Sample records for gravity core samples

  1. Vibracoring on the New Jersey Shelf: Investigating the Stratigraphic Response to 50,000 Years of Eustasy

    DTIC Science & Technology

    2007-01-01

    accomplished during weather conditions that otherwise precluded operating the vibracorer. More than 100 gravity core casts were conducted. When...barrel, or shelly /sandy material caught in the core catcher. We bagged all samples we deemed significant enough to keep. All gravity core

  2. Penetrator Coring Apparatus for Cometary Surfaces

    NASA Technical Reports Server (NTRS)

    Braun, David F.; Heinrich, Michael; Ai, Huirong Anita; Ahrens, Thomas J.

    2004-01-01

    Touch and go impact coring is an attractive technique for sampling cometary nuclei and asteroidal surface on account of the uncertain strength properties and low surface gravities of these objects. Initial coring experiments in low temperature (approx. 153K polycrystalline ice) and porous rock demonstrate that simultaneous with impact coring, measurements of both the penetration strength and constraints on the frictional properties of surface materials can be obtained upon core penetration and core sample extraction. The method of sampling an asteroid, to be deployed, on the now launched MUSES-C mission, employs a small gun device that fires into the asteroid and the resulted impact ejecta is collected for return to Earth. This technique is well suited for initial sampling in a very low gravity environment and deployment depends little on asteroid surface mechanical properties. Since both asteroids and comets are believed to have altered surface properties a simple sampling apparatus that preserves stratigraphic information, such as impact coring is an attractive alternate to impact ejecta collection.

  3. Locations and descriptions of gravity, box, and push cores collected in San Francisco Bay between January and February, 1990 and 1991

    USGS Publications Warehouse

    Anima, Roberto J.; Clifton, H. Edward; Reiss, Carol; Wong, Florence L.

    2005-01-01

    A project to study San Francisco Bay sediments collected over 300 sediment gravity cores; six push cores, and three box cores in San Francisco Bay during the years 1990-91. The purpose of the sampling effort is to establish a database on the Holocene sediment history of the bay. The samples described and mapped are the first effort to catalog and present the data collected. Thus far the cores have been utilized in various cooperative studies with state colleges and universities, and other USGS divisions. These cores serve as a base for ongoing multidisciplinary studies. The sediment studies project has initiated subsequent coring efforts within the bay using refined coring techniques to attain deeper cores.

  4. Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.

    2018-06-01

    We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.

  5. Survey of specific gravity of eight Maine conifers

    Treesearch

    Harold E. Wahlgren; Gregory Baker; Robert R. Maeglin; Arthur C. Hart

    1968-01-01

    This analysis of a mass increment core sampling of eight coniferous species of Maine characterizes specific gravity for each of the species. No clear-cut relationships of specific gravity to forest type, stand density class, height class, or tree diameter at breast height were found. Included in the data are the species average specific gravity and the range. These...

  6. The Interior Angular Momentum of Core Hydrogen Burning Stars from Gravity-mode Oscillations

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Van Reeth, T.; Tkachenko, A.

    2017-09-01

    A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core hydrogen burning phase with a {log} g value from high-resolution spectroscopy, as well as an asteroseismic estimate of the near-core rotation rate derived from gravity-mode oscillations detected in space photometry. This assembly includes 8 B-type stars and 59 AF-type stars, covering a mass range from 1.4 to 5 M ⊙, I.e., it concerns intermediate-mass stars born with a well-developed convective core. The sample covers projected surface rotation velocities v\\sin I\\in [9,242] km s-1 and core rotation rates up to 26 μHz, which corresponds to 50% of the critical rotation frequency. We find deviations from rigid rotation to be moderate in the single stars of this sample. We place the near-core rotation rates in an evolutionary context and find that the core rotation must drop drastically before or during the short phase between the end of the core hydrogen burning and the onset of core helium burning. We compute the spin parameter, which is the ratio of twice the rotation rate to the mode frequency (also known as the inverse Rossby number), for 1682 gravity modes and find the majority (95%) to occur in the sub-inertial regime. The 10 stars with Rossby modes have spin parameters between 14 and 30, while the gravito-inertial modes cover the range from 1 to 15.

  7. Biomass Determination Using Wood Specific Gravity from Increment Cores

    Treesearch

    Michael C. Wiemann; G. Bruce Williamson

    2013-01-01

    Wood specific gravity (SG) is one of the most important variables used to determine biomass. Measurement of SG is problematic because it requires tedious, and often difficult, sampling of wood from standing trees. Sampling is complicated because the SG usually varies nonrandomly within trees, resulting in systematic errors. Off-center pith and hollow or decayed stems...

