyzed, however, with a different approach, is the extension of Younas et al. (Phys Rev D 92:084042, 2015) where the uncharged case has been treated.
Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings
Shlaer, Benjamin; Wyman, Mark
2005-12-15
The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.
Chen, Songbai; Jing, Jiliang E-mail: jljing@hunnu.edu.cn
2015-10-01
We have investigated the strong gravitational lensing for the photons coupled to Weyl tensor in a Schwarzschild black hole spacetime. We find that in the four-dimensional black hole spacetime the equation of motion of the photons depends not only on the coupling between photon and Weyl tensor, but also on the polarization direction of the photons. It is quite different from that in the case of the usual photon without coupling to Weyl tensor in which the equation of motion is independent of the polarization of the photon. Moreover, we find that the coupling and the polarization direction modify the properties of the photon sphere, the deflection angle, the coefficients in strong field lensing, and the observational gravitational lensing variables. Combining with the supermassive central object in our Galaxy, we estimated three observables in the strong gravitational lensing for the photons coupled to Weyl tensor.
A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds.
Inada, Naohisa; Oguri, Masamune; Pindor, Bartosz; Hennawi, Joseph F; Chiu, Kuenley; Zheng, Wei; Ichikawa, Shin-Ichi; Gregg, Michael D; Becker, Robert H; Suto, Yasushi; Strauss, Michael A; Turner, Edwin L; Keeton, Charles R; Annis, James; Castander, Francisco J; Eisenstein, Daniel J; Frieman, Joshua A; Fukugita, Masataka; Gunn, James E; Johnston, David E; Kent, Stephen M; Nichol, Robert C; Richards, Gordon T; Rix, Hans-Walter; Sheldon, Erin Scott; Bahcall, Neta A; Brinkmann, J; Ivezić, Zeljko; Lamb, Don Q; McKay, Timothy A; Schneider, Donald P; York, Donald G
2003-12-18
Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.
Strong deflection limit analysis and gravitational lensing of an Ellis wormhole
NASA Astrophysics Data System (ADS)
Tsukamoto, Naoki
2016-12-01
Observations of gravitational lenses in strong gravitational fields give us a clue to understanding dark compact objects. In this paper, we extend a method to obtain a deflection angle in a strong deflection limit provided by Bozza [Phys. Rev. D 66, 103001 (2002)] to apply to ultrastatic spacetimes. We also discuss on the order of an error term in the deflection angle. Using the improved method, we consider gravitational lensing by an Ellis wormhole, which is an ultrastatic wormhole of the Morris-Thorne class.
Non-Gaussian information in Cosmology with Weak Gravitational Lensing
NASA Astrophysics Data System (ADS)
Petri, Andrea
The Standard Model of cosmology successfully describes the observable Universe requiring only a small number of free parameters. The model has been validated by a wide range of observable probes such as Supernovae IA, the CMB, Baryonic Acoustic Oscillations and galaxy clusters. Weak Gravitational Lensing (WL) is becoming a popular observational technique to constrain parameters in the Standard Model and is particularly appealing to the scientific community because the tracers it relies on, image distortions, are unbiased probes of density fluctuations in the fabric of the cosmos. The WL effect is sensitive to the late time evolution of the Universe, in which structures are non-linear. Because of this, WL observations cannot be treated as Gaussian random fields and statistical information on cosmology leaks from quadratic correlations into more complicated, higher order, image features. The goal of this dissertation is to analyze the efficiency of some of these higher order features in constraining Standard Model parameters. We approach the investigation from a practical point of view, examining the analytical, computational and numerical accuracy issues that are involved in carrying a complete analysis from observational data to parameter constraints using these higher order statistics. This work is organized as follows: · In Chapter 1 we review the fundamentals of the LambdaCDM Standard Model of cosmology, focusing particularly on the Friedmann picture and on the physics of large scale density fluctuations. · In Chapter 2 we give an outline of the Gravitational Lensing effect in the context of cosmology, and we introduce the basic WL observables from an analytical point of view. · In Chapter 3 we review the relevant numerical techniques used in the modeling of WL observables, focusing in particular on the algorithms used in ray··tracing simulations. These simulations constitute the base of our modeling efforts. · In Chapter 4 we discuss feature extraction
THE EFFECT OF ENVIRONMENT ON SHEAR IN STRONG GRAVITATIONAL LENSES
Wong, Kenneth C.; Zabludoff, Ann I.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G. E-mail: azabludoff@as.arizona.edu
2011-01-10
Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of {gamma} = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is {gamma} = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens.
The Effect of Environment on Shear in Strong Gravitational Lenses
NASA Astrophysics Data System (ADS)
Wong, Kenneth C.; Keeton, Charles R.; Williams, Kurtis A.; Momcheva, Ivelina G.; Zabludoff, Ann I.
2011-01-01
Using new photometric and spectroscopic data in the fields of nine strong gravitational lenses that lie in galaxy groups, we analyze the effects of both the local group environment and line-of-sight (LOS) galaxies on the lens potential. We use Monte Carlo simulations to derive the shear directly from measurements of the complex lens environment, providing the first detailed independent check of the shear obtained from lens modeling. We account for possible tidal stripping of the group galaxies by varying the fraction of total mass apportioned between the group dark matter halo and individual group galaxies. The environment produces an average shear of γ = 0.08 (ranging from 0.02 to 0.17), significant enough to affect quantities derived from lens observables. However, the direction and magnitude of the shears do not match those obtained from lens modeling in three of the six four-image systems in our sample (B1422, RXJ1131, and WFI2033). The source of this disagreement is not clear, implying that the assumptions inherent in both the environment and lens model approaches must be reconsidered. If only the local group environment of the lens is included, the average shear is γ = 0.05 (ranging from 0.01 to 0.14), indicating that LOS contributions to the lens potential are not negligible. We isolate the effects of various theoretical and observational uncertainties on our results. Of those uncertainties, the scatter in the Faber-Jackson relation and error in the group centroid position dominate. Future surveys of lens environments should prioritize spectroscopic sampling of both the local lens environment and objects along the LOS, particularly those bright (I< 21.5) galaxies projected within 5' of the lens. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Detections of Planets in Binaries Through the Channel of Chang-Refsdal Gravitational Lensing Events
NASA Astrophysics Data System (ADS)
Han, Cheongho; Shin, In-Gu; Jung, Youn Kil
2017-02-01
Chang-Refsdal (C-R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C-R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C-R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C-R lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C-R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C-R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C-R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.
Black hole tidal charge constrained by strong gravitational lensing
NASA Astrophysics Data System (ADS)
Horváth, Zs.; Gergely, L. Á.
2013-11-01
Spherically symmetric brane black holes have tidal charge which modifies both weak and strong lensing characteristics. Even if lensing measurements are in agreement with a Schwarzschild lens, the margin of error of the detecting instrument allows for a certain tidal charge only. In this paper we derive the respective constraint on the tidal charge of the supermassive black hole (SMBH) in the center of our galaxy, based on the radius of the first relativistic Einstein ring due to strong lensing. We find that even if general relativistic predictions are confirmed by high precision strong lensing measurements, SMBHs could have a much larger tidal charge than the Sun or neutron stars.
UP TO 100,000 RELIABLE STRONG GRAVITATIONAL LENSES IN FUTURE DARK ENERGY EXPERIMENTS
Serjeant, S.
2014-09-20
The Euclid space telescope will observe ∼10{sup 5} strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 10{sup 3} strong lensing events are detectable with this method in the Euclid wide survey. While only ∼1% of the total haul of Euclid lenses, this sample has ∼100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 10{sup 5}.
Up to 100,000 Reliable Strong Gravitational Lenses in Future Dark Energy Experiments
NASA Astrophysics Data System (ADS)
Serjeant, S.
2014-09-01
The Euclid space telescope will observe ~105 strong galaxy-galaxy gravitational lens events in its wide field imaging survey over around half the sky, but identifying the gravitational lenses from their observed morphologies requires solving the difficult problem of reliably separating the lensed sources from contaminant populations, such as tidal tails, as well as presenting challenges for spectroscopic follow-up redshift campaigns. Here I present alternative selection techniques for strong gravitational lenses in both Euclid and the Square Kilometre Array, exploiting the strong magnification bias present in the steep end of the Hα luminosity function and the H I mass function. Around 103 strong lensing events are detectable with this method in the Euclid wide survey. While only ~1% of the total haul of Euclid lenses, this sample has ~100% reliability, known source redshifts, high signal-to-noise, and a magnification-based selection independent of assumptions of lens morphology. With the proposed Square Kilometre Array dark energy survey, the numbers of reliable strong gravitational lenses with source redshifts can reach 105.
Probing the dark matter issue in f( R)-gravity via gravitational lensing
NASA Astrophysics Data System (ADS)
Lubini, M.; Tortora, C.; Näf, J.; Jetzer, Ph.; Capozziello, S.
2011-12-01
For a general class of analytic f( R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f( R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.
Planck 2015 results: XV. Gravitational lensing
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F. -X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-20
Here, we present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ_{8}Ω^{0.25}_{m} = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck’s sensitivity to this known sky signal. Finally, we also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
NASA Astrophysics Data System (ADS)
Goobar, A.; Amanullah, R.; Kulkarni, S. R.; Nugent, P. E.; Johansson, J.; Steidel, C.; Law, D.; Mörtsell, E.; Quimby, R.; Blagorodnova, N.; Brandeker, A.; Cao, Y.; Cooray, A.; Ferretti, R.; Fremling, C.; Hangard, L.; Kasliwal, M.; Kupfer, T.; Lunnan, R.; Masci, F.; Miller, A. A.; Nayyeri, H.; Neill, J. D.; Ofek, E. O.; Papadogiannakis, S.; Petrushevska, T.; Ravi, V.; Sollerman, J.; Sullivan, M.; Taddia, F.; Walters, R.; Wilson, D.; Yan, L.; Yaron, O.
2017-04-01
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy.
Our warped universe: the power of gravitational lensing for probing the cosmos
NASA Astrophysics Data System (ADS)
Nord, Brian
2017-01-01
Gravitational lensing epitomizes a maxim of Einstein's General Relativity: space tells energy how to move and energy tells space how to curve. Through lensing, massive objects magnify and distort the shapes of distant objects, likes galaxies and quasars. The connection between the lens's mass distribution and the degree of distortion in the images allows us to observe faint, distant objects, and to infer the matter distribution and cosmic expansion in the nearby universe. Current and future surveys, both ground- and space-based, will provide data sets unprecedented in size and precision with which to probe dark energy, dark matter and the early universe through gravitational lensing. I will discuss recent advances in observations and analysis techniques in both weak and strong lensing, and the burgeoning potential of these techniques to derive important and competitive cosmological constraints from surveys of large-scale structure.
Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others
2014-11-01
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova.
Goobar, A; Amanullah, R; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mörtsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O
2017-04-21
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy. Copyright © 2017, American Association for the Advancement of Science.
iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
Goobar, A.; Amanullah, R.; Kulkarni, S. R.; ...
2017-04-21
We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy.We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply closemore » alignment between the lines of sight to the supernova and to the lens. In conclusion, the relative magnifications of the four images provide evidence for substructures in the lensing galaxy.« less
Gravitational lensing in an exact locally inhomogeneous cosmology
NASA Astrophysics Data System (ADS)
Attard, Allen
2005-11-01
A Recursive Swiss-Cheese (RSC) cosmological model is an exact solution to Einstein's general relativistic field equations allowing for dramatic local density inhomogeneities while maintaining global homogeneity and isotropy. It is constructed by replacing spherical regions of an FRW background with higher density cores placed at the centre of a Schwarzschild vacuum, with each core itself potentially being given the same treatment and the process repeated to generate a range of multifractal structures. Code was developed to tightly pack spheres into spaces of constant curvature in an efficient manner, and was used to develop libraries of packings with positive, negative, and zero curvature. Various projections are used to illustrate their structure, and means of measuring its dimensionality are discussed. A method by which these packings can be used as building blocks of an RSC model, along with a way of selecting parameters to define the model, is described, and a coordinate system allowing a relativistically consistent means of synchronizing its various components is developed. Formulations of the optical scalar equations for the expansion and shear rates of a beam are considered, and a set suitable for numerical integration selected. The forms of the null geodesic beam trajectories in each region of the model are computed, and a parallel propagated shadow plane basis that can be consistently followed between the various model sections is established. This allowed the development of code using a fourth order, variable step size Runge-Kutta integration routine to compute the gravitational lensing effect within an RSC model by tracking the amplification and distortion of a series of beams that are propagated through it. The output generated allows the redshift evolution of these quantities to be plotted for each beam, and enables maps to be made of the "observed sky". The amplification signature produced by a single lens in the model is examined, and the form shown
Probing cluster potentials through gravitational lensing of background X-ray sources
NASA Technical Reports Server (NTRS)
Refregier, A.; Loeb, A.
1996-01-01
The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.
Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing
Kashlinsky, A.
1988-08-01
It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references.
SDSS J0246-0825: A New Gravitationally Lensed Quasar from the Sloan Digital Sky Survey
Inada, N; Burles, S; Gregg, M D; Becker, R H; Schechter, P L; Eisenstein, D J; Oguri, M; Castander, F J; Hall, P B; Johnston, D E; Pindor, B; Richards, G T; Schneider, D P; White, R L; Brinkmann, J; Szalay, A; York, D G
2005-11-10
We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used to discover other SDSS lensed quasars (e.g., SDSS J0924+0219). Multicolor imaging with the Magellan Consortium's Walter Baade 6.5-m telescope and the spectroscopic observations using the W. M. Keck Observatory's Keck II telescope confirm that SDSS J0246-0825 consists of two lensed images ({Delta}{theta} = 1''.04) of a source quasar at z = 1.68. Imaging observations with the Keck telescope and the Hubble Space Telescope reveal an extended object between the two quasar components, which is likely to be a lensing galaxy of this system. From the absorption lines in the spectra of quasar components and the apparent magnitude of the galaxy, combined with the expected absolute magnitude from the Faber-Jackson relation, we estimate the redshift of the lensing galaxy to be z = 0.724. A highly distorted ring is visible in the Hubble Space Telescope images, which is likely to be the lensed host galaxy of the source quasar. Simple mass modeling predicts the possibility that there is a small (faint) lensing object near the primary lensing galaxy.
NASA Astrophysics Data System (ADS)
Biernaux, J.; Magain, P.; Sluse, D.; Chantry, V.
2016-01-01
Context. The luminosity profiles of galaxies acting as strong gravitational lenses can be tricky to study. Indeed, strong gravitational lensing images display several lensed components, both point-like and diffuse, around the lensing galaxy. Those objects limit the study of the galaxy luminosity to its inner parts. Therefore, the usual fitting methods perform rather badly on such images. Previous studies of strong lenses luminosity profiles using software such as GALFIT or IMFITFITS and various PSF-determining methods have resulted in somewhat discrepant results. Aims: The present work aims at investigating the causes of those discrepancies, as well as at designing more robust techniques for studying the morphology of early-type lensing galaxies with the ability to subtract a lensed signal from their luminosity profiles. Methods: We design a new method to independently measure each shape parameter, namely, the position angle, ellipticity, and half-light radius of the galaxy. Our half-light radius measurement method is based on an innovative scheme for computing isophotes that is well suited to measuring the morphological properties of gravititational lensing galaxies. Its robustness regarding various specific aspects of gravitational lensing image processing is analysed and tested against GALFIT. It is then applied to a sample of systems from the CASTLES database. Results: Simulations show that, when restricted to small, inner parts of the lensing galaxy, the technique presented here is more trustworthy than GALFIT. It gives more robust results than GALFIT, which shows instabilities regarding the fitting region, the value of the Sérsic index, and the signal-to-noise ratio. It is therefore better suited than GALFIT for gravitational lensing galaxies. It is also able to study lensing galaxies that are not much larger than the PSF. New values for the half-light radius of the objects in our sample are presented and compared to previous works. Table 6 is only available
SDSS J094604.90+183541.8: A GRAVITATIONALLY LENSED QUASAR AT z = 4.8
McGreer, Ian D.; Fan Xiaohui; Bian Fuyan; Farnsworth, Kara; Hall, Patrick B.; Inada, Naohisa; Oguri, Masamune; Strauss, Michael A.; Schneider, Donald P.
2010-08-15
We report the discovery of a gravitationally lensed quasar identified serendipitously in the Sloan Digital Sky Survey (SDSS). The object, SDSS J094604.90+183541.8, was initially targeted for spectroscopy as a luminous red galaxy, but the SDSS spectrum has the features of both a z = 0.388 galaxy and a z = 4.8 quasar. We have obtained additional imaging that resolves the system into two quasar images separated by 3.''06 and a bright galaxy that is strongly blended with one of the quasar images. We confirm spectroscopically that the two quasar images represent a single-lensed source at z = 4.8 with a total magnification of 3.2, and we derive a model for the lensing galaxy. This is the highest redshift lensed quasar currently known. We examine the issues surrounding the selection of such an unusual object from existing data and briefly discuss implications for lensed quasar surveys.
Probabilities for gravitational lensing by point masses in a locally inhomogeneous universe
NASA Technical Reports Server (NTRS)
Isaacson, Jeffrey A.; Canizares, Claude R.
1989-01-01
Probability functions for gravitational lensing by point masses that incorporate Poisson statistics and flux conservation are formulated in the Dyer-Roeder construction. Optical depths to lensing for distant sources are calculated using both the method of Press and Gunn (1973) which counts lenses in an otherwise empty cone, and the method of Ehlers and Schneider (1986) which projects lensing cross sections onto the source sphere. These are then used as parameters of the probability density for lensing in the case of a critical (q0 = 1/2) Friedmann universe. A comparison of the probability functions indicates that the effects of angle-averaging can be well approximated by adjusting the average magnification along a random line of sight so as to conserve flux.
Gravitational lensing frequencies - Galaxy cross-sections and selection effects
NASA Technical Reports Server (NTRS)
Fukugita, Masataka; Turner, Edwin L.
1991-01-01
Four issues - (1) the best currently available data on the galaxy velocity-dispersion distribution, (2) the effects of finite core radii potential ellipticity on lensing cross sections, (3) the predicted distribution of lens image separations compared to observational angular resolutions, and (4) the preferential inclusion of lens systems in flux limited samples - are considered in order to facilitate more realistic predictions of multiple image galaxy-quasar lensing frequencies. It is found that (1) the SIS lensing parameter F equals 0.047 +/-0.019 with almost 90 percent contributed by E and S0 galaxies, (2) observed E and S0 core radii are remarkably small, yielding a factor of less than about 2 reduction in total lensing cross sections, (3) 50 percent of galaxy-quasar lenses have image separations greater than about 1.3 arcsec, and (4) amplification bias factors are large and must be carefully taken into account. It is concluded that flat universe models excessively dominated by the cosmological constant are not favored by the small observed galaxy-quasar lensing rate.
Mass to light ratio of galaxies and gravitational lensing
NASA Astrophysics Data System (ADS)
Li, Nan; Li, Ran; Er, Xin-Zhong
2013-09-01
We investigate the potential of constraining the mass to light ratio of field galaxies using weak lensing shear and flexions. A suite of Monte Carlo simulations are used to generate weak lensing observations with different noise models. Using mock data, we find that the inclusion of flexions can improve the estimate of foreground halo parameters, but the details are strongly dependent on noise in the model. In the intrinsic noise limit, both shear and flexions are promising tools to study the mass to light ratio of galaxies. However, if the noise model of flexions follows the form described by Rowe et al., there is only ~5% improvement in the constraints even with next generation lensing observations.
Comparison of CMB lensing efficiency of gravitational waves and large scale structure
NASA Astrophysics Data System (ADS)
Padmanabhan, Hamsa; Rotti, Aditya; Souradeep, Tarun
2013-09-01
We provide a detailed treatment and comparison of the weak lensing effects due to large scale structure (LSS), or scalar density perturbations and those due to gravitational waves (GWs) or tensor perturbations, on the temperature and polarization power spectra of the cosmic microwave background (CMB). We carry out the analysis both in real space by using the correlation function method, as well as in the spherical harmonic space. We find an intriguing similarity between the lensing kernels associated with LSS lensing and GW lensing. It is found that the lensing kernels only differ in relative negative signs and their form is very reminiscent of even and odd parity bipolar spherical harmonic coefficients. Through a numerical study of these lensing kernels, we establish that lensing due to GW is more efficient at distorting the CMB spectra as compared to LSS lensing, particularly for the polarization power spectra. Finally we argue that the CMB B-mode power spectra measurements can be used to place interesting constraints on GW energy densities.
Gravitational lensing of the cosmic microwave background by non-linear structures
NASA Astrophysics Data System (ADS)
Merkel, Philipp M.; Schäfer, Björn Malte
2011-02-01
Weak gravitational lensing changes the angular power spectra of the cosmic microwave background (CMB) temperature and polarization in a characteristic way containing valuable information for cosmological parameter estimation. So far, analytical expressions for the lensed CMB power spectra assume the probability density function (PDF) of the lensing excursion angle to be Gaussian. However, coherent light deflection by non-linear structures at low redshifts causes deviations from a pure Gaussian PDF. Working in the flat-sky limit, we develop a method for computing the lensed CMB power spectra which takes these non-Gaussian features into account. Our method does not assume any specific PDF but uses instead an expansion of the characteristic function of the lensing excursion angle into its moments. Measuring these in the CMB lensing deflection field obtained from the Millennium Simulation we show that the change in the lensed power spectra is only at the 0.1-0.4 per cent level on very small scales (Δθ≲ 4 arcmin, l≳ 2500) and demonstrate that the assumption of a Gaussian lensing excursion angle PDF is well applicable.
Gravitational lensing analysis of the Kilo-Degree Survey
NASA Astrophysics Data System (ADS)
Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik; Nakajima, Reiko; Erben, Thomas; de Jong, Jelte T. A.; Viola, Massimo; Choi, Ami; Hoekstra, Henk; Miller, Lance; van Uitert, Edo; Amon, Alexandra; Blake, Chris; Brouwer, Margot; Buddendiek, Axel; Conti, Ian Fenech; Eriksen, Martin; Grado, Aniello; Harnois-Déraps, Joachim; Helmich, Ewout; Herbonnet, Ricardo; Irisarri, Nancy; Kitching, Thomas; Klaes, Dominik; La Barbera, Francesco; Napolitano, Nicola; Radovich, Mario; Schneider, Peter; Sifón, Cristóbal; Sikkema, Gert; Simon, Patrick; Tudorica, Alexandru; Valentijn, Edwin; Verdoes Kleijn, Gijs; van Waerbeke, Ludovic
2015-12-01
The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the European Southern Observatory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 arcmin-2. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing measurement and one for accurate matched-aperture photometry (for photometric redshifts). This technical paper describes the lensing and photometric redshift measurements (including a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data quality and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and describe our blinding procedure for preventing confirmation bias in the scientific analyses. The KiDS catalogues presented in this paper are released to the community through http://kids.strw.leidenuniv.nl.
Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Barnacka, Anna
2014-08-01
It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.
MEASURING GRAVITATIONAL LENSING FLEXION IN A1689 USING AN ANALYTIC IMAGE MODEL
Cain, Benjamin
2011-07-20
Measuring dark matter substructure within galaxy cluster halos is a fundamental probe of the {Lambda}CDM model of structure formation. Gravitational lensing is a technique for measuring the total mass distribution which is independent of the nature of the gravitating matter, making it a vital tool for studying these dark-matter-dominated objects. We present a new method for measuring weak gravitational lensing flexion fields, the gradients of the lensing shear field, to measure mass distributions on small angular scales. While previously published methods for measuring flexion focus on measuring derived properties of the lensed images, such as shapelet coefficients or surface brightness moments, our method instead fits a mass-sheet transformation invariant Analytic Image Model (AIM) to each galaxy image. This simple parametric model traces the distortion of lensed image isophotes and constrains the flexion fields. We test the AIM method using simulated data images with realistic noise and a variety of unlensed image properties, and show that it successfully reproduces the input flexion fields. We also apply the AIM method for flexion measurement to Hubble Space Telescope observations of A1689 and detect mass structure in the cluster using flexion measured with this method. We also estimate the scatter in the measured flexion fields due to the unlensed shape of the background galaxies and find values consistent with previous estimates.
Role of deficit solid angle and quintessence-like matter in strong field gravitational lensing
NASA Astrophysics Data System (ADS)
Geng, Jin-Ling; Zhang, Yu; Li, En-Kun; Duan, Peng-Fei
2016-12-01
Using the strong field limit approach, the strong field gravitational lensing in a black hole with deficit solid angle (DSA) and surrounded by quintessence-like matter (QM) has been investigated. The results show that the DSA ɛ2, the energy density of QM ρ0 and the equation of state (EOS) parameter w have some distinct effects on the strong field gravitational lensing. As ɛ2 or ρ0 increases, the deflection angle and the strong field limit coefficients all increase faster and faster. Moreover, the evolution of the main observables also has been studied, which shows that the curves at w = -2/3 are more steepy than those of w = -1/3. Compared with the Schwarzschild black hole, the black hole surrounded by QM has smaller relative magnitudes, and at w = -1/3 both the angular position and angular separation are slightly bigger than those of Schwarzschild black hole, but when w = -2/3, the angular position and the relative magnitudes all diminish significantly. Therefore, by studying the strong gravitational lensing, we can distinguish the black hole with a DSA and surrounded by QM from the Schwarzschild black hole and the effects of the DSA and QM on the strong gravitational lensing by black holes can be known better.
On the numbers of images of two stochastic gravitational lensing models
NASA Astrophysics Data System (ADS)
Wei, Ang
2017-02-01
We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.
Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing
NASA Astrophysics Data System (ADS)
Chen, Da-Ming
2005-08-01
We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from 0" to 10") is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev, & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS + NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profile (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.
Testing the MOND paradigm of modified dynamics with galaxy-galaxy gravitational lensing.
Milgrom, Mordehai
2013-07-26
The MOND paradigm of modified dynamics predicts that the asymptotic gravitational potential of an isolated, bounded (baryonic) mass, M, is ϕ(r)=(MGa0)1/2ln(r). Relativistic MOND theories predict that the lensing effects of M are dictated by ϕ(r) as general-relativity lensing is dictated by the Newtonian potential. Thus MOND predicts that the asymptotic Newtonian potential deduced from galaxy-galaxy gravitational lensing will have (1) a logarithmic r dependence, and (2) a normalization (parametrized standardly as 2σ2) that depends only on M: σ=(MGa0/4)1/4. I compare these predictions with recent results of galaxy-galaxy lensing, and find agreement on all counts. For the “blue”-lenses subsample (“spiral” galaxies) MOND reproduces the observations well with an r′-band M/Lr′∼(1–3)(M/L)⊙, and for “red” lenses (“elliptical” galaxies) with M/Lr′∼(3–6)(M/L)⊙, both consistent with baryons only. In contradistinction, Newtonian analysis requires, typically, M/Lr′∼130(M/L)⊙, bespeaking a mass discrepancy of a factor ∼40. Compared with the staple, rotation-curve tests, MOND is here tested in a wider population of galaxies, through a different phenomenon, using relativistic test objects, and is probed to several-times-lower accelerations–as low as a few percent of a0.
Ding, Xuheng; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl
2015-12-01
With a fantastic sensitivity improving significantly over the advanced GW detectors, Einstein Telescope (ET) will be able to observe hundreds of thousand inspiralling double compact objects per year. By virtue of gravitational lensing effect, intrinsically unobservable faint sources can be observed by ET due to the magnification by intervening galaxies. We explore the possibility of observing such faint sources amplified by strong gravitational lensing. Following our previous work, we use the merger rates of DCO (NS-NS,BH-NS,BH-BH systems) as calculated by Dominik et al.(2013). It turns out that tens to hundreds of such (lensed) extra events will be registered by ET. This will strongly broaden the ET's distance reach for signals from such coalescences to the redshift range z = 2 − 8. However, with respect to the full inspiral event catalog this magnification bias is at the level of 0.001 and should not affect much cosmological inferences.
The Dust-to-Gas Ratio in the Damped Ly alpha Clouds Towards the Gravitationally Lensed QSO 0957+561
NASA Technical Reports Server (NTRS)
Zuo, Lin; Beaver, E. A.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Lyons, R. W.
1997-01-01
We present HST/FOS spectra of the two bright images (A and B) of the gravitationally lensed QSO 0957+561 in the wavelength range 2200-3300 A. We find that the absorption system (Z(sub abs)) = 1.3911) near z(sub em) is a weak, damped Ly alpha system with strong Ly alpha absorption lines seen in both images. However, the H(I) column densities are different, with the line of sight to image A intersecting a larger column density. The continuum shapes of the two spectra differ in the sense that the flux level of image A increases more slowly toward shorter wavelengths than that of image B. We explain this as the result of differential reddening by dust grains in the damped Ly alpha absorber. A direct outcome of this explanation is a determination of the dust-to-gas ratio, k, in the damped Ly alpha system. We derive k = 0.55 + 0.18 for a simple 1/lambda extinction law and k = 0.31 + 0.10 for the Galactic extinction curve. For gravitationally lensed systems with damped Ly alpha absorbers, our method is a powerful tool for determining the values and dispersion of k, and the shapes of extinction curves, especially in the FUV and EUV regions. We compare our results with previous work.
Gravitational lens equation for embedded lenses; magnification and ellipticity
Chen, B.; Kantowski, R.; Dai, X.
2011-10-15
We give the lens equation for light deflections caused by point mass condensations in an otherwise spatially homogeneous and flat universe. We assume the signal from a distant source is deflected by a single condensation before it reaches the observer. We call this deflector an embedded lens because the deflecting mass is part of the mean density. The embedded lens equation differs from the conventional lens equation because the deflector mass is not simply an addition to the cosmic mean. We prescribe an iteration scheme to solve this new lens equation and use it to compare our results with standard linear lensing theory. We also compute analytic expressions for the lowest order corrections to image amplifications and distortions caused by incorporating the lensing mass into the mean. We use these results to estimate the effect of embedding on strong lensing magnifications and ellipticities and find only small effects, <1%, contrary to what we have found for time delays and for weak lensing, {approx}5%.
Possible Approaches to Measuring the Distance-Redshift Relation via Gravitational Lensing
NASA Astrophysics Data System (ADS)
Stankus, Paul
2005-04-01
The primary evidence for an accelerating Universe, currently, is found in the departure from the Hubble relation for distance vs redshift as measured in distant supernovae. These methods rely on knowing the intrinsic luminosities of ancient supernovae, and while there is no reason to doubt them it is clearly desirable to have alternate measurements of the distance-redshift relation which do not involve luminosities. Gravitational lensing of distant galaxies may afford such a measurement. Outlines for two possible approaches are described: (1) Strong lensing of CMB anisotropies in coincidence with strong lensing of a distant galaxy; (2) Statistical correlation of weak lensing signatures with redshift. Feasibility using current and future instruments are briefly discussed.
