Science.gov

Sample records for gravitational radiation reaction

  1. Gravitational radiation reaction and inspiral waveforms in the adiabatic limit.

    PubMed

    Hughes, Scott A; Drasco, Steve; Flanagan, Eanna E; Franklin, Joel

    2005-06-10

    We describe progress evolving an important limit of binaries in general relativity: stellar mass compact objects spiraling into much larger black holes. Such systems are of great observational interest. We have developed tools to compute for the first time the radiation from generic orbits. Using global conservation laws, we find the orbital evolution and waveforms for special cases. For generic orbits, inspirals and waveforms can be found by augmenting our approach with an adiabatic self-force rule due to Mino. Such waveforms should be accurate enough for gravitational-wave searches. PMID:16090377

  2. Gravitational Radiation Reaction of Inspiralling Compact Binary Systems

    NASA Astrophysics Data System (ADS)

    Pati, Michael E.; Will, Clifford M.

    1998-04-01

    We outline a technique for obtaining the spacetime metric and local equations of motion for compact binary systems to high post-Newtonian (PN) order. Our approach is based upon direct integration of the ``relaxed Einstein equations'' (DIRE) and casts its solution as a retarded flat-spacetime integral involving a non-compact source. Although mathematical ambiguities have accompanied similar approaches in the past, we obtain results manifestly free of divergences to high PN orders using a method first introduced by Will and Wiseman(C.M. Will and A.G. Wiseman, Phys. Rev. D 54), 4813 (1996).. To 3.5 PN ((v/c)^7 beyond Newtonian) order we calculate the radiation reaction terms in the equations of motion and compare our results with other treatments (B.R. Iyer and C.M. Will, Phys. Rev. Lett. 70), 113 (1993); Phys. Rev. D 52, 6882 (1995); L. Blanchet, Phys. Rev. D 47, 4392 (1993); ibid. 55 714 (1997). We discuss the status of obtaining the non-dissipative, 3PN terms in the equations of motion.

  3. Gravitational radiation reaction and balance equations to post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc

    1997-01-01

    Gravitational radiation reaction forces and balance equations are investigated to 3/2 post-Newtonian (1.5PN) order beyond the quadrupole approximation, corresponding to the 4PN order in the equations of motion of an isolated system. By matching a post-Newtonian solution for the gravitational field inside the system to a post-Minkowskian solution (obtained in a previous work) for the gravitational field exterior to the system, we determine the 1PN relativistic corrections to the ``Newtonian'' radiation reaction potential of Burke and Thorne. The 1PN reaction potential involves both scalar and vectorial components, with the scalar component depending on the mass-type quadrupole and octupole moments of the system, and the vectorial component depending in particular on the current-type quadrupole moment. In the case of binary systems, the 1PN radiation reaction potential has been shown elsewhere to yield consistent results for the 3.5PN approximation in the binary's equations of motion. Adding up the effects of tails, the radiation reaction is then written to 1.5PN order. In this paper, we establish the validity to 1.5PN order, for general systems, of the balance equations relating the losses of energy, linear momentum, and angular momentum in the system to the corresponding fluxes in the radiation field far from the system.

  4. Spin effects in gravitational radiation back reaction. I. The Lense-Thirring approximation

    NASA Astrophysics Data System (ADS)

    Gergely, László Á.; Perjés, Zoltán I.; Vasúth, Mátyás

    1998-01-01

    The gravitational radiation back reaction effects are considered in the Lense-Thirring approximation. New methods for parametrizing the orbit and for averaging the instantaneous radiative losses are developed. To first order in the spin S of the black hole, both in the absence and in the presence of gravitational radiation, a complete description of the test-particle orbit is given. This is achieved by two improvements over the existing descriptions: first, by introducing new angle variables with a straightforward geometrical meaning; second, by finding a new parametrization of a generic orbit, which assures that the integration over a radial period can be done in an especially simple way, by applying the residue theorem. The instantaneous gravitational radiation losses of the system are computed using the formulation of Blanchet, Damour and Iyer. All losses are given both in terms of the dynamical constants of motion and the properly defined orbital elements a, e, ι and Ψ0. The radiative losses of the constants characterizing the Lense-Thirring motion, when suitably converted, are in agreement with earlier results of Kidder, Will and Wiseman, Ryan and Shibata. In addition, the radiative losses of two slowly changing orbital elements Ψ0,Φ0 are given in order to complete the characterization of the orbit.

  5. Nonchaotic evolution of triangular configuration due to gravitational radiation reaction in the three-body problem

    NASA Astrophysics Data System (ADS)

    Yamada, Kei; Asada, Hideki

    2016-04-01

    Continuing work initiated in an earlier publication [H. Asada, Phys. Rev. D 80, 064021 (2009)], the gravitational radiation reaction to Lagrange's equilateral triangular solution of the three-body problem is investigated in an analytic method. The previous work is based on the energy balance argument, which is sufficient for a two-body system because the number of degrees of freedom (the semimajor axis and the eccentricity in quasi-Keplerian cases, for instance) equals that of the constants of motion such as the total energy and the orbital angular momentum. In a system with three (or more) bodies, however, the number of degrees of freedom is more than that of the constants of motion. Therefore, the present paper discusses the evolution of the triangular system by directly treating the gravitational radiation reaction force to each body. The perturbed equations of motion are solved by using the Laplace transform technique. It is found that the triangular configuration is adiabatically shrinking and is kept in equilibrium by increasing the orbital frequency due to the radiation reaction if the mass ratios satisfy the Newtonian stability condition. Long-term stability involving the first post-Newtonian corrections is also discussed.

  6. Second post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies

    NASA Astrophysics Data System (ADS)

    Gopakumar, A.; Iyer, Bala R.; Iyer, Sai

    1997-05-01

    Starting from the recently obtained post-post-Newtonian (2PN) accurate forms of the energy and angular momentum fluxes from inspiraling compact binaries, we deduce the gravitational radiation reaction to 2PN order beyond the quadrupole approximation-4.5PN terms in the equation of motion-using the refined balance method proposed by Iyer and Will. We explore critically the features of their construction and illustrate them by contrast with other possible variants. The equations of motion are valid for general binary orbits and for a class of coordinate gauges. The limiting cases of circular orbits and radial infall are also discussed.

  7. Tail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolution

    NASA Astrophysics Data System (ADS)

    Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.; Ross, Andreas

    2016-06-01

    We use the effective field theory (EFT) framework to calculate the tail effect in gravitational radiation reaction, which enters at the fourth post-Newtonian order in the dynamics of a binary system. The computation entails a subtle interplay between the near (or potential) and far (or radiation) zones. In particular, we find that the tail contribution to the effective action is nonlocal in time and features both a dissipative and a "conservative" term. The latter includes a logarithmic ultraviolet (UV) divergence, which we show cancels against an infrared (IR) singularity found in the (conservative) near zone. The origin of this behavior in the long-distance EFT is due to the point-particle limit—shrinking the binary to a point—which transforms a would-be infrared singularity into an ultraviolet divergence. This is a common occurrence in an EFT approach, which furthermore allows us to use renormalization group (RG) techniques to resum the resulting logarithmic contributions. We then derive the RG evolution for the binding potential and total mass/energy, and find agreement with the results obtained imposing the conservation of the (pseudo) stress-energy tensor in the radiation theory. While the calculation of the leading tail contribution to the effective action involves only one diagram, five are needed for the one-point function. This suggests logarithmic corrections may be easier to incorporate in this fashion. We conclude with a few remarks on the nature of these IR/UV singularities, the (lack of) ambiguities recently discussed in the literature, and the completeness of the analytic post-Newtonian framework.

  8. Linked Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Thompson, Amy; Swearngin, Joseph; Wickes, Alexander; Willem Dalhuisen, Jan; Bouwmeester, Dirk

    2013-04-01

    The electromagnetic knot is a topologically nontrivial solution to the vacuum Maxwell equations with the property that any two field lines belonging to either the electric, magnetic, or Poynting vector fields are closed and linked exactly once [1]. The relationship between the vacuum Maxwell and linearized Einstein equations, as expressed in the form of the spin-N massless field equations, suggests that gravitational radiation possesses analogous topologically nontrivial field configurations. Using twistor methods we find the analogous spin-2 solutions of Petrov types N, D, and III. Aided by the concept of tendex and vortex lines as recently developed for the physical interpretation of solutions in general relativity [2], we investigate the physical properties of these knotted gravitational fields by characterizing the topology of their associated tendex and vortex lines.[4pt] [1] Ranada, A. F. and Trueba, J. L., Mod. Nonlinear Opt. III, 119, 197 (2002).[2] Nichols, D. A., et al., Phys. Rev. D, 84 (2011).

  9. Approximation methods in gravitational-radiation theory

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1986-01-01

    The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.

  10. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  11. Gravitational radiation from extreme Kerr black hole

    NASA Technical Reports Server (NTRS)

    Sasaki, Misao; Nakamura, Takashi

    1989-01-01

    Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.

  12. Time-asymmetric structure of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc

    1993-05-01

    Gravitational radiation reaction effects in the dynamics of an isolated system arise from the use of retarded potentials for the radiation field, satisfying time-asymmetric boundary conditions imposed at past-null infinity. Part one of this paper investigates the ``antisymmetric'' component, a solution of the wave equation of the type retarded minus advanced, of the linearized gravitational field generated by an isolated system in the exterior region of the system. At linearized order such a component is well defined and is ``time odd'' in the usual post-Newtonian (PN) sense. We introduce a new linearized coordinate system which generalizes the Burke and Thorne coordinate system both in its space-time domain of validity, which is no longer limited to the near zone of the source, and in the post-Newtonian smallness of the linear antisymmetric (``time-odd'') component of the metric, for all multipolarities of antisymmetric waves. These waves (as viewed in the near zone) define a generalized radiation reaction four-tensor potential Vαβreact of the linear theory. At the 2.5 post-Newtonian approximation, the tensor potential reduces to the standard Burke-Thorne scalar potential of the lowest-order local radiation reaction force. At the 3.5 PN approximation, the potential involves scalar (V00react) and vector (V0ireact) components which are associated with subdominant radiation reaction effects such as the recoil effect. At the higher-order PN approximations, the potential is intrinsically tensorial. A nonlinear exterior metric is iteratively constructed from the new linearized metric by the method of a previous work. Part two of this paper is devoted to the near-zone reexpansion of the nonlinear iterations of the exterior metric. We use a very convenient decomposition of the integral of the retarded potentials into a particular solution involving only ``instantaneous'' potentials, and a homogeneous solution of the antisymmetric type. The former particular solution is

  13. Generation of Gravitational Waves with Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio; Baker, Robert M. L.

    2006-01-01

    The problem of efficient generation of High Frequency Gravitational Waves (HFGWs) and pulses of Gravitational Radiation might find a reasonably simple solution by employing nuclear matter, especially isomers. A fissioning isomer not only rotates at extremely high frequency (~ 3.03×1024 s-1), but is also highly deformed in the first stages of fission (the nucleus is rotating and made asymmetric ``before'' fission). Thus one achieves significant impulsive forces (e.g., 3.67×108 N) acting over extremely short time spans (e.g., 3.3×10-22 s). Alternatively, a pulsed particle beam, which could include antimatter, could trigger nuclear reactions and build up a coherent GW as the particles move through a target mass. The usual difficulty with HFGWs generated by nuclear reactions is the small dimensions of their nuclear-reaction volumes, that is, the small moment of inertia and submicroscopic radii of gyration (e.g., 10-16 m) of the nuclear-mass system. Such a difficulty is overcome by utilizing clusters of nuclear material, whose nuclear reactions are in synchronization (through the use of a computer controlled logic system) and are at a large distance apart, e.g., meters, kilometers, etc. The effective radius of gyration of the overall nuclear mass system is enormous and if the quadrupole formalism holds even approximately, then significant HFGW is generated, for example up to 8.5×1010 W to 1.64×1025 W bursts for the transient asymmetrical spinning nucleus case. In this preliminary analysis, possible conceptual designs of reactors suitable for the generation of HFGWs are discussed as well as applications to space technology. In an optimized dual-beam design, GW amplitudes on the order of A ~ 0.005 are theoretically achieved in the laboratory, which might have interesting general-relativity and nuclear-physics consequences.

  14. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  15. Gravitational radiation by cosmic strings in a junction

    SciTech Connect

    Brandenberger, R.; Karouby, J.; Firouzjahi, H.; Khosravi, S.

    2009-01-15

    The formalism for computing the gravitational power radiation from excitations on cosmic strings forming a junction is presented and applied to the simple case of co-planar strings at a junction when the excitations are generated along one string leg. The effects of polarization of the excitations and of the back-reaction of the gravitational radiation on the small scale structure of the strings are studied.

  16. Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order

    NASA Astrophysics Data System (ADS)

    Nissanke, Samaya; Blanchet, Luc

    2005-03-01

    We compute the radiation-reaction force on the orbital motion of compact binaries to the 3.5 post-Newtonian (3.5PN) approximation, i.e. one PN order beyond the dominant effect. The method is based on a direct PN iteration of the near-zone metric and equations of motion of an extended isolated system, using appropriate 'asymptotically matched' flat-spacetime retarded potentials. The formalism is subsequently applied to binary systems of point particles, with the help of the Hadamard self-field regularization. Our result is the 3.5PN acceleration term in a general harmonic coordinate frame. Restricting the expression to the centre-of-mass frame, we find perfect agreement with the result derived in a class of coordinate systems by Iyer and Will using the energy and angular-momentum balance equations.

  17. LIGO/VIRGO Searches for Gravitational Radiation in Hypernovae

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.

    2002-08-01

    A torus around a stellar-mass Kerr black hole can emit about 10% of the spin energy of a black hole in gravitational radiation, which is potentially associated with a gamma-ray burst (GRB). Wide tori may develop buckling modes by the Papaloizou-Pringle instability and gravitational radiation-reaction forces in the Burke-Thorne approximation. Gravitational-wave experiments may discover these emissions in a fraction of nearby supernovae. This provides a test for Kerr black holes and for GRB inner engines by a comparison with the deredshifted durations of long GRBs.

  18. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  19. Types of biological reactions to the gravitation loads.

    PubMed

    Pestov, I D

    1997-07-01

    The nature of adaptation to gravitational loads is reviewed. Topics include an organism's antigravitation function, exposure to gravitational loads, types of physiological reactions, and results of adaptation.

  20. Electromagnetic and gravitational radiation from massless particles

    NASA Astrophysics Data System (ADS)

    Gal'Tsov, D. V.

    We demonstrate that full description of both electromagnetic and gravitational radiation from massless particles lies outside the scope of classical theory. Synchrotron radiation from the hypothetical massless charge in quantum electrodynamics in external magnetic field has finite total power while the corresponding classical formula diverges in the massless limit. We argue that in both cases classical theory describes correctly only the low-frequency part of the spectra, while the total power diverges because of absence of the UV frequency cutoff. Failure of description of gravitational radiation from massless particles by classical General Relativity may be considered as another appeal for quantization of gravity apart from the problem of singularities...

  1. Determining gravitational radiation from Newtonian self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Finn, Lee Samuel; Evans, Charles R.

    1990-03-01

    Quadrupole gravitational radiation formulas are tested and compared in a calculation of rotating stellar core collapse. While the standard quadrupole formula (SQF) allows an economical calculation of the waveform in postlinear gravity, it has several shortcomings that become apparent in a finite difference (FD) calculation. These shortcomings are related to the large-moment arm of the quadrupole moment and the two (numerical) time derivatives that separate it from the waveform. These shortcomings lead to high-frequency noise in the SQF waveform. Several alternatives to the SQF are developed. Each is mathematically equivalent to the SQF and applicable to self-gravitating sources. For FD calculations, the new quadrupole formulas are all superior to the SQF and capable of producing waveforms free of the high-frequency noise characteristics of its use.

  2. The generation of gravitational radiation by escaping supernova neutrinos

    NASA Technical Reports Server (NTRS)

    Epstein, R.

    1978-01-01

    Formulae for the gravitational radiation due to the anisotropic axisymmetric emission of neutrinos from a small source are derived. We find that a burst of neutrinos released anisotropically from a supernova will generate a burst of gravitational radiation that may be comparable in amplitude and energy to the gravitational radiation generated by the fluid motion in the collapse of the supernova core.

  3. Radiative processes in external gravitational fields

    SciTech Connect

    Papini, Giorgio

    2010-07-15

    Kinematically forbidden processes may be allowed in the presence of external gravitational fields. These can be taken into account by introducing generalized particle momenta. The corresponding transition probabilities can then be calculated to all orders in the metric deviation from the field-free expressions by simply replacing the particle momenta with their generalized counterparts. The procedure applies to particles of any spin and to any gravitational fields. Transition probabilities, emission power, and spectra are, to leading order, linear in the metric deviation. It is also shown how a small dissipation term in the particle wave equations can trigger a strong backreaction that introduces resonances in the radiative process and deeply affects the resulting gravitational background.

  4. Gravitational radiation from massless particle collisions

    NASA Astrophysics Data System (ADS)

    Gruzinov, Andrei; Veneziano, Gabriele

    2016-06-01

    We compute classical gravitational bremsstrahlung from the gravitational scattering of two massless particles at leading order in the (centre of mass) deflection angle θ ∼ 4G\\sqrt{s}/b=8{GE}/b\\ll 1. The calculation, although non-perturbative in the gravitational constant, is surprisingly simple and yields explicit formulae—in terms of multidimensional integrals—for the frequency and angular distribution of the radiation. In the range {b}-1\\lt ω \\lt {({GE})}-1, the GW spectrum behaves like {log}(1/{GE}ω ){{d}}ω , is confined to cones of angular sizes (around the deflected particle trajectories) ranging from O(θ ) to O(1/ω b), and exactly reproduces, at its lower end, a well-known zero-frequency limit. At ω \\gt {({GE})}-1 the radiation is confined to cones of angular size of order θ {({GE}ω )}-1/2 resulting in a scale-invariant ({{d}}ω /ω ) spectrum. The total efficiency in GW production is dominated by this ‘high frequency’ region and is formally logarithmically divergent in the UV. If the spectrum is cutoff at the limit of validity of our approximations (where a conjectured bound on GW power is also saturated), the fraction of incoming energy radiated away turns out to be \\tfrac{1}{2π }{θ }2{log}{θ }-2 at leading logarithmic accuracy.

  5. Kerr Schild metrics and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Natorf, Włodzimierz

    2005-10-01

    We describe conditions assuring that the Kerr Schild type solutions of Einstein's equations with pure radiation fields are asymptotically flat at future null infinity. Such metrics cannot describe “true” gravitational radiation from bounded sources—it is shown that the Bondi news function vanishes identically. We obtain formulae for the total energy and angular momentum at ℐ. As an example we consider a non-stationary generalization of the Kerr metric given by Vaidya and Patel. Angular momentum and total energy are expressed in closed form as functions of retarded time.

  6. Gravitational radiation from realistic cosmic string loops

    NASA Astrophysics Data System (ADS)

    Casper, Paul; Allen, Bruce

    1995-10-01

    We examine the rates at which energy and momentum are radiated into gravitational waves by a large set of realistic cosmic string loops. The string loops are generated by numerically evolving parent loops with different initial conditions forward in time until they self-intersect, fragmenting into two child loops. The fragmentation of the child loops is followed recursively until only non-self-intersecting loops remain. The properties of the final non-self-intersecting loops are found to be independent of the initial conditions of the parent loops. We have calculated the radiated energy and momentum for a total of 11 625 stable child loops. We find that the majority of the final loops do not radiate significant amounts of spatial momentum. The velocity gained due to the rocket effect is typically small compared to the center-of-mass velocity of the fragmented loops. The distribution of gravitatoinal radiation rates in the center of mass frame of the loops, γ0≡(Gμ2)-1ΔE/Δτ, is strongly peaked in the range γ0=45-55 however, there are no loops found with γ0<40. Because the radiated spatial momentum is small, the distribution of gravitational radiation rates appears roughly the same in any reference frame. We conjecture that in the center-of-mass frame there is a lower bound γ0min>0 for the radiation rate from cosmic string loops. In a second conjecture, we identify a candidate for the loop with the minimal radiation rate and suggest that γ0min~=39.003.

  7. A Xylophone Detector of Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1997-01-01

    We discuss spacecraft Doppler tracking searches for gravitational waves in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we describe a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. This technique provides also a way for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by nongravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector of gravitational radiation. In the assumption of calibrating the frequency fluctuations induced by the interplanetary plasma, a strain sensitivity equal to 4.7 x 10(exp -18) at 10(exp -3) Hz is estimated. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  8. Sources of gravitational radiation; Proceedings of the Workshop, Seattle, Wash., July 24-August 4, 1978

    NASA Technical Reports Server (NTRS)

    Smarr, L. L.

    1979-01-01

    Topics discussed are gravitational wave detection experiments, the theoretical foundations of gravitational wave physics, black holes, and neutron stars. Particular consideration is given to methods for circumventing the quantum limit for gravitational wave detectors, global problems in numerical relativity, massive black holes and gravitational radiation, the role of binaries in gravitational wave production, and astrophysical sources of gravitational radiation.

  9. Stochastic microhertz gravitational radiation from stellar convection

    SciTech Connect

    Bennett, M. F.; Melatos, A.

    2014-09-01

    High Reynolds-number turbulence driven by stellar convection in main-sequence stars generates stochastic gravitational radiation. We calculate the wave-strain power spectral density as a function of the zero-age main-sequence mass for an individual star and for an isotropic, universal stellar population described by the Salpeter initial mass function and redshift-dependent Hopkins-Beacom star formation rate. The spectrum is a broken power law, which peaks near the turnover frequency of the largest turbulent eddies. The signal from the Sun dominates the universal background. For the Sun, the far-zone power spectral density peaks at S(f {sub peak}) = 5.2 × 10{sup –52} Hz{sup –1} at frequency f {sub peak} = 2.3 × 10{sup –7} Hz. However, at low observing frequencies f < 3 × 10{sup –4} Hz, the Earth lies inside the Sun's near zone and the signal is amplified to S {sub near}(f {sub peak}) = 4.1 × 10{sup –27} Hz{sup –1} because the wave strain scales more steeply with distance (∝d {sup –5}) in the near zone than in the far zone (∝d {sup –1}). Hence the Solar signal may prove relevant for pulsar timing arrays. Other individual sources and the universal background fall well below the projected sensitivities of the Laser Interferometer Space Antenna and next-generation pulsar timing arrays. Stellar convection sets a fundamental noise floor for more sensitive stochastic gravitational-wave experiments in the more distant future.

  10. Omnidirectional Gravitational Radiation Observatory: Proceedings of the First International Workshop

    NASA Astrophysics Data System (ADS)

    Velloso, W. F.; Aguiar, O. D.; Magalhães, N. S.

    1997-08-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Introduction: The OMNI-1 Workshop and the beginning of the International Gravitational Radiation Observatory * Opening Talks * Gravitational radiation sources for Acoustic Detectors * The scientific and technological benefits of gravitational wave research * Operating Second and Third Generation Resonant-Mass Antennas * Performance of the ALLEGRO detector -- and what our experience tells us about spherical detectors * The Perth Niobium resonant mass antenna with microwave parametric transducer * The gravitational wave detectors EXPLORER and NAUTILUS * Gravitational Waves and Astrophysical Sources for the Next Generation Observatory * What is the velocity of gravitational waves? * Superstring Theory: how it change our ideas about the nature of Gravitation * Statistical approach to the G.W. emission from radio pulsars * Gravitational waves from precessing millisecond pulsars * The production rate of compact binary G.W. sources in elliptical galaxies * On the possibility to detect Gravitational Waves from precessing galactic neutron stars * Gravitational wave output of the head-on collision of two black holes * SN as a powerfull source of gravitational radiation * Long thick cosmic strings radiating gravitational waves and particles * Non-Parallel Electric and Magnetic Fields in a gravitational background, stationary G.W. and gravitons * Exact solutions of gravitational waves * Factorization method for linearized quantum gravity at tree-level. Graviton, photon, electron processes * Signal Detection with Resonant-Mass Antennas * Study of coalescing binaries with spherical gravitational waves detectors * Influence of transducer asymmetries on the isotropic response of a spherical gravitational wave antenna * Performances and preliminary results of the cosmic-ray detector associated with NAUTILUS * Possible transducer configurations for a spherical gravitational wave antenna * Detectability of

  11. Simulation of Merger of Two Black Holes and Gravitational Radiation

    NASA Video Gallery

    This movie shows a simulation of the merger of two black holes and the resulting emission of gravitational radiation. The colored fields represent a component of the curvature of space-time. The ou...

  12. Constraint on ghost-free bigravity from gravitational Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Tanaka, Takahiro; Yamamoto, Kazuhiro; Yamashita, Yasuho

    2016-09-01

    We investigate gravitational Cherenkov radiation in a healthy branch of background solutions in the ghost-free bigravity model. In this model, because of the modification of dispersion relations, each polarization mode can possess subluminal phase velocities, and the gravitational Cherenkov radiation could be potentially emitted from a relativistic particle. In the present paper, we derive conditions for the process of the gravitational Cherenkov radiation to occur and estimate the energy emission rate for each polarization mode. We found that the gravitational Cherenkov radiation emitted even from an ultrahigh energy cosmic ray is sufficiently suppressed for the graviton's effective mass less than 100 eV, and the bigravity model with dark matter coupled to the hidden metric is therefore consistent with observations of high energy cosmic rays.

  13. Cosmic string structure at the gravitational radiation scale

    SciTech Connect

    Polchinski, Joseph; Rocha, Jorge V.

    2007-06-15

    We use our model of the small scale structure on cosmic strings to develop further the result of Siemens, Olum, and Vilenkin that the gravitational radiation length scale on cosmic strings is smaller than the previously assumed {gamma}G{mu}t. We discuss some of the properties of cosmic string loops at this cutoff scale, and we argue that recent network simulations point to two populations of cosmic string loops, one near the horizon scale and one near the gravitational radiation cutoff.

  14. Modeling Gravitational Radiation Waveforms from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.

    2006-01-01

    Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.

  15. Gravitational radiation from collapsing magnetized dust

    SciTech Connect

    Sotani, Hajime; Yoshida, Shijun; Kokkotas, Kostas D.

    2007-04-15

    In this article we study the influence of magnetic fields on the axial gravitational waves emitted during the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations.

  16. Gravitational radiation from magnetically funneled supernova fallback onto a magnetar

    SciTech Connect

    Melatos, A.; Priymak, M. E-mail: m.priymak@pgrad.unimelb.edu.au

    2014-10-20

    Protomagnetars spun up to millisecond rotation periods by supernova fallback are predicted to radiate gravitational waves via hydrodynamic instabilities for ∼10{sup 2} s before possibly collapsing to form a black hole. It is shown that magnetic funneling of the accretion flow (1) creates a magnetically confined polar mountain, which boosts the gravitational wave signal, and (2) 'buries' the magnetic dipole moment, delaying the propeller phase and assisting black hole formation.

  17. Constraints on Lorentz violation from gravitational Čerenkov radiation

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Tasson, Jay D.

    2015-10-01

    Limits on gravitational Čerenkov radiation by cosmic rays are obtained and used to constrain coefficients for Lorentz violation in the gravity sector associated with operators of even mass dimensions, including orientation-dependent effects. We use existing data from cosmic-ray telescopes to obtain conservative two-sided constraints on 80 distinct Lorentz-violating operators of dimensions four, six, and eight, along with conservative one-sided constraints on three others. Existing limits on the nine minimal operators at dimension four are improved by factors of up to a billion, while 74 of our explicit limits represent stringent first constraints on nonminimal operators. Prospects are discussed for future analyses incorporating effects of Lorentz violation in the matter sector, the role of gravitational Čerenkov radiation by high-energy photons, data from gravitational-wave observatories, the tired-light effect, and electromagnetic Čerenkov radiation by gravitons.

  18. Gravitational radiation from a cylindrical naked singularity

    SciTech Connect

    Nakao, Ken-ichi; Morisawa, Yoshiyuki

    2005-06-15

    We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that all the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and the final singularity will be a conical one. Weyl curvature is completely released from the collapsed dust.

  19. Gravitational radiation from preheating with many fields

    SciTech Connect

    Jr, John T. Giblin; Price, Larry R.; Siemens, Xavier E-mail: larry@gravity.phys.uwm.edu

    2010-08-01

    Parametric resonances provide a mechanism by which particles can be created just after inflation. Thus far, attention has focused on a single or many inflaton fields coupled to a single scalar field. However, generically we expect the inflaton to couple to many other relativistic degrees of freedom present in the early universe. Using simulations in an expanding Friedmann-Lemaître-Robertson-Walker spacetime, in this paper we show how preheating is affected by the addition of multiple fields coupled to the inflaton. We focus our attention on gravitational wave production — an important potential observational signature of the preheating stage. We find that preheating and its gravitational wave signature is robust to the coupling of the inflaton to more matter fields.

  20. Gravitational radiation from first-order phase transitions

    SciTech Connect

    Child, Hillary L.; Giblin, John T. Jr. E-mail: giblinj@kenyon.edu

    2012-10-01

    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.

  1. Gravitational radiation theory. M.A. Thesis - Rice Univ.; [survey of current research

    NASA Technical Reports Server (NTRS)

    Wilson, T. L.

    1973-01-01

    A survey is presented of current research in the theory of gravitational radiation. The mathematical structure of gravitational radiation is stressed. Furthermore, the radiation problem is treated independently from other problems in gravitation. The development proceeds candidly through three points of view - scalar, rector, and tensor radiation theory - and the corresponding results are stated.

  2. Radiative capture reactions in astrophysics

    SciTech Connect

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  3. Radiation reaction in quantum vacuum

    NASA Astrophysics Data System (ADS)

    Seto, Keita

    2015-02-01

    Since the development of the radiating electron theory by P. A. M. Dirac in 1938 [P. A. M. Dirac, Proc. R. Soc. Lond. A 167, 148 (1938)], many authors have tried to reformulate this model, called the "radiation reaction". Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. In our recent research, we found a stabilized model of the radiation reaction in quantum vacuum [K. Seto et al., Prog. Theor. Exp. Phys. 2014, 043A01 (2014)]. It led us to an updated Fletcher-Millikan charge-to-mass ratio including radiation. In this paper, I will discuss the generalization of our previous model and the new equation of motion with the radiation reaction in quantum vacuum via photon-photon scatterings and also introduce the new tensor d{E}^{μ ν α β }/dm, as the anisotropy of the charge-to-mass ratio.

  4. Gravitational radiation antennas - History, observations, and lunar surface opportunities

    NASA Astrophysics Data System (ADS)

    Weber, J.

    1990-03-01

    The paper discusses the suitability of the lunar surface for observing the quadrupole modes with a long-period accelerometer as well as gravitational radiation by means of a low-frequency bar and interferometer antennas. The theoretical background of gravitational radiation antennas is described emphasizing the General theory of Relativity. One measurement method involves the use of an elastic solid such as an aluminum cylinder whose length changes as spacetime curvature changes. The second method described involves the use of a Michelson interferometer which measures fractional changes in length. Results of the measurements are given for the period during the supernova 1987A, and applications of the experimental apparatuses to lunar gravitational observations are discussed. The large cross sections of the lunar quadrupole modes make the moon a good place for the use of a long-period accelerometer.

  5. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  6. Gravitational radiation from rotating monopole-string systems

    SciTech Connect

    Babichev, E.; Dokuchaev, V.; Kachelriess, M.

    2005-02-15

    We study the gravitational radiation from a rotating monopole-antimonopole pair connected by a string. While at not too high frequencies the emitted gravitational spectrum is described asymptotically by P{sub n}{proportional_to}n{sup -1}, the spectrum is exponentially suppressed in the high-frequency limit, P{sub n}{proportional_to}exp(-n/n{sub cr}). Below n{sub cr}, the emitted spectrum of gravitational waves is very similar to the case of an oscillating monopole pair connected by a string, and we argue, therefore, that the spectrum found holds approximately for any moving monopole-string system. As an application, we discuss the stochastic gravitational wave background generated by monopole-antimonopole pairs connected by strings in the early Universe and gravitational wave bursts emitted at present by monopole-string networks. We confirm that advanced gravitational wave detectors have the potential to detect a signal for string tensions as small as G{mu}{approx}10{sup -13}.

  7. Persistent Gravitational Radiation from Glitching Pulsars

    NASA Astrophysics Data System (ADS)

    Melatos, A.; Douglass, J. A.; Simula, T. P.

    2015-07-01

    Quantum mechanical simulations of neutron star rotational glitches, triggered by vortex avalanches in the superfluid stellar interior, reveal that vortices pin nonaxisymmetrically to the crust during the intervals between glitches. Hence a glitching neutron star emits a persistent current quadrupole gravitational wave signal at the star’s rotation frequency, whose interglitch amplitude is constant and determined by the avalanche history since birth. The signal can be detected in principle by coherent searches planned for the Laser Interferometer Gravitational Wave Observatory (LIGO), whether or not a glitch occurs during the observation, if the power-law distribution of glitch sizes extends up to {{Δ }}{{{Ω }}}{max}/{{Ω }}≳ {10}-6{η }-1{({{Δ }}φ )}-1{({{Ω }}/{10}3 {rad} {{{s}}}-1)}-3(D/1 {kpc}) in the targeted object, where {{Δ }}{{{Ω }}}{max} and {{Δ }}φ are the largest angular velocity jump and avalanche opening angle, respectively, to have occurred in a glitch since birth, Ω is the angular velocity at present, η is the crustal fraction of the moment of inertia, and D is the distance from the Earth. A major caveat concerning detectability is whether the nonaxisymmetries observed in existing simulations with ≲ {10}3 vortices extrapolate to realistic neutron stars with ≳ {10}15 vortices. The arguments for and against extrapolation are discussed critically in the context of avalanche dynamics in self-organized critical systems, but the issue cannot be resolved without larger simulations and tighter observational limits on η {{Δ }}φ {{Δ }}{{{Ω }}}{max} from future LIGO (non)detections and radio timing campaigns.

  8. Gravitational radiation and the ultimate speed in Rosen's bimetric theory of gravity

    NASA Technical Reports Server (NTRS)

    Caves, C. M.

    1980-01-01

    In Rosen's bimetric theory of gravity the (local) speed of gravitational radiation is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for the speed of gravitational radiation to be less than the speed of light. It is here shown that the emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on the speed of gravitational radiation and the cosmological boundary values today, and observations of synchroton radiation from compact radio sources place limits on the cosmological boundary values in the past.

  9. Gravitational anomaly and Hawking radiation near a weakly isolated horizon

    SciTech Connect

    Wu Xiaoning; Huang Chaoguang; Sun Jiarui

    2008-06-15

    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.

  10. Gravitational anomaly and Hawking radiation near a weakly isolated horizon

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoning; Huang, Chao-Guang; Sun, Jia-Rui

    2008-06-01

    Based on the idea of the work by Wilczek and his collaborators, we consider the gravitational anomaly near a weakly isolated horizon. We find that there exists a universal choice of tortoise coordinate for any weakly isolated horizon. Under this coordinate, the leading behavior of a quite arbitrary scalar field near a horizon is a 2-dimensional chiral scalar field. This means we can extend the idea of Wilczek and his collaborators to more general cases and show the relation between gravitational anomaly and Hawking radiation is a universal property of a black hole horizon.

  11. On gravitational radiation with axial symmetry

    NASA Astrophysics Data System (ADS)

    Robinson, Ivor

    1989-12-01

    General results are obtained for Robinson-Trautman metrics which satisfy reasonable conditions for radiation from a bounded source. For the axially symmetrical case, the degree of the one field equation is reduced from 5 to 2; a simplified proof is given of the Lukacs-Perjes-Porter-Sebestyen theorem and a systematic procedure is developed for formal solution in series.

  12. Thermal Stability Analysis for a Heliocentric Gravitational Radiation Detection Mission

    NASA Technical Reports Server (NTRS)

    Folkner, W.; McElroy, P.; Miyake, R.; Bender, P.; Stebbins, R.; Supper, W.

    1994-01-01

    The Laser Interferometer Space Antenna (LISA) mission is designed for detailed studies of low-frequency gravitational radiation. The mission is currently a candidate for ESA's post-Horizon 2000 program. Thermal noise affects the measurement in at least two ways. Thermal variation of the length of the optical cavity to which the lasers are stabilized introduces phase variations in the interferometer signal, which have to be corrected for by using data from the two arms separately.

  13. Radiation Reaction and Thomson Scattering

    SciTech Connect

    Koga, James

    2007-07-11

    In recent years high power high irradiance lasers of peta-watt order have been or are under construction. In addition, in the next 10 years lasers of unprecedented powers, exa-watt, could be built If lasers such as these are focused to very small spot sizes, extremely high laser irradiances will be achieved. When electrons interact with such a laser, they become highly relativistic over very short time and spatial scales. Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent by radiation emission from acceleration. However, under such violent acceleration the amount of radiation emitted by electrons can become so large that significant damping of the electron motion by the emission of this radiation can occur. In this lecture note we will study this problem of radiation reaction by first showing how the equations of motion are obtained. Then, we will examine the problems with such equations and what approximations are made. We will specifically examine the effects of radiation reaction on the Thomson scattering of radiation from counter-streaming laser pulses and high energy electrons through the numerical integration of the equations of motion. We will briefly address the fundamental physics, which can be addressed by using such high irradiance lasers interacting with high energy electrons.

  14. Influence of gravitation on the propagation of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  15. Radiation recall reaction causing cardiotoxicity.

    PubMed

    Masri, Sofia Carolina; Misselt, Andrew James; Dudek, Arkadiusz; Konety, Suma H

    2014-01-01

    Radiation recall phenomenon is a tissue reaction that develops within a previously irradiated area, precipitated by the subsequent administration of certain chemotherapeutic agents. It commonly affects the skin, but can also involve internal organs with functional consequences. To our best knowledge, this phenomenon has never been reported as a complication on the heart and should be consider as a potential cause of cardiotoxicity. PMID:24755097

  16. Gravitational radiation in Bianchi Type V cosmological models

    SciTech Connect

    Hogan, P.A.

    1988-01-01

    This paper is concerned with the development of the theory of embedding gravitational radiation fields in expanding universes pioneered by Hawking. The problem of embedding such fields in the expanding Friedmann-Lemaitre-Robertson-Walker dust-filled universe, considered by Hawking, is reexamined in a new formalism which permits an easy analysis, in particular, of the relationship between the boundary conditions and the satisfaction, by the Weyl tensor, of the conventional peeling-off behavior. Since gravity wave detectors are expected to pick up plane-fronted gravitational waves, the main thrust of this paper concerns the development of a formulation of Bianchi Type V cosmological models which enables the embedding of such plane-fronted waves to be carried out. This is worked out explicitly in the case of a perfect fluid, with pressure proportional to energy density, and with the histories of the fluid particles orthogonal to the surfaces of homogeneity. 18 references.

  17. Re-Examining Gravitational Tunneling Radiation when taking into account Quantum Gravity Effects

    NASA Astrophysics Data System (ADS)

    Valentine, John; Prescott, Trevor; Blado, Gardo

    2015-03-01

    Although shown to theoretically exist, Hawking Radiation has yet to be detected. The paper entitled ``Gravitational Tunneling Radiation'' by Mario Rabinowitz proposed a possible explanation by considering the gravitational tunneling effects in the presence of other bodies in the vicinity of the black hole. Rabinowitz showed that the power radiated (through gravitational radiation) by a black hole,PR, is related to the power generated by Hawking Radiation, PSH by PR/T ~PSH where T is the gravitational tunneling probability. The presence of other bodies lowers the gravitational barrier which in turn increases the gravitational tunneling probability thereby decreasing the Hawking radiation, PSH. In this paper, we examine the modification of T in the presence of quantum gravity effects by incorporating the Generalized Uncertainty Principle.

  18. Escape of gravitational radiation from the field of massive bodies

    NASA Technical Reports Server (NTRS)

    Price, Richard H.; Pullin, Jorge; Kundu, Prasun K.

    1993-01-01

    We consider a compact source of gravitational waves of frequency omega in or near a massive spherically symmetric distribution of matter or a black hole. Recent calculations have led to apparently contradictory results for the influence of the massive body on the propagation of the waves. We show here that the results are in fact consistent and in agreement with the 'standard' viewpoint in which the high-frequency compact source produces the radiation as if in a flat background, and the background curvature affects the propagation of these waves.

  19. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, Barnard

    2008-01-01

    "We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source. applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the $\\ell = m$ modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model."

  20. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    Kelly, B. J.; Baker, J. G.; Boggs, W. D.; Centrella, J. M.; vanMeter, J. R.; McWilliams, S. T.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  1. Spacelike gravitational radiation extraction from rotating binary black holes

    NASA Astrophysics Data System (ADS)

    Imbiriba, Breno C. O.

    2016-07-01

    We introduce an alternate method for gravitational radiation extraction for binary black hole mergers where we do not use a single extraction radius at the intermediate field region but instead use a whole spherical shell of three-dimensional (3D) data and continue its evolution using the linearized (Teukolsky) evolution to a final distant radiation extraction radius. We implement this using the Hahndol code for the 3D evolution, and use the “Lazarus” procedure to convert the numerical data into the linearized data. The final waveform is compatible with the ones obtained from the full 3D evolutions with some minor variations that require further study. In the process, we tested the “Lazarus” method with our numerical 3D implementation and gauges showing that even with the advanced gauges suitable for 3D rotating binary evolutions, we recover the same type of limited results obtained in the original work.

  2. Radiation reaction of multipole moments

    SciTech Connect

    Kazinski, P. O.

    2007-08-15

    A Poincare-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  3. Radiation reaction of multipole moments

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2007-08-01

    A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.

  4. Information content of gravitational radiation and the vacuum

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Halpern, Illan; Koeller, Jason

    2016-09-01

    Known entropy bounds, and the generalized second law, were recently shown to imply bounds on the information arriving at future null infinity. We complete this derivation by including the contribution from gravitons. We test the bounds in classical settings with gravity and no matter. In Minkowski space, the bounds vanish on any subregion of the future boundary, independently of coordinate choices. More generally, the bounds vanish in regions where no gravitational radiation arrives. In regions that do contain Bondi news, the bounds are compatible with the presence of information, including the information stored in gravitational memory. All of our results are consistent with the equivalence principle, which states that empty Riemann-flat spacetime regions contain no classical information. We also discuss the possibility that Minkowski space has an infinite vacuum degeneracy labeled by a choice of Bondi coordinates (a classical parameter, if physical). We argue that this degeneracy cannot have any observational consequences if the equivalence principle holds. Our bounds are consistent with this conclusion.

  5. Gravitational radiation from crystalline color-superconducting hybrid stars

    SciTech Connect

    Knippel, Bettina; Sedrakian, Armen

    2009-04-15

    The interiors of high mass compact (neutron) stars may contain deconfined quark matter in a crystalline color-superconducting (CCS) state. On a basis of microscopic nuclear and quark matter equations of states we explore the internal structure of such stars in general relativity. We find that their stable sequence harbors CCS quark cores with masses M{sub core}{<=}(0.78-0.82)M{sub {center_dot}} and radii R{sub core}{<=}7 km. The CCS quark matter can support nonaxisymmetric deformations, because of its finite shear modulus, and can generate gravitational radiation at twice the rotation frequency of the star. Assuming that the CCS core is maximally strained we compute the maximal quadrupole moment it can sustain. The characteristic strain of gravitational wave emission h{sub 0} predicted by our models are compared to the upper limits obtained by the LIGO and GEO 600 detectors. The upper limits are consistent with the breaking strain of CCS matter {sigma}{<=}10{sup -4} and large pairing gaps {delta}{approx}50 MeV, or, alternatively, with {sigma}{approx}10{sup -3} and small pairing gaps {delta}{approx}15 MeV. An observationally determined value of the characteristic strain h{sub 0} can pin down the product {sigma}{delta}{sup 2}. On the theoretical side a better understanding of the breaking strain of CCS matter will be needed to predict reliably the level of the deformation of CCS quark core from first principles.

  6. Nonlinear solutions of long-wavelength gravitational radiation

    NASA Astrophysics Data System (ADS)

    Salopek, D. S.

    1991-05-01

    In a significant improvement over homogeneous minisuperspace models, it is shown that the classical nonlinear evolution of inhomogeneous scalar fields and the metric is tractable when the wavelength of the fluctuations is larger than the Hubble radius. Neglecting second-order spatial gradients, one can solve the energy constraint as well as the evolution equations by invoking a transformation to new canonical variables. The Hamilton-Jacobi equation is separable and complete solutions are given for gravitational radiation and multiple scalar fields interacting through an exponential potential. Although the time parameter is arbitrary, the natural choice is the determinant of the three-metric. The momentum constraint may be simply expressed in terms of the new canonical variables which define the spatial coordinates. The long-wavelength analysis is essential for a proper formulation of stochastic inflation which enables one to model non-Gaussian primordial fluctuations for structure formation.