  8. Wood Specific Gravity Variation with Height and Its Implications for Biomass Estimation

    Treesearch

    Michael C. Wiemann; G. Bruce Williamson

    2014-01-01

    Wood specific gravity (SG) is widely employed by ecologists as a key variable in estimates of biomass. When it is important to have nondestructive methods for sampling wood for SG measurements, cores are extracted with an increment borer. While boring is a relatively difficult task even at breast height sampling, it is impossible at ground level and arduous at heights...

  9. CTEPP NC DATA SUPPLEMENTAL INFORMATION ON FIELD AND LABORATORY SAMPLES

    EPA Science Inventory

    This data set contains supplemental data related to the final core analytical results table. This includes sample collection data for example sample weight, air volume, creatinine, specific gravity etc.

    The Children’s Total Exposure to Persistent Pesticides and Other Persistent...

  10. CTEPP-OH DATA SUPPLEMENTAL INFORMATION ON FIELD AND LABORATORY SAMPLES

    EPA Science Inventory

    This data set contains supplemental data related to the final core analytical results table for CTEPP-OH. This includes sample collection data for example sample weight, air volume, creatinine, specific gravity etc.

    The Children’s Total Exposure to Persistent Pesticides and Oth...

  11. Waterfall notch-filtering for restoration of acoustic backscatter records from Admiralty Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes

    2018-06-01

    A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.

  12. 30 CFR 280.30 - What activities will not require environmental analysis?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... additional environmental analysis. The types of activities include: (a) Gravity and magnetometric... oceanographic observations and measurements, including the setting of instruments; (g) Sampling by box core or...

  13. Biological and geochemical data of gravity cores from Mobile Bay, Alabama

    USGS Publications Warehouse

    Richwine, Kathryn A.; Marot, Marci; Smith, Christopher G.; Osterman, Lisa E.; Adams, C. Scott

    2013-01-01

    A study was conducted to understand the marine-influenced environments of Mobile Bay, Alabama, by collecting a series of box cores and gravity cores. One gravity core in particular demonstrates a long reference for changing paleoenvironmental parameters in Mobile Bay. Due to lack of abundance of foraminifers and (or) lack of diversity, the benthic foraminiferal data for two of the three gravity cores are not included in the results. The benthic foraminiferal data collected and geochemical analyses in this study provide a baseline for recent changes in the bay.

  14. A Comparison of Increment Core Sampling for Estimating Tree Specific Gravity

    Treesearch

    Michael A. Taras; Harold E. Wadlgren

    1963-01-01

    Increment cores have been used to evaluate such tree characteristics as age, rate of growth, percentage of various types of tissue, chemical composition, and density. Of the wood characteristics listed, density has come to be of considerable interest to numerous researchers, since it is highly correlated with the strength properties, workability, and weight of wood....

  15. 33 CFR 148.405 - What are the procedures for notifying the Commandant (CG-5) of proposed site evaluation and pre...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... proposed location and purpose of the activities, including: (1) Gravity and magneto-metric measurements; (2...) Sediment sampling of a limited nature using either core or grab samplers, and the specified diameter and...) Hydrographic and oceanographic measurements, including the setting of instruments; and (7) Small diameter core...

  16. 33 CFR 148.405 - What are the procedures for notifying the Commandant (CG-5) of proposed site evaluation and pre...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... proposed location and purpose of the activities, including: (1) Gravity and magneto-metric measurements; (2...) Sediment sampling of a limited nature using either core or grab samplers, and the specified diameter and...) Hydrographic and oceanographic measurements, including the setting of instruments; and (7) Small diameter core...

  17. 30 CFR 280.30 - What activities will not require environmental analysis?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... types of activities include: (a) Gravity and magnetometric observations and measurements; (b) Bottom and..., including the setting of instruments; (g) Sampling by box core or grab sampler to determine seabed...

  18. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  19. Anchoring Technology for In Situ Exploration of Small Bodie

    NASA Technical Reports Server (NTRS)

    Steltzner, A.; Nasif, A.

    2000-01-01

    Comets, asteroids and other small bodies found in the solar system do not possess enough gravity to ensure spacecraft contact forces sufficient to allow many types of in situ science, such as core or surface sampling.

  20. Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport

    NASA Astrophysics Data System (ADS)

    O’Connor, Evan P.; Couch, Sean M.

    2018-02-01

    We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.

  1. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. Reasonable assessments of leakage and solute transport through aquitards over multi-decadal timescales can be achieved by accelerated core testing together with complimentary hydrogeological monitoring, analysis, and modelling.