Constraining Horava-Lifshitz gravity by weak and strong gravitational lensing
Horvath, Zsolt; Gergely, Laszlo A.; Keresztes, Zoltan; Harko, Tiberiu; Lobo, Francisco S. N.
2011-10-15
We discuss gravitational lensing in the Kehagias-Sfetsos space-time emerging in the framework of Horava-Lifshitz gravity. In weak lensing, we show that there are three regimes, depending on the value of {lambda}=1/{omega}d{sup 2}, where {omega} is the Horava-Lifshitz parameter and d characterizes the lensing geometry. When {lambda} is close to zero, light deflection typically produces two images, as in Schwarzschild lensing. For very large {lambda}, the space-time approaches flatness, therefore there is only one undeflected image. In the intermediate range of {lambda}, only the upper focused image is produced due to the existence of a maximal deflection angle {delta}{sub max}, a feature inexistent in the Schwarzschild weak lensing. We also discuss the location of Einstein rings, and determine the range of the Horava-Lifshitz parameter compatible with present-day lensing observations. Finally, we analyze in the strong lensing regime the first two relativistic Einstein rings and determine the constraints on the parameter range to be imposed by forthcoming experiments.
Background, foreground and nearby matter influence on strong gravitational lenses
NASA Astrophysics Data System (ADS)
Jaroszynski, M.; Kostrzewa-Rutkowska, Z.
2012-07-01
We investigate strong lensing by non-singular finite isothermal ellipsoids taking into account the influence of the matter along the line of sight and in the close lens vicinity. We compare three descriptions of light propagation: the full approach taking into account all matter inhomogeneities along the rays; the single plane approach, where we take into account the influence of the strong lens neighbours but neglect the foreground and background objects; and the single lens approach. In each case, we simulate many strong lensing configurations placing a point source at the same redshift but in different locations inside the region surrounded by caustics. We further analyse configurations of four or five images. For every simulated strong lensing configuration, we attempt to fit a simplified lens model using a single isothermal ellipsoid or a single isothermal ellipsoid with external shear. The single lens fits to configurations obtained in the full approach are rejected in majority of cases with 95 per cent significance. For configurations obtained in the single plane approach, the rejection rate is substantially lower. Also the inclusion of external shear in simplified modelling improves the chances of obtaining acceptable fits, but the problem is not solved completely. The quantitative estimates of the rates of rejection of simplified models depend on the required accuracy of the models, and we present few illustrative examples, which show that both matter close to the lens and matter along the rays do have important influence on lens modelling. We also estimate the typical value of the external shear and compare the fitted parameters of the simplified models with the parameters of the lenses used in the simulations.
Retro gravitational lensing for Sgr A* with Radiastron
NASA Astrophysics Data System (ADS)
Zakharov, A. F.; Nucita, A. A.; de Paolis, F.; Ingrosso, G.
2005-03-01
Recently Holz & Wheeler (2002) have considered a very attractive possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. We analyze the case of a Kerr black hole with an arbitrary spin for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. We discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters by analyzing these forms of mirages. In some sense, that is a manifestation of gravitational lens effect in the strong gravitational field near the black hole horizon and a generalization of the retro-gravitational lens phenomenon. We also propose to use future radio interferometer Radioastron facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.
Rotation of the cosmic microwave background polarization from weak gravitational lensing.
Dai, Liang
2014-01-31
When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.
A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses
NASA Astrophysics Data System (ADS)
Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan
2017-08-01
A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopes of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.
Discovery and Characterization of Gravitationally Lensed X-ray Sources in the CLASH Sample
NASA Astrophysics Data System (ADS)
Pasha, Imad; Van Weeren, Reinout J.; Santos, Felipe A.
2017-01-01
We present the discovery of ~20 gravitationally lensed X-ray sources in the Cluster Lensing And Supernova survey with Hubble (CLASH) survey, a sample of massive clusters of galaxies between z ~ 0.2-0.9 observed with the Hubble Space Telescope (HST). By combining CLASH imaging with Chandra X-ray Observatory observations of the same clusters, we select those sources in the HST images which are gravitationally lensed X-ray sources behind the clusters. Of those discovered sources, we determine various properties including source redshifts and magnifications, as well as performing X-ray spectral fits to determine source fluxes and luminosities. Prior to this study, only four lensed X-ray sources behind clusters have been found, thus to the best of our knowledge, our program is the first to systematically categorize lensed X-ray sources behind galaxy clusters.This work was supported by the SAO REU program, which is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Yoo, Jaiyul
2009-01-15
We present a coherent theoretical framework for computing gravitational lensing effects and redshift-space distortions in an inhomogeneous universe and investigate their impacts on galaxy two-point statistics. Adopting the linearized Friedmann-Lemaitre-Robertson-Walker metric, we derive the gravitational lensing and the generalized Sachs-Wolfe effects that include the weak lensing distortion, magnification, and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and integrated Sachs-Wolfe effects, respectively. Based on this framework, we first compute their effects on observed source fluctuations, separating them as two physically distinct origins: the volume effect that involves the change of volume and is always present in galaxy two-point statistics, and the source effect that depends on the intrinsic properties of source populations. Then we identify several terms that are ignored in the standard method, and we compute the observed galaxy two-point statistics, an ensemble average of all the combinations of the intrinsic source fluctuations and the additional contributions from the gravitational lensing and the generalized Sachs-Wolfe effects. This unified treatment of galaxy two-point statistics clarifies the relation of the gravitational lensing and the generalized Sachs-Wolfe effects to the metric perturbations and the underlying matter fluctuations. For near-future dark energy surveys, we compute additional contributions to the observed galaxy two-point statistics and analyze their impact on the anisotropic structure. Thorough theoretical modeling of galaxy two-point statistics would be not only necessary to analyze precision measurements from upcoming dark energy surveys, but also provide further discriminatory power in understanding the underlying physical mechanisms.
SDSS J102111.02+491330.4: A Newly discovered gravitationally lensed quasar
Pindor, Bart; Eisenstein, Daniel J.; Gregg, Michael D.; Becker, Robert H.; Inada, Naohisa; Oguri, Masamune; Hall, Patrick B.; Johnston, David E.; Richards, Gordon T.; Schneider, Donald P.; Turner, Edwin L.; Brasi, Guido; Hinz, Philip M.; Kenworthy, Matthew A.; Miller, Doug; Barentine, J.C.; Brewington, Howard J.; Brinkmann, J.; Harvanek, Michael; Kleinman, S.J.; Krzesinski, Jurek; /Toronto U., Astron. Dept. /Arizona U., Astron. Dept. - Steward Observ. /UC, Davis /LLNL, Livermore /Tokyo U., Inst. Astron. /Tokyo U. /Princeton U. Observ. /York U., Canada /Penn State U., Astron. Astrophys. /Apache Point Observ. /Mt. Suhora Observ., Cracow /Fermilab /Chicago U., Astron. Astrophys. Ctr.
2005-09-01
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1.14'' {+-} 0.04''. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1.49'' {+-} 0.02''. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.
SDSSJ102111.02+491330.4: A Newly Discovered Gravitationally Lensed Quasar
Pindor, B; Eisenstein, D J; Gregg, M D; Becker, R H; Inada, N; Oguri, M; Hall, P B; Johnston, D E; Richards, G T; Schneider, D P; Turner, E L; Brasi, G; Hinz, P M; Kenworthy, M A; Miller, D; Barentine, J C; Brewington, H J; Brinkmann, J; Harvanek, M; Kleinman, S J; Krzesinski, J; Long, D; Neilsen Jr., E H; Newman, P R; Nitta, A; Snedden, S A; York, D G
2005-11-10
We report follow-up observations of two gravitational lens candidates identified in the Sloan Digital Sky Survey (SDSS) dataset. We have confirmed that SDSS J102111.02+491330.4 is a previously unknown gravitationally lensed quasar. This lens system exhibits two images of a z = 1.72 quasar, with an image separation of 1''.14 {+-} 0.04. Optical and near-IR imaging of the system reveals the presence of the lensing galaxy between the two quasar images. Observations of SDSS J112012.12+671116.0 indicate that it is more likely a binary quasar than a gravitational lens. This system has two quasars at a redshift of z = 1.49, with an angular separation of 1''.49 {+-} 0.02. However, the two quasars have markedly different SEDs and no lens galaxy is apparent in optical and near-IR images of this system. We also present a list of 31 SDSS lens candidates which follow-up observations have confirmed are not gravitational lenses.
Nemesis, Tyche, Planet Nine Hypotheses. I. Can We Detect the Bodies Using Gravitational Lensing?
NASA Astrophysics Data System (ADS)
Philippov, J. P.; Chobanu, M. I.
2016-08-01
In this paper, the hypothesis of the existence of a massive dark body (Nemesis, Tyche, Planet Nine, or any other trans-Plutonian planet) at the Solar system periphery is analysed. Basic physical properties and orbital characteristics of such massive bodies are considered. The problem of the definition of a scattering angle of a photon in the gravitational field of a spherical lens is studied. It is shown that, the required value of the scattering angle can be measured for the cases of Nemesis and Tyche. The formation of gravitational lensing images is studied here for a point mass event. It is demonstrated that in most cases of the close rapprochement of a source and the lens (for Nemesis and Tyche), it is possible to resolve two images. The possibility of resolving these images is one of the main arguments favouring the gravitational lensing method as its efficiency in searching for dark massive objects at the edge of the Solar System is higher than the one corresponding to other methods such as stellar occultation. For the cases of Planet Nine and any other trans-Plutonian planet, the strong gravitational lensing is impossible because at least one of the images is always eclipsed.
Strong gravitational lensing in f(χ) = χ3/2 gravity
NASA Astrophysics Data System (ADS)
Campigotto, M. C.; Diaferio, A.; Hernandez, X.; Fatibene, L.
2017-06-01
We discuss the phenomenology of gravitational lensing in the purely metric f(χ) gravity, an f(R) gravity where the action of the gravitational field depends on the source mass. We focus on the strong lensing regime in galaxy-galaxy lens systems and in clusters of galaxies. By adopting point-like lenses and using an approximate metric solution accurate to second order of the velocity field v/c, we show how, in the f(χ) = χ3/2 gravity, the same light deflection can be produced by lenses with masses smaller than in General Relativity (GR); this mass difference increases with increasing impact parameter and decreasing lens mass. However, for sufficiently massive point-like lenses and small impact parameters, f(χ) = χ3/2 and GR yield indistinguishable light deflection angles: this regime occurs both in observed galaxy-galaxy lens systems and in the central regions of galaxy clusters. In the former systems, the GR and f(χ) masses are compatible with the mass of standard stellar populations and little or no dark matter, whereas, on the scales of the core of galaxy clusters, the presence of substantial dark matter is required by our point-like lenses both in GR and in our approximate f(χ) = χ3/2 solution. We thus conclude that our approximate metric solution of f(χ) = χ3/2 is unable to describe the observed phenomenology of the strong lensing regime without the aid of dark matter.
Constraining modified gravitational theories by weak lensing with Euclid
Martinelli, Matteo; Calabrese, Erminia; De Bernardis, Francesco; Melchiorri, Alessandro; Pagano, Luca; Scaramella, Roberto
2011-01-15
Future proposed satellite missions such as Euclid can offer the opportunity to test general relativity on cosmic scales through mapping of the galaxy weak-lensing signal. In this paper we forecast the ability of these experiments to constrain modified gravity scenarios such as those predicted by scalar-tensor and f(R) theories. We find that Euclid will improve constraints expected from the Planck satellite on these modified theories of gravity by 2 orders of magnitude. We discuss parameter degeneracies and the possible biases introduced by modifications to gravity.
Analysis of gravitational effects on liquid lenses (ANGEL)
NASA Astrophysics Data System (ADS)
Newman, Kevin; Stephens, Kyle
2012-09-01
Liquid lenses have been developed as a means for fast and reliable variable-focus optics by using an adjustable curvature in a liquid-liquid interface. The use of liquid lenses also provides the benefit of reducing the number of elements in a system, and providing a degree of freedom without any moving parts. Different methods for surface curvature actuation have been developed, including aperture adjustment, mechanical actuators, stimuli-responsive hydrogels, and mechanical-wetting. Current liquid lens designs are limited to small apertures (less than 4mm) and density-matching fluids to lessen the negative effects of gravity. By creating a lens intended for use in a microgravity environment, the aperture size can be increased by orders of magnitude, and optimal fluids can be used regardless of their density. Using a large-aperture (12mm) liquid lens, image and surface metrology was conducted using a fixed-focus configuration. The Software Configurable Optical Test System (SCOTS) method was utilized to test the effect of microgravity, standard gravity, and hypergravity on the liquid lens during parabolic flights. Under standard gravity, the RMS wavefront error (WFE) was 27 wavelengths, while microgravity conditions allowed an improvement to 17 wavelengths RMS WFE. Test performance can be improved by using lower viscosity fluids or longer duration microgravity flights. The experiment also served as an engineering demonstration for the SCOTS method in an environment where other methods of optical metrology would be impossible.
Detecting Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters
Baxter, Eric Jones
2014-08-01
Clusters of galaxies gravitationally lens the Cosmic Microwave Background (CMB) leading to a distinct signal in the CMB on arcminute scales. Measurement of the cluster lensing effect offers the exciting possibility of constraining the masses of galaxy clusters using CMB data alone. Improved constraints on cluster masses are in turn essential to the use of clusters as cosmological probes: uncertainties in cluster masses are currently the dominant systematic affecting cluster abundance constraints on cosmology. To date, however, the CMB cluster lensing signal remains undetected because of its small magnitude and angular size. In this thesis, we develop a maximum likelihood approach to extracting the signal from CMB temperature data. We validate the technique by applying it to mock data designed to replicate as closely as possible real data from the South Pole Telescope’s (SPT) Sunyaev-Zel’dovich (SZ) survey: the effects of the SPT beam, transfer function, instrumental noise and cluster selection are incorporated. We consider the effects of foreground emission on the analysis and show that uncertainty in amount of foreground lensing results in a small systematic error on the lensing constraints. Additionally, we show that if unaccounted for, the SZ effect leads to unacceptably large biases on the lensing constraints and develop an approach for removing SZ contamination. The results of the mock analysis presented here suggest that a 4σ first detection of the cluster lensing effect can be achieved with current SPT-SZ data.
Shadows (Mirages) Around Black Holes and Retro Gravitational Lensing
NASA Astrophysics Data System (ADS)
Zakharov, A. F.; Nucita, A. A.; Depaolis, F.; Ingrosso, G.
Recently Holz & Wheeler [1] considered a very attracting possibility to detect retro-MACHOs, i.e. retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages (a detailed description of the problem is given in [2]). In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. Some time ago Falcke, Melia & Agol [3] suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows calculated numerically. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer.
VizieR Online Data Catalog: Globular clusters as gravitational lenses (Bukhmastova, 2003)
NASA Astrophysics Data System (ADS)
Bukhmastova, Yu. L.
2003-10-01
We argue that globular clusters (GCs) are good candidates for gravitational lenses in explaining quasar-galaxy associations. The catalog of associations (Bukhmastova, 2001, Cat.
Cosmological constraints from strong gravitational lensing in clusters of galaxies.
Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo
2010-08-20
Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.
Fast automated analysis of strong gravitational lenses with convolutional neural networks
NASA Astrophysics Data System (ADS)
Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.
2017-08-01
Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.
Fast automated analysis of strong gravitational lenses with convolutional neural networks
Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.
2017-08-30
Quantifying image distortions caused by strong gravitational lensing—the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures—and estimating the corresponding matter distribution of these structures (the ‘gravitational lens’) has primarily been performed using maximum likelihood modelling of observations. Our procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physicalmore » processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. We report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the ‘singular isothermal ellipsoid’ density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.« less
Gravitational lensing by a massive black hole at the Galactic center
NASA Technical Reports Server (NTRS)
Wardle, Mark; Yusef-Zadeh, Farhad
1992-01-01
The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.
Gravitational lensing by a massive black hole at the Galactic center
NASA Technical Reports Server (NTRS)
Wardle, Mark; Yusef-Zadeh, Farhad
1992-01-01
The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.
Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.
2016-03-10
We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \\pm 0.36$ for DES$\\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.
NASA Astrophysics Data System (ADS)
Coe, Daniel Aaron
The goal of thesis is to help scientists resolve one of the great mysteries of our time: the nature of Dark Matter. Dark Matter is currently believed to make up over 80% of the material in our universe, yet we have so far inferred but a few of its basic properties. Here we study the Dark Matter surrounding a galaxy cluster, Abell 1689, via the most direct method currently available--gravitational lensing. Abell 1689 is a "strong" gravitational lens, meaning it produces multiple images of more distant galaxies. The observed positions of these images can be measured very precisely and act as a blueprint allowing us to reconstruct the Dark Matter distribution of the lens. Until now, such mass models of Abell 1689 have reproduced the observed multiple images well but with significant positional offsets. Using a new method we develop here, we obtain a new mass model which perfectly reproduces the observed positions of 168 knots identified within 135 multiple images of 42 galaxies. An important ingredient to our mass model is the accurate measurement of distances to the lensed galaxies via their photometric redshifts. Here we develop tools which improve the accuracy of these measurements based on our study of the Hubble Ultra Deep Field, the only image yet taken to comparable depth as the magnified regions of Abell 1689. We present results both for objects in the Hubble Ultra Deep Field and for galaxies gravitationally lensed by Abell 1689. As part of this thesis, we also provide reviews of Dark Matter and Gravitational Lensing, including a chapter devoted to the mass profiles of Dark Matter halos realized in simulations. The original work presented here was performed primarily by myself under the guidance of Narciso Benítez and Holland Ford as a member of the Advanced Camera for Surveys GTO Science Team at Johns Hopkins University and the Instituto de Astrofisica de Andalucfa. My advisors served on my thesis committee along with Rick White, Gabor Domokos, and Steve
First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements
NASA Astrophysics Data System (ADS)
Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.
2017-04-01
Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ∼180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.
An accurate and practical method for inference of weak gravitational lensing from galaxy images
NASA Astrophysics Data System (ADS)
Bernstein, Gary M.; Armstrong, Robert; Krawiec, Christina; March, Marisa C.
2016-07-01
We demonstrate highly accurate recovery of weak gravitational lensing shear using an implementation of the Bayesian Fourier Domain (BFD) method proposed by Bernstein & Armstrong, extended to correct for selection biases. The BFD formalism is rigorously correct for Nyquist-sampled, background-limited, uncrowded images of background galaxies. BFD does not assign shapes to galaxies, instead compressing the pixel data D into a vector of moments M, such that we have an analytic expression for the probability P(M|g) of obtaining the observations with gravitational lensing distortion g along the line of sight. We implement an algorithm for conducting BFD's integrations over the population of unlensed source galaxies which measures ≈10 galaxies s-1 core-1 with good scaling properties. Initial tests of this code on ≈109 simulated lensed galaxy images recover the simulated shear to a fractional accuracy of m = (2.1 ± 0.4) × 10-3, substantially more accurate than has been demonstrated previously for any generally applicable method. Deep sky exposures generate a sufficiently accurate approximation to the noiseless, unlensed galaxy population distribution assumed as input to BFD. Potential extensions of the method include simultaneous measurement of magnification and shear; multiple-exposure, multiband observations; and joint inference of photometric redshifts and lensing tomography.
A NEW APPROACH TO IDENTIFYING THE MOST POWERFUL GRAVITATIONAL LENSING TELESCOPES
Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.; Hogg, David W.; Gonzalez, Anthony H.
2013-05-20
The best gravitational lenses for detecting distant galaxies are those with the largest mass concentrations and the most advantageous configurations of that mass along the line of sight. Our new method for finding such gravitational telescopes uses optical data to identify projected concentrations of luminous red galaxies (LRGs). LRGs are biased tracers of the underlying mass distribution, so lines of sight with the highest total luminosity in LRGs are likely to contain the largest total mass. We apply this selection technique to the Sloan Digital Sky Survey and identify the 200 fields with the highest total LRG luminosities projected within a 3.'5 radius over the redshift range 0.1 {<=} z {<=} 0.7. The redshift and angular distributions of LRGs in these fields trace the concentrations of non-LRG galaxies. These fields are diverse; 22.5% contain one known galaxy cluster and 56.0% contain multiple known clusters previously identified in the literature. Thus, our results confirm that these LRGs trace massive structures and that our selection technique identifies fields with large total masses. These fields contain two to three times higher total LRG luminosities than most known strong-lensing clusters and will be among the best gravitational lensing fields for the purpose of detecting the highest redshift galaxies.
A distortion of very-high-redshift galaxy number counts by gravitational lensing.
Wyithe, J Stuart B; Yan, Haojing; Windhorst, Rogier A; Mao, Shude
2011-01-13
The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z ≳ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ∼0.5 per cent (refs 11, 12), but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z ≳ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ≈ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ≈ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.
Symmetric Achromatic Variability in Active Galaxies: A Powerful New Gravitational Lensing Probe?
NASA Astrophysics Data System (ADS)
Vedantham, H. K.; Readhead, A. C. S.; Hovatta, T.; Pearson, T. J.; Blandford, R. D.; Gurwell, M. A.; Lähteenmäki, A.; Max-Moerbeck, W.; Pavlidou, V.; Ravi, V.; Reeves, R. A.; Richards, J. L.; Tornikoski, M.; Zensus, J. A.
2017-08-01
We report the discovery of a rare new form of long-term radio variability in the light curves of active galaxies (AG)—symmetric achromatic variability (SAV)—a pair of opposed and strongly skewed peaks in the radio flux density observed over a broad frequency range. We propose that SAV arises through gravitational milli-lensing when relativistically moving features in AG jets move through gravitational lensing caustics created by {10}3{--}{10}6 {M}⊙ subhalo condensates or black holes located within intervening galaxies. The lower end of this mass range has been inaccessible with previous gravitational lensing techniques. This new interpretation of some AG variability can easily be tested and if it passes these tests, will enable a new and powerful probe of cosmological matter distribution on these intermediate-mass scales, as well as provide, for the first time, micro-arcsecond resolution of the nuclei of AG—a factor of 30-100 greater resolution than is possible with ground-based millimeter very-long-baseline interferometry.
Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object
NASA Astrophysics Data System (ADS)
Wang, Shangyun; Chen, Songbai; Jing, Jiliang
2016-11-01
Konoplya and Zhidenko have proposed recently a rotating non-Kerr black hole metric beyond General Relativity and make an estimate for the possible deviations from the Kerr solution with the data of GW 150914. We here study the strong gravitational lensing in such a rotating non-Kerr spacetime with an extra deformation parameter. We find that the condition of existence of horizons is not inconsistent with that of the marginally circular photon orbit. Moreover, the deflection angle of the light ray near the weakly naked singularity covered by the marginally circular orbit diverges logarithmically in the strong-field limit. In the case of the completely naked singularity, the deflection angle near the singularity tends to a certain finite value, whose sign depends on the rotation parameter and the deformation parameter. These properties of strong gravitational lensing are different from those in the Johannsen-Psaltis rotating non-Kerr spacetime and in the Janis-Newman-Winicour spacetime. Modeling the supermassive central object of the Milk Way Galaxy as a Konoplya-Zhidenko rotating non-Kerr compact object, we estimated the numerical values of observables for the strong gravitational lensing including the time delay between two relativistic images.
Caustics of 1/r{sup n} binary gravitational lenses: from galactic haloes to exotic matter
Bozza, V.; Melchiorre, C. E-mail: cmelchiorre@unisa.it
2016-03-01
We investigate the caustic topologies for binary gravitational lenses made up of two objects whose gravitational potential declines as 1/r{sup n}. With n<1 this corresponds to power-law dust distributions like the singular isothermal sphere. The n>1 regime can be obtained with some violations of the energy conditions, one famous example being the Ellis wormhole. Gravitational lensing provides a natural arena to distinguish and identify such exotic objects in our Universe. We find that there are still three topologies for caustics as in the standard Schwarzschild binary lens, with the main novelty coming from the secondary caustics of the close topology, which become huge at higher n. After drawing caustics by numerical methods, we derive a large amount of analytical formulae in all limits that are useful to provide deeper insight in the mathematics of the problem. Our study is useful to better understand the phenomenology of galaxy lensing in clusters as well as the distinct signatures of exotic matter in complex systems.
ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION
Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie
2015-05-15
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad
2015-05-01
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
Gravitational lensing effects of vacuum strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1985-01-01
Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.
Gravitational lensing effects of vacuum strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. R., III
1985-01-01
Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.
Zeldovich and the Missing Baryons, Results from Gravitational Lensing
NASA Astrophysics Data System (ADS)
Schild, Rudolph E.
2016-10-01
Central to Zeldovich's attempts to understand the origin of cosmological structure was his exploration of the fluid dynamical effects in the primordial gas, and how the baryonic dark matter formed. Unfortunately microlensing searches for condensed objects in the foreground of the Magellanic Clouds were flawed by the assumption that the objects would be uniformly (Gaussian) distributed, and because the cadence of daily observations strongly disfavored detection of planet mass microlenses. But quasar microlensing showed them to exist at planetary mass at the same time that a hydro-gravitational theory predicted the planet-mass population as fossils of turbulence at the time of recombination (z = 1100; Gibson 1996, 2001). Where the population has now been detected from MACHO searches to the LMC (Sumi et al. 2011) we compare the quasar microlensing results to the recent determination of the mass distribution function measured for the planetary mass function, and show that the population can account for the baryonic dark matter.
Gravitational Lensing of the Microwave Background in the 2500 Square Degree SPT Survey
NASA Astrophysics Data System (ADS)
Zahn, Oliver
2013-04-01
The South Pole Telescope (SPT) is a 10-meter microwave background telescope located at the geographic South Pole that completed a deep multi-band survey of ˜2,500 square degrees of the southern sky in Fall 2011. The high angular resolution and sensitivity enable a reconstruction of the matter potential integrated toward the last scattering surface, effectively weighing the Hubble volume. The inferred lensing potential power spectrum is a sensitive probe of cosmological structure growth and geometry beyond the temperature and polarization power spectra. I will present the results of our analysis using an optimal trispectrum estimator to achieve the highest signal-to-noise measurement of gravitational lensing of the CMB to date. Careful control of astrophysical and instrumental contaminants of the non-Gaussian signature of lensing allow us to place robust constraints on dark energy and the sum of the masses of neutrinos. I will also discuss how the correlation of our lensing maps with galaxy clustering surveys can yield novel astrophysical and cosmological information. The talk will conclude by previewing the potential of joint analyses of our lensing measurements with Planck satellite data, as well as of new data currently being collected by SPTpol.
Measuring the power spectrum of dark matter substructure using strong gravitational lensing
NASA Astrophysics Data System (ADS)
Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert; Kisner, Theodore; Kuhlen, Michael; Perreault Levasseur, Laurence
2016-11-01
In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, and test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (~10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.
Candidate Gravitationally Lensed Dusty Star-forming Galaxies in the Herschel Wide Area Surveys
NASA Astrophysics Data System (ADS)
Nayyeri, H.; Keele, M.; Cooray, A.; Riechers, D. A.; Ivison, R. J.; Harris, A. I.; Frayer, D. T.; Baker, A. J.; Chapman, S. C.; Eales, S.; Farrah, D.; Fu, H.; Marchetti, L.; Marques-Chaves, R.; Martinez-Navajas, P. I.; Oliver, S. J.; Omont, A.; Perez-Fournon, I.; Scott, D.; Vaccari, M.; Vieira, J.; Viero, M.; Wang, L.; Wardlow, J.
2016-05-01
We present a list of candidate gravitationally lensed dusty star-forming galaxies (DSFGs) from the HerMES Large Mode Survey and the Herschel Stripe 82 Survey. Together, these partially overlapping surveys cover 372 deg2 on the sky. After removing local spiral galaxies and known radio-loud blazars, our candidate list of lensed DSFGs is composed of 77 sources with 500 μm flux densities (S 500) greater than 100 mJy. Such sources are dusty starburst galaxies similar to the first bright sub-millimeter galaxies (SMGs) discovered with SCUBA. We expect a large fraction of this list to be strongly lensed, with a small fraction made up of bright SMG-SMG mergers that appear as hyper-luminous infrared galaxies ({L}{IR}\\gt {10}13 {L}⊙ ). Thirteen of the 77 candidates have spectroscopic redshifts from CO spectroscopy with ground-based interferometers, putting them at z\\gt 1 and well above the redshift of the foreground lensing galaxies. The surface density of our sample is 0.21 ± 0.03 deg-2. We present follow-up imaging of a few of the candidates to confirm their lensing nature. The sample presented here is an ideal tool for higher-resolution imaging and spectroscopic observations to understand the detailed properties of starburst phenomena in distant galaxies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
SDSS J133401.39+331534.3: A NEW SUBARCSECOND GRAVITATIONALLY LENSED QUASAR
Rusu, Cristian E.; Iye, Masanori; Oguri, Masamune; Inada, Naohisa; Kayo, Issha; Hayano, Yutaka; Oya, Shin; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Minowa, Yosuke; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto
2011-09-01
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with an image separation of 0.''833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Search, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2 m telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with a laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy {approx}4'' apart from the lensing galaxy is likely to affect the lens potential.
Bandara, Kaushala; Crampton, David; Peng, Chien; Simard, Luc
2013-11-01
We take advantage of the magnification in size and flux of a galaxy provided by gravitational lensing to analyze the properties of 62 strongly lensed galaxies from the Sloan Lens ACS (SLACS) Survey. The sample of lensed galaxies spans a redshift range of 0.20 ≤ z ≤ 1.20 with a median redshift of z = 0.61. We use the lens modeling code LENSFIT to derive the luminosities, sizes, and Sérsic indices of the lensed galaxies. The measured properties of the lensed galaxies show a primarily compact, {sup d}isk{sup -}like population with the peaks of the size and Sérsic index distributions corresponding to ∼1.50 kpc and n ∼ 1, respectively. Comparison of the SLACS galaxies to a non-lensing, broadband imaging survey shows that a lensing survey allows us to probe a galaxy population that reaches ∼2 mag fainter. Our analysis allows us to compare the (z) = 0.61 disk galaxy sample (n ≤ 2.5) to an unprecedented local galaxy sample of ∼670, 000 SDSS galaxies at z ∼ 0.1; this analysis indicates that the evolution of the luminosity-size relation since z ∼ 1 may not be fully explained by a pure-size or pure-luminosity evolution but may instead require a combination of both. Our observations are also in agreement with recent numerical simulations of disk galaxies that show evidence of a mass-dependent evolution since z ∼ 1, where high-mass disk galaxies (M{sub *} > 10{sup 9} M{sub ☉}) evolve more in size and low-mass disk galaxies (M{sub *} ≤ 10{sup 9} M{sub ☉}) evolve more in luminosity.
Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O
2014-04-04
We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
NASA Astrophysics Data System (ADS)
Wilson, Michelle; Zabludoff, Ann I.; Wong, Kenneth C.; Keeton, Charles R.; French, Katheryn Decker; Momcheva, Ivelina G.; Williams, Kurtis A.
2016-01-01
Galaxy-scale strong gravitational lensing has long been used to measure cosmological parameters such as the Hubble constant as well as the dark matter properties of galaxy halos. Additional mass around the lens galaxy or projected in the line-of-sight affects the light bending and needs to be incorporated into lensing analyses. We present new results from a spectroscopic survey to characterize the environmental and line-of-sight mass for 28 galaxy-scale lens fields. We show how the external convergence, number of lensed images, and lensed image separation are altered by groups at the lens and along the sightline.
NASA Astrophysics Data System (ADS)
McCully, Curtis
Type Ia supernovae (SNe Ia) and gravitational lensing are important cosmological probes, but both are limited by theoretical, systematic uncertainties. One key uncertainty in distances derived using SNe Ia is our lack of understanding of the explosion mechanism for normal SNe Ia. We have studied peculiar type Iax supernovae that appear to be related to normal SNe Ia with the goal of understanding white dwarf explosions as a whole. In Chapter 2, using late-time Hubble Space Telescope (HST) observations of SN 2008A and SN 2005hk, both prototypical SNe Iax, we argue that these objects are pure deflagration explosions that do not unbind the white dwarf. In Chapter 3, we present observations of the type Iax SN 2012Z, one of the nearest ever discovered. Fortunately for us, its host galaxy, NGC 1309, was observed extensively with HST/ACS (to measure a Cepheid distance), giving us incredibly deep pre-explosion images of the site of SN 2012Z. We find that there is a source coincident with the position of the SN. We argue that the source is likely a helium star companion to the white dwarf that exploded. In galaxy-scale gravitational lenses, one of the largest systematic uncertainties arises due to other mass in the environment of the lens or along the line of sight (LOS). In Chapter 4, we develop an analytic framework to account for LOS effects. Our framework employs a hybrid approach treating a few perturbing galaxies as strong lenses, making it accurate, while treating the rest in the weak lensing approximation, making it also computationally efficient. In Chapter 5, we test our framework using simulations of realistic mass models. We suggest a method to characterize the strength of the LOS effects allowing us to systematically test when the weak lensing approximation is valid. We show that LOS effects are not equivalent to a single shear, but these non-linear effects are correctly captured by our framework. Our new methodology can be used to constrain cosmological
Constraining the minimum luminosity of high redshift galaxies through gravitational lensing
Mashian, Natalie; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu
2013-12-01
We simulate the effects of gravitational lensing on the source count of high redshift galaxies as projected to be observed by the Hubble Frontier Fields program and the James Webb Space Telescope (JWST) in the near future. Taking the mass density profile of the lensing object to be the singular isothermal sphere (SIS) or the Navarro-Frenk-White (NFW) profile, we model a lens residing at a redshift of z{sub L} = 0.5 and explore the radial dependence of the resulting magnification bias and its variability with the velocity dispersion of the lens, the photometric sensitivity of the instrument, the redshift of the background source population, and the intrinsic maximum absolute magnitude (M{sub max}) of the sources. We find that gravitational lensing enhances the number of galaxies with redshifts z∼> 13 detected in the angular region θ{sub E}/2 ≤ θ ≤ 2θ{sub E} (where θ{sub E} is the Einstein angle) by a factor of ∼ 3 and 1.5 in the HUDF (df/dν{sub 0} ∼ 9 nJy) and medium-deep JWST surveys (df/dν{sub 0} ∼ 6 nJy). Furthermore, we find that even in cases where a negative magnification bias reduces the observed number count of background sources, the lensing effect improves the sensitivity of the count to the intrinsic faint-magnitude cut-off of the Schechter luminosity function. In a field centered on a strong lensing cluster, observations of z∼> 6 and z∼> 13 galaxies with JWST can be used to infer this cut-off magnitude for values as faint as M{sub max} ∼ -14.4 and -16.1 mag (L{sub min} ≈ 2.5 × 10{sup 26} and 1.2 × 10{sup 27} erg s{sup −1} Hz{sup −1}) respectively, within the range bracketed by existing theoretical models. Gravitational lensing may therefore offer an effective way of constraining the low-luminosity cut-off of high-redshift galaxies.
Gravitational lensing by self-dual black holes in loop quantum gravity
NASA Astrophysics Data System (ADS)
Sahu, Satyabrata; Lochan, Kinjalk; Narasimha, D.
2015-03-01
We study gravitational lensing by a recently proposed black hole solution in loop quantum gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the "mass suppression" effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied, and a sample consistency relation is presented which could serve as a test of this model. We discuss that, though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for a billion solar mass black holes in other galaxies might be within reach of future relativistic lensing observations.
STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827
Carrasco, E. R.; Gomez, P. L.; Lee, H.; Diaz, R.; Bergmann, M.; Turner, J. E. H.; Miller, B. W.; West, M. J.; Verdugo, T.
2010-06-01
We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.
The Brightest Galaxies in the Universe: Gravitationally Lensed Submm Galaxies at 1
NASA Astrophysics Data System (ADS)
Lowenthal, James D.; Yun, Min Su; Kamieneski, Patrick; Wang, Q. Daniel; Aretxaga, Itziar; Hughes, David; Harrington, Kevin; Berman, Derek; Terlevich, Roberto
2017-06-01
We present new near-IR images from HST Cycle 24 of some of the most luminous galaxies in the Universe: submillimeter galaxies identified via Planck, Herschel, and WISE fluxes and confirmed with the Large Millimeter Telescope to lie at redshifts 1
Weak gravitational lensing due to large-scale structure of the universe
NASA Technical Reports Server (NTRS)
Jaroszynski, Michal; Park, Changbom; Paczynski, Bohdan; Gott, J. Richard, III
1990-01-01
The effect of the large-scale structure of the universe on the propagation of light rays is studied. The development of the large-scale density fluctuations in the omega = 1 universe is calculated within the cold dark matter scenario using a smooth particle approximation. The propagation of about 10 to the 6th random light rays between the redshift z = 5 and the observer was followed. It is found that the effect of shear is negligible, and the amplification of single images is dominated by the matter in the beam. The spread of amplifications is very small. Therefore, the filled-beam approximation is very good for studies of strong lensing by galaxies or clusters of galaxies. In the simulation, the column density was averaged over a comoving area of approximately (1/h Mpc)-squared. No case of a strong gravitational lensing was found, i.e., no 'over-focused' image that would suggest that a few images might be present. Therefore, the large-scale structure of the universe as it is presently known does not produce multiple images with gravitational lensing on a scale larger than clusters of galaxies.
Effects of gravitational lensing and companion motion on the binary pulsar timing
Rafikov, Roman R.; Lai Dong
2006-03-15
The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems.
Gravitational lensing by scalar-tensor wormholes and the energy conditions
NASA Astrophysics Data System (ADS)
Shaikh, Rajibul; Kar, Sayan
2017-08-01
We study gravitational lensing by a class of zero Ricci scalar wormholes which arise as solutions in a scalar-tensor theory of gravity. An attempt is made to find a possible link between lensing features, stable/unstable photon orbits and the energy conditions on the matter required to support these spacetimes. Our analysis shows (for this class of wormholes) that light rays always exhibit a positive deflection if the energy conditions are satisfied (nonexotic matter content). In contrast, if the energy conditions are violated (exotic matter), the net deflection of a light ray may be positive, negative or even zero, depending on values of the metric and impact parameters. This prompts us to introduce a surface defined by a turning point value at which the net deflection of a light ray is equal to zero, even though we have a curved spacetime geometry. We argue that the existence of such a surface may be linked to exotic/energy condition violating matter. Wormholes in modified gravity with matter satisfying the energy conditions do not seem to have such a zero deflection surface. Finally, we study strong gravitational lensing briefly and also look into the formation of Einstein and relativistic Einstein rings. We conclude with some estimates on the wormhole mass, throat-radius and the detectability of the Einstein rings.
A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA
Van Engelen, A.; De Haan, T.; Dobbs, M. A.; Dudley, J.; Holder, G. P.; Keisler, R.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Hoover, S.; Zahn, O.; Aird, K. A.; Cho, H. M.; George, E. M.; Holzapfel, W. L.; Halverson, N. W.; Hou, Z.; and others
2012-09-10
We use South Pole Telescope data from 2008 and 2009 to detect the non-Gaussian signature in the cosmic microwave background (CMB) produced by gravitational lensing and to measure the power spectrum of the projected gravitational potential. We constrain the ratio of the measured amplitude of the lensing signal to that expected in a fiducial {Lambda}CDM cosmological model to be 0.86 {+-} 0.16, with no lensing disfavored at 6.3{sigma}. Marginalizing over {Lambda}CDM cosmological models allowed by the Wilkinson Microwave Anisotropy Probe (WMAP7) results in a measurement of A{sub lens} 0.90 {+-} 0.19, indicating that the amplitude of matter fluctuations over the redshift range 0.5 {approx}< z {approx}< 5 probed by CMB lensing is in good agreement with predictions. We present the results of several consistency checks. These include a clear detection of the lensing signature in CMB maps filtered to have no overlap in Fourier space, as well as a 'curl' diagnostic that is consistent with the signal expected for {Lambda}CDM. We perform a detailed study of bias in the measurement due to noise, foregrounds, and other effects and determine that these contributions are relatively small compared to the statistical uncertainty in the measurement. We combine this lensing measurement with results from WMAP7 to improve constraints on cosmological parameters when compared to those from WMAP7 alone: we find a factor of 3.9 improvement in the measurement of the spatial curvature of the universe, {Omega}{sub k} = -0.0014 {+-} 0.0172; a 10% improvement in the amplitude of matter fluctuations within {Lambda}CDM, {sigma}{sub 8} = 0.810 {+-} 0.026; and a 5% improvement in the dark energy equation of state, w = -1.04 {+-} 0.40. When compared with the measurement of w provided by the combination of WMAP7 and external constraints on the Hubble parameter, the addition of the lensing data improves the measurement of w by 15% to give w -1.087 {+-} 0.096.
IMPROVED CONSTRAINTS ON THE GRAVITATIONAL LENS Q0957+561. II. STRONG LENSING
Fadely, R.; Keeton, C. R.; Nakajima, R.; Bernstein, G. M. E-mail: keeton@physics.rutgers.ed E-mail: rnakajima@berkeley.ed
2010-03-01
We present a detailed strong lensing analysis of a Hubble Space Telescope/Advanced Camera for Surveys legacy data set for the first gravitational lens, Q0957+561. With deep imaging we identify 24 new strongly lensed features, which we use to constrain mass models. We model the stellar component of the lens galaxy using the observed luminosity distribution and the dark matter halo using several different density profiles. We draw on the weak lensing analysis by Nakajima et al. to constrain the mass sheet and environmental terms in the lens potential. Adopting the well-measured time delay, we find H{sub 0} = 85{sup +14}{sub -13} km s{sup -1} Mpc{sup -1} (68% CL) using lensing constraints alone. The principal uncertainties in H{sub 0} are tied to the stellar mass-to-light ratio (a variant of the radial profile degeneracy in lens models). Adding constraints from stellar population synthesis models, we obtain H{sub 0} = 79.3{sup +6.7}{sub -8.5} km s{sup -1} Mpc{sup -1} (68% CL). We infer that the lens galaxy has a rising rotation curve and a dark matter distribution with an inner core. Intriguingly, we find the quasar flux ratios predicted by our models to be inconsistent with existing radio measurements, suggesting the presence of substructure in the lens.
PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING
Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D.
2015-01-30
We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.
The impact of AGN feedback and baryonic cooling on galaxy clusters as gravitational lenses
NASA Astrophysics Data System (ADS)
Mead, James M. G.; King, Lindsay J.; Sijacki, Debora; Leonard, Adrienne; Puchwein, Ewald; McCarthy, Ian G.
2010-07-01
We investigate the impact of active galactic nucleus (AGN) feedback on the gravitational lensing properties of a sample of galaxy clusters with masses in the range 1014-1015 Msolar, using state-of-the-art simulations. Adopting a ray-tracing algorithm, we compute the cross-section of giant arcs from clusters simulated with dark matter (DM) only physics, DM plus gas with cooling and star formation (CSF) and DM plus gas with cooling, star formation and AGN feedback (CSFBH). Once AGN feedback is included, baryonic physics boosts the strong-lensing cross-section by much less than previously estimated using clusters simulated with only CSF. For a cluster with a virial mass of 7.4 × 1014 Msolar, inclusion of baryonic physics without feedback can boost the cross-section by as much as a factor of 3, in agreement with previous studies, whereas once AGN feedback is included this maximal figure falls to a factor of 2 at most. Typically, clusters simulated with DM and CSFBH physics have similar cross-sections for the production of giant arcs. We also investigate how baryonic physics affects the weak-lensing properties of the simulated clusters by fitting NFW profiles to synthetic weak-lensing data sets using a Markov Chain Monte Carlo approach, and by performing non-parametric mass reconstructions. Without the inclusion of AGN feedback, measured concentration parameters can be much larger than those obtained with AGN feedback, which are similar to the DM-only case.
New Methods for Identifying Nearby Gravitational Lenses in All-Sky Surveys
NASA Astrophysics Data System (ADS)
McCandlish, Samuel; Di Stefano, R.
2011-01-01
All-sky catalogs provide a wealth of information about gravitational lensing events that has not yet been utilized. We present a method for matching lensing events to catalogs and finding the probability that the association is genuine. Given a likely candidate for the lens object associated with an event, it is possible to break the inherent degeneracy in microlensing and estimate the mass of the lens, depending on its distance. Eight percent of microlensing events have matches in the 2MASS catalog, and there are many more matches in catalogs that cover other wave bands. In addition to detecting the associated lens or source, it is possible that the cataloged object is a companion or host to the actual lens. This opens up the possibility of finding dark nearby lenses, such as stellar remnants or planets that are associated with cataloged objects. We propose various methods for determining which events are most likely to be caused by nearby lenses, and apply them to our matches. We present some interesting matched objects and the results of observations of those objects. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.
THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS
Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi
2013-01-10
The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.
The impact of baryonic matter on gravitational lensing by galaxy clusters
NASA Astrophysics Data System (ADS)
Lee, Brandyn E.; King, Lindsay; Applegate, Douglas; McCarthy, Ian
2017-01-01
Since the bulk of the matter comprising galaxy clusters exists in the form of dark matter, gravitational N-body simulations have historically been an effective way to investigate large scale structure formation and the astrophysics of galaxy clusters. However, upcoming telescopes such as the Large Synoptic Survey Telescope are expected to have lower systematic errors than older generations, reducing measurement uncertainties and requiring that astrophysicists better quantify the impact of baryonic matter on the cluster lensing signal. Here we outline the effects of baryonic processes on cluster density profiles and on weak lensing mass and concentration estimates. Our analysis is done using clusters grown in the suite of cosmological hydrodynamical simulations known as cosmo-OWLS.
Infrared imaging of MG 0414 + 0534 - The red gravitational lens systems as lensed radio galaxies
NASA Technical Reports Server (NTRS)
Annis, James; Luppino, Gerard A.
1993-01-01
We present an IR image of the gravitational lens system MG 0414 + 0534, and IR photometry of PG 1115 + 080, H1413 + 117, and Q1429 - 008. The IR of MG 0414 + 0534 shows a morphology that is similar to the radio and optical morphologies. The object is bright (K-prime = 13.7) and extremely red (I-K-prime = 5.7). MG 0414 + 0534 thus becomes the second radio-selected lens system to have very red optical IR colors. When plotted on a color-magnitude diagram of objects from a radio survey, MG 0414 + 0534 and the other very red system, MG 1131 + 0456, lie near the locus of radio galaxies. We therefore suggest that these systems are lensed high-redshift radio galaxies. In general, lensed radio galaxies should be common among lens systems selected from radio surveys, since a high proportion of radio sources are radio galaxies.
Blind Millimeter Line Emitter Search using ALMA Data Toward Gravitational Lensing Clusters
NASA Astrophysics Data System (ADS)
Yamaguchi, Yuki; Kohno, Kotaro; Tamura, Yoichi; Oguri, Masamune; Ezawa, Hajime; Hayatsu, Natsuki H.; Kitayama, Tetsu; Matsuda, Yuichi; Matsuo, Hiroshi; Oshima, Tai; Ota, Naomi; Izumi, Takuma; Umehata, Hideki
2017-08-01
We present the results of a blind millimeter line emitter search using ALMA Band 6 data with a single-frequency tuning toward four gravitational lensing clusters (RXJ1347.5-1145, Abell S0592, MACS J0416.1-2403, and Abell 2744). We construct 3D signal-to-noise ratio (S/N) cubes with 60 and 100 MHz binning, and search for millimeter line emitters. We do not detect any line emitters with a peak S/N > 5, although we do find a line emitter candidate with a peak S/N ≃ 4.5. These results provide upper limits to the CO(3-2), CO(4-3), CO(5-4), and [C ii] luminosity functions at z ≃ 0.3, 0.7, 1.2, and 6, respectively. Because of the magnification effect of gravitational lensing clusters, the new data provide the first constraints on the CO and [C ii] luminosity functions at unprecedentedly low luminosity levels, i.e., down to ≲10-3 - 10-1 Mpc-3 dex-1 at {L}{CO}{\\prime }˜ {10}8{--}{10}10 K km s-1 pc2 and ≲10-3-10-2 Mpc-3 dex-1 at {L}[{{C}{{II}}]}˜ {10}8{--}{10}10 {L}⊙ , respectively. Although the constraints to date are not yet stringent, we find that the evolution of the CO and [C ii] luminosity functions are broadly consistent with the predictions of semi-analytical models. This study demonstrates that the wide observations with a single-frequency tuning toward gravitational lensing clusters are promising for constraining the CO and [C ii] luminosity functions.
Probing small-scale structure in galaxies with strong gravitational lensing
NASA Astrophysics Data System (ADS)
Congdon, Arthur Benjamin
We use gravitational lensing to study the small-scale distribution of matter in galaxies. First, we examine galaxies and their dark matter halos. Roughly half of all observed four-image quasar lenses have image flux ratios that differ from the values predicted by simple lens potentials. We show that smooth departures from elliptical symmetry fail to explain anomalous radio fluxes, strengthening the case for dark matter substructure. Our results have important implications for the "missing satellites'' problem. We then consider how time delays between lensed images can be used to identify lens galaxies containing small-scale structure. We derive an analytic relation for the time delay between the close pair of images in a "fold'' lens, and perform Monte Carlo simulations to investigate the utility of time delays for probing small- scale structure in realistic lens populations. We compare our numerical predictions with systems that have measured time delays and discover two anomalous lenses. Next, we consider microlensing, where stars in the lens galaxy perturb image magnifications. This is relevant at optical wavelengths, where the size of the lensed source is comparable to the Einstein radius of a typical star. Our simulations of negative-parity images show that raising the fraction of dark matter relative to stars increases image flux variability for small sources, and decreases it for large sources. This suggests that quasar accretion disks and broad-emission-line regions may respond differently to microlensing. We also consider extended sources with a range of ellipticities, which has relevance to a population of inclined accretion disks. Depending on their orientation, more elongated sources lead to more rapid variability, which may complicate the interpretation of microlensing light curves. Finally, we consider prospects for observing strong lensing by the supermassive black hole at the center of the Milky Way, Sgr A*. Assuming a black hole on the million
The time delay in strong gravitational lensing with Gauss-Bonnet correction
Man, Jingyun; Cheng, Hongbo E-mail: hbcheng@ecust.edu.cn
2014-11-01
The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.
A sampling strategy for high-dimensional spaces applied to free-form gravitational lensing
NASA Astrophysics Data System (ADS)
Lubini, Mario; Coles, Jonathan
2012-10-01
We present a novel proposal strategy for the Metropolis-Hastings algorithm designed to efficiently sample general convex polytopes in 100 or more dimensions. This improves upon previous sampling strategies used for free-form reconstruction of gravitational lenses, but is general enough to be applied to other fields. We have written a parallel implementation within the lens modelling framework GLASS. Testing shows that we are able to produce uniform uncorrelated random samples which are necessary for exploring the degeneracies inherent in lens reconstruction.
Strong gravitational lensing in a charged squashed Kaluza-Klein Gödel black hole
NASA Astrophysics Data System (ADS)
Sadeghi, J.; Naji, J.; Vaez, H.
2014-01-01
In this Letter we investigate the strong gravitational lansing in a charged squashed Kaluza-Klein Gödel black hole. The deflection angle is considered by the logarithmic term proposed by Bozza et al. Then we study the variation of deflection angle and its parameters abar and bbar. We suppose that the supermassive black hole in the galaxy center can be considered by a charged squashed Kaluza-Klein black hole in a Gödel background. Then by the relations between lensing parameters and observables, we estimate the observables for different values of charge, extra dimension and Gödel parameters.
Discovery of an Exceptionally Bright Gravitationally Lensed Submillimeter Galaxy at z=4.69
NASA Astrophysics Data System (ADS)
Egami, Eiichi; Herschel Lensing Survey (HLS) Team
2012-05-01
We report the discovery of an exceptionally bright gravitationally lensed submillimeter galaxy at z=4.69. Through our on-going Herschel survey of gravitationally lensed high-redshift galaxies in the fields of massive galaxy clusters ("The Herschel Lensing Survey (HLS)" - PI: Egami), we identified in the field of a z=0.3 cluster a bright Herschel/SPIRE source ( 100 mJy at 500 um) whose far-infrared/submillimeter spectral energy distribution is peaking toward 500 um, indicating that its redshift is likely above 4. The APEX/LABOCA 870 um image showed that this source is not only bright (60 mJy at 870 um) but also spatially extended even with the LABOCA resolution of 20'', although it is invisible in the HST/ACS F606W image. The spectroscopic redshift came from the IRAM30m/EMIR observations, which detected the CO(4-3) and CO(5-4) lines with the corresponding redshift of 4.69. The high-resolution (beam=0.8"x0.7") SMA 345 GHz map has subsequently resolved this source into four components, which are likely four lensed images of the same background galaxy. This lensing interpretation has been confirmed by the HST WFC3/IR observations, which not only revealed the same morphology for the multiple sources but also detected the 5th image at the predicted location. We therefore conclude that this lensed system exhibits a rare hyperbolic umbilic image configuration, which produces a large magnification factor of x100-200 when the four components are combined. What is even more remarkable is that the four HST sources are not spatially coincident with the four SMA sources. In other words, this z=4.69 galaxy appears to consist of two spatially distinct components, one of which (the one responsible for the bright IR/submm emission) is completely invisible in the HST near-infrared images. This suggests that there may exist a population of dust-obscured galaxies at z>4 that are hidden from our deep optical/near-infrared view.
NASA Astrophysics Data System (ADS)
Guimarães, Antonio C. C.; Seljak, Uroš; Brandenberger, Robert H.
2001-06-01
The determination of the Large-Scale Structure of the Universe (LSS) is one of the major goals of Cosmology. Images of distant galaxies are tangentially stretched in relation to mass concentrations present in their light path due to weak gravitational lensing. The statistical measurement of this effect defines maps (lensing maps) which contain information about the sources and lenses, and therefore about the LSS. We want to know which and how much information can be extracted from these maps. We construct mock lensing maps from realizations of simulated LSS. N-body simulations provide snapshots of the mass distribution in the universe at several moments of its evolution. A multiple-plane lensing approximation is then used to calculate the convergence field (our weak gravitational lensing map). Because we know the statistical properties of both mock LSS's and their respective mock lensing maps, an "information link" can be established between them. The use of this information link on real lensing maps may constitute a powerful tool for the study of the LSS.
A technique for using radio jets as extended gravitational lensing probes
NASA Technical Reports Server (NTRS)
Kronberg, Philipp P.; Dyer, Charles C.; Burbidge, E. Margaret; Junkkarinen, Vesa T.
1991-01-01
A new and potentially powerful method of measuring the mass of a galaxy (or dark matter concentration) which lies close in position to a background polarized radio jet is proposed. Using the fact that the polarization angle is not changed by lensing, an 'alignment-breaking parameter' is defined which is a sensitive indicator of gravitational distortion. The method remains sensitive over a wide redshift range of the gravitational lens. This technique is applied to the analysis of polarimetric observations of the jet of 3C 9 at z = 2.012, combined with a newly discovered 20.3 mag foreground galaxy at z = 0.2538 to 'weigh' the galaxy and obtain an approximate upper limit to the mass-to-light ratio.
Analyzing Star Formation Properties in Dusty Early Universe Galaxies Using Gravitational Lensing
NASA Astrophysics Data System (ADS)
Bradli, Jaclyn C.; Bussmann, R. Shane; Riechers, Dominik A.; Clements, David; Perez-Fournon, Ismael
2015-01-01
Strong gravitational lensing has recently become one of the most important tools for studying star formation properties in extremely high redshift galaxies. Dust-obscured star-forming galaxies found at far-infrared/sub-millimeter wavelengths are important in the assembly of stellar mass and the evolution of massive galaxies. We present Submillimeter Array (SMA) imaging of Lockman 102, a strongly lensed submillimeter galaxy at z=5.29, discovered by the Herschel Space Observatory. The system was observed at 250, 350, 500 and 1000 microns, corresponding to rest frame wavelengths of 40, 56, 80, and 159 microns respectively. The observations were targeted at the thermal dust emission and the [CII] interstellar medium cooling line. We report an estimated photometric redshift of ~1.9 for the lensing galaxy, making it possibly the most distant lens currently known. We use uvmcmcfit, a publicly available Markov Chain Monte Carlo software tool we have developed for interferometric data, to fit lens models to Lockman 102. The results obtained from uvmcmcfit suggest the lensed system is composed of a single lensing galaxy and two extended sources. We have strong constraints on an intrinsic flux density of Lockman 102 of 4.55 + 0.45 mJy magnified by a factor of 12.5 + 1.2. From a modified blackbody fit we compute an intrinsic far infrared luminosity of 5.5e12 L⊙.This implies a star formation rate of ~950 M⊙ yr-1, making Lockman 102 an extremely active dusty galaxy. We also compare Lockman 102 to other dusty luminous starburst galaxies at similar redshift, HLS0918 (Rawle et al. 2014) and AzTEC-3 (Riechers et al. 2014a) and determine it is among the most luminous and active galaxies ~1 Gyr after the Big Bang. It is only with strong lensing that the SMA is able to undertake such a detailed study of a galaxy at this distance; the continued improvements from new facilities such as ALMA offer a promising future in observing even more distant lensed systems.
ERIC Educational Resources Information Center
Turner, Edwin L.
1988-01-01
Describes cosmic flukes which offer a unique window on new information about the universe. Discusses the historical background, theory, and detection of this effect. Proposes the importance of information found by the examination of these phenomena. (CW)
ERIC Educational Resources Information Center
Turner, Edwin L.
1988-01-01
Describes cosmic flukes which offer a unique window on new information about the universe. Discusses the historical background, theory, and detection of this effect. Proposes the importance of information found by the examination of these phenomena. (CW)
Chen, Yun; Geng, Chao-Qiang; Cao, Shuo; Huang, Yu-Mei; Zhu, Zong-Hong E-mail: geng@phys.nthu.edu.tw E-mail: huangymei@gmail.com
2015-02-01
We constrain the scalar field dark energy model with an inverse power-law potential, i.e., V(φ) ∝ φ{sup −α} (α > 0), from a set of recent cosmological observations by compiling an updated sample of Hubble parameter measurements including 30 independent data points. Our results show that the constraining power of the updated sample of H(z) data with the HST prior on H{sub 0} is stronger than those of the SCP Union2 and Union2.1 compilations. A recent sample of strong gravitational lensing systems is also adopted to confine the model even though the results are not significant. A joint analysis of the strong gravitational lensing data with the more restrictive updated Hubble parameter measurements and the Type Ia supernovae data from SCP Union2 indicates that the recent observations still can not distinguish whether dark energy is a time-independent cosmological constant or a time-varying dynamical component.
A new pixel-based method for analyzing spatially resolved, gravitationally lensed images
NASA Astrophysics Data System (ADS)
Tagore, Amitpal S.; Keeton, C. R.; Baker, A. J.
2014-01-01
Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that requires careful handling of parameter degeneracies. I describe a new pixel-based source reconstruction method and analyze statistical and systematic effects, including pixelization, noise, telescope pointing, and resolution. I show applications of the method to observations of two lensed, high-redshift galaxies. For SDSS J120602.09+514229.5 (also known as the Clone), a z=2.001 star-forming galaxy lensed by a foreground galaxy at z=0.42, the errors on the model are appropriately accounted for, and the results are in agreement with previous analyses. For SDSS J0901+1814 (J0901), a z=2.26 ultraluminous infrared star-forming galaxy lensed by a foreground group of galaxies at z=0.35, I constrain the lens model using CO rotational line maps of multiple velocity channels, in addition to optical and infrared data. The reconstructed velocity fields in the source plane make it possible to infer J0901's intrinsic dynamical mass and gas mass fraction. Combining the CO maps with H-alpha observations allows us to test the applicability of the local Kennicutt-Schmidt relation at high redshift.
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik
2008-09-01
Gravitational lensing provides a unique and powerful probe of the mass distributions of distant galaxies. Four-image lens systems with fold and cusp configurations have two or three bright images near a critical point. Within the framework of singularity theory, we derive analytic relations that are satisfied for a light source that lies a small but finite distance from the astroid caustic of a four-image lens. Using a perturbative expansion of the image positions, we show that the time delay between the close pair of images in a fold lens scales with the cube of the image separation, with a constant of proportionality that depends on a particular third derivative of the lens potential. We also apply our formalism to cusp lenses, where we develop perturbative expressions for the image positions, magnifications and time delays of the images in a cusp triplet. Some of these results were derived previously for a source asymptotically close to a cusp point, but using a simplified form of the lens equation whose validity may be in doubt for sources that lie at astrophysically relevant distances from the caustic. Along with the work of Keeton, Gaudi & Petters, this paper demonstrates that perturbation theory plays an important role in theoretical lensing studies.