  7. Critical phenomena in the aspherical gravitational collapse of radiation fluids

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas W.; Montero, Pedro J.

    2015-12-01

    We study critical phenomena in the gravitational collapse of a radiation fluid. We perform numerical simulations in both spherical symmetry and axisymmetry, and observe critical scaling in both supercritical evolutions, which lead to the formation of a black hole, and subcritical evolutions, in which case the fluid disperses to infinity and leaves behind flat space. We identify the critical solution in spherically symmetric collapse, find evidence for its universality, and study the approach to this critical solution in the absence of spherical symmetry. For the cases that we consider, aspherical deviations from the spherically symmetric critical solution decay in damped oscillations in a manner that is consistent with the behavior found by Gundlach in perturbative calculations. Our simulations are performed with an unconstrained evolution code, implemented in spherical polar coordinates, and adopting "moving-puncture" coordinates.

  8. Electrodynamics of Radiating Charges in a Gravitational Field

    NASA Astrophysics Data System (ADS)

    Grøn, Øyvind

    The electrodynamics of a radiating charge and its electromagnetic field based upon the Lorentz-Abraham-Dirac (LAD) equation are discussed both with reference to an inertial reference frame and a uniformly accelerated reference frame. It is demonstrated that energy and momentum are conserved during runaway motion of a radiating charge and during free fall of a charge in a field of gravity. This does not mean that runaway motion is really happening. It may be an unphysical solution of the LAD equation of motion of a radiating charge due to the unrealistic point particle model of the charge upon which it is based. However it demonstrates the consistency of classical electrodynamics, including the LAD equation which is deduced from Maxwell's equations and the principle of energy-momentum conservation applied to a radiating charge and its electromagnetic field. The decisive role of the Schott energy in this connection is made clear and an answer is given to the question: What sort of energy is the Schott energy and where is it found? It is the part of the electromagnetic field energy which is proportional to (minus) the scalar product of the velocity and acceleration of a moving accelerated charged particle. In the case of the electromagnetic field of a point charge it is localized at the particle. This energy is negative if the acceleration is in the same direction as the velocity and positive if it is in the opposite direction. During runaway motion the Schott energy becomes more and more negative and in the case of a charged particle with finite extension, it is localized in a region with increasing extension surrounding the particle. The Schott energy provides the radiated energy of a freely falling charge. Also it is pointed out that a proton and a neutron fall with the same acceleration in a uniform gravitational field, although the proton radiates and the neutron does not. It is made clear that the question as to whether or not a charge radiates has a reference

  9. Gravitational radiation as radiation same level of electromagnetic and its generation in pulsed high-current discharge. Theory and experiment.

    NASA Astrophysics Data System (ADS)

    Fisenko, Stanislav; Fisenko, Igor

    2015-04-01

    The notion of gravitational radiation as a radiation of the same level as the electromagnetic radiation is based on theoretically proved and experimentally confirmed fact of existence of stationary states of an electron in its gravitational field characterized by the gravitational constant K = 1042 G (G is the Newtonian gravitational constant) and unrecoverable space-time curvature Λ. This paper gives an overview of the authors' works, which set out the relevant results. Additionally, data is provided on the broadening of the spectra characteristic radiation. The data show that this broadening can be explained only by the presence of excited states of electrons in their gravitational field. What is more, the interpretation of the new line of X-ray emission spectrum according to the results of observation of MOS-camera of XMM-Newton observatory is of interest. The given work contributes into further elaboration of the findings considering their application to dense high-temperature plasma of multiple-charge ions. This is due to quantitative character of electron gravitational radiation spectrum such that amplification of gravitational radiation may take place only in multiple-charge ion high-temperature plasma.

  10. Bondi-Sachs energy-momentum and the energy of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.

    2015-07-01

    We construct the gravitational energy-momentum of the Bondi-Sachs space-time, in the famework of the teleparallel equivalent of general relativity (TEGR). The Bondi-Sachs line element describes gravitational radiation in the asymptotic region of the space-time, and is determined by the mass aspect and by two functions, c and d, that yield the news functions, which are interpreted as the radiating degrees of freedom of the gravitational field. The standard expression for the Bondi-Sachs energy-momentum is constructed in terms of the mass aspect only. The expression that we obtain in the context of the TEGR is given by the standard expression, which represents the gravitational energy of the source, plus a new term that is determined by the two functions c and d. We interpret this new term as the energy of gravitational radiation.

  11. The quantum gravitational back-reaction on inflation

    SciTech Connect

    Tsamis, N.C. |; Woodard, R.P.

    1995-02-01

    We describe our recent calculation of the dominant late time behavior of the expectation value of the metric at two loops in a locally de Sitter background on the manifold T{sup 3} {times} {Re}. If correct, our result proves that quantum gravitational effects slow the rate of inflation by an amount which becomes non-perturbatively large at late times. 11 refs., 9 figs., 11 tabs.

  12. [The use of a detector of the extremely weak radiation as a variometer of gravitation field].

    PubMed

    Gorshkov, E S; Bondarenko, E G; Shapovalov, S N; Sokolovskiĭ, V V; Troshichev, O A

    2001-01-01

    It was shown that the detector of extremely weak radiation with selectively increased sensitivity to the nonelectromagnetic, including the gravitational component of the spectrum of active physical fields can be used as the basis for constructing a variometer of gravitational field of a new type.

  13. Gravitational self-force from radiation-gauge metric perturbations

    NASA Astrophysics Data System (ADS)

    Pound, Adam; Merlin, Cesar; Barack, Leor

    2014-01-01

    Calculations of the gravitational self-force (GSF) on a point mass in curved spacetime require as input the metric perturbation in a sufficiently regular gauge. A basic challenge in the program to compute the GSF for orbits around a Kerr black hole is that the standard procedure for reconstructing the metric perturbation is formulated in a class of “radiation” gauges, in which the particle singularity is nonisotropic and extends away from the particle’s location. Here we present two practical schemes for calculating the GSF using a radiation-gauge reconstructed metric as input. The schemes are based on a detailed analysis of the local structure of the particle singularity in the radiation gauges. We show that three types of radiation gauge exist: two containing a radial stringlike singularity emanating from the particle, either in one direction (“half-string” gauges) or both directions (“full-string” gauges); and a third type containing no strings but with a jump discontinuity (and possibly a delta function) across a surface intersecting the particle. Based on a flat-space example, we argue that the standard mode-by-mode reconstruction procedure yields the “regular half” of a half-string solution, or (equivalently) either of the regular halves of a no-string solution. For the half-string case, we formulate the GSF in a locally deformed radiation gauge that removes the string singularity near the particle. We derive a mode-sum formula for the GSF in this gauge, which is analogous to the standard Lorenz-gauge formula but requires a correction to the values of the regularization parameters. For the no-string case, we formulate the GSF directly, without a local deformation, and we derive a mode-sum formula that requires no correction to the regularization parameters but involves a certain averaging procedure. We explain the consistency of our results with Gralla’s invariance theorem for the regularization parameters, and we discuss the

  14. Quantum Radiation Reaction: From Interference to Incoherence.

    PubMed

    Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger

    2016-01-29

    We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.

  15. Search for correlations between the University of Maryland and the University of Rome gravitational radiation antennas

    SciTech Connect

    Ferrari, V.; Pizzella, G.; Lee, M.; Weber, J.

    1982-05-15

    Results are presented for analyses of the outputs of gravitational radiation antennas in Rome and in Maryland during July 1978. These data give evidence for an external background exciting both antennas.

  16. Gravitational radiation from ultra high energy cosmic rays in models with large extra dimensions

    NASA Astrophysics Data System (ADS)

    Koch, Ben; Drescher, Hans-Joachim; Bleicher, Marcus

    2006-06-01

    The effects of classical gravitational radiation in models with large extra dimensions are investigated for ultra high energy cosmic rays (CRs). The cross sections are implemented into a simulation package (SENECA) for high energy hadron induced CR air showers. We predict that gravitational radiation from quasi-elastic scattering could be observed at incident CR energies above 10 9 GeV for a setting with more than two extra dimensions. It is further shown that this gravitational energy loss can alter the energy reconstruction for CR energies ECR ⩾ 5 × 10 9 GeV.

  17. Accretion-driven gravitational radiation from nonrotating compact objects: Infalling quadrupolar shells

    NASA Astrophysics Data System (ADS)

    Nagar, Alessandro; Díaz, Guillermo; Pons, José A.; Font, José A.

    2004-06-01

    This paper reports results from numerical simulations of the gravitational radiation emitted from non-rotating compact objects (both neutron stars and Schwarzschild black holes) as a result of the accretion of matter. We adopt a hybrid procedure in which we evolve numerically, and assuming axisymmetry, the linearized equations describing metric and fluid perturbations coupled to a fully nonlinear hydrodynamics code that calculates the motion of the accreting matter. The initial matter distribution, which is initially at rest, is shaped in the form of extended quadrupolar shells of either dust or obeying a perfect fluid equation of state. Self-gravity of the accreting layers of fluid is neglected, as well as radiation reaction effects. We use this idealized setup in order to understand the qualitative features appearing in the energy spectrum of the gravitational wave emission from compact stars or black holes, subject to accretion processes involving extended objects. A comparison for the case of point-like particles falling radially onto black holes is also provided. Our results show that, when the central object is a black hole, the spectrum is far from having only one clear, monochromatic peak at the frequency of the fundamental quasi-normal mode. On the contrary, it shows a complex pattern, with distinctive interference fringes produced by the interaction between the infalling matter and the underlying perturbed spacetime, in close agreement with results for point-like particles. Remarkably, most of the energy is emitted at frequencies lower than that of the fundamental mode of the black hole. Similar results are obtained for extended shells accreting onto neutron stars, but in this case the contribution of the stellar fundamental mode stands clearly in the energy spectrum. Our analysis illustrates that the gravitational wave signal driven by accretion onto compact objects is influenced more by the details and dynamics of the process, and the external

  18. Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach

    NASA Astrophysics Data System (ADS)

    Lousto, C. O.

    2005-08-01

    After the work of Regge, Wheeler, Zerilli, Teukolsky and others in the 1970s, it became possible to accurately compute the gravitational radiation generated by the collision of two black holes (in the extreme-mass limit). It was soon evident that, to first perturbative order, a particle in a circular orbit would continue orbiting forever if the radiative corrections to the particle motion that make the orbit decay were not taken into account. When I entered the field in 1996, a quick search of the literature showed that this problem was still unsolved. A straightforward computation leads to infinities produced by the representation of the particle in terms of Dirac delta functions. Since 1938, when Dirac had solved the equivalent problem in electromagnetic theory, nobody had succeeded in regularizing this in a self-consistent manner. Fortunately, the solution was arrived at much sooner than we expected. In 1997, Mino, Sasaki and Tanaka, and Quinn and Wald published the equations of motion that a particle obeys after self-force corrections. This essentially gave birth to the field of radiation reaction/self-force computations. The aim of this programme is first to obtain the corrections to the geodesic motion of a particle in the background of a single black hole, and then to use this corrected trajectory to compute second-order perturbations of the gravitational field. This will give us the energy-momentum radiated to infinity and into the hole, as well as the waveforms that we will eventually be able to measure with ground- or space-based gravitational wave detectors. As mentioned, the programme as a whole will give us waveforms accurate to second perturbative order in the mass ratio of the black holes, i.e. Script O[(m/M)2]. This will be a good approximation for galactic binary black holes of the order of a few solar masses, in the right frequency range (few hundred Hertz) to be detected by ground-based gravitational wave interferometers such as LIGO and VIRGO

  19. Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach

    NASA Astrophysics Data System (ADS)

    Lousto, C. O.

    2005-08-01

    After the work of Regge, Wheeler, Zerilli, Teukolsky and others in the 1970s, it became possible to accurately compute the gravitational radiation generated by the collision of two black holes (in the extreme-mass limit). It was soon evident that, to first perturbative order, a particle in a circular orbit would continue orbiting forever if the radiative corrections to the particle motion that make the orbit decay were not taken into account. When I entered the field in 1996, a quick search of the literature showed that this problem was still unsolved. A straightforward computation leads to infinities produced by the representation of the particle in terms of Dirac delta functions. Since 1938, when Dirac had solved the equivalent problem in electromagnetic theory, nobody had succeeded in regularizing this in a self-consistent manner. Fortunately, the solution was arrived at much sooner than we expected. In 1997, Mino, Sasaki and Tanaka, and Quinn and Wald published the equations of motion that a particle obeys after self-force corrections. This essentially gave birth to the field of radiation reaction/self-force computations. The aim of this programme is first to obtain the corrections to the geodesic motion of a particle in the background of a single black hole, and then to use this corrected trajectory to compute second-order perturbations of the gravitational field. This will give us the energy-momentum radiated to infinity and into the hole, as well as the waveforms that we will eventually be able to measure with ground- or space-based gravitational wave detectors. As mentioned, the programme as a whole will give us waveforms accurate to second perturbative order in the mass ratio of the black holes, i.e. Script O[(m/M)2]. This will be a good approximation for galactic binary black holes of the order of a few solar masses, in the right frequency range (few hundred Hertz) to be detected by ground-based gravitational wave interferometers such as LIGO and VIRGO

  20. On gravitational radiation and the energy flux of matter

    NASA Astrophysics Data System (ADS)

    Maluf, J. W.; Faria, F. F.

    2004-10-01

    A suitable derivative of Einstein's equations in the framework of the teleparallel equivalent of general relativity (TEGR) yields a continuity equation for the gravitational energy-momentum. In particular, the time derivative of the total gravitational energy is given by the sum of the total fluxes of gravitational and matter fields energy. We carry out a detailed analysis of the continuity equation in the context of Bondi and Vaidya's metrics. In the former space-time the flux of gravitational energy is given by the well known expression in terms of the square of the news function. It is known that the energy definition in the realm of the TEGR yields the ADM (Arnowitt-Deser-Misner) energy for appropriate boundary conditions. Here we show that the same energy definition also describes the Bondi energy. The analysis of the continuity equation in Vaidya's space-time shows that the variation of the total gravitational energy is determined by the energy flux of matter only.

  1. Spin-down of Pulsars, and Their Electromagnetic and Gravitational Wave Radiations

    NASA Astrophysics Data System (ADS)

    Yue-zhu, Zhang; Yan-yan, Fu; Yi-huan, Wei; Cheng-min, Zhang; Shao-hua, Yu; Yuan-yue, Pan; Yuan-qi, Guo; De-hua, Wang

    2016-04-01

    Pulsars posses extremely strong magnetic fields, and their magnetic axis does not coincide with their rotation axis, this causes the pulsars to emit electromagnetic radiations. Pulsars rely on their rotational energy to compensate for the energy loss caused by the electromagnetic radiation, which leads to the gradually decelerated spin of pulsars. According to the theoretical deduction, we have calculated the initial period of the Crab Nebula pulsar, and derived the period evolution of the pulsar at any time in the future under the effect of the electromagnetic radiation. Considered the possible existence of quadrupole moment in the mass distribution of a pulsar, the gravitational wave radiation will also make the pulsar spin down, hence the variation of spin period of the Crab pulsar under the effect of gravitational wave radiation is further analyzed. Finally, combining the two kinds of radiation mechanisms, the evolution of spin period of the Crab pulsar under the joint action of these two kinds of radiation mechanisms is analyzed.

  2. Cosmic gravitational background radiation as a basis of Karolyhazy hazy space-time

    NASA Astrophysics Data System (ADS)

    Ma, Guang-Wen

    1998-03-01

    It is argued that the Karolyhazy hazy space-time should be related with the cosmic gravitational background radiation. A scheme to establish their relation is proposed. The Diosi-Lukacs type electromagnetic radiation is re-calculated. The result is smaller by 57 orders of magnitude than that of Diosi and Lukacs.

  3. Study of gravitational radiation from cosmic domain walls

    SciTech Connect

    Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: saikawa@icrr.u-tokyo.ac.jp

    2011-09-01

    In this paper, following the previous study, we evaluate the spectrum of gravitational wave background generated by domain walls which are produced if some discrete symmetry is spontaneously broken in the early universe. We apply two methods to calculate the gravitational wave spectrum: One is to calculate the gravitational wave spectrum directly from numerical simulations, and another is to calculate it indirectly by estimating the unequal time anisotropic stress power spectrum of the scalar field. Both analysises indicate that the slope of the spectrum changes at two characteristic frequencies corresponding to the Hubble radius at the decay of domain walls and the width of domain walls, and that the spectrum between these two characteristic frequencies becomes flat or slightly red tilted. The second method enables us to evaluate the GW spectrum for the frequencies which cannot be resolved in the finite box lattice simulations, but relies on the assumptions for the unequal time correlations of the source.

  4. Stochasticity effects in quantum radiation reaction.

    PubMed

    Neitz, N; Di Piazza, A

    2013-08-01

    When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

  5. Astronomical polarization studies at radio and infrared wavelengths. Part 1: Gravitational deflection of polarized radiation

    NASA Technical Reports Server (NTRS)

    Dennison, B. K.

    1976-01-01

    The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.

  6. Core Collapse Supernovae Using CHIMERA: Gravitational Radiation from Non-Rotating Progenitors

    SciTech Connect

    Yakunin, Konstantin; Marronetti, Pedro; Mezzacappa, Anthony; Bruenn, S. W.; Lee, Ching-Tsai; Chertkow, Merek A; Hix, William Raphael; Blondin, J. M.; Lentz, Eric J; Messer, Bronson; Yoshida, S.

    2011-01-01

    The CHIMERA code is a multi-dimensional multi-physics engine dedicated primarily to the simulation of core collapse supernova explosions. One of the most important aspects of these explosions is their capacity to produce gravitational radiation that is detectable by earth-based laser-interferometric gravitational wave observatories such as LIGO and VIRGO. We present here preliminary gravitational signatures of two-dimensional models with non-rotating progenitors. These simulations exhibit explosions, which are followed for more than half a second after stellar core bounce.

  7. Prospects for detection of gravitational radiation by simultaneous Doppler tracking of several spacecraft

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.; Wahlquist, H. D.

    1978-01-01

    This paper reports a calculation of the effect of gravitational radiation on the observed Doppler shift of a sinusoidal electromagnetic signal transmitted to, and coherently transponded from, distant spacecraft. It is found that the effect of plane gravitational waves on such observations is not intuitively immediate, and in fact depends sensitively on the spacecraft direction, which suggests the possibility of detecting such plane waves by simultaneous Doppler tracking of several spacecraft. The need for broad band gravitational wave observations, the required stabilities of time keeping standards, and astrophysical sources expected in the Very Low Frequency band are briefly discussed.

  8. Stabilization of radiation reaction with vacuum polarization

    NASA Astrophysics Data System (ADS)

    Seto, Keita; Zhang, Sen; Koga, James; Nagatomo, Hideo; Nakai, Mitsuo; Mima, Kunioki

    2014-04-01

    From the development of the electron theory by H. A. Lorentz in 1906, many authors have tried to reformulate this model. P. A. M. Dirac derived the relativistic-classical electron model in 1938, which is now called the Lorentz-Abraham-Dirac model. But this model has the big difficulty of the runaway solution. Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. For simulations in this research field, it is desirable to stabilize this model of the radiation reaction. In this paper, we will discuss this ability for radiation reaction with the inclusion of vacuum polarization.

  9. Why gravitational contraction must be accompanied by emission of radiation in both Newtonian and Einstein gravity

    NASA Astrophysics Data System (ADS)

    Mitra, Abhas

    2006-07-01

    By using virial theorem, Helmholtz and Kelvin showed that the contraction of a bound self-gravitating system must be accompanied by release of radiation energy irrespective of the details of the contraction process. This happens because the total Newtonian energy of the system EN (and not just the Newtonian gravitational potential energy EgN) decreases for such contraction. In the era of general relativity (GR) too, it is justifiably believed that gravitational contraction must release radiation energy. However no GR version of (Newtonian) Helmholtz- Kelvin (HK) process has ever been derived. Here, for the first time, we derive the GR version of the appropriate virial theorem and Helmholtz Kelvin mechanism by simply equating the well known expressions for the gravitational mass and the inertial mass of a spherically symmetric static fluid. Simultaneously, we show that the GR counterparts of global “internal energy”, “gravitational potential energy” and “binding energy” are actually different from what have been used so far. Existence of this GR HK process asserts that, in Einstein gravity too, gravitational collapse must be accompanied by emission of radiation irrespective of the details of the collapse process.

  10. Detecting a Non-Gaussian Stochastic Background of Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Drasco, Steve; Flanagan, Éanna É.

    2002-12-01

    We derive a detection method for a stochastic background of gravitational waves produced by events where the ratio of the average time between events to the average duration of an event is large. Such a signal would sound something like popcorn popping. Our derivation is based on the somewhat unrealistic assumption that the duration of an event is smaller than the detector time resolution.

  11. Constraints on general second-order scalar-tensor models from gravitational Cherenkov radiation

    SciTech Connect

    Kimura, Rampei; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2012-07-01

    We demonstrate that the general second-order scalar-tensor theories, which have attracted attention as possible modified gravity models to explain the late time cosmic acceleration, could be strongly constrained from the argument of the gravitational Cherenkov radiation. To this end, we consider the purely kinetic coupled gravity and the extended galileon model on a cosmological background. In these models, the propagation speed of tensor mode could be less than the speed of light, which puts very strong constraints from the gravitational Cherenkov radiation.

  12. Gravitational radiation from neutron stars deformed by crustal Hall drift

    NASA Astrophysics Data System (ADS)

    Suvorov, A. G.; Mastrano, A.; Geppert, U.

    2016-07-01

    A precondition for the radio emission of pulsars is the existence of strong, small-scale magnetic field structures (`magnetic spots') in the polar cap region. Their creation can proceed via crustal Hall drift out of two qualitatively and quantitatively different initial magnetic field configurations: a field confined completely to the crust and another which penetrates the whole star. The aim of this study is to explore whether these magnetic structures in the crust can deform the star sufficiently to make it an observable source of gravitational waves. We model the evolution of these field configurations, which can develop, within ˜104-105 yr, magnetic spots with local surface field strengths ˜1014 G maintained over ≳106 yr. Deformations caused by the magnetic forces are calculated. We show that, under favourable initial conditions, a star undergoing crustal Hall drift can have ellipticity ɛ ˜ 10-6, even with sub-magnetar polar field strengths, after ˜105 yr. A pulsar rotating at ˜102 Hz with such ɛ is a promising gravitational wave source candidate. Since such large deformations can be caused only by a particular magnetic field configuration that penetrates the whole star and whose maximum magnetic energy is concentrated in the outer core region, gravitational wave emission observed from radio pulsars can thus inform us about the internal field structures of young neutron stars.

  13. Gravitational radiation from binary systems in alternative metric theories of gravity - Dipole radiation and the binary pulsar

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1977-01-01

    The generation of gravitational radiation in several currently viable metric theories of gravitation (Brans-Dicke, Rosen, Ni, and Lightman-Lee) is analyzed, and it is shown that these theories predict the emission of dipole gravitational radiation from systems containing gravitationally bound objects. In the binary system PSR 1913 + 16, this radiation results in a secular change in the orbital period of the system with a nominal magnitude of 3 parts in 100,000 per year. The size of the effect is proportional to the reduced mass of the system, to the square of the difference in (self-gravitational energy)/(mass) between the two components of the system, and to a parameter, xi, whose value varies from theory to theory. In general relativity xi equals 0, in Rosen's (1973) theory xi equals -20/3, and in Ni's (1973) theory xi equals -400/3. The current upper limit on such a secular period change is one part in 1 million per year. It is shown that further observations of the binary system that tighten this limit and that establish the masses of the components and the identity of the companion may provide a crucial test of otherwise viable alternatives to general relativity.

  14. Classical helium atom with radiation reaction

    SciTech Connect

    Camelio, G.; Carati, A.; Galgani, L.

    2012-06-15

    We study a classical model of helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models, most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero-dipole manifold that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time-evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.

  15. Classical helium atom with radiation reaction.

    PubMed

    Camelio, G; Carati, A; Galgani, L

    2012-06-01

    We study a classical model of helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models, most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero-dipole manifold that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time-evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.

  16. Center of mass and spin for isolated sources of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Kozameh, Carlos N.; Quiroga, Gonzalo D.

    2016-03-01

    We define the center of mass and spin of an isolated system in general relativity. The resulting relationships between these variables and the total linear and angular momentum of the gravitational system are remarkably similar to their Newtonian counterparts, though only variables at the null boundary of an asymptotically flat spacetime are used for their definition. We also derive equations of motion linking their time evolution to the emitted gravitational radiation. The results are then compared to other approaches. In particular, one obtains unexpected similarities as well as some differences with results obtained in the post-Newtonian literature. These equations of motion should be useful when describing the radiation emitted by compact sources, such as coalescing binaries capable of producing gravitational kicks, supernovas, or scattering of compact objects.

  17. The space microwave interferometer and the search for cosmic background gravitational wave radiation

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel

    1989-01-01

    Present and planned investigations which use interplanetary spacecraft for gravitational wave searches are severely limited in their detection capability. This limitation has to do both with the Earth-based tracking procedures used and with the configuration of the experiments themselves. It is suggested that a much improved experiment can now be made using a multiarm interferometer designed with current operating elements. An important source of gravitational wave radiation, the cosmic background, may well be within reach of detection with these procedures. It is proposed to make a number of experimental steps that can now be carried out using TDRSS spacecraft and would conclude in the establishment of an operating multiarm microwave interferometer. This interferometer is projected to have a sensitivity to cosmic background gravitational wave radiation with an energy of less than 10(exp -4) cosmic closure density and to periodic waves generating spatial strain approaching 10(exp -19) in the range 0.1 to 0.001 Hz.

  18. Gravitational radiation from compact binaries in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Lang, R. N.

    2015-05-01

    General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO and eLISA will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present progress in the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar- tensor theories. The waveforms are constructed using a standard GR method known as “direct integration of the relaxed Einstein equations,” appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity. In another, mixed black hole- neutron star systems, all differences from GR can be characterized by only a single parameter.

  19. Gravitational radiation from compact binaries in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Lang, Ryan

    2014-03-01

    General relativity (GR) has been extensively tested in the solar system and in binary pulsars, but never in the strong-field, dynamical regime. Soon, gravitational-wave (GW) detectors like Advanced LIGO will be able to probe this regime by measuring GWs from inspiraling and merging compact binaries. One particularly interesting alternative to GR is scalar-tensor gravity. We present the calculation of second post-Newtonian (2PN) gravitational waveforms for inspiraling compact binaries in a general class of scalar-tensor theories. The waveforms are constructed using a standard GR method known as ``Direct Integration of the Relaxed Einstein equations,'' appropriately adapted to the scalar-tensor case. We find that differences from general relativity can be characterized by a reasonably small number of parameters. Among the differences are new hereditary terms which depend on the past history of the source. In one special case, mixed black hole-neutron star systems, all differences from GR can be characterized by only a single parameter. In another, binary black hole systems, we find that the waveform is indistinguishable from that of general relativity.

  20. Naked singularities in non-self-similar gravitational collapse of radiation shells

    SciTech Connect

    Joshi, P.S.; Dwivedi, I.H. )

    1992-03-15

    Non-self-similar gravitational collapse of imploding radiation is shown to give rise to a strong curvature naked singularity. The conditions are specified for the singularity to be globally naked and the strength of the same is examined along nonspacelike curves and along all the families of nonspacelike geodesics terminating at the singularity in the past.

  1. Bianchi type-I magnetized radiating cosmological model in self creation theory of gravitation

    NASA Astrophysics Data System (ADS)

    Jain, Vimal Chand; Jain, Nikhil

    2015-06-01

    We have investigated Bianchi type-I cosmological model in the presence of magnetized field with disordered radiation in Barber's second self-creation theory of gravitation. To obtain exact solution we assume that the component of shear tensor is proportional to expansion ( θ). Some geometrical and physical properties of the model have also been discussed.

  2. Energy conservation for point particles undergoing radiation reaction

    NASA Astrophysics Data System (ADS)

    Quinn, Theodore C.; Wald, Robert M.

    1999-09-01

    For smooth solutions to Maxwell's equations sourced by a smooth charge-current distribution ja in stationary, asymptotically flat spacetimes, one can prove an energy conservation theorem which asserts the vanishing of the sum of (i) the difference between the final and initial electromagnetic self-energy of the charge distribution, (ii) the net electromagnetic energy radiated to infinity (and/or into a black hole or white hole), and (iii) the total work done by the electromagnetic field on the charge distribution via the Lorentz force. A similar conservation theorem can be proven for linearized gravitational fields off of a stationary, asymptotically flat background, with the second order Einstein tensor playing the role of an effective stress-energy tensor of the linearized field. In this paper, we prove the above theorems for smooth sources and then investigate the extent to which they continue to hold for point particle sources. The ``self-energy'' of point particles is ill defined, but in the electromagnetic case, we can consider situations where, initially and finally, the point charges are stationary and in the same spatial position, so that the self-energy terms should cancel. Under certain assumptions concerning the decay behavior of source-free solutions to Maxwell's equations, we prove the vanishing of the sum of the net energy radiated to infinity and the net work done on the particle by the DeWitt-Brehme radiation reaction force. As a byproduct of this analysis, we provide a definition of the ``renormalized self-energy'' of a stationary point charge in a stationary spacetime. We also obtain a similar conservation theorem for angular momentum in an axisymmetric spacetime. In the gravitational case, we argue that similar conservation results should hold for freely falling point masses whose orbits begin and end at infinity. This provides justification for the use of energy and angular momentum conservation to compute the decay of orbits due to radiation

  3. Gravitational Radiation of a Vibrating Physical String as a Model for the Gravitational Emission of an Astrophysical Plasma

    NASA Astrophysics Data System (ADS)

    Lewis, Ray A.; Modanese, Giovanni

    Vibrating media offer an important testing ground for reconciling conflicts between General Relativity, Quantum Mechanics and other branches of physics. For sources like a Weber bar, the standard covariant formalism for elastic bodies can be applied. The vibrating string, however, is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized energy-momentum tensor. Renormalization (in a classical sense) is necessary to take into account the effect of external constraints, which affect the emission considerably. Our computation also relaxes usual simplifying assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and absence of internal interference. In a further step towards unification, the method is then adapted to give the radiation field of a transversal Alfven wave in a rarefied astrophysical plasma, where the tension is produced by an external static magnetic field.

  4. Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order.

    PubMed

    Blanchet, Luc; Damour, Thibault; Esposito-Farèse, Gilles; Iyer, Bala R

    2004-08-27

    The gravitational radiation from point particle binaries is computed at the third post-Newtonian (3PN) approximation of general relativity. Three previously introduced ambiguity parameters, coming from the Hadamard self-field regularization of the 3PN source-type mass quadrupole moment, are consistently determined by means of dimensional regularization, and proved to have the values xi=-9871/9240, kappa=0, and zeta=-7/33. These results complete the derivation of the general relativistic prediction for compact binary inspiral up to 3.5PN order, and should be of use for searching and deciphering the signals in the current network of gravitational wave detectors.

  5. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    SciTech Connect

    Pokrovsky, Yu. E.

    2015-12-15

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  6. Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Yu. E.

    2015-12-01

    The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory "Dulkyn" which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.

  7. Gravitational radiation from a particle in bound orbit around a black hole; relativistic correction

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashok; Khanal, Udayaraj

    2016-05-01

    Gravitational radiation from a system of two body, one as test particle and other as black hole (we assume, mi is mass of the test particle and m 2 is mass of black hole in bound orbits (orbital eccentricities e < 1) and E 2 < 1; E is the energy, is calculated with relativistic correction using the method of inertia tensor and multipole formalism. Plots of power versus eccentricity of the bound orbit of first kind are presented, and average total power radiated as a function of eccentricity is plotted according to inertia tensor method. According to multipole formalism the power radiated in gravitational waves from an bound orbit is given by enhancement factor g(n,e) times the function of other parameters is plotted. The calculations apply for arbitrary eccentricity of the relative orbit, assuming orbital velocities are small.

  8. Radiative-condensation instability in gravitating strongly coupled dusty plasma with polarization force

    NASA Astrophysics Data System (ADS)

    Prajapati, R. P.; Bhakta, S.

    2015-06-01

    The radiative-condensation instability (RCI) in self-gravitating strongly coupled dusty plasma (SCDP) is investigated considering the effects of dust thermal velocity and polarization force on the massive dust particulates. In particular, the outer core of the dense neutron star which is supposed to be strongly coupled in nature with temperature T˜107 K and number density n˜1.3×1030 cm-3 is analyzed. The modified generalized hydrodynamic (GH) equations and electron temperature perturbation equation with radiative effects are solved using the linear perturbation method. In the classical hydrodynamic limit, the modified condition of Jeans instability owing to radiative condensation, polarization force and dust thermal velocity is obtained. In the kinetic limit, velocity of compressional mode also modifies the condition of Jeans instability. The dust thermal velocity and viscoelastic effects have stabilizing whereas polarization force and radiative cooling have destabilizing influence on the growth rate of the Jeans instability. The radiative effects stabilize the growth rate of unstable radiative modes. In isobaric mode (short wavelength), the basic condition of radiative instability is obtained which is unaffected due to the presence of polarization force and viscoelastic effects. The radiative cooling time in the outer core of neutron star is estimated and compared with the gravitational free fall time, and it is found that the cooling takes place too fast for self-gravity to be important.

  9. Radiation reaction for a massless charged particle

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.; Sharapov, A. A.

    2003-07-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  10. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine.

    PubMed

    Hellgren, Jenny M; Olofsson, Kjell; Sundberg, Björn

    2004-05-01

    Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway. PMID:15122024

  11. Radiation reaction in strong field QED

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Torgrimsson, Greger

    2013-10-01

    We derive radiation reaction from QED in a strong background field. We identify, in general, the diagrams and processes contributing to recoil effects in the average momentum of a scattered electron, using perturbation theory in the Furry picture: we work to lowest nontrivial order in α. For the explicit example of scattering in a plane wave background, we compare QED with classical electrodynamics in the limit ℏ → 0, finding agreement with the Lorentz-Abraham-Dirac and Landau-Lifshitz equations, and with Larmor's formula. The first quantum corrections are also presented.

  12. Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

    NASA Astrophysics Data System (ADS)

    Calderón Bustillo, Juan; Husa, Sascha; Sintes, Alicia M.; Pürrer, Michael

    2016-04-01

    Current template-based gravitational wave searches for compact binary coalescences use waveform models that omit the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar (ℓ,|m |)=(2 ,2 ) modes. We study the effect of such omission for the case of aligned-spin compact binary coalescence searches for equal-spin (and nonspinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its zero-detuned high-energy power version, which we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a nonspinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 reduced order model waveform family, which only considers quadrupolar modes, toward hybrid post-Newtonian/numerical relativity waveforms which contain higher order modes. We find that for all LIGO versions losses of more than 10% of events occur in the case of AdvLIGO for mass ratio q ≥6 and total mass M ≥100 M⊙ due to the omission of higher modes, this region of the parameter space being larger for eaLIGO and iLIGO. Moreover, while the maximum event loss observed over the explored parameter space for AdvLIGO is of 15% of events, for iLIGO and eaLIGO, this increases up to (39,23)%. We find that omission of higher modes leads to observation-averaged systematic parameter biases toward lower spin, total mass, and chirp mass. For completeness, we perform a preliminar, nonexhaustive comparison of systematic biases to statistical errors. We find that, for a given signal-to-noise ratio, systematic biases dominate over statistical errors at much lower total mass for eaLIGO than for AdvLIGO.

  13. Radiation-induced reactions in polymer films

    NASA Astrophysics Data System (ADS)

    Biscoglio, Michael Benedict

    Since the 1950's, there has been a considerable interest in the effects of ionizing radiation on the physical properties of polymer systems. Radiation induced chemical changes that were found to be helpful in producing specialty polymers, but also potentially harmful by degrading the physical performance of the material. Therefore, solute molecules, which act as excited state quenchers, and free radical scavengers, have been incorporated into the polymers in order to regulate the crosslinking, scission and desaturation reactions. This work is focused on using spectroscopic techniques to characterize the physical properties of polymeric media and the reactions occurring within them following pulsed radiolysis. This is done primarily by using arene doped polymer films which have highly absorbing excited states and radical ions that are easily monitored by transient studies. The probes are used to characterize the polymeric microenvironment, to monitor reaction rates, and to interfere in the radical reactions. Photophysical and photochemical characterization of partially crystalline polyethylene complements data previously obtained by conventional physical techniques for polymer characterization. Probe molecules are excluded from crystalline zones and distributed in a networked structure of amorphous zones. Upon high energy radiolysis, it is found that polyolefin systems efficiently donate all radical ions and excited states to the solute molecules, even when the energy is absorbed within the polymer crystalline zones. Studies of the subsequent reactions of the solute excited states and radical ions reveal information about their long term effectiveness as protectants. It is found that highly excited states formed by the recombination of solute radical ions are energetic enough to cause dissociation of halo-arenes. Also, arenes are found to become attached to the polymer chain through a polymer-aryl radical intermediate. These intermediates have been isolated and

  14. Modeling the Spin Equilibrium of Neutron Stars in LMXBs Without Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Andersson, N.; Glampedakis, K.; Haskell, B.; Watts, A. L.

    2004-01-01

    In this paper we discuss the spin-equilibrium of accreting neutron stars in LMXBs. We demonstrate that, when combined with a naive spin-up torque, the observed data leads to inferred magnetic fields which are at variance with those of galactic millisecond radiopulsars. This indicates the need for either additional spin-down torques (eg. gravitational radiation) or an improved accretion model. We show that a simple consistent accretion model can be arrived at by accounting for radiation pressure in rapidly accreting systems (above a few percent of the Eddington accretion rate). In our model the inner disk region is thick and significantly sub-Keplerian, and the estimated equilibrium periods are such that the LMXB neutron stars have properties that accord well with the galactic millisecond radiopulsar sample. The implications for future gravitational-wave observations are also discussed briefly.

  15. Radiative degrees of freedom of the gravitational field in exact general relativity

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    1981-12-01

    The radiative degrees of freedom of the gravitational field are isolated by analyzing the structure available at null infinity, JIt is shown thay they are coded in certain equivalence classes {D} of connections; all information about gravitational radiation can be extracted from the curvature tensors of these connections directly on J without any reference to the interior of space-time. The space of classical vacua—i.e., of {D} with trivial curvature—is analyzed. It is shown that the quotient ST/T of the BMS supertranslation group by its translation subgroup acts simply and transitively on this space. The available structure is compared with that of gauge theories. Since the entire discussion can be carried out onJ without any reference to the interior, it suggests a new approach to quantum gravity. This approach will be presented in detail in a subsequent paper.

  16. Relativistic astrophysics. [studies of gravitational radiation in asymptotic de sitter space and post Newtonian approximation

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.

    1975-01-01

    The coordinate independence of gravitational radiation and the parameterized post-Newtonian approximation from which it is extended are described. The general consistency of the field equations with Bianchi identities, gauge conditions, and the Newtonian limit of the perfect fluid equations of hydrodynamics are studied. A technique of modification is indicated for application to vector-metric or double metric theories, as well as to scalar-tensor theories.

  17. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    PubMed

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  18. Reducing spurious gravitational radiation in binary-black-hole simulations by using conformally curved initial data

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2009-06-01

    At early times in numerical evolutions of binary black holes, current simulations contain an initial burst of spurious gravitational radiation (also called 'junk radiation') which is not astrophysically realistic. The spurious radiation is a consequence of how the binary-black-hole initial data are constructed: the initial data are typically assumed to be conformally flat. In this paper, I adopt a curved conformal metric that is a superposition of two boosted, non-spinning black holes that are approximately 15 orbits from merger. I compare junk radiation of the superposed-boosted-Schwarzschild (SBS) initial data with the junk of corresponding conformally flat, maximally sliced (CFMS) initial data. The SBS junk is smaller in amplitude than the CFMS junk, with the junk's leading-order spectral modes typically being reduced by a factor of order 2 or more.

  19. On the gravitational field of a radiating, isothermal perfect gas cloud

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    2016-04-01

    The paper considers a static isotropic self-gravitating perfect gas in the presence of thermal radiation. The gravitational field is specified in terms of the radiation and gas pressures. Assuming that the thermodynamic internal energy is small compared with relativistic rest energy, it is shown that the gas pressure satisfies the Lane-Emden equation; the assumption of dominant intrinsic relativistic rest energy is satisfied by the hottest stars. Six-solutions of the Lane-Enden equation are obtained together with the corresponding gravitational fields. The basis for comparison is the singular solution I decaying like the inverse square of the radius, that is the leading term of the asymptotic solution V. Two semi-linear solutions are obtained using as variables nonlinear functions of the gas pressure, leading to nonlinear second-order differential equations that can be linearized; one solution II holds for small radius and leads to zero, finite or infinite central pressure, and the other solution III holds asymptomatically and exhibits pressure oscillations. The singular solution I for large radius is matched to a power series solution IV for small radius leading to a solution valid for all radii. The asymptotic solutions III and V: (i) coincide in their common domain of validity; (ii) can be truncated with good accuracy leading to the solution VI.

  20. Gravitational radiation by point particle eccentric binary systems in the linearised characteristic formulation of general relativity

    NASA Astrophysics Data System (ADS)

    Cedeño Montaña, C. E.; de Araujo, J. C. N.

    2016-04-01

    We study a binary system composed of point particles of unequal masses in eccentric orbits in the linear regime of the characteristic formulation of general relativity, generalising a previous study found in the literature in which a system of equal masses in circular orbits is considered. We also show that the boundary conditions on the time-like world tubes generated by the orbits of the particles can be extended beyond circular orbits. Concerning the power lost by the emission of gravitational waves, it is directly obtained from the Bondi's News function. It is worth stressing that our results are completely consistent, because we obtain the same result for the power derived by Peters and Mathews, in a different approach, in their seminal paper of 1963. In addition, the present study constitutes a powerful tool to construct extraction schemes in the characteristic formalism to obtain the gravitational radiation produced by binary systems during the inspiralling phase.

  1. Gravitational time delay in orthogonally polarized radiation passing by the sun

    NASA Technical Reports Server (NTRS)

    Harwit, M.

    1979-01-01

    Two parallel investigations into the degree, if any, to which orthogonally polarized rays are deflected differently on passing through the gravitational field of the sun were previously conducted. The first involved very long and intermediate length baseline radio interferometry. The second was initially based on observations of radiation transmitted by the Pioneer 6 spacecraft, on passing behind the sun in 1968. This work was extended by using Helios-A and Helios-B spacecraft. It was calculated that the differential deflection between orthogonally polarized components is less than one part in 10 to the 7th power of the total gravitational deflection, or less than about 10 to the -7th power arc sec, in total.

  2. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit

    SciTech Connect

    Han Wenbiao

    2010-10-15

    The gravitational waves and energy radiation from a spinning compact object with stellar mass in a circular orbit in the equatorial plane of a supermassive Kerr black hole are investigated in this paper. The effect of how the spin acts on energy and angular moment fluxes is discussed in detail. The calculation results indicate that the spin of a small body should be considered in waveform-template production for the upcoming gravitational wave detections. It is clear that when the direction of spin axes is the same as the orbitally angular momentum ('positive' spin), spin can decrease the energy fluxes which radiate to infinity. For antidirection spin ('negative'), the energy fluxes to infinity can be enlarged. And the relations between fluxes (both infinity and horizon) and spin look like quadratic functions. From frequency shift due to spin, we estimate the wave-phase accumulation during the inspiraling process of the particle. We find that the time of particle inspiral into the black hole is longer for positive spin and shorter for negative compared with the nonspinning particle. Especially, for extreme spin value, the energy radiation near the horizon of the extreme Kerr black hole is much more than that for the nonspinning one. And consequently, the maximum binging energy of the extreme spinning particle is much larger than that of the nonspinning particle.

  3. Gravitational radiations of generic isolated horizons and nonrotating dynamical horizons from asymptotic expansions

    SciTech Connect

    Wu, Y.-H.; Wang, C.-H.

    2009-09-15

    Instead of using a three-dimensional analysis on quasilocal horizons, we adopt a four-dimensional asymptotic expansion analysis to study the next order contributions from the nonlinearity of general relativity. From the similarity between null infinity and horizons, the proper reference frames are chosen from the compatible constant spinors for an observer to measure the energy-momentum and flux near quasilocal horizons. In particular, we focus on the similarity of Bondi-Sachs gravitational radiation for the quasilocal horizons and compare our results with Ashtekar-Kirshnan flux formula. The quasilocal energy-momentum and flux of generic isolated horizons and nonrotating dynamical horizons are discussed in this paper.