  2. The feasibility of recharge rate determinations using the steady- state centrifuge method

    USGS Publications Warehouse

    Nimmo, J.R.; Stonestrom, David A.; Akstin, K.C.

    1994-01-01

    The establishment of steady unsaturated flow in a centrifuge permits accurate measurement of small values of hydraulic conductivity (K). This method can provide a recharge determination if it is applied to an unsaturated core sample from a depth at which gravity alone drives the flow. A K value determined at the in situ water content indicates the long-term average recharge rate at a point. Tests of this approach have been made at two sites. For sandy core samples a better knowledge of the matric pressure profiles is required before a recharge rate can be determined. Fine-textured cores required new developments of apparatus and procedures, especially for making centrifuge measurements with minimal compaction of the samples. -from Authors

  3. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2015-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from strata such as coal beds, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and reliable hydraulic conductivity (K) measurement of aquitard cores using accelerated gravity can inform and constrain larger scale assessments of hydraulic connectivity. Steady state fluid velocity through a low K porous sample is linearly related to accelerated gravity (g-level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. The CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length, and a maximum total stress of ~2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the permeability. Vertical hydraulic conductivity (Kv) results from CP testing of cores from three sites within the same regional clayey silt formation varied (10-7 to 10-9 m s-1, n = 14). Results at one of these sites (1.1 × 10-10 to 3.5 × 10-9 m s-1, n = 5) that were obtained in < 24 h were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses over several weeks within a 30 m clayey sequence. Core scale and in situ Kv results were compared with vertical connectivity within a regional flow model, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. More reliable assessments of leakage and solute transport though aquitards over multi-decadal timescales can be achieved by accelerated core testing together with advanced geostatistical and numerical methods.

  4. Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

    USGS Publications Warehouse

    Woodrow, Donald L.; John L. Chin,; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2017-06-27

    Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

  5. Gravity Fields Generation In The Universe By The Large Range of Scales Convection Systems In Planets, Stars, Black Holes and Galaxies Based On The "Convection Bang Hypothesis"

    NASA Astrophysics Data System (ADS)

    Gholibeigian, H.; Amirshahkarami, A.; Gholibeigian, K.

    2015-12-01

    In our vision it is believed that the Big Bang was Convection Bang (CB). When CB occurred, a gigantic large-scale forced convection system (LFCS) began to create space-time including gravitons and gluons in more than light speed. Then, simultaneously by a swirling wild wind, created inflation process including many quantum convection loops (QCL) in locations which had more density of temperature and energetic particles like gravitons. QCL including fundamental particles, grew and formed black holes (BHs) as the core of galaxies. LFCSs of heat and mass in planets, stars, BHs and galaxies generate gravity and electromagnetic fields and change the properties of matter and space-time around the systems. Mechanism: Samples: 1- Due to gravity fields of Sun and Moon, Earth's inner core is dislocated toward them and rotates around the Earth's center per day and generates LFCSs, Gholibeigian [AGU, 2012]. 2- Dislocated Sun's core due to gravity fields of planets/ Jupiter, rotates around the Sun's center per 25-35 days and generates LFCSs, Gholibeigian [EGU, 2014]. 3- If a planet/star falls into a BH, what happens? It means, its dislocated core rotates around its center in less than light speed and generates very fast LFCS and friction, while it is rotating/melting around/inward the center of BH. Observable Factors: 1- There is not logical relation between surface gravity fields of planets/Sun and their masses (general relativity); see Planetary Fact Sheet/Ratio to Earth Values-NASA: Earth: mass/gravity =1/1, Jupiter=317.8/2.36, Neptune=17.1/1.12, Saturn=95.2/0.916, Moon=0.0128/0.166, Sun=333000/28. 2- Convective systems in thunderstorms help bring ozone down to Earth [Brian-Kahn]. 3- In 12 surveyed BHs, produced gravity force & magnetic field strength were matched (unique LFCS source) [PhysOrg - June 4, 2014]. Justification: After BB/CB, gravitons were created without any other masses and curvature of space-time (general relativity), but by primary gigantic convection process.

  6. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  7. Recent changes of the Earth's core derived from satellite observations of magnetic and gravity fields.

    PubMed

    Mandea, Mioara; Panet, Isabelle; Lesur, Vincent; de Viron, Olivier; Diament, Michel; Le Mouël, Jean-Louis

    2012-11-20

    To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models.

  8. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element approach on different CPU-GPU system configurations. The algorithm calculates the expected gravity at station locations where the observed gravity and FTG data were acquired. This algorithm can be used for all fast forward model calculations of 3D geologic interpretations for data from airborne, space and submarine gravity, and FTG instrumentation.