Two New Gravitationally Lensed Double Quasars from theSloan Digital Sky Survey
Inada, Naohisa; Oguri, Masamune; Becker, Robert H.; White, Richard L.; Kayo, Issha; Kochanek, Christopher S.; Hall, Patrick B.; Schneider, Donald P.; York, Donald G.; Richards, Gordon T.; /Tokyo U., Inst. Astron. /KIPAC, Menlo Park /Princeton U. Observ. /LLNL, Livermore /UC, Davis /Baltimore, Space Telescope Sci. /Nagoya U. /Ohio State U., Dept. Astron. /York U., Canada /Penn State U., Astron. Astrophys. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Johns Hopkins U. /Drexel U.
2006-09-28
We report the discoveries of the two-image gravitationally lensed quasars, SDSS J0746+4403 and SDSS J1406+6126, selected from the Sloan Digital Sky Survey (SDSS). SDSS J0746+4403, which will be included in our lens sample for statistics and cosmology, has a source redshift of z{sub s} = 2.00, an estimated lens redshift of z{sub l} {approx} 0.3, and an image separation of 1.08''. SDSS J1406+6126 has a source redshift of z{sub s} = 2.13, a spectroscopically measured lens redshift of z{sub l} = 0.27, and an image separation of 1.98''. We find that the two quasar images of SDSS J1406+6126 have different intervening Mg II absorption strengths, which are suggestive of large variations of absorbers on kpc scales. The positions and fluxes of both the lensed quasar systems are easily reproduced by simple mass models with reasonable parameter values. These objects bring to 18 the number of lensed quasars that have been discovered from the SDSS data.
A study of the gravitational lensing potential in MG 0414+0534
NASA Astrophysics Data System (ADS)
Falco, Emilio
1997-07-01
We proposed to use WFPC2 and NICMOS to observe the quadruple gravitational lens system MG 0414+0534, a QSO at z = 2.64 that is lensed by a single elliptical galaxy. However, we limit our plans to the 5 orbits that the TAC imposed for us to concentrate on NICMOS. We recently observed the system with HST and WFPC2/PC1 {Falco, Leh'ar & Shapiro 1997, AJ 112, 897; hereafter FLS96}. We measured a light profile for the lens galaxy G, and discovered a blue arc connecting the 3 brightest images of the QSO. Although our elliptical single-potential lens models account qualitatively for all the properties of the system, they fail quantitatively, with fits that achieve only chi^2/N_dof 5. Adding an independent shear axis allows a good fit to the data, but the physical source of such a shear remains to be determined. We intend to investigate whether the primary lens galaxy and its dark halo suffice to explain the observed lensing geometry or whether there are significant external tidal perturbations. We propose to use NICMOS to obtain a high-SNR determination of the brightness profile of the lens galaxy in the J, H and K bands. We would also obtain IR fluxes for the images that we would use to study extinction in this system, and to determine whether it originates in the lens galaxy or in the host galaxy of the lensed QSO. SAO proposal ID # P3878-9-96
Gravitational microlensing - The effect of random motion of individual stars in the lensing galaxy
NASA Technical Reports Server (NTRS)
Kundic, Tomislav; Wambsganss, Joachim
1993-01-01
We investigate the influence of random motion of individual stars in the lensing galaxy on the light curve of a gravitationally lensed background quasar. We compare this with the effects of the transverse motion of the galaxy. We find that three-dimensional random motion of stars with a velocity dispersion sigma in each dimension is more effective in producing 'peaks' in a microlensed light curve by a factor a about 1.3 than motion of the galaxy with a transverse velocity v(t) = sigma. This effectiveness parameter a seems to depend only weakly on the surface mass density. With an assumed transverse velocity of v(t) = 600 km/s of the galaxy lensing the QSO 2237+0305 and a measured velocity dispersion of sigma = 215 km/s, the expected rate of maxima in the light curves calculated for bulk motion alone has to be increased by about 10 percent due to the random motion of stars. As a consequence, the average time interval Delta t between two high-magnification events is smaller than the time interval Delta(t) bulk, calculated for bulk motion alone, Delta t about 0.9 Delta(t) bulk.
Battaglia, N.; Hill, J. C.; Murray, N.
2015-10-20
Recent first detections of the cross-correlation of the thermal Sunyaev–Zel’dovich (tSZ) signal in Planck cosmic microwave background (CMB) temperature maps with gravitational lensing maps inferred from the Planck CMB data and the CFHTLenS galaxy survey provide new probes of the relationship between baryons and dark matter. Using cosmological hydrodynamics simulations, we show that these cross-correlation signals are dominated by contributions from hot gas in the intracluster medium (ICM), rather than diffuse, unbound gas located beyond the virial radius (the “missing baryons”). Thus, these cross-correlations offer a tool with which to study the ICM over a wide range of halo masses and redshifts. In particular, we show that the tSZ—CMB lensing cross-correlation is more sensitive to gas in lower-mass, higher-redshift halos and gas at larger cluster-centric radii than the tSZ—galaxy lensing cross-correlation. Combining these measurements with primary CMB data will constrain feedback models through their signatures in the ICM pressure profile. We forecast the ability of ongoing and future experiments to constrain the parameters of a phenomenological ICM model, including the mean amplitude of the pressure–mass relation, the redshift evolution of this amplitude, and the mean outer logarithmic slope of the pressure profile. The results are promising, with ≈5%–20% precision constraints achievable with upcoming experiments, even after marginalizing over cosmological parameters.
Gravitational lensing limits on the cosmological constant in a flat universe
NASA Technical Reports Server (NTRS)
Turner, Edwin L.
1990-01-01
Inflationary cosmological theories predict, and some more general aesthetic criteria suggest, that the large-scale spatial curvature of the universe k should be accurately zero (i.e., flat), a condition which is satisfied when the universe's present mean density and the value of the cosmological constant Lambda have certain pairs of values. Available data on the frequency of multiple image-lensing of high-redshift quasars by galaxies suggest that the cosmological constant cannot make a dominant contribution to producing a flat universe. In particular, if the mean density of the universe is as small as the baryon density inferred from standard cosmic nucleosynthesis calculations or as determined from typical dynamical studies of galaxies and galaxy clusters, then a value of Lambda large enough to produce a k = 0 universe would result in a substantially higher frequency of multiple-image lensing of quasars than has been observed so far. Shortcomings of the available lens data and uncertainties concerning galaxy properties allow some possibility of escaping this conclusion, but systematic searches for a gravitational lenses and continuing investigations of galaxy mass distributions should soon provide decisive information. It is also noted that nonzero-curvature cosmological models can account for the observed frequency of galaxy-quasar lens systems and for a variety of other constraints.
A new hybrid framework to efficiently model lines of sight to gravitational lenses
NASA Astrophysics Data System (ADS)
McCully, Curtis; Keeton, Charles R.; Wong, Kenneth C.; Zabludoff, Ann I.
2014-10-01
In strong gravitational lens systems, the light bending is usually dominated by one main galaxy, but may be affected by other mass along the line of sight (LOS). Shear and convergence can be used to approximate the contributions from less significant perturbers (e.g. those that are projected far from the lens or have a small mass), but higher order effects need to be included for objects that are closer or more massive. We develop a framework for multiplane lensing that can handle an arbitrary combination of tidal planes treated with shear and convergence and planes treated exactly (i.e. including higher order terms). This framework addresses all of the traditional lensing observables including image positions, fluxes, and time delays to facilitate lens modelling that includes the non-linear effects due to mass along the LOS. It balances accuracy (accounting for higher order terms when necessary) with efficiency (compressing all other LOS effects into a set of matrices that can be calculated up front and cached for lens modelling). We identify a generalized multiplane mass sheet degeneracy, in which the effective shear and convergence are sums over the lensing planes with specific, redshift-dependent weighting factors.
SDSS J131339.98+515128.3: A new GravitationallyLensed Quasar Selected Based on Near-infrared Excess
Ofek, E.O.; Oguri, M.; Jackson, N.; Inada, N.; Kayo, I.
2007-09-28
We report the discovery of a new gravitationally lensed quasar, SDSS J131339.98+515128.3, at a redshift of 1:875 with an image separation of 1: 0024. The lensing galaxy is clearly detected in visible-light follow-up observations. We also identify three absorption-line doublets in the spectra of the lensed quasar images, from which we measure the lens redshift to be 0:194. Like several other known lenses, the lensed quasar images have different continuum slopes. This difference is probably the result of reddening and microlensing in the lensing galaxy. The lensed quasar was selected by correlating Sloan Digital Sky Survey (SDSS) spectroscopic quasars with Two Micron All Sky Survey (2MASS) sources and choosing quasars that show near-infrared (IR) excess. The near-IR excess can originate, for example, from the contribution of the lensing galaxy at near-IR wavelengths. We show that the near-IR excess technique is indeed an efficient method to identify lensed systems from a large sample of quasars.
NASA Astrophysics Data System (ADS)
Sotani, Hajime; Miyamoto, Umpei
2015-08-01
We systematically examine the properties of null geodesics around an electrically charged, asymptotically flat black hole in Eddington-inspired Born-Infeld gravity, varying the electric charge of the black hole and the coupling constant in the theory. We find that the radius of the unstable circular orbit for a massless particle decreases with the coupling constant, if the value of the electrical charge is fixed. Additionally, we consider the strong gravitational lensing around such a black hole. We show that the deflection angle, the position angle of the relativistic images, and the magnification due to the light bending in strong gravitational field are quite sensitive to the parameters determining the black hole solution. Thus, through the accurate observations associated with the strong gravitational lensing, it might be possible to reveal the gravitational theory in a strong field regime.
Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal; Marrone, Daniel; Medeiros, Lia; Sadowski, Aleksander; Narayan, Ramesh
2015-10-20
We explore the variability properties of long, high-cadence general relativistic magnetohydrodynamic (GRMHD) simulations across the electromagnetic spectrum using an efficient, GPU-based radiative transfer algorithm. We focus on both standard and normal evolution (SANE) and magnetically arrested disk (MAD) simulations with parameters that successfully reproduce the time-averaged spectral properties of Sgr A* and the size of its image at 1.3 mm. We find that the SANE models produce short-timescale variability with amplitudes and power spectra that closely resemble those inferred observationally. In contrast, MAD models generate only slow variability at lower flux levels. Neither set of models shows any X-ray flares, which most likely indicates that additional physics, such as particle acceleration mechanisms, need to be incorporated into the GRMHD simulations to account for them. The SANE models show strong, short-lived millimeter/infrared (IR) flares, with short (≲1 hr) time lags between the millimeter and IR wavelengths, that arise from the combination of short-lived magnetic flux tubes and strong-field gravitational lensing near the horizon. Such events provide a natural explanation for the observed IR flares with no X-ray counterparts.
Correcting the z ˜ 8 Galaxy Luminosity Function for Gravitational Lensing Magnification Bias
NASA Astrophysics Data System (ADS)
Mason, Charlotte A.; Treu, Tommaso; Schmidt, Kasper B.; Collett, Thomas E.; Trenti, Michele; Marshall, Philip J.; Barone-Nugent, Robert; Bradley, Larry D.; Stiavelli, Massimo; Wyithe, Stuart
2015-05-01
We present a Bayesian framework to account for the magnification bias from both strong and weak gravitational lensing in estimates of high-redshift galaxy luminosity functions (LFs). We illustrate our method by estimating the z ˜ 8 UV LF using a sample of 97 Y-band dropouts (Lyman break galaxies) found in the Brightest of Reionizing Galaxies (BoRG) survey and from the literature. We find the LF is well described by a Schechter function with characteristic magnitude of {{M}\\star }=-19.85-0.35+0.30, faint-end slope of α =-1.72-0.29+0.30, and number density of {{log }10}{{{\\Psi }}\\star }(Mp{{c}-3})=-3.00-0.31+0.23. These parameters are consistent within the uncertainties with those inferred from the same sample without accounting for the magnification bias, demonstrating that the effect is small for current surveys at z ˜ 8, and cannot account for the apparent overdensity of bright galaxies compared to a Schechter function found recently by Bowler et al. and Finkelstein et al. We estimate that the probability of finding a strongly lensed z ˜ 8 source in our sample is in the range ˜3-15% depending on limiting magnitude. We identify one strongly lensed candidate and three cases of intermediate lensing in BoRG (estimated magnification μ > 1.4) in addition to the previously known candidate group-scale strong lens. Using a range of theoretical LFs we conclude that magnification bias will dominate wide field surveys—such as those planned for the Euclid and WFIRST missions—especially at z > 10. Magnification bias will need to be accounted for in order to derive accurate estimates of high-redshift LFs in these surveys and to distinguish between galaxy formation models.
WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS
Shirasaki, Masato
2015-02-01
We propose a novel method to select satellite galaxies in outer regions of galaxy groups or clusters using weak gravitational lensing. The method is based on the theoretical expectation that the tangential shear pattern around satellite galaxies would appear with negative values at an offset distance from the center of the main halo. We can thus locate the satellite galaxies statistically with an offset distance of several lensing smoothing scales by using the standard reconstruction of surface mass density maps from weak lensing observation. We test the idea using high-resolution cosmological simulations. We show that subhalos separated from the center of the host halo are successfully located even without assuming the position of the center. For a number of such subhalos, the characteristic mass and offset length can be also estimated on a statistical basis. We perform a Fisher analysis to show how well upcoming weak lensing surveys can constrain the mass density profile of satellite galaxies. In the case of the Large Synoptic Survey Telescope with a sky coverage of 20,000 deg{sup 2}, the mass of the member galaxies in the outer region of galaxy clusters can be constrained with an accuracy of ∼0.1 dex for galaxy clusters with mass 10{sup 14} h {sup –1} M {sub ☉} at z = 0.15. Finally we explore the detectability of tidal stripping features for subhalos having a wide range of masses of 10{sup 11}-10{sup 13} h {sup –1} M {sub ☉}.
MAGIC detection of sub-TEV emission from gravitationally lensed blazar QSO B0218+357
NASA Astrophysics Data System (ADS)
Dominis Prester, D.; Sitarek, J.; Becerra, J.; Buson, S.; Lindfors, E.; Manganaro, M.; Mazin, D.; Nievas Rosillo, M.; Nilsson, K.; Stamerra, A.; Tavecchio, F.; Vovk, Ie.; MAGIC Collaboration; Fermi LAT Collaboration
The blazar QSO B0218+357 is the first gravitationally lensed blazar detected in the very high energy (VHE, E > 100 GeV) gamma-ray spectral range (Ahnen et al. 2016). It is gravitationally lensed by the intervening galaxy B0218+357G (z l = 0.68466 +/- 0.00004, Carilli et al. 1993), which splits the blazar emission into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 days delay. In July 2014 a flare from QSO B0218+357 was observed by the Fermi-LAT (Large Area Telescope, Atwood et al. 2009, Ackermann et al. 2012), and followed-up by the MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes, a stereoscopic system of two 17m Imaging Atmospheric Cherenkov Telescopes located on La Palma, Canary Islands (Aleksić et al. 2016a, 2016b), during the expected time of arrival of the delayed component of the emission. MAGIC could not observe the leading image due to the Full Moon. The MAGIC and Fermi-LAT observations were accompanied by optical data from KVA telescope at La Palma, and X-ray observations by Swift-XRT (Fig. 1 left). Variability in gamma-rays was of the order of one day, while no variability correlated with gamma-rays was observed at lower energies. The flux ratio of the leading to trailing image in HE gamma-rays was larger than in the flare of QSO B0218+357 observed by Fermi-LAT in 2012 (Cheung et al. 2014). Changes in the observed flux ratio can be caused by gravitational microlensing on individual stars in the host galaxy (Neronov et al. 2015), or by other compact objects like for ex. clumps in giant molecular clouds (Sitarek & Bednarek 2016).
NASA Astrophysics Data System (ADS)
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Gaudi, B. S.; Henderson, C. B.; Hung, L.-W.; Jablonski, F.; Janczak, J.; Lee, C.-U.; Mallia, F.; Maury, A.; McCormick, J.; McGregor, D.; Monard, L. A. G.; Moorhouse, D.; Muñoz, J. A.; Natusch, T.; Nelson, C.; Park, B.-G.; Pogge, R. W.; "TG" Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Barnard, E.; Baudry, J.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hearnshaw, J. B.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Kobara, S.; Korpela, A.; Lin, W.; Ling, C. H.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Nishimoto, K.; Ohnishi, K.; Okumura, T.; Omori, K.; Perrott, Y. C.; Rattenbury, N.; Saito, To.; Skuljan, L.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Bennett, C. S.; Bowens-Rubin, R.; Brillant, S.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Menzies, J.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Clay, N.; Fraser, S.; Horne, K.; Kains, N.; Mottram, C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Finet, F.; Gerner, T.; Glitrup, M.; Grundahl, F.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Kerins, E.; Liebig, C.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Proft, S.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.; Southworth, J.; Zimmer, F.; MiNDSTEp Consortium
2012-05-01
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ~ 0.08 mas combined with the short timescale of t E ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M ⊙ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Henderson, C. B.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others
2012-05-20
We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of {theta}{sub E} {approx} 0.08 mas combined with the short timescale of t{sub E} {approx} 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of {approx}0.84 M{sub Sun} is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.
A search for gravitationally lensed water masers in dusty quasars and star-forming galaxies
NASA Astrophysics Data System (ADS)
McKean, J. P.; Impellizzeri, C. M. V.; Roy, A. L.; Castangia, P.; Samuel, F.; Brunthaler, A.; Henkel, C.; Wucknitz, O.
2011-02-01
Luminous extragalactic water masers are known to be associated with active galactic nuclei and have provided accurate estimates for the mass of the central supermassive black hole and the size and structure of the circumnuclear accretion disc in nearby galaxies. To find water maser systems at much higher redshifts, we have begun a survey of known gravitationally lensed quasars and star-forming galaxies. In this paper, we present a search for 22 GHz (rest-frame) water masers towards five dusty, gravitationally lensed quasars and star-forming galaxies at redshifts between 2.3 and 2.9 with the Effelsberg radio telescope and the Expanded Very Large Array (EVLA). Our observations do not find any new definite examples of high-redshift water maser galaxies, suggesting that large reservoirs of dust and gas are not a sufficient condition for powerful water maser emission. However, we do find the tentative detection of a water maser system in the active galaxy IRAS 10214+4724 at redshift 2.285. Our survey has now doubled the number of gravitationally lensed galaxies and quasars that have been searched for high-redshift water maser emission. We also present an updated analysis of the high-redshift water maser luminosity function that is based on the results presented here and from the only cosmologically distant (z > 1) water maser galaxy found thus far, MG J0414+0534 at redshift 2.64. By comparing with the water maser luminosity function locally and at moderate redshifts, we find that there must be some evolution in the luminosity function of water maser galaxies at high redshifts. By assuming a moderate evolution [(1 +z)4] in the water maser luminosity function, we find that blind surveys for water maser galaxies are only worthwhile with extremely high sensitivity like that of the planned Square Kilometre Array (Phase 2), which is scheduled to be completed by 2020. However, instruments like the EVLA and MeerKAT will be capable of detecting water maser systems similar to the
NASA Astrophysics Data System (ADS)
Bandara, H. M. Kaushala T.
2012-06-01
This dissertation presents a detailed analysis of the galaxy-scale strong gravitational lenses discovered by the Sloan Lens ACS (SLACS) survey, with the aim of providing new insight into the processes that affect the evolution of galaxies at intermediate and high redshift. First, we present evidence for a relationship between the supermassive black hole mass and the total gravitational mass of the host galaxy, by utilizing the fact that gravitational lensing allows us to accurately measure the inner mass density profile of early-type lens galaxies and their total masses within an aperture. These results confirm that the properties of the bulge component of early-type galaxies and the resulting supermassive black hole are fundamentally regulated by the properties of the dark matter halo. We then utilize the lensing magnification for a detailed study of the photometric properties (luminosity, size and shape) of SLACS background sources and determine the evolution of the disk galaxy luminosity-size relation since z ˜ 1. A comparison of the observed SLACS luminosity-size relation to theoretical simulations provides strong evidence for mass-dependent evolution of disk galaxies since z ˜ 1. Furthermore, a comparison of the SLACS luminosity-size relation to that of a non-lensing, broad-band imaging survey shows that one can probe a galaxy population that is ˜ 2 magnitudes deeper by utilizing the lensing magnification. We continue the detailed study of SLACS background sources by combining the lensing magnification with diffraction-limited integral field spectroscopy to derive two-dimensional kinematic, star formation rate and metallicity distributions of gravitationally lensed galaxies at z > 0.78. Integral field spectroscopic observations of the Halpha emission line properties of a SLACS source galaxy (SDSS J0252+0039), at z = 0.98, show that the lensing magnification and adaptive optics advantages can be effectively combined to derive spatially resolved kinematics
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
Gravitational lensing effects in a time-variable cosmological 'constant' cosmology
NASA Technical Reports Server (NTRS)
Ratra, Bharat; Quillen, Alice
1992-01-01
A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.
Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
Escape and trapping of low-frequency gravitationally lensed rays by compact objects within plasma
NASA Astrophysics Data System (ADS)
Rogers, Adam
2017-02-01
We consider the gravitational lensing of rays emitted by a compact object (CO) within a distribution of plasma with power-law density ∝r-h. For the simplest case of a cloud of spherically symmetric cold non-magnetized plasma, the diverging effect of the plasma and the converging effect of gravitational lensing compete with one another. When h < 2, the plasma effect dominates over the vacuum Schwarzschild curvature, potentially shifting the radius of the unstable circular photon orbit outside the surface of the CO. When this occurs, we define two relatively narrow radio frequency bands in which plasma effects are particularly significant. Rays in the escape window have ω0 < ω ≤ ω+ and are free to propagate to infinity from the CO surface. To a distant observer, the visible portion of the CO surface appears to shrink as the observed frequency is reduced, and vanishes entirely at ω0, in excess of the plasma frequency at the CO surface. We define the anomalous propagation window for frequencies ω- < ω ≤ ω0. Rays emitted from the CO surface within this frequency range are dominated by optical effects from the plasma and curve back to the surface of the CO, effectively cloaking the star from distant observers. We conclude with a study of neutron star (NS) compactness ratios for a variety of nuclear matter equations of state (EoS). For h = 1, NSs generated from stiff EoS should display significant frequency dependence in the EW, and lower values of h with softer EoS can also show these effects.
NASA Astrophysics Data System (ADS)
Mediavilla, E.; Mediavilla, T.; Muñoz, J. A.; Ariza, O.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
2011-11-01
We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N -3/4 dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.
IM3SHAPE: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing
NASA Astrophysics Data System (ADS)
Zuntz, Joe; Kacprzak, Tomasz; Voigt, Lisa; Hirsch, Michael; Rowe, Barnaby; Bridle, Sarah
2013-09-01
We present and describe IM3SHAPE, a new publicly available galaxy shape measurement code for weak gravitational lensing shear. IM3SHAPE performs a maximum likelihood fit of a bulge-plus-disc galaxy model to noisy images, incorporating an applied point spread function. We detail challenges faced and choices made in its design and implementation, and then discuss various limitations that affect this and other maximum likelihood methods. We assess the bias arising from fitting an incorrect galaxy model using simple noise-free images and find that it should not be a concern for current cosmic shear surveys. We test IM3SHAPE on the Gravitational Lensing Accuracy Testing 2008 (GREAT08) challenge image simulations, and meet the requirements for upcoming cosmic shear surveys in the case that the simulations are encompassed by the fitted model, using a simple correction for image noise bias. For the fiducial branch of GREAT08 we obtain a negligible additive shear bias and sub-two per cent level multiplicative bias, which is suitable for analysis of current surveys. We fall short of the sub-per cent level requirement for upcoming surveys, which we attribute to a combination of noise bias and the mismatch between our galaxy model and the model used in the GREAT08 simulations. We meet the requirements for current surveys across all branches of GREAT08, except those with small or high noise galaxies, which we would cut from our analysis. Using the GREAT08 metric we we obtain a score of Q = 717 for the usable branches, relative to the goal of Q = 1000 for future experiments. The code is freely available from https://bitbucket.org/joezuntz/im3shape
NASA Astrophysics Data System (ADS)
Hojjati, Alireza; McCarthy, Ian G.; Harnois-Deraps, Joachim; Ma, Yin-Zhe; Van Waerbeke, Ludovic; Hinshaw, Gary; Le Brun, Amandine M. C.
2015-10-01
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξyκ(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ lesssim 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ8, Ωm and Ωb). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (Mhalo lesssim 1014 Msolar) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (gtrsim 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.
Hojjati, Alireza; Harnois-Deraps, Joachim; Waerbeke, Ludovic Van; Hinshaw, Gary; McCarthy, Ian G.; Brun, Amandine M.C. Le; Ma, Yin-Zhe E-mail: i.g.mccarthy@ljmu.ac.uk E-mail: mayinzhe@manchester.ac.uk E-mail: hinshaw@phas.ubc.ca
2015-10-01
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξ{sub yκ}(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ ∼< 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ{sub 8}, Ω{sub m} and Ω{sub b}). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (M{sub halo} ∼< 10{sup 14} M{sub ⊙}) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (∼> 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.
NASA Astrophysics Data System (ADS)
Harnois-Déraps, Joachim; van Waerbeke, Ludovic
2015-07-01
Numerical N-body simulations play a central role in the assessment of weak gravitational lensing statistics, residual systematics and error analysis. In this paper, we investigate and quantify the impact of finite simulation volume on weak lensing two- and four-point statistics. These finite support (FS) effects are modelled for several estimators, simulation box sizes and source redshifts, and validated against a new large suite of 500 N-body simulations. The comparison reveals that our theoretical model is accurate to better than 5 per cent for the shear correlation function ξ+(θ) and its error. We find that the most important quantities for FS modelling are the ratio between the measured angle θ and the angular size of the simulation box at the source redshift, θbox(zs), or the multipole equivalent ℓ/ℓbox(zs). When this ratio reaches 0.1, independently of the source redshift, the shear correlation function ξ+ is suppressed by 5, 10, 20 and 25 per cent for Lbox = 1000, 500, 250 and 147 h-1 Mpc, respectively. The same effect is observed in ξ-(θ), but at much larger angles. This has important consequences for cosmological analyses using N-body simulations and should not be overlooked. We propose simple semi-analytic correction strategies that account for shape noise and survey masks, generalizable to any weak lensing estimator. From the same simulation suite, we revisit the existing non-Gaussian covariance matrix calibration of the shear correlation function, and propose a new one based on the 9-year Wilkinson Microwave Anisotropy Probe)+baryon acoustic oscillations+supernova cosmology. Our calibration matrix is accurate at 20 per cent down to the arcminute scale, for source redshifts in the range 0 < z < 3, even for the far off-diagonal elements. We propose, for the first time, a parametrization for the full ξ- covariance matrix, also 20 per cent accurate for most elements.
MULTIPOLE GRAVITATIONAL LENSING AND HIGH-ORDER PERTURBATIONS ON THE QUADRUPOLE LENS
Chu, Z.; Lin, W. P.; Li, G. L.; Kang, X. E-mail: linwp@shao.ac.cn
2013-03-10
An arbitrary surface mass density of the gravitational lens can be decomposed into multipole components. We simulate the ray tracing for the multipolar mass distribution of the generalized Singular Isothermal Sphere model based on deflection angles, which are analytically calculated. The magnification patterns in the source plane are then derived from an inverse shooting technique. As has been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses this kind of overlapping caustics, the image numbers change by {+-}4, rather than {+-}2. There are two kinds of caustic images. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4, and 5 mode components and found that one, two, and three butterfly or swallowtail singularities can be produced, respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails make contact, then eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.
NASA Astrophysics Data System (ADS)
Rusu, Cristian E.; Oguri, Masamune; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto
2016-05-01
We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars and candidates (23 doubles, 1 quad, 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in five systems, without a priori knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity ≳0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time delays in order to infer the Hubble constant.
Gravitational Lensing by Kerr-Sen Dilaton-Axion Black Hole in the Weak Deflection Limit
Gyulchev, G. N.; Yazadjiev, S. S.
2010-11-25
We investigate analytically gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black hole in the weak deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b and r{sub {alpha}}/b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}}= Q{sup 2}/M,Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images up to post-Newtonian order. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The lensing observables are compared to these characteristics for particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.
Strong Gravitational Lensing as a Tool to Investigate the Structure of Jets at High Energies
NASA Astrophysics Data System (ADS)
Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan
2014-06-01
The components of blazar jets that emit radiation span a factor of 1010 in scale. The spatial structure of these emitting regions depends on the observed energy. Photons emitted at different sites cross the lens plane at different distances from the mass-weighted center of the lens. Thus there are differences in magnification ratios and time delays between the images of lensed blazars observed at different energies. When the lens structure and redshift are known from optical observations, these constraints can elucidate the structure of the source at high energies. At these energies, current technology is inadequate to resolve these sources, and the observed light curve is thus the sum of the images. Durations of γ-ray flares are short compared with typical time delays; thus both the magnification ratio and the time delay can be measured for the delayed counterparts. These measurements are a basis for localizing the emitting region along the jet. To demonstrate the power of strong gravitational lensing, we build a toy model based on the best studied and the nearest relativistic jet M87.
Spitzer Observations of a Gravitationally Lensed Quasar, QSO 2237+0305
NASA Astrophysics Data System (ADS)
Agol, Eric; Gogarten, Stephanie M.; Gorjian, Varoujan; Kimball, Amy
2009-06-01
The four-image gravitationally lensed quasar QSO 2237+0305 is microlensed by stars in the lens galaxy. The amplitude of microlensing variability can be used to infer the relative size of the quasar as a function of wavelength; this provides a test of quasar models. Toward this end, we present Spitzer Space Telescope Infrared Spectrograph and Infrared Array Camera (IRAC) observations of QSO 2237+0305, finding the following. (1) The infrared (IR) spectral energy distribution (SED) is similar to that of other bright radio-quiet quasars, contrary to an earlier claim. (2) A dusty torus model with a small opening angle fits the overall shape of the IR SED well, but the quantitative agreement is poor due to an offset in wavelength of the silicate feature. (3) The flux ratios of the four lensed images can be derived from the IRAC data despite being unresolved. We find that the near-IR fluxes are increasingly affected by microlensing toward shorter wavelengths. (4) The wavelength dependence of the IRAC flux ratios is consistent with the standard quasar model in which an accretion disk and a dusty torus both contribute near 1 μm in the rest frame. This is also consistent with recent IR spectropolarimetry of nearby quasars.