  4. Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie

    2016-06-01

    The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.

  5. Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics.

    PubMed

    Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie

    2016-06-17

    The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped. PMID:27367380

  6. Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics.

    PubMed

    Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie

    2016-06-17

    The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.

  7. Quantum radiation reaction effects in multiphoton Compton scattering.

    PubMed

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  8. Quantum Radiation Reaction Effects in Multiphoton Compton Scattering

    SciTech Connect

    Di Piazza, A.; Hatsagortsyan, K. Z.; Keitel, C. H.

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  9. Radiation pressure-driven galactic winds from self-gravitating discs

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Thompson, Todd A.

    2012-08-01

    We study large-scale winds driven from uniformly bright self-gravitating discs radiating near the Eddington limit. We show that the ratio of the radiation pressure force to the gravitational force increases with height above the disc surface to a maximum of twice the value of the ratio at the disc surface. Thus, uniformly bright self-gravitating discs radiating at the Eddington limit are fundamentally unstable to driving large-scale winds. These results contrast with the spherically symmetric case, where super-Eddington luminosities are required for wind formation. We apply this theory to galactic winds from rapidly star-forming galaxies that approach the Eddington limit for dust. For hydrodynamically coupled gas and dust, we find that the asymptotic velocity of the wind is v∞≃ 1.5 vrot and that v∞∝ SFR0.36, where vrot is the disc rotation velocity and SFR is the star formation rate, both of which are in agreement with observations. However, these results of the model neglect the gravitational potential of the surrounding dark matter halo and a (potentially massive) old passive stellar bulge or an extended disc, which act to decrease v∞. A more realistic treatment shows that the flow can either be unbound or bound, forming a 'fountain flow' with a typical turning time-scale of tturn˜ 0.1-1 Gyr, depending on the ratio of the mass and radius of the rapidly star-forming galactic disc relative to the total mass and break (or scale) radius of the dark matter halo or bulge. We provide quantitative criteria and scaling relations for assessing whether or not a rapidly star-forming galaxy of given properties can drive unbound flows via the mechanism described in this paper. Importantly, we note that because tturn is longer than the star formation time-scale (gas mass/star formation rate) in the rapidly star-forming galaxies and ultraluminous infrared galaxies for which our theory is most applicable, if rapidly star-forming galaxies are selected as such, they may

  10. CONVERGENCE STUDIES OF MASS TRANSPORT IN DISKS WITH GRAVITATIONAL INSTABILITIES. II. THE RADIATIVE COOLING CASE

    SciTech Connect

    Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Michael, Scott; McConnell, Caitlin R.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu E-mail: carmccon@indiana.edu

    2013-05-10

    We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an {alpha}-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective {alpha} arising from gravitational stresses is typically a few Multiplication-Sign 10{sup -3} and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.

  11. Collapsing objects with the same gravitational trajectory can radiate away different amount of energy

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Stojkovic, Dejan

    2016-07-01

    We study radiation emitted during the gravitational collapse from two different types of shells. We assume that one shell is made of dark matter and is completely transparent to the test scalar (for simplicity) field which belongs to the standard model, while the other shell is made of the standard model particles and is totally reflecting to the scalar field. These two shells have exactly the same mass, charge and angular momentum (though we set the charge and angular momentum to zero), and therefore follow the same geodesic trajectory. However, we demonstrate that they radiate away different amount of energy during the collapse. This difference can in principle be used by an asymptotic observer to reconstruct the physical properties of the initial collapsing object other than mass, charge and angular momentum. This result has implications for the information paradox and expands the list of the type of information which can be released from a collapsing object.

  12. Dynamic Universe Model predicts frequency shifting in electromagnetic radiation near gravitating masses

    NASA Astrophysics Data System (ADS)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    In this paper, Dynamic Universe Model studies the light rays and other electromagnetic radiation passing grazingly near any gravitating mass. This change in frequency will depend on relative direction of movement between mass and radiation. Change in frequency depends on relative direction between ray and the Gravitating mass. Here in this paper we will mathematically derive the results and show these predictions. Dynamic Universe Model uses a new type of Tensor. There are no differential or integral equations here. No singularities and body to body collisions in this model. Many papers were published in USA and CANADA. See Dynamic Universe Model Blog for further details and papers Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step Keywords: Dynamic Universe Model, Hubble Space telescope (HST), SITA simulations , singularity-free cosmology,

  13. Simulating radiative feedback and star cluster formation in GMCs - I. Dependence on gravitational boundedness

    NASA Astrophysics Data System (ADS)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.

    2016-09-01

    Radiative feedback is an important consequence of cluster formation in giant molecular clouds (GMCs) in which newly formed clusters heat and ionize their surrounding gas. The process of cluster formation, and the role of radiative feedback, has not been fully explored in different GMC environments. We present a suite of simulations which explore how the initial gravitational boundedness, and radiative feedback, affect cluster formation. We model the early evolution (<5 Myr) of turbulent, 106 M⊙ clouds with virial parameters ranging from 0.5 to 5. To model cluster formation, we use cluster sink particles, coupled to a raytracing scheme, and a custom subgrid model which populates a cluster via sampling an initial mass function (IMF) with an efficiency of 20 per cent per free-fall time. We find that radiative feedback only decreases the cluster particle formation efficiency by a few per cent. The initial virial parameter plays a much stronger role in limiting cluster formation, with a spread of cluster formation efficiencies of 37-71 per cent for the most unbound to the most bound model. The total number of clusters increases while the maximum mass cluster decreases with an increasing initial virial parameter, resulting in steeper mass distributions. The star formation rates in our cluster particles are initially consistent with observations but rise to higher values at late times. This suggests that radiative feedback alone is not responsible for dispersing a GMC over the first 5 Myr of cluster formation.

  14. Gravitation research

    NASA Technical Reports Server (NTRS)

    Weiss, R.; Muehlner, D. J.; Benford, R. L.; Owens, D. K.; Pierre, N. A.; Rosenbluh, M.

    1972-01-01

    Balloon measurements were made of the far infrared background radiation. The radiometer used and its calibration are discussed. An electromagnetically coupled broadband gravitational antenna is also considered. The proposed antenna design and noise sources in the antenna are reviewed. A comparison is made between interferometric broadband and resonant bar antennas for the detection of gravitational wave pulses.

  15. Reaction of runaway electron distributions to radiative processes

    NASA Astrophysics Data System (ADS)

    Stahl, Adam; Embréus, Ola; Hirvijoki, Eero; Pusztai, István; Decker, Joan; Newton, Sarah L.; Fülöp, Tünde

    2015-11-01

    The emission of electromagnetic radiation by a charged particle in accelerated motion is associated with a reduction in its energy, accounted for by the inclusion of a radiation reaction force in the kinetic equation. For runaway electrons in plasmas, the dominant radiative processes are the emission of bremsstrahlung and synchrotron radiation. In this contribution, we investigate the impact of the associated radiation reaction forces on the runaway electron distribution, using both analytical and numerical studies, and discuss the corresponding change to the runaway electron growth rate, which can be substantial. We also report on the formation of non-monotonic features in the runaway electron tail as a consequence of the more complicated momentum-space dynamics in the presence of radiation reaction.

  16. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  17. Classical radiation reaction in particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Vranic, M.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    Under the presence of ultra high intensity lasers or other intense electromagnetic fields the motion of particles in the ultrarelativistic regime can be severely affected by radiation reaction. The standard particle-in-cell (PIC) algorithms do not include radiation reaction effects. Even though this is a well known mechanism, there is not yet a definite algorithm nor a standard technique to include radiation reaction in PIC codes. We have compared several models for the calculation of the radiation reaction force, with the goal of implementing an algorithm for classical radiation reaction in the Osiris framework, a state-of-the-art PIC code. The results of the different models are compared with standard analytical results, and the relevance/advantages of each model are discussed. Numerical issues relevant to PIC codes such as resolution requirements, application of radiation reaction to macro particles and computational cost are also addressed. For parameters of interest where the classical description of the electron motion is applicable, all the models considered are shown to give comparable results. The Landau and Lifshitz reduced model is chosen for implementation as one of the candidates with the minimal overhead and no additional memory requirements.

  18. Measurement of a high electrical quality factor in a niobium resonator for a gravitational radiation detector

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Moody, M. V.; Richard, J.-P.

    1989-01-01

    The mechanical and electrical quality factors of a 10-g niobium resonator were measured at 4.4 K and were found to be 8.1 x 10 to the 6th, and 3.8 x 10 to the 6th, respectively. The value for the electrical quality factor is high enough for a system operating at 50 mK at a sensitivity level of one phonon. The resonator's low damping properties make it suitable for use as a transducer for a cryogenic three-mode gravitational radiation detector. A practical design is given for the mounting of the resonator on a 2400-kg aluminum-bar detector. Projections are made for the sensitivity of a 2400-kg bar instrumented as a three-mode system with this resonator inductively coupled to a SQUID.

  19. Primordial Gravitational Waves and Rescattered Electromagnetic Radiation in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Hoon; Trippe, Sascha

    2016-10-01

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.

  20. Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux

    NASA Astrophysics Data System (ADS)

    Handmer, Casey J.; Szilágyi, Béla; Winicour, Jeffrey

    2016-11-01

    We present a new approach for the Cauchy-characteristic extraction (CCE) of gravitational radiation strain, news function, and the flux of the energy–momentum, supermomentum and angular momentum associated with the Bondi–Metzner–Sachs asymptotic symmetries. In CCE, a characteristic evolution code takes numerical data on an inner worldtube supplied by a Cauchy evolution code, and propagates it outwards to obtain the space–time metric in a neighborhood of null infinity. The metric is first determined in a scrambled form in terms of coordinates determined by the Cauchy formalism. In prior treatments, the waveform is first extracted from this metric and then transformed into an asymptotic inertial coordinate system. This procedure provides the physically proper description of the waveform and the radiated energy but it does not generalize to determine the flux of angular momentum or supermomentum. Here we formulate and implement a new approach which transforms the full metric into an asymptotic inertial frame and provides a uniform treatment of all the radiation fluxes associated with the asymptotic symmetries. Computations are performed and calibrated using the spectral Einstein code.

  1. [Symptoms and treatment of radiation-induced reactions].

    PubMed

    Brzozowska, Anna; Idziak, Magdalena; Burdan, Franciszek; Mazurkiewicz, Maria

    2015-05-01

    Radiotherapy is one of the main methods of cancer treatment alone or in combination with chemotherapy. It is applied in about 60% of oncological patients. However, in spite of its clinical usefulness, radiotherapy is associated with a high risk of radiation-induced side effects, including dermatitis, enteritis, cystitis, pericarditis, pneumonia or depression, sexual function disorders, cardiomiopathy, coronary heart disease, anomalies of heart valves and development of second malignant tumor. The early diagnosis and proper treatment of radiation-induced side effects have a major impact on patients` quality of life and future prognosis. Radiation reactions can be categorized as acute or late, occurring before and after six months after radiotherapy. Among the most common acute reactions there were observed: skin rash, mucositis, nausea, vomiting, fever and radiation pneumonitis. Within reference to the late complications, we distinguish for instance fibrosis of organs, a radiation necrosis of bone, ulcers, fistulas, sexual dysfunction and the development of second malignant carcinomas. PMID:26039025

  2. Radiation reaction as a non-conservative force

    NASA Astrophysics Data System (ADS)

    Aashish, Sandeep; Haque, Asrarul

    2016-09-01

    We study a system of a finite size charged particle interacting with a radiation field by exploiting Hamilton’s principle for a non-conservative system recently introduced by Galley [1]. This formulation leads to the equation of motion of the charged particle that turns out to be the same as that obtained by Jackson [2]. We show that the radiation reaction stems from the non-conservative part of the effective action for a charged particle. We notice that a charge interacting with a radiation field modeled as a heat bath affords a way to justify that the radiation reaction is a non-conservative force. The topic is suitable for graduate courses on advanced electrodynamics and classical theory of fields.

  3. Energy straggling and radiation reaction for magnetic bremsstrahlung.

    NASA Technical Reports Server (NTRS)

    Shen, C. S.; White, D.

    1972-01-01

    Using the method of quantum electrodynamics, the energy distribution of particles and emitted photons is calculated for the case when increases in the average energy of the photon emitted by synchrotron radiation to values appreciable compared to the energy of the particle give rise to particle energy straggling and radiation spectrum broadening. The classical radiative reaction effects which may be tested in this type of experiment are outlined, and a detailed quantum mechanical calculation is presented. The significance of energy straggling in astrophysics is discussed briefly.

  4. Ion-Molecule Reactions in Gas Phase Radiation Chemistry.

    ERIC Educational Resources Information Center

    Willis, Clive

    1981-01-01

    Discusses some aspects of the radiation chemistry of gases, focusing on the ion-molecule and charge neutralization reactions which set study of the gas phase apart. Uses three examples that illustrate radiolysis, describing the radiolysis of (1) oxygen, (2) carbon dioxide, and (3) acetylene. (CS)

  5. Effects of radiation reaction in relativistic laser acceleration

    SciTech Connect

    Hadad, Y.; Labun, L.; Rafelski, J.; Elkina, N.; Klier, C.; Ruhl, H.

    2010-11-01

    The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.

  6. Tracking the radiation reaction energy when charged bodies accelerate

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2015-08-01

    We consider radiation reaction and energy conservation in classical electromagnetism. We first treat the well-known problem of energy accounting during radiation from a uniformly accelerating particle. This gives rise to the following paradox: when the self-force vanishes, the system providing the applied force does only enough work to give the particle its kinetic energy—so where does the energy that is eventually radiated away come from? We answer this question using a modern treatment of radiation reaction and self-force, as it appears in the expression due to Eliezer and Ford and O'Connell. We clarify the influence of the Schott force, and we find that the radiated power is 2 q 2 a 0 . f 0 / ( 3 m c 3 ) , which differs from Larmor's formula. Finally, we present a simple and highly visual argument that enables one to track the radiated energy without the need to appeal to the far field in the distant future (the "wave zone").

  7. Direct measurements of radiative capture reactions with DRAGON

    NASA Astrophysics Data System (ADS)

    Christian, Gregory

    2015-10-01

    Direct measurements of radiative proton and alpha capture reactions are crucial for understanding nucleosynthesis in a variety of astrophysical environments, including classical novae, supernovae, X-Ray bursts, and quiescent stellar burning. Often the most important reactions have very low cross sections or involve unstable targets, making laboratory measurements extremely challenging. The detector of recoils and gammas of nuclear reactions (DRAGON) at TRIUMF is a recoil mass separator designed to measure radiative capture reactions in inverse kinematics, with beam suppression factors as high as 1016. When combined with the intense radioactive beams available at the ISAC-I facility, DRAGON's capabilities are unique and world-leading. In this talk, I will give a brief technical overview of DRAGON before presenting results from recent experiments. Some highlights include the first-ever direct measurement of 38K(p , γ) 39Ca, a crucial reaction for determining the endpoint of nova nucleosynthesis, and measurements of 76Se(α , γ) 80Kr. The latter measurements determine the rate of the reverse reaction, 80Kr(γ , α) 76Se, an important waiting point in the synthesis of the p-nuclei. I will also discuss future (and ongoing) developments at DRAGON, including the commissioning of a new chamber for high-precision elastic scattering measurements and plans to determine the 330 keV resonance strength in 18F(p , γ) 19Ne via measurements of 15O(α , γ) 19Ne and 15O + α elastic scattering.

  8. Coalescing binary systems of compact objects to (post) sup 5/2 -Newtonian order: Late-time evolution and gravitational radiation emission

    SciTech Connect

    Lincoln, C.W.

    1990-01-01

    The late-time evolution of binary systems of compact objects (neutron stars or black holes) is studied using the Damour-Derueele (post){sup 5/2}-Newtonian equations of motion with relativistic corrections of all orders up to and including radiation reaction. Using the method of close orbital elements from celestial mechanics, the author evolves the orbits to separations of r {approx} 2 m, where m is the total mass, at which point the (post){sup 5/2}-Newtonian approximation breaks down. With the orbits as input, he calculates the gravitational waveform and luminosity using a post-Newtonian formalism of Wagoner and Will. Results are obtained for systems containing various combinations of compact objects, for various values of the mass ratio m{sub 1}/m{sub 2}, and forg various initial values of the orbital eccentricity.

  9. Synchrotron radiation with radiation reaction. [relativistic electron motion in strong astrophysical magnetic fields

    NASA Technical Reports Server (NTRS)

    Nelson, Robert W.; Wasserman, Ira

    1991-01-01

    A rigorous discussion is presented of the classical motion of a relativistic electron in a magnetic field and the resulting electromagnetic radiation when radiation reaction is important. In particular, for an electron injected with initial energy gamma(0), a systematic perturbative solution to the Lorentz-Dirac equation of motion is developed for field strengths satisfying gamma(0) B much less than 6 x 10 to the 15th G. A particularly accurate solution to the electron orbital motion in this regime is found and it is demonstrated how lowest-order corrections can be calculated. It is shown that the total energy-loss rate corresponds to what would be found using the exact Larmor power formula without including radiation reaction. Provided that the particle energy and field strength satisfy the same contraint, it is explicitly demonstrated that the intuitive prescription for calculating the time-integrated radiation spectrum described above is correct.

  10. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  11. Newton’s second law, radiation reaction and type II Einstein-Maxwell fields

    NASA Astrophysics Data System (ADS)

    Newman, Ezra T.

    2011-12-01

    Considering perturbations of the Reissner-Nordström metric while keeping the perturbations in the class of type II Einstein-Maxwell metrics, we perform a spherical harmonic expansion of all the variables up to the quadrupole term. This leads to rather surprising results. Referring to the source of the metric as a type II particle (analogous to referring to a Schwarzschild-Reissner-Nordström or Kerr-Newman particle), we see immediately that the Bondi momentum of the particle takes the classical form of mass times velocity plus an electromagnetic radiation reaction term, while the Bondi mass loss equation becomes the classical gravitational and electromagnetic (electric and magnetic) dipole and quadrupole radiation. The Bondi momentum loss equation turns into Newton’s second law of motion containing the Abraham-Lorentz-Dirac radiation reaction force plus a momentum recoil (rocket) force, while the reality condition on the Bondi mass aspect yields the conservation of angular momentum. Two things must be pointed out: (1) these results, (equations of motion, etc) take place, not in the spacetime of the type II metric but in an auxiliary space referred to as {H}-space, whose physical meaning is rather obscure and (2) this analysis of the type II field equations is a very special case of a similar analysis of the general asymptotically flat Einstein-Maxwell equations. Although the final results are similar (though not the same), the analysis uses different equations (specifically, the type II field equations) and is vastly simpler than the general case. Without a great deal of the technical structures needed in the general case, one can see rather easily where the basic results reside in the type II field equations.

  12. Simulating Gravitational Radiation from Binary Black Holes Mergers as LISA Sources

    NASA Technical Reports Server (NTRS)

    Baker, John

    2005-01-01

    A viewgraph presentation on the simulation of gravitational waves from Binary Massive Black Holes with LISA observations is shown. The topics include: 1) Massive Black Holes (MBHs); 2) MBH Binaries; 3) Gravitational Wavws from MBH Binaries; 4) Observing with LISA; 5) How LISA sees MBH binary mergers; 6) MBH binary inspirals to LISA; 7) Numerical Relativity Simulations; 8) Numerical Relativity Challenges; 9) Recent Successes; 10) Goddard Team; 11) Binary Black Hole Simulations at Goddard; 12) Goddard Recent Advances; 13) Baker, et al.:GSFC; 13) Starting Farther Out; 14) Comparing Initial Separation; 15) Now with AMR; and 16) Conclusion.

  13. Formation of Complex Molecules via radiative association reactions

    NASA Astrophysics Data System (ADS)

    Acharyya, Kinsuk; Herbst, Eric

    2016-07-01

    The detection of increasing numbers of complex organic molecules in the various phases of star formation plays a key role since they follow the same chemical rules of carbon-based chemistry that are observed in our planet Earth. Many of these molecules are believed to be formed on the surfaces of grains, and can then be released to the gas phase when these grains are heated. This is evident when we observe a rich chemistry in hot core regions. However, recently complex organic molecules have also been observed in cold clouds. Therefore, it is necessary to re-examine various pathways for the formation of these molecules in the gas phase. In this presentation, I will discuss role of radiative association reactions in the formation of complex molecules in the gas phase and at low temperature. We will compare abundance of assorted molecules with and without new radiative association reactions and will show that the abundance of a few complex molecules such as HCOOCH3, CH3OCH3 etc. can go up due to introduction of these reactions, which can help to explain their observed abundances.

  14. Bianchi VI cosmological models representing perfect fluid and radiation with electric-type free gravitational fields

    NASA Astrophysics Data System (ADS)

    Roy, S. R.; Banerjee, S. K.

    1992-11-01

    A homogeneous Bianchi type VIh cosmological model filled with perfect fluid, null electromagnetic field and streaming neutrinos is obtained for which the free gravitational field is of the electric type. The barotropic equation of statep = (γ-1)ɛ is imposed in the particular case of Bianchi VI0 string models. Various physical and kinematical properties of the models are discussed.

  15. Gravitational wave luminosity and net momentum flux in head-on mergers of black holes: Radiative patterns and mode mixing

    NASA Astrophysics Data System (ADS)

    Aranha, Rafael Fernandes; Soares, Ivano Damião; Tonini, Eduardo Valentino

    2016-09-01

    We show that gravitational wave radiative patterns from a point test particle falling radially into a Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett. 27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux in terms of the news functions. We then evaluate the (-2 )-spin-weighted ℓ-multipole decomposition of these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity. Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data corresponding to the head-on merger of two black holes. We consider mass ratios in the range 0.01 ≤α ≤1 . We obtain the exponential decay with ℓ of the total energy contributed by each multipole ℓ, with an accurate linear correlation in the log-linear plot of the points up to α ≃0.7 . Above this mass ratio the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the breaking of the linear correlation; for α =1 the energy in all odd modes is zero. The dominant contribution to the total radiated energy comes from the quadrupole mode ℓ=2 corresponding, for instance, to about ≃84 % for small mass ratios up to ≃99.8 % for the limit case α =1 . The total rescaled radiated energy EWtotal/m0α2 decreases linearly with decreasing α , yielding for the point particle limit α →0 the value ≃0.0484 , about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-mixing pattern. We obtain that the impulses contributed by each (ℓ,ℓ+1 ) mixed mode also accurately satisfy the exponential decay with ℓ, for the whole mass ratio domain considered, 0.01 ≤α <1

  16. Gravitational radiation in black-hole collisions at the speed of light. I. Perturbation treatment of the axisymmetric collision

    NASA Astrophysics Data System (ADS)

    D'eath, P. D.; Payne, P. N.

    1992-07-01

    In this and the two following papers II and III we study the axisymmetric collision of two black holes at the speed of light, with a view to understanding the more realistic collision of two black holes with a large but finite incoming Lorentz factor γ. The curved radiative region of the space-time, produced after the two incoming impulsive plane-fronted shock waves have collided, is treated using perturbation theory, following earlier work by Curtis and Chapman. The collision is viewed in a frame to which a large Lorentz boost has been applied, giving a strong shock with energy ν off which a weak shock with energy λ<<ν scatters. This yields a singular perturbation problem, in which the Einstein field equations are solved by expanding in powers of λ/ν around flat space-time. When viewed back in the center-of-mass frame, this gives a good description of the regions of the space-time in which gravitational radiation propagates at small angles θ^ but a large distance from the symmetry axis, near each shock as it continues to propagate, having been distorted and deflected in the initial collision. The news function c0(τ^,θ^) describing the gravitational radiation is expected to have a convergent series expansion c0(τ^,θ^) =tsum∞n=0a2n(τ^)sin2nθ^, where τ^ is a retarded time coordinate. First-order perturbation theory gives an expression for a0(τ^) in agreement with that found previously by studying the finite-γ collisions. Second-order perturbation theory gives a2(τ^) as a complicated integral expression. A new mass-loss formula is derived, which shows that if the end result of the collision is a single Schwarzschild black hole at rest, plus gravitational radiation which is (in a certain precise sense) accurately described by the above series for c0(τ^,θ^), then the final mass can be determined from knowledge only of a0(τ^) and a2(τ^). This leads to an interesting test of the cosmic censorship hypothesis. The numerical calculation of a2(τ^) is

  17. The effect of radiation pressure on planar, self-gravitating H II regions and its neutral environment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramírez, J. C.; Raga, A. C.

    2016-08-01

    We study the hydrostatic configuration of an isothermal gas layer surrounding a planar distribution of stars, in which the gravitational effects (due to the stars and the self-gravity of the gas) and the radiation pressure due to dust absorption and photoionization of H are important. We consider an infinite planar distribution, and derive a model for the vertical stratification. We obtain the density profiles of a photoionized gas layer, which is covered by a neutral region. We find that the solutions range between cases in which the photoionized layer extends to infinity, to cases in which the vertical extent of the photoionized layer is negligible in comparison with the characteristic height of the enclosing, neutral layer. We find that in cases with a significant dust content, the effect of the radiation pressure together with the self-gravity generates dense, narrow neutral layers in which further star formation might occur.

  18. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    PubMed

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs.

  19. Gravitational Radiation - a New Window Onto the Universe. (Karl Schwarzschild Lecture 1996)

    NASA Astrophysics Data System (ADS)

    Thorne, K. S.

    A summary is given of the current status and plans for gravitational-wave searches at all plausible wavelengths, from the size of the observable universe to a few kilometers. The anticipated scientific payoff from these searches is described, including expectations for detailed studies of black holes and neutron stars, high-accuracy tests of general relativity, and hopes for the discovery of exotic new kinds of objects.

  20. Effect of first-order chemical reaction on gravitational instability in a porous medium.

    PubMed

    Kim, Min Chan; Choi, Chang Kyun

    2014-11-01

    To understand the CO_{2} sequestration in the saline aquifer, the effect of a first-order chemical reaction on the onset of the buoyancy-driven instability in an isotropic reactive porous medium is analyzed theoretically. Under the linear stability theory, the stability equations are derived in the semi-infinite domain and they are solved with and without the quasi-steady-state approximation. We also considered the stability of the reactive system at a steady-state limit. The analysis for the steady-state case proposed that the onset of instability motion can occur during the transient period even if the system is stable at the steady state. Through the initial growth rate analysis the most unstable initial disturbance is determined, and it is found that initially the system is unconditionally stable regardless of the Damköhler number D_{a} and the Darcy-Rayleigh number Ra. Based on the results of the initial growth rate analysis, the direct numerical simulation is also conducted by using the Fourier pseudospectral method. The present theoretical and numerical analyses suggest that the chemical reaction makes the system stable and no convective motion can be expected for D_{a}/Ra^{2}>2.5×10^{-3}.

  1. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto; Haardt, Francesco; Madau, Piero; Volonteri, Marta

    2004-08-01

    We compute the expected low-frequency gravitational wave signal from coalescing massive black hole (MBH) binaries at the center of galaxies in a hierarchical structure formation scenario in which seed holes of intermediate mass form far up in the dark halo ``merger tree.'' The merger history of dark matter halos and associated MBHs is followed via cosmological Monte Carlo realizations of the merger hierarchy from redshift z=20 to the present in a ΛCDM cosmology. MBHs get incorporated through halo mergers into larger and larger structures, sink to the center because of dynamical friction against the dark matter background, accrete cold material in the merger remnant, and form MBH binary systems. Stellar dynamical (three-body) interactions cause the hardening of the binary at large separations, while gravitational wave emission takes over at small radii and leads to the final coalescence of the pair. A simple scheme is applied in which the ``loss cone'' is constantly refilled and a constant stellar density core forms because of the ejection of stars by the shrinking binary. The integrated emission from inspiraling MBH binaries at all redshifts is computed in the quadrupole approximation and results in a gravitational wave background (GWB) with a well-defined shape that reflects the different mechanisms driving the late orbital evolution. The characteristic strain spectrum has the standard hc(f)~f-2/3 behavior only in the range f=10-9to10-6 Hz. At lower frequencies the orbital decay of MBH binaries is driven by the ejection of background stars (``gravitational slingshot''), and the strain amplitude increases with frequency, hc(f)~f. In this range the GWB is dominated by 109-1010 Msolar MBH pairs coalescing at 0<~z<~2. At higher frequencies, f>10-6Hz, the strain amplitude, as steep as hc(f)~f-1.3, is shaped by the convolution of last stable circular orbit emission by lighter binaries (102-107 Msolar) populating galaxy halos at all redshifts. We discuss the

  2. Calculation of radiation reaction effect on orbital parameters in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Sago, Norichika; Fujita, Ryuichi

    2015-07-01

    We calculate the secular changes of the orbital parameters of a point particle orbiting a Kerr black hole, due to the gravitational radiation reaction. For this purpose, we use the post-Newtonian (PN) approximation in the first-order black hole perturbation theory, with the expansion with respect to the orbital eccentricity. In this work, the calculation is done up to the fourth post-Newtonian (4PN) order and to the sixth order of the eccentricity, including the effect of the absorption of gravitational waves by the black hole. We confirm that, in the Kerr case, the effect of the absorption appears at the 2.5PN order beyond the leading order in the secular change of the particle's energy and may induce a superradiance, as known previously for circular orbits. In addition, we find that the superradiance may be suppressed when the orbital plane inclines with respect to the equatorial plane of the central black hole. We also investigate the accuracy of the 4PN formulae by comparing to numerical results. If we require that the relative errors in the 4PN formulae are less than 10^{-5}, the parameter region to satisfy the condition will be p≳ 50 for e=0.1, p≳ 80 for e=0.4, and p≳ 120 for e = 0.7 almost irrespective of the inclination angle or the spin of the black hole, where p and e are the semi-latus rectum and the eccentricity of the orbit. The region can further be extended using an exponential resummation method to p≳ 40 for e=0.1, p≳ 60 for e=0.4, and p≳ 100 for e=0.7. Although we still need the higher-order calculations of the PN approximation and the expansion with respect to the orbital eccentricity to apply for data analysis of gravitational waves, the results in this paper would be an important improvement from the previous work at the 2.5PN order, especially for large-p regions.

  3. Influence of dust charge fluctuation and polarization force on radiative condensation instability of magnetized gravitating dusty plasma

    NASA Astrophysics Data System (ADS)

    Prajapati, R. P.; Bhakta, S.

    2015-10-01

    The influence of dust charge fluctuation, thermal speed and polarization force due to massive charged dust grains is studied on the radiative condensation instability (RCI) of magnetized self-gravitating astrophysical dusty (complex) plasma. The dynamics of the charged dust and inertialess electrons are considered while the Boltzmann distributed ions are assumed to be thermal. The dusty fluid model is formulated and the general dispersion relations are derived analytically using the plane wave solutions under the long wavelength limits in both the presence and the absence of dust charge fluctuations. The combined effects of polarization force, dust thermal speed, dust charge fluctuation and dust cyclotron frequency are observed on the low frequency wave modes and radiative modified Jeans Instability. The classical criterion of RCI is also derived which remains unaffected due to the presence of these parameters. Numerical calculations have been performed to calculate the growth rate of the system and plotted graphically. We find that dust charge fluctuation, radiative cooling and polarization force have destabilizing while dust thermal speed and dust cyclotron frequency have stabilizing influence on the growth rate of Jeans instability. The results have been applied to understand the radiative cooling process in dusty molecular cloud when both the dust charging and polarization force are dominant.

  4. Nearly scale invariant spectrum of gravitational radiation from global phase transitions.

    PubMed

    Jones-Smith, Katherine; Krauss, Lawrence M; Mathur, Harsh

    2008-04-01

    Using a large N sigma model approximation we explicitly calculate the power spectrum of gravitational waves arising from a global phase transition in the early Universe and we confirm that it is scale invariant, implying an observation of such a spectrum may not be a unique feature of inflation. Moreover, the predicted amplitude can be over 3 orders of magnitude larger than the naive dimensional estimate, implying that even a transition that occurs after inflation may dominate in cosmic microwave background polarization or other gravity wave signals.

  5. Radiation reaction at the level of the action

    NASA Astrophysics Data System (ADS)

    Birnholtz, Ofek; Hadar, Shahar; Kol, Barak

    2014-09-01

    The aim of this paper is to highlight a recently proposed method for the treatment of classical radiative effects, in particular radiation reaction, via effective field theory methods. We emphasize important features of the method and in particular the doubling of fields. We apply the method to two simple systems: a mass-rope system and an electromagnetic charge-field system. For the mass-rope system in 1 + 1 dimensions we derive a double-field effective action for the mass which describes a damped harmonic oscillator. For the EM charge-field system, i.e. the system of an accelerating electric charge in 3 + 1 dimensions, we show a reduction to a 1 + 1 dimensions radial system of an electric dipole source coupled to an electric dipole field (analogous to the mass coupled to the rope). For this system we derive a double-field effective action and reproduce in an analogous way the leading part of the Abraham-Lorentz-Dirac force.

  6. Interplanetary phase scintillation and the search for very low frequency gravitational radiation

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Woo, R.; Estabrook, F. B.

    1979-01-01

    Observations of radio-wave phase scintillation are reported which used the Viking spacecraft having an earth-spacecraft link very similar to that which will be used in very low-frequency (VLF) gravitational-wave searches. The phase power-spectrum level varies by seven orders of magnitude as the sun-earth-spacecraft (elongation) angle changes from 1 to 175 deg. It is noteworthy that a broad minimum in the S-band (2.3 GHz) phase fluctuation occurs in the antisolar direction; the corresponding fractional frequency stability (square root Allan variance) is about 3 x 10 to the -14th for 1000-s integration times. A simultaneous two-frequency two-station observation indicates that the contribution to the phase fluctuation from the ionosphere is significant but dominated by the contribution from the interplanetary medium. Nondispersive tropospheric scintillation was not detected (upper limit to fractional frequency stability about 5 x 10 to the -14th). Evidently, even observations in the antisolar direction will require higher radio frequencies, phase scintillation calibration, and correlation techniques in the data processing, for detection of gravitational bursts at the anticipated strain amplitude levels of no more than 10 to the -15th.

  7. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Sotani, Hajime; Berti, Emanuele

    2016-07-01

    The lowest neutron star masses currently measured are in the range 1.0-1.1 M⊙, but these measurement have either large uncertainties or refer to isolated neutron stars. The recent claim of a precisely measured mass M/M⊙ = 1.174 ± 0.004 (Martinez et al. 2015) in a double neutron star system suggests that low-mass neutron stars may be an interesting target for gravitational-wave detectors. Furthermore, Sotani et al. recently found empirical formulas relating the mass and surface redshift of non-rotating neutron stars to the star's central density and to the parameter η ≡ (K0L2)1/3, where K0 is the incompressibility of symmetric nuclear matter and L is the slope of the symmetry energy at saturation density. Motivated by these considerations, we extend the work by Sotani et al. to slowly rotating and tidally deformed neutron stars. We compute the moment of inertia, quadrupole moment, quadrupole ellipticity, tidal and rotational Love number and apsidal constant of slowly rotating neutron stars by integrating the Hartle-Thorne equations at second order in rotation, and we fit all of these quantities as functions of η and of the central density. These fits may be used to constrain η, either via observations of binary pulsars in the electromagnetic spectrum, or via near-future observations of inspiralling compact binaries in the gravitational-wave spectrum.

  8. Reaction rate constant for radiative association of CF(.).

    PubMed

    Öström, Jonatan; Bezrukov, Dmitry S; Nyman, Gunnar; Gustafsson, Magnus

    2016-01-28

    Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C(+)) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1(1)Π → X(1)Σ(+) and rovibrational transitions on the X(1)Σ(+) and a(3)Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit-Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius-Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10-250 K, the rate constant is about 10(-21) cm(3) s(-1), rising toward 10(-16) cm(3) s(-1) for a temperature of 30,000 K.

  9. Gravitational radiation and angular momentum flux from a slowly rotating dynamical black hole

    SciTech Connect

    Wu, Yu-Huei; Wang, Chih-Hung

    2011-04-15

    A four-dimensional asymptotic expansion scheme is used to study the next-order effects of the nonlinearity near a spinning dynamical black hole. The angular-momentum flux and energy flux formula are then obtained by constructing the reference frame in terms of the compatible constant spinors and the compatibility of the coupling leading-order Newman-Penrose equations. By using the slow rotation and small-tide approximation for a spinning black hole, the horizon cross-section we chose is spherical symmetric. It turns out the flux formula is rather simple and can be compared with the known results. Directly from the energy flux formula of the slow-rotating dynamical horizon, we find that the physically reasonable condition on requiring the positivity of the gravitational energy flux yields that the shear will monotonically decrease with time. Thus a slow-rotating dynamical horizon will asymptotically approach an isolated horizon during late time.

  10. THE BENEFITS OF VLBI ASTROMETRY TO PULSAR TIMING ARRAY SEARCHES FOR GRAVITATIONAL RADIATION

    SciTech Connect

    Madison, D. R.; Chatterjee, S.; Cordes, J. M.

    2013-11-10

    Precision astrometry is an integral component of successful pulsar timing campaigns. Astrometric parameters are commonly derived by fitting them as parameters of a timing model to a series of pulse times of arrival (TOAs). TOAs measured to microsecond precision over spans of several years can yield position measurements with sub-milliarcsecond precision. However, timing-based astrometry can become biased if a pulsar displays any red spin noise or a red signal produced by the stochastic gravitational wave background. We investigate how noise of different spectral types is absorbed by timing models, leading to significant estimation biases in the astrometric parameters. We find that commonly used techniques for fitting timing models in the presence of red noise (Cholesky whitening) prevent the absorption of noise into the timing model remarkably well if the time baseline of observations exceeds several years, but are inadequate for dealing with shorter pulsar data sets. Independent of timing, pulsar-optimized very long baseline interferometry (VLBI) is capable of providing position estimates precise to the sub-milliarcsecond levels needed for high-precision timing. In order to make VLBI astrometric parameters useful in pulsar timing models, the transformation between the International Celestial Reference Frame (ICRF) and the dynamical solar system ephemeris used for pulsar timing must be constrained to within a few microarcseconds. We compute a transformation between the ICRF and pulsar timing frames and quantitatively discuss how the transformation will improve in coming years. We find that incorporating VLBI astrometry into the timing models of pulsars for which only a couple of years of timing data exist will lead to more realistic assessments of red spin noise and could enhance the amplitude of gravitational wave signatures in post-fit timing residuals by factors of 20 or more.

  11. Joint approach for reducing eccentricity and spurious gravitational radiation in binary black hole initial data construction

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Szilágyi, Béla

    2013-10-01

    At the beginning of binary black hole simulations, there is a pulse of spurious radiation (or junk radiation) resulting from the initial data not matching astrophysical quasi-equilibrium inspiral exactly. One traditionally waits for the junk radiation to exit the computational domain before taking physical readings, at the expense of throwing away a segment of the evolution, and with the hope that junk radiation exits cleanly. We argue that this hope does not necessarily pan out, as junk radiation could excite long-lived constraint violation. Another complication with the initial data is that they contain orbital eccentricity that needs to be removed, usually by evolving the early part of the inspiral multiple times with gradually improved input parameters. We show that this procedure is also adversely impacted by junk radiation. In this paper, we do not attempt to eliminate junk radiation directly, but instead tackle the much simpler problem of ameliorating its long-lasting effects. We report on the success of a method that achieves this goal by combining the removal of junk radiation and eccentricity into a single procedure. Namely, we periodically stop a low resolution simulation; take the numerically evolved metric data and overlay it with eccentricity adjustments; run it through an initial data solver (i.e. the solver receives as free data the numerical output of the previous iteration); restart the simulation; repeat until eccentricity becomes sufficiently low; and then launch the high resolution “production run” simulation. This approach has the following benefits: (1) We do not have to contend with the influence of junk radiation on eccentricity measurements for later iterations of the eccentricity reduction procedure. (2) We reenforce constraints every time the initial data solver is invoked, removing the constraint violation excited by junk radiation previously. (3) The wasted simulation segment associated with the junk radiation’s evolution is

  12. Recent developments in the measurement of space time curvature. [resonant capacitor displacement sensor and multistage suspension system for gravitational radiation antenna

    NASA Technical Reports Server (NTRS)

    Richard, J.-P.

    1978-01-01

    Development of a highly sensitive resonant capacitor displacement sensor and a multistage suspension system for a low-temperature gravitational radiation antenna is discussed; the antenna is suitable for studying gravitational collapses. The sensitivity limit of the device is assessed as a function of preamplifier noise. Experiments indicate that an electric field of about 160,000 v/cm may be applied to the resonator surface without a significant increase in Brownian noise. Use of the resonant capacitor sensor with very high Q antennae is also considered.

  13. Delayed gamma radiation from lightning induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Greenfield, M. B.; Sakuma, K.; Ikeda, Y.; Kubo, K.

    2004-03-01

    An increase in atmospheric gamma radiation observed with NaI and Ge detectors positioned about 15 m above ground was observed following natural lightning near Tokyo, Japan [1]. Background subtracted gamma ray rates GRR following numerous lightning strokes observed since 2001 persisted for a few hours and subsequently decayed with a half-life of about 50 minutes. Using a 3x3 Ge detector, with 2 KeV resolution, positioned about 2 m from one of the NaI detectors increases in GRR were observed minutes after the onset of lightning with a delayed 50 min exponential decay. Although most of the increase in activity occured at less than a few 100 KeV, on July 11, 2003 a 1267 +/-2 KeV line was observed. Although the statistics of this event were poor, the appearance of this line with an exponential decay of 50 min half-life suggests the possibility that it may be due to 39Cl (1267 MeV; half-life = 55.5 min) via the 40Ar(gamma,p)39Cl, 40Ar(p,2p)39Cl and/or 40Ar(n,d)39Cl reactions. Observations of > 10 MeV gamma rays observed in NaI detectors within 10s of meters from and coincident with rocket-triggered lightning at the International Center for Lightning Research and Testing suggest that charged particles accelerated in intense electric fields associated with lightning give rise to photons with sufficient energy to initiate nuclear reactions [2]. Further work to explain the cause of this anomalous activity is underway using natural and triggered lightning. 1. M. B. Greenfield et al., Journal of Applied Physics 93 no. 3 (2003) pp 1839-184. 2. J. R. Dwyer et al., Science 299, (2003), pp 694-697 and recent communications

  14. On microscopic theory of radiative nuclear reaction characteristics

    NASA Astrophysics Data System (ADS)

    Kamerdzhiev, S. P.; Achakovskiy, O. I.; Avdeenkov, A. V.; Goriely, S.

    2016-07-01

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even-even semi-magic Sn and Ni isotopes as well as for double-magic 132Sn and 208Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed. Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  15. Robust signatures of quantum radiation reaction in focused ultrashort laser pulses.

    PubMed

    Li, Jian-Xing; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2014-07-25

    Radiation-reaction effects in the interaction of an electron bunch with a superstrong focused ultrashort laser pulse are investigated in the quantum radiation-dominated regime. The angle-resolved Compton scattering spectra are calculated in laser pulses of variable duration using a semiclassical description for the radiation-dominated dynamics and a full quantum treatment for the emitted radiation. In dependence of the laser-pulse duration we find signatures of quantum radiation reaction in the radiation spectra, which are characteristic for the focused laser beam and visible in the qualitative behavior of both the angular spread and the spectral bandwidth of the radiation spectra. The signatures are robust with respect to the variation of the electron and laser-beam parameters in a large range. Qualitatively, they differ fully from those in the classical radiation-reaction regime and are measurable with presently available laser technology.

  16. Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling

    NASA Astrophysics Data System (ADS)

    Rice, W. K. M.; Forgan, D. H.; Armitage, P. J.

    2012-02-01

    Recent simulations of self-gravitating accretion discs, carried out using a three-dimensional smoothed particle hydrodynamics (SPH) code by Meru & Bate, have been interpreted as implying that three-dimensional global discs fragment much more easily than would be expected from a two-dimensional local model. Subsequently, global and local two-dimensional models have been shown to display similar fragmentation properties, leaving it unclear whether the three-dimensional results reflect a physical effect or a numerical problem associated with the treatment of cooling or artificial viscosity in SPH. Here, we study how fragmentation of self-gravitating disc flows in SPH depends upon the implementation of cooling. We run disc simulations that compare a simple cooling scheme, in which each particle loses energy based upon its internal energy per unit mass, with a method in which the cooling is derived from a smoothed internal energy density field. For the simple per particle cooling scheme, we find a significant increase in the minimum cooling time-scale for fragmentation with increasing resolution, matching previous results. Switching to smoothed cooling, however, results in lower critical cooling time-scales, and tentative evidence for convergence at the highest spatial resolution tested. We conclude that precision studies of fragmentation using SPH require careful consideration of how cooling (and, probably, artificial viscosity) is implemented, and that the apparent non-convergence of the fragmentation boundary seen in prior simulations is likely a numerical effect. In real discs, where cooling is physically smoothed by radiative transfer effects, the fragmentation boundary is probably displaced from the two-dimensional value by a factor that is only of the order of unity.