  9. Preliminary Results on Lunar Interior Properties from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, H. Jay; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; hide

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.

  10. Evaluation of dredged material proposed for ocean disposal from Gravesend Bay Anchorage, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrows, E.S.; Gruendell, B.D.

    1996-09-01

    The Gravesend Bay Anchorage was one of seven waterways that the US Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in February 1994. Sediment samples were submitted for physical and chemical analyses to provide baseline sediment chemistry data on the Gravesend Bay Anchorage. Individual sediment core samples collected at the Gravesend Bay Anchorage were analyzed for grain size, moisture content, and total organic carbon (TOC). Two samples, one of composited sediment cores representing the southeast corner of the anchorage (COMP GR), and one sediment core representingmore » the northeast corner of the anchorage (Station GR-1 0), were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene.« less

  11. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  12. Fallon, Nevada FORGE Gravity and Magnetics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Doug; Witter, Jeff; Carpenter, Thomas

    This package contains principal facts for new gravity data collected September - November 2017 in support of the Fallon FORGE project. Also included are rock core density and magnetic susceptibility data for key core intervals, used in modeling 2D and 3D gravity inversions. Individual metadata summaries are provided as .pdf within each attached archive.

  13. Properties of the Lunar Interior: Preliminary Results from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; hide

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k(sub 2). Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.

  14. Petrography and physical properties of selected rock types associated with the Hayward Fault, California

    USGS Publications Warehouse

    Moore, Diane E.; Ponce, David A.

    2001-01-01

    A larger group of samples, most of them 1"-diameter cores, on which density and magnetic susceptibility measurements were made as part of gravity and magnetic surveys of the Hayward Fault. Because this second group of samples received less extensive laboratory study, examination of them was limited to standard petrographic microscope examination of covered thin sections. The density and susceptibility measurements of this second group of samples are included in this report.

  15. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely source of PCBs associated with a sampling site that receives runoff from Air Force Plant 4. Three approaches to the analyses of congener assemblages indicate that PCBs in surficial bottom sediment of Woods Inlet primarily enter Lake Worth from Meandering Road Creek and that runoff from Air Force Plant 4 is a source of the PCBs in Meandering Road Creek. Although current (2003) transport of PCBs from Air Force Plant 4 to the creek is occurring, large decreases in PCB concentrations with decreasing age in two cores indicate that PCB loading to the inlet has decreased greatly since the 1960s. Because runoff entering Meandering Road Creek from some parts of Air Force Plant 4 was not measured or sampled in this study, it cannot be said with certainty that the Air Force Plant 4 site sampled is the only source of PCBs to Meandering Road Creek.

  16. Spatial distribution and trends in trace elements, polycyclic aromatic hydrocarbons, organochlorine pesticides, and polychlorinated biphenyls in Lake Worth sediment, Fort Worth, Texas

    USGS Publications Warehouse

    Harwell, Glenn Richard; Van Metre, Peter C.; Wilson, Jennifer T.; Mahler, Barbara J.

    2003-01-01

    In spring 2000, the Texas Department of Health issued a fish consumption advisory for Lake Worth in Fort Worth, Texas, because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish. In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey collected 21 surficial sediment samples and three gravity core sediment samples to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of hydrophobic contaminants to Lake Worth. Compared to reference (background) concentrations in the upper lake, elevated PCB concentrations were detected in the surficial sediment samples collected in Woods Inlet, which receives surface runoff from Air Force facilities and urban areas. Gravity cores from Woods Inlet and from the main part of the lake near the dam indicate that the concentrations of PCBs were three to five times higher in the 1960s than in 2000. A regression method was used to normalize sediment concentrations of trace elements for natural variations and to distinguish natural and anthropogenic contributions to sediments. Concentrations of several trace elements—cadmium, chromium, copper, lead, and zinc—were elevated in sediments in Woods Inlet, along the shoreline of Air Force facilities, and in the main lake near the dam. Concentrations of these five trace elements have decreased since 1970. Polycyclic aromatic hydrocarbons also were elevated in the same areas of the lake. Concentrations of total polycyclic aromatic hydrocarbons, normalized with organic carbon, were mostly stable in the upper lake but steadily increased near the dam, except for small decreases since 1980. The Woods Inlet gravity core showed the largest increase of the three core sites beginning about 1940; total polycyclic aromatic hydrocarbon concentrations in post-1940 sediments from the core showed three apparent peaks about 1960, 1984, and 2000. The concentrations of organochlorine pesticides were low relative to consensus-based sediment-quality guidelines and either decreased or remained constant since 1970. The two likely sources of hydrophobic contaminants to the lake are urban areas around the lake and the drainage area of Meandering Road Creek that contributes runoff to Woods Inlet and includes Air Force facilities.