A Sneak Peek at the JWST Era: Observing Galaxies Below the Hubble Limit with Gravitational Lensing
NASA Astrophysics Data System (ADS)
Livermore, Rachael C.
2016-01-01
The installation of WFC3 on the Hubble Space Telescope pushed the frontier of high-redshift galaxy studies to only 500 Myr after the Big Bang. However, observations in this epoch remain challenging and are limited to the brightest galaxies; the fainter sources believed to be responsible for reionizing the Universe remain beyond the grasp of Hubble. With gravitational lensing, however, we can benefit from the magnification of faint sources, which brings them within reach of today's telescopes. The Hubble Frontier Fields program is a deep survey of strongly lensing clusters observed in the optical and near-infrared. Unfortunately, detecting highly magnified, intrinsically faint galaxies in these fields has proved challenging due to the bright foregound cluster galaxies and intracluster light. We have developed a technique using wavelet decomposition to overcome these difficulties and detect galaxies at z~7 with intrinsic UV magnitudes as faint as MUV = -13. We present this method and the resulting luminosity functions, which support a steep faint-end slope extending out to the observational limits. Our method has uncovered hundreds of galaxies at z > 6 fainter than any that have been seen before, providing our first insight into the small galaxy population during the epoch of reionization and a preview of the capabilities of JWST.
Constraining cosmic curvature by using age of galaxies and gravitational lenses
NASA Astrophysics Data System (ADS)
Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha
2017-03-01
We use two model-independent methods to constrain the curvature of the universe. In the first method, we study the evolution of the curvature parameter (Ωk0) with redshift by using the observations of the Hubble parameter and transverse comoving distances obtained from the age of galaxies. Secondly, we also use an indirect method based on the mean image separation statistics of gravitationally lensed quasars. The basis of this methodology is that the average image separation of lensed images will show a positive, negative or zero correlation with the source redshift in a closed, open or flat universe respectively. In order to smoothen the datasets used in both the methods, we use a non-parametric method namely, Gaussian Process (GP). Finally from first method we obtain Ωk0 = 0.025±0.57 for a presumed flat universe while the cosmic curvature remains constant throughout the redshift region 0 < z < 1.37 which indicates that the universe may be homogeneous. Moreover, the combined result from both the methods suggests that the universe is marginally closed. However, a flat universe can be incorporated at 3σ level.
Visualizing the gravitational lensing and vortex and tendex lines of colliding black holes
NASA Astrophysics Data System (ADS)
Khan, Haroon; Lovelace, Geoffery; SXS Collaboration
2016-03-01
Gravitational waves (GW's) are ripples of space and time that are created when the universe unleashes its violent nature in the presence of strong gravity. Merging black holes (BH) are one of the most promising sources of GW's. In order to detect and physically study the GW's emitted by merging BH with ground based detectors such as Advanced LIGO, we must accurately predict how the waveforms look and behave. This can only be done by numerically simulating BH mergers on supercomputers, because all analytical approximations fail near the time of merger. This poster focuses on using these simulations to answer the question of ``What do merging BH look like''? I will present visualizations made using the Spectral Einstein Code (SpEC) and in particular a raytracing lensing code, developed by the SXS Lensing team, that shows how merging BH bend the light around them. I will also present visualizations of the vortex and tendex lines for a binary BH system, using SpEC. Vortex lines describe how an observer will be twisted by the BH and the tendex lines describe how much an observer would be stretched and squeezed. I am exploring how these lines change with time.
Detecting binarity of GW150914-like lenses in gravitational microlensing events
NASA Astrophysics Data System (ADS)
Eilbott, Daniel H.; Riley, Alexander H.; Cohn, Jonathan H.; Kesden, Michael; King, Lindsay J.
2017-05-01
The recent discovery of gravitational waves (GWs) from stellar-mass binary black holes (BBHs) provided direct evidence of the existence of these systems. BBH lenses would have gravitational microlensing signatures that are distinct from single-lens signals. We apply Bayesian statistics to examine the distinguishability of BBH microlensing events from single-lens events under ideal observing conditions, using the photometric capabilities of the Korean Microlensing Telescope Network. Given one year of observations, a source star at the Galactic Centre, a GW150914-like BBH lens (total mass 65 M⊙, mass ratio 0.8) at half that distance and an impact parameter of 0.4 Einstein radii, we find that binarity is detectable for BBHs with separations down to 0.0250 Einstein radii, which is nearly 3.5 times greater than the maximum separation for which such BBHs would merge within the age of the Universe. Microlensing searches are thus sensitive to more widely separated BBHs than GW searches, perhaps allowing the discovery of BBH populations produced in different channels of binary formation.
Wittman; Tyson; Kirkman; Dell'Antonio; Bernstein
2000-05-11
Most of the matter in the Universe is not luminous, and can be observed only through its gravitational influence on the appearance of luminous matter. Weak gravitational lensing is a technique that uses the distortions of the images of distant galaxies as a tracer of dark matter: such distortions are induced as the light passes through large-scale distributions of dark matter in the foreground. The patterns of the induced distortions reflect the density of mass along the line of sight and its distribution, and the resulting 'cosmic shear' can be used to distinguish between alternative cosmologies. But previous attempts to measure this effect have been inconclusive. Here we report the detection of cosmic shear on angular scales of up to half a degree using 145,000 galaxies and along three separate lines of sight. We find that the dark matter is distributed in a manner consistent with either an open universe, or a flat universe that is dominated by a cosmological constant. Our results are inconsistent with the standard cold-dark-matter model.
NASA Astrophysics Data System (ADS)
Blake, Chris; Joudaki, Shahab; Heymans, Catherine; Choi, Ami; Erben, Thomas; Harnois-Deraps, Joachim; Hildebrandt, Hendrik; Joachimi, Benjamin; Nakajima, Reiko; van Waerbeke, Ludovic; Viola, Massimo
2016-03-01
The unknown nature of `dark energy' motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy-galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada-France-Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the `gravitational slip' statistic EG, which we estimate as 0.48 ± 0.10 at z = 0.32 and 0.30 ± 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann-Robertson-Walker metric in a Universe dominated by a cosmological constant, which are EG = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.
The signal of weak gravitational lensing from galaxy groups and clusters
NASA Astrophysics Data System (ADS)
Markert, Sean
The weak gravitational lensing of galaxy clusters is a valuable tool. The deflection of light around a lens is solely dependent on the underlying distribution of foreground mass, and independent of tracers of mass such as the mass to light ratio and kinematics. As a direct probe of mass, weak lensing serves as an independent calibration of mass-observable relationships. These massive clusters are objects of great interest to astronomers, as their abundance is dependent on the conditions of the early universe, and accurate counts of clusters serve as a test of cosmological model. Upcoming surveys, such as LSST and DES, promise to push the limit of observable weak lensing, detecting clusters and sources at higher redshift than has ever been detected before. This makes accurate counts of clusters of a given mass and redshift, and proper calibration of mass-observable relationships, vital to cosmological studies. We used M> 1013.5 h-1M ȯ halos from the MultiDark Planck simulation at z 0.5 to study the behavior of the reduced shear in clusters. We generated 2D maps of convergence and shear the halos using the GLAMER lensing library. Using these maps, we simulated observations of randomly placed background sources, and generate azimuthal averages of the shear. This reduced shear profile, and the true reduced shear profile of the halo, is fit using analytical solutions for shear of the NFW, Einasto, and truncated NFW density profile. The masses of these density profiles are then compared to the total halo masses from the halo catalogs. We find that fits to the reduced shear for halos extending past ≈ 2 h-1Mpc are fits to the noise of large scale structure along the line of sight. This noise is largely in the 45° rotated component to the reduced tangential shear, and is a breakdown in the approximation of gtan ≈ gnot required for density profile fitting of clusters. If fits are constrained to a projected radii of < 2 h-1Mpc, we see massively improved fits insensitive
STRIDES: Galaxy Evolution over Cosmic Time from new samples of Gravitationally Lensed Quasars
NASA Astrophysics Data System (ADS)
Agnello, Adriano; Treu, Tommaso
2015-08-01
When a quasar is gravitationally lensed by a galaxy, its multiple images show light-curves that are offset by awell defined time delay, which depends on the mass profile of the lens and on cosmological distances to the lens and the source. By measuring the time-delay and accurately modelling the deflector's mass profile, this provides one-step measurements of cosmological distances to objects at redshift $z\\sim1,$ whence the cosmological parameters (primarily $H_0$). One can turn this argument around and learn about galaxies instead, or even perform a joint (and less biased) inference. The joint modelling of the lens, the source structure and time-variability implies that the DM halos of lens galaxies at z~0.4-1 and the source properties of quasars and their hosts at z~1-2are inferred, besides information on cosmology that is complementary to other low-redshift probes such as SN Ia and BAO.A large (N~100) sample of lensed quasars will be transformative in this sense, as these systems are rare on the sky.I will describe our STRIDES[*] searches in the Dark Energy Survey, aiming at 120 previously unknown lensed quasars brighter than i=21. Candidates have been selected with a variety of data mining techniques and flagged for follow-up (on spectroscopy, high-resolution imaging and lightcurve variability), which will take place in the following months. I will also cover recent modelling development of already monitored lenses within our collaboration, including a sharp multi-band reconstruction of the sources and use of stellar kinematics to ensure unbiased uncertainties on the lens mass profiles.This will lead to: (i) percent-level uncertainties on cosmological parameters(ii) insight on the coevolution of quasars and their host galaxies throughout cosmic time, up to z~2(iii) a quantative description of dark matter density profiles and the substructure content in massive galaxies up to z~1.[*] strides.physics.ucsb.edu
NASA Astrophysics Data System (ADS)
Egami, E.
2011-09-01
On the extragalactic side, one of the most remarkable results coming out of Herschel is the discovery of extremely bright (>100 mJy in the SPIRE bands) gravitationally lensed galaxies. The great sensitivity and mapping speed of SPIRE have enabled us to find these rare extraordinary objects. What is truly exciting about these bright lensed galaxies is that they enable a variety of detailed multi-wavelength follow-up observations, shedding new light on the physical properties of these high-redshift sources. In this regard, our OT1 program, "SPIRE Snapshot Survey of Massive Galaxy Clusters" turned out to be a great success. After imaging ~50 galaxies out of 279 in the program, we have already found two spectacularly bright lensed galaxies, one of which is at a redshift of 4.69. This type of cluster-lensed sources are not only bright but also spatially stretched over a large scale, so ALMA (or NOEMA in the north) is likely to be able to study them at the level of individual GMCs. Such studies will open up a new frontier in the study of high-redshift galaxies. Here, we propose to extend this highly efficient and effective survey of gravitationally lensed galaxies to another 353 clusters carefully chosen from the SPT and CODEX cluster samples. These samples contain newly discovered high-redshift (z>0.3) massive (>3-4e14 Msun) clusters, which can be used as powerful gravitational lenses to magnify sources at high redshift. With the OT1 and OT2 surveys together, we expect to find ~20 highly magnified SPIRE sources with exceptional brightnesses (assuming a discovery rate of ~1/30). Such a unique sample of extraordinary objects will enable a variety of follow-up sciences, and will therefore remain as a great legacy of the Herschel mission for years to come.
Morokuma, Tomoki; Inada, Naohisa; Oguri, Masamune; Ichikawa, Shin-Ichi; Kawano, Yozo; Tokita, Kouichi; Kayo, Issha; Hall, Patrick B.; Kochanek, Christopher S.; Richards, Gordon T.; York, Donald G.; Schneider, Donald P.; /Tokyo U., Inst. Astron. /KIPAC, Menlo Park /Princeton U. /Tokyo, Astron. Observ. /Nagoya U. /York U., Canada /Ohio State U., Dept. Astron. /Johns Hopkins U. /Drexel U. /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI /Penn State U., Astron. Astrophys.
2006-09-28
We report the discovery of the two-image gravitationally lensed quasar SDSS J133222.62+034739.9 (SDSS J1332+0347) with an image separation of {Delta}{theta} = 1.14''. This system consists of a source quasar at z{sub s} = 1.445 and a lens galaxy at z{sub l} = 0.191. The agreement of the luminosity, ellipticity and position angle of the lens galaxy with those expected from lens model confirms the lensing hypothesis.
Jones, Tucker A.; Ellis, Richard S.; Schenker, Matthew A.; Stark, Daniel P.
2013-12-10
The fraction of ionizing photons that escape from young star-forming galaxies is one of the largest uncertainties in determining the role of galaxies in cosmic reionization. Yet traditional techniques for measuring this fraction are inapplicable at the redshifts of interest due to foreground screening by the Lyα forest. In an earlier study, we demonstrated a reduction in the equivalent width of low-ionization absorption lines in composite spectra of Lyman break galaxies at z ≅ 4 compared to similar measures at z ≅ 3. This might imply a lower covering fraction of neutral gas and hence an increase with redshift in the escape fraction of ionizing photons. However, our spectral resolution was inadequate to differentiate between several alternative explanations, including changes with redshift in the outflow kinematics. Here we present higher quality spectra of three gravitationally lensed Lyman break galaxies at z ≅ 4 with a spectral resolution sufficient to break this degeneracy of interpretation. We present a method for deriving the covering fraction of low-ionization gas as a function of outflow velocity and compare the results with similar quality data taken for galaxies at lower redshift. We find an interesting but tentative trend of lower covering fractions of low-ionization gas for galaxies with strong Lyα emission. In combination with the demographic trends of Lyα emission with redshift from our earlier work, our results provide new evidence for a reduction in the average H I covering fraction, and hence an increase in the escape fraction of ionizing radiation from Lyman break galaxies, with redshift.
NASA Astrophysics Data System (ADS)
Troxel, Michael A.
Gravitational lensing has been identified as a critical cosmological tool in studying the evolution of large scale structure in the universe as well as the nature of dark matter and dark energy. One of the primary physical systematics of weak lensing due to large scale structure (cosmic shear) is the intrinsic alignment (IA) of galaxies, which poses a barrier to precision weak lensing measurements. Methods for identifying and removing its effects on cosmological information are key to the success of weak lensing survey science goals. We have expanded model-independent techniques to isolate and remove the IA contamination from the lensing signal. These self-calibration techniques take advantage of complementary survey information to self-calibrate the lensing signal, which along with unique lensing and IA geometry and separation dependencies, allow us to reconstruct the IA correlations at the level of the spectrum and bispectrum. We have demonstrated that the self-calibration approach can reduce the IA bias over most relevant scale and redshift ranges by up to a factor of 10 or more. This could reduce a potential 10-20% bias in some cosmological information down to the 1-2% level. The self-calibration techniques have the added benefit of preserving the IA signal, which itself provides additional information that can be used in studying the formation and evolution of large scale structure in the universe. We have also identified a new source of intrinsic alignment contamination in cross-correlations with cosmic microwave background lensing and proposed a method to calibrate it, and we explored the potential of future surveys to measure directly various 2- and 3-point intrinsic alignment correlations. Finally, we have investigated the use of exact anisotropic and inhomogeneous models in general relativity for large- and small-scale structures in the universe, developing the frameworks necessary to analyze gravitational lensing in such models, and have compared them to
On the bias of the distance-redshift relation from gravitational lensing
NASA Astrophysics Data System (ADS)
Kaiser, Nick; Peacock, John A.
2016-02-01
A long-standing question in cosmology is whether gravitational lensing changes the distance-redshift relation D (z) or the mean flux density of sources. Interest in this has been rekindled by recent studies in non-linear relativistic perturbation theory that find biases in both the area of a surface of constant redshift and in the mean distance to this surface, with a fractional bias in both cases of the order of the mean squared convergence <κ2>. Any such area bias could alter cosmic microwave background (CMB) cosmology, and the corresponding bias in mean flux density could affect supernova cosmology. We show that the perturbation to the area of a surface of constant redshift is in reality much smaller, being of the order of the cumulative bending angle squared, or roughly a part-in-a-million effect. This validates the arguments of Weinberg that the mean magnification of sources is unity and of Kibble & Lieu that the mean direction-averaged inverse magnification is unity. It also validates the conventional treatment of CMB lensing. But the existence of a scatter in magnification will cause any non-linear function of these conserved quantities to be statistically biased. The fractional bias in such quantities is generally of order <κ2>, which is orders of magnitude larger than the area perturbation. Claims for large bias in area or flux density of sources appear to have resulted from misinterpretation of such effects: they do not represent a new non-Newtonian effect, nor do they invalidate standard cosmological analyses.
NASA Astrophysics Data System (ADS)
Wagner, J.
2017-05-01
We extend our model-independent approach for characterising strong gravitational lenses to its most general form to leading order and use the orientation angles of a set of multiple images with respect to their connection line(s) in addition to the relative distances between the images, their ellipticities, and time-delays. For two symmetric images that straddle the critical curve, the orientation angle additionally allows us to determine the slope of the critical curve and a second (reduced) flexion coefficient at the critical point on the connection line between the images. It also allows us to drop the symmetry assumption that the axis of largest image extension is orthogonal to the critical curve. For three images almost forming a giant arc, the degree of assumed image symmetry is also reduced to the most general case, describing image configurations for which the source need not be placed on the symmetry axis of the two folds that unite at the cusp. For a given set of multiple images, we set limits on the applicability of our approach, show which information can be obtained in cases of merging images, and analyse the accuracy achievable due to the Taylor expansion of the lensing potential for the fold case on a galaxy cluster scale Navarro-Frenk-White-profile, a fold and cusp case on a galaxy cluster scale singular isothermal ellipse, and compare the generalised approach with our previously published one. The position of the critical points is reconstructed with less than 5'' deviation for multiple images closer to the critical points than 30% of the (effective) Einstein radius. The slope of the critical curve at a fold and its shape in the vicinity of a cusp deviate less than 20% from the true values for distances of the images to the critical points less than 15% of the (effective) Einstein radius.
FLITECAM H-alpha Spectroscopy of the 1 Jy Gravitationally Lensed Galaxy at z=3
NASA Astrophysics Data System (ADS)
Egami, Eiichi
An exceptionally bright z=3.005 gravitationally lensed submillimeter galaxy (SMG) was discovered last year using the Planck all-sky survey data. Having a peak flux density of 1.1 Jy at 300 microns, this SMG is by far the most luminous among many tens of similar objects discovered so far. Even taking into account the effect of lensing amplification, this galaxy must be extremely luminous intrinsically. Therefore, we would like to understand the origin and nature of this exceptional object. Here, we propose to use the FLITECAM grism spectroscopy mode to observe the redshifted H-alpha emission at z=3.005. Our main goal is to detect H-alpha emission from this galaxy and to find out (1) how much H-alpha emission is attenuated by dust (by comparing SFR(H-alpha) and SFR(LIR)), and (2) if there is any sign of a luminous AGN (e.g., a broad H-alpha component, high [N II]/H-alpha ratio). A large dust extinction (e.g., non-detection of H-alpha) would indicate that star-forming regions are concentrated in a small volume (within a few-hundred pc scale), and that the galaxy is undergoing a phase of violent starburst. On the other hand, a modest dust extinction would suggest that star-forming regions are distributed over large scales (> kpc), and that the galaxy is undergoing a phase of secular evolution (i.e., on the main-sequence of star-forming galaxies). If there is a luminous AGN harbored in this object, we should also be able to see its sign.
Probing Dark Energy via Weak Gravitational Lensing with the Supernova Acceleration Probe (SNAP)
Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN
2005-08-08
SNAP is a candidate for the Joint Dark Energy Mission (JDEM) that seeks to place constraints on the dark energy using two distinct methods. The first, Type Ia SN, is discussed in a separate white paper. The second method is weak gravitational lensing, which relies on the coherent distortions in the shapes of background galaxies by foreground mass structures. The excellent spatial resolution and photometric accuracy afforded by a 2-meter space-based observatory are crucial for achieving the high surface density of resolved galaxies, the tight control of systematic errors in the telescope's Point Spread Function (PSF), and the exquisite redshift accuracy and depth required by this project. These are achieved by the elimination of atmospheric distortion and much of the thermal and gravity loads on the telescope. The SN and WL methods for probing dark energy are highly complementary and the error contours from the two methods are largely orthogonal. The nominal SNAP weak lensing survey covers 1000 square degrees per year of operation in six optical and three near infrared filters (NIR) spanning the range 350 nm to 1.7 {micro}m. This survey will reach a depth of 26.6 AB magnitude in each of the nine filters and allow for approximately 100 resolved galaxies per square arcminute, {approx} 3 times that available from the best ground-based surveys. Photometric redshifts will be measured with statistical accuracy that enables scientific applications for even the faint, high redshift end of the sample. Ongoing work aims to meet the requirements on systematics in galaxy shape measurement, photometric redshift biases, and theoretical predictions.
THE EINSTEIN CROSS: CONSTRAINT ON DARK MATTER FROM STELLAR DYNAMICS AND GRAVITATIONAL LENSING
Van de Ven, Glenn; Falcon-Barroso, Jesus; Cappellari, Michele; Miller, Bryan W.; De Zeeuw, P. Tim
2010-08-20
We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4'' (with 0.''2 spaxels), covering about two-thirds of the effective (or half-light) radius R{sub e} {approx_equal} 6'' of this early-type spiral galaxy at redshift z{sub l} {approx_equal} 0.04, of which the bulge is lensing a background quasar at redshift z{sub s} {approx_equal} 1.7. The velocity map shows regular rotation up to {approx}100 km s{sup -1} around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing toward a central (R < 1'') value of {sigma}{sub 0} = 170 {+-} 9 km s{sup -1}. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius R{sub E} = 0.''89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio Y{sub dyn} = 3.7 {+-} 0.5 Y{sub sun,I} (in the I band). This is consistent with the Einstein mass M{sub E} = 1.54 x 10{sup 10} M {sub sun} divided by the (projected) luminosity within R{sub E} , which yields a total mass-to-light ratio of Y {sub E} = 3.4 Y{sub sun,I}, with an error of at most a few percent. We estimate from
NASA Astrophysics Data System (ADS)
Lowenthal, J. D.; Harrington, K.; Berman, D.; Yun, M.; Cybulski, R.; Wilson, G. W.; Aretxaga, I.; Chavez, M.; de La Luz, V.; Erickson, N.; Ferrusca, D.; Gallup, A.; Hughes, D.; Montaña, A.; Narayanan, G.; Sánchez-Argüelles, D.; Schloerb, F. P.; Souccar, K.; Terlevich, E.; Terlevich, R.; Zeballos, M.; Zavala, J. A.
2017-03-01
We have assembled a new sample of some of the most FIR-luminous galaxies in the Universe and have imaged them in 1.1 mm dust emission and measured their redshifts 1 < z < 4 via CO emission lines using the 32-m Large Millimeter Telescope / Gran Telescopio Milimétrico (LMT/GTM). Our sample of 31 submm galaxies (SMGs), culled from the Planck and Herschel all-sky surveys, includes 14 of the 21 most luminous galaxies known, with LFIR > 1014 L ⊙ and SFR > 104M⊙/yr. These extreme inferred luminosities - and multiple / extended 1.1 mm images - imply that most or all are strongly gravitationally lensed, with typical magnification μ ~ 10 × . The gravitational lensing provides two significant benefits: (1) it boosts the S/N, and (2) it allows investigation of star formation and gas processes on sub-kpc scales.
Errard, Josquin; Feeney, Stephen M.; Jaffe, Andrew H.; Peiris, Hiranya V. E-mail: s.feeney@imperial.ac.uk E-mail: a.jaffe@imperial.ac.uk
2016-03-01
Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0
NASA Astrophysics Data System (ADS)
Errard, Josquin; Feeney, Stephen M.; Peiris, Hiranya V.; Jaffe, Andrew H.
2016-03-01
Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10-4, σ(nt)~0.03, σ( ns )~1.8×10
NASA Astrophysics Data System (ADS)
Barnabè, Matteo; Koopmans, Léon V. E.
2007-09-01
Gravitational lensing and stellar dynamics are two independent methods, based solely on gravity, to study the mass distributions of galaxies. Both methods suffer from degeneracies, however, that are difficult to break. In this paper we present a new framework that self-consistently unifies gravitational lensing and stellar dynamics, breaking some classical degeneracies that have limited their individual usage, particularly in the study of high-redshift galaxies. For any given galaxy potential, the mapping of both the unknown lensed source brightness distribution and the stellar phase-space distribution function onto the photometric and kinematic observables can be cast as a single set of coupled linear equations, which are solved by maximizing the likelihood penalty function. The Bayesian evidence penalty function subsequently allows one to find the best potential-model parameters and to quantitatively rank potential-model families or other model assumptions (e.g., PSF). We have implemented a fast algorithm that solves for the maximum-likelihood pixelized lensed source brightness distribution and the two-integral stellar phase-space distribution function f(E,Lz), assuming axisymmetric potentials. To make the method practical, we have devised a new Monte Carlo approach to Schwarzschild's orbital superposition method, based on the superposition of two-integral (E and Lz) toroidal components, to find the maximum-likelihood two-integral distribution function in a matter of seconds in any axisymmetric potential. The nonlinear parameters of the potential are subsequently found through a hybrid MCMC and Simplex optimization of the evidence. Illustrated by the power-law potential models of Evans, we show that the inclusion of stellar kinematic constraints allows the correct linear and nonlinear model parameters to be recovered, including the potential strength, oblateness, and inclination, which, in the case of gravitational-lensing constraints only, would otherwise be
NASA Technical Reports Server (NTRS)
Wagoner, Robert V.; Linder, Eric V.
1987-01-01
A review is presented concerning the gravitational lensing of supernovae by intervening condensed objects, including dark matter candidates such as dim stars and black holes. the expansion of the supernova beam within the lens produces characteristic time-dependent amplification and polarization which depend upon the mass of the lens. The effects of the shearing of the beam due to surrounding masses are considered, although the study of these effects is confined to isolated masses whose size is much less than that of the supernova (about 10 to the 15th cm). Equations for the effects of lensing and graphs comparing these effects in different classes of supernovae are compared. It is found that candidates for lensing would be those supernovae at least as bright as their parent galaxy, or above the range of luminosities expected for their spectral class.
Resolving the High-energy Universe with Strong Gravitational Lensing: The Case of PKS 1830-211
NASA Astrophysics Data System (ADS)
Barnacka, Anna; Geller, Margaret J.; Dell'Antonio, Ian P.; Benbow, Wystan
2015-08-01
Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distant sources and produce time delays between mirage images. Gravitationally induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the autocorrelation function, the double power spectrum, and the maximum peak method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10,000. We analyze four active periods. For two of these periods the emission is consistent with origination from the core, and for the other two the data suggest that the emission region is displaced from the core by more than ˜1.5 kpc. For the core emission, the gamma-ray time delays, 23+/- 0.5 {days} and 19.7+/- 1.2 days, are consistent with the radio time delay of {26}-5+4 days.
Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes
Schee, Jan; Stuchlík, Zdeněk E-mail: zdenek.stuchlik@fpf.slu.cz
2015-06-01
We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region.
NASA Astrophysics Data System (ADS)
Ghaffarnejad, Hossein; Mojahedi, Mojtaba Amir
2017-05-01
The aim of the paper is to study weak gravitational lensing of quantum (perturbed) and classical lukewarm black holes (QLBHs and CLBHs respectively) in the presence of cosmological parameter Λ. We apply a numerical method to evaluate the deflection angle of bending light rays, image locations θ of sample source β =-\\tfrac{π }{4}, and corresponding magnifications μ. There are no obtained real values for Einstein ring locations {θ }E(β =0) for CLBHs but we calculate them for QLBHs. As an experimental test of our calculations, we choose mass M of 60 types of the most massive observed galactic black holes acting as a gravitational lens and study quantum matter field effects on the angle of bending light rays in the presence of cosmological constant effects. We calculate locations of non-relativistic images and corresponding magnifications. Numerical diagrams show that the quantum matter effects cause absolute values of the quantum deflection angle to be reduced with respect to the classical ones. The sign of the quantum deflection angle is changed with respect to the classical values in the presence of the cosmological constant. This means dominance of the anti-gravity counterpart of the cosmological horizon on the angle of bending light rays with respect to absorbing effects of 60 local types of the most massive observed black holes. Variations of the image positions and magnifications are negligible when increasing dimensionless cosmological constant ɛ =\\tfrac{16{{Λ }}{M}2}{3}. The deflection angle takes positive (negative) values for CLBHs (QLBHs) and they decrease very fast (slowly) by increasing the closest distance x 0 of bending light ray and/or dimensionless cosmological parameter for sample giant black holes with 0.001< ɛ < 0.01.
Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes
NASA Astrophysics Data System (ADS)
Schee, Jan; Stuchlík, Zdeněk
2015-06-01
We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss "ghost" direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region.
NASA Astrophysics Data System (ADS)
Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina
2014-10-01
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ~ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z em ~ 2.197) whose image separation angle, θ ~ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ~ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Misawa, Toru; Inada, Naohisa; Oguri, Masamune; Gandhi, Poshak; Horiuchi, Takashi; Koyamada, Suzuka; Okamoto, Rina
2014-10-20
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/High Dispersion Spectrograph, we performed high-resolution (R ∼ 36,000) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at z {sub em} ∼ 2.197) whose image separation angle, θ ∼ 22.''5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in images A and B discovered by Misawa et al. has remained unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, Δt ∼ 744 days, but rather due to differences along the sightlines. We also discovered a time variation of C IV absorption strength in both images A and B due to a change in the ionization condition. If a typical absorber's size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
Revisiting the extremely fast disc wind in a gravitationally lensed quasar APM 08279+5255
NASA Astrophysics Data System (ADS)
Hagino, Kouichi; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2017-06-01
The gravitationally lensed quasar APM 08279+5255 has the fastest claimed wind from any active galactic nucleus, with velocities of 0.6-0.7c, requiring magnetic acceleration as special relativistic effects limit all radiatively driven winds to v < 0.3-0.5c. However, this extreme velocity derives from interpreting both the narrow and broad absorption features in the X-ray spectrum as iron absorption lines. The classic ultrafast outflow source PDS 456 also shows similar absorption systems, but here the higher energy, broader feature is generally interpreted as an absorption edge. We reanalyse all the spectra from APM 08279+5255 using a full 3D Monte Carlo radiative transfer disc wind model for the ionized wind at 0.1-0.2c, together with complex absorption from lower ionization material, and find that this is a better description of the data. Thus, there is no strong requirement for outflow velocities beyond 0.2c, which can be powered by radiation driving. We show that UV line driving is especially likely given the spectral energy distribution of this source which is intrinsically UV bright and X-ray weak. While the peak of this emission is unobservable, it must be luminous enough to power the observed hot dust, favouring at least moderate black hole spin.