  17. Low-mass neutron stars: universal relations, the nuclear symmetry energy and gravitational radiation

    NASA Astrophysics Data System (ADS)

    O. Silva, Hector; Berti, Emanuele; Sotani, Hajime

    2016-03-01

    Compact objects such as neutron stars are ideal astrophysical laboratories to test our understanding of the fundamental interactions in the regime of supranuclear densities, unachievable by terrestrial experiments. Despite recent progress, the description of matter (i.e., the equation of state) at such densities is still debatable. This translates into uncertainties in the bulk properties of neutron stars, masses and radii for instance. Here we will consider low-mass neutron stars. Such stars are expected to carry important information on nuclear matter near the nuclear saturation point. It has recently been shown that the masses and surface redshifts of low-mass neutron stars smoothly depend on simple functions of the central density and of a characteristic parameter η associated with the choice of equation of state. Here we extend these results to slowly-rotating and tidally deformed stars and obtain empirical relations for various quantities, such as the moment of inertia, quadrupole moment and ellipticity, tidal and rotational Love numbers, and rotational apsidal constants. We discuss how these relations might be used to constrain the equation of state by future observations in the electromagnetic and gravitational-wave spectra.

  18. Gravitational wave production by Hawking radiation from rotating primordial black holes

    NASA Astrophysics Data System (ADS)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan

    2016-10-01

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10‑7.5. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10‑6.5. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.

  19. Gravitational lenses

    SciTech Connect

    Turner, E.L.

    1988-07-01

    For several years astronomers have devoted considerable effort to finding and studying a class of celestial phenomena whose very existence depends on rare cosmic accidents. These are gravitational-lens events, which occur when two or more objects at different distances from the earth happen to lie along the same line of sight and so coincide in the sky. The radiation from the more distant object, typically a quasar, is bent by the gravitational field of the foreground object. The bending creates a cosmic mirage: distorted or multiple images of the background object. Such phenomena may reveal many otherwise undetectable features of the image source, of the foreground object and of the space lying between them. Such observations could help to resolve several fundamental questions in cosmology. In the past decade theoretical and observational research on gravitational lenses has grown rapidly and steadily. At this writing at least 17 candidate lens systems have been discussed in the literature. Of the 17 lens candidates reported so far in professional literature, only five are considered to have been reliably established by subsequent observations. Another three are generally regarded as weak or speculative cases with less than 50 percent chance of actually being lens systems. In the remaining nine cases the evidence is mixed or is sparse enough so that the final judgment could swing either way. As might be concluded, little of the scientific promise of gravitational lenses has yet been realized. The work has not yielded a clear value for the proportionality constant or any of the other fundamental cosmological parameter. 7 figs.

  20. Gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  1. The role of MRI in the diagnosis of acute radiation reaction in breast cancer patient

    NASA Astrophysics Data System (ADS)

    Startseva, Zh A.; Musabaeva, L. I.; Usova, AV; Frolova, I. G.; Simonov, K. A.; Velikaya, V. V.

    2016-02-01

    A clinical case with acute radiation reaction of the left breast after organ-preserving surgery with 10 Gy IORT (24.8 Gy) conventional radiation therapy has been presented. Comprehensive MRI examination showed signs of radiation- induced damage to skin, soft tissues and vessels of the residual breast.

  2. Evidence for Orbital Decay of RX J1914.4+2456: Gravitational Radiation and the Nature of the X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    RX J1914.4+2456 is a candidate double-degenerate binary (AM CVn) with a putative 569 s orbital period. If this identification is correct, then it has one of the shortest binary orbital periods known, and gravitational radiation should drive the orbital evolution and mass transfer if the binary is semi-detached. Here we report the results of a coherent timing study of the archival ROSAT data for RX J1914.4+2456. We performed a phase coherent timing analysis using all five ROSAT observations spanning a four-year period. We demonstrate that all the data can be phase connected, and we show that the 1.756 mHz orbital frequency is increasing at a rate of 1.5 +/- 0.4 x 10(exp -17) Hz/s consistent with the expected loss of angular momentum from the binary system via gravitational radiation. In addition to providing evidence for the emission of gravitational waves, our measurement of the orbital v(dot) constrains models for the X-ray emission and the nature of the secondary. If stable mass accretion drives the X-ray flux, then a positive v(dot) is inconsistent with a degenerate donor. A helium burning dwarf is compatible if indeed such systems can have periods as short as that of RX J1914.4+2456, an open theoretical question. Our measurement of a positive v(dot) is consistent with the unipolar induction model of Wu et al. which does not require accretion to drive the X-ray flux. We discuss how future timing measurements of RX J1914.4+2456 (and systems like it) with for example, Chandra and XMM-Newton, can provide a unique probe of the interaction between mass loss and gravitational radiation. We also discuss the importance of such measurements in the context of gravitational wave detection from space, such as is expected in the future with the LISA mission.

  3. Study the Effects of Charged Particle Radiation on Gravitational Sensors in Space

    NASA Technical Reports Server (NTRS)

    Lipa, John A.

    1999-01-01

    Space-flight charging of free floating masses poses an unusual problem-- how can one control charge on the object without exerting a significant force on it? One approach is to make contact to the object with a fine wire. However, for many precision applications no physical contact is permissible, so charge must be conveyed in, a more sophisticated manner. One method has already been developed: Gravitational Probe B (GP-B) uses an ultraviolet photo-emission system described in ref 1. This system meets the experiment requirements, yet poses a number of constraints, including high power dissipation (approximately 10 W peak, approximately 1 W average), low current output (approximately 10(exp -13) A), and potential reliability problems associated with fiber optics system and the UV source. The aim of the current research is to improve this situation and, if possible, develop a more rugged and lower power alternative, usable in a wide range of situations. An potential alternative to the UV electron source is a Spindt-type field emission cathode. These consist of an array of extremely sharp silicon tips mounted in a standard IC package with provision for biasing them relative to the case potential. They are attractive as electron sources for space applications due to their low power consumption (10(exp -5) W), high current levels (10(exp -9) to 10(exp -5) A), and the absence of mechanical switching. Unfortunately, existing cathodes require special handling to avoid contamination and gas absorption. These contaminants can cause severe current fluctuations and eventual destruction of the cathode tips. Another potential drawback is the absence of any data indicating the possibility of bipolar current flow. This capability is needed because of the large uncertainties in the net charge transfer from cosmic rays to a free floating mass in space. More recent devices reduce the current fluctuations and destructive arcing by mounting the tips on a resistive substrate rather than

  4. Kinetics of the. gamma. -radiation-initiated reaction of 2-propanol with tri- and hexafluoropropylene

    SciTech Connect

    Zamyslov, R.A.; Shostenko, A.G.; Dobrov, I.V.; Tarasova, N.P.

    1988-02-01

    The initiation of telomerization reactions by ionizing radiation provides good opportunities for studying the kinetics of free radical reactions. The fluoroalcohols and their derivatives prepared using fluoroolefins and aliphatic alcohols find wide practical application. The object of this exercise was to study the reactivity of trifluoropropylene and hexafluoropropylene with 2-propanol. The reaction products were analyzed gas chromatographically.

  5. Measurements of mechanical dissipation in high sound velocity materials: implications for resonant-mass gravitational radiation detectors

    NASA Astrophysics Data System (ADS)

    Hu, En-Ke; Zhou, C.; Mann, L.; Michelson, P. F.; Price, J. C.

    1991-07-01

    The sensitivity of resonant-mass gravitational radiation detectors depends on both the antenna cross-section and the detector noise. The cross-section is determined by the sound velocity vs and density ϱ of the antenna material, while the principal detector noise sources are thermal Nyquist noise and noise due to the readout electromechanical amplifier. The thermal noise is proportional to T/Q, where T is the temperature and Q is the antenna's mechanical quality factor. For a given frequency and antenna geometry, the cross-section is proportional to ϱ v5s. Thus the speed of sound and Q are important figures-of-merit in selecting the antenna material. Materials with high vs are available that in principle could provide about a hundred-fold increase in the cross-section of resonant-mass gravity wave detectors as compared to current generation detectors. In this Letter we report the results of measurements of the temperature-dependent mechanical losses associated with excitation of the fundamental longitudinal acoustic mode in several potentially suitable materials. We also discuss the impact that these materials could have on the sensitivity of resonant-mass detectors.

  6. Gravitational and radiative effects on the escape of helium from the moon

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1978-01-01

    On the moon, and probably on Mercury and other similar regolith-covered bodies with tenuous atmosphere, the dominant gas is He-4. It arises as the radiogenic product of the decay of uranium and thorium within any planet, but its major source appears to be the alpha particle flux of the solar wind. The moon intercepts solar wind helium at an average rate of 1.1 times 10 to the 24th atom/sec, and loses it at the same rate. Some helium may escape directly as the result of the process of solar wind soil bombardment which may release previously trapped helium at superthermal speeds. Atmospheric models have been calculated with the total helium influx as source. Subsequent comparison of model and measured helium concentrations indicates that the fraction of helium escaping via the atmosphere may range from 20% to 100% of the solar wind influx. Of the escaping atmosphere, most of the helium (about 93%) becomes trapped in earth orbit, while about 5% gets trapped in satellite orbits about the moon. Owing to a 6 month lifetime for helium in solar radiation, the satellite atoms form a lunar corona that exceeds the lunar atmosphere in total abundance by a factor of 4 to 5.

  7. Effect of neutral collision and radiative heat-loss function on self-gravitational instability of viscous thermally conducting partially-ionized plasma

    SciTech Connect

    Kaothekar, Sachin; Soni, Ghanshyam D.; Chhajlani, Rajendra K.

    2012-12-15

    The problem of thermal instability and gravitational instability is investigated for a partially ionized self-gravitating plasma which has connection in astrophysical condensations. We use normal mode analysis method in this problem. The general dispersion relation is derived using linearized perturbation equations of the problem. Effects of collisions with neutrals, radiative heat-loss function, viscosity, thermal conductivity and magnetic field strength, on the instability of the system are discussed. The conditions of instability are derived for a temperature-dependent and density-dependent heat-loss function with thermal conductivity. Numerical calculations have been performed to discuss the effect of various physical parameters on the growth rate of the gravitational instability. The temperature-dependent heat-loss function, thermal conductivity, viscosity, magnetic field and neutral collision have stabilizing effect, while density-dependent heat-loss function has a destabilizing effect on the growth rate of the gravitational instability. With the help of Routh-Hurwitz's criterion, the stability of the system is discussed.

  8. Radiation reaction on moving particles in general relativity

    NASA Astrophysics Data System (ADS)

    Messaritaki, Eirini

    2003-12-01

    A particle in the vicinity of a Schwarzschild black hole is known to trace a geodesic of the Schwarzschild background, to a first approximation. If the interaction of the particle with its own field (scalar, electromagnetic or gravitational) is taken into account, the path is no longer a background geodesic and the self-force that the particle experiences needs to be taken into account. In this dissertation, a recently proposed method for the calculation of the self-force is implemented. According to this method the self-force comes from the interaction of the particle with the field psiR = psiret - psiS for a scalar particle; with the electromagnetic potential ARa=Aret a-ASa for a particle creating an electromagnetic field; or with the metric perturbation hRab=hret ab-hSab for a particle creating a gravitational field. First, the singular fields psiS, ASa and hSab are calculated for different sources moving in a Schwarzschild background. For that, the Thorne-Hartle-Zhang coordinates in the vicinity of the moving source are used. Then a mode-sum regularization method initially proposed for the direct scalar field is followed, and the regularization parameters for the singular part of the scalar field and for the first radial derivative of the singular part of the self-force are calculated. Also, the numerical calculation of the retarded scalar field for a particle moving on a circular geodesic in a Schwarzschild spacetime is presented. Finally, the self-force for a scalar particle moving on a circular Schwarzschild orbit is calculated and some results about the effects of the self-force on the orbital frequency of the circular orbit are presented.

  9. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature

    PubMed Central

    Salvo, N.; Barnes, E.; van Draanen, J.; Stacey, E.; Mitera, G.; Breen, D.; Giotis, A.; Czarnota, G.; Pang, J.; De Angelis, C.

    2010-01-01

    Radiation therapy is a common treatment for cancer patients. One of the most common side effects of radiation is acute skin reaction (radiation dermatitis) that ranges from a mild rash to severe ulceration. Approximately 85% of patients treated with radiation therapy will experience a moderate-to-severe skin reaction. Acute radiation-induced skin reactions often lead to itching and pain, delays in treatment, and diminished aesthetic appearance—and subsequently to a decrease in quality of life. Surveys have demonstrated that a wide variety of topical, oral, and intravenous agents are used to prevent or to treat radiation-induced skin reactions. We conducted a literature review to identify trials that investigated products for the prophylaxis and management of acute radiation dermatitis. Thirty-nine studies met the pre-defined criteria, with thirty-three being categorized as prophylactic trials and six as management trials. For objective evaluation of skin reactions, the Radiation Therapy Oncology Group criteria and the U.S. National Cancer Institute Common Toxicity Criteria were the most commonly used tools (65% of the studies). Topical corticosteroid agents were found to significantly reduce the severity of skin reactions; however, the trials of corticosteroids evaluated various agents, and no clear indication about a preferred corticosteroid has emerged. Amifostine and oral enzymes were somewhat effective in preventing radiation-induced skin reactions in phase ii and phase iii trials respectively; further large randomized controlled trials should be undertaken to better investigate those products. Biafine cream (Ortho–McNeil Pharmaceuticals, Titusville, NJ, U.S.A.) was found not to be superior to standard regimes in the prevention of radiation-induced skin reactions (n = 6). In conclusion, the evidence is insufficient to support the use of a particular agent for the prevention and management of acute radiation-induced skin reactions. Future trials should focus

  10. Republication of: Contributions to the theory of pure gravitational radiation. Exact solutions of the field equations of the general theory of relativity II

    NASA Astrophysics Data System (ADS)

    Jordan, Pascual; Ehlers, Jürgen; Sachs, Rainer K.

    2013-12-01

    This is an English translation of a paper by Pascual Jordan, Juergen Ehlers and Rainer Sachs, first published in 1961 in the proceedings of the Academy of Sciences and Literature in Mainz (Germany). The original paper was part 2 of a five-part series of articles containing the first summary of knowledge about exact solutions of Einstein's equations found until then. (Parts 1 and 4 of the series have already been reprinted, parts 3 and 5 will be printed as Golden Oldies in near future.) This second paper discusses the geometry of geodesic null congruences, the algebraic classification of the Weyl tensor by spinor methods, and applies these to a study of the propagation of gravitational and electromagnetic radiation. It has been selected by the Editors of General Relativity and Gravitation for republication in the Golden Oldies series of the journal. The republication is accompanied by an editorial note written by Malcolm A. H. MacCallum and Wolfgang Kundt.

  11. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  12. Energy conservation equation for a radiating pointlike charge in the context of the Abraham-Lorentz versus the Abraham-Becker radiation-reaction force

    NASA Astrophysics Data System (ADS)

    Bellotti, U.; Bornatici, M.

    1997-12-01

    With reference to a radiating pointlike charge, the energy conservation equation comprising the effect of the Abraham-Lorentz radiation-reaction force is contrasted with the incorrect energy conservation equation obtained by Hartemann and Luhmann [Phys. Rev. Lett. 74, 1107 (1995)] on considering instead the Abraham-Becker force that accounts only for a part of the instantaneous radiation-reaction force.

  13. Hawking fluxes, back reaction and covariant anomalies

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shailesh

    2008-11-01

    Starting from the chiral covariant effective action approach of Banerjee and Kulkarni (2008 Phys. Lett. B 659 827), we provide a derivation of the Hawking radiation from a charged black hole in the presence of gravitational back reaction. The modified expressions for charge and energy flux, due to the effect of one-loop back reaction are obtained.

  14. Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-05-01

    In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.

  15. Phasing of gravitational waves from inspiralling eccentric binaries

    SciTech Connect

    Damour, Thibault; Gopakumar, Achamveedu; Iyer, Bala R.

    2004-09-15

    We provide a method for analytically constructing high-accuracy templates for the gravitational-wave signals emitted by compact binaries moving in inspiralling eccentric orbits. In contrast to the simpler problem of modeling the gravitational-wave signals emitted by inspiralling circular orbits, which contain only two different time scales, namely, those associated with the orbital motion and the radiation reaction, the case of inspiralling eccentric orbits involves three different time scales: orbital period, periastron precession, and radiation-reaction time scales. By using an improved 'method of variation of constants', we show how to combine these three time scales, without making the usual approximation of treating the radiative time scale as an adiabatic process. We explicitly implement our method at the 2.5PN post-Newtonian accuracy. Our final results can be viewed as computing new 'postadiabatic' short-period contributions to the orbital phasing or, equivalently, new short-period contributions to the gravitational-wave polarizations, h{sub +,x}, that should be explicitly added to the 'post-Newtonian' expansion for h{sub +,x}, if one treats radiative effects on the orbital phasing of the latter in the usual adiabatic approximation. Our results should be of importance both for the LIGO/VIRGO/GEO network of ground based interferometric gravitational-wave detectors (especially if Kozai oscillations turn out to be significant in globular cluster triplets) and for the future space-based interferometer LISA.

  16. Models of Metal-poor Stars with Gravitational Settling and Radiative Accelerations. II. The Age of the Oldest Stars

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Richard, O.; Michaud, G.; Richer, J.

    2002-05-01

    Isochrones for ages between 12 and 18 Gyr have been derived from the evolutionary tracks presented in Paper I (Richard et al.) for masses from 0.5 to 1.0 Msolar and initial chemical abundances corresponding to (1) Y=0.2352, Z=1.69×10-4 ([Fe/H]=-2.31,[α/Fe]=0.3) and (2) Y=0.2370, Z=1.69×10-3 ([Fe/H=-1.31,[α/Fe]=0.3). These are the first models for Population II stars in which both gravitational settling and radiative accelerations have been taken into account. Allowance for these diffusive processes leads to a 10%-12% reduction in age at a given turnoff luminosity. However, in order for the diffusive models to satisfy the constraints from Li and Fe abundance data (see Paper I) and to reproduce the observed morphologies of globular cluster (GC) color-magnitude diagrams (CMDs) in a straightforward way, extra mixing just below the boundary of the convective envelope seems to be necessary. Indeed, when additional turbulent mixing is invoked, the resultant models are able to satisfy all of these constraints, as well as those provided by the CMDs of local subdwarfs, rather well. Moreover, they imply an age near 13.5 Gyr for M92, which is one of the most metal-deficient (and presumably one of the oldest) of the Galaxy's GCs, if the field subgiant HD 140283 is used to derive the cluster distance. Comparisons of field subdwarfs and subgiants with a recently published fiducial for M5 suggests that the cluster has [Fe/H]<~-1.4, in conflict with some estimates based on high-resolution spectroscopy, if the metallicities of the field stars are to be trusted. In addition, an age of ~11.5 Gyr is found for M5, irrespective of whether diffusive or nondiffusive isochrones are employed in the analysis. The implications of our results for the extragalactic distance scale and for the Hubble constant are briefly discussed in the context of the presently favored ΩM~0.35, ΩΛ~0.65 cosmological model.

  17. [Adaptation reactions of rat blood exposed to low intensity electromagnetic radiation].

    PubMed

    Krylov, V N; Deriugina, A V

    2010-06-01

    It is carried out research of action low-intensive electromagnetic radiations--low-intensive laser radiation and radiations of the highest frequency on normal animals and at modelling the stress-reaction, caused by introduction of adrenaline. Absence of effects of system of blood is noted at action low-intensive electromagnetic radiations on normal an organism and them correction action on alteration an organism, shown in restoration of the broken parameters--leukocyte the blood count, electrophoretic mobility of erythrocytes and phospholipide's structure of their membranes.

  18. Phasing of gravitational waves from inspiralling eccentric binaries

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Gopakumar, Achamveedu; Iyer, Bala R.

    2005-05-01

    We develop a method for analytically constructing highly accurate post-Newtonian (PN) templates for gravitational-wave signals emitted by compact binaries moving in inspiralling eccentric orbits. Employing an improved 'method of variation of constants', applied to 2PN accurate generalized quasi-Keplerian parametrization for the orbital motion, we combine three relevant time scales associated with the orbital period, periastron precession and radiation reaction, without treating the radiative time scale in an adiabatic manner. We explicitly implement our method to obtain 2.5PN accurate 'post-adiabatic' gravitational waveforms h+,×. Using the 'effective one-body' approach, we define the domain of validity of our method. We also discuss how to extend our method to construct 'ready to use' search templates for gravitational waves from inspiralling eccentric orbits. For a detailed version of this article, see Damour T, Gopakumar A and Iyer B R 2004 Phys. Rev. D 70 064028

  19. An investigation of the reaction kinetics of luciferase and the effect of ionizing radiation on the reaction rate.

    PubMed

    Berovic, Nikolas; Parker, David J; Smith, Michael D

    2009-04-01

    The bioluminescence produced by luciferase, a firefly enzyme, requires three substrates: luciferin, ATP and oxygen. We find that ionizing radiation, in the form of a proton beam from a cyclotron, will eliminate dissolved oxygen prior to any damage to other substrates or to the protein. The dose constant for removal of oxygen is 70 +/- 20 Gy, a much smaller dose than required to cause damage to protein. Removal of oxygen, which is initially in excess, leads to a sigmoidal response of bioluminescence to radiation dose, consistent with a Michaelis-Menten relationship to substrate concentration. When excess oxygen is exhausted, the response becomes exponential. Following the irradiation, bioluminescence recovers due to a slow leak of oxygen into the solution. This may also explain previous observations on the response of bioluminescent bacteria to radiation. We have studied the dependence of the reaction rate on enzyme and substrate concentration and propose a model for the reaction pathway consistent with this data. The light output from unirradiated samples decreases significantly with time due to product inhibition. We observe that this inhibition rate changes dramatically immediately after a sample is exposed to the beam. This sudden change of the inhibition rate is unexplained but shows that enzyme regulatory function responds to ionizing radiation at a dose level less than 0.6 Gy.

  20. On the road to discovery of relic gravitational waves: The TE and BB correlations in the cosmic microwave background radiation

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Baskaran, D.; Grishchuk, L. P.

    2009-01-01

    The detection of primordial gravitational waves is one of the biggest challenges of the present time. The existing (Wilkinson Microwave Anisotropy Probe) observations are helpful in achieving this goal, and the forthcoming experiments (Planck) are likely to complete this mission. We show that the 5-year Wilkinson Microwave Anisotropy Probe TE data contain a hint of the presence of the gravitational wave contribution. In terms of the parameter R, which gives the ratio of contributions from gravitational waves and density perturbations to the temperature quadrupole, the best-fit model produced R=0.24. Because of large residual noises, the uncertainty of this determination is still large, and it easily includes the R=0 hypothesis. However, the uncertainty will be strongly reduced in the forthcoming observations which are more sensitive. We numerically simulated the Planck data and concluded that the relic gravitational waves with R=0.24 will be present at a better than 3σ level in the TE observational channel, and at a better than 2σ level in the “realistic” BB channel. The balloon-borne and ground-based observations may provide healthy competition for Planck in some parts of the lower-ℓ spectrum.

  1. Electron paramagnetic resonance study of radiation damage in photosynthetic reaction center crystals.

    SciTech Connect

    Utschig, L. M.; Chemerisov, S. D.; Tiede, D. M.; Poluektov, O. G.; Chemical Sciences and Engineering Division

    2008-01-01

    Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter (R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.

  2. A new theoretical approach to thermonuclear radiative-capture reaction rate

    SciTech Connect

    Funaki, Yasuro; Yabana, Kazuhiro; Akahori, Takahiko

    2012-11-12

    We propose a new computational method for astrophysical reaction rate of radiative capture process, which does not require any solution of scattering problem. It is tested for twobody radiative caputure reaction {sup 16}O({alpha},{gamma}){sup 20}Ne and a comparison is made with an ordinary method solving two-body scattering problem. The method is shown to work well in practice and thus will be useful for problems in which an explicit construction of scattering solution is difficult such as the triple-alpha capture process.

  3. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  4. Equation of motion with radiation reaction in ultrarelativistic laser-electron interactions

    SciTech Connect

    Seto, Keita; Nagatomo, Hideo; Mima, Kunioki; Koga, James

    2011-12-15

    The intensity of the ultra-short pulse lasers has reached 10{sup 22} W/cm{sup 2} owing to the advancements of laser technology. When the motion of an electron becomes relativistic, bremsstrahlung accompanies it. The energy from this bremsstrahlung corresponds to the energy loss of the electron; therefore, the motion of the electron deviates from the case without radiation. The radiation behaves something like resistance. This effect called ''radiation reaction'' or ''radiation damping'' and the force converted from the radiation is named the ''radiation reaction force'' or the ''damping force''. The equation of motion with the reaction force is known as the Lorentz-Abraham-Dirac (LAD) equation, but the solution of this equation is not physical due to the fact that it has a ''run-away'' solution. As one solution of this problem, we have derived a new equation which takes the place of the Lorentz-Abraham-Dirac equation. We will show the validity of this equation with a simple theoretical analysis.

  5. Radiative ion beams: hot stellar reactions in the laboratory

    SciTech Connect

    Haight, R.C.; Mathews, G.J.; Bauer, R.W.

    1984-09-01

    Following our initial production of beams of /sup 7/Be and /sup 13/N, we have improved the purity and intensity of these beams. In addition we have generated beams of /sup 15/O (at 30 MeV) and /sup 8/Li (at 22 MeV). These beams are intended for cross section measurements of proton and alpha-particle capture reactions on unstable species that are important in hot stellar environments. We have begun studies aimed toward measuring the /sup 1/H(/sup 7/Be,/sup 8/B)..gamma.. cross section. As part of the developmental work, we attempted to remeasure the /sup 2/H(/sup 7/Be,/sup 8/B)n cross section with a different technique that pointed out the importance of background /sup 8/Li. We measured the /sup 2/H(/sup 7/Li,/sup 8/Li)/sup 1/H cross section to be 155 +- 20 mb at 12.2 +- 1.3 MeV.

  6. The role of radiation reaction in Lienard-Wiechert description of FEL interaction

    SciTech Connect

    Kimel, I.; Elias, L.R.

    1995-12-31

    The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursued the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.

  7. Quantum radiation reaction in head-on laser-electron beam interaction

    NASA Astrophysics Data System (ADS)

    Vranic, Marija; Grismayer, Thomas; Fonseca, Ricardo A.; Silva, Luis O.

    2016-07-01

    In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modelled with a quantum electrodynamic (QED)-PIC code and the results are compared with those obtained using a standard PIC code with a classical radiation reaction module. In addition, an analytical model is presented that estimates the value of the final electron energy spread after the interaction with the laser has finished. While classical radiation reaction is a continuous process, in QED, radiation emission is stochastic. The two pictures reconcile in the limit when the emitted photons energy is small compared to the energy of the emitting electrons. The energy spread of the electron distribution function always tends to decrease with classical radiation reaction, whereas the stochastic QED emission can also enlarge it. These two tendencies compete in the QED-dominated regime. Our analysis, supported by the QED module, reveals an upper limit to the maximal attainable energy spread due to stochasticity that depends on laser intensity and the electron beam average energy. Beyond this limit, the energy spread decreases. These findings are verified for different laser pulse lengths ranging from short ∼30 fs pulses presently available to the long ∼150 fs pulses expected in the near-future laser facilities, and compared with a theoretical model. Our results also show that near future experiments will be able to probe this transition and to demonstrate the competition between enhanced QED induced energy spread and energy spectrum narrowing from classical radiation reaction.

  8. Signatures of quantum radiation reaction in laser-electron-beam collisions

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-09-15

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations.

  9. Reaction formulation for radiation and scattering from plates, corner reflectors and dielectric-coated cylinders

    NASA Technical Reports Server (NTRS)

    Wang, N. N.

    1974-01-01

    The reaction concept is employed to formulate an integral equation for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders. The surface-current density on the conducting surface is expanded with subsectional bases. The dielectric layer is modeled with polarization currents radiating in free space. Maxwell's equation and the boundary conditions are employed to express the polarization-current distribution in terms of the surface-current density on the conducting surface. By enforcing reaction tests with an array of electric test sources, the moment method is employed to reduce the integral equation to a matrix equation. Inversion of the matrix equation yields the current distribution, and the scattered field is then obtained by integrating the current distribution. The theory, computer program and numerical results are presented for radiation and scattering from plates, corner reflectors, and dielectric-coated conducting cylinders.

  10. Gravitational energy

    NASA Astrophysics Data System (ADS)

    Katz, Joseph

    2005-12-01

    Observers at rest in a stationary spacetime flat at infinity can measure small amounts of rest-mass + internal energies + kinetic energies + pressure energy in a small volume of fluid attached to a local inertial frame. The sum of these small amounts is the total 'matter energy', EM, for those observers. If Mc2 is the total mass energy, the difference Mc2 - EM is the binding gravitational energy. Misner, Thorne and Wheeler (MTW) evaluated the gravitational energy of a spherically symmetric static spacetime. Here we show how to calculate gravitational energy in any static and stationary spacetimes with isolated sources with a set of observers at rest. The result of MTW is recovered and we find that electromagnetic and gravitational 3-covariant energy densities in conformastatic spacetimes are of opposite signs. Various examples suggest that gravitational energy is negative in spacetimes with special symmetries or when the energy momentum tensor satisfies usual energy conditions.

  11. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  12. Scalar Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  13. Republication of: Contributions to the theory of gravitational radiation fields. Exact solutions of the field equations of the general theory of relativity V

    NASA Astrophysics Data System (ADS)

    Kundt, Wolfgang; Trümper, Manfred

    2016-04-01

    This is an English translation of a paper by Wolfgang Kundt and Manfred Trümper, first published in 1962 in the proceedings of the Academy of Sciences and Literature in Mainz (Germany). The original paper was the last of a five-part series of articles containing the first summary of knowledge about exact solutions of Einstein's equations found until then. (All the other parts of the series have already been re-published as Golden Oldies.) This fifth contribution summarizes key points of the earlier papers and applies them, in particular results from papers II and IV in the series, in the context of the propagation of gravitational radiation when matter is present. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by Malcolm A.H. MacCallum and by a brief autobiography of Manfred Trümper.

  14. The challenge of detecting gravitational radiation is creating a new chapter in quantum electronics: Quantum nondemolition measurements

    NASA Technical Reports Server (NTRS)

    Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S.

    1979-01-01

    Future gravitational wave antennas will be approximately 100 kilogram cylinders, whose end-to-end vibrations must be measured so accurately (10 to the -19th power centimeters) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics where measurements are usually made on an ensemble of identical objects, and care is not given to whether any single object is perturbed or destroyed by the measurement. Electronic techniques required for quantum nondemolition measurements are described as well as the theory underlying them.

  15. Sources of gravitational waves

    NASA Technical Reports Server (NTRS)

    Schutz, Bernard F.

    1989-01-01

    Sources of low frequency gravitational radiation are reviewed from an astrophysical point of view. Cosmological sources include the formation of massive black holes in galactic nuclei, the capture by such holes of neutron stars, the coalescence of orbiting pairs of giant black holes, and various means of producing a stochastic background of gravitational waves in the early universe. Sources local to our Galaxy include various kinds of close binaries and coalescing binaries. Gravitational wave astronomy can provide information that no other form of observing can supply; in particular, the positive identification of a cosmological background originating in the early universe would be an event as significant as was the detection of the cosmic microwave background.

  16. A New Multi-energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to the Gravitational Collapse of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Takiwaki, Tomoya; Kotake, Kei

    2016-02-01

    We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account a baseline set in state-of-the-art simulations, in which inelastic neutrino-electron scattering, thermal neutrino production via pair annihilation, and nucleon-nucleon bremsstrahlung are included. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we first perform a series of standard radiation tests with analytical solutions that include the check of gravitational redshift and Doppler shift. A good agreement in these tests supports the reliability of the GR multi-energy neutrino transport scheme. We then conduct several test simulations of core-collapse, bounce, and shock stall of a 15{M}⊙ star in the Cartesian coordinates and make a detailed comparison with published results. Our code performs quite well to reproduce the results of full Boltzmann neutrino transport especially before bounce. In the postbounce phase, our code basically performs well, however, there are several differences that are most likely to come from the insufficient spatial resolution in our current 3D-GR models. For clarifying the resolution dependence and extending the code comparison in the late postbounce phase, we discuss that next-generation Exaflops class supercomputers are needed at least.

  17. Radiation reaction from QED: Lightfront perturbation theory in a plane wave background

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Torgrimsson, Greger

    2013-07-01

    We derive dynamical, real time radiation reaction effects from lightfront QED. Combining the Hamiltonian formalism with a plane wave background field, the calculation is performed in the Furry picture for which the background is treated exactly while interactions between quantum fields are treated in perturbation theory as normal. We work to a fixed order in perturbation theory, but no other approximation is made. The literature contains many proposals for the correct classical equation describing a radiating particle; we take the classical limit of our results and identify which equations are consistent with QED.

  18. Optical radiation and ionization of hydrogen atoms in heterogeneous exothermal reactions proceeding in an electric field

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Lavrent'ev, G. Ya.

    2009-09-01

    Optical radiation related to the Balmer series (Hα, Hβ, Hγ) of hydrogen atoms is discovered when studying the isothermal reaction of trimeric acetone peroxide decomposition on the surface of oxidized tungsten in a static electric field with a strength of up to 4 × 106 V/cm at T = 300 K. The distance from the surface over which desorbing excited hydrogen atoms radiate is determined from the Stark splitting of the lines. Electronically excited atoms remaining on the surface ionize according to the surface ionization mechanism.

  19. Gravitating Hopfions

    SciTech Connect

    Shnir, Ya. M.

    2015-12-15

    We construct solutions of the 3 + 1 dimensional Faddeev–Skyrme model coupled to Einstein gravity. The solutions are static and asymptotically flat. They are characterized by a topological Hopf number. We investigate the dependence of the ADM masses of gravitating Hopfions on the gravitational coupling. When gravity is coupled to flat space solutions, a branch of gravitating Hopfion solutions arises and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead, in the limit of a vanishing coupling constant, it connects to either the Bartnik–McKinnon or a generalized Bartnik–McKinnon solution. We further find that in the strong-coupling limit, there is no difference between the gravitating solitons of the Skyrme model and the Faddeev–Skyrme model.

  20. A New Decay Path in the {sup 12}C+{sup 16}O Radiative Capture Reaction

    SciTech Connect

    Courtin, S.; Lebhertz, D.; Haas, F.; Beck, C.; Michalon, A.; Salsac, M.-D.; Jenkins, D. G.; Marley, P.; Lister, C. J.

    2009-03-04

    The {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture reaction has been studied at energies close to the Coulomb barrier at Triumf (Vancouver) using the Dragon spectrometer and its associated BGO array. It has been observed that the {gamma} decay flux proceeds mainly via states around 10-11 MeV and via the direct feeding of the {sup 28}Si 3{sub 1}{sup -}(6879 keV) and 4{sub 2}{sup +}(6888 keV) deformed states. A discussion is presented about this selective feeding as well as perspectives for the use of novel detection systems for the study of light heavy-ion radiative capture reactions.

  1. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  2. Gravitational Wave Astrophysics: Opening the New Frontier

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2011-01-01

    The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.

  3. Gravitational waves from gravitational collapse

    SciTech Connect

    Fryer, Christopher L; New, Kimberly C

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  4. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    SciTech Connect

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas.

  5. Growing intermediate-mass black holes with gravitational waves

    NASA Astrophysics Data System (ADS)

    Gultekin, Kayhan

    2006-06-01

    We present results of numerical simulations of sequences of binary-single scattering events of black holes in dense stellar environments. The simulations cover a wide range of mass ratios from equal mass objects to 1000:10:10 [Special characters omitted.] and compare purely Newtonian simulations with a relativistic endpoint, simulations in which Newtonian encounters are interspersed with gravitational wave emission from the binary, and simulations that include the effects of gravitational radiation reaction by using equations of motion that include the 2.5-order post-Newtonian force terms, which are the leading-order terms of energy loss from gravitational waves. In all cases, the sequence is terminated when the binary's merger time due to gravitational radiation is less than the arrival time of the next interloper. We also examine the role of gravitational waves during an encounter and show that close approach cross-sections for three 1 [Special characters omitted.] objects are unchanged from the purely Newtonian dynamics except for close approaches smaller than 10-5 times the initial semimajor axis of the binary. We also present cross-sections for mergers resulting from gravitational radiation during three-body encounters for a range of binary semimajor axes and mass ratios including those of interest for intermediate-mass black holes (IMBHs). We find that black hole binaries typically merge with a very high eccentricity- --extremely high when gravitational waves are included during the encounter such that when the gravitational waves are detectable by LISA, most of the binaries will have eccentricities e > 0.9 though all will have circularized by the time they are detectable by LIGO. We also investigate the implications for the formation and growth of IMBHs and find that the inclusion of gravitational waves during the encounter results in roughly half as many black holes ejected from the host cluster for each black hole accreted onto the growing IMBH. The

  6. RAY-TRACING ANALYSIS OF ANISOTROPIC NEUTRINO RADIATION FOR ESTIMATING GRAVITATIONAL WAVES IN CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Kotake, Kei; Yamada, Shoichi

    2009-10-20

    We propose a ray-tracing method to estimate gravitational waves (GWs) generated by anisotropic neutrino emission in supernova cores. To calculate the gravitational waveforms, we derive analytic formulae in a useful form, which are applicable also for three-dimensional computations. Pushed by evidence of slow rotation prior to core-collapse, we focus on asphericities in neutrino emission and matter motions outside the protoneutron star. Based on the two-dimensional models, which mimic standing accretion shock instability (SASI)-aided neutrino heating explosions, we compute the neutrino anisotropies via the ray-tracing method in a post-processing manner and calculate the resulting waveforms. For simplicity, neutrino absorption and emission by free nucleons, dominant processes outside the protoneutron stars, are only taken into account, while the neutrino scattering and the velocity-dependent terms in the transport equations are neglected. With these computations, it is found that the waveforms exhibit more variety in contrast to the ones previously estimated by the ray-by-ray analysis. In addition to a positively growing feature, which was predicted to determine the total wave amplitudes predominantly, the waveforms are shown to exhibit large negative growth for some epochs during the growth of SASI. These features are found to stem from the excess of neutrino emission in lateral directions, which can be precisely captured by the ray-tracing calculation. Reflecting the nature of SASI which grows chaotically with time, there is little systematic dependence of the input neutrino luminosities on the maximum wave amplitudes. Due to the negative contributions and the neutrino absorptions appropriately taken into account by the ray-tracing method, the wave amplitudes become more than one order of magnitude smaller than the previous estimation, thus making their detections very hard for a Galactic source. On the other hand, it is pointed out that the GW spectrum from matter

  7. On the gravitational redshift

    NASA Astrophysics Data System (ADS)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2014-08-01

    The study of the gravitational redshift-a relative wavelength increase of ≈2×10-6 was predicted for solar radiation by Einstein in 1908-is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect-we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the ratio of the gravitational force acting on an electron in a hydrogen atom situated in the Sun’s photosphere to the electrostatic force between the proton and the electron in such an atom is approximately 3×10-21. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. With Einstein’s early assumption that the frequencies of spectral lines depend only on the generating ions themselves as starting point, we show that a solution can be formulated based on a two-step process in analogy with Fermi’s treatment of the Doppler effect. It provides a sequence of physical processes in line with the conservation of energy and momentum resulting in the observed shift and does not employ a geometric description. The gravitational field affects the release of the photon and not the atomic transition. The control parameter is the speed of light. The atomic emission is then contrasted with the gravitational redshift of matter-antimatter annihilation events.

  8. Space-Based Gravitational-Wave Observations as Tools for Testing General Relativity

    NASA Technical Reports Server (NTRS)

    Will, Clifford M.

    2004-01-01

    We continued a project, to analyse the ways in which detection and study of gravitational waves could provide quantitative tests of general relativity, with particular emphasis on waves that would be detectable by space-based observatories, such as LISA. This work had three foci: 1) Tests of scalar-tensor theories of gravity that, could be done by analyzing gravitational waves from neutron stars inspiralling into massive black holes, as detectable by LISA; 2) Study of alternative theories of gravity in which the graviton could be massive, and of how gravitational-wave observations by space-based detectors, solar-system tests, and cosmological observations could constrain such theories; and 3) Study of gravitational-radiation back reaction of particles orbiting black holes in general relativity, with emphasis on the effects of spin.

  9. Conservative, gravitational self-force for a particle in circular orbit around a Schwarzschild black hole in a radiation gauge

    SciTech Connect

    Shah, Abhay G.; Friedman, John L.; Price, Larry R.; Keidl, Tobias S.; Kim, Dong-Hoon

    2011-03-15

    This is the second of two companion papers on computing the self-force in a radiation gauge; more precisely, the method uses a radiation gauge for the radiative part of the metric perturbation, together with an arbitrarily chosen gauge for the parts of the perturbation associated with changes in black-hole mass and spin and with a shift in the center of mass. In a test of the method delineated in the first paper, we compute the conservative part of the self-force for a particle in circular orbit around a Schwarzschild black hole. The gauge vector relating our radiation gauge to a Lorenz gauge is helically symmetric, implying that the quantity h{sub {alpha}{beta}u}{sup {alpha}u{beta}} must have the same value for our radiation gauge as for a Lorenz gauge; and we confirm this numerically to one part in 10{sup 14}. As outlined in the first paper, the perturbed metric is constructed from a Hertz potential that is in a term obtained algebraically from the retarded perturbed spin-2 Weyl scalar, {psi}{sub 0}{sup ret}. We use a mode-sum renormalization and find the renormalization coefficients by matching a series in L=l+1/2 to the large-L behavior of the expression for the self-force in terms of the retarded field h{sub {alpha}{beta}}{sup ret}; we similarly find the leading renormalization coefficients of h{sub {alpha}{beta}u}{sup {alpha}u{beta}} and the related change in the angular velocity of the particle due to its self-force. We show numerically that the singular part of the self-force has the form f{sub {alpha}}{sup S}=<{nabla}{sub {alpha}{rho}}{sup -1}>, the part of {nabla}{sub {alpha}{rho}}{sup -1} that is axisymmetric about a radial line through the particle. This differs only by a constant from its form for a Lorenz gauge. It is because we do not use a radiation gauge to describe the change in black-hole mass that the singular part of the self-force has no singularity along a radial line through the particle and, at least in this example, is spherically

  10. Gravitational lenses

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1989-01-01

    Recent observational and theoretical investigations of gravitational-lens phenomena are reviewed, and sample numerical data are presented in tables. Particular attention is given to luminous arcs, radio rings, galaxy-quasar associations, the problem of deriving actually or practically unique models of individual lens systems, and time delays and the Hubble constant.

  11. Methodological Gravitism

    ERIC Educational Resources Information Center

    Zaman, Muhammad

    2011-01-01

    In this paper the author presents the case of the exchange marriage system to delineate a model of methodological gravitism. Such a model is not a deviation from or alteration to the existing qualitative research approaches. I have adopted culturally specific methodology to investigate spouse selection in line with the Grounded Theory Method. This…

  12. Radiation reaction and resulting photon emission from laser-irradiated solid targets

    NASA Astrophysics Data System (ADS)

    Stark, David; Arefiev, Alexey; Hegelich, Manuel

    2014-10-01

    Once completed, an ongoing upgrade of the Texas-PW laser system would allow us to achieve on-target laser intensities of up to 5 ×1022 W/cm2. As experimental confirmation of the radiation reaction force and the variety of models describing it remains a challenge, here we present a scenario that would enable us to observe the effect by detecting the resulting photon emission. A laser with our planned intensity could accelerate an electron to hundreds of MeV, but the radiation reaction and thus the photon emission would be relatively weak if the electron co-propagates with the wave. We consider a solid density target irradiated by a laser beam so that strong fields are generated due to charge separation. These fields can alter the electron trajectories, leading to strong radiation reaction and photon emission in the focal spot. Simulating this interaction using the particle-in-cell code EPOCH, we perform a target density scan that allows us to optimize the fraction of the laser energy converted into photons and to determine the photon spectrum. Knowing the spectrum and the angular emission is critical for measurements in the lab, since these photons must be distinguished from those from other processes. We use HPC resources from the Texas Advanced Computing Center. This work is supported by DOD-Air Force Contract No. FA9550-14-1-0045, US DOE Contract No. DE-FG02-04ER54742, and DOE SCGF by ORISE-ORAU under Contract No. DE-AC05-06OR23100.