  17. The earth's C21 and S21 gravity coefficients and the rotation of the core

    NASA Technical Reports Server (NTRS)

    Wahr, John M.

    1987-01-01

    Observational results for the earth's C21 and S21 gravity coefficients can be used to constrain the mean equatorial rotation of the core with respect to the mantle. Current satellite gravity solutions suggest the equatorial rotation rate is no larger than 1 x 10 to the -7th times the earth's diurnal spin rate, a limit more than one order of magnitude smaller than the polar rotation rate inferred from the westward drift of the earth's magnetic field. The next generation gravity solutions should improve this constraint by more than one order of magnitude. Implications for the fluid pressure at the core-mantle boundary and for the shape of that boundary are discussed.

  18. Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP programs.

  19. Earth Core and Inner Core: What Can We Learn From a Bayesian Inversion of Combined Nutation and Surface Gravimetry Data?

    NASA Astrophysics Data System (ADS)

    Lambert, S. B.; Ziegler, Y.; Rosat, S.; Bizouard, C.

    2017-12-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the results of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by several analysis centers affiliated to the International VLBI Service for Geodesy and Astrometry, together with surface gravity data from about 15 SG stations. We address the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting to nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package. New estimates of the resonant periods are proposed and correlations between the parameters are investigated.

  20. The effects of irrigation and fertilization on specific gravity of loblolly pine

    Treesearch

    K. R. Love-Myers; Alexander Clark; L. R. Schimleck; P. M. Dougherty; R. F. Daniels

    2010-01-01

    The effects of two treatments, irrigation and fertilization, were examined on specific gravity (SG)-related wood properties of loblolly pine trees (Pinus taeda L.) grown in Scotland County, North Carolina. The effects on the core as a whole, on the juvenile core, on the mature core, and from year to year were all analyzed. The results indicate that fertilization...

  1. Potential fields & satellite missions: what they tell us about the Earth's core?

    NASA Astrophysics Data System (ADS)

    Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.

    2012-12-01

    Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.

  2. Nonlinear behavior of solar gravity modes driven by He-3 in the core. I - Bifurcation analysis

    NASA Technical Reports Server (NTRS)

    Merryfield, William J.; Gough, Douglas; Toomre, Juri

    1990-01-01

    The nonlinear development of solar gravity modes driven by He-3 burning in the solar core is investigated by means of an idealized dynamical model. Possible outcomes that have been suggested in the literature include the triggering of subcritical direct convection, leading to core mixing, and the saturation of the excitation processes, leading to sustained finite-amplitude oscillations. The present simple model suggests that the latter is the more likely. The limiting amplitude of the oscillations is estimated, ignoring possible resonances with other gravity modes, to be of order 10 km/s at the solar surface. Such oscillations would be easily observable. That large-amplitude gravity modes have not been observed suggests either that these modes are not unstable in the present era or that they are limited to much smaller amplitudes by resonant coupling.

  3. Core data from offshore Puerto Rico and the U.S. Virgin Islands

    USGS Publications Warehouse

    Hoy, Shannon K.; Chaytor, Jason D.; ten Brink, Uri S.

    2014-01-01

    In 2008, as a collaborative effort between Woods Hole Oceanographic Institution and the U.S. Geological Survey, 20 giant gravity cores were collected from areas surrounding Puerto Rico and the U.S. Virgin Islands. The regions sampled have had many large earthquake and landslide events, some of which are believed to have triggered tsunamis. The objective of this coring cruise, carried out aboard the National Oceanic and Atmospheric Administration research vessel Seward Johnson, was to determine the age of several substantial slope failures and seismite layers near Puerto Rico in an effort to map their temporal distribution. Data gathered from the cores collected in 2008 and 11 archive cores from the Lamont-Doherty Earth Observatory are included in this report. These data include lithologic logs, core summary sheets, x-ray fluorescence, wet-bulk density, magnetic susceptibility, grain-size analyses, radiographs, and radiocarbon age dates.

  4. Exploration of the Eltanin Impact Area (Bellingshausen Sea): Expedition ANT XVIII5a

    NASA Technical Reports Server (NTRS)

    Gersonde, Rainer; Kyte, Frank T.