A framework for modeling line-of-sight effects in strong gravitational lensing
NASA Astrophysics Data System (ADS)
Keeton, Charles R.; McCully, C.; Wong, K. C.; Zabludoff, A. I.
2014-01-01
In strong gravitational lens systems, the light bending is usually dominated by one main galaxy but may be affected by other objects along the line of sight (LOS). Perturbers projected far from the lens can be approximated with convergence and shear, but perturbers projected closer to the lens create higher-order effects and need to be treated individually. We present a theoretical framework for multi-plane lensing that can handle an arbitrary combination of planes with shear/convergence and planes with higher-order terms. We test our framework first using simulations with a single perturber to study where the shear approximation is not valid and where non-linear effects are important. We show that perturbers behind the lens galaxy can be treated as an effective shear in the main lens plane, but perturbers in front of the lens cannot be mimicked by such a shear. Applying this to realistic fields, we find that our LOS framework can reproduce the fitted lens properties and the Hubble Constant, H0, without bias and with scatter that is smaller than typical measurement uncertainties.
Black hole solution and strong gravitational lensing in Eddington-inspired Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Yang, Ke; Liu, Yu-Xiao
2015-06-01
A new theory of gravity called Eddington-inspired Born-Infeld (EiBI) gravity was recently proposed by Bañados and Ferreira. This theory leads to some exciting new features, such as free of cosmological singularities. In this paper, we first obtain a charged EiBI black hole solution with a nonvanishing cosmological constant when the electromagnetic field is included in. Then based on it, we study the strong gravitational lensing by the asymptotic flat charged EiBI black hole. The strong deflection limit coefficients and observables are shown to closely depend on the additional coupling parameter in the EiBI gravity. It is found that, compared with the corresponding charged black hole in general relativity, the positive coupling parameter will shrink the black hole horizon and photon sphere. Moreover, the coupling parameter will decrease the angular position and relative magnitudes of the relativistic images, while increase the angular separation, which may shine new light on testing such gravity theory in near future by the astronomical instruments.
Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.
Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R
2013-03-21
In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.
Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data
NASA Astrophysics Data System (ADS)
Holanda, R. F. L.; Busti, V. C.; Alcaniz, J. S.
2016-02-01
We propose and perform a new test of the cosmic distance-duality relation (CDDR), DL(z) / DA(z) (1 + z)2 = 1, where DA is the angular diameter distance and DL is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=DA12/DA2 and D*=DL12/DL2, where the subscripts 1 and 2 correspond, respectively, to redshifts z1 and z2, are linked by D/D*=(1+z1)2 if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z1), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) simeq 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.
Zhang Pengjie
2010-09-10
The galaxy intrinsic alignment is a severe challenge to precision cosmic shear measurement. We propose self-calibrating the induced gravitational shear-galaxy intrinsic ellipticity correlation (the GI correlation) in weak lensing surveys with photometric redshift measurements. (1) We propose a method to extract the intrinsic ellipticity-galaxy density cross-correlation (I-g) from the galaxy ellipticity-density measurement in the same redshift bin. (2) We also find a generic scaling relation to convert the extracted I-g correlation to the necessary GI correlation. We perform a concept study under simplified conditions and demonstrate its capability to significantly reduce GI contamination. We discuss the impact of various complexities on the two key ingredients of the self-calibration technique, namely the method for extracting the I-g correlation and the scaling relation between the I-g and the GI correlation. We expect that none of them will likely be able to completely invalidate the proposed self-calibration technique.
Probing the cosmic distance duality with strong gravitational lensing and supernovae Ia data
Holanda, R.F.L.; Busti, V.C.; Alcaniz, J.S. E-mail: vcbusti@astro.iag.usp.br
2016-02-01
We propose and perform a new test of the cosmic distance-duality relation (CDDR), D{sub L}(z) / D{sub A}(z) (1 + z){sup 2} = 1, where D{sub A} is the angular diameter distance and D{sub L} is the luminosity distance to a given source at redshift z, using strong gravitational lensing (SGL) and type Ia Supernovae (SNe Ia) data. We show that the ratio D=D{sub A{sub 1{sub 2}}}/D{sub A{sub 2}} and D{sup *}=D{sub L{sub 1{sub 2}}}/D{sub L{sub 2}}, where the subscripts 1 and 2 correspond, respectively, to redshifts z{sub 1} and z{sub 2}, are linked by D/D{sup *}=(1+z{sub 1}){sup 2} if the CDDR is valid. We allow departures from the CDDR by defining two functions for η(z{sub 1}), which equals unity when the CDDR is valid. We find that combination of SGL and SNe Ia data favours no violation of the CDDR at 1σ confidence level (η(z) ≅ 1), in complete agreement with other tests and reinforcing the theoretical pillars of the CDDR.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Agnello, A.; Treu, T.; Ostrovski, F.; Schechter, P. L.; Buckley-Geer, E. J.; Lin, H.; Auger, M. W.; Courbin, F.; Fassnacht, C. D.; Frieman, J.; Kuropatkin, N.; Marshall, P. J.; McMahon, R. G.; Meylan, G.; More, A.; Suyu, S. H.; Rusu, C. E.; Finley, D.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Walker, A. R.; Wechsler, R. H.; Zhang, Y.
2015-12-01
We present spectroscopic confirmation of two new gravitationally lensed quasars, discovered in the Dark Energy Survey (DES) and Wide-field Infrared Survey Explorer (WISE) based on their multiband photometry and extended morphology in DES images. Images of DES J0115-5244 show a red galaxy with two blue point sources at either side, which are images of the same quasar at zs = 1.64 as obtained by our long-slit spectroscopic data. The Einstein radius estimated from the DES images is 0.51 arcsec. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fibre spectrum shows a quasar component at zs = 2.38 and absorption by Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. Our long-slit spectra show that the blue components are resolved images of the same quasar. The Einstein radius is 0.68 arcsec, corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data mining and model-based selection that is being applied to the entire DES data set.
NASA Technical Reports Server (NTRS)
Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon;
2014-01-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.
THE REMARKABLE {gamma}-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830-211
Donnarumma, I.; De Rosa, A.; Vittorini, V.; Tavani, M.; Striani, E.; Pacciani, L.; Popovic, L. C.; Simic, S.; Kuulkers, E.; Vercellone, S.; Verrecchia, F.; Pittori, C.; Giommi, P.; Barbiellini, G.; Bulgarelli, A.
2011-08-01
We report the extraordinary {gamma}-ray activity (E > 100 MeV) of the gravitationally lensed blazar PKS 1830-211 (z = 2.507) detected by AGILE between 2010 October and November. On October 14, the source experienced a factor of {approx}12 flux increase with respect to its average value and remained brightest at this flux level ({approx}500 x 10{sup -8} photons cm{sup -2} s{sup -1}) for about four days. The one-month {gamma}-ray light curve across the flare showed a mean flux F(E > 100 MeV) = 200 x 10{sup -8} photons cm{sup -2} s{sup -1}, which resulted in a factor of four enhancement with respect to the average value. Following the {gamma}-ray flare, the source was observed in near-IR (NIR)-optical energy bands at the Cerro Tololo Inter-American Observatory and in X-Rays by Swift/X-Ray Telescope and INTEGRAL/IBIS. The main result of these multifrequency observations is that the large variability observed in {gamma}-rays does not have a significant counterpart at lower frequencies: no variation greater than a factor of {approx}1.5 appeared in the NIR and X-Ray energy bands. PKS 1830-211 is then a good '{gamma}-ray only flaring' blazar showing substantial variability only above 10-100 MeV. We discuss the theoretical implications of our findings.
Das, Sudeep; Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D.; Addison, Graeme E.; Halpern, Mark; Battistelli, Elia S.; Crichton, Devin; Gralla, Megan; Devlin, Mark J.; Dicker, Simon; Dünner, Rolando; Fowler, Joseph W.; Hasselfield, Matthew; Hlozek, Renée; Hilton, Matt; and others
2014-04-01
We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.
Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar
NASA Astrophysics Data System (ADS)
James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.
2015-03-01
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about
A direct gravitational lensing test for 10 exp 6 solar masses black holes in halos of galaxies
NASA Technical Reports Server (NTRS)
Wambsganss, Joachim; Paczynski, Bohdan
1992-01-01
We propose a method that will be able to detect or exclude the existence of 10 exp 6 solar masses black holes in the halos of galaxies. VLBA radio maps of two milliarcsecond jets of a gravitationally lensed quasar will show the signature of these black holes - if they exist. If there are no compact objects in this mass range along the line of sight, the two jets should be linear mappings of each other. If they are not, there must be compact objects of about 10 exp 6 solar masses in the halo of the galaxy that deform the images by gravitational deflection. We present numerical simulations for the two jets A and B of the double quasar 0957 + 561, but the method is valid for any gravitationally lensed quasar with structure on milliarcsecond scales. As a by-product from high-quality VLBA maps of jets A and B, one will be able to tell which features in the maps are intrinsic in the original jet and which are only an optical illusion, i.e., gravitational distortions by black holes along the line of sight.
NASA Astrophysics Data System (ADS)
Johnson, Jyothisraj; Keeton, Charles R.; Brennan, Sean
2016-01-01
The Cold Dark Matter (CDM) model of the universe predicts that there should be hundreds to thousands of clumps surrounding a massive galaxy. However, observations have shown that we only see dozens of dwarf galaxies and not the hundreds to thousands that are predicted. This means that either the CDM model prediction is wrong, or most of the substructure consists of dark matter that cannot be observed directly. Massive galaxies serve as natural gravitational lenses throughout the universe that allow us to indirectly observe these dark matter perturbations. Strong gravitational lensing occurs when these massive elliptical galaxies have the critical density required to bend light from a source located behind it and produce multiple images of that same source. Dark matter clumps located near these multiple images affect their positions and flux ratios. We used lensing simulations to quantify how dark matter clumps affect image properties and to characterize this zone of influence through color maps of chi-squared values. Our results showed regions around each of the image positions that display significant perturbations for low mass clumps. For higher mass clumps, however, these distinct regions bleed together. We found that there is a correlation between the mass of the dark matter clump and the area it perturbs.This research has been supported by NSF grant PHY-1263280.
NASA Astrophysics Data System (ADS)
Rhodes, Jason
The nature of dark energy, thought to be driving the accelerating expansion of the Universe, is one of the most compelling mysteries in all of science. Determining the equation-of-state of dark energy to 1% accuracy is currently a leading goal for many planned cosmological surveys and numerical simulations of structure formation are required to make predictions and help mitigate systematics for upcoming surveys such as NASA’s Wide-Field Infrared Survey Telescope (WFIRST), ESA’s Euclid and the Large Synoptic Survey Telescope (LSST). We propose to: 1) Enhance our weak lensing simulation pipeline, SUNGLASS, to include galaxy intrinsic alignments 2) Develop and test intrinsic alignment mitigation techniques 3) Generate high precision covariance matrices and determine the precision required to measure the equation-of-state of dark energy to 1% 4) Develop a covariance emulator Our SUNGLASS pipeline (Simulated UNiverses for Gravitational Lensing Analysis and Shear Surveys; Kiessling et al. 2011a) is able to produce Monte Carlo suites of numerical simulations and rapidly generates mock weak lensing galaxy shear catalogues. We propose to enhance the SUNGLASS pipeline to include realistic galaxy properties using the Galacticus software (Benson 2012). With the realistic galaxy properties made available from Galacticus, we will be able to place realistic intrinsic alignment (IA) signals, where galaxy shapes are correlated due to their physical proximity, into the mock catalogues. Using the SUNGLASS/Galacticus catalogues, we propose to reduce the degrees of freedom in a plausible IA model and find optimal methods of controlling IA through removal techniques and modeling. It is currently unknown how accurate a covariance matrix needs to be in order to measure the equation-of-state of dark energy to 1%. We will directly generate the matrices with 10^4 independent N-body realizations for a LCDM cosmology to test how errors propagate through the non-linear modes and compare
KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing
NASA Astrophysics Data System (ADS)
Hildebrandt, H.; Viola, M.; Heymans, C.; Joudaki, S.; Kuijken, K.; Blake, C.; Erben, T.; Joachimi, B.; Klaes, D.; Miller, L.; Morrison, C. B.; Nakajima, R.; Verdoes Kleijn, G.; Amon, A.; Choi, A.; Covone, G.; de Jong, J. T. A.; Dvornik, A.; Fenech Conti, I.; Grado, A.; Harnois-Déraps, J.; Herbonnet, R.; Hoekstra, H.; Köhlinger, F.; McFarland, J.; Mead, A.; Merten, J.; Napolitano, N.; Peacock, J. A.; Radovich, M.; Schneider, P.; Simon, P.; Valentijn, E. A.; van den Busch, J. L.; van Uitert, E.; Van Waerbeke, L.
2017-02-01
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ˜450 deg2 of imaging data from the Kilo Degree Survey (KiDS). For a flat Λ cold dark matter (ΛCDM) cosmology with a prior on H0 that encompasses the most recent direct measurements, we find S_8≡ σ _8√{Ω _m/0.3}=0.745± 0.039. This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A 2.3σ tension in S8 and 'substantial discordance' in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved 'self-calibrating' version of lensFIT validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl.
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Kannawadi, A.; Mandelbaum, R.; Rhodes, J.; Smith, R.
2016-10-01
Weak gravitational lensing (WL) is one of the most powerful techniques to learn about the dark sector of the universe. To extract the WL signal from astronomical observations, galaxy shapes must be measured and corrected for the point-spread function (PSF) of the imaging system with extreme accuracy. Future WL missions—such as NASA’s Wide-Field Infrared Survey Telescope (WFIRST)—will use a family of hybrid near-infrared complementary metal-oxide-semiconductor detectors (HAWAII-4RG) that are untested for accurate WL measurements. Like all image sensors, these devices are subject to conversion gain nonlinearities (voltage response to collected photo-charge) that bias the shape and size of bright objects such as reference stars that are used in PSF determination. We study this type of detector nonlinearity (NL) and show how to derive requirements on it from WFIRST PSF size and ellipticity requirements. We simulate the PSF optical profiles expected for WFIRST and measure the fractional error in the PSF size (ΔR/R) and the absolute error in the PSF ellipticity (Δe) as a function of star magnitude and the NL model. For our nominal NL model (a quadratic correction), we find that, uncalibrated, NL can induce an error of ΔR/R = 1 × 10-2 and Δe 2 = 1.75 × 10-3 in the H158 bandpass for the brightest unsaturated stars in WFIRST. In addition, our simulations show that to limit the bias of ΔR/R and Δe in the H158 band to ˜10% of the estimated WFIRST error budget, the quadratic NL model parameter β must be calibrated to ˜1% and ˜2.4%, respectively. We present a fitting formula that can be used to estimate WFIRST detector NL requirements once a true PSF error budget is established.
The Optical Gravitational Lensing Experiment. Gaia South Ecliptic Pole Field as Seen by OGLE-IV
NASA Astrophysics Data System (ADS)
Soszyński, I.; Udalski, A.; Poleski, R.; Kozłowski, S.; Wyrzykowski, Ł.; Pietrukowicz, P.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.; Skowron, J.
2012-09-01
We present a comprehensive analysis of the Gaia South Ecliptic Pole (GSEP) field, 5.3 square degrees area around the South Ecliptic Pole on the outskirts of the LMC, based on the data collected during the fourth phase of the Optical Gravitational Lensing Experiment, OGLE-IV. The GSEP field will be observed during the commissioning phase of the ESA Gaia space mission for testing and calibrating the Gaia instruments. We provide the photometric maps of the GSEP region containing the mean VI photometry of all detected stellar objects and their equatorial coordinates. We show the quality and completeness of the OGLE-IV photometry and color-magnitude diagrams of this region. We conducted an extensive search for variable stars in the GSEP field leading to the discovery of 6789 variable stars. In this sample we found 132 classical Cepheids, 686 RR Lyr type stars, 2819 long-period, and 1377 eclipsing variables. Several objects deserving special attention were also selected, including a new classical Cepheid in a binary eclipsing system. To provide empirical data for the Gaia Science Alert system we also conducted a search for optical transients. We discovered two firm type Ia supernovae and nine additional supernova candidates. To facilitate future Gaia supernovae detections we prepared a list of more than 1900 galaxies to redshift about 0.1 located in the GSEP field. Finally, we present the results of astrometric study of the GSEP field. With the 26 months time base of the presented here OGLE-IV data, proper motions of stars could be detected with the accuracy reaching 2 mas/yr. Astrometry allowed to distinguish galactic foreground variable stars detected in the GSEP field from LMC objects and to discover about 50 high proper motion stars (proper motion ≥ 100 mas/yr). Among them three new nearby white dwarfs were found. All data presented in this paper are available to the astronomical community from the OGLE Internet archive.
Illuminating the past 8 billion years of cold gas towards two gravitationally lensed quasars
NASA Astrophysics Data System (ADS)
Allison, J. R.; Moss, V. A.; Macquart, J.-P.; Curran, S. J.; Duchesne, S. W.; Mahony, E. K.; Sadler, E. M.; Whiting, M. T.; Bannister, K. W.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B. T.; Lenc, E.; Marvil, J.; McConnell, D.; Sault, R. J.
2017-03-01
Using the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP BETA), we have carried out the first z = 0-1 survey for H I and OH absorption towards the gravitationally lensed quasars PKS B1830-211 and MG J0414+0534. Although we detected all previously reported intervening systems towards PKS B1830-211, in the case of MG J0414+0534, three systems were not found, indicating that the original identifications may have been confused with radio frequency interference. Given the sensitivity of our data, we find that our detection yield is consistent with the expected frequency of intervening H I systems estimated from previous surveys for 21-cm emission in nearby galaxies and z ∼ 3 damped Lyman α absorbers. We find spectral variability in the z = 0.886 face-on spiral galaxy towards PKS B1830-211 from observations undertaken with the Westerbork Synthesis Radio Telescope in 1997/1998 and ASKAP BETA in 2014/2015. The H I equivalent width varies by a few per cent over approximately yearly time-scales. This long-term spectral variability is correlated between the north-east and south-west images of the core, and with the total flux density of the source, implying that it is observationally coupled to intrinsic changes in the quasar. The absence of any detectable variability in the ratio of H I associated with the two core images is in stark contrast to the behaviour previously seen in the molecular lines. We therefore infer that coherent opaque H I structures in this galaxy are larger than the parsec-scale molecular clouds found at mm-wavelengths.
Story, K. T.; Hanson, D.; Ade, P. A. R.; ...
2015-08-28
Here, we present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles betweenmore » $$100\\lt L\\lt 250$$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $$100\\lt L\\lt 2000$$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find APOL = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $$5.9\\sigma $$ using polarization data alone, and at $$14\\sigma $$ using both temperature and polarization data.« less
Story, K. T.; Hanson, D.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; J. A. Beall,; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Crites, A. T.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.
2015-08-28
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg(2) of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between $100\\lt L\\lt 250$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $100\\lt L\\lt 2000$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be A(MV) = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find A(POL) = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $5.9\\sigma $ using polarization data alone, and at $14\\sigma $ using both temperature and polarization data.
Story, K. T.; Hanson, D.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H. -M.; Citron, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Harrington, N.; Henning, J. W.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.
2015-08-28
Here, we present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work cover 100 deg^{2} of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between $100\\lt L\\lt 250$. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between $100\\lt L\\lt 2000$ as our primary result. We constrain the ratio of the spectrum to a fiducial ΛCDM model to be AMV = 0.92 ± 0.14 (Stat.) ± 0.08 (Sys.). Restricting ourselves to polarized data only, we find A_{POL} = 0.92 ± 0.24 (Stat.) ± 0.11 (Sys.). This measurement rejects the hypothesis of no lensing at $5.9\\sigma $ using polarization data alone, and at $14\\sigma $ using both temperature and polarization data.
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.
1996-01-01
With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.
Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Jones, C.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.
2015-06-20
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. We apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: ${M}_{200,\\mathrm{lens}}={0.83}_{-0.37}^{+0.38}\\;{M}_{200,\\mathrm{SZ}}$ (68% C.L., statistical error only).
Baxter, E. J.; Keisler, R.; Dodelson, S.; ...
2015-06-22
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M200,lens = 0.83+0.38-0.37 M200,SZ (68% C.L., statistical error only).« less
Baxter, E. J.; Keisler, R.; Dodelson, S.; Aird, K. A.; Allen, S. W.; Ashby, M. L.N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. -M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; de Haan, T.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Jones, C.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.
2015-06-22
Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M_{200,lens} = 0.83^{+0.38}_{-0.37} M_{200,SZ} (68% C.L., statistical error only).
NASA Astrophysics Data System (ADS)
Cui, Jing-Lei; Li, Hai-Li; Zhang, Xin
2017-08-01
In this paper, we consider the singular isothermal sphere lensing model that has a spherically symmetric power-law mass dis- tribution ρtot(r) r-γ. We investigate whether the mass density power-law index γ is cosmologically evolutionary by using the strong gravitational lensing (SGL) observation, in combination with other cosmological observations. We also check whether the constraint result of γ is affected by the cosmological model, by considering several simple dynamical dark energy models. We find that the constraint on γ is mainly decided by the SGL observation and independent of the cosmological model, and we find no evidence for the evolution of γ from the SGL observation.
Gavazzi, Raphaël; Marshall, Philip J.; Treu, Tommaso; Sonnenfeld, Alessandro
2014-04-20
We present RINGFINDER, a tool for finding galaxy-scale strong gravitational lenses in multi-band imaging data. By construction, the method is sensitive to configurations involving a massive foreground ETG and a faint, background, blue source. RINGFINDER detects the presence of blue residuals embedded in an otherwise smooth red light distribution by difference imaging in two bands. The method is automated for efficient application to current and future surveys, having originally been designed for the 150 deg{sup 2} Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We describe each of the steps of RINGFINDER. We then carry out extensive simulations to assess completeness and purity. For sources with magnification μ > 4, RINGFINDER reaches 42% (25%) completeness and 29% (86%) purity before (after) visual inspection. The completeness of RINGFINDER is substantially improved in the particular range of Einstein radii 0.''8 ≤ R {sub Ein} ≤ 2.''0 and lensed images brighter than g = 22.5, where it can be as high as ∼70%. RINGFINDER does not introduce any significant bias in the source or deflector population. We conclude by presenting the final catalog of RINGFINDER CFHTLS galaxy-scale strong lens candidates. Additional information obtained with Hubble Space Telescope and Keck adaptive optics high-resolution imaging, and with Keck and Very Large Telescope spectroscopy, is used to assess the validity of our classification and measure the redshift of the foreground and the background objects. From an initial sample of 640,000 ETGs, RINGFINDER returns 2500 candidates, which we further reduce by visual inspection to 330 candidates. We confirm 33 new gravitational lenses from the main sample of candidates, plus an additional 16 systems taken from earlier versions of RINGFINDER. First applications are presented in the Strong Lensing Legacy Survey galaxy-scale lens sample paper series.
NASA Astrophysics Data System (ADS)
Gavazzi, Raphaël; Marshall, Philip J.; Treu, Tommaso; Sonnenfeld, Alessandro
2014-04-01
We present RINGFINDER, a tool for finding galaxy-scale strong gravitational lenses in multi-band imaging data. By construction, the method is sensitive to configurations involving a massive foreground ETG and a faint, background, blue source. RINGFINDER detects the presence of blue residuals embedded in an otherwise smooth red light distribution by difference imaging in two bands. The method is automated for efficient application to current and future surveys, having originally been designed for the 150 deg2 Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We describe each of the steps of RINGFINDER. We then carry out extensive simulations to assess completeness and purity. For sources with magnification μ > 4, RINGFINDER reaches 42% (25%) completeness and 29% (86%) purity before (after) visual inspection. The completeness of RINGFINDER is substantially improved in the particular range of Einstein radii 0.''8 <= R Ein <= 2.''0 and lensed images brighter than g = 22.5, where it can be as high as ~70%. RINGFINDER does not introduce any significant bias in the source or deflector population. We conclude by presenting the final catalog of RINGFINDER CFHTLS galaxy-scale strong lens candidates. Additional information obtained with Hubble Space Telescope and Keck adaptive optics high-resolution imaging, and with Keck and Very Large Telescope spectroscopy, is used to assess the validity of our classification and measure the redshift of the foreground and the background objects. From an initial sample of 640,000 ETGs, RINGFINDER returns 2500 candidates, which we further reduce by visual inspection to 330 candidates. We confirm 33 new gravitational lenses from the main sample of candidates, plus an additional 16 systems taken from earlier versions of RINGFINDER. First applications are presented in the Strong Lensing Legacy Survey galaxy-scale lens sample paper series.
Zhang, Pengjie; Liguori, Michele; Bean, Rachel; Dodelson, Scott
2007-10-05
The standard cosmology is based on general relativity (GR) and includes dark matter and dark energy and predicts a fixed relationship between the gravitational potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of gravity often make different predictions. We propose a set of measurements which can test this relationship, thereby distinguishing between dark energy or matter models and models in which gravity differs from GR. Planned surveys will be able to measure E(G), an observational quantity whose expectation value is equal to the ratio of the Laplacian of the Newtonian potentials to the peculiar velocity divergence, to percent accuracy. This will easily separate alternatives such as the cold dark matter model with a cosmological constant, Dvali-Gabadadze-Porrati, TeVeS, and f(R) gravity.
Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie; Tanaka, Masayuki; George, Matthew R.; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Kitching, Thomas D.; Capak, Peter; Finoguenov, Alexis; Ilbert, Olivier; Kneib, Jean-Paul; Jullo, Eric; Koekemoer, Anton M.
2012-04-20
Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.
The strongest gravitational lenses. III. The order statistics of the largest Einstein radii
NASA Astrophysics Data System (ADS)
Waizmann, J.-C.; Redlich, M.; Meneghetti, M.; Bartelmann, M.
2014-05-01
Context. The Einstein radius of a gravitational lens is a key characteristic. It encodes information about decisive quantities such as halo mass, concentration, triaxiality, and orientation with respect to the observer. Therefore, the largest Einstein radii can potentially be utilised to test the predictions of the ΛCDM model. Aims: Hitherto, studies have focussed on the single largest observed Einstein radius. We extend those studies by employing order statistics to formulate exclusion criteria based on the n largest Einstein radii and apply these criteria to the strong lensing analysis of 12 MACS clusters at z> 0.5. Methods: We obtain the order statistics of Einstein radii by a Monte Carlo approach, based on the semi-analytic modelling of the halo population on the past lightcone. After sampling the order statistics, we fit a general extreme value distribution to the first-order distribution, which allows us to derive analytic relations for the order statistics of the Einstein radii. Results: We find that the Einstein radii of the 12 MACS clusters are not in conflict with the ΛCDM expectations. Our exclusion criteria indicate that, in order to exhibit tension with the concordance model, one would need to observe approximately twenty Einstein radii with θeff ≳ 30″, ten with θeff ≳ 35″, five with θeff ≳ 42″, or one with θeff ≳ 74″ in the redshift range 0.5 ≤ z ≤ 1.0 on the full sky (assuming a source redshift of zs = 2). Furthermore, we find that, with increasing order, the haloes with the largest Einstein radii are on average less aligned along the line-of-sight and less triaxial. In general, the cumulative distribution functions steepen for higher orders, giving them better constraining power. Conclusions: A framework that allows the individual and joint order distributions of the n-largest Einstein radii to be derived is presented. From a statistical point of view, we do not see any evidence of an Einstein ring problem even for the
A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog
Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; Momcheva, Ivelina G.; Williams, Kurtis A.; Keeton, Charles R.
2016-12-16
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z_{grp} ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z_{grp} < 0.6. The groups have radial velocity dispersions of 60 ≤ σ_{grp} ≤ 1200 km s^{–1} with a median of 350 km s^{–1}. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ_{grp}, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ_{grp} ≥ 500 km s^{–1}) group or group candidate projected within 2' of the lens.
A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: the Group Catalog
NASA Astrophysics Data System (ADS)
Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; Momcheva, Ivelina G.; Williams, Kurtis A.; Keeton, Charles R.
2016-12-01
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ z grp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < z grp < 0.6. The groups have radial velocity dispersions of 60 ≤ σ grp ≤ 1200 km s-1 with a median of 350 km s-1. We also discover a supergroup in field B0712+472 at z = 0.29 that consists of three main groups. We recover groups similar to ˜85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σ grp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. There are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σ grp ≥ 500 km s-1) group or group candidate projected within 2‧ of the lens.
A spectroscopic survey of the fields of 28 strong gravitational lenses: The group catalog
Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark; ...
2016-12-16
With a large, unique spectroscopic survey in the fields of 28 galaxy-scale strong gravitational lenses, we identify groups of galaxies in the 26 adequately sampled fields. Using a group-finding algorithm, we find 210 groups with at least 5 member galaxies; the median number of members is 8. Our sample spans redshifts of 0.04 ≤ zgrp ≤ 0.76 with a median of 0.31, including 174 groups with 0.1 < zgrp < 0.6. The groups have radial velocity dispersions of 60 ≤ σgrp ≤ 1200 km s–1 with a median of 350 km s–1. We also discover a supergroup in field B0712+472more » at z = 0.29 that consists of three main groups. We recover groups similar to ~85% of those previously reported in these fields within our redshift range of sensitivity and find 187 new groups with at least five members. The properties of our group catalog, specifically, (1) the distribution of σgrp, (2) the fraction of all sample galaxies that are group members, and (3) the fraction of groups with significant substructure, are consistent with those for other catalogs. The distribution of group virial masses agrees well with theoretical expectations. Of the lens galaxies, 12 of 26 (46%) (B1422+231, B1600+434, B2114+022, FBQS J0951+2635, HE0435-1223, HST J14113+5211, MG0751+2716, MGJ1654+1346, PG 1115+080, Q ER 0047-2808, RXJ1131-1231, and WFI J2033-4723) are members of groups with at least five galaxies, and one more (B0712+472) belongs to an additional, visually identified group candidate. Furthermore, there are groups not associated with the lens that still are likely to affect the lens model; in six of 25 (24%) fields (excluding the supergroup), there is at least one massive (σgrp ≥ 500 km s–1) group or group candidate projected within 2' of the lens.« less
Gravitational Lens Amplification of Gravitational Radiation
NASA Astrophysics Data System (ADS)
Zakharov, Alexander F.; Baryshev, Yuri V.