  13. Radiation reaction and renormalization in classical electrodynamics of a point particle in any dimension

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.; Lyakhovich, S. L.; Sharapov, A. A.

    2002-07-01

    The effective equations of motion for a point charged particle taking into account the radiation reaction are considered in various space-time dimensions. The divergences stemming from the pointness of the particle are studied and an effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d=4. For the cases of three and six dimensions the covariant analogues of the Lorentz-Dirac equation are explicitly derived.

  14. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  15. Momentum accumulation due to solar radiation torque, and reaction wheel sizing, with configuration optimization

    NASA Technical Reports Server (NTRS)

    Hablani, Hari B.

    1993-01-01

    This paper has a two-fold objective: determination of yearly momentum accumulation due to solar radiation pressure, and optimum reaction wheel sizing. The first objective is confronted while determining propellant consumption by the attitude control system over a spacecraft's lifetime. This, however, cannot be obtained from the daily momentum accumulation and treating that constant throughout the year, because the orientation of the solar arrays relative to the spacecraft changes over a wide range in a year, particularly if the spacecraft has two arrays, one normal and the other off-normal to different extent at different times to the sun rays. The paper first develops commands for the arrays for tracking the sun, the arrays articulated to earth-pointing spacecraft with two rotational degrees of freedom, and spacecraft in an arbitrary circular orbit. After developing expressions for solar radiation torque due to one or both arrays, arranged symmetrically or asymmetrically relative to the spacecraft bus, momentum accumulation over an orbit and then over a year are determined. The remainder of the paper is concerned with designing reaction wheel configurations. Four-, six-, and three-wheel configurations are considered, and for given torque and momentum requirements, their cant angles with the roll/yaw plane are optimized for minimum power consumption. Finally, their momentum and torque capacities are determined for one-wheel failure scenario, and six configurations are compared and contrasted.

  16. Radiation reaction on charged particles in three-dimensional motion in classical and quantum electrodynamics

    SciTech Connect

    Higuchi, Atsushi; Martin, Giles D. R.

    2006-01-15

    We extend our previous work [A. Higuchi and G. D. R. Martin, Found. Phys. 35, 1149 (2005)], which compared the predictions of quantum electrodynamics concerning radiation reaction with those of the Abraham-Lorentz-Dirac theory for a charged particle in linear motion. Specifically, we calculate the predictions for the change in position of a charged-scalar particle, moving in three-dimensional space, due to the effect of radiation reaction in the one-photon-emission process in quantum electrodynamics. The scalar particle is assumed to be accelerated for a finite period of time by a three-dimensional electromagnetic potential dependent only on one of the spacetime coordinates. We perform this calculation in the ({Dirac_h}/2{pi}){yields}0 limit and show that the change in position agrees with that obtained in classical electrodynamics with the Lorentz-Dirac force treated as a perturbation. We also show for a time-dependent but space-independent electromagnetic potential that the forward-scattering amplitude at order e{sup 2} does not contribute to the position change in the ({Dirac_h}/2{pi}){yields}0 limit after the mass renormalization is taken into account.

  17. Gravitational Lensing

    ScienceCinema

    Lincoln, Don

    2016-07-12

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  18. Gravitational Lensing

    SciTech Connect

    Lincoln, Don

    2015-06-24

    In a long line of intellectual triumphs, Einstein’s theory of general relativity was his greatest and most imaginative. It tells us that what we experience as gravity can be most accurately described as the bending of space itself. This idea leads to consequences, including gravitational lensing, which is caused by light traveling in this curved space. This is works in a way analogous to a lens (and hence the name). In this video, Fermilab’s Dr. Don Lincoln explains a little general relativity, a little gravitational lensing, and tells us how this phenomenon allows us to map out the matter of the entire universe, including the otherwise-invisible dark matter.

  19. Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Saha, P.; Murdin, P.

    2000-11-01

    Gravity bends light rays in a way analogous to, but quantitatively different from, the way it bends trajectories of passing particles. If light from some bright object passes close enough to some foreground mass, that object's image will be altered. The effect is more like a piece of bathroom glass in the sky than a precision-ground and well-focused lens, but the terms `gravitational lensing' or ...

  20. Experimental gravitation

    NASA Astrophysics Data System (ADS)

    Lämmerzahl, Claus; di Virgilio, Angela

    2016-06-01

    100 years after the invention of General Relativity (GR) and 110 years after the development of Special Relativity (SR) we have to state that until now no single experiment or observation allows any doubt about the validity of these theories within the accuracy of the available data. Tests of GR can be divided into three categories: (i) test of the foundations of GR, (ii) tests of the consequences of GR, and (iii) test of the interplay between GR and quantum mechanics. In the first category, we have tests of the Einstein Equivalence Principle and the structure of the Newton axioms, in the second category we have effects like the gravitational redshift, light defection, gravitational time delay, the perihelion shift, the gravitomagnetic effects as the Lense-Thirring and Schiff effect, and gravitational waves. Tests of the effects of gravity on quantum systems are a first step towards experiments searching for a quantum gravity theory. In this paper, we also highlight practical applications in positioning, geodesy, and the International Atomic Time. After 100 years, GR can now definitely be regarded also as practical and applied science.

  1. Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under the influence of gravitational field with conductive and radiative heat fluxes

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2016-01-01

    Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under the influence of a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal gas and small solid particles, in which solid particles are uniformly distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The medium is assumed to be under the influence of a gravitational field due to central mass ( bar{m} ) at the origin (Roche Model). It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the central mass. The initial density of the ambient medium is taken to be always constant. The effects of the variation of the gravitational parameter and nonidealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is shown that due to an increase in the gravitational parameter the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow variables and the shock strength are increased. Further, it is found that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the piston and the shock surface is reduced. The shock waves in dusty gas under the influence of a

  2. Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Pires, Sandrine; Starck, Jean-Luc; Leonard, Adrienne; Réfrégier, Alexandre

    2012-03-01

    This chapter reviews the data mining methods recently developed to solve standard data problems in weak gravitational lensing. We detail the different steps of the weak lensing data analysis along with the different techniques dedicated to these applications. An overview of the different techniques currently used will be given along with future prospects. Until about 30 years ago, astronomers thought that the Universe was composed almost entirely of ordinary matter: protons, neutrons, electrons, and atoms. The field of weak lensing has been motivated by the observations made in the last decades showing that visible matter represents only about 4-5% of the Universe (see Figure 14.1). Currently, the majority of the Universe is thought to be dark, that is, does not emit electromagnetic radiation. The Universe is thought to be mostly composed of an invisible, pressure less matter - potentially relic from higher energy theories - called "dark matter" (20-21%) and by an even more mysterious term, described in Einstein equations as a vacuum energy density, called "dark energy" (70%). This "dark" Universe is not well described or even understood; its presence is inferred indirectly from its gravitational effects, both on the motions of astronomical objects and on light propagation. So this point could be the next breakthrough in cosmology. Today's cosmology is based on a cosmological model that contains various parameters that need to be determined precisely, such as the matter density parameter Omega_m or the dark energy density parameter Omega_lambda. Weak gravitational lensing is believed to be the most promising tool to understand the nature of dark matter and to constrain the cosmological parameters used to describe the Universe because it provides a method to directly map the distribution of dark matter (see [1,6,60,63,70]). From this dark matter distribution, the nature of dark matter can be better understood and better constraints can be placed on dark energy

  3. Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Ł.; Moniez, M.; Horne, K.; Street, R.

    2012-04-01

    Gravitational microlensing is a well established and unique field of time-domain astrophysics. For two decades microlensing surveys have been regularly observing millions of stars to detect elusive events that follow a characteristic Paczyński lightcurve. This workshop reviewed the current state of the field, and covered the major topics related to microlensing: searches for extrasolar planets, and studies of dark matter. There were also discussions of issues relating to the organisation of follow-up observations for microlensing, as well as serendipitous scientific outcomes resulting from extensive microlensing data.

  4. On the rotation of polarization by a gravitational lens

    NASA Astrophysics Data System (ADS)

    Faraoni, V.

    1993-05-01

    It is proved that the field of a gravitational lens induces no rotation in the polarization vector of electromagnetic radiation, in agreement with the previous literature, but with a different approach. The result is generalized to the case of less conventional gravitational lenses (static cosmic strings and gravitational waves).

  5. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    NASA Astrophysics Data System (ADS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  6. Radiation reaction on a classical charged particle: a modified form of the equation of motion.

    PubMed

    Alcaine, Guillermo García; Llanes-Estrada, Felipe J

    2013-09-01

    We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force. PMID:24125376

  7. Radiation reaction on a classical charged particle: A modified form of the equation of motion

    NASA Astrophysics Data System (ADS)

    Alcaine, Guillermo García; Llanes-Estrada, Felipe J.

    2013-09-01

    We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.

  8. Radiation reaction on a classical charged particle: a modified form of the equation of motion.

    PubMed

    Alcaine, Guillermo García; Llanes-Estrada, Felipe J

    2013-09-01

    We present and numerically solve a modified form of the equation of motion for a charged particle under the influence of an external force, taking into account the radiation reaction. This covariant equation is integro-differential, as Dirac-Röhrlich's, but has several technical improvements. First, the equation has the form of Newton's second law, with acceleration isolated on the left hand side and the force depending only on positions and velocities: Thus, the equation is linear in the highest derivative. Second, the total four-force is by construction perpendicular to the four-velocity. Third, if the external force vanishes for all future times, the total force and the acceleration automatically vanish at the present time. We show the advantages of this equation by solving it numerically for several examples of external force.

  9. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Braccini, Stefano; Fidecaro, Francesco

    The detection of gravitational waves is challenging researchers since half a century. The relative precision required, 10^{-21}, is difficult to imagine, this is 10^{-5} the diameter of a proton over several kilometres, using masses of tens of kilograms, or picometres over millions of kilometres. A theoretical description of gravitational radiation and its effects on matter, all consequence of the general theory of relativity, is given. Then the astrophysical phenomena that are candidates of gravitational wave emission are discussed, considering also amplitudes and rates. The binary neutron star system PSR1913+16, which provided the first evidence for energy loss by gravitational radiation in 1975, is briefly discussed. Then comes a description of the experimental developments, starting with ground-based interferometers, their working principles and their most important sources of noise. The earth-wide network that is being built describes how these instruments will be used in the observation era. Several other detection techniques, such as space interferometry, pulsar timing arrays and resonant detectors, covering different bands of the gravitational wave frequency spectrum complete these lectures.

  10. Investigation of CaO-CO₂ reaction kinetics by in-situ XRD using synchrotron radiation

    SciTech Connect

    Biasin, A.; Segre, C. U.; Salviulo, G.; Zorzi, F.; Strumendo, M.

    2015-02-05

    In this work, in-situ synchrotron radiation x-ray powder diffraction (SR-XRPD), performed at the Advanced Photon Source (APS) facilities of the Argonne National Laboratory, was applied to investigate the CaO–CO2 reaction. A set of CO2 absorption experiments were conducted in a high temperature reaction capillary with a controlled atmosphere (CO2 partial pressure of 1 bar), in the temperature range between 450 °C and 750 °C using CaO based sorbents obtained by calcination of commercial calcium carbonate. The evolution of the crystalline phases during CO2 uptake by the CaO solid sorbents was monitored for a carbonation time of 20 min as a function of the carbonation temperature and of the calcination conditions. The Rietveld refinement method was applied to estimate the calcium oxide conversion during the reaction progress and the average size of the initial (at the beginning of carbonation) calcium oxide crystallites. The measured average initial carbonation rate (in terms of conversion time derivative) of 0.280 s-1 (±13.2% standard deviation) is significantly higher than the values obtained by thermo-gravimetric analysis and reported thus far in the literature. Additionally, a dependence of the conversion versus time curves on the initial calcium oxide crystallite size was observed and a linear relationship between the initial CaO crystallite size and the calcium oxide final conversion was identified.

  11. Chiral primordial gravitational waves from a Lifshitz point.

    PubMed

    Takahashi, Tomohiro; Soda, Jiro

    2009-06-12

    We study primordial gravitational waves produced during inflation in quantum gravity at a Lifshitz point proposed by Horava. Assuming power-counting renormalizability, foliation-preserving diffeomorphism invariance, and the condition of detailed balance, we show that primordial gravitational waves are circularly polarized due to parity violation. The chirality of primordial gravitational waves is a quite robust prediction of quantum gravity at a Lifshitz point which can be tested through observations of cosmic microwave background radiation and stochastic gravitational waves.

  12. Acemannan-containing wound dressing gel reduces radiation-induced skin reactions in C3H mice

    SciTech Connect

    Roberts, D.B.; Travis, E.L.

    1995-07-15

    To determine (a) whether a wound dressing gel that contains acemannan extracted from aloe leaves affects the severity of radiation-induced acute skin reactions in C3H mice; (b) if so, whether other commercially available gels such as a personal lubricating jelly and a healing ointment have similar effects; and (c) when the wound dressing gel should be applied for maximum effect. Male C3H mice received graded single doses of gamma radiation ranging from 30 to 47.5 Gy to the right leg. In most experiments, the gel was applied daily beginning immediately after irradiation. Dose-response curves were obtained by plotting the percentage of mice that reached or exceeded a given peak skin reaction as a function of dose. Curves were fitted by logit analysis and ED{sub 50} values, and 95% confidence limits were obtained. The average peak skin reactions of the wound dressing gel-treated mice were lower than those of the untreated mice at all radiation doses tested. The ED{sub 50} values for skin reactions of 2.0-2.75 were approximately 7 Gy higher in the wound dressing gel-treated mice. The average peak skin reactions and the ED{sub 50} values for mice treated with personal lubricating jelly or healing ointment were similar to irradiated control values. Reduction in the percentage of mice with skin reactions of 2.5 or more was greatest in the groups that received wound dressing gel for at least 2 weeks beginning immediately after irradiation. There was no effect if gel was applied only before irradiation or beginning 1 week after irradiation. Wound dressing gel, but not personal lubricating jelly or healing ointment, reduces acute radiation-induced skin reactions in C3H mice if applied daily for at least 2 weeks beginning immediately after irradiation. 31 refs., 4 figs., 1 tab.

  13. Guiding-centre transformation of the radiation-reaction force in a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hirvijoki, E.; Decker, J.; Brizard, A. J.; Embréus, O.

    2015-10-01

    > In this paper, we present the guiding-centre transformation of the radiation-reaction force of a classical point charge travelling in a non-uniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field non-uniformity length scale, so that the guiding-centre Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation-reaction force is obtained with the Poisson-bracket formalism originally introduced by Brizard (Phys. Plasmas, vol. 11, 2004, 4429-4438), where it was used to eliminate the fast gyromotion from the Fokker-Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-centre radiation-reaction force include tracing of charged particle orbits in complex magnetic fields as well as the kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g. for runaway-electron dynamics in tokamaks.

  14. Gravitational waves and multimessenger astronomy

    NASA Astrophysics Data System (ADS)

    Ricci, Fulvio

    2016-07-01

    It is widely expected that in the coming quinquennium the first gravitational wave signal will be directly detected. The ground-based advanced LIGO and Virgo detectors are being upgraded to a sensitivity level such that we expect to be measure a significant binary merger rate. Gravitational waves events are likely to be accompanied by electromagnetic counterparts and neutrino emission carrying complementary information to those associated to the gravitational signals. If it becomes possible to measure all these forms of radiation in concert, we will end up an impressive increase in the comprehension of the whole phenomenon. In the following we summarize the scientific outcome of the interferometric detectors in the past configuration. Then we focus on some of the potentialities of the advanced detectors once used in the new context of the multimessenger astronomy.

  15. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy

    PubMed Central

    Yang, Dae Sik; Lee, Jung Ae; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  16. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    SciTech Connect

    Plante, Ianik; Devroye, Luc

    2015-09-15

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  17. On the Green's function of the partially diffusion-controlled reversible ABCD reaction for radiation chemistry codes

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc

    2015-09-01

    Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.

  18. Comprehensive Evaluation of Personal, Clinical, and Radiation Dosimetric Parameters for Acute Skin Reaction during Whole Breast Radiotherapy.

    PubMed

    Yang, Dae Sik; Lee, Jung Ae; Yoon, Won Sup; Lee, Nam Kwon; Park, Young Je; Lee, Suk; Kim, Chul Yong; Son, Gil Soo

    2016-01-01

    Skin reaction is major problem during whole breast radiotherapy. To identify factors related to skin reactions during whole breast radiotherapy, various personal, clinical, and radiation dosimetric parameters were evaluated. From January 2012 to December 2013, a total of 125 patients who underwent breast conserving surgery and adjuvant whole breast irradiation were retrospectively reviewed. All patients had both whole breast irradiation and boost to the tumour bed. Skin reaction was measured on the first day of boost therapy based on photography of the radiation field and medical records. For each area of axilla and inferior fold, the intensity score of erythema (score 1 to 5) and extent (score 0 to 1) were summed. The relationship of various parameters to skin reaction was evaluated using chi-square and linear regression tests. The V 100 (volume receiving 100% of prescribed radiation dose, p < 0.001, both axilla and inferior fold) and age (p = 0.039 for axilla and 0.026 for inferior fold) were significant parameters in multivariate analyses. The calculated axilla dose (p = 0.003) and breast separation (p = 0.036) were also risk factors for axilla and inferior fold, respectively. Young age and large V 100 are significant factors for acute skin reaction that can be simply and cost-effectively measured. PMID:27579310

  19. Electromagnetic waves propagation nearby rotating gravitating astrophysical object with atmosphere

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.; Tereshin, A. A.; Fomin, I. V.; Chelnokov, M. B.; Kauts, V. L.; Gladysheva, T. M.; Bazleva, D. D.

    The aim of the article to explore the effects of gravitational lensing and attraction of electromagnetic radiation in the description of the propagation of radiation nearby the atmospheres of rotating astrophysical objects.

  20. Radiation-reaction in classical off-shell electrodynamics. I. The above mass-shell case

    NASA Astrophysics Data System (ADS)

    Aharonovich, I.; Horwitz, L. P.

    2012-03-01

    Offshell electrodynamics based on a manifestly covariant off-shell relativistic dynamics of Stueckelberg, Horwitz, and Piron, is five-dimensional. In this paper, we study the problem of radiation reaction of a particle in motion in this framework. In particular, the case of above-mass-shell is studied in detail, where the renormalization of the Lorentz force leads to a system of non-linear differential equations for 3 Lorentz scalars. The system is then solved numerically, where it is shown that the mass-shell deviation scalar ɛ either smoothly falls down to 0 (this result provides a mechanism for the mass stability of the off-shell theory), or strongly diverges under more extreme conditions. In both cases, no runaway motion is observed. Stability analysis indicates that the system seems to have chaotic behavior. It is also shown that, although a motion under which the mass-shell deviation ɛ is constant but not-zero, is indeed possible, but, it is unstable, and eventually it either decays to 0 or diverges.

  1. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    SciTech Connect

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-15

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common 'bead-on-the-wire' approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their 'falling' on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  2. Role of radiation reaction forces in the dynamics of centrifugally accelerated particles

    NASA Astrophysics Data System (ADS)

    Dalakishvili, G. T.; Rogava, A. D.; Berezhiani, V. I.

    2007-08-01

    In this paper we study the influence of radiation reaction (RR) forces on the dynamics of centrifugally accelerated particles. It is assumed that the particles move along magnetic field lines anchored in the rotating central object. The common “bead-on-the-wire” approximation is used. The solutions are found and analyzed for cases when the form of the prescribed trajectory (rigidly rotating field line) is approximated by: (a) straight line, and (b) Archimedes spiral. Dynamics of neutral and charged particles are compared with the emphasis on the role of RR forces in the latter case. It is shown that for charged particles there exist locations of stable equilibrium. It is demonstrated that for particular initial conditions RR forces cause centripetal motion of the particles: their “falling” on the central rotating object. It is found that in the case of Archimedes spiral both neutral and charged particles can reach infinity where their motion has asymptotically force-free character. The possible importance of these processes for the acceleration of relativistic, charged particles by rotating magnetospheres in the context of the generation of nonthermal, high-energy emission of AGN and pulsars is discussed.

  3. Radiation reaction in the interaction of ultraintense laser with matter and gamma ray source

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Teo, W. R.; Moritaka, Toseo; Takabe, H.

    2016-05-01

    Radiation reaction (RR) force plays an important role in gamma ray production in the interaction of ultraintense laser with relativistic counterpropagating electron at intensity 1022 W/cm2 and beyond. The relationship between emission spectrum and initial kinetic energy of electron at such intensities is yet to be clear experimentally. On the other hand, the energy from both the relativistic electron beam and laser pulse may be converted into the gamma rays. Therefore, the conversion efficiency of energy purely from laser pulse into gamma rays is of great interest. We present simulation results of an electron dynamics in strong laser field by taking into account the RR effects. We investigated how the RR effects influence the emission spectrum and photon number distribution for different laser condition. We showed that the peaks of emission spectra are suppressed if higher initial kinetic energy of electron interacts with long laser pulse duration. We then list the conversion efficiencies of laser pulse energy into gamma ray. We note that an electron with energy of 40 MeV would convert up to 80% of the total of electromagnetic work and initial kinetic energy of electron when interacting with 10 fs laser pulse at intensity 2 ×1023 W/cm2. For a bunch of electron with charge 1 nC would emit around 0.1 J of energy into gamma ray emission.

  4. Gravitational waves and the death-dance of compact stellar binaries

    NASA Astrophysics Data System (ADS)

    Will, Clifford M.

    1996-05-01

    The completion of a network of advanced laser-interferometric gravitational-wave observatories (US LIGO and European VIRGO projects) around 2001 will make possible the study of the inspiral and coalescence of binary systems of compact objects (neutron stars and black holes), using gravitational radiation. To extract useful information from the waves, such as the masses and spins of the bodies, theoretical general relativistic gravitational waveforms will be used as templates, cross-correlated against the detector output, in a matched filtering process. Because the broad-band detectors will be very sensitive to the non-linearly evolving phase of the waves, the templates must be extremely accurate in their treatment of the gravitational back-reaction on the orbital frequency, probably as accurate as O[(v/c)^6] beyond the predictions of the quadrupole formula. This presents a major challenge to theorists. Recently, templates accurate to O[(v/c)^4] were obtained by two independent methods (L. Blanchet, T. Damour, B. R. Iyer, C. M. Will and A. G. Wiseman, Phys. Rev. Lett. 74), 3515 (1995), and extensions to O[(v/c)^5] and higher are in progress. We summarize one of these methods, which extends and improves an earlier framework due to Epstein and Wagoner (R. Epstein and R. V. Wagoner, Astrophys. J. 210), 764 (1975), in which Einstein's equations are recast as a flat spacetime wave equation with source comprised of matter confined to compact regions and gravitational non-linearities extending to infinity. The new method (C. M. Will and A. G. Wiseman, Phys. Rev. D, submitted), carried through O[(v/c)^4], is free of divergences or undefined integrals, correctly predicts all gravitational wave ``tail'' effects caused by backscatter of the outgoing radiation off the background curved spacetime, and yields radiation that propagates asymptotically along true null cones of the curved spacetime.

  5. Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference

    NASA Astrophysics Data System (ADS)

    Coccia, E.; Pizzella, G.; Ronga, F.

    1995-07-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On

  6. Improving the accuracy of simulation of radiation-reaction effects with implicit Runge-Kutta-Nyström methods

    NASA Astrophysics Data System (ADS)

    Elkina, N. V.; Fedotov, A. M.; Herzing, C.; Ruhl, H.

    2014-05-01

    The Landau-Lifshitz equation provides an efficient way to account for the effects of radiation reaction without acquiring the nonphysical solutions typical for the Lorentz-Abraham-Dirac equation. We solve the Landau-Lifshitz equation in its covariant four-vector form in order to control both the energy and momentum of radiating particles. Our study reveals that implicit time-symmetric collocation methods of the Runge-Kutta-Nyström type are superior in accuracy and better at maintaining the mass-shell condition than their explicit counterparts. We carry out an extensive study of numerical accuracy by comparing the analytical and numerical solutions of the Landau-Lifshitz equation. Finally, we present the results of the simulation of particle scattering by a focused laser pulse. Due to radiation reaction, particles are less capable of penetrating into the focal region compared to the case where radiation reaction is neglected. Our results are important for designing forthcoming experiments with high intensity laser fields.

  7. Theory and experiment in gravitational physics

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1981-01-01

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  8. Monitoring dynamic reactions of red blood cells to UHF electromagnetic waves radiation using a novel micro-imaging technology.

    PubMed

    Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong

    2012-12-01

    Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.

  9. Gravitational memory, BMS supertranslations and soft theorems

    NASA Astrophysics Data System (ADS)

    Strominger, Andrew; Zhiboedov, Alexander

    2016-01-01

    The transit of a gravitating radiation pulse past arrays of detectors stationed near future null infinity in the vacuum is considered. It is shown that the relative positions and clock times of the detectors before and after the radiation transit differ by a BMS supertranslation. An explicit expression for the supertranslation in terms of moments of the radiation energy flux is given. The relative spatial displacement found for a pair of nearby detectors reproduces the well-known and potentially measurable gravitational memory effect. The displacement memory formula is shown to be equivalent to Weinberg's formula for soft graviton production.

  10. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    DOE PAGESBeta

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-07

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focusmore » on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. As a result, higher magnetization studies are promising and will be carried out in the future.« less

  11. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria

    NASA Astrophysics Data System (ADS)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.

    2016-09-01

    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  12. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids II. Imidazolium cations.

    SciTech Connect

    Shkrob, I. A.; Marin, T. W.; Chemerisov, S. D.; Hatcher, J.; Wishart, J.

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through 'ionization of the ions': oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) {sigma}{sigma}*-bound dimer radical cation. In addition to these reactions, when methoxy or C{sub {alpha}}-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 {+-} 300 whose radiolytic yield increases with dose (0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium

  13. Radiation induced redox reactions and fragmentation of constituent ions in ionic liquids. 2. Imidazolium cations.

    PubMed

    Shkrob, Ilya A; Marin, Timothy W; Chemerisov, Sergey D; Hatcher, Jasmine L; Wishart, James F

    2011-04-14

    In part 1 of this study, radiolytic degradation of constituent anions in ionic liquids (ILs) was examined. The present study continues the themes addressed in part 1 and examines the radiation chemistry of 1,3-dialkyl substituted imidazolium cations, which currently comprise the most practically important and versatile class of ionic liquid cations. For comparison, we also examined 1,3-dimethoxy- and 2-methyl-substituted imidazolium and 1-butyl-4-methylpyridinium cations. In addition to identification of radicals using electron paramagnetic resonance spectroscopy (EPR) and selective deuterium substitution, we analyzed stable radiolytic products using (1)H and (13)C nuclear magnetic resonance (NMR) and tandem electrospray ionization mass spectrometry (ESMS). Our EPR studies reveal rich chemistry initiated through "ionization of the ions": oxidation and the formation of radical dications in the aliphatic arms of the parent cations (leading to deprotonation and the formation of alkyl radicals in these arms) and reduction of the parent cation, yielding 2-imidazolyl radicals. The subsequent reactions of these radicals depend on the nature of the IL. If the cation is 2-substituted, the resulting 2-imidazolyl radical is relatively stable. If there is no substitution at C(2), the radical then either is protonated or reacts with the parent cation forming a C(2)-C(2) σσ*-bound dimer radical cation. In addition to these reactions, when methoxy or C(α)-substituted alkyl groups occupy the N(1,3) positions, their elimination is observed. The elimination of methyl groups from N(1,3) was not observed. Product analyses of imidazolium liquids irradiated in the very-high-dose regime (6.7 MGy) reveal several detrimental processes, including volatilization, acidification, and oligomerization. The latter yields a polymer with m/z of 650 ± 300 whose radiolytic yield increases with dose (~0.23 monomer units per 100 eV for 1-methyl-3-butylimidazolium trifluorosulfonate). Gradual

  14. Gravitational waves from spinning eccentric binaries

    NASA Astrophysics Data System (ADS)

    Csizmadia, Péter; Debreczeni, Gergely; Rácz, István; Vasúth, Mátyás

    2012-12-01

    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations, while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems, it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity, thus confirming a similar result obtained by Brown and Zimmerman (2010 Phys. Rev. D 81 024007). In addition, by investigating the validity of the energy balance relation we show that, contrary to the general expectations, the PN approximation should not be applied once the PN parameter gets beyond the critical value ˜0.08 - 0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems—which could be formed e.g. in various many-body interactions in the galactic halo—we have found that they possess very specific characteristics which may be used to identify these type of binary systems. This paper is dedicated to the memory of our colleague and friend Péter Csizmadia a young physicist, computer expert and one of the best Hungarian mountaineers who disappeared in China’s Sichuan near the Ren Zhong Feng peak of the Himalayas on 23 Oct. 2009. We started to develop CBwaves jointly with Péter a couple of months before he left for China.

  15. Quantum theory of extended particle dynamics in the presence of EM radiation-reaction

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Tessarotto, Massimo

    2015-08-01

    In this paper a trajectory-based relativistic quantum wave equation is established for extended charged spinless particles subject to the action of the electromagnetic (EM) radiation-reaction (RR) interaction. The quantization pertains the particle dynamics, in which both the external and self EM fields are treated classically. The new equation proposed here is referred to as the RR quantum wave equation. This is shown to be an evolution equation for a complex scalar quantum wave function and to be realized by a first-order PDE with respect to a quantum proper time s . The latter is uniquely prescribed by representing the RR quantum wave equation in terms of the corresponding quantum hydrodynamic equations and introducing a parametrization in terms of Lagrangian paths associated with the quantum fluid velocity. Besides the explicit proper time dependence, the theory developed here exhibits a number of additional notable features. First, the wave equation is variational and is consistent with the principle of manifest covariance. Second, it permits the definition of a strictly positive 4-scalar quantum probability density on the Minkowski space-time, in terms of which a flow-invariant probability measure is established. Third, the wave equation is non-local, due to the characteristic EM RR retarded interaction. Fourth, the RR wave equation recovers the Schrödinger equation in the non-relativistic limit and the customary Klein-Gordon wave equation when the EM RR is negligible or null. Finally, the consistency with the classical RR Hamilton-Jacobi equation is established in the semi-classical limit.

  16. Gravitational lens time delays and gravitational waves

    SciTech Connect

    Frieman, J.A. Department of Astronomy Astrophysics, University of Chicago, Chicago, Illinois 60637 ); Harari, D.D.; Surpi, G.C. )

    1994-10-15

    Using Fermat's principle, we analyze the effects of very long wavelength gravitational waves upon the images of a gravitationally lensed quasar. We show that the lens equation in the presence of gravity waves is equivalent to that of a lens with a different alignment between source, deflector, and observer in the absence of gravity waves. Contrary to a recent claim, we conclude that measurements of time delays in gravitational lenses cannot serve as a method to detect or constrain a stochastic background of gravitational waves of cosmological wavelengths, because the wave-induced time delay is observationally indistinguishable from an intrinsic time delay due to the lens geometry.

  17. Estimates of nonequilibrium radiation for Venus entry. [generated by chemical reactions in shock layers

    NASA Technical Reports Server (NTRS)

    Grose, W. L.; Nealy, J. E.

    1975-01-01

    The present investigation is an analysis of the radiation from the chemical nonequilibrium region in the shock layer about a vehicle during Venus entry. The radiation and the flow were assumed to be uncoupled. An inviscid, nonequilibrium flowfield was calculated and an effective electronic temperature was determined for the predominant radiating species. Species concentrations and electronic temperature were then input into a radiation transport code to calculate heating rates. The present results confirm earlier investigations which indicate that the radiation should be calculated using electronic temperatures for the radiating species. These temperatures are not related in a simple way to the local translational temperature. For the described mission, the nonequilibrium radiative heating rate is approximately twice the corresponding equilibrium value at peak heating.

  18. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns.

  19. The pregalactic cosmic gravitational wave background

    NASA Technical Reports Server (NTRS)

    Matzner, Richard A.

    1989-01-01

    An outline is given that estimates the expected gravitational wave background, based on plausible pregalactic sources. Some cosmologically significant limits can be put on incoherent gravitational wave background arising from pregalactic cosmic evolution. The spectral region of cosmically generated and cosmically limited radiation is, at long periods, P greater than 1 year, in contrast to more recent cosmological sources, which have P approx. 10 to 10(exp -3).

  20. Bizarre (pseudomalignant) granulation-tissue reactions following ionizing-radiation exposure. A microscopic, immunohistochemical, and flow-cytometric study

    SciTech Connect

    Weidner, N.; Askin, F.B.; Berthrong, M.; Hopkins, M.B.; Kute, T.E.; McGuirt, F.W.

    1987-04-15

    Two patients developed extremely bizarre (pseudomalignant) granulation-tissue reactions in the larynx and facial sinuses, following radiation therapy for carcinoma. Containing pleomorphic spindle cells and numerous (sometimes atypical) mitotic figures, both tumefactive lesions simulated high grade malignancies. While the pleomorphic cells contained vimentin immunoreactivity, they were nonreactive for low or high molecular weight keratin. Flowcytometric study of paraffin-embedded tissues revealed DNA indexes of 0.75 and 1.0. Neither recurred locally nor spread distantly after therapy. Their granulation-tissue growth pattern, and the presence of stromal and endothelial cells showing similar degrees of cytologic atypia were central to their recognition as benign. These findings show that severely atypical, sometimes aneuploid, granulation-tissue reactions can occur following radiation exposure. Care should be taken not to misinterpret these lesions as malignant.

  1. Effect of the radiation reaction in classical regimes of interaction of ultra-strong electromagnetic fields with plasmas

    NASA Astrophysics Data System (ADS)

    Capdessus, R.; d'Humières, E.; Tikhonchuk, V. T.

    2013-05-01

    Radiation energy losses of electrons in ultra-intense laser fields constitute a process of major importance when considering laser-matter interaction at intensities of the order of and above 1022 W/cm2. Radiation losses can strongly modify the electron (and ion) dynamics, and are associated with intense and directional emission of high energy photons. Accounting for such effects is therefore necessary for modeling of, electron and ion acceleration and creation of secondary photon on the forthcoming ultra-high power laser facilities. To account for radiation losses in the particle-in-cell code PICLS, we have introduced the radiation friction force using a renormalized Lorentz-Abraham-Dirac model.10 Here, we present a study of the effect of radiation friction on the electron and photon energy distribution in a semi-infinite and overdense plasma. A possibillity to create a collisonless shock using an ultra intense laser field, in the context of laboratory astrophysics is discussed. The influence of the radiation reaction on the plasma dynamics is demonstrated.

  2. Hawking radiation of a high-dimensional rotating black hole

    NASA Astrophysics Data System (ADS)

    Ren, Zhao; Lichun, Zhang; Huaifan, Li; Yueqin, Wu

    2010-01-01

    We extend the classical Damour-Ruffini method and discuss Hawking radiation spectrum of high-dimensional rotating black hole using Tortoise coordinate transformation defined by taking the reaction of the radiation to the spacetime into consideration. Under the condition that the energy and angular momentum are conservative, taking self-gravitation action into account, we derive Hawking radiation spectrums which satisfy unitary principle in quantum mechanics. It is shown that the process that the black hole radiates particles with energy ω is a continuous tunneling process. We provide a theoretical basis for further studying the physical mechanism of black-hole radiation.

  3. Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion

    NASA Astrophysics Data System (ADS)

    Barack, Leor

    The question of motion in a gravitationally bound two-body system is a longstanding open problem of General Relativity. When the mass ratio η is small, the problem lends itself to a perturbative treatment, wherein corrections to the geodesic motion of the smaller object (due to radiation reaction, internal structure, etc.) are accounted for order by order in η, using the language of an effective gravitational self-force. The prospect for observing gravitational waves from compact objects inspiralling into massive black holes in the foreseeable future has in the past 15 years motivated a program to obtain a rigorous formulation of the self-force and compute it for astrophysically interesting systems. I will give a brief survey of this activity and its achievements so far, and will identify the challenges that lie ahead. As concrete examples, I will discuss recent calculations of certain conservative post-geodesic effects of the self-force, including the O(η ) correction to the precession rate of the periastron. I will highlight the way in which such calculations allow us to make a fruitful contact with other approaches to the two-body problem.

  4. Gravitation in Material Media

    ERIC Educational Resources Information Center

    Ridgely, Charles T.

    2011-01-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium…

  5. Gravitational wave damping of neutron star wobble

    NASA Astrophysics Data System (ADS)

    Cutler, Curt; Jones, David Ian

    2001-01-01

    We calculate the effect of gravitational wave (GW) back reaction on realistic neutron stars (NS's) undergoing torque-free precession. By ``realistic'' we mean that the NS is treated as a mostly fluid body with an elastic crust, as opposed to a rigid body. We find that GW's damp NS wobble on a time scale τθ~2×105 yr [10- 7/(ΔId/I0)]2(kHz/ νs)4, where νs is the spin frequency and ΔId is the piece of the NS's inertia tensor that ``follows'' the crust's principal axis (as opposed to its spin axis). We give two different derivations of this result: one based solely on energy and angular momentum balance, and another obtained by adding the Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long ago by Bertotti and Anile, but their claimed result is wrong. When we convert from their notation to ours, we find that their τθ is too short by a factor of ~105 for the typical cases of interest and even has the wrong sign for ΔId negative. We show where their calculation went astray.

  6. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-11-16

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.

  7. Quantum metrology for gravitational wave astronomy.

    PubMed

    Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K

    2010-01-01

    Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy. PMID:21081919

  8. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    SciTech Connect

    Blank, D.A.

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  9. Gravitational waves and light cosmic strings

    NASA Astrophysics Data System (ADS)

    Depies, Matthew

    Gravitational wave signatures from cosmic strings are analyzed numerically. Cosmic string networks form during phase transistions in the early universe and these networks of long cosmic strings break into loops that radiate energy in the form of gravitational waves until they decay. The gravitational waves come in the form of harmonic modes from individual string loops, a "confusion noise" from galactic loops, and a stochastic background of gravitational waves from a network of loops. In this study string loops of larger size a and lower string tensions G m, (where m the mass per unit length of the string) are investigated than in previous studies. Several detectors are currently searching for gravitational waves and a space based satellite, the Laser Interferometer Space Antenna (LISA), is in the final stages of pre-flight. The results for large loop sizes (a = 0.1) put an upper limit of about G m < 10 -9 and indicate that gravitational waves from string loops down to G m [approximate] 10 -20 could be detectabe by LISA. The string tension is related to the energy scale of the phase transition and the Planck mass via Gm = [Special characters omitted.] , so the limits on G m set the energy scale of any phase transition L s < 10^-4.5 m pl . Our results indicate that loops may form a significant gravitational wave signal, even for string tensions too low to have larger cosmological effects.

  10. Nuclear Quantum Gravitation and General Relativity Compared

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2006-04-01

    Nuclear Quantum Gravitation has 18 proofs and indications with a reasonable, non-fallacious explanation stating Gravity and Gravitation are electromagnetic and alternating, functioning in nuclei and alternating electromagnetic coupling between nuclei and other nuclei in other masses. This is according to Maxwell, Quantum, and Newtonian Laws. Nuclear Quantum Gravitation passes the Cavendish test. With the 18 proofs and indications of NQG it is clear that Gravity and Gravitation are electromagnetic and thoroughly explained by the Nuclear Quantum Gravitation theory. In comparison, General Relativity pictures mass somehow effects ``Time-Space'' about the mass, producing gravity about that mass. This is not described as an electromagnetic effect, but as a geometric function; the changing of geometry about mass. GR lists as a proof the bending of light in the area near the Sun. However, recently it was observed that the temperature of the Sun's corona is in the millions of degrees, and thus the bending of light and other electromagnetic radiation is caused by the refraction effects of the corona and heliosphere; NOT GR. The other ``proofs'' of GR are not definitive, and no one has yet explained the ``somehow'' of GR. General Relativity fails the Cavendish experiment and cannot account for the attractions between masses. It should be realized that Nuclear Quantum Gravitation provides a coherent, factual, scientific and direct physical explanation of Gravity and Gravitation thus Unifying the Physical Forces.

  11. Gravitational Wave Propulsion

    NASA Astrophysics Data System (ADS)

    Fontana, Giorgio

    2005-02-01

    There is only one experimental proof that gravitational waves exist. With such a limitation, it may seem premature to suggest the possibility that gravitational waves can became a preferred space propulsion technique. The present understanding of the problem indicates that this is not the case. The emission of gravitational waves from astrophysical sources has been confirmed by observation, the respective detection at large distance from the source is difficult and actually we have no confirmation of a successful detection. Therefore the required preliminary discovery has been already made. This opinion is enforced by many different proposals for building the required powerful gravitational wave generators that have recently appeared in the literature and discussed at conferences. It is no longer reasonable to wait for additional confirmation of the existence of gravitational waves to start a program for building generators and testing their possible application to space travel. A vast literature shows that gravitational waves can be employed for space propulsion. Gravitational wave rockets have been proposed, non-linearity of Einstein equations allows the conversion of gravitational waves to a static gravitational field and ``artificial gravity assist'' may become a new way of travelling in space-time. Different approaches to gravitational wave propulsion are reviewed and compared. Gravitational wave propulsion is also compared to traditional rocket propulsion and an undeniable advantage can be demonstrated in terms of efficiency and performance. Testing the predictions will require gravitational wave generators with high power and wavelength short enough for producing high energy densities. Detectors designed for the specific application must be developed, taking into account that non-linearity effects are expected. The study and development of Gravitational wave propulsion is a very challenging endeavor, involving the most complex theories, sophisticated

  12. Post-Newtonian gravitational bremsstrahlung

    NASA Technical Reports Server (NTRS)

    Turner, M.; Will, C. M.

    1977-01-01

    Formulae and numerical results are presented for the gravitational radiation emitted during a low-deflection encounter between two massive bodies. Results are valid through post-Newtonian order within general relativity. The gravitational waveform, the total luminosity and total emitted energy, the angular distribution of emitted energy, and the frequency spectrum are discussed in detail. A method boosting the accuracy of these quantities to post Newtonian order is also presented. A numerical comparison of results with those of Peters, and of Kovacs and Thorne shows that the post Newtonian method is reliable to better than 0.1 percent at v = 0.1 c, to a few percent at v = 0.35 c, and to 10 to 20 percent at v = 0.5 c.

  13. Vacuum Ultraviolet and Ultraviolet Radiation-Induced Effect of Hydrogenated Silicon Nitride Etching: Surface Reaction Enhancement and Damage Generation

    NASA Astrophysics Data System (ADS)

    Fukasawa, Masanaga; Miyawaki, Yudai; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Matsugai, Hiroyasu; Honda, Takayoshi; Minami, Masaki; Uesawa, Fumikatsu; Hori, Masaru; Tatsumi, Tetsuya

    2012-02-01

    Photon-enhanced etching of SiNx:H films caused by the interaction between vacuum ultraviolet (VUV)/ultraviolet (UV) radiation and radicals in the fluorocarbon plasma was investigated by a technique with a novel sample setup of the pallet for plasma evaluation. The simultaneous injection of UV radiation and radicals causes a dramatic etch rate enhancement of SiNx:H films. Only UV radiation causes the film shrinkage of SiNx:H films owing to hydrogen desorption from the film. Capacitance-voltage characteristics of SiNx:H/Si substrates were studied before and after UV radiation. The interface trap density increased monotonically upon irradiating the UV photons with a wavelength of 248 nm. The estimated effective interface trap generation probability is 4.74 ×10-7 eV-1·photon-1. Therefore, the monitoring of the VUV/UV spectra during plasma processing and the understanding of its impact on the surface reaction, film damage and electrical performance of underlying devices are indispensable to fabricate advanced devices.

  14. Analysis of polarization observables and radiative effects for the reaction p-bar+p{yields}e{sup +}+e{sup -}

    SciTech Connect

    Gakh, G. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.

    2011-04-15

    The expressions for the differential cross section and polarization observables for the reaction p-bar+p{yields}e{sup +}+e{sup -} are given in terms of the nucleon electromagnetic form factors in the laboratory system, assuming the one-photon exchange. Radiative corrections due to the emission of virtual and real soft photons from the leptons are also calculated. Unlike in the center-of-mass system, they depend on the scattering angle. Polarization effects are derived in the case when the antiproton beam, the target, and the electron in the final state are polarized. Numerical estimations have been done for all observables, using models for the nucleon electromagnetic form factors in the time-like region. The radiative corrections to the differential cross section are calculated as functions of the beam energy and electron angle.