    2001-01-01

    The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. On 26 March 2001, the FS Polarstern returned to the impact area during expedition ANT XVIII/5a. Over a period of 14 days, this region was explored by detailed bathymetric mapping, acoustic profiling of sediment deposits, and direct sampling with 18 piston cores and four gravity cores. Preliminary shipboard examination of microfossils showed that sixteen of the piston cores and three gravity cores contained sediments at least as old as the impact event and have a high probability of containing a record of the disturbances caused by the impact. During the expedition, portions of eleven piston cores were opened for preliminary examination of the impact deposits. Visual examination of cores and microscopic identification of suspect impact melt particles were were used to identify ejecta and X-ray radiographs of the opened core segments permitted analysis of sediment structures. Impact deposits were found in nine of the eleven opened cores, and a similar success rate is anticipated in the seven cores remaining to be opened. These preliminary observations indicate that the highest concentrations of meteoritic ejecta and the largest particle sizes appear to occur in the region north of the San Martin seamounts. Recovered debris includes cm-sized melt rocks and a 2.5 cm meteorite. This expedition has confirmed the presence of high concentrations of meteoritic ejecta across a region at least as large as 10(exp 5) sq km. Quantitative analyses of ejecta distribution within this region will require further study, but previous estimates of 1 km for the minimum diameter of the Eltanin asteroid, appear safe.

  5. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    PubMed

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  6. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  7. Drilling and Caching Architecture for the Mars2020 Mission

    NASA Astrophysics Data System (ADS)

    Zacny, K.

    2013-12-01

    We present a Sample Acquisition and Caching (SAC) architecture for the Mars2020 mission and detail how the architecture meets the sampling requirements described in the Mars2020 Science Definition Team (SDT) report. The architecture uses 'One Bit per Core' approach. Having dedicated bit for each rock core allows a reduction in the number of core transfer steps and actuators and this reduces overall mission risk. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). To enable replacing of core samples, the drill bits are based on the BigTooth bit design. The BigTooth bit cuts a core diameter slightly smaller than the imaginary hole inscribed by the inner surfaces of the bits. Hence the rock core could be much easier ejected along the gravity vector. The architecture also has three additional types of bits that allow analysis of rocks. Rock Abrasion and Brushing Bit (RABBit) allows brushing and grinding of rocks in the same was as Rock Abrasion Tool does on MER. PreView bit allows viewing and analysis of rock core surfaces. Powder and Regolith Acquisition Bit (PRABit) captures regolith and rock powder either for in situ analysis or sample return. PRABit also allows sieving capabilities. The architecture can be viewed here: http://www.youtube.com/watch?v=_-hOO4-zDtE

  8. The occurrence and transformation of lacustrine sediment gravity flow related to depositional variation and paleoclimate in the Lower Cretaceous Prosopis Formation of the Bongor Basin, Chad

    NASA Astrophysics Data System (ADS)

    Tan, Mingxuan; Zhu, Xiaomin; Geng, Mingyang; Zhu, Shifa; Liu, Wei

    2017-10-01

    Bed variability of sediment-gravity-flow deposits is quite prevalent in deep-marine settings, but it has not been well investigated in lacustrine settings. The depositional characteristics of various event beds are characterized in the North Slope Belt of the Bongor Basin (Chad), using detailed sedimentological, petrographic, geochemical as well as palynological analysis. Four bed types including classical turbidite bed, debrite bed, hybrid event bed, and hyperpycnite bed were distinguished based on their interpreted depositional processes. Variable mud contents of debrite beds and classic turbidite beds show distinct genetic characteristics in four core wells, whilst the high mud content of cohesive debrite interval and the low mud content of turbidite interval in hybrid event bed demonstrate the existence of flow transformation. Generally, several trace element and rare earth element proxy parameters show that these gravity-flow deposits of BS1-1 and D-3 cores are formed in more distal depositional settings than them of BN8 and BNE3 cores, which is also well consistent with sedimentological understandings achieved by seismic facies analysis. Although palynological results show a general hot arid climate during the deposition of the Prosopis Formation, but the climate-sensitive Sr/Cu ratio demonstrates that most sampled turbidite beds are postulated to be formed within a short humid pulse. The multi-approach analysis has illustrated that two potential forming mechanisms (delta-front-failure and flood-related origin) can be derived in different cored wells of such a small lacustrine rift basin. Differentiated flow transformation plays a significant role in the depositional characteristics and heterogenetic distribution of these event deposits.

  9. Holocene-Pleistocene Environmental Changes in Eastern Mediterranean Sediments: Foraminiferal and Geochemical Approach

    NASA Astrophysics Data System (ADS)

    Sinoussy Mohamed, K. S., Jr.; Ibrahim, M. I. A.; Moustafa, A. R.; Abd Elkarim, M. R.; Shreadah, M. M. A.