In a recent paper by Wang, Turner and Stebbins (1996) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the geometrical optics approximation model for gravitational lensing and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluced. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA.
NASA Astrophysics Data System (ADS)
Hunt, L. R.; Pisano, D. J.; Edel, S.
2016-08-01
Neutral hydrogen (Hi) provides a very important fuel for star formation, but is difficult to detect at high redshift due to weak emission, limited sensitivity of modern instruments, and terrestrial radio frequency interference (RFI) at low frequencies. We report the first attempt to use gravitational lensing to detect Hi line emission from three gravitationally lensed galaxies behind the cluster Abell 773, two at redshifts of 0.398 and one at z = 0.487, using the Green Bank Telescope. We find that a 3σ upper limit for a galaxy with a rotation velocity of 200 km s-1 is M H i = 6.58 × 109 and 1.5 × 1010 M ⊙ at z = 0.398 and z = 0.487. The estimated Hi masses of the sources at z = 0.398 and z = 0.487 are factors of 3.7 and ˜30 times lower than our detection limits at the respective redshifts. To facilitate these observations we have used sigma-clipping to remove both narrow- and wideband RFI but retain the signal from the source. We are able to reduce the noise of the spectrum by ˜25% using our routine instead of discarding observations with too much RFI. The routine is most effective when ˜10% of the integrations or fewer contain RFI. These techniques can be used to study Hi in highly magnified distant galaxies that are otherwise too faint to detect.
NASA Astrophysics Data System (ADS)
Borra, Ermanno F.
2014-05-01
A novel interferometric technique that uses the spectrum of the current fluctuations of a quadratic detector, a type of detector commonly used in Astronomy, has recently been introduced. It has major advantages with respect to classical interferometry. It can be used to observe gravitational lenses that cannot be detected with standard techniques. It can be used to carry out very long baseline interferometry. Although the original theoretical analysis, that uses wave interaction effects, is rigorous, it is not easy to understand. The present article therefore carries out a simpler analysis, using the autocorrelation of intensity fluctuations, which is easier to understand. It is based on published experiments that were carried out to validate the original theory. The autocorrelation analysis also validates simple numerical techniques, based on the autocorrelation, to model the angular intensity distribution of a source. The autocorrelation technique also allows a much simpler detection of the signal. In practice, the gravitational lens applications are the ones that can readily be done with presently available telescopes. We describe a practical example that shows that presently available VLBI radio-astronomical data can be used to observe microlensisng and millilensing in macrolensed Quasars. They may give information on the dark matter substructures in the lensing galaxies.
NASA Astrophysics Data System (ADS)
Tewes, M.; Courbin, F.; Meylan, G.
2013-05-01
Measuring time delays between the multiple images of gravitationally lensed quasars is now recognized as a competitive way to constrain the cosmological parameters, and it is complementary with other cosmological probes. This requires long and well sampled optical light curves of numerous lensed quasars, such as those obtained by the COSMOGRAIL collaboration. High-quality data from our monitoring campaign call for novel numerical techniques to robustly measure the delays, as well as the associated random and systematic uncertainties, even in the presence of microlensing variations. We propose three different point estimators to measure time delays, which are explicitly designed to handle light curves with extrinsic variability. These methods share a common formalism, which enables them to process data from n-image lenses. Since the estimators rely on significantly contrasting ideas, we expect them to be sensitive to different bias sources. For each method and data set, we empirically estimate both the precision and accuracy (bias) of the time delay measurement using simulated light curves with known time delays that closely mimic the observations. Finally, we test the self-consistency of our approach, and we demonstrate that our bias estimation is serviceable. These new methods, including the empirical uncertainty estimator, will represent the standard benchmark for analyzing the COSMOGRAIL light curves.
Hezaveh, Yashar D.
2014-08-20
Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.
Oguri, Masamune; Inada, Naohisa; Hennawi, Joseph F.; Richards, Gordon T.; Johnston, David E.; Frieman, Joshua A.; Pindor, Bartosz; Strauss, Michael A.; Brunner, Robert J.; Becker, Robert H.; Castander, Francisco J.; Gregg, Michael D.; Hall, Patrick B.; Rix, Hans-Walter; Schneider, Donald P.; Bahcall, Neta A.; Brinkmann, Jonathan; York, Donald G. /Princeton U. Observ. /Tokyo U. /Tokyo U., Inst. Astron. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /Fermilab /Canadian Inst. Theor. Astrophys. /Illinois U., Urbana, Astron. Dept. /UC, Davis /LLNL, Livermore /Barcelona, IEEC /York U., Canada /Heidelberg, Max Planck Inst. Astron. /Penn State U., Astron. Astrophys. /Apache Point Observ. /Chicago U., EFI
2004-11-01
We report the discovery of two doubly-imaged quasars, SDSS J100128.61+502756.9 and SDSS J120629.65+433217.6, at redshifts of 1.838 and 1.789 and with image separations of 2.86'' and 2.90'', respectively. The objects were selected as lens candidates from the Sloan Digital Sky Survey (SDSS). Based on the identical nature of the spectra of the two quasars in each pair and the identification of the lens galaxies, we conclude that the objects are gravitational lenses. The lenses are complicated; in both systems there are several galaxies in the fields very close to the quasars, in addition to the lens galaxies themselves. The lens modeling implies that these nearby galaxies contribute significantly to the lens potentials. On larger scales, we have detected an enhancement in the galaxy density near SDSS J100128.61+502756.9. The number of lenses with image separation of {approx} 3'' in the SDSS already exceeds the prediction of simple theoretical models based on the standard Lambda-dominated cosmology and observed velocity function of galaxies.
NASA Astrophysics Data System (ADS)
Patil, Mandar; Mishra, Priti; Narasimha, D.
2017-01-01
Binary black holes have been in the limelight of late due to the detection of gravitational waves from coalescing compact binaries in the events GW150914 and GW151226. In this paper we study gravitational lensing by the binary black holes modeled as an equal mass Majumdar-Papapetrou dihole metric and show that this system displays features that are quite unprecedented and absent in any other lensing configuration investigated so far in the literature. We restrict our attention to the light rays which move on the plane midway between the two identical black holes, which allows us to employ various techniques developed for the equatorial lensing in the spherically symmetric spacetimes. If distance between the two black holes is below a certain threshold value, then the system admits two photon spheres. As in the case of a single black hole, infinitely many relativistic images are formed due to the light rays which turn back from the region outside the outer (unstable) photon sphere, all of which lie beyond a critical angular radius with respect to the lens. However, in the presence of the inner (stable) photon sphere, the effective potential after admitting minimum turns upwards and blows up for the smaller values of radii and the light rays that enter the outer photon sphere can turn back, leading to the formation of a new set of infinitely many relativistic images, all of which lie below the critical radius from the lens mentioned above. As the distance between the two black holes is increased, two photon spheres approach one another, merge and eventually disappear. In the absence of the photon sphere, apart from the formation of a finite number of discrete relativistic images, the system remarkably admits a radial caustic, which has never been observed in the context of relativistic lensing before. Thus the system of the binary black hole admits novel features both in the presence and absence of photon spheres. We discuss possible observational signatures and
NASA Astrophysics Data System (ADS)
Jaroszynski, M.; Kostrzewa-Rutkowska, Z.
2014-04-01
We investigate the influence of the matter along the line of sight and in the lens environment on the image configurations, relative time delays, and the resulting models of strong gravitational lensing. The distribution of matter in space and properties of gravitationally bound haloes are based on the Millennium Simulation. In our numerical experiments we consider isolated lens in a uniform universe model and the same lens surrounded by close neighbours and/or objects close to the line of sight which gives four different descriptions of the light propagation. We compare the results of the lens modelling which neglects effects of the environment and line of sight, when applied to image configurations resulting from approaches partially or fully taking into account these effects. We show that for a source at the redshift z ≈ 2 the effects are indeed important and may prevent successful fitting of lens models in a substantial part of simulated image configurations, especially when the relative time delays are taken into account. To have good constraints on the models we limit ourselves to configurations of four images. We consider 80 lenses and large number of source positions in each case. The influence of the lens neighbourhood and the line of sight introduces the spread into the fitted values of the deflection angles which translates into the spread in the lens velocity dispersion of ˜4 per cent. Similarly for the lens axis ratio we get the spread of ˜10 per cent and for the Hubble's constant of ˜6 per cent. When averaged over all lenses and all image configurations considered, the median fitted values of the parameters (including the Hubble's constant) do not differ more than 1 per cent from their values used in simulations.
Geier, S.; Man, A. W. S.; Krühler, T.; Toft, S.; Fynbo, J. P. U.; Richard, J.; Marchesini, D.
2013-11-10
Quiescent massive galaxies at z ∼ 2 are thought to be the progenitors of present-day massive ellipticals. Observations revealed them to be extraordinarily compact. Until now, the determination of stellar ages, star formation rates, and dust properties via spectroscopic measurements has been feasible only for the most luminous and massive specimens (∼3 × M*). Here we present a spectroscopic study of two near-infrared-selected galaxies that are close to the characteristic stellar mass M* (∼0.9 × M* and ∼1.3 × M*) and whose observed brightness has been boosted by the gravitational lensing effect. We measure the redshifts of the two galaxies to be z = 1.71 ± 0.02 and z = 2.15 ± 0.01. By fitting stellar population synthesis models to their spectrophotometric spectral energy distributions we determine their ages to be 2.4{sup +0.8}{sub -0.6} Gyr and 1.7 ± 0.3 Gyr, respectively, which implies that the two galaxies have higher mass-to-light ratios than most quiescent z ∼ 2 galaxies in other studies. We find no direct evidence for active star formation or active galactic nucleus activity in either of the two galaxies, based on the non-detection of emission lines. Based on the derived redshifts and stellar ages we estimate the formation redshifts to be z=4.3{sup +3.4}{sub -1.2} and z=4.3{sup +1.0}{sub -0.6}, respectively. We use the increased spatial resolution due to the gravitational lensing to derive constraints on the morphology. Fitting Sérsic profiles to the de-lensed images of the two galaxies confirms their compactness, with one of them being spheroid-like and the other providing the first confirmation of a passive lenticular galaxy at a spectroscopically derived redshift of z ∼ 2.
Charge, magnetic dipole, and lense-thirring effect in the generalized theory of gravitation
Arutyunyan, G.G.; Papoyan, V.V.
1985-05-01
Three physical problems are solved in the framework of the generalized theory of gravitation. The gravitational field of a point charged mass and an expression for the vector potential for a magnetic field of dipole nature are found, and the angular velocity of frame dragging by the rotation of a central body is calculated.
NASA Astrophysics Data System (ADS)
Eulaers, E.; Tewes, M.; Magain, P.; Courbin, F.; Asfandiyarov, I.; Ehgamberdiev, Sh.; Rathna Kumar, S.; Stalin, C. S.; Prabhu, T. P.; Meylan, G.; Van Winckel, H.
2013-05-01
Aims: Within the framework of the COSMOGRAIL collaboration we present 7- and 8.5-year-long light curves and time-delay estimates for two gravitationally lensed quasars: SDSS J1206+4332 and HS 2209+1914. Methods: We monitored these doubly lensed quasars in the R-band using four telescopes: the Mercator, Maidanak, Himalayan Chandra, and Euler telescopes, together spanning a period of 7 to 8.5 observing seasons from mid-2004 to mid-2011. The photometry of the quasar images was obtained through simultaneous deconvolution of these data. The time delays were determined from these resulting light curves using four very different techniques: a dispersion method, a spline fit, a regression difference technique, and a numerical model fit. This minimizes the bias that might be introduced by the use of a single method. Results: The time delay for SDSS J1206+4332 is ΔtAB = 111.3 ± 3 days with A leading B, confirming a previously published result within the error bars. For HS 2209+1914 we present a new time delay of ΔtBA = 20.0 ± 5 days with B leading A. Conclusions: The combination of data from up to four telescopes have led to well-sampled and nearly 9-season-long light curves, which were necessary to obtain these results, especially for the compact doubly lensed quasar HS 2209+1914. Based on observations made with the 1.2-m Swiss Euler telescope (La Silla, Chile), the 1.5-m AZT-22 telescope (Maidanak Observatory, Uzbekistan), the 2.0-m HCT telescope (Hanle, India), and the 1.2-m Mercator Telescope. Mercator is operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Numerical values of light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A121 and at http://www.cosmograil.org
Baryon effects on the dark matter haloes constrained from strong gravitational lensing
NASA Astrophysics Data System (ADS)
Wang, Lin; Chen, Da-Ming; Li, Ran
2017-10-01
Simulations are expected to be a powerful tool to investigate the baryon effects on dark matter (DM) haloes. Recent high resolution, cosmological hydrodynamic simulations predict that the inner density profiles of DM haloes depend systematically on the ratio of stellar to DM mass (M*/Mhalo), which is thought to be able to provide good fits to the observed rotation curves of galaxies. The Di Cintio et al. (hereafter DC14) profile is fitted from the simulations that are confined to Mhalo ≤ 1012 M⊙; in order to investigate the physical processes that may affect all haloes, we extrapolate it to much larger halo mass, including that of galaxy clusters. The inner slope of the DC14 profile is flat for low halo mass, it approaches 1 when the halo mass increases towards 1012 M⊙ and decreases rapidly after that mass. We use the DC14 profile for lenses and find that it predicts too few lenses compared with the most recent strong lensing observations Sloan Digital Sky Survey Quasar Lens Search (SQLS). We also calculate the strong lensing probabilities for a simulated density profile that continues the halo mass from the mass end of DC14 (∼1012 M⊙) to the mass that covers the galaxy clusters, and find that this Schaller et al. (hereafter Schaller15) model predict too many lenses compared with other models and SQLS observations. Interestingly, Schaller15 profile has no core, however, like DC14, the rotation curves of the simulated haloes are in excellent agreement with observational data. Furthermore, we show that the standard two-population model SIS+NFW cannot match the most recent SQLS observations for large image separations.
NASA Technical Reports Server (NTRS)
Loewenstein, M.
1994-01-01
A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.
NASA Technical Reports Server (NTRS)
Loewenstein, M.
1994-01-01
A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.
Using the Greenbank Telescope with Gravitational Lensing and the VLA to search for HI Beyond z=0.25
NASA Astrophysics Data System (ADS)
Hunt, Lucas; Pisano, Daniel J.; Crawford, Steve; CHILES
2017-01-01
HI provides an important fuel for star formation, a good indicator of galactic environment, and more accurate information on mass, size, and velocity. Studies of Neutral Hydrogen (HI) in individual galaxies beyond z=0.25 have been limited by current technology. Most available telescopes do not have the frequency coverage, or sensitivity to detect the weak HI signal in a reasonable integration time. My thesis concentrates on pushing the limits on currently available telescopes to detect HI in individual sources out to higher redshifts. The COSMOS HI Large Extragalactic Survey (CHILES) team has pointed the JVLA toward the COSMOS field in a blind search of HI out to z=0.45. I am planning to use the data to study the HI properties of Luminous Compact Blue Galaxies, a heterogenous class of galaxies with high star formation rates, and metallicity amongst an older stellar population. These objects are numerous have a star formation rate density roughly equal to grand-design spiral galaxies at z~1, but become rare at z=0. A number of local LCBGs have been studied to determine HI, H2, and dynamical mass, and gas depletion timescales, and with the information provided from CHILES I can compare the properties of local LCBGs to intermediate redshift LCBGs. In preparation for final data products, I have generated a Luminosity function for LCBGs in the COSMOS field to track the evolution of their number density, star formation rate density, and how much they contribute to the overall luminosity function. I have also attempted to detect HI in gravitationally lensed galaxies using the Green Bank Telescope. The magnification provided by strong gravitational lensing should allow us to determine the HI mass of a small number of galaxies out to z~0.8 and beyond.
MacLeod, Chelsea L.; Jones, Ramsey; Agol, Eric; Kochanek, Christopher S.
2013-08-10
We present 11.2 {mu}m observations of the gravitationally lensed, radio-loud z{sub s} = 2.64 quasar MG0414+0534, obtained using the Michelle camera on Gemini North. We find a flux ratio anomaly of A2/A1 = 0.93 {+-} 0.02 for the quasar images A1 and A2. When combined with the 11.7 {mu}m measurements from Minezaki et al., the A2/A1 flux ratio is nearly 5{sigma} from the expected ratio for a model based on the two visible lens galaxies. The mid-IR flux ratio anomaly can be explained by a satellite (substructure), 0.''3 northeast of image A2, as can the detailed very long baseline interferometry (VLBI) structures of the jet produced by the quasar. When we combine the mid-IR flux ratios with high-resolution VLBI measurements, we find a best-fit mass between 10{sup 6.2} and 10{sup 7.5} M{sub Sun} inside the Einstein radius for a satellite substructure modeled as a singular isothermal sphere at the redshift of the main lens (z{sub l} = 0.96). We are unable to set an interesting limit on the mass to light ratio due to its proximity to the quasar image A2. While the observations used here were technically difficult, surveys of flux anomalies in gravitational lenses with the James Webb Space Telescope will be simple, fast, and should well constrain the abundance of substructure in dark matter halos.
3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847
Brammer, Gabriel B.; Sanchez-Janssen, Ruben; Labbe, Ivo; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Van der Wel, Arjen; Erb, Dawn K.; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.; Marchesini, Danilo; Quadri, Ryan
2012-10-10
We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] {lambda}5007 and H{beta} emission lines with rest-frame equivalent widths of 2000 {+-} 100 and 520 {+-} 40 A, respectively. The source has a stellar mass {approx}10{sup 8} M{sub Sun }, sSFR {approx} 100 Gyr{sup -1}, and detection of [O III] {lambda}4363 yields a metallicity of 12 + log (O/H) = 7.5 {+-} 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size r{sub e} {approx}300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey.
Gasparini, Maria Alice; Marshall, Phil; Treu, Tommaso; Morganson, Eric; Dubath, Florian; /Santa Barbara, KITP
2007-11-14
We use current theoretical estimates for the density of long cosmic strings to predict the number of strong gravitational lensing events in astronomical imaging surveys as a function of angular resolution and survey area. We show that angular resolution is the single most important factor, and that interesting limits on the dimensionless string tension G{mu}/c{sup 2} can be obtained by existing and planned surveys. At the resolution of the Hubble Space Telescope (0'.14), it is sufficient to survey of order a square degree -- well within reach of the current HST archive -- to probe the regime G{mu}/c{sup 2} {approx} 10{sup -8}. If lensing by cosmic strings is not detected, such a survey would improve the limit on the string tension by an order of magnitude on that available from the cosmic microwave background. At the resolution (0'.028) attainable with the next generation of large ground based instruments, both in the radio and the infra-red with adaptive optics, surveying a sky area of order ten square degrees will allow us to probe the G{mu}/c{sup 2} {approx} 10{sup -9} regime. These limits will not be improved significantly by increasing the solid angle of the survey.
NASA Astrophysics Data System (ADS)
Schmidt, R. W.; Kundić, T.; Pen, U.-L.; Turner, E. L.; Wambsganss, J.; Bergeron, L. E.; Colley, W. N.; Corson, C.; Hastings, N. C.; Hoyes, T.; Long, D. C.; Loomis, K. A.; Malhotra, S.; Rhoads, J. E.; Stanek, K. Z.
2002-09-01
We present a data set of images of the gravitationally lensed quasar Q2237+0305, that was obtained at the Apache Point Observatory (APO) between June 1995 and January 1998. Although the images were taken under variable, often poor seeing conditions and with coarse pixel sampling, photometry is possible for the two brighter quasar images A and B with the help of exact quasar image positions from HST observations. We obtain a light curve with 73 data points for each of the images A and B. There is evidence for a long (ga 100 day) brightness peak in image A in 1996 with an amplitude of about 0.4 to 0.5 mag (relative to 1995), which indicates that microlensing has been taking place in the lensing galaxy. Image B does not vary much over the course of the observation period. The long, smooth variation of the light curve is similar to the results from the OGLE monitoring of the system (Woźniak et al. \\cite{Wozniak00}). Based on observations obtained with the Apache Point Observatory 3.5-meter telescope, which is owned and operated by the Astrophysical Research Consortium.
NASA Astrophysics Data System (ADS)
Meyers, Adrian
2015-01-01
Over its long history, the Milky Way is expected to have accreted many dwarf galaxies. The debris from the destruction of most of these dwarf galaxies will by now be fully phase-mixed throughout the Galaxy and hence undetectable as local over-densities in position-space. However, the debris from these systems could have distinct kinematic signatures that may help distinguish these stars from, for example, the Galactic disk. We aim to construct a reliable method of determining the contributions to the Milky Way disk from accreted structures that could be applied to current kinematic data sets, such as SDSS's APOGEE survey. In an effort to mimic the kinematic traits of an accreted satellite, we construct single-orbit models to compare to a cosmologically motivated simulation of satellite accretion. We find that these orbit models adhere to the kinematic signatures of certain types of accreted galaxies better than others, giving us insight on which parameters to trust when searching for accreted populations. As a bonus, we describe a separate project in which we attempt to deduce the intrinsic properties of the 8 o'clock arc, a gravitationally lensed Lyman break galaxy at redshift 2.73. Using the lensmodel code and its pixel-based source reconstruction extension pixsrc, we derive a de-lensed image of the galaxy in the source plane.
MACS J1423.8+2404: gravitational lensing by a massive, relaxed cluster of galaxies at z = 0.54
NASA Astrophysics Data System (ADS)
Limousin, M.; Ebeling, H.; Ma, C.-J.; Swinbank, A. M.; Smith, G. P.; Richard, J.; Edge, A. C.; Jauzac, M.; Kneib, J.-P.; Marshall, P.; Schrabback, T.
2010-06-01
We present results of a gravitational lensing and optical study of MACS J1423.8+2404 (z = 0.545, MACS J1423), the most relaxed cluster in the high-redshift subsample of clusters discovered in the MAssive Cluster Survey (MACS). Our analysis uses high-resolution images taken with the Hubble Space Telescope in the F555W and F814W passbands, ground-based imaging in eight optical and near-infrared filters obtained with Subaru and Canada-France-Hawaii Telescope, as well as extensive spectroscopic data gathered with the Keck telescopes. At optical wavelengths, the cluster exhibits no sign of substructure and is dominated by a cD galaxy that is 2.1 mag (K band) brighter than the second brightest cluster member, suggesting that MACS J1423 is close to be fully virialized. Analysis of the redshift distribution of 140 cluster members reveals a Gaussian distribution, mildly disturbed by the presence of a loose galaxy group that may be falling into the cluster along the line of sight. Combining strong-lensing constraints from two spectroscopically confirmed multiple-image systems near the cluster core with a weak-lensing measurement of the gravitational shear on larger scales, we derive a parametric mass model for the mass distribution. All constraints can be satisfied by a unimodal mass distribution centred on the cD galaxy and exhibiting very little substructure. The derived projected mass of M[< 65 arcsec (415kpc)] = (4.3 +/- 0.6) × 1014 Msolar is about 30 per cent higher than the one derived from X-ray analyses assuming spherical symmetry, suggesting a slightly prolate mass distribution consistent with the optical indication of residual line-of-sight structure. The similarity in shape and excellent alignment of the centroids of the total mass, K-band light and intracluster gas distributions add to the picture of a highly evolved system. The existence of a massive cluster like MACS J1423, nearly fully virialized only ~7 Gyr after the big bang, may have important implications
Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy
NASA Astrophysics Data System (ADS)
Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A.
2017-03-01
We report on the detailed analysis of a gravitationally lensed Y-band dropout, A2744_YD4, selected from deep Hubble Space Telescope imaging in the Frontier Field cluster Abell 2744. Band 7 observations with the Atacama Large Millimeter/submillimeter Array (ALMA) indicate the proximate detection of a significant 1 mm continuum flux suggesting the presence of dust for a star-forming galaxy with a photometric redshift of z≃ 8. Deep X-SHOOTER spectra confirms the high-redshift identity of A2744_YD4 via the detection of Lyα emission at a redshift z = 8.38. The association with the ALMA detection is confirmed by the presence of [O iii] 88 μm emission at the same redshift. Although both emission features are only significant at the 4σ level, we argue their joint detection and the positional coincidence with a high-redshift dropout in the Hubble Space Telescope images confirms the physical association. Analysis of the available photometric data and the modest gravitational magnification (μ ≃ 2) indicates A2744_YD4 has a stellar mass of ∼2 × 109 {M}ȯ , a star formation rate of ∼20 {M}ȯ yr‑1 and a dust mass of ∼6 × 106 {M}ȯ . We discuss the implications of the formation of such a dust mass only ≃ 200 {Myr} after the onset of cosmic reionization.
NASA Astrophysics Data System (ADS)
Guerras, Eduardo; Dai, Xinyu; Steele, Shaun; Liu, Ang; Kochanek, Christopher S.; Chartas, George; Morgan, Christopher W.; Chen, Bin
2017-02-01
We present an X-ray photometric analysis of six gravitationally lensed quasars, with observation campaigns spanning from 5 to 14 years, measuring the total (0.83-21.8 keV restframe), soft- (0.83-3.6 keV), and hard- (3.6-21.8 keV) band image flux ratios for each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing light curves and obtain joint likelihood functions for the average X-ray emission region sizes. Our analysis yields a probability distribution function for the average half-light radius of the X-ray emission region in the sample that peaks slightly above 1 gravitational radius and with nearly indistinguishable 68 % confidence (one-sided) upper limits of 17.8 and 18.9 gravitational radii for the soft and hard X-ray emitting regions, assuming a mean stellar mass of 0.3 M ⊙. We see hints of energy dependent microlensing between the soft and hard bands in two of the objects. In a separate analysis on the root-mean-square (rms) of the microlensing variability, we find significant differences between the soft and hard bands, but the sign of the difference is not consistent across the sample. This suggests the existence of some kind of spatial structure to the X-ray emission in an otherwise extremely compact source. We also discover a correlation between the rms microlensing variability and the average microlensing amplitude.
Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing
NASA Astrophysics Data System (ADS)
Melchior, P.; Viola, M.
2012-08-01
Weak-lensing shear estimates show a troublesome dependence on the apparent brightness of the galaxies used to measure the ellipticity: in several studies, the amplitude of the inferred shear falls sharply with decreasing source significance. This dependence limits the overall ability of upcoming large weak-lensing surveys to constrain cosmological parameters. We seek to provide a concise overview of the impact of pixel noise on weak-lensing measurements, covering the entire path from noisy images to shear estimates. We show that there are at least three distinct layers, where pixel noise not only obscures but also biases the outcome of the measurements: (1) the propagation of pixel noise to the non-linear observable ellipticity; (2) the response of the shape-measurement methods to limited amount of information extractable from noisy images and (3) the reaction of shear estimation statistics to the presence of noise and outliers in the measured ellipticities. We identify and discuss several fundamental problems and show that each of them is able to introduce biases in the range of a few tens to a few per cent for galaxies with typical significance levels. Furthermore, all of these biases do not only depend on the brightness of galaxies but also depend on their ellipticity, with more elliptical galaxies often being harder to measure correctly. We also discuss existing possibilities to mitigate and novel ideas to avoid the biases induced by pixel noise. We present a new shear estimator that shows a more robust performance for noisy ellipticity samples. Finally, we release the open-source PYTHON code to predict and efficiently sample from the noisy ellipticity distribution and the shear estimators used in this work at https://github.com/pmelchior/epsnoise.
Gravitational lensing of quasars as seen by the Hubble Space Telescope Snapshot Survey
NASA Technical Reports Server (NTRS)
Maoz, D.; Bahcall, J. N.; Doxsey, R.; Schneider, D. P.; Bahcall, N. A.; Lahav, O.; Yanny, B.
1992-01-01
Results from the ongoing HST Snapshot Survey are presented, with emphasis on 152 high-luminosity, z greater than 1 quasars. One quasar among those observed, 1208 + 1011, is a candidate lens system with subarcsecond image separation. Six other quasars have point sources within 6 arcsec. Ground-based observations of five of these cases show that the companion point sources are foreground Galactic stars. The predicted lensing frequency of the sample is calculated for a variety of cosmological models. The effect of uncertainties in some of the observational parameters upon the predictions is discussed. No correlation of the drift rate with time, right ascension, declination, or point error is found.
Geometrical approach to strong gravitational lensing in f(R) gravity
Nzioki, Anne Marie; Goswami, Rituparno; Dunsby, Peter K. S.; Carloni, Sante
2011-01-15
We present a framework for the study of lensing in spherically symmetric spacetimes within the context of f(R) gravity. Equations for the propagation of null geodesics, together with an expression for the bending angle, are derived for any f(R) theory and then applied to an exact spherically symmetric solution of R{sup n} gravity. We find that for this case more bending is expected for R{sup n} gravity theories in comparison to general relativity and is dependent on the value of n and the value of the distance of closest approach of the incident null geodesic.
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2016-01-01
An explanation of the quantum-mechanical particle-wave duality is given by the watt-less emission of gravitational waves from a particle described by the Dirac equation. This explanation is possible through the existence of negative energy, and hence negative mass solutions of Einstein's gravitational field equations. They permit to understand the Dirac equation as the equation for a gravitationally bound positive-negative mass (pole-dipole particle) two-body configuration, with the mass of the Dirac particle equal to the positive mass of the gravitational field binding the positive with the negative mass particle, and with the mass particles making a luminal "Zitterbewegung" (quivering motion), emitting a watt-less oscillating positive-negative space curvature wave. It is shown that this thusly produced "Zitterbewegung" reproduces the quantum potential of the Madelung-transformed Schrödinger equation. The watt-less gravitational wave emitted by the quivering particles is conjectured to be de Broglie's pilot wave. The hypothesised connection of the Dirac equation to gravitational wave physics could, with the failure to detect gravitational waves by the LIGO antennas and pulsar timing arrays, give a clue to extended theories of gravity, or a correction of astrophysical models for the generation of such waves.
Mass Distrubtion from Strong Gravitational Lensing of Merging Cluster Abell 2146
NASA Astrophysics Data System (ADS)
Coleman, Joseph E.; King, Lindsay J.; Oguri, Masamune; Russell, Helen
2017-01-01
The merging cluster Abell 2146 consists of two galaxy clusters that have recently collided close to the plane of the sky. In images from Chandra X-ray Observatory there are two distinct shock fronts in the intracluster medium. An unusual feature of one of the clusters is that the peak in the X-ray is leading the brightest cluster galaxy. The dark matter component is coincident with the brightest cluster galaxy (BCG). Shortly after first core passage one would typically expect the dark matter and BCG to lead the X-ray emitting plasma, however, that is not the case with Abell 2146. Strong lensing features were identified on images taken by the Hubble Space Telescope. These features were used as constraints on a lens model that maps the matter distribution of the system. We focus on the cluster Abell 2146-A to determine the dark matter centroid near BCG-A and the peak in the X-ray. The results from the strong lensing model indicate the X-ray cool core leads both the dark matter centroid and BCG-A. The dark matter centroid and BCG-A are separated by ≈ 2 kpc. The X-ray peak and dark matter centroid are separated by ≈ 30 kpc.