  15. Gravitation in pathogeny of essential hypertension.

    PubMed

    Dorogovtsev, V N

    2004-07-01

    The purpose of this research is the study of changes of a systemic hemodynamics under passive orthostatic test for a healthy persons and an ill with Essential Hypertension (EH) and analysis of a possible role of the gravitational factor in a Pathogeny of this disease. For an ill with EH reduction of Stroke Volume and Cardiac Output were reliably lower in an orthostatic position. Increasing of a Total peripheral vascular resistance was twice less for ill. Considerable differences in reaction of cardiovascular system to gravitational influence for an ill with Essential Hypertension are stipulated by changes in central regulation of circulation and in the structure of a vascular wall. It allows to assume influence of gravitation at early stages of a Pathogeny of the given disease. The detection of hyper reactivity of a cardiovascular system to influence of gravitation can indicate the first stage of the disease.

  16. The Origin of Gravitation

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng Ming

    2012-10-01

    In the natural world, people have discovered four kinds of forces: electromagnetic force, gravitation, weak force, and strong force. Although the gravitation has been discovered more than three hundred years, its mechanism of origin is unclear until today. While investigating the origin of gravitation, I do some experiments discover the moving photons produce gravitation. This discovery shows the origin of gravitation. Meanwhile I do some experiments discover the light interference fringes are produced by the gravitation: my discovery demonstrate light is a particle, but is not a wave-particle duality. Furthermore, applications of this discovery to other moving particles show a similar effect. In a word: the micro particle moving produce gravitation and electromagnetic force. Then I do quantity experiment get a general formula: Reveal the essence of gravitational mass and the essence of electric charge; reveal the origin of gravitation and the essence of matter wave. Along this way, I unify the gravitation and electromagnetic force. Namely I find a natural law that from atomic world to star world play in moving track. See website: https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8473-2658-8/mechanism-of-interaction-in-moving-matter

  17. First Order Chemical Reaction Effects on Exponentially Accelerated Vertical Plate with Variable Mass Diffusion in the Presence of Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Lakshmi, C. S.

    2015-05-01

    Effects of transfer of mass and free convection on the flow field of an incompressible viscous fluid past an exponentially accelerated vertical plate with variable surface temperature and mass diffusion are studied. Results for velocity, concentration, temperature are obtained by solving governing equations using the Laplace transform technique. It is observed that the velocity increases with decreasing values of the chemical reaction parameter or radiation parameter. But the trend is just reversed with respect to the time parameter. The skin friction is also studied.

  18. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    NASA Astrophysics Data System (ADS)

    Agvaanluvsan, U.; Alpizar-Vicente, A.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Clement, R.; Esch, E.; Folden, C. M.; Hatarik, R.; Haight, R. C.; Hoffman, D. C.; Krtička, M.; Macri, R. A.; Mitchell, G. E.; Nitsche, H.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Sheets, S. A.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wilk, P.; Wouters, J. M.; Wu, C. Y.

    2006-03-01

    Radiative strength functions in 152,154Eu nuclei for γ-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for 151,153Eu targets. Properties of γ decay of neutron resonances in 152,154Eu nuclei are examined. The results of measurements are compared to outcome of simulation of γ cascades based on various models for the radiative strength function. Comparison between experimental data and simulation suggests existence of the low-energy resonance in these two nuclei.

  19. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    SciTech Connect

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O'Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Radiative strength functions in {sup 152,154}Eu nuclei for {gamma}-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. Properties of resonances in these two nuclei are examined. The measurements are compared to simulation of cascades performed with various models for the radiative strength function. Comparison between experimental data and simulation suggests an existence of the low-energy resonance in these two nuclei.

  20. Does Occupational Exposure of Shahid Dastghieb International Airport Workers to Radiofrequency Radiation Affect Their Short Term Memory and Reaction Time?

    PubMed Central

    Jarideh, S.; Taeb, S.; Pishva, S. M.; Haghani, M.; Sina, S.; Mortazavi, S. A. R.; Hosseini, M. A.; Nematollahi, S.; Shokrpour, N.; Hassan Shahi, M.; Mortazavi, S. M. J.

    2015-01-01

    Background Airport workers are continuously exposed to different levels of radiofrequency microwave (RF/MW) radiation emitted by radar equipments. Radars are extensively used in military and aviation industries. Over the past several years, our lab has focused on the health effects of exposure to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons and MRI. The main goal of this study was to investigate if occupational exposure of Shahid Dastghieb international airport workers to radiofrequency radiation affects their short term memory and reaction time. Methods Thirty two airport workers involved in duties at control and approach tower (21 males and 11 females), with the age range of 27-67 years old (mean age of 37.38), participated voluntary in this study. On the other hand, 29 workers (13 males, and 16 females) whose offices were in the city with no exposure history to radar systems were also participated in this study as the control group. The employees’ reaction time and short term memory were analyzed using a standard visual reaction time (VRT) test software and the modified Wechsler memory scale test, respectively. Results The mean± SD values for the reaction times of the airport employees (N=32) and the control group (N=29) were 0.45±0.12 sec and 0.46±0.17 sec, respectively.  Moreover, in the four subset tests; i.e. paired words, forward digit span, backward digit span and word recognition, the following points were obtained for the airport employees and the control group, respectively: (i) pair words test: 28.00±13.13 and 32.07±11.65, (ii) forward digit span: 8.38±1.40 and 9.03±1.32, (iii) backward digit span: 5.54±1.87 and 6.31±1.46, and (iv) word recognition: 5.73±2.36 and 6.50±1.93. These differences were not statistically significant. Conclusion The occupational exposure of the employees to the RF radiation in Shahid Dastghieb

  1. Interactions of Changing Solar Ultraviolet Radiation and Climate with Light Induced Chemical Reactions in Aquatic Environments

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...

  2. Gravitational energy, local holography and non-equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent

    2015-03-01

    We study the properties of gravitational systems in finite regions bounded by gravitational screens. We present a detailed construction of the total energy of such regions and of the energy and momentum balance equations due to the flow of matter and gravitational radiation through the screen. We establish that the gravitational screen possesses analogs of surface tension, internal energy, and viscous stress tensor, while the conservations are analogs of nonequilibrium balance equations for a viscous system. This gives a precise correspondence between gravity in finite regions and nonequilibrium thermodynamics.

  3. Detecting high-frequency gravitational waves with optically levitated sensors.

    PubMed

    Arvanitaki, Asimina; Geraci, Andrew A

    2013-02-15

    We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.

  4. A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoğlu, Anıl

    2014-12-01

    We present a new approach to solve the 2+1 Teukolsky equation for gravitational perturbations of a Kerr black hole. Our approach relies on a new horizon penetrating, hyperboloidal foliation of Kerr spacetime and spatial compactification. In particular, we present a framework for waveform generation from point-particle perturbations. Extensive tests of a time domain implementation in the Teukode code are presented. The code can efficiently deliver waveforms at future null infinity. The accuracy and convergence of the waveforms’ phase and amplitude is demonstrated. As a first application of the method, we compute the gravitational waveforms from inspiraling and coalescing black-hole binaries in the large-mass-ratio limit. The smaller mass black hole is modeled as a point particle whose dynamics is driven by an effective-one-body-resummed analytical radiation reaction force. We compare the analytical, mechanical angular momentum loss (computed using two different prescriptions) to the gravitational wave angular momentum flux. We find that higher-order post-Newtonian corrections are needed to improve the consistency for rapidly spinning binaries. We characterize the multipolar waveform as a function of the black-hole spin. Close to merger, the subdominant multipolar amplitudes (notably the m = 0 ones) are enhanced for retrograde orbits with respect to prograde ones. We argue that this effect mirrors nonnegligible deviations from the circularity of the dynamics during the late-plunge and merger phase. For the first time, we compute the gravitational wave energy flux flowing into the black hole during the inspiral using a time-domain formalism proposed by Poisson. Finally, a self-consistent, iterative method to compute the gravitational wave fluxes at leading-order in the mass of the particle is developed. The method can be used alternatively to the analytical radiation reaction in cases where the analytical information is poor or not sufficient. Specifically, we apply

  5. Gravitation in material media

    NASA Astrophysics Data System (ADS)

    Ridgely, Charles T.

    2011-03-01

    When two gravitating bodies reside in a material medium, Newton's law of universal gravitation must be modified to account for the presence of the medium. A modified expression of Newton's law is known in the literature, but lacks a clear connection with existing gravitational theory. Newton's law in the presence of a homogeneous material medium is herein derived on the basis of classical, Newtonian gravitational theory and by a general relativistic use of Archimedes' principle. It is envisioned that the techniques presented herein will be most useful to graduate students and those undergraduate students having prior experience with vector analysis and potential theory.

  6. Shearfree cylindrical gravitational collapse

    SciTech Connect

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-09-15

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  7. Radiation reaction induced non-monotonic features in runaway electron distributions

    NASA Astrophysics Data System (ADS)

    Hirvijoki, E.; Pusztai, I.; Decker, J.; Embréus, O.; Stahl, A.; Fülöp, T.

    2015-10-01

    > Runaway electrons, which are generated in a plasma where the induced electric field exceeds a certain critical value, can reach very high energies in the MeV range. For such energetic electrons, radiative losses will contribute significantly to the momentum space dynamics. Under certain conditions, due to radiative momentum losses, a non-monotonic feature - a `bump' - can form in the runaway electron tail, creating a potential for bump-on-tail-type instabilities to arise. Here, we study the conditions for the existence of the bump. We derive an analytical threshold condition for bump appearance and give an approximate expression for the minimum energy at which the bump can appear. Numerical calculations are performed to support the analytical derivations.

  8. Inflationary gravitational waves and the evolution of the early universe

    SciTech Connect

    Jinno, Ryusuke; Moroi, Takeo; Nakayama, Kazunori E-mail: moroi@hep-th.phys.s.u-tokyo.ac.jp

    2014-01-01

    We study the effects of various phenomena which may have happened in the early universe on the spectrum of inflationary gravitational waves. The phenomena include phase transitions, entropy productions from non-relativistic matter, the production of dark radiation, and decoupling of dark matter/radiation from thermal bath. These events can create several characteristic signatures in the inflationary gravitational wave spectrum, which may be direct probes of the history of the early universe and the nature of high-energy physics.

  9. Gravitational wave asteroseismology with protoneutron stars

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Takiwaki, Tomoya

    2016-08-01

    We examine the time evolution of the frequencies of the gravitational wave after the bounce within the framework of relativistic linear perturbation theory using the results of one-dimensional numerical simulations of core-collapse supernovae. Protoneutron star models are constructed in such a way that the mass and the radius of the protoneutron star become equivalent to the results obtained from the numerical simulations. Then we find that the frequencies of gravitational waves radiating from protoneutron stars strongly depend on the mass and the radius of protoneutron stars, but almost independently of the profiles of the electron fraction and the entropy per baryon inside the star. Additionally, we find that the frequencies of gravitational waves can be characterized by the square root of the average density of the protoneutron star irrespective of the progenitor models, which are completely different from the empirical formula for cold neutron stars. The dependence of the spectra on the mass and the radius is different from that of the g -mode: the oscillations around the surface of protoneutron stars due to the convection and the standing accretion-shock instability. Careful observation of these modes of gravitational waves can determine the evolution of the mass and the radius of protoneutron stars after core bounce. Furthermore, the expected frequencies of gravitational waves are around a few hundred hertz in the early stages after bounce, which must be a good candidate for the ground-based gravitational wave detectors.

  10. Time Evolution of Pure Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Miyama, S. M.

    1981-03-01

    Numerical solutions to the Einstein equations in the case of pure gravitational waves are given. The system is assumed to be axially symmetric and non-rotating. The time symmetric initial data and the conformally flat initial data are obtained by solving the constraint equations at t=0. The time evolution of these initial data depends strongly on the initial amplitude of the gravitational waves. In the case of the low initial amplitude, waves only disperse to null infinity. By comparing the initial gravitational energy with the total energy loss through an r=constant surface, it is concluded that the Newman-Penrose method and the Gibbon-Hawking method are the most desirable for measuring the energy flux of gravitational radiation numerically. In the case that the initial ratio of the spatial extent of the gravitational waves to the Schwarzschild radius (M/2) is smaller than about 300, the waves collapse by themselves, leading to formation of a black hole. The analytic solutions of the linearized Einstein equations for the pure gravitational waves are also shown.

  11. Investigation of {gamma} radiation from {sup 178}Hf in the respective (n, n Prime {gamma}) reaction

    SciTech Connect

    Govor, L. I.; Demidov, A. M.; Kurkin, V. A. Mikhailov, I. V.

    2012-12-15

    The spectra and angular distributions of gamma rays were measured in the reaction {sup 178}Hf(n, n Prime {gamma}) induced by a beam of fast reactor neutrons. Data onmultipole mixtures in gamma transitions and a lot of new information about gamma transitions of energy 1.5 to 3.0 MeV were obtained. A comparison of these results with information known from the respective (n, {gamma}) reaction made it possible to refine the schemes of deexcitation of {sup 178}Hf levels at energies above 1.5 MeV, to determine more precisely features of these levels, and to introduce new levels and rotation bands at excitation energies of about 2MeV.

  12. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  13. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    SciTech Connect

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T

    2015-06-15

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  14. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.

    2014-06-01

    This paper reports on an unmodeled, all-sky search for gravitational waves from merging intermediate mass black hole binaries (IMBHB). The search was performed on data from the second joint science run of the LIGO and Virgo detectors (July 2009-October 2010) and was sensitive to IMBHBs with a range up to ˜200 Mpc, averaged over the possible sky positions and inclinations of the binaries with respect to the line of sight. No significant candidate was found. Upper limits on the coalescence-rate density of nonspinning IMBHBs with total masses between 100 and 450 M⊙ and mass ratios between 0.25 and 1 were placed by combining this analysis with an analogous search performed on data from the first LIGO-Virgo joint science run (November 2005-October 2007). The most stringent limit was set for systems consisting of two 88 M⊙ black holes and is equal to 0.12 Mpc-3 Myr-1 at the 90% confidence level. This paper also presents the first estimate, for the case of an unmodeled analysis, of the impact on the search range of IMBHB spin configurations: the visible volume for IMBHBs with nonspinning components is roughly doubled for a population of IMBHBs with spins aligned with the binary's orbital angular momentum and uniformly distributed in the dimensionless spin parameter up to 0.8, whereas an analogous population with antialigned spins decreases the visible volume by ˜20%.

  15. Gravitationally coupled electroweak monopole

    NASA Astrophysics Data System (ADS)

    Cho, Y. M.; Kimm, Kyoungtae; Yoon, J. H.

    2016-10-01

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein-Weinberg-Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  16. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  17. Those Elusive Gravitational Waves

    ERIC Educational Resources Information Center

    MOSAIC, 1976

    1976-01-01

    The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)

  18. Upper limits on a stochastic background of gravitational waves.

    PubMed

    Abbott, B; Abbott, R; Adhikari, R; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barton, M A; Bayer, K; Belczynski, K; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Buonanno, A; Busby, D; Butler, W E; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cardenas, L; Carter, K; Casey, M M; Charlton, P; Chatterji, S; Chen, Y; Chin, D; Christensen, N; Cokelaer, T; Colacino, C N; Coldwell, R; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Dalrymple, J; D'Ambrosio, E; Danzmann, K; Davies, G; DeBra, D; Dergachev, V; Desai, S; DeSalvo, R; Dhurandar, S; Díaz, M; Di Credico, A; Drever, R W P; Dupuis, R J; Ehrens, P; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Finn, L S; Franzen, K Y; Frey, R E; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Gholami, I; Giaime, J A; Goda, K; Goggin, L; González, G; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grunewald, S; Guenther, M; Gustafson, R; Hamilton, W O; Hanna, C; Hanson, J; Hardham, C; Harry, G; Heefner, J; Heng, I S; Hewitson, M; Hindman, N; Hoang, P; Hough, J; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, L; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Khan, A; Kim, C; King, P; Klimenko, S; Koranda, S; Kozak, D; Krishnan, B; Landry, M; Lantz, B; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Lindquist, P; Liu, S; Lormand, M; Lubinski, M; Lück, H; Luna, M; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Malec, M; Mandic, V; Marka, S; Maros, E; Mason, K; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Mohanty, S; Moreno, G; Mossavi, K; Mueller, G; Mukherjee, S; Myers, E; Myers, J; Nash, T; Nocera, F; Noel, J S; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rawlins, K; Ray-Majumder, S; Re, V; Regimbau, T; Reitze, D H; Riesen, R; Riles, K; Rivera, B; Robertson, D I; Robertson, N A; Robinson, C; Roddy, S; Rodriguez, A; Rollins, J; Romano, J D; Romie, J; Rowan, S; Rüdiger, A; Ruet, L; Russell, P; Ryan, K; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B S; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Sellers, D; Sengupta, A S; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sintes, A M; Smith, J; Smith, M R; Spjeld, O; Strain, K A; Strom, D M; Stuver, A; Summerscales, T; Sung, M; Sutton, P J; Tanner, D B; Taylor, R; Thorne, K A; Thorne, K S; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D; Ungarelli, C; Vallisneri, M; van Putten, M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Ward, H; Ward, R; Watts, K; Webber, D; Weiland, U; Weinstein, A; Weiss, R; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Willke, B; Wilson, A; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yoshida, S; Zanolin, M; Zhang, L; Zotov, N; Zucker, M; Zweizig, J

    2005-11-25

    The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored as gravitational radiation for three different spectral power laws. For the flat spectrum, our limit of omega0 < 8.4 x 10(-4) in the 69-156 Hz band is approximately 10(5) times lower than the previous result in this frequency range. PMID:16384203

  19. Lepton asymmetry in the primordial gravitational wave spectrum

    SciTech Connect

    Ichiki, Kiyotomo; Yamaguchi, Masahide; Yokoyama, Jun'Ichi

    2007-04-15

    Effects of neutrino free streaming are evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic stress, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.

  20. Interaction of gravitational waves with magnetic and electric fields

    SciTech Connect

    Barrabes, C.; Hogan, P. A.

    2010-03-15

    The existence of large-scale magnetic fields in the universe has led to the observation that if gravitational waves propagating in a cosmological environment encounter even a small magnetic field then electromagnetic radiation is produced. To study this phenomenon in more detail we take it out of the cosmological context and at the same time simplify the gravitational radiation to impulsive waves. Specifically, to illustrate our findings, we describe the following three physical situations: (1) a cylindrical impulsive gravitational wave propagating into a universe with a magnetic field, (2) an axially symmetric impulsive gravitational wave propagating into a universe with an electric field and (3) a 'spherical' impulsive gravitational wave propagating into a universe with a small magnetic field. In cases (1) and (3) electromagnetic radiation is produced behind the gravitational wave. In case (2) no electromagnetic radiation appears after the wave unless a current is established behind the wave breaking the Maxwell vacuum. In all three cases the presence of the magnetic or electric fields results in a modification of the amplitude of the incoming gravitational wave which is explicitly calculated using the Einstein-Maxwell vacuum field equations.

  1. Gravitation and celestial mechanics investigations with Galileo

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Armstrong, J. W.; Campbell, J. K.; Estabrook, F. B.; Krisher, T. P.; Lau, E. L.

    1992-01-01

    The gravitation and celestial mechanics investigations that are to be conducted during the cruise and Orbiter phases of the Galileo Mission cover four investigation categories: (1) the gravity fields of Jupiter and its four major satellites; (2) a search for gravitational radiation; (3) mathematical modeling of general relativistic effects on Doppler ranging data; and (4) improvements of the Jupiter ephemeris via Orbiter ranging. Also noted are two secondary objectives, involving a range fix during Venus flyby and the determination of the earth's mass on the bases of the two earth gravity assists used by the mission.

  2. Are cosmic strings gravitationally stable topological defects?

    NASA Astrophysics Data System (ADS)

    Gleiser, Reinaldo; Pullin, Jorge

    1989-08-01

    A possible mechanism for the dissapearance of an open cosmic string into gravitational radiation is described. This involves the splitting of an infinite straight cosmic string into two pieces whose ends are traveling outward at the speed of light with the associated emission of a gravitational shock wave. This model can also be used to describe the following situations: (1) the development of a growing region of different string tension within a cosmic string, and (2) the creation of a cosmic string in an otherwise flat background.

  3. A new measurement approach of ionizing radiation in irradiated trout (Oncorhynchus mykiss) by Randomly Polymorphic DNA-Polymerase Chain Reaction.

    PubMed

    Şakalar, Ergün; Mol, Sühendan

    2016-05-01

    Trout (Oncorhynchus mykiss) were irradiated at doses of 0.250, 0.500, 1, 3, 5, 7 and 9 kGy in gamma cell. DNAs were extracted from the irradiated samples before and after storage. 1ERP primers were designed, and RAPD-PCR (Randomly Polymorphic DNA-Polymerase Chain Reaction) was applied to make randomly amplifications on the DNA of the irradiated samples. Agarose gel profiles of irradiated fish were obtained to determine change of band profiles. In addition, DNA fragmentation occurring in each dose was determined by comet assay for the verification of methodology developed in this study. The molecular methodology was developed to estimate ionizing radiation (IR) level in irradiated fish. This methodology allows the analysis of the trout irradiated up to the dose limit of around 0.5 kGy and stored for a period of three months. PMID:27407216

  4. The gravitational wave decade

    NASA Astrophysics Data System (ADS)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  5. MHD flow past a parabolic flow past an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Muthucumaraswamy, R.; Sivakumar, P.

    2016-02-01

    The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.

  6. Evaluation of Reaction Rate Theory and Monte Carlo Methods for Application to Radiation-Induced Microstructural Characterization

    SciTech Connect

    Stoller, Roger E; Golubov, Stanislav I; Becquart, C. S.; Domain, C.

    2007-08-01

    The multiscale modeling scheme encompasses models from the atomistic to the continuum scale. Phenomena at the mesoscale are typically simulated using reaction rate theory, Monte Carlo, or phase field models. These mesoscale models are appropriate for application to problems that involve intermediate length scales, and timescales from those characteristic of diffusion to long-term microstructural evolution (~s to years). Although the rate theory and Monte Carlo models can be used simulate the same phenomena, some of the details are handled quite differently in the two approaches. Models employing the rate theory have been extensively used to describe radiation-induced phenomena such as void swelling and irradiation creep. The primary approximations in such models are time- and spatial averaging of the radiation damage source term, and spatial averaging of the microstructure into an effective medium. Kinetic Monte Carlo models can account for these spatial and temporal correlations; their primary limitation is the computational burden which is related to the size of the simulation cell. A direct comparison of RT and object kinetic MC simulations has been made in the domain of point defect cluster dynamics modeling, which is relevant to the evolution (both nucleation and growth) of radiation-induced defect structures. The primary limitations of the OKMC model are related to computational issues. Even with modern computers, the maximum simulation cell size and the maximum dose (typically much less than 1 dpa) that can be simulated are limited. In contrast, even very detailed RT models can simulate microstructural evolution for doses up 100 dpa or greater in clock times that are relatively short. Within the context of the effective medium, essentially any defect density can be simulated. Overall, the agreement between the two methods is best for irradiation conditions which produce a high density of defects (lower temperature and higher displacement rate), and for

  7. Towards Gravitational Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Losurdo, Giovanni

    This chapter is meant to introduce the reader to the forthcoming network of second-generation interferometric detectors of gravitational waves, at a time when their construction is close to completion and there is the ambition to detect gravitational waves for the first time in the next few years and open the way to gravitational wave astronomy. The legacy of first-generation detectors is discussed before giving an overview of the technology challenges that have been faced to make advanced detectors possible. The various aspects outlined here are then discussed in more detail in the subsequent chapters of the book.

  8. Inverting Gravitational Lenses

    NASA Astrophysics Data System (ADS)

    Newbury, P. R.; Spiteri, R. J.

    2002-02-01

    Gravitational lensing provides a powerful tool to study a number of fundamental questions in astrophysics. Fortuitously, one can begin to explore some non-trivial issues associated with this phenomenon without a lot of very sophisticated mathematics, making an elementary treatment of this topic tractable even to senior undergraduates. In this paper, we give a relatively self-contained outline of the basic concepts and mathematics behind gravitational lensing as a recent and exciting topic for courses in mathematical modeling or scientific computing. To this end, we have designed and made available some interactive software to aid in the simulation and inversion of gravitational lenses in a classroom setting.

  9. Therapeutics interventions with anti-inflammatory creams in post radiation acute skin reactions: a systematic review of most important clinical trials.

    PubMed

    Koukourakis, Georgios V; Kelekis, Nikolaos; Kouvaris, John; Beli, Ivelina K; Kouloulias, Vassilios E

    2010-06-01

    The majority of cancer patients will receive radiation therapy treatment at some stage during their malignancy. An acute skin reaction represents a common post radiation side effect with different grade of severity. In order to investigate the optimal methods to prevent and manage acute skin reactions related to radiation therapy we have conducted a systematic review on this topic. It seems that skin washing, including gentle washing with water alone with or without mild soap, should be permitted in patients receiving radiation therapy, to prevent acute skin reaction. In addition, a low dose (i.e., 1%) corticosteroid cream may be beneficial in the reduction of itching and irritation. We have concluded that there is insufficient evidence to support or refute specific topical or oral agents for the prevention or management of acute skin reaction. There is a need for further research to review treatments that have produced promising results in the reviewed research studies and to evaluate other commonly recommended topical treatments. The purpose of this patent and literature review is to advocate the current management of acute skin reaction.

  10. Gravitational-wave joy

    NASA Astrophysics Data System (ADS)

    seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi

    2016-03-01

    In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).

  11. Gravitational clustering: an overview

    NASA Astrophysics Data System (ADS)

    Labini, Francesco Sylos

    2008-01-01

    We discuss the differences and analogies of gravitational clustering in finite and infinite systems. The process of collective, or violent, relaxation leading to the formation of quasi-stationary states is one of the distinguished features in the dynamics of self-gravitating systems. This occurs, in different conditions, both in a finite than in an infinite system, the latter embedded in a static or in an expanding background. We then discuss, by considering some simple and paradigmatic examples, the problems related to the definition of a mean-field approach to gravitational clustering, focusing on role of discrete fluctuations. The effect of these fluctuations is a basic issue to be clarified to establish the range of scales and times in which a collision-less approximation may describe the evolution of a self-gravitating system and for the theoretical modeling of the non-linear phase.

  12. Space Detection of Gravitational Waves (lisa)

    NASA Astrophysics Data System (ADS)

    de Araujo, J. C. Neves; Buchman, S.; Cavalleri, A.; Danzmann, K.; Doles, R.; Fontana, G.; Hanso, J.; Hueller, M.; Sigurdsso, S.; Turneaure, J.; Ungarell, C.; Vecchi, A.; Vital, S.; Webe, W.

    2002-12-01

    The Laser Interferometer Space Antenna (LISA) mission is designed to observe gravitational waves from galactic and extra-galactic binary systems, including gravitational waves generated in the vicinity of the very massive black holes found in the centers of many galaxies. Acting as a giant Michelson interferometer the three spacecraft flying 5 million km apart will open the era of astronomy in the gravitational spectrum. We give an introduction to the mission and describe the status of selected experimental, theoretical, and planning LISA work, as reported at the Ninth Marcel Grossman Meeting in 2000 in Rome. We discuss the three areas of technology challenges facing the mission inertial sensors, micronewton thrusters, and picometer interferometry. We report on the progress in the development of free falling moving test-masses for LISA and for the related technology demonstration mission. We present simple formulas to evaluate the performance of the device as a function of the various design parameters, and we compare them with preliminary experimental results from a test prototype we are developing. Quantitative agreement is found. The gravitational radiation emitted during the final stages of coalescence of stellar mass compact objects with low massive black holes is a signal detectable by LISA. It will also provide the opportunity of measuring relativistic strong field effects. A brief discussion addresses the detection by LISA of gravitational waves generated by cataclysmic binary variables at frequencies below 1 mHz. Finally the prospects for cosmology work with LISA type antennas are being analyzed.

  13. Binary Black Holes and Gravitational Waves

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LIGO and LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This discussion examines these gravitational patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. The focus is on recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by the space-based gravitational wave detector LISA.

  14. Understanding Microbe-Mineral Reactions Using Synchrotron Radiation Fourier Transform Infrared Spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Kauffman, M. E.; Lehman, R. M.; Martin, M. C.; Bauer, W. F.

    2002-12-01

    Microorganisms are able to alter their surrounding microenvironment to an extent not predicted by the thermodynamics of the macro-environment chemistry. Microbially induced environmental alterations include weathering, biomineralization and mobilization or immobilization of authegenic metals or contaminants. Microbial colonization of surfaces, followed by biofilm formation, are the first steps in alteration processes. With the exception of iron oxides and iron-reducing bacteria, the fundamentals of how microbes react with various mineral surfaces is not well understood. Synchrotron radiation Fourier transform infrared spectromicroscopy (SR-FTIR) is a non-destructive analytical technique capable of probing, in situ, the microbe-mineral interface. The SR-FTIR beamline 1.4.3, at the Advanced Light Source, Berkeley, CA, has a diffraction-limited spatial resolution of 10 um, is 2-3 orders of magnitude brighter than traditional FTIR, and is not harmful to living samples. Aliquots of pure cultures of Burkholderia cepacia G4 were deposited on four individual mineral surfaces (plagioclase, ilmenite, augite and olivine) and spectra were collected within 20-40 min. Reference spectra were collected from the same pure cultures deposited on gold-coated glass slides. Additionally, reference spectra were collected of commercially available biomolecules deposited on the four individual mineral specimens. The spectra of the bacterial cells on gold and the spectra of the separate biomolecules contained all the relevant peaks documented in the literature. However, the spectra collected from the microbe-mineral interfaces were markedly different from the reference spectra and varied between the four mineral surfaces. Bacterial cells in contact with plagioclase exhibited predominantly absorption bands associated with phosphate groups, while the spectra of olivine and bacterial cells were limited to absorption bands associated with bacterial proteins. Spectra of the same bacterial cells

  15. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  16. Resistance of plants to gravitational force.

    PubMed

    Soga, Kouichi

    2013-09-01

    Developing resistance to gravitational force is a critical response for terrestrial plants to survive under 1 × g conditions. We have termed this reaction "gravity resistance" and have analyzed its nature and mechanisms using hypergravity conditions produced by centrifugation and microgravity conditions in space. Our results indicate that plants develop a short and thick body and increase cell wall rigidity to resist gravitational force. The modification of body shape is brought about by the rapid reorientation of cortical microtubules that is caused by the action of microtubule-associated proteins in response to the magnitude of the gravitational force. The modification of cell wall rigidity is regulated by changes in cell wall metabolism that are caused by alterations in the levels of cell wall enzymes and in the pH of apoplastic fluid (cell wall fluid). Mechanoreceptors on the plasma membrane may be involved in the perception of the gravitational force. In this review, we discuss methods for altering gravitational conditions and describe the nature and mechanisms of gravity resistance in plants.

  17. Gravitational-wave detection using redshifted 21-cm observations

    SciTech Connect

    Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2009-06-15

    A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum has a different {mu} dependence as compared to the dominant contribution from peculiar velocities. This, in principle, allows the two signals to be separated. The prospect of a detection is most favorable at the highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and on subhorizon scales where the signal is highly suppressed.

  18. Influence of Double-Strand Break Repair on Radiation Therapy-Induced Acute Skin Reactions in Breast Cancer Patients

    SciTech Connect

    Mumbrekar, Kamalesh Dattaram; Fernandes, Donald Jerard; Goutham, Hassan Venkatesh; Sharan, Krishna; Vadhiraja, Bejadi Manjunath; Satyamoorthy, Kapaettu; Bola Sadashiva, Satish Rao

    2014-03-01

    Purpose: Curative radiation therapy (RT)-induced toxicity poses strong limitations for efficient RT and worsens the quality of life. The parameter that explains when and to what extent normal tissue toxicity in RT evolves would be of clinical relevance because of its predictive value and may provide an opportunity for personalized treatment approach. Methods and Materials: DNA double-strand breaks and repair were analyzed by microscopic γ-H2AX foci analysis in peripheral lymphocytes from 38 healthy donors and 80 breast cancer patients before RT, a 2 Gy challenge dose of x-ray exposed in vitro. Results: The actual damage (AD) at 0.25, 3, and 6 hours and percentage residual damage (PRD) at 3 and 6 hours were used as parameters to measure cellular radiosensitivity and correlated with RT-induced acute skin reactions in patients stratified as non-overresponders (NOR) (Radiation Therapy Oncology Group [RTOG] grade <2) and overresponders (OR) (RTOG grade ≥2). The results indicated that the basal and induced (at 0.25 and 3 hours) γ-H2AX foci numbers were nonsignificant (P>.05) between healthy control donors and the NOR and OR groups, whereas it was significant between ORs and healthy donors at 6 hours (P<.001). There was a significantly higher PRD in OR versus NOR (P<.05), OR versus healthy donors (P<.001) and NOR versus healthy donors (P<.01), supported further by the trend analysis (r=.2392; P=.0326 at 6 hours). Conclusions: Our findings strongly suggest that the measurement of PRD by performing γ-H2AX foci analysis has the potential to be developed into a clinically useful predictive assay.

  19. Dyadosphere formed in gravitational collapse

    SciTech Connect

    Ruffini, Remo; Xue Shesheng

    2008-10-10

    We first recall the concept of Dyadosphere (electron-positron-photon plasma around a formed black holes) and its motivation, and recall on (i) the Dirac process: annihilation of electron-positron pairs to photons; (ii) the Breit-Wheeler process: production of electron-positron pairs by photons with the energy larger than electron-positron mass threshold; the Sauter-Euler-Heisenberg effective Lagrangian and rate for the process of electron-positron production in a constant electric field. We present a general formula for the pair-production rate in the semi-classical treatment of quantum mechanical tunneling. We also present in the Quantum Electro-Dynamics framework, the calculations of the Schwinger rate and effective Lagrangian for constant electromagnetic fields. We give a review on the electron-positron plasma oscillation in constant electric fields, and its interaction with photons leading to energy and number equipartition of photons, electrons and positrons. The possibility of creating an overcritical field in astrophysical condition is pointed out. We present the discussions and calculations on (i) energy extraction from gravitational collapse; (ii) the formation of Dyadosphere in gravitational collapsing process, and (iii) its hydrodynamical expansion in Reissner Nordstroem geometry. We calculate the spectrum and flux of photon radiation at the point of transparency, and make predictions for short Gamma-Ray Bursts.

  20. Black holes as gravitational atoms

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo

    2014-06-01

    Recently, it was argued [A. Almheiri et al., arXiv: 1207.3123, A. Almheiri et al., arXiv: 1304.6483], via a delicate thought experiment, that it is not consistent to simultaneously require that (a) Hawking radiation is pure, (b) effective field theory is valid outside a stretched horizon and (c) infalling observers encounter nothing unusual as they cross the horizon. These are the three fundamental assumptions underlying Black Hole Complementarity and the authors proposed that the most conservative resolution of the paradox is that (c) is false and the infalling observer burns up at the horizon (the horizon acts as a "firewall"). However, the firewall violates the equivalence principle and breaks the CPT invariance of quantum gravity. This led Hawking to propose recently that gravitational collapse may not end up producing event horizons, although he did not give a mechanism for how this may happen. Here we will support Hawking's conclusion in a quantum gravitational model of dust collapse. We will show that continued collapse to a singularity can only be achieved by combining two independent and entire solutions of the Wheeler-DeWitt equation. We interpret the paradox as simply forbidding such a combination. This leads naturally to a picture in which matter condenses on the apparent horizon during quantum collapse.

  1. Detection of fast neutrons from D-T nuclear reaction using a 4H-SiC radiation detector

    NASA Astrophysics Data System (ADS)

    Zatko, Bohumir; Sagatova, Andrea; Sedlackova, Katarina; Necas, Vladimir; Dubecky, Frantisek; Solar, Michael; Granja, Carlos

    2016-09-01

    The particle detector based on a high purity epitaxial layer of 4H-SiC exhibits promising properties in detection of various types of ionizing radiation. Due to the wide band gap of 4H-SiC semiconductor material, the detector can reliably operate at room and also elevated temperatures. In this work we focused on detection of fast neutrons generated the by D-T (deuterium-tritium) nuclear reaction. The epitaxial layer with a thickness of 105 μm was used as a detection part. A circular Schottky contact of a Au/Ni double layer was evaporated on both sides of the detector material. The detector structure was characterized by current-voltage and capacitance-voltage measurements, at first. The results show very low current density (<0.1 nA/cm2) at room temperature and good homogeneity of free carrier concentration in the investigated depth. The fabricated detectors were tested for detection of fast neutrons generated by the D-T reaction. The energies of detected fast neutrons varied from 16.0 MeV to 18.3 MeV according to the acceleration potential of deuterons, which increased from 600 kV up to 2 MV. Detection of fast neutrons in the SiC detector is caused by the elastic and inelastic scattering on the silicon or carbide component of the detector material. Another possibility that increases the detection efficiency is the use of a conversion layer. In our measurements, we glued a HDPE (high density polyethylene) conversion layer on the detector Schottky contact to transform fast neutrons to protons. Hydrogen atoms contained in the conversion layer have a high probability of interaction with neutrons through elastic scattering. Secondary generated protons flying to the detector can be easily detected. The detection properties of detectors with and without the HDPE conversion layer were compared.

  2. Constraints on singular evolution from gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-02-01

    We investigate how the gravitational baryogenesis mechanism can potentially constrain the form of a Type IV singularity. Specifically, we study two different models with interesting phenomenology, that realize two distinct Type IV singularities, one occurring at the end of inflation and one during the radiation domination era or during the matter domination era. As we demonstrate, the Type IV singularities occurring at the matter domination era or during the radiation domination era are constrained by the gravitational baryogenesis, in such a way so that these do not render the baryon to entropy ratio singular. Both the cosmological models we study cannot be realized in the context of ordinary Einstein-Hilbert gravity, and hence our work can only be realized in the context of F(R) gravity and more generally in the context of modified gravity only.

  3. On propagation of electromagnetic and gravitational waves in the expanding Universe

    NASA Astrophysics Data System (ADS)

    Gladyshev, V. O.

    2016-07-01

    The purpose of this study was to obtain an equation for the propagation time of electromagnetic and gravitational waves in the expanding Universe. The velocity of electromagnetic waves propagation depends on the velocity of the interstellar medium in the observer's frame of reference. Gravitational radiation interacts weakly with the substance, so electromagnetic and gravitational waves propagate from a remote astrophysical object to the terrestrial observer at different time. Gravitational waves registration enables the inverse problem solution - by the difference in arrival time of electromagnetic and gravitational-wave signal, we can determine the characteristics of the emitting area of the astrophysical object.

  4. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from an inflationary to a radiation-dominated universe is accomplished by bubble nucleation, bubble collisions supply a potent - and potentially detectable - source of gravitational waves. The energy density in relic gravitons from bubble collisions is expected to be about 0.00005 of closure density. Their characteristic wavelength depends on the reheating temperature. If black holes are produced by bubble collisions, they will evaporate, producing shorter-wavelength gravitons.

  5. Radiation

    NASA Video Gallery

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  6. Gauss-Bonnet gravitational baryogenesis

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    In this letter we study some variant forms of gravitational baryogenesis by using higher order terms containing the partial derivative of the Gauss-Bonnet scalar coupled to the baryonic current. This scenario extends the well known theory that uses a similar coupling between the Ricci scalar and the baryonic current. One appealing feature of the scenario we study is that the predicted baryon asymmetry during a radiation domination era is non-zero. We calculate the baryon to entropy ratio for the Gauss-Bonnet term and by using the observational constraints we investigate which are the allowed forms of the R + F (G) gravity controlling the evolution. Also we briefly discuss some alternative higher order terms that can generate a non-zero baryon asymmetry, even in the conformal invariance limit.

  7. The sky pattern of the linearized gravitational memory effect

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas; Winicour, Jeffrey

    2016-09-01

    The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress–energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E-mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B-mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity.

  8. The sky pattern of the linearized gravitational memory effect

    NASA Astrophysics Data System (ADS)

    Mädler, Thomas; Winicour, Jeffrey

    2016-09-01

    The gravitational memory effect leads to a net displacement in the relative positions of test particles. This memory is related to the change in the strain of the gravitational radiation field between infinite past and infinite future retarded times. There are three known sources of the memory effect: (i) the loss of energy to future null infinity by massless fields or particles, (ii) the ejection of massive particles to infinity from a bound system and (iii) homogeneous, source-free gravitational waves. In the context of linearized theory, we show that asymptotic conditions controlling these known sources of the gravitational memory effect rule out any other possible sources with physically reasonable stress-energy tensors. Except for the source-free gravitational waves, the two other known sources produce gravitational memory with E-mode radiation strain, characterized by a certain curl-free sky pattern of their polarization. Thus our results show that the only known source of B-mode gravitational memory is of primordial origin, corresponding in the linearized theory to a homogeneous wave entering from past null infinity.

  9. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF.

    PubMed

    Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J

    2008-10-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation. PMID:19044512

  10. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF.

    PubMed

    Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J

    2008-10-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.

  11. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF

    SciTech Connect

    Herrmann, Hans W.; Mack, Joseph M.; Young, Carlton S.; Malone, Robert M.; Stoeffl, Wolfgang; Horsfield, Colin J.

    2008-10-15

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from {gamma} rays to relativistic electrons to UV/visible Cherenkov radiation.

  12. Perspectives on Gravity-Induced Radiative Processes in Astrophysics

    NASA Astrophysics Data System (ADS)

    Papini, Giorgio

    2015-04-01

    Single-vertex Feynman diagrams represent the dominant contribution to physical processes, but are frequently forbidden kinematically. This is changed when the particles involved propagate in a gravitational background and acquire an effective mass. Procedures are introduced that allow the calculation of lowest order diagrams, their corresponding transition probabilities, emission powers and spectra to all orders in the metric deviation, for particles of any spin propagating in gravitational fields described by any metric. Physical properties of the "space-time medium" are also discussed. It is shown in particular that a small dissipation term in the particle wave equations can trigger a strong back-reaction that introduces resonances in the radiative process and affects the resulting gravitational background.

  13. [RBE of neutrons from the BR-10 reactor based on their antitumor effect and on acute radiation reactions of the skin].

    PubMed

    Kuznetsova, M N; Ul'ianenko, S E

    1989-05-01

    The paper is concerned with the results of investigation of antitumor effectiveness (rats, sarcoma M-1) of neutron radiation of a BR-10 reactor with the mean energy of 0.85 MeV, correlated with the effect of 60Co gamma radiation (Luch-1). RBE in single local tumor radiation with neutrons was 4.5, being higher than RBE based on acute skin radiation reactions over a tumor (4.0). For this case FTA is over I (1.13) but slightly lower than after dose fractionated irradiation (1.18). Experimental data indicate the necessity of extending the clinical use of reactor neutrons and a profound study of the effects after neutron irradiation, particularly in dose-fractionated regimens.

  14. Supersymmetry and gravitational duality

    SciTech Connect

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-06-15

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  15. Galaxies as gravitational lenses.

    PubMed

    Barnothy, J; Barnothy, M F

    1968-10-18

    Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies. PMID:17836654

  16. Gravitation: Foundations and Frontiers

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2010-01-01

    1. Special relativity; 2. Scalar and electromagnetic fields in special relativity; 3. Gravity and spacetime geometry: the inescapable connection; 4. Metric tensor, geodesics and covariant derivative; 5. Curvature of spacetime; 6. Einstein's field equations and gravitational dynamics; 7. Spherically symmetric geometry; 8. Black holes; 9. Gravitational waves; 10. Relativistic cosmology; 11. Differential forms and exterior calculus; 12. Hamiltonian structure of general relativity; 13. Evolution of cosmological perturbations; 14. Quantum field theory in curved spacetime; 15. Gravity in higher and lower dimensions; 16. Gravity as an emergent phenomenon; Notes; Index.

  17. SU-E-J-273: Skin Temperature Recovery Rate as a Potential Predictor for Radiation-Induced Skin Reactions

    SciTech Connect

    Biswal, N C; Wu, Z; Chu, J; Sun, J

    2015-06-15

    Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) and at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.

  18. Gravitational Waves: The Evidence Mounts

    ERIC Educational Resources Information Center

    Wick, Gerald L.

    1970-01-01

    Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)

  19. Gravitational lenses and particle properties

    NASA Technical Reports Server (NTRS)

    Turner, Edwin L.