    2014-12-01

    The present study is based on gravity core sediment samples from the Eastern Mediterranean Sea located in 32° 20' 55" N and 31° 47' 79" E, in front of the Nile Delta Fan taken during METEOR cruise M70b (October 2006). The core is gravity one (St#822), 4.5 m long, and in 1089 m water depth. The study of benthic and planktic foraminifera is used to determine the microhabitat of the bottom sediments during warm and cold periods. Sapropels S1, S3 and S4 are encountered in the studied gravity core sample from the eastern Mediterranean. The sapropel layers S1, S3 and S4 were deposited during interglacial periods, characterized by a low foraminiferal numbers, reflecting eutrophic conditions. Glacial periods are characterized by high foraminiferal numbers due probably to an enhanced glacial productivity. Sapropel layers are distinguished by increase of Fe, TOC% (TOC%≥ 1.2%) and decrease of Ca concentrations as a result of the Blue Nile suspended particulate matter discharge during summer monsoon. Clay content increases at the sapropel depths that indicate an increase in the terrigenous input derived from the weathering of Ethiopian basalts. Temporal distribution of planktic and benthic foraminifera in the Nile deep sea fan sediments besides geochemical charcterization, palaeohydrological fluctuations, palaeoenvironment and microhabitat of foraminifera were reconstructed for the last 100000 years including glacial and interglacial periods. Formation of the Sapropel layers are synchronized with the decreasing of δ18O which means that the Mediterranean Sea received high amount of fresh water from the Nile river discharge. Clay content, TOC%, Ca-Fe cycles, oxygen and carbon isotopes and planktic foraminifera document the pluvial and arid periods throughout the 100000 years and define clearly the contributions of terrigenous and TOC% in the sapropel layers. Infauna/epifauna ratio and benthic foraminifera assemblages were used to reconstruct the microhabitat of the sea bottom during sapropel and cold periods.

  10. Three-dimensional Gravity Modeling of Ocean Core Complexes at the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Chandler, M. T.; Pak, S. J.; Son, S. K.

    2017-12-01

    The spatial distribution of ocean core complexes (OCCs) on mid-ocean ridge flanks can indicate the variation of magmatism and tectonic extension at a given spreading center. A recent study revealed 11 prominent OCCs developed along the middle portion of the Central Indian Ridge (CIR) based on the high-resolution shipboard bathymetry. The CIR is located between the Carlsberg Ridge and the Indian Ocean triple junction. The detailed morphotectonic interpretations from the recent study suggested that the middle ridge segments of the CIR were mainly developed through tectonic extension with little magmatism. Furthermore, the OCCs exposed by detachment faults appear to the main host for active off-axis hydrothermal circulations. Here we form a three-dimensional gravity model to investigate the crustal structures of OCCs developed between 12oS and 14oS at the CIR. These OCCs exhibit domal topographic highs with corrugated surface. The rock samples from these areas include deep-seated rocks such as serpentinized harzburgite and gabbro. A typical gravity study on mid-ocean ridges assumes a constant density contrast along the water-crust interface and constant crustal thickness and removes its gravitational contributions and thermal effects of lithospheric cooling from the free-air gravity anomaly. This approach is effective to distinguish anomalous regions that deviate from the applied crustal and thermal models. The oceanic crust around the OCCs, however, tends to be thinned due to detachment faulting and tectonic extension. In this study, we include multi-layers with different density contrast and variable thickness to approximate gravity anomalies resulting from the OCCs. In addition, we aim to differentiate the geophysical characteristics of the OCCs from the nearby ridge segments and infer tectonic relationship between the OCCs and ridges.

  11. Constraining Saturn's interior density profile from precision gravity field measurement obtained during Grand Finale

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Fortney, J. J.; Helled, R.; Hubbard, W. B.; Mankovich, C.; Thorngren, D.; Wahl, S. M.; Militzer, B.; Durante, D.

    2017-12-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properlyinterpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about theformation mechanism of the planet. Recently, very high precision measurements of the gravity coefficients for Saturn have been made by the radio science instrument on the Cassini spacecraft during its Grand Finale orbits. The resulting coefficients come with an associated uncertainty. The task of matching a given density profile to a given set of gravity coefficients is relatively straightforward, but the question of how to best account for the uncertainty is not. In essentially all prior work on matching models to gravity field data inferences about planetary structure have rested on assumptions regarding the imperfectly known H/He equation of state and the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet constrained by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also Bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them. We apply this approach to produce a sample of Saturn interior models based on gravity data from Grand Finale orbits and discuss their implications.