NASA Astrophysics Data System (ADS)
Wood, K. S.; Ftaclas, C.; Kearney, M.
1988-01-01
Some quasi-periodic oscillation models are based on accretion onto a neutron star possessing a weak magnetic field. These models successfully explain many aspects of the observed oscillations, yet they acquire a rapidly rotating neutron star possessing a magnetic field that can channel accretion flow, leading to uneven heating of the star surface. This is similar to what happens in accreting binary pulsars, yet modulation of X-ray flux at the spin period has not been observed. It is suggested that gravitational deflection of photons can be very effective in reducing this pulsed flux under exactly the conditions required in these QPO models. Gravitational effects appear to be essential to reducing the pulsed flux to levels consistent with observation. Implications for QPO observations and for the theory of binary pulsars are discussed.
Is there a black hole in the sky?. [gravitational lensing candidate
NASA Technical Reports Server (NTRS)
Paczynski, B.
1986-01-01
The consequences of the hypothesis that a supermassive black hole can serve as a gravitational lens are analytically studied. It is shown that the presence of a black hole could be established by the unique property that it would appear against the microwave background as a black spot with a diameter of 0.1 arcsec or greater. The only instrument capable of either resolving the black spot or at least noticing it as a negative luminosity source is the Very Large Array.
Detecting binarity of GW150914-like lenses in gravitational microlensing events
NASA Astrophysics Data System (ADS)
Kesden, Michael; Eilbott, Daniel; Riley, Alexander; Cohn, Jonathan; King, Lindsay
2017-01-01
The recent discovery of gravitational waves from stellar-mass binary black holes (BBHs) provided direct evidence of the existence of these systems. These BBHs would have gravitational microlensing signatures that are, due to their large masses and small separations, distinct from single-lens signals. We apply Bayesian statistics to examine the distinguishability of BBH microlensing events from single-lens events under ideal observing conditions, using modern photometric and astrometric capabilities. Given one year of ideal observations, a source star at the Galactic center, a GW150914-like BBH lens (total mass 65 solar masses, mass ratio 0.8) at half that distance, and an impact parameter of 0.4 Einstein radii, we find that BBHs with separations down to 0.00634 Einstein radii are detectable, marginally below the separation at which such systems would merge due to gravitational radiation with the age of the Universe. Supported by Alfred P Sloan Foundation Grant No. RG- 2015-65299 and NSF Grant No. PHY-1607031.
NASA Astrophysics Data System (ADS)
Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong
2016-09-01
We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.
NASA Astrophysics Data System (ADS)
Leethochawalit, Nicha; Jones, Tucker A.; Ellis, Richard S.; Stark, Daniel P.; Zitrin, Adi
2016-11-01
The fraction of ionizing photons escaping from high-redshift star-forming galaxies is a key obstacle in evaluating whether galaxies were the primary agents of cosmic reionization. We previously proposed using the covering fraction of low-ionization gas, measured via deep absorption-line spectroscopy, as a proxy. We now present a significant update, sampling seven gravitationally lensed sources at 4 < z < 5. We show that the absorbing gas in our sources is spatially inhomogeneous, with a median covering fraction of 66%. Correcting for reddening according to a dust-in-cloud model, this implies an estimated absolute escape fraction of ≃19% ± 6%. With possible biases and uncertainties, collectively we find that the average escape fraction could be reduced to no less than 11%, excluding the effect of spatial variations. For one of our lensed sources, we have sufficient signal-to-noise ratio to demonstrate the presence of such spatial variations and scatter in its dependence on the Lyα equivalent width, consistent with recent simulations. If this source is typical, our lower limit to the escape fraction could be reduced by a further factor ≃2. Across our sample, we find a modest anticorrelation between the inferred escape fraction and the local star formation rate, consistent with a time delay between a burst and leaking Lyman continuum photons. Our analysis demonstrates considerable variations in the escape fraction, consistent with being governed by the small-scale behavior of star-forming regions, whose activities fluctuate over short timescales. This supports the suggestion that the escape fraction may increase toward the reionization era when star formation becomes more energetic and burst-like.
Gravitational lensing by a smoothly variable three-dimensional mass distribution
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Paczynski, Bohdan
1990-01-01
A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.
Gravitational lensing by a smoothly variable three-dimensional mass distribution
NASA Technical Reports Server (NTRS)
Lee, Man Hoi; Paczynski, Bohdan
1990-01-01
A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.
NASA Astrophysics Data System (ADS)
Despali, Giulia; Vegetti, Simona
2017-08-01
We investigate the impact of baryonic physics on the subhalo population by analysing the results of two recent hydrodynamical simulations (EAGLE and Illustris), which have very similar configuration, but a different model of baryonic physics. We concentrate on haloes with a mass between 1012.5 and 1014M⊙ h-1 and redshift between 0.2 and 0.5, comparing with observational results and subhalo detections in early-type galaxy lenses. We compare the number and the spatial distribution of subhaloes in the fully hydro runs and in their dark-matter-only (DMO) counterparts, focusing on the differences between the two simulations. We find that the presence of baryons reduces the number of subhaloes, especially at the low-mass end (≤1010 M⊙ h-1), by different amounts depending on the model. The variations in the subhalo mass function are strongly dependent on those in the halo mass function, which is shifted by the effect of stellar and AGN feedback. Finally, we search for analogues of the observed lenses (Sloan Lens ACS) in the simulations, selecting them in velocity dispersion and dynamical properties. We use the selected galaxies to quantify detection expectations based on the subhalo populations in the different simulations, calculating the detection probability and the predicted values for the projected dark matter fraction in subhaloes fDM and the slope of the mass function α. We compare these values with those derived from subhalo detections in observations and conclude that the DMO and hydro EAGLE runs are both compatible with observational results, while results from the hydro Illustris run do not lie within the errors.
LensPerfect: Exact Massmap Solutions for Gravitationally Lensed Multiple Images
NASA Astrophysics Data System (ADS)
Coe, Dan A.; Fuselier, E.; Benítez, N.; Broadhurst, T.; Ford, H.; ACS Science Team
2006-12-01
A new approach to massmap reconstruction is presented that delenses all multiple images of each lensed galaxy back to the exact same source position. Image sizes, shapes, and orientations may also be perfectly constrained. The massmap solution is obtained instantaneously without need for iterations. However, there is no unique solution given a set of multiple images, and other solutions may be obtained by adjusting the free parameters: the source positions and the basis function and its parameter(s). From these exact solutions, the user may choose that which best fits other observables: shears of singly-imaged galaxies, number count depletion, etc. No assumptions are made about the form of the massmap (although a basis function must be selected). And even though LensPerfect makes no assumptions about mass tracing light, we show that it is able to faithfully reproduce the significant features found in previous analyses of the lensing cluster Abell 1689. This new method is made possible by a recent advance in mathematics that allows for curl-free interpolation of a vector field (here, the image deflection) given at scattered data points (the image positions). LensPerfect is extremely straightforward and easy to use, and the software is made publicly available at http://www.iaa.es/ coe/LensPerfect/. --- ACS was developed under NASA contract NAS 5-32865, and this research is supported by NASA grant NAG5-7697. We are grateful for an equipment grant from the Sun Microsystems, Inc. This work has also been supported by the European Commission Marie Curie International Reintegration Grant 017288-BPZ and the PNAYA grant AYA2005-09413-C02.
Wiesner, Matthew P.; Lin, Huan; Allam, Sahar S.; Annis, James; Buckley-Geer, Elizabeth J.; Diehl, H. Thomas; Kubik, Donna; Kubo, Jeffrey M.; Tucker, Douglas
2012-12-10
We describe 10 strong lensing galaxy clusters of redshift 0.26 {<=} z {<=} 0.56 that were found in the Sloan Digital Sky Survey. We present measurements of richness (N{sub 200}), mass (M{sub 200}), and velocity dispersion for the clusters. We find that in order to use the mass-richness relation from Johnston et al., which was established at mean redshift of 0.25, it is necessary to scale measured richness values up by 1.47. Using this scaling, we find richness values for these clusters to be in the range of 22 {<=} N{sub 200} {<=} 317 and mass values to be in the range of 1 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun} {<=} M{sub 200} {<=} 30 Multiplication-Sign 10{sup 14} h {sup -1} M{sub Sun }. We also present measurements of Einstein radius, mass, and velocity dispersion for the lensing systems. The Einstein radii ({theta}{sub E}) are all relatively small, with 5.''4 {<=} {theta}{sub E} {<=} 13''. Finally, we consider if there is evidence that our clusters are more concentrated than {Lambda}CDM would predict. We find that six of our clusters do not show evidence of overconcentration, while four of our clusters do. We note a correlation between overconcentration and mass, as the four clusters showing evidence of overconcentration are all lower-mass clusters. For the four lowest mass clusters the average value of the concentration parameter c{sub 200} is 11.6, while for the six higher-mass clusters the average value of c{sub 200} is 4.4. {Lambda}CDM would place c{sub 200} between 3.4 and 5.7.
Strong gravitational lensing and the stellar IMF of early-type galaxies
NASA Astrophysics Data System (ADS)
Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco
2016-07-01
Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.
Search and Analysis of Galaxy-Scale Strong Gravitational Lenses in Cosmological Surveys
NASA Astrophysics Data System (ADS)
Brault, F.
2013-11-01
This article focuses on the development of a novel detector of strong galaxy-galaxy lenses based on the massive modelling of candidates in wide-field ground-based imaging data. Indeed, not only are these events rare in the Universe, but they are at the same time very valuable to understand galaxy formation and evolution in a cosmological context. We use parametric models, which are optimized by MCMC in a bayesian framework, so that we know the distribution of errors. We first generate several training samples : a hundred lenses simulated in HST and CFHT conditions, along with 325 observed lens candidates resulting from a series of preselections on the CFHTLS-Wide galaxies, and that we classify according to their credibility. The whole challenge in designing this detector lies in a subtle balance between the quality of models and the execution time. We massively run the modelling on our samples, beginning with ideal application conditions that we make more complex by stages so as to get closer to the observation conditions and save time. We show that a 7-parameter model assuming a spherical source can recover the Einstein radius from the CFHT simulations with a precision of 7%. We apply a mask to the input data that noticeably enhances the robustness of the models facing environment problems, with a median convergence time of 4 minutes that could be easily reduced by a factor of 10 with more direct optimization techniques. From our results, we define selection contours in the parameter space, resulting in a completeness of 38% and a purity of 55% for the sample of 51 candidates accepted by our robot among the 325 preselected systems.
Exact gravitational lensing in conformal gravity and Schwarzschild-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Lim, Yen-Kheng; Wang, Qing-hai
2017-01-01
An exact solution is obtained for the gravitational bending of light in static, spherically symmetric metrics which includes the Schwarzschild-de Sitter spacetime and also the Mannheim-Kazanas metric of conformal Weyl gravity. From the exact solution, we obtain a small-bending-angle approximation for a lens system where the source, lens, and observer are coaligned. This expansion improves previous calculations where we systematically avoid parameter ranges that correspond to nonexistent null trajectories. The linear coefficient γ characteristic to conformal gravity is shown to contribute enhanced deflection compared to the angle predicted by general relativity for small γ .
Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; ...
2016-11-17
In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JKmore » photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with iAB = 18.61 and iAB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θE ~ 1.47 arcsec, enclosed mass Menc ~ 4 × 1011 M⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less
Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; Lemon, Cameron A.; Auger, Matthew W.; Banerji, Manda; Hung, Johnathan M.; Koposov, Sergey E.; Lidman, Christopher E.; Reed, Sophie L.; Allam, Sahar; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Buckley-Geer, Elizabeth; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Dietrich, Jörg P.; Evrard, August E.; Finley, David A.; Flaugher, Brenna; Fosalba, Pablo; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gruendl, Robert A.; Gutierrez, Gaston; Honscheid, Klaus; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Lima, Marcos; Lin, Huan; Maia, Marcio A. G.; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Ogando, Ricardo; Plazas Malagón, Andrés; Reil, Kevin; Romer, Kathy; Sanchez, Eusebio; Santiago, Basilio; Scarpine, Vic; Sevilla-Noarbe, Ignacio; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Tucker, Douglas L.; Walker, Alistair R.
2016-11-17
In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z_{s} = 2.74 and image separation of 2.9 arcsec lensed by a foreground z_{l} = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i_{AB} = 18.61 and i_{AB} = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ_{E} ~ 1.47 arcsec, enclosed mass M_{enc} ~ 4 × 10^{11} M_{⊙} and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.
NASA Astrophysics Data System (ADS)
Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; Lemon, Cameron A.; Auger, Matthew W.; Banerji, Manda; Hung, Johnathan M.; Koposov, Sergey E.; Lidman, Christopher E.; Reed, Sophie L.; Allam, Sahar; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Buckley-Geer, Elizabeth; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Dietrich, Jörg P.; Evrard, August E.; Finley, David A.; Flaugher, Brenna; Fosalba, Pablo; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gruendl, Robert A.; Gutierrez, Gaston; Honscheid, Klaus; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Lima, Marcos; Lin, Huan; Maia, Marcio A. G.; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Ogando, Ricardo; Plazas Malagón, Andrés; Reil, Kevin; Romer, Kathy; Sanchez, Eusebio; Santiago, Basilio; Scarpine, Vic; Sevilla-Noarbe, Ignacio; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Tucker, Douglas L.; Walker, Alistair R.
2017-03-01
We present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with iAB = 18.61 and iAB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θE ∼ 1.47 arcsec, enclosed mass Menc ∼ 4 × 1011 M⊙ and a time delay of ∼52 d. The relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.
NASA Astrophysics Data System (ADS)
Dessauges-Zavadsky, Miroslava; Cava, Antonio; Tamburello, Valentina; Schaerer, Daniel; Mayer, Lucio; Richard, Johan; González, Pablo G. Pérez
2017-03-01
High-resolution imaging reveals clumpy morphologies among z = 1 - 3 galaxies. Most of these galaxies are dominated by disk rotation, which led to conclude that the observed clumps are generated from disk fragmentation due to gravitational instability. Despite the kpc-scale resolution attained by the most advanced facilities and numerical simulations, these clumps are barely resolved at z > 1. Thanks to the stretching and magnification power provided by gravitational lensing, we reach the sub-kpc resolving power to unveil their physics. From our literature compilation of data, we show that without lensing there is a bias toward clumps with high masses and sizes. The high-redshift clumps identified in lensed galaxies have stellar masses 2 orders of magnitude lower and a median size of 250 pc. They resemble local star clusters observed in the most intensively star-forming galaxies. The clump masses and sizes observed in lensed galaxies agree with new simulations, which show that the Toomre instability criterion overestimates the clump masses by a factor of 5 - 6.
Bussmann, R. S.; Gurwell, M. A.; Pérez-Fournon, I.; Amber, S.; Calanog, J.; De Bernardis, F.; Wardlow, J.; Dannerbauer, H.; Harris, A. I.; Krips, M.; Lapi, A.; Maiolino, R.; Omont, A.; Riechers, D.; Baker, A. J.; Birkinshaw, M.; Bock, J.; and others
2013-12-10
Strong gravitational lenses are now being routinely discovered in wide-field surveys at (sub-)millimeter wavelengths. We present Submillimeter Array (SMA) high-spatial resolution imaging and Gemini-South and Multiple Mirror Telescope optical spectroscopy of strong lens candidates discovered in the two widest extragalactic surveys conducted by the Herschel Space Observatory: the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). From a sample of 30 Herschel sources with S {sub 500} > 100 mJy, 21 are strongly lensed (i.e., multiply imaged), 4 are moderately lensed (i.e., singly imaged), and the remainder require additional data to determine their lensing status. We apply a visibility-plane lens modeling technique to the SMA data to recover information about the masses of the lenses as well as the intrinsic (i.e., unlensed) sizes (r {sub half}) and far-infrared luminosities (L {sub FIR}) of the lensed submillimeter galaxies (SMGs). The sample of lenses comprises primarily isolated massive galaxies, but includes some groups and clusters as well. Several of the lenses are located at z {sub lens} > 0.7, a redshift regime that is inaccessible to lens searches based on Sloan Digital Sky Survey spectroscopy. The lensed SMGs are amplified by factors that are significantly below statistical model predictions given the 500 μm flux densities of our sample. We speculate that this may reflect a deficiency in our understanding of the intrinsic sizes and luminosities of the brightest SMGs. The lensed SMGs span nearly one decade in L {sub FIR} (median L {sub FIR} = 7.9 × 10{sup 12} L {sub ☉}) and two decades in FIR luminosity surface density (median Σ{sub FIR} = 6.0 × 10{sup 11} L {sub ☉} kpc{sup –2}). The strong lenses in this sample and others identified via (sub-)mm surveys will provide a wealth of information regarding the astrophysics of galaxy formation and evolution over a wide range in redshift.
Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
Nbody Simulations and Weak Gravitational Lensing using new HPC-Grid resources: the PI2S2 project
NASA Astrophysics Data System (ADS)
Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Comparato, M.
2008-08-01
We present the main project of the new grid infrastructure and the researches, that have been already started in Sicily and will be completed by next year. The PI2S2 project of the COMETA consortium is funded by the Italian Ministry of University and Research and will be completed in 2009. Funds are from the European Union Structural Funds for Objective 1 regions. The project, together with a similar project called Trinacria GRID Virtual Laboratory (Trigrid VL), aims to create in Sicily a computational grid for e-science and e-commerce applications with the main goal of increasing the technological innovation of local enterprises and their competition on the global market. PI2S2 project aims to build and develop an e-Infrastructure in Sicily, based on the grid paradigm, mainly for research activity using the grid environment and High Performance Computer systems. As an example we present the first results of a new grid version of FLY a tree Nbody code developed by INAF Astrophysical Observatory of Catania, already published in the CPC program Library, that will be used in the Weak Gravitational Lensing field.
NASA Astrophysics Data System (ADS)
Rivera, Susana
Throughout the last century, since the last decades of the XIX century, until present day, there had been many attempts to achieve the unification of the Forces of Nature. First unification was done by James Clerk Maxwell, with his Electromagnetic Theory. Then Max Plank developed his Quantum Theory. In 1905, Albert Einstein gave birth to the Special Relativity Theory, and in 1916 he came out with his General Relativity Theory. He noticed that there was an evident parallelism between the Gravitational Force, and the Electromagnetic Force. So, he tried to unify these forces of Nature. But Quantum Theory interposed on his way. On the 1940’s it had been developed the Quantum Electrodynamics (QED), and with it, the unified field theory had an arise interest. On the 60’s and 70’s there was developed the Quantum Chromodynamics (QCD). Along with these theories came the discovery of the strong interaction force and weak interaction force. And though there had been many attempts to unify all these forces of the nature, it could only be achieved the Unification of strong interaction, weak interaction and Electromagnetic Force. On the late 80”s and throughout the last two decades, theories such as “super-string theory”, “or the “M-theory”, among others, groups of Scientists, had been doing grand efforts and finally they came out with the unification of the forces of nature, being the only limitation the use of more than 11 dimensions. Using an ingenious mathematical tool known as the super symmetries, based on the Kaluza - Klein work, they achieve this goal. The strings of these theories are in the rank of 10-33 m. Which make them undetectable. There are many other string theories. The GEUFT theory is based on the existence of concentrated energy lines, which vibrates, expands and contracts, submitting and absorbing energy, matter and antimatter, and which yields a determined geometry, that gives as a result the formation of stars, galaxies, nebulae, clusters
Constraining the Cosmological Parameters from Gravitational Lenses with Several Families of Images
NASA Astrophysics Data System (ADS)
Golse, G.; Kneib, J.-P.; Soucail, G.
The knowledge of the redshift of multiple images in cluster-lenses allows to determine precisely the total projected mass within the Einstein radius. The observation of various multiple images in a same cluster is opening new possibilities to constrain the curvature of the universe. Indeed, although the influence of Omegam and Omegalambda on the images formation is of the second order, observations of many multiple images at different redshifts formed by a regular cluster-lens should allow to constrain very accurately the mass distribution of the cluster and to start to be sensitive to the cosmological parameters entering the diameter angular distances. We present, analytical expressions and numerical simulations that allow us to compute the expected error bars on the cosmological parameters provided an HST/WFPC2 resolution image and spectroscopic redshifts for the multiple images. Numerical tests on simulated data confirm the rather small uncertainties we could obtain this way for the two popular cosmological world models: Omegam=0.3± 0.24, Omegalambda=0.7±0.5 or Omegam=1.±0.33, Omegalambda=0.±1.2. Our method can be applied from now on, on real clusters
Gravitational Lensing of Rays through the Levitating Atmospheres of Compact Objects
NASA Astrophysics Data System (ADS)
Rogers, Adam
2017-01-01
Electromagnetic rays travel on curved paths under the influence of gravity. When a dispersive optical medium is included, these trajectories are frequency-dependent. In this work we consider the behaviour of rays when a spherically symmetric, luminous compact object described by the Schwarzschild metric is surrounded by an optically thin shell of plasma supported by radiation pressure. Such levitating atmospheres occupy a position of stable radial equilibrium, where radiative flux and gravitational effects are balanced. Using general relativity and an inhomogeneous plasma we find the existence of a stable circular orbit within the atmospheric shell for low-frequency rays. We explore families of bound orbits that exist between the shell and the compact object, and identify sets of novel periodic orbits. Finally, we examine conditions necessary for the trapping and escape of low-frequency radiation.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
Agnello, A.
2015-10-01
In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at z_{s} = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at z_{s} = 2.38 and absorption compatible with Mg II and Fe II at z_{l} = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 × 10^{11} M_{⊙}. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.
Discovery of two gravitationally lensed quasars in the Dark Energy Survey
Agnello, A.
2015-10-01
In this study, we present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at zs = 1.64. The Einstein Radius estimated from the DES images is 0.51''. DES J2146-0047 is in the area of overlap between DES andmore » the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at zs = 2.38 and absorption compatible with Mg II and Fe II at zl = 0.799, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. Furthermore, the Einstein Radius is 0.68'' corresponding to an enclosed mass of 1.6 × 1011 M⊙. Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.« less
A search for gravitational lensing among highly luminous quasars - New results
NASA Astrophysics Data System (ADS)
Magain, P.; Remy, M.; Surdej, J.; Swings, J.-P.; Smette, A.
Images of highly luminous QSOs are analyzed to determine whether the gravitational magnification of the background QSO by matter associated with the foreground galaxies accounts for the excess of galaxies in the fields of distant QSOs. Galaxy detection is increased by utilizing red-filter images, 40 taken with the EFOSC at the ESO 3.6-m telescope and 43 taken with a direct CCD camera at the ESO/MPI 2.2-m telescope. The R-magnitude ranges from 22.5 to 23.0 for the sample, for which the number of galaxies is counted by eye, showing 45 galaxies of radio and optical type. The overdensity found is not as pronounced as that of Fugmann (1988) or that of Webster et al. (1988). A systematic subtraction of the point spread function is also described to investigate the idea that some galaxies responsible for the QSO light magnification are within the inner 3-arcsec circle. The galaxies very close to the line-of-sight are theorized to contribute significantly to the magnification of these QSOs.
CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?
Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J.; Philpott, L. C.; Abe, F.; Muraki, Y.; Albrow, M. D.; Bennett, D. P.; Bond, I. A.; Christie, G. W.; Natusch, T.; Dionnet, Z.; Gould, A.; Han, C.; Heyrovský, D.; McCormick, J. M.; Skowron, J.; and others
2015-02-01
Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.
Can the Masses of Isolated Planetary-mass Gravitational Lenses be Measured by Terrestrial Parallax?
NASA Astrophysics Data System (ADS)
Freeman, M.; Philpott, L. C.; Abe, F.; Albrow, M. D.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Christie, G. W.; Dionnet, Z.; Gould, A.; Han, C.; Heyrovský, D.; McCormick, J. M.; Moorhouse, D. M.; Muraki, Y.; Natusch, T.; Rattenbury, N. J.; Skowron, J.; Sumi, T.; Suzuki, D.; Tan, T.-G.; Tristram, P. J.; Yock, P. C. M.
2015-02-01
Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits >=10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M J and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ~40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.
NASA Astrophysics Data System (ADS)
Pietrukowicz, P.; Udalski, A.; Soszyński, I.; Nataf, D. M.; Wyrzykowski, Ł.; Poleski, R.; Kozłowski, S.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.
2012-05-01
We have analyzed the data on 16,836 RR Lyrae (RR Lyr) variables observed toward the Galactic bulge during the third phase of the Optical Gravitational Lensing Experiment (OGLE-III), which took place in 2001-2009. Using these standard candles, we show that the ratio of total-to-selective extinction toward the bulge is given by RI = AI /E(V - I) = 1.080 ± 0.007 and is independent of color. We demonstrate that the bulge RR Lyr stars form a metal-uniform population, slightly elongated in its inner part. The photometrically derived metallicity distribution is sharply peaked at [Fe/H] = -1.02 ± 0.18, with a dispersion of 0.25 dex. In the inner regions (|l| < 3°, |b| < 4°) the RR Lyr tend to follow the barred distribution of the bulge red clump giants. The distance to the Milky Way center inferred from the bulge RR Lyr is R 0 = 8.54 ± 0.42 kpc. We report a break in the mean density distribution at a distance of ~0.5 kpc from the center indicating its likely flattening. Using the OGLE-III data, we assess that (4-7) × 104 type ab RR Lyr variables should be detected toward the bulge area of the ongoing near-IR VISTA Variables in the Via Lactea (VVV) survey, where the uncertainty partially results from the unknown RR Lyr spatial density distribution within 0.2 kpc from the Galactic center.
Pietrukowicz, P.; Udalski, A.; Soszynski, I.; Wyrzykowski, L.; Poleski, R.; Kozlowski, S.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Ulaczyk, K.; Nataf, D. M.
2012-05-10
We have analyzed the data on 16,836 RR Lyrae (RR Lyr) variables observed toward the Galactic bulge during the third phase of the Optical Gravitational Lensing Experiment (OGLE-III), which took place in 2001-2009. Using these standard candles, we show that the ratio of total-to-selective extinction toward the bulge is given by R{sub I} = A{sub I} /E(V - I) = 1.080 {+-} 0.007 and is independent of color. We demonstrate that the bulge RR Lyr stars form a metal-uniform population, slightly elongated in its inner part. The photometrically derived metallicity distribution is sharply peaked at [Fe/H] = -1.02 {+-} 0.18, with a dispersion of 0.25 dex. In the inner regions (|l| < 3 Degree-Sign , |b| < 4 Degree-Sign ) the RR Lyr tend to follow the barred distribution of the bulge red clump giants. The distance to the Milky Way center inferred from the bulge RR Lyr is R{sub 0} = 8.54 {+-} 0.42 kpc. We report a break in the mean density distribution at a distance of {approx}0.5 kpc from the center indicating its likely flattening. Using the OGLE-III data, we assess that (4-7) Multiplication-Sign 10{sup 4} type ab RR Lyr variables should be detected toward the bulge area of the ongoing near-IR VISTA Variables in the Via Lactea (VVV) survey, where the uncertainty partially results from the unknown RR Lyr spatial density distribution within 0.2 kpc from the Galactic center.
High Dynamic Range VLA Observations of the Gravitationally Lensed Quasar 0957+561
NASA Astrophysics Data System (ADS)
Harvanek, Michael; Stocke, John T.; Morse, Jon A.; Rhee, George
1997-12-01
We present 2, 3.6, 6, and 20 cm radio maps of the gravitationally leased quasar 0957+561 obtained with the VLA in A configuration. Besides the well-known jet and lobe structure associated with image A and the point sources associated with image B and the radio source G, the new 3.6 cm maps show interesting extensions of radio source G towards and away from B and the 20 cm map shows a large amount of extended structure, some of it not seen before. We argue that at least some of the 3.6 cm extensions of G are the radio jet associated with image B placing the caustic for multiple images outside the radio jet emitting region. The central portion of the extended 20 cm emission may be an "Einstein ring" produced by faint radio emission located at the caustic while the northern and southern portions of the extended 20 cm emission resemble the outer lobes of a faint "classical double" source with an axis nearly perpendicular to the axis of the jet and lobe emission associated with image A. If these outer "lobes" are second images of the lobes associated with image A then they are very difficult to understand theoretically. Most likely they are the radio lobes of the galaxy G1. Relative point source positions are presented and compared to published VLBI positions and recently obtained optical positions from HST confirming that the VLA source G is coincident (±0.02") with both the VLBI source G' and the nucleus of the leasing galaxy G 1. However, all or a portion of radio source G/G' may still be the elusive third image of the quasar rather than a radio source associated with galaxy G1. Fluxes, spectral indices and flux ratios are presented and compared to values found in the literature. A portion of the 20 cm extended emission occurs in a region where extended X-ray emission was reported to be detected by Einstein and ROSAT. However, a re-analysis of the ROSAT data shows little evidence for this emission.
NASA Astrophysics Data System (ADS)
Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Wuyts, E.; Abramson, L. E.; Koester, B. P.; Groeneboom, N.; Brinckmann, T. E.; Kristensen, M. T.; Lindholmer, M. O.; Nielsen, A.; Krogager, J.-K.; Fynbo, J. P. U.
2013-08-01
We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a zs = 2.82 quasar lensed by a foreground galaxy cluster at zl = 0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.''1. Both the large image separations and the high image multiplicity are in themselves rare among known lensed quasars, and observing the combination of these two factors is an exceptionally unlikely occurrence in present data sets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow-up and verification with the 2.56 m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from 2011 September to 2012 September reveals significant variability at the ~10%-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system, we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at zs = 2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ~100 days to ~6 yr. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Dahle, H.; Groeneboom, N.; Gladders, M. D.; Abramson, L. E.; Sharon, K.; Bayliss, M. B.; Wuyts, E.; Koester, B. P.; Brinckmann, T. E.; Kristensen, M. T.; Lindholmer, M. O.; Nielsen, A.; Krogager, J.-K.; Fynbo, J. P. U.
2013-08-20
We report the discovery of a unique gravitational lens system, SDSS J2222+2745, producing five spectroscopically confirmed images of a z{sub s} = 2.82 quas