    1986-01-01

    The potential of observations of gravitational lens systems for the determination of cosmological constants and for tests of the nature and distribution of dark matter is illustrated. The advantages and disadvantages of gravitational lenses as cosmological probes are evaluated.

  20. A combined plant and reaction chamber setup to investigate the effect of pollution and UV-B radiation on biogenic emissions

    NASA Astrophysics Data System (ADS)

    Timkovsky, J.; Gankema, P.; Pierik, R.; Holzinger, R.

    2012-12-01

    Biogenic emissions account for almost 90% of total non-methane organic carbon emissions in the atmosphere. The goal of this project is to study the effect of pollution (ozone, NOx) and UV radiation on the emission of real plants. We have designed and built a setup where we combine plant chambers with a reaction chamber (75L volume) allowing the addition of pollutants at different locations. The main analytical tool is a PTR-TOF-MS instrument that can be optionally coupled with a GC system for improved compound identification. The setup is operational since March 2012 and first measurements indicate interesting results, three types of experiments will be presented: 1. Ozonolysis of b-pinene. In this experiment the reaction chamber was flushed with air containing b-pinene at approximate levels of 50 nmol/mol. After ~40 min b-pinene levels reached equilibrium in the reaction chamber and a constant supply of ozone was provided. Within 30 minutes this resulted in a 10 nmol/mol decrease of b-pinene levels in accordance with a reaction rate constant of 1.5*10-17 cm3molec-1s-1 and a residence time of 10 minutes in the reaction chamber. In addition we observed known oxidation products such as formaldehyde, acetone, and nopinone the molar yields of which were also in accordance with reported values. 2. Ozonolysis of biogenic emissions from tomato plants. The air containing the emissions from tomato plants was supplied to the reaction chamber. After adding ozone we observed the decrease of monoterpene concentrations inside the reaction chamber. The observed decrease is consistent for online PTR-MS and GC/PTR-MS measurements. Several ozonolysis products have been observed in the chamber. 3. The effect of UV-B radiation on biogenic emissions of tomato plants. Tomato plants were exposed to UV-B radiation and their emissions measured during and after the treatment. We observed significant changes in the emissions of volatile organic compounds, with specific compounds increasing

  1. Testing gravity with gravitational wave source counts

    NASA Astrophysics Data System (ADS)

    Calabrese, Erminia; Battaglia, Nicholas; Spergel, David N.

    2016-08-01

    We show that the gravitational wave source counts distribution can test how gravitational radiation propagates on cosmological scales. This test does not require obtaining redshifts for the sources. If the signal-to-noise ratio (ρ) from a gravitational wave source is proportional to the strain then it falls as {R}-1, thus we expect the source counts to follow {{d}}{N}/{{d}}ρ \\propto {ρ }-4. However, if gravitational waves decay as they propagate or propagate into other dimensions, then there can be deviations from this generic prediction. We consider the possibility that the strain falls as {R}-γ , where γ =1 recovers the expected predictions in a Euclidean uniformly-filled Universe, and forecast the sensitivity of future observations to deviations from standard General Relativity. We first consider the case of few objects, seven sources, with a signal-to-noise from 8 to 24, and impose a lower limit on γ, finding γ \\gt 0.33 at 95% confidence level. The distribution of our simulated sample is very consistent with the distribution of the trigger events reported by Advanced LIGO. Future measurements will improve these constraints: with 100 events, we estimate that γ can be measured with an uncertainty of 15%. We generalize the formalism to account for a range of chirp masses and the possibility that the signal falls as {exp}(-R/{R}0)/{R}γ .

  2. Research on gravitational physiology

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.

    1974-01-01

    The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.

  3. Probing gravitational dark matter

    NASA Astrophysics Data System (ADS)

    Ren, Jing; He, Hong-Jian

    2015-03-01

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χs. It is a Bbb Z2 odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξsχs2Script R, where ξs is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξsχs2Script R, together with Higgs-curvature nonminimal coupling term ξhH†HScript R, induces effective couplings between χs2 and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  4. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  5. Non-gravitational perturbations and satellite geodesy

    SciTech Connect

    Milani, A.; Nobill, A.M.; Farinella, P.

    1987-01-01

    This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.

  6. Gravitation importance in the evolution of prehypertension.

    PubMed

    Dorogovtsev, V N; Silva, B

    2007-07-01

    Gravitation plays the important role in a pathogeny of the essential hypertension (EH). Modifications of hydrostatic pressure during body position changes, related to gravitational action, produce the significant hemodynamics shifts. Discordance of the orthostatic hemodynamics reactions with gravitational action can lead to orthostatic hypotension or proceed without any clinical signs during increased hemodynamic respond. Absence of physiological circulatory orthostatic responses, possibly, is very initial sign of EH development. This assumption is confirmed by the outcomes of the prospective studies in whose have been shown that EH more often develops in patients with normal arterial pressure accompanied by circulatory orthostatic disorders. The prehypertension (PH) became the studies subject only after publication of the report 7 of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (7 JNC). Its diagnosis based on blood pressure (BP) measurement. According to the report, the PH is a risk factor of EH development. Peculiarities of life development on the Earth, phylogenetic features of cardiovascular system evolution and physical effects of gravitational action, allow us to advance a hypothesis that the PH is the beginning of EH pathogenesis. One of the diagnostic methods may be the system hemodynamics study at passive head-up tilt.

  7. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.; Vallisneri, Michele; Larson, Shane L.; Baker, John G.

    2013-09-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ˜ 10(-5) - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  8. The Scientific Potential of Space-Based Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Gair, Jonathan R.

    The millihertz gravitational wave band can only be accessed with a space-based interferometer, but it is one of the richest in potential sources. Observations in this band have amazing scientific potential. The mergers between massive black holes with mass in the range 104-107M_{⊙}, which are expected to occur following the mergers of their host galaxies, produce strong millihertz gravitational radiation. Observations of these systems will trace the hierarchical assembly of structure in the Universe in a mass range that is very difficult to probe electromagnetically. Stellar mass compact objects falling into such black holes in the centres of galaxies generate detectable gravitational radiation for several years prior to the final plunge and merger with the central black hole. Measurements of these systems offer an unprecedented opportunity to probe the predictions of general relativity in the strong-field and dynamical regime. Millihertz gravitational waves are also generated by millions of ultra-compact binaries in the Milky Way, providing a new way to probe galactic stellar populations. ESA has recognised this great scientific potential by selecting The Gravitational Universe as its theme for the L3 large satellite mission, scheduled for launch in ˜ 2034. In this article we will review the likely sources for millihertz gravitational wave detectors and describe the wide applications that observations of these sources could have for astrophysics, cosmology and fundamental physics.

  9. Three-point statistics of cosmological stochastic gravitational waves

    SciTech Connect

    Adshead, Peter; Lim, Eugene A.

    2010-07-15

    We consider the three-point function (i.e. the bispectrum or non-Gaussianity) for stochastic backgrounds of gravitational waves. We estimate the amplitude of this signal for the primordial inflationary background, gravitational waves generated during preheating, and for gravitational waves produced by self-ordering scalar fields following a global phase transition. To assess detectability, we describe how to extract the three-point signal from an idealized interferometric experiment and compute the signal to noise ratio as a function of integration time. The three-point signal for the stochastic gravitational wave background generated by inflation is unsurprisingly tiny. For gravitational radiation generated by purely causal, classical mechanisms we find that, no matter how nonlinear the process is, the three-point correlations produced vanish in direct detection experiments. On the other hand, we show that in scenarios where the B-mode of the cosmic microwave background is sourced by gravitational waves generated by a global phase transition, a strong three-point signal among the polarization modes is also produced. This may provide another method of distinguishing inflationary B-modes. To carry out this computation, we have developed a diagrammatic approach to the calculation of stochastic gravitational waves sourced by scalar fluids, which has applications beyond the present scenario.

  10. eLISA and the Gravitational Universe

    NASA Astrophysics Data System (ADS)

    Danzmann, Karsten

    2015-08-01

    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

  11. Gravitational waves from binaries on unbound orbits

    NASA Astrophysics Data System (ADS)

    Majár, János; Forgács, Péter; Vasúth, Mátyás

    2010-09-01

    A generalized true anomaly-type parametrization, convenient to describe both bound and open orbits of a two-body system in general relativity is introduced. A complete description of the time evolution of both the radial and angular equations of a binary system taking into account the first order post-Newtonian (1PN) corrections is given. The gravitational radiation field emitted by the system is computed in the 1PN approximation including higher multipole moments beyond the standard quadrupole term. The gravitational waveforms in the time domain are explicitly given up to the 1PN order for unbound orbits, but the results are also illustrated on binaries on elliptic orbits with special attention given to the effects of eccentricity.

  12. Gravitational wave memory in an expanding universe

    NASA Astrophysics Data System (ADS)

    Tolish, Alexander; Wald, Robert

    2016-03-01

    We investigate the gravitational wave memory effect in an expanding FLRW spacetime. We find that if the gravitational field is decomposed into gauge-invariant scalar, vector, and tensor modes after the fashion of Bardeen, only the tensor mode gives rise to memory, and this memory can be calculated using the retarded Green's function associated with the tensor wave equation. If locally similar radiation source events occur on flat and FLRW backgrounds, we find that the resulting memories will differ only by a redshift factor, and we explore whether or not this factor depends on the expansion history of the FLRW universe. We compare our results to related work by Bieri, Garfinkle, and Yau.

  13. Study the effect of chemical reaction and variable viscosity on free convection MHD radiating flow over an inclined plate bounded by porous medium

    NASA Astrophysics Data System (ADS)

    Ali, M.; Alim, M. A.; Nasrin, R.; Alam, M. S.

    2016-07-01

    An analysis is performed to study the free convection heat and mass transfer flow of an electrically conducting incompressible viscous fluid about a semi-infinite inclined porous plate under the action of radiation, chemical reaction in presence of magnetic field with variable viscosity. The dimensionless governing equations are steady, two-dimensional coupled and non-linear ordinary differential equation. Nachtsgeim-Swigert shooting iteration technique along with Runge-Kutta integration scheme is used to solve the non-dimensional governing equations. The effects of magnetic parameter, viscosity parameter and chemical reaction parameter on velocity, temperature and concentration profiles are discussed numerically and shown graphically. Therefore, the results of velocity profile decreases for increasing values of magnetic parameter and viscosity parameter but there is no effect for reaction parameter. The temperature profile decreases in presence of magnetic parameter, viscosity parameter and Prandtl number but increases for radiation parameter. Also, concentration profile decreases for the increasing values of magnetic parameter, viscosity parameter and reaction parameter. All numerical calculations are done with respect to salt water and fixed angle of inclination of the plate.

  14. Black Hole Kicks as New Gravitational Wave Observables

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Moore, Christopher J.

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ˜500 km s-1 , which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  15. Black Hole Kicks as New Gravitational Wave Observables.

    PubMed

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy. PMID:27419556

  16. Neutron interference in the gravitational field of a ring laser

    NASA Astrophysics Data System (ADS)

    Fischetti, Robert D.; Mallett, Ronald L.

    2015-07-01

    The neutron split-beam interferometer has proven to be particularly useful in measuring Newtonian gravitational effects such as those studied by Colella, Overhauser, and Werner (COW). The development of the ring laser has led to numerous applications in many areas of physics including a recent general relativistic prediction of frame dragging in the gravitational field produced by the electromagnetic radiation in a ring laser. This paper introduces a new general technique based on a canonical transformation of the Dirac equation for the gravitational field of a general linearized spacetime. Using this technique it is shown that there is a phase shift in the interference of two neutron beams due to the frame-dragging nature of the gravitational field of a ring laser.

  17. Black Hole Kicks as New Gravitational Wave Observables.

    PubMed

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  18. Nuclear and gravitational energies in stars

    SciTech Connect

    Meynet, Georges; Ekström, Sylvia; Courvoisier, Thierry

    2014-05-09

    The force that governs the evolution of stars is gravity. Indeed this force drives star formation, imposes thermal and density gradients into stars at hydrostatic equilibrium and finally plays the key role in the last phases of their evolution. Nuclear power in stars governs their lifetimes and of course the stellar nucleosynthesis. The nuclear reactions are at the heart of the changes of composition of the baryonic matter in the Universe. This change of composition, in its turn, has profound consequences on the evolution of stars and galaxies. The energy extracted from the gravitational, respectively nuclear reservoirs during the lifetimes of stars of different masses are estimated. It is shown that low and intermediate mass stars (M < 8 M{sub ⊙}) extract roughly 90 times more energy from their nuclear reservoir than from their gravitational one, while massive stars (M > 8 M{sub ⊙}), which explode in a supernova explosion, extract more than 5 times more energy from the gravitational reservoir than from the nuclear one. We conclude by discussing a few important nuclear reactions and their link to topical astrophysical questions.

  19. Gravitational lensing by gravastars

    NASA Astrophysics Data System (ADS)

    Kubo, Tomohiro; Sakai, Nobuyuki

    2016-04-01

    As a possible method to detect gravastars (gravitational-vacuum-star), which was originally proposed by Mazur and Mottola, we study their gravitational lensing effects. Specifically, we adopt a spherical thin-shell model of a gravastar developed by Visser and Wiltshire, which connects interior de Sitter geometry and exterior Schwarzschild geometry, and assume that its surface is optically transparent. We calculate the image of a companion which rotates around the gravastar; we find that some characteristic images appear, depending on whether the gravastar possess unstable circular orbits of photons (Model 1) or not (Model 2). For Model 2, we calculate the total luminosity change, which is called microlensing effects; the maximal luminosity could be considerably larger than the black hole with the same mass.

  20. Gravitational coset models

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.; Fleming, Michael

    2014-07-01

    The algebra A {/D - 3 + + +} dimensionally reduces to the E D-1 symmetry algebra of (12 - D)-dimensional supergravity. An infinite set of five-dimensional gravitational objects embedded in D-dimensions is constructed by identifying the null geodesic motion on cosets embedded in the generalised Kac-Moody algebra A {/D - 3 + + +}. By analogy with super-gravity these are bound states of dual gravitons. The metric interpolates continuously between exotic gravitational solutions generated by the action of an affine sub-group. We investigate mixed-symmetry fields in the brane sigma model, identify actions for the full interpolating bound state and investigate the dualisation of the bound state to a solution of the Einstein-Hilbert action via the Hodge dual on multiforms. We conclude that the Hodge dual is insufficient to reconstruct solutions to the Einstein-Hilbert action from mixed-symmetry tensors.

  1. Applications of gravitational lensing

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    I derive the basic principles of gravitational lensing, and proceed to describe several astrophysical applications. First, invariants in gravitational lensing magnification are derived using techniques of multidimensional residue calculus, and illustrated with example calculations. Then I discuss how these invariant quantities may be useful for measuring the properties of lenses. Next, I discuss the use of astrometric microlensing for studying extrasolar planets. Finally, the use of lensing for the study of substructure in dark matter halos is presented, along with ramifications for the small-scale power spectrum of matter fluctuations. The strongest bounds to date are placed on the mass of the dark matter particle, as well as bounds on the neutrino mass and slope of the primordial power spectrum.

  2. Self-gravitating skyrmions

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Canfora, Fabrizio; Zanelli, Jorge

    2016-05-01

    A self-gravitating Skyrmion is an analytic and globally regular solution of the Einstein-Skyrme system with nonvanishing topological charge. The spacetime is the direct product R × S3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX and, through an analytic continuation, it can also be turned into a transversable asymptotically AdS Lorentzian wormhole. The stress-energy of this wormhole satisfies physically realistic energy conditions and the only “exotic matter” required by it is a negative cosmological constant.

  3. Gravitationally induced quantum transitions

    NASA Astrophysics Data System (ADS)

    Landry, A.; Paranjape, M. B.

    2016-06-01

    In this paper, we calculate the probability for resonantly inducing transitions in quantum states due to time-dependent gravitational perturbations. Contrary to common wisdom, the probability of inducing transitions is not infinitesimally small. We consider a system of ultracold neutrons, which are organized according to the energy levels of the Schrödinger equation in the presence of the Earth's gravitational field. Transitions between energy levels are induced by an oscillating driving force of frequency ω . The driving force is created by oscillating a macroscopic mass in the neighborhood of the system of neutrons. The neutron lifetime is approximately 880 sec while the probability of transitions increases as t2. Hence, the optimal strategy is to drive the system for two lifetimes. The transition amplitude then is of the order of 1.06 ×10-5, and hence with a million ultracold neutrons, one should be able to observe transitions.

  4. The gravitational wave experiment

    NASA Technical Reports Server (NTRS)

    Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.

    1992-01-01

    Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.

  5. Gravitational wave astronomy.

    NASA Astrophysics Data System (ADS)

    Finn, L. S.

    Astronomers rely on a multiplicity of observational perspectives in order to infer the nature of the Universe. Progress in astronomy has historically been associated with new or improved observational perspectives. Gravitational wave detectors now under construction will provide us with a perspective on the Universe fundamentally different from any we have come to know. With this new perspective comes the hope of new insights and understanding, not just of exotic astrophysical processes, but of "bread-and-butter" astrophysics: e.g., stars and stellar evolution, galaxy formation and evolution, neutron star structure, and cosmology. In this report the author discusses briefly a small subset of the areas of conventional, "bread-and-butter" astrophysics where we can reasonably hope that gravitational wave observations will provide us with valuable new insights and understandings.

  6. Spacetime and gravitation.

    NASA Astrophysics Data System (ADS)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  7. Bipolar outflows as a repulsive gravitational phenomenon — Azimuthally Symmetric Theory of Gravitation (II)

    NASA Astrophysics Data System (ADS)

    Nyambuya, Golden Gadzirayi

    2010-11-01

    This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation (ASTG). This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining, from a purely classical physics standpoint, the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun. This symmetry has and must have an influence on the emergent gravitational field. We show herein that the emergent equations from the ASTG, under some critical conditions determined by the spin, do possess repulsive gravitational fields in the polar regions of the gravitating body in question. This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon. Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled. Given the current thinking on their origin, the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least, it is a complete paradigm shift because gravitation is not at all associated with this process, but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point. Additionally, we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation. That is, at ~ 8-10 , radiation from the nascent star is expected to halt the accretion of matter. We show that in-falling material will fall onto the equatorial disk and from there, this material will be channeled onto the forming star via the equatorial plane, thus accretion of mass continues well past the value of ~ 8-10 , albeit via the disk. Along the equatorial plane, the net force (with the radiation force included) on any material there

  8. Quasars and gravitational lenses.

    PubMed

    Turner, E L

    1984-03-23

    Despite the expenditure of large amounts of telescope time and other resources, most of the fundamental questions concerning quasi-stellar objects (quasars) remain unanswered. A complex phenomenology of radio, infrared, optical, and x-ray properties has accumulated but has not yielded even a satisfactory classification system. The large red shifts (distances) of quasars make them very valuable tools for studying cosmology and the properties of intervening matter in the Universe through observations of absorption lines and gravitational lenses.

  9. Undulator Gravitational Deflection

    SciTech Connect

    Bowden, G.

    2005-01-31

    This note estimates distortions imposed by gravity on LCLS undulator strong-backs. Because of the strongback's asymmetric cross section, gravitational forces cause both torsion as well as simple bending. The superposition of these two effects yields a 4.4 {micro}m maximum deflection and a 0.16 milli radian rotation of the undulator axis. The choice of titanium is compared to aluminum.

  10. INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER

    SciTech Connect

    Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luis C. B.; Pani, Paolo

    2013-09-01

    The nature and properties of dark matter (DM) are both outstanding issues in physics. Besides clustering in halos, the universal character of gravity implies that self-gravitating compact DM configurations-predicted by various models-might be spread throughout the universe. Their astrophysical signature can be used to probe fundamental particle physics, or to test alternative descriptions of compact objects in active galactic nuclei. Here, we discuss the most promising dissection tool of such configurations: the inspiral of a compact stellar-size object and consequent gravitational-wave (GW) emission. The inward motion of this ''test probe'' encodes unique information about the nature of the supermassive configuration. When the probe travels through some compact region we show, within a Newtonian approximation, that the quasi-adiabatic inspiral is mainly driven by DM accretion and by dynamical friction, rather than by radiation reaction. When accretion dominates, the frequency and amplitude of the GW signal produced during the latest stages of the inspiral are nearly constant. In the exterior region we study a model in which the inspiral is driven by GW and scalar-wave emission, described at a fully relativistic level. Resonances in the energy flux appear whenever the orbital frequency matches the effective mass of the DM particle, corresponding to the excitation of the central object's quasinormal frequencies. Unexpectedly, these resonances can lead to large dephasing with respect to standard inspiral templates, to such an extent as to prevent detection with matched filtering techniques. We discuss some observational consequences of these effects for GW detection.

  11. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures. PMID:23700619

  12. Differences in fundamental reaction mechanisms between high and low-LET in recent advancements and applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Farahani, Mahnaz; Clochard, Marie-Claude; Gifford, Ian; Barkatt, Aaron; Al-Sheikhly, Mohamad

    2014-12-01

    Differences among the mechanisms of energy deposition by high-linear energy transfer (LET) radiation, consisting of neutrons, protons, alpha particles, and heavy ions on one hand, and low-LET radiation, exemplified by electron beam and gamma radiation on the other, are utilized in the selection of types of radiation used for specific applications. Thus, high-LET radiation is used for modification of carbon nanotubes, ion track grafting, and the synthesis of membranes and nanowires, as well as for characterization of materials by means of neutron scattering. Recent applications of low-LET irradiation include minimization of radiolytic degradation upon sterilization of ultra-high molecular weight polyethylene (UHMWPE), radiolytic synthesis of nanogels for drug delivery systems, grafting of polymers in the synthesis of adsorbents for uranium from seawater, and reductive remediation of PCBs.1

  13. [Radiation situation prognosis for deep space: reactions of water and living systems to chronic low-dose ionizing irradiation].

    PubMed

    Ushakov, I B; Tsetlin, V V; Moisa, S S

    2013-01-01

    The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.

  14. Gravitational Wave Astronomy:The High Frequency Window

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Kokkotas, Kostas D.

    As several large scale interferometers are beginning to take data at sensitivities where astrophysical sources are predicted, the direct detection of gravitational waves may well be imminent. This would (finally) open the long anticipated gravitational-wave window to our Universe, and should lead to a much improved understanding of the most violent processes imaginable; the formation of black holes and neutron stars following core collapse supernovae and the merger of compact objects at the end of binary inspiral. Over the next decade we can hope to learn much about the extreme physics associated with, in particular, neutron stars. This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated bread-and-butter source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100 Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.

  15. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV radiation

    EPA Science Inventory

    A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...

  16. Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2009-12-01

    The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications.

  17. Quantum Emulation of Gravitational Waves

    PubMed Central

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  18. Quantum Emulation of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-01

    Gravitational waves, as predicted by Einstein’s general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  19. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-07-14

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.

  20. Quantum Emulation of Gravitational Waves.

    PubMed

    Fernandez-Corbaton, Ivan; Cirio, Mauro; Büse, Alexander; Lamata, Lucas; Solano, Enrique; Molina-Terriza, Gabriel

    2015-01-01

    Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials. PMID:26169801

  1. Bayesian analysis on gravitational waves and exoplanets

    NASA Astrophysics Data System (ADS)

    Deng, Xihao

    Attempts to detect gravitational waves using a pulsar timing array (PTA), i.e., a collection of pulsars in our Galaxy, have become more organized over the last several years. PTAs act to detect gravitational waves generated from very distant sources by observing the small and correlated effect the waves have on pulse arrival times at the Earth. In this thesis, I present advanced Bayesian analysis methods that can be used to search for gravitational waves in pulsar timing data. These methods were also applied to analyze a set of radial velocity (RV) data collected by the Hobby- Eberly Telescope on observing a K0 giant star. They confirmed the presence of two Jupiter mass planets around a K0 giant star and also characterized the stellar p-mode oscillation. The first part of the thesis investigates the effect of wavefront curvature on a pulsar's response to a gravitational wave. In it we show that we can assume the gravitational wave phasefront is planar across the array only if the source luminosity distance " 2piL2/lambda, where L is the pulsar distance to the Earth (˜ kpc) and lambda is the radiation wavelength (˜ pc) in the PTA waveband. Correspondingly, for a point gravitational wave source closer than ˜ 100 Mpc, we should take into account the effect of wavefront curvature across the pulsar-Earth line of sight, which depends on the luminosity distance to the source, when evaluating the pulsar timing response. As a consequence, if a PTA can detect a gravitational wave from a source closer than ˜ 100 Mpc, the effects of wavefront curvature on the response allows us to determine the source luminosity distance. The second and third parts of the thesis propose a new analysis method based on Bayesian nonparametric regression to search for gravitational wave bursts and a gravitational wave background in PTA data. Unlike the conventional Bayesian analysis that introduces a signal model with a fixed number of parameters, Bayesian nonparametric regression sets

  2. Gravitational collapse of Vaidya spacetime

    NASA Astrophysics Data System (ADS)

    Vertogradov, Vitalii

    2016-03-01

    The gravitational collapse of generalized Vaidya spacetime is considered. It is known that the endstate of gravitational collapse, as to whether a black hole or a naked singularity is formed, depends on the mass function M(v,r). Here we give conditions for the mass function which corresponds to the equation of the state P = αρ where α ∈ (0, 1 3] and according to these conditions we obtain either a black hole or a naked singularity at the endstate of gravitational collapse. Also we give conditions for the mass function when the singularity is gravitationally strong.

  3. The Detection of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Blair, David G.

    2005-10-01

    Part I. An Introduction to Gravitational Waves and Methods for their Detection: 1. Gravitational waves in general relativity D. G. Blair; 2. Sources of gravitational waves D. G. Blair; 3. Gravitational wave detectors D. G. Blair; Part II. Gravitational Wave Detectors: 4. Resonant-bar detectors D. G. Blair; 5. Gravity wave dewars W. O. Hamilton; 6. Internal friction in high Q materials J. Ferreirinko; 7. Motion amplifiers and passive transducers J. P. Richard; 8. Parametric transducers P. J. Veitch; 9. Detection of continuous waves K. Tsubono; 10. Data analysis and algorithms for gravitational wave-antennas G. V. Paalottino; Part III. Laser Interferometer Antennas: 11. A Michelson interferometer using delay lines W. Winkler; 12. Fabry-Perot cavity gravity-wave detectors R. W. P. Drever; 13. The stabilisation of lasers for interferometric gravitational wave detectors J. Hough; 14. Vibration isolation for the test masses in interferometric gravitational wave detectors N. A. Robertson; 15. Advanced techniques A. Brillet; 16. Data processing, analysis and storage for interferometric antennas B. F. Schutz; 17. Gravitational wave detection at low and very low frequencies R. W. Hellings.

  4. Gravitational Physics Research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Gravitational physics research at ISPAE is connected with NASA's Relativity Mission (Gravity Probe B (GP-B)) which will perform a test of Einstein's General Relativity Theory. GP-B will measure the geodetic and motional effect predicted by General Relativity Theory with extremely stable and sensitive gyroscopes in an earth orbiting satellite. Both effects cause a very small precession of the gyroscope spin axis. The goal of the GP-B experiment is the measurement of the gyroscope precession with very high precision. GP-B is being developed by a team at Stanford University and is scheduled for launch in the year 2001. The related UAH research is a collaboration with Stanford University and MSFC. This research is focussed primarily on the error analysis and data reduction methods of the experiment but includes other topics concerned with experiment systems and their performance affecting the science measurements. The hydrogen maser is the most accurate and stable clock available. It will be used in future gravitational physics missions to measure relativistic effects such as the second order Doppler effect. The HMC experiment, currently under development at the Smithsonian Astrophysical Observatory (SAO), will test the performance and capability of the hydrogen maser clock for gravitational physics measurements. UAH in collaboration with the SAO science team will study methods to evaluate the behavior and performance of the HMC. The GP-B data analysis developed by the Stanford group involves complicated mathematical operations. This situation led to the idea to investigate alternate and possibly simpler mathematical procedures to extract the GP-B measurements form the data stream. Comparison of different methods would increase the confidence in the selected scheme.

  5. Generation of gravitational waves: The post Newtonian spin octupole moment

    NASA Astrophysics Data System (ADS)

    Damour, T.; Iyer, B. R.

    1993-12-01

    Using the gravitational wave formalism developed by Blanchet, Damour, and Iyer, this note computes the post-Newtonian-accurate spin octupole moment. The result is checked by explicitly verifying the transformation of the radiative spin octupole moment under shifts of the spatial origin.

  6. Squeezed states in the theory of primordial gravitational waves

    NASA Technical Reports Server (NTRS)

    Grishchuk, Leonid P.

    1992-01-01

    It is shown that squeezed states of primordial gravitational waves are inevitably produced in the course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of squeezed light. Squeezed parameters and statistical properties of the expected relic gravity-wave radiation are described.

  7. Gravitinos from gravitational collapse

    SciTech Connect

    Grifols, J.A.; Masso, E.; Toldra, R.

    1998-01-01

    We reanalyze the limits on the gravitino mass m{sub 3/2} in superlight gravitino scenarios derived from arguments on energy loss during gravitational collapse. We conclude that the mass range 10{sup {minus}6} eV{le}m{sub 3/2}{le}2.3{times}10{sup {minus}5} eV is excluded by SN 1987A data. In terms of the scale of supersymmetry breaking {Lambda}, the range 70 GeV {le}{Lambda}{le}300 GeV is not allowed. {copyright} {ital 1997} {ital The American Physical Society}

  8. Regular gravitational lagrangians

    NASA Astrophysics Data System (ADS)

    Dragon, Norbert

    1992-02-01

    The Einstein action with vanishing cosmological constant is for appropriate field content the unique local action which is regular at the fixed point of affine coordinate transformations. Imposing this regularity requirement one excludes also Wess-Zumino counterterms which trade gravitational anomalies for Lorentz anomalies. One has to expect dilatational and SL (D) anomalies. If these anomalies are absent and if the regularity of the quantum vertex functional can be controlled then Einstein gravity is renormalizable. On leave of absence from Institut für Theoretische Physik, Universität Hannover, W-3000 Hannover 1, FRG.

  9. Gravitational waves from the electroweak phase transition

    SciTech Connect

    Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D. E-mail: megevand@mdp.edu.ar

    2012-10-01

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10{sup −4} Hz, and give intensities as high as h{sup 2}Ω{sub GW} ∼ 10{sup −8}.

  10. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  11. Gravitational Waves from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  12. Heat and gravitation. II. Stability

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    2011-01-01

    Some features of hydro- and thermodynamics, as applied to atmospheres and to stellar structures, are puzzling. 1. The suggestion, first made by Laplace, that our atmosphere has an adiabatic temperature distribution, is confirmed for the lower layers, but the reason why it should be so is difficult to understand. 2. The standard treatment of relativistic thermodynamics does not allow for a systematic treatment of mixtures, such as the mixture of a perfect gas with radiation. 3. The concept of mass in applications of general relativity to stellar structures is less than completely satisfactory. 4. Arguments in which a concept of energy plays a role, in the context of hydro-thermodynamical systems and gravitation, are not always convincing. It was proposed that a formulation of thermodynamics as an action principle may be a suitable approach to adopt for a new investigation of these matters. In this second article of a series we propose to base criteria of stability on the hamiltonian functional that is provided by the variational principle, to replace the reliance that has often been placed on ad hoc definitions of the "energy". We introduce a new virial principle that is formulated entirely within the Eulerian description of hydrodynamics, which allows a simpler derivation of a well known stability criterion for polytropic stellar configurations. Boundary conditions are based entirely on mass conservation. The new approach is tested on isothermal and polytropic atmospheres and then used to initiate a new study of stars. Traditional results for polytropic, spherical configurations are confirmed, but our study gives new insight and new results for the case that radiation is taken into account.

  13. Gravitational Effects upon Locomotion Posture

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey

    2008-01-01

    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  14. Mixed Convective Flow of an Elastico-Viscous Fluid Past a Vertical Plate in the Presence of Thermal Radiation and Chemical Reaction with an Induced Magnetic Field

    NASA Astrophysics Data System (ADS)

    Das, Utpal Jyoti

    2016-01-01

    The purpose of the study is to investigate the steady, two-dimensional, hydromagnetic, mixed convection heat and mass transfer of a conducting, optically thin, incompressible, elastico-viscous fluid (characterized by the Walters' B' model) past a permeable, stationary, vertical, infinite plate in the presence of thermal radiation and chemical reaction with account for an induced magnetic field. The governing equations of the flow are solved by the series method, and expressions for the velocity field, induced magnetic field, temperature field, and the skin friction are obtained.

  15. Temperature and Concentration Stratification Effects in Mixed Convection Flow of an Oldroyd-B Fluid with Thermal Radiation and Chemical Reaction

    PubMed Central

    Hayat, Tasawar; Muhammad, Taseer; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2015-01-01

    This research addresses the mixed convection flow of an Oldroyd-B fluid in a doubly stratified surface. Both temperature and concentration stratification effects are considered. Thermal radiation and chemical reaction effects are accounted. The governing nonlinear boundary layer equations are converted to coupled nonlinear ordinary differential equations using appropriate transformations. Resulting nonlinear systems are solved for the convergent series solutions. Graphs are plotted to examine the impacts of physical parameters on the non-dimensional temperature and concentration distributions. The local Nusselt number and the local Sherwood number are computed and analyzed numerically. PMID:26102200

  16. Gravitating lepton bag model

    NASA Astrophysics Data System (ADS)

    Burinskii, A.

    2015-08-01

    The Kerr-Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr's gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring-string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag-string-quark system.

  17. General Relativity and Gravitation

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  18. Gravitational Neurobiology of Fish

    NASA Astrophysics Data System (ADS)

    Rahmann, H.; Anken, R. H.

    In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses - particularly of fish - observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena

  19. Gravitating lepton bag model

    SciTech Connect

    Burinskii, A.

    2015-08-15

    The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bag forms a single bag–string–quark system.

  20. THE THERMAL STRUCTURE OF GRAVITATIONALLY DARKENED CLASSICAL Be STAR DISKS

    SciTech Connect

    McGill, M. A.; Sigut, T. A. A.; Jones, C. E.

    2011-12-20

    The effect of gravitational darkening on models of the thermal structure of Be star disks is systematically studied for a wide range of Be star spectral types and rotation rates. Gravitational darkening causes a reduction of the stellar effective temperature toward the equator and a redirection of energy toward the poles. It is an important physical effect in these star-disk systems because the photoionizing radiation from the central B star is the main energy source for the disk. We have added gravitational darkening to the BEDISK code to produce circumstellar disk models that include both the variation in the effective temperature with latitude and the non-spherical shape of the star in the calculation of the stellar photoionizing radiation field. The effect of gravitational darkening on global measures of disk temperature is generally significant for rotation rates above 80% of critical rotation. For example, a B0V model rotating at 95% of critical has a density-averaged disk temperature Almost-Equal-To 2500 K cooler than its non-rotating counterpart. However, detailed differences in the temperature structure of disks surrounding rotating and non-rotating stars reveal a complex pattern of heating and cooling. Spherical gravitational darkening, an approximation that ignores the changing shape of the star, gives good results for disk temperatures for rotation rates less than Almost-Equal-To 80% of critical. However for the highest rotation rates, the distortion of the stellar surface caused by rotation becomes important.

  1. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  2. Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach

    NASA Astrophysics Data System (ADS)

    Zhidkov, A.; Masuda, S.; Bulanov, S. S.; Koga, J.; Hosokai, T.; Kodama, R.

    2014-05-01

    Nonlinear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including radiation damping for the quantum parameter ⟨ℏωxray⟩/ɛ <1 and an arbitrary radiation parameter χ. The electron's energy loss, along with its being scattered to the side by the ponderomotive force, makes scattering in the vicinity of a high laser field nearly impossible at high electron energies. The use of a second, copropagating laser pulse as a booster is shown to partially solve this problem.

  3. Gravitational Repulsion and Dirac Antimatter

    NASA Astrophysics Data System (ADS)

    Kowitt, Mark E.

    1996-03-01

    Based on an analogy with electron and hole dynamics in semiconductors, Dirac's relativistic electron equation is generalized to include a gravitational interaction using an electromagnetic-type approximation of the gravitational potential. With gravitational and inertial masses decoupled, the equation serves to extend Dirac's deduction of antimatter parameters to include the possibility of gravitational repulsion between matter and antimatter. Consequences for general relativity and related “antigravity” issues are considered, including the nature and gravitational behavior of virtual photons, virtual pairs, and negative-energy particles. Basic cosmological implications of antigravity are explored—in particular, potential contributions to inflation, expansion, and the general absence of detectable antimatter. Experimental and observational tests are noted, and new ones suggested.

  4. Numerical simulation of gravitational lenses

    NASA Astrophysics Data System (ADS)

    Cherniak, Yakov

    Gravitational lens is a massive body or system of bodies with gravitational field that bends directions of light rays propagating nearby. This may cause an observer to see multiple images of a light source, e.g. a star, if there is a gravitational lens between the star and the observer. Light rays that form each individual image may have different distances to travel, which creates time delays between them. In complex gravitational fields generated by the system of stars, analytical calculation of trajectories and light intensities is virtually impossible. Gravitational lens of two massive bodies, one behind another, are able to create four images of a light source. Furthermore, the interaction between the four light beams can form a complicated interference pattern. This article provides a brief theory of light behavior in a gravitational field and describes the algorithm for constructing the trajectories of light rays in a gravitational field, calculating wave fronts and interference pattern of light. If you set gravitational field by any number of transparent and non- transparent objects (stars) and set emitters of radio wave beams, it is possible to calculate the interference pattern in any region of space. The proposed method of calculation can be applied even in the case of the lack of continuity between the position of the emitting stars and position of the resulting image. In this paper we propose methods of optimization, as well as solutions for some problems arising in modeling of gravitational lenses. The simulation of light rays in the sun's gravitational field is taken as an example. Also caustic is constructed for objects with uniform mass distribution.

  5. Gravitational waves from first-order cosmological phase transitions

    NASA Technical Reports Server (NTRS)

    Kosowsky, Arthur; Turner, Michael S.; Watkins, Richard

    1992-01-01

    A first-order cosmological phase transition that proceeds through the nucleation and collision of true-vacuum bubbles is a potent source of gravitational radiation. Possibilities for such include first-order inflation, grand-unified-theory-symmetry breaking, and electroweak-symmetry breaking. We have calculated gravity-wave production from the collision of two scalar-field vacuum bubbles, and, using an approximation based upon these results, from the collision of 20 to 30 vacuum bubbles. We present estimates of the relic background of gravitational waves produced by a first-order phase transition.

  6. Minimal length in quantum gravity and gravitational measurements

    NASA Astrophysics Data System (ADS)

    Farag Ali, Ahmed; Khalil, Mohammed M.; Vagenas, Elias C.

    2015-10-01

    The existence of a minimal length is a common prediction of various theories of quantum gravity. This minimal length leads to a modification of the Heisenberg uncertainty principle to a Generalized Uncertainty Principle (GUP). Various studies showed that a GUP modifies the Hawking radiation of black holes. In this paper, we propose a modification of the Schwarzschild metric based on the modified Hawking temperature derived from the GUP. Based on this modified metric, we calculate corrections to the deflection of light, time delay of light, perihelion precession, and gravitational redshift. We compare our results with gravitational measurements to set an upper bound on the GUP parameter.

  7. Application of DSN spacecraft tracking technology to experimental gravitation

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Estabrook, F. B.

    1978-01-01

    Spacecraft tracking technology of the Deep Space Net (DSN) has been used in the past to measure the general-relativistic increase in round-trip group delay between earth and a spacecraft. As the DSN technology continues to improve, other gravitational experiments will become possible. Two possibilities are discussed in this paper. The first concerns the application of solar-system dynamics to the testing of general relativity. The second involves the detection of VLF gravitational radiation (0.1 to 0.0001 Hz) by means of Doppler tracking of spacecraft.

  8. Preparing for LISA in the Gravitational Wave Era

    NASA Astrophysics Data System (ADS)

    Larson, Shane

    2016-03-01

    Before the end of the decade, both LIGO and Pulsar Timing Arrays are expected to make the first detections of gravitational waves, and in all likelihood will have started the compilation of the first gravitational wave catalogs. Both LIGO and Pulsar Timing Arrays observe source populations that radiate in the LISA band at other points in their evolutionary history. In this talk, we'll discuss how early detections of supermassive black hole binaries (by PTAs) and ultra-compact binary mergers (by LIGO) will be important players in understanding the scope of LISA science.

  9. The generation of gravitational waves. II - The postlinear formalism revisited

    NASA Technical Reports Server (NTRS)

    Crowley, R. J.; Thorne, K. S.

    1977-01-01

    Two different versions of the Green's function for the scalar wave equation in weakly curved spacetime (one due to DeWitt and DeWitt, the other to Thorne and Kovacs) are compared and contrasted; and their mathematical equivalence is demonstrated. Then the DeWitt-DeWitt Green's function is used to construct several alternative versions of the Thorne-Kovacs postlinear formalism for gravitational-wave generation. Finally it is shown that, in calculations of gravitational bremsstrahlung radiation, some of our versions of the postlinear formalism allow one to treat the interacting bodies as point masses, while others do not.

  10. Gravitational waves from periodic three-body systems.

    PubMed

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-01

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values. PMID:25238346

  11. Hunting for MHz gravitational waves with the Fermilab Holometer

    NASA Astrophysics Data System (ADS)

    Kamai, Brittany; The Holometer Collaboration Collaboration

    2016-03-01

    The highest frequency end of the gravitational wave spectrum remains poorly constrained. Cosmic strings and primordial black holes are potential gravitational waves candidates that could radiate at MHz frequencies. The existence of nearby sources can be tested using the Fermilab Holometer, two nested 40 meter Michelson interferometers. This instrument can achieve strain sensitivity better than 10- 20 / rt .Hz within the 1-10 MHz frequency band. The Holometer is fully operational and has taken long observational campaigns acquiring 100s of hours of science quality data. I will present results of a search for narrow-lined sources and constraints on the stochastic background in the MHz band.

  12. Gravitational waves from periodic three-body systems.

    PubMed

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-01

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  13. GRB as a counterpart for Gravitational Wave detection in LCGT

    NASA Astrophysics Data System (ADS)

    Kanda, Nobuyuki

    2010-10-01

    Short Gamma-ray burst (GRB) progenitors are considered as merger of compact star binaries which consist of neutron stars or blackholes. These compact star binaries will radiate a strong gravitational wave in their coalescence, and gravitational wave detectors aim to detect them. We studied the chance probability of coincidence between GRB and GW detection in LCGT detector. Due to omni-directional acceptance of GW detectors, about 75% of GRB events which closer than cosmological redshift z<0.1 are expected to confirm by GW detection.

  14. Fabrication of a Microbial Biosensor Based on QD-MWNT Supports by a One-Step Radiation Reaction and Detection of Phenolic Compounds in Red Wines

    PubMed Central

    Kim, Seul-Ki; Kwen, Hai-Doo; Choi, Seong-Ho

    2011-01-01

    An Acaligense sp.-immobilized biosensor was fabricated based on QD-MWNT composites as an electron transfer mediator and a microbe immobilization support by a one-step radiation reaction and used for sensing phenolic compounds in commercial red wines. First, a quantum dot-modified multi-wall carbon nanotube (QD-MWNT) composite was prepared in the presence of MWNT by a one-step radiation reaction in an aqueous solution at room temperature. The successful preparation of the QD-MWNT composite was confirmed by XPS, TEM, and elemental analysis. Second, the microbial biosensor was fabricated by immobilization of Acaligense sp. on the surface of the composite thin film of a glassy carbon (GC) electrode, which was prepared by a hand casting method with a mixture of the previously obtained composite and Nafion solution. The sensing ranges of the microbial biosensor based on CdS-MWNT and Cu2S-MWNT supports were 0.5–5.0 mM and 0.7–10 mM for phenol in a phosphate buffer solution, respectively. Total concentration of phenolic compounds contained in commercial red wines was also determined using the prepared microbial immobilized biosensor. PMID:22319395

  15. Galaxies as gravitational lenses.

    PubMed

    Sadeh, D

    1967-12-01

    The probability that a galaxy gathers light from another remote galaxy, and deflects and focuses it toward an observer on Earth, is calculated according to various cosmologic models. I pose the question of whether an object called a quasar is a single, intrinsically luminous entity or the result of accidental alignment, along the line of sight, of two normal galaxies, the more distant of which has its light amplified by the gravitational-lens effect of the nearer galaxy. If galaxies are distributed at random in the universe, the former alternative is true. But, if we assume that most galaxies exist in pairs, we can find about 30 galaxies occurring exactly one behind the other in such a way as to enable amplification of the order of 50. This model explains also the variations in intensity in quasars, but fails to explain others of their observed properties. PMID:17734305

  16. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  17. Frontiers in gravitational physics

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    In this thesis we present three research projects in classical General Relativity and Cosmology. In the first part of the thesis we investigate the definition of gravitational charge corresponding to the asymptotic boost symmetry of a spacetime and derive its role in the first law of black hole thermodynamics. In the cosmology part, we investigate the role of a scalar field in the early and late time evolution of the Universe. We find out observational constraints on the pseudo Nambu Goldstone Boson quintessence model using the latest supernova and Cosmic Microwave Background (CMB) data. In an attempt to explain a particular anomaly in the latest CMB data, we propose a modification to the standard single field inflation based on the initial kinetic energy domination with anisotropic initial conditions. Predictions of this mechanism can be tested in future data analysis.

  18. Atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity, respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous - whose rates are related by a non-constant function beta sub a - is demonstrated. The cosmological character of beta sub a is also discussed.

  19. Gravitational adaptation of animals

    NASA Technical Reports Server (NTRS)

    Smith, A. H.; Burton, R. R.

    1982-01-01

    The effect of gravitational adaptation is studied in a group of five Leghorn cocks which had become physiologically adapted to 2 G after 162 days of centrifugation. After this period of adaptation, they are periodically exposed to a 2 G field, accompanied by five previously unexposed hatch-mates, and the degree of retained acceleration adaptation is estimated from the decrease in lymphocyte frequency after 24 hr at 2 G. Results show that the previously adapted birds exhibit an 84% greater lymphopenia than the unexposed birds, and that the lymphocyte frequency does not decrease to a level below that found at the end of 162 days at 2 G. In addition, the capacity for adaptation to chronic acceleration is found to be highly heritable. An acceleration tolerant strain of birds shows lesser mortality during chronic acceleration, particularly in intermediate fields, although the result of acceleration selection is largely quantitative (a greater number of survivors) rather than qualitative (behavioral or physiological changes).

  20. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  1. Inhomogeneous cosmology. III - Primordial gravitational waves and dust

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Hellings, R. W.; Zimmerman, R. L.

    1987-01-01

    In this paper, the properties of a special class of inhomogeneous cosmological models and the interaction of the inhomogeneities with the evolution of the background geometry and matter are studied. The cosmological model is chosen so that the initial inhomogeneities evolve into 'plane' gravitational waves propagating through a smooth Bianchi I dust background. It is shown how the inhomogeneities interact with matter, 3 K radiation, and the background geometry, causing the expansion to slow down in some regions and speed up in others. It is also shown how the gravitational waves can produce a 'dragging of the inertial frame' which will affect the observed distribution of matter and 3 K radiation. In particular, this frame-dragging effect can account for a major fraction of the obsserved dipole component between the 3 K background radiation and the rest frame of global matter, an effect usually assumed to have been produced by large-scale local motion.

  2. Low-frequency terrestrial gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Harms, Jan; Slagmolen, Bram J. J.; Adhikari, Rana X.; Miller, M. Coleman; Evans, Matthew; Chen, Yanbei; Müller, Holger; Ando, Masaki

    2013-12-01

    Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-hertz radiation from massive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1-10 Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.

  3. New decay branches of the radiative capture reaction {sup 12}C({sup 16}O,{gamma}){sup 28}Si

    SciTech Connect

    Lebhertz, D.; Courtin, S.; Haas, F.; Salsac, M.-D.; Beck, C.; Michalon, A.; Rousseau, M.; Marley, P. L.; Glover, R. G.; Kent, P. E.; Hutcheon, D. A.; Davis, C.; Pearson, J. E.

    2009-01-28

    Resonances in the {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture process at energies around the Coulomb barrier have been probed using the very selective 0 deg. Dragon spectrometer at Triumf and its associated BGO {gamma}-array. For the first time the full level scheme involved in this process has been measured and shows previously unobserved {gamma}-decay to doorway states around 11 MeV in {sup 28}Si.

  4. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    SciTech Connect

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

  5. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  6. Reaction analogues in the radiation-induced deamination and dephosphorylation of bio-organic molecules: oxygen-free systems

    SciTech Connect

    Garrison, W.M.

    1987-08-01

    The reductive deamination of ..cap alpha..-amino acids and peptides by e/sub aq//sup -/ and the oxidative dephosphorylation of glycol phosphates by OH are shown to be related in terms of a common elimination reaction involving free-radical intermediates of the same genre. A comparison is made of main-chain cleavage and HX elimination in the radiolysis of histone and of DNA in oxygen-free solution. 26 refs.

  7. An overview of gravitational physiology

    NASA Technical Reports Server (NTRS)

    Miquel, Jaime; Souza, Kenneth A.

    1991-01-01

    The focus of this review is on the response of humans and animals to the effects of the near weightless condition occurring aboard orbiting spacecraft. Gravity is an omnipresent force that has been a constant part of our lives and of the evolution of all living species. Emphasis is placed on the general mechanisms of adaptation to altered gravitational fields and vectors, i.e., both hypo- and hypergravity. A broad literature review of gravitational biology was conducted and the general state of our knowledge in this area is discussed. The review is specifically targeted at newcomers to the exciting and relatively new area of space and gravitational biology.

  8. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  9. Pure gravitational dark matter, its mass and signatures

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Wu, Yue-Liang

    2016-07-01

    In this study, we investigate a scenario that dark matter (DM) has only gravitational interaction. In the framework of effective field theory of gravity, we find that DM is still stable at tree level even if there is no symmetry to protect its longevity, but could decay into standard model particles due to gravitational loop corrections. The radiative corrections can lead to both higher- and lower-dimensional effective operators. We also first explore how DM can be produced in the early universe. Through gravitational interaction at high temperature, DM is then found to have mass around TeV ≲mX ≲1011 GeV to get the right relic abundance. When DM decays, it mostly decays into gravitons, which could be tested by current and future CMB experiments. We also estimate the resulting fluxes for cosmic rays, gamma-ray and neutrino.

  10. Gravitational violation of R parity and its cosmological signatures

    SciTech Connect

    Berezinsky, V. |; Joshipura, A.S.; Valle, J.W.

    1998-01-01

    Discrete R parity (R{sub P}) is usually imposed in the minimal supersymmetric standard model (MSSM) as an unbroken symmetry. In this paper we study very weak gravitationally induced R-parity breaking, described by nonrenormalizable terms inversely proportional to the Planck mass. The lightest supersymmetric particle, a neutralino, is unstable but its lifetime exceeds the age of the Universe and thus it can serve as a dark matter (DM) particle. The neutralino lifetime is severely constrained from below due to the production of positrons and antiprotons, diffuse gamma radiation, etc. The violation of R{sub P} generated gravitationally by dimension-five operators in the MSSM is shown to violate these constraints if they are suppressed only by the Planck scale. A general theoretical analysis of gravitationally induced R{sub P} violation is performed and two plausible and astrophysically consistent scenarios for achieving the required suppression are identified and discussed. {copyright} {ital 1997} {ital The American Physical Society}

  11. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    PubMed

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects.

  12. Nanohertz gravitational wave searches with interferometric pulsar timing experiments.

    PubMed

    Tinto, Massimo

    2011-05-13

    We estimate the sensitivity to nano-Hertz gravitational waves of pulsar timing experiments in which two highly stable millisecond pulsars are tracked simultaneously with two neighboring radio telescopes that are referenced to the same timekeeping subsystem (i.e., "the clock"). By taking the difference of the two time-of-arrival residual data streams we can exactly cancel the clock noise in the combined data set, thereby enhancing the sensitivity to gravitational waves. We estimate that, in the band (10(-9)-10(-8))  Hz, this "interferometric" pulsar timing technique can potentially improve the sensitivity to gravitational radiation by almost 2 orders of magnitude over that of single-telescopes. Interferometric pulsar timing experiments could be performed with neighboring pairs of antennas of the NASA's Deep Space Network and the forthcoming large arraying projects. PMID:21668135

  13. Dissipation of modified entropic gravitational energy through gravitational waves

    NASA Astrophysics Data System (ADS)

    de Matos, Clovis Jacinto

    2012-01-01

    The phenomenological nature of a new gravitational type interaction between two different bodies derived from Verlinde's entropic approach to gravitation in combination with Sorkin's definition of Universe's quantum information content, is investigated. Assuming that the energy stored in this entropic gravitational field is dissipated under the form of gravitational waves and that the Heisenberg principle holds for this system, one calculates a possible value for an absolute minimum time scale in nature tau=15/16 Λ^{1/2}hbar G/c4˜9.27×10^{-105} seconds, which is much smaller than the Planck time t P =( ħG/ c 5)1/2˜5.38×10-44 seconds. This appears together with an absolute possible maximum value for Newtonian gravitational forces generated by matter Fg=32/30c7/Λ hbar G2˜ 3.84× 10^{165} Newtons, which is much higher than the gravitational field between two Planck masses separated by the Planck length F gP = c 4/ G˜1.21×1044 Newtons.

  14. DNA Double-Strand Break Analysis by {gamma}-H2AX Foci: A Useful Method for Determining the Overreactors to Radiation-Induced Acute Reactions Among Head-and-Neck Cancer Patients

    SciTech Connect

    Goutham, Hassan Venkatesh; Mumbrekar, Kamalesh Dattaram; Vadhiraja, Bejadi Manjunath; Fernandes, Donald Jerard; Sharan, Krishna; Kanive Parashiva, Guruprasad; Kapaettu, Satyamoorthy; Bola Sadashiva, Satish Rao

    2012-12-01

    Purpose: Interindividual variability in normal tissue toxicity during radiation therapy is a limiting factor for successful treatment. Predicting the risk of developing acute reactions before initiation of radiation therapy may have the benefit of opting for altered radiation therapy regimens to achieve minimal adverse effects with improved tumor cure. Methods and Materials: DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of head-and-neck cancer patients undergoing chemoradiation therapy was analyzed by counting {gamma}-H2AX foci, neutral comet assay, and a modified version of neutral filter elution assay. Acute normal tissue reactions were assessed by Radiation Therapy Oncology Group criteria. Results: The correlation between residual DSBs and the severity of acute reactions demonstrated that residual {gamma}-H2AX foci in head-and-neck cancer patients increased with the severity of oral mucositis and skin reaction. Conclusions: Our results suggest that {gamma}-H2AX analysis may have predictive implications for identifying the overreactors to mucositis and skin reactions among head-and-neck cancer patients prior to initiation of radiation therapy.

  15. Gravitational waves from compact binaries inspiralling along post-Newtonian accurate eccentric orbits: Data analysis implications

    SciTech Connect

    Tessmer, Manuel; Gopakumar, Achamveedu

    2008-10-15

    Compact binaries inspiralling along eccentric orbits are plausible gravitational-wave (GW) sources for the ground-based laser interferometers. We explore the losses in the event rates incurred when searching for GWs from compact binaries inspiralling along post-Newtonian accurate eccentric orbits with certain obvious nonoptimal search templates. For the present analysis, GW signals having 2.5 post-Newtonian (PN) accurate orbital evolution are modeled following the phasing formalism, presented by T. Damour, A. Gopakumar, and B. R. Iyer [Phys. Rev. D 70, 064028 (2004)]. We demonstrate that the search templates that model in a gauge-invariant manner GWs from compact binaries inspiralling under quadrupolar radiation reaction along 2PN accurate circular orbits are very efficient in capturing our somewhat realistic GW signals. However, three types of search templates based on the adiabatic, complete adiabatic, and gauge-dependent complete nonadiabatic approximants, detailed in P. Ajith, B. R. Iyer, C. A. K. Robinson, and B. S. Sathyaprakash, Phys. Rev. D 71, 044029 (2005), relevant for the circular inspiral under the quadrupolar radiation reaction were found to be inefficient in capturing the above-mentioned eccentric signal. We conclude that further investigations will be required to probe the ability of various types of PN accurate circular templates, employed to analyze the LIGO/VIRGO data, to capture GWs from compact binaries having tiny orbital eccentricities.

  16. Gravitational waves from compact binaries inspiralling along post-Newtonian accurate eccentric orbits: Data analysis implications

    NASA Astrophysics Data System (ADS)

    Tessmer, Manuel; Gopakumar, Achamveedu

    2008-10-01

    Compact binaries inspiralling along eccentric orbits are plausible gravitational-wave (GW) sources for the ground-based laser interferometers. We explore the losses in the event rates incurred when searching for GWs from compact binaries inspiralling along post-Newtonian accurate eccentric orbits with certain obvious nonoptimal search templates. For the present analysis, GW signals having 2.5 post-Newtonian (PN) accurate orbital evolution are modeled following the phasing formalism, presented by T. Damour, A. Gopakumar, and B. R. Iyer [Phys. Rev. D 70, 064028 (2004)PRVDAQ0556-282110.1103/PhysRevD.70.064028]. We demonstrate that the search templates that model in a gauge-invariant manner GWs from compact binaries inspiralling under quadrupolar radiation reaction along 2PN accurate circular orbits are very efficient in capturing our somewhat realistic GW signals. However, three types of search templates based on the adiabatic, complete adiabatic, and gauge-dependent complete nonadiabatic approximants, detailed in P. Ajith, B. R. Iyer, C. A. K. Robinson, and B. S. Sathyaprakash, Phys. Rev. D 71, 044029 (2005)PRVDAQ0556-282110.1103/PhysRevD.71.044029, relevant for the circular inspiral under the quadrupolar radiation reaction were found to be inefficient in capturing the above-mentioned eccentric signal. We conclude that further investigations will be required to probe the ability of various types of PN accurate circular templates, employed to analyze the LIGO/VIRGO data, to capture GWs from compact binaries having tiny orbital eccentricities.

  17. Faraday rotation due to quadratic gravitation

    NASA Astrophysics Data System (ADS)

    Chen, Yihan; Liu, Liping; Tian, Wen-Xiu

    2011-01-01

    The linearized field equations of quadratic gravitation in stationary space-time are written in quasi-Maxwell form. The rotation of the polarization plane for an electromagnetic wave propagating in the gravito-electromagnetic field caused by a rotating gravitational lens is discussed. The influences of the Yukawa potential in quadratic gravitation on the gravitational Faraday rotation are investigated.

  18. Gravitation toward Walls among Human Subjects

    ERIC Educational Resources Information Center

    Dabbs, James M., Jr.; Wheeler, Patricia A.

    1976-01-01

    In two studies, college students (N=34) in a classroom corridor who walked near the wall ("gravitators") were contrasted with those who walked near the center ("non-gravitators"). Gravitators were lower than non-gravitators on Autonomy and Defendence and appeared to be less responsive to other persons. (Author)

  19. Quantum Opportunities in Gravitational Wave Detectors

    SciTech Connect

    Mavalvala, Negris

    2012-03-14

    Direct observation of gravitational waves should open a new window into the Universe. Gravitational wave detectors are the most sensitive position meters ever constructed. The quantum limit in gravitational wave detectors opens up a whole new field of study. Quantum opportunities in gravitational wave detectors include applications of quantum optics techniques and new tools for quantum measurement on truly macroscopic (human) scales.

  20. Radiative corrections to e/sup +/e/sup -/ reactions to all orders in. cap alpha. using the renormalization group

    SciTech Connect

    Tsai, Y.S.

    1983-01-01

    Renormalization group technique is used to improve the accuracy of the lowest order radiative corrections in QED. The exponentiation of infrared terms comes automatically. It also leads to exponentiation of the vertex functions. It predicts the existence of conversion of photons into pairs and the result agrees with the Kroll-Wada relation. Kinoshita-Lee-Nauenberg cancellation of mass singularities occurs to all order in ..cap alpha.. in leading log approximation in the final state if we sum over all the final states. Higher order corrections to the order ..cap alpha../sup 3/ asymmetry is shown to be small. The results are used to derive useful formulas for the radiative corrections to processes such as e/sup +/e/sup -/ ..-->.. ..mu../sup +/..mu../sup -/, e/sup +/e/sup -/ ..-->.. ..mu../sup +/..mu../sup -/..gamma.., e/sup +/e/sup -/ ..-->.. hadron continuum, e/sup +/e/sup -/ ..-->.. very narrow resonance such as phi, and e/sup +/e/sup -/ ..-->.. not very narrow resonance such as Z/sup 0/.

  1. Reaction analogues in the radiation-induced deamination and dephosphorylation of bio-organic molecules 2: Oxygenated solutions

    SciTech Connect

    Garrison, W.M.

    1988-02-01

    The OH-induced deamination and dephosphorylation of simple peptides and phosphate esters in oxygenated solutions involve the fomation and subsequent degradation of the perodyl radicals RCONHC()dot O))R/sub 2/ and )bigcircreverse arrowP) OC()dot O)/sub 2/)R/sub 2/ respectively. Reaction analogues in the degradation of peroxyl and alkoxyl radicals in these two systems are evaluated with reference to the OH-induced main-chain cleavage of protein and DNA. 25 refs.

  2. Gravitational energy sources in Jupiter

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.

    1973-01-01

    Gravitational sources of the intrinsic luminosity of Jupiter are examined in the context of current hydrogen-helium models. When no gravitational separation of matter occurs, the amount of heat which can be released over the remaining lifetime of the planet is necessarily limited by the size of its existing reservoir of thermal energy. This conclusion rests only on the assumption that its interior is relatively cold and degenerate. If gravitational unmixing occurs, the size of the thermal reservoir does not necessarily limit the heat output. If core formation occurs, for example, then the size of the core formed will be a limiting factor. The energy released with the formation of a helium core is computed for Jupiter. A core growth rate, averaged over several billion years, of 20 trillionths of Jupiter's mass per year is required if gravitational separation is to play a significant role in the thermal evolution.

  3. Gravitational quantum states of Antihydrogen

    SciTech Connect

    Voronin, A. Yu.; Froelich, P.; Nesvizhevsky, V. V.

    2011-03-15

    We present a theoretical study of the motion of the antihydrogen atom (H) in the gravitational field of Earth above a material surface. We predict that the H atom, falling in the gravitational field of Earth above a material surface, would settle into long-lived quantum states. We point out a method of measuring the difference in the energy of H in such states. The method allows for spectroscopy of gravitational levels based on atom-interferometric principles. We analyze the general feasibility of performing experiments of this kind. We point out that such experiments provide a method of measuring the gravitational force (Mg) acting on H and that they might be of interest in the context of testing the weak equivalence principle for antimatter.

  4. Relativistic Gravitational Experiments in Space

    NASA Technical Reports Server (NTRS)

    Hellings, Ronald W. (Editor)

    1989-01-01

    The results are summarized of a workshop on future gravitational physics space missions. The purpose of the workshop was to define generic technological requirements for such missions. NASA will use the results to direct its program of advanced technology development.

  5. Gravitational Many-Body Problem

    SciTech Connect

    Makino, J.

    2008-04-29

    In this paper, we briefly review some aspects of the gravitational many-body problem, which is one of the oldest problems in the modern mathematical science. Then we review our GRAPE project to design computers specialized to this problem.

  6. Testing Modified Gravity with Gravitational-Wave Observations from Space

    NASA Astrophysics Data System (ADS)

    Sopuerta, Carlos F.; Yunes, Nicolas

    The inspiral of stellar compact objects into massive black holes sitting at galactic centers, usually known as extreme-mass-ratio inspirals (EMRIs), is one of the most important sources of gravitational radiation for the future Laser Interferometer Space Antenna (LISA), an ESA-NASA mission. It is expected that LISA will determine the physical parameters of these sources with a high precision. These precise measurements open the possibility of making robust tests of the existence of black holes, of their geometry, and even of the gravitational interaction. In relation to this, intermediate-mass-ratio inspirals (IMRIs) are also of interest to advance ground-based gravitational-wave observatories. In this talk, we discuss how modifications to the gravitational interaction can affect the signals emitted by EMRIs and the detectability of these modifications by LISA. To that end, we present results from an study of a particular modification of General Relativity (GR): Chern-Simons modified gravity, a theory that emerges in different quantum gravitational approaches and where spinning black holes have a geometry different from the Kerr geometry predicted by GR. References: C. F. Sopuerta and N. Yunes "Extreme and Intermediate-Mass Ratio Inspirals in Dynamical Chern-Simons Modified Gravity" Physical Review D80, 064006 (2009). e-Print: arXiv:0904.4501 [gr-qc

  7. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. PMID:26918975

  8. Gravitational-Wave Cosmology across 29 Decades in Frequency

    NASA Astrophysics Data System (ADS)

    Lasky, Paul D.; Mingarelli, Chiara M. F.; Smith, Tristan L.; Giblin, John T.; Thrane, Eric; Reardon, Daniel J.; Caldwell, Robert; Bailes, Matthew; Bhat, N. D. Ramesh; Burke-Spolaor, Sarah; Dai, Shi; Dempsey, James; Hobbs, George; Kerr, Matthew; Levin, Yuri; Manchester, Richard N.; Osłowski, Stefan; Ravi, Vikram; Rosado, Pablo A.; Shannon, Ryan M.; Spiewak, Renée; van Straten, Willem; Toomey, Lawrence; Wang, Jingbo; Wen, Linqing; You, Xiaopeng; Zhu, Xingjiang

    2016-01-01

    Quantum fluctuations of the gravitational field in the early Universe, amplified by inflation, produce a primordial gravitational-wave background across a broad frequency band. We derive constraints on the spectrum of this gravitational radiation, and hence on theories of the early Universe, by combining experiments that cover 29 orders of magnitude in frequency. These include Planck observations of cosmic microwave background temperature and polarization power spectra and lensing, together with baryon acoustic oscillations and big bang nucleosynthesis measurements, as well as new pulsar timing array and ground-based interferometer limits. While individual experiments constrain the gravitational-wave energy density in specific frequency bands, the combination of experiments allows us to constrain cosmological parameters, including the inflationary spectral index nt and the tensor-to-scalar ratio r . Results from individual experiments include the most stringent nanohertz limit of the primordial background to date from the Parkes Pulsar Timing Array, ΩGW(f )<2.3 ×10-10 . Observations of the cosmic microwave background alone limit the gravitational-wave spectral index at 95% confidence to nt≲5 for a tensor-to-scalar ratio of r =0.11 . However, the combination of all the above experiments limits nt<0.36 . Future Advanced LIGO observations are expected to further constrain nt<0.34 by 2020. When cosmic microwave background experiments detect a nonzero r , our results will imply even more stringent constraints on nt and, hence, theories of the early Universe.

  9. Observation of Gravitational Waves from a Binary Black Hole Merger

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M⊙ and 2 9-4+4M⊙ , and the final black hole mass is 6 2-4+4M⊙ , with 3. 0-0.5+0.5M⊙ c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  10. Observation of Gravitational Waves from a Binary Black Hole Merger.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  11. Nuclear Quantum Gravitation - The Correct Theory

    NASA Astrophysics Data System (ADS)

    Kotas, Ronald

    2016-03-01

    Nuclear Quantum Gravitation provides a clear, definitive Scientific explanation of Gravity and Gravitation. It is harmonious with Newtonian and Quantum Mechanics, and with distinct Scientific Logic. Nuclear Quantum Gravitation has 10 certain, Scientific proofs and 21 more good indications. With this theory the Physical Forces are obviously Unified. See: OBSCURANTISM ON EINSTEIN GRAVITATION? http://www.santilli- Foundation.org/inconsistencies-gravitation.php and Einstein's Theory of Relativity versus Classical Mechanics http://www.newtonphysics.on.ca/einstein/

  12. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  13. [The mechanism of the occurrence of vomiting during the primary reaction after exposure of the body to ionizing radiations at large doses].

    PubMed

    Martirosov, K S; Grigor'ev, Iu G; Zorin, V V; Norkin, I M

    1997-01-01

    In the experiments of dogs exposed to ionizing radiations at doses of 50 and 70 Gy, an essential role of the central mechanism in the origin of early postradiation vomiting has been confirmed. Insufficient efficiency of dimethpramide, a dophamynolytics, in this case may be connected either with initiation of other (non-dophamynosensitive) structures of the chemoreceptor trigger zone of with a growing role of the reflex way of vomiting arising due to a considerable intestinal injury that causes diarrhea. The inhibition of intestinal M-cholinoreceptors by methacine prevented diarrhea but didn't change the intensity of the vomiting reaction which, however, does not eliminate the possibility of afferentation from receptors that respond to others biologically active substances.

  14. The terrestrial gravitational wave environment from known sources

    NASA Technical Reports Server (NTRS)

    Webbink, Ronald F.

    1993-01-01

    The objective of this project was to produce a gravitational wave spectral line list of all known binary stars producing expected strain amplitudes at Earth in excess of h = 10 (exp -21), or gravitational wave fluxes in excess of F = 10 (exp -12) erg cm(exp -2) s(exp -1). These strain and flux limits lie above the anticipated detection thresholds for space-borne laser interferometers capable of detecting gravitational radiation in the 10 micron Hz to 1 Hz frequency range. The source list was intended to provide frequency (including each harmonic), amplitude and phase (for each polarization and harmonic), and celestial coordinates for each system, lacking only the orientation of the principal polarization axis with respect to the pole of the coordinate system, and the sign of the source phase and frequency (or, equivalently, of the sense of rotation of the strain tensor with time) from providing a complete source description. Such a spectral line list would lay essential groundwork for high-sensitivity, low-frequency searches for gravitational radiation.

  15. A new gravitational wave verification source

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Brown, Warren R.; Gianninas, A.; Hermes, J. J.; Allende Prieto, Carlos; Kenyon, S. J.

    2014-10-01

    We report the discovery of a detached 20-min orbital period binary white dwarf (WD). WD 0931+444 (SDSS J093506.93+441106.9) was previously classified as a WD + M dwarf system based on its optical spectrum. Our time-resolved optical spectroscopy observations obtained at the 8 m Gemini and 6.5 m MMT reveal peak-to-peak radial velocity variations of ≈400 km s-1 every 20 min for the WD, but no velocity variations for the M dwarf. In addition, high-speed photometry from the McDonald 2.1 m telescope shows no evidence of variability nor evidence of a reflection effect. An M dwarf companion is physically too large to fit into a 20 min orbit. Thus, the orbital motion of the WD is almost certainly due to an invisible WD companion. The M dwarf must be either an unrelated background object or the tertiary component of a hierarchical triple system. WD 0931+444 contains a pair of WDs, a 0.32 M⊙ primary and a ≥0.14 M⊙ secondary, at a separation of ≥0.19 R⊙. After J0651+2844, WD 0931+444 becomes the second shortest period detached binary WD currently known. The two WDs will lose angular momentum through gravitational wave radiation and merge in ≤9 Myr. The log h ≃ -22 gravitational wave strain from WD 0931+444 is strong enough to make it a verification source for gravitational wave missions in the milli-Hertz frequency range, e.g. the evolved Laser Interferometer Space Antenna (eLISA), bringing the total number of known eLISA verification sources to nine.

  16. [Perspective on gravitational biology of amphibians].

    PubMed

    Yamashita, Masamichi; Naitoh, Tomio; Wassersug, Richard J

    2002-12-01

    We review here the scientific significance of the use of amphibians for research in gravitational biology. Since amphibian eggs are quite large, yet develop rapidly and externally, it is easy to observe their development. Consequently amphibians were the first vertebrates to have their early developmental processes investigated in space. Though several deviations from normal embryonic development occur when amphibians are raised in microgravity, their developmental program is robust enough to return the organisms to an ostensibly normal morphology by the time they hatch. Evolutionally, amphibians were the first vertebrate animal to come out of the water and onto land. Subsequently they diversified and have adaptively radiated to various habitats. They now inhabit aquatic, terrestrial, arboreal and fossorial niches. This diversity can be used to help study the biological effects of gravity at the organismal level, where macroscopic phenomena are associated with gravitational loading. By choosing different amphibian models and using a comparative approach one can effectively identify the action of gravity on biological systems, and the adaptation that vertebrates have made to this loading. Advances in cellular and molecular biology provide powerful tools for the study in many fields, including gravitational biology, and amphibians have proven to be good models for studies at those levels as well. The low metabolic rates of amphibians make them convenient organisms to work with (compared to birds and mammals) in the difficult and confined spaces on orbiting research platforms. We include here a review of what is known about and the potential for further behavioral and physiological researches in space using amphibians.

  17. Small neutrino masses from gravitational θ -term

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  18. The dual role of NK cells in antitumor reactions triggered by ionizing radiation in combination with hyperthermia

    PubMed Central

    Finkel, Patrick; Frey, Benjamin; Mayer, Friederike; Bösl, Karina; Werthmöller, Nina; Mackensen, Andreas; Gaipl, Udo S.; Ullrich, Evelyn

    2016-01-01

    ABSTRACT Classical tumor therapy consists of surgery, radio(RT)- and/or chemotherapy. Additive immunotherapy has gained in impact and antitumor in situ immunization strategies are promising to strengthen innate and adaptive immune responses. Immunological effects of RT and especially in combination with immune stimulation are mostly described for melanoma. Since hyperthermia (HT) in multimodal settings is capable of rendering tumor cells immunogenic, we analyzed the in vivo immunogenic potential of RT plus HT-treated B16 melanoma cells with an immunization and therapeutic assay. We focused on the role of natural killer (NK) cells in the triggered antitumor reactions. In vitro experiments showed that RT plus HT-treated B16 melanoma cells died via apoptosis and necrosis and released especially the danger signal HMGB1. The in vivo analyses revealed that melanoma cells are rendered immunogenic by RT plus HT. Especially, the repetitive immunization with treated melanoma cells led to an increase in NK cell number in draining lymph nodes, particularly of the immune regulatory CD27+CD11b− NK cell subpopulation. While permanent NK cell depletion after immunization led to a significant acceleration of tumor outgrowth, a single NK cell depletion two days before immunization resulted in significant tumor growth retardation. The therapeutic model, a local in situ immunization closely resembling the clinical situation when solid tumors are exposed locally to RT plus HT, confirmed these effects. We conclude that a dual and time-dependent impact of NK cells on the efficacy of antitumor immune reactions induced by immunogenic tumor cells generated with RT plus HT exists. PMID:27471606

  19. How to adapt broad-band gravitational-wave searches for r-modes

    SciTech Connect

    Owen, Benjamin J.

    2010-11-15

    Up to now there has been no search for gravitational waves from the r-modes of neutron stars in spite of the theoretical interest in the subject. Several oddities of r-modes must be addressed to obtain an observational result: The gravitational radiation field is dominated by the mass current (gravitomagnetic) quadrupole rather than the usual mass quadrupole, and the consequent difference in polarization affects detection statistics and parameter estimation. To astrophysically interpret a detection or upper limit it is necessary to convert the gravitational-wave amplitude to an r-mode amplitude. Also, it is helpful to know indirect limits on gravitational-wave emission to gauge the interest of various searches. Here I address these issues, thereby providing the ingredients to adapt broad-band searches for continuous gravitational waves to obtain r-mode results. I also show that searches of existing data can already have interesting sensitivities to r-modes.

  20. Beyond Advanced Gravitational Wave Detectors: Beating the Quantum Limit with Squeezed States of Light

    NASA Astrophysics Data System (ADS)

    Barsotti, Lisa

    2013-04-01

    After two decades of technology development, the first direct observation of gravitational waves appears to be imminent. Ground-based interferometric gravitational wave detectors world-wide are about to come back on-line after a major upgrade aimed to significantly improve their sensitivity. As these advanced detectors become a reality, the gravitational wave community is looking at new ways of further expanding their astrophysical reach. The quantum nature of light imposes a fundamental limit to the sensitivity that gravitational wave detectors can achieve, due to statistical fluctuations in the arrival time of photons at the interferometer output (shot noise) and the recoil of the mirrors due to radiation pressure noise. In this talk I will show how mature technology can be used to push interferometric precision measurement beyond the standard quantum limit by means of squeezed states of light, and current ideas on how to integrate this technology into the Advanced detectors of the Laser Interferometer Gravitational wave Observatory (LIGO).

  1. Multibaseline gravitational wave radiometry

    SciTech Connect

    Talukder, Dipongkar; Bose, Sukanta; Mitra, Sanjit

    2011-03-15

    We present a statistic for the detection of stochastic gravitational wave backgrounds (SGWBs) using radiometry with a network of multiple baselines. We also quantitatively compare the sensitivities of existing baselines and their network to SGWBs. We assess how the measurement accuracy of signal parameters, e.g., the sky position of a localized source, can improve when using a network of baselines, as compared to any of the single participating baselines. The search statistic itself is derived from the likelihood ratio of the cross correlation of the data across all possible baselines in a detector network and is optimal in Gaussian noise. Specifically, it is the likelihood ratio maximized over the strength of the SGWB and is called the maximized-likelihood ratio (MLR). One of the main advantages of using the MLR over past search strategies for inferring the presence or absence of a signal is that the former does not require the deconvolution of the cross correlation statistic. Therefore, it does not suffer from errors inherent to the deconvolution procedure and is especially useful for detecting weak sources. In the limit of a single baseline, it reduces to the detection statistic studied by Ballmer [Classical Quantum Gravity 23, S179 (2006).] and Mitra et al.[Phys. Rev. D 77, 042002 (2008).]. Unlike past studies, here the MLR statistic enables us to compare quantitatively the performances of a variety of baselines searching for a SGWB signal in (simulated) data. Although we use simulated noise and SGWB signals for making these comparisons, our method can be straightforwardly applied on real data.

  2. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media.

  3. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media. PMID:25469518

  4. Gravitational lensing in Tangherlini spacetime in the weak gravitational field and the strong gravitational field

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Naoki; Kitamura, Takao; Nakajima, Koki; Asada, Hideki

    2014-09-01

    The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/rn fall-off metric, as a one-parameter model that can treat by hand both the Schwarzschild lens (n =1) and the Ellis wormhole (n =2) in the weak field, has been recently studied. Only for n=1 case, however, it has been explicitly shown that effects of relativistic lens images by the strong field on the light curve can be neglected. We discuss whether relativistic images by the strong field can be neglected for n>1 in the Tangherlini spacetime which is one of the simplest models for our purpose. We calculate the divergent part of the deflection angle for arbitrary n and the regular part for n=1, 2 and 4 in the strong field limit, the deflection angle for arbitrary n under the weak gravitational approximation. We also compare the radius of the Einstein ring with the radii of the relativistic Einstein rings for arbitrary n. We conclude that the images in the strong gravitational field have little effect on the total light curve and that the time-symmetric demagnification parts in the light curve will appear even after taking account of the images in the strong gravitational field for n>1.

  5. Strong gravitational lensing of gravitational waves in Einstein Telescope

    SciTech Connect

    Piórkowska, Aleksandra; Biesiada, Marek; Zhu, Zong-Hong E-mail: marek.biesiada@us.edu.pl

    2013-10-01

    Gravitational wave experiments have entered a new stage which gets us closer to the opening a new observational window on the Universe. In particular, the Einstein Telescope (ET) is designed to have a fantastic sensitivity that will provide with tens or hundreds of thousand NS-NS inspiral events per year up to the redshift z = 2. Some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral NS-NS events in the Einstein telescope. Being conservative we consider the lens population of elliptical galaxies. It turns out that depending on the local insipral rate ET should detect from one per decade detection in the pessimistic case to a tens of detections per year for the most optimistic case. The detection of gravitationally lensed source in gravitational wave detectors would be an invaluable source of information concerning cosmography, complementary to standard ones (like supernovae or BAO) independent of the local cosmic distance ladder calibrations.

  6. Radiative thermal neutron-capture cross sections for the 180W(n ,γ ) reaction and determination of the neutron-separation energy

    NASA Astrophysics Data System (ADS)

    Hurst, A. M.; Firestone, R. B.; Szentmiklósi, L.; Sleaford, B. W.; Basunia, M. S.; Belgya, T.; Escher, J. E.; Krtička, M.; Révay, Zs.; Summers, N. C.

    2015-09-01

    Prompt thermal neutron-capture partial γ -ray production cross sections were measured for the first time for the 180W(n ,γ ) reaction using a cold guided-neutron beam at the Budapest Research Reactor. Absolute 181Wγ -ray cross sections were internally standardized using well-known comparator γ -ray cross sections belonging to the other tungsten isotopes present in the 11.35% enriched 180W sample. Transitions were assigned to levels in 181W based largely upon information available in the literature. The total radiative thermal neutron-capture cross section σ0 was determined from the sum of direct prompt γ -ray cross sections populating the ground state and a modeled contribution accounting for ground-state feeding from the quasicontinuum. In this work, we find σ0=21.67 (77 ) b. A new measurement of the cross section for the 5 /2- metastable isomer at 365.6 keV, σ5 /2-(181Wm,14.6 μ s ) =19.96 (55 ) b, is also determined. Additionally, primary γ rays, observed for the first time in the 180W(n ,γ ) reaction, provide the most precise determination for the 181W neutron-separation energy, Sn=6669.02 (16 ) keV.

  7. Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N

    NASA Astrophysics Data System (ADS)

    Neelam, Shubhchintak, Chatterjee, R.

    2015-10-01

    Background: The 15N(n ,γ )16N reaction plays an important role in red giant stars and also in inhomogeneous big bang nucleosynthesis. However, there are controversies regarding spectroscopic factors of the four low-lying states of 16N, which have direct bearing on the total direct capture cross section and also on the reaction rate. Direct measurements of the capture cross section at low energies are scarce and available only at three energies below 500 keV. Purpose: The aim of this paper is to calculate the 15N(n ,γ )16N radiative capture cross section and its subsequent reaction rate by an indirect method and in that process investigate the effects of spectroscopic factors of different levels of 16N to the cross section. Method: A fully quantum mechanical Coulomb breakup theory under the aegis of post-form distorted wave Born approximation is used to calculate the Coulomb breakup of 16N on Pb at 100 MeV/u . This is then related to the photodisintegration cross section of 16N(γ ,n )15N and subsequently invoking the principle of detailed balance, the 15N(n ,γ )16N capture cross section is calculated. Results: The nonresonant capture cross section is calculated with spectroscopic factors from the shell model and those extracted (including uncertainties) from two recent experiments. The data seem to favor a more single particle nature for the low-lying states of 16N. The total neutron capture rate is also calculated by summing up nonresonant and resonant (significant only at temperatures greater than 1 GK) contributions and comparison is made with other charged particle capture rates. In the typical temperature range of 0.1 -1.2 GK, almost all the contributions to the reaction rate come from capture cross sections below 0.25 MeV. Conclusion: We have attempted to resolve the discrepancy in the spectroscopic factors of low-lying 16N levels and conclude that it would certainly be useful to perform a Coulomb dissociation experiment to find the low energy capture

  8. GRAVITATIONAL MEMORY IN BINARY BLACK HOLE MERGERS

    SciTech Connect

    Pollney, Denis; Reisswig, Christian E-mail: reisswig@tapir.caltech.edu

    2011-05-01

    In addition to the dominant oscillatory gravitational wave signals produced during binary inspirals, a non-oscillatory component arises from the nonlinear 'memory' effect, sourced by the emitted gravitational radiation. The memory grows significantly during the late-inspiral and merger, modifying the signal by an almost step-function profile, and making it difficult to model by approximate methods. We use numerical evolutions of binary black holes (BHs) to evaluate the nonlinear memory during late-inspiral, merger, and ringdown. We identify two main components of the signal: the monotonically growing portion corresponding to the memory, and an oscillatory part which sets in roughly at the time of merger and is due to the BH ringdown. Counterintuitively, the ringdown is most prominent for models with the lowest total spin. Thus, the case of maximally spinning BHs anti-aligned to the orbital angular momentum exhibits the highest signal-to-noise ratio (S/N) for interferometric detectors. The largest memory offset, however, occurs for highly spinning BHs, with an estimated value of h {sup tot}{sub 20} {approx_equal} 0.24 in the maximally spinning case. These results are central to determining the detectability of nonlinear memory through pulsar timing array measurements.

  9. The New Science of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Hogan, C. J.

    2008-08-01

    A brief survey is presented of new science that will emerge during the decades ahead from direct detection of gravitational radiation. Interferometers on earth and in space will probe the universe in an entirely new way by directly sensing motions of distant matter over a range of more than a million in frequency. The most powerful sources of gravitational (or indeed any form of) energy in the universe are inspiraling and merging binary black holes; with Laser Interferometer Space Antenna (LISA) data, they will become the most distant, most completely and precisely modeled, and most accurately measured systems in astronomy outside the solar system. Other sources range from already known and named nearby Galactic binary stars, to compact objects being swallowed by massive black holes, to possible effects of new physics: phase transitions and superstrings from the early universe, or holographic noise from quantum fluctuations of local spacetime. Parts of this survey are based on text prepared by the author for the executive summary of LISA science in the LISA mission's report to the NRC's Beyond Einstein Program Assessment Committee tep{hogan:LISAscience}, where more extensive references can be found. Other reviews and summaries can be found in tet{hogan:flan}, tet{hogan:amsci}, tet{hogan:hughes03}, tet{hogan:hughes06}, tet{ hogan:LISA6}, tet{hogan:thorne}, and tet{hogan:schutz}.

  10. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGESBeta

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; et al

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  11. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    SciTech Connect

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; Rory Kennedy, J.

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.

  12. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  13. Breaking strain of neutron star crust and gravitational waves.

    PubMed

    Horowitz, C J; Kadau, Kai

    2009-05-15

    Mountains on rapidly rotating neutron stars efficiently radiate gravitational waves. The maximum possible size of these mountains depends on the breaking strain of the neutron star crust. With multimillion ion molecular dynamics simulations of Coulomb solids representing the crust, we show that the breaking strain of pure single crystals is very large and that impurities, defects, and grain boundaries only modestly reduce the breaking strain to around 0.1. Because of the collective behavior of the ions during failure found in our simulations, the neutron star crust is likely very strong and can support mountains large enough so that their gravitational wave radiation could limit the spin periods of some stars and might be detectable in large-scale interferometers. Furthermore, our microscopic modeling of neutron star crust material can help analyze mechanisms relevant in magnetar giant flares and microflares.

  14. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    SciTech Connect

    Gillmann, Clarissa; Jäkel, Oliver; Schlampp, Ingmar; Karger, Christian P.

    2014-04-01

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD{sub 5}) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a

  15. Lagrange multipliers in theories of gravitation

    SciTech Connect

    Kichenassamy, S.

    1986-05-01

    In gravitatinal theories, P-italic-variation (independepent variation of metric and connection) and H-variation (variation of the metric alone) may be reconciled through C-italic-variation (use of Lagrange multipliers ..lambda.. in P-italic-variation). We extend C-italic-variation to fields coupled with gravitational field and elucidate the cases of vanishing ..lambda... We show that the interpretation of ..lambda.. as constraint reaction forces sheds new light on the structure of these theories; we are thus led to question the necessary of relating torsion to spin, and as an alternative to the theory of Dirac particles in Einstein-Cartan space-time, we propose in a Lorentzian space-time a theory in which Lagrange multipliers corresponding to the vanishing of torsion lead to the symmetrization of canonical energy-momentum tensor and avoid the Heisenberg-Pauli-type terms. Lagrange multipliers also serve to reduce the fourth-order differential equations of gravitational quadratic Lagrangians to second-order ones with additional field variables (a scalar P-italic and a traceless tensor P-italic-tilde/sub i//sub j/); this reduction helps to make precise the compatibility of these theories with General Relativity. Simple derivations are also given for Chern and Euler characteristics c-italic/sub 2/ and /sub Chi//sub 2/, and for other identities.

  16. Constraints on primordial density perturbations from induced gravitational waves

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David

    2010-01-15

    We consider the stochastic background of gravitational waves produced during the radiation-dominated hot big bang as a constraint on the primordial density perturbation on comoving length scales much smaller than those directly probed by the cosmic microwave background or large-scale structure. We place weak upper bounds on the primordial density perturbation from current data. Future detectors such as BBO and DECIGO will place much stronger constraints on the primordial density perturbation on small scales.

  17. Gravitational Wave Detection with Single-Laser Atom Interferometers

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  18. Relic gravitational waves and extended inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1990-01-01

    In extended inflation, a new version of inflation where the transition from the false-vacuum phase to a radiation-dominated Universe is accomplished by bubble nucleation and percolation, bubble collisions supply a potent-and potentially detectable-source of gravitational waves. The present energy density in relic gravity waves from bubble collisions is expected to be about 10(exp -5) of closure density-many orders of magnitude greater than that of the gravity waves produced by quantum fluctuations. Their characteristic wavelength depends upon the reheating temperature T(sub RH): lambda is approximately 10(exp 4) cm (10(exp 14) GeV/T(sub RH)). If large numbers of black holes are produced, a not implausible outcome, they will evaporate producing comparable amounts of shorter wavelength waves, lambda is approximately 10(exp -6) cm (T(sub RH)/10(exp 14) GeV).

  19. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm. PMID:20481929

  20. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.