  12. 3D Chirp Sonar Images on Fluid Migration Pathways and Their Implications on Seafloor Stability East of the Fangliao Submarine Canyon Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.

    2015-12-01

    This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.

  13. Earthquake Signatures in the Modern Sediment Record of Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Marshall, N. R.; Kuehl, S. A.; Dellapenna, T. M.; Miller, E. J.

    2016-02-01

    Geochemical signatures of earthquake-generated sediment gravity flows are investigated using X-ray fluorescence core scanning on a suite of sediment cores from Prince William Sound, Alaska. This study focused on the development of geochemical proxies for earthquake deposits with an emphasis on interpreting deposits initiated from large subduction earthquakes. A north-south transect of sediment cores from Prince William Sound, between Hinchinbrook Island and the Columbia Glacier, was used to examine a record of earthquakes in this tectonically active region for the past century. The sediments in Prince William Sound are sourced from two geologically distinct regions: the metamorphosed turbidites of coastal Prince William Sound, and the Copper River Basin that contains a significant amount of volcanic rocks. Geochemical studies of sediment cores and end-member sediment samples using X-ray fluorescence and inductively coupled plasma mass spectrometry allowed for the development of geochemical proxies for sediment provenance during the past 100 years. Downcore peaks in Sr/Pb are indicative of Copper River Basin sediments, whereas peaks in K/Ca are indicative of inputs of Prince William Sound sediments. Large subduction earthquakes in northern Prince William Sound initiate gravity flows of Prince William Sound provenance into the deep channel. Particularly robust provenance signatures are seen in the northernmost cores in the core transect, which are closer to the earthquake epicenters and the Columbia Glacier source region. The ages of the deposits, from core-averaged 210Pb sediment accumulation rates, correspond to large earthquakes that occurred in 1912, 1964, and 1983. A similar deposit from 1895 in northern Prince William Sound, prior to historical earthquake records, may have also been initiated from a large earthquake in the 1890's.

  14. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  15. Physical property data from the ICDP-USGS Eyreville cores A and B, Chesapeake Bay impact structure, Virginia, USA, acquired using a multisensor core logger

    USGS Publications Warehouse

    Pierce, H.A.; Murray, J.B.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS) drilled three core holes to a composite depth of 1766 m within the moat of the Chesapeake Bay impact structure. Core recovery rates from the drilling were high (??90%), but problems with core hole collapse limited the geophysical downhole logging to natural-gamma and temperature logs. To supplement the downhole logs, ??5% of the Chesapeake Bay impact structure cores was processed through the USGS GeoTek multisensor core logger (MSCL) located in Menlo Park, California. The measured physical properties included core thickness (cm), density (g cm-3), P-wave velocity (m s-1), P-wave amplitude (%), magnetic susceptibility (cgs), and resistivity (ohm-m). Fractional porosity was a secondary calculated property. The MSCL data-sampling interval for all core sections was 1 cm longitudinally. Photos of each MSCL sampled core section were imbedded with the physical property data for direct comparison. These data have been used in seismic, geologic, thermal history, magnetic, and gravity models of the Chesapeake Bay impact structure. Each physical property curve has a unique signature when viewed over the full depth of the Chesapeake Bay impact structure core holes. Variations in the measured properties reflect differences in pre-impact target-rock lithologies and spatial variations in impact-related deformation during late-stage crater collapse and ocean resurge. ?? 2009 The Geological Society of America.

  16. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  17. Technologies for Assessing the Geologic and Geomorphic History of Coasts

    DTIC Science & Technology

    1993-03-01

    memory have dramatically increased the storage capacity of underwater instruments. Some can remain onsite as long as 12 months. 2. If a gage floods, data...analyzing stratigraphic data, the age relations of the rock strata, rock form and distribution, lithologies, fossil record, biopaleogeography, and...coring tube barrel 10 ft; UD samples. gravity corer) contains a piston that additional 10-ft remains stationary on the sections can be seafloor during

  18. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  19. Satellite Gravity Drilling the Earth

    NASA Technical Reports Server (NTRS)

    vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.

    2005-01-01

    Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.

  20. Long-Lived Inverse Chirp Signals from Core-Collapse in Massive Scalar-Tensor Gravity

    NASA Astrophysics Data System (ADS)

    Sperhake, Ulrich; Moore, Christopher J.; Rosca, Roxana; Agathos, Michalis; Gerosa, Davide; Ott, Christian D.

    2017-11-01

    This Letter considers stellar core collapse in massive scalar-tensor theories of gravity. The presence of a mass term for the scalar field allows for dramatic increases in the radiated gravitational wave signal. There are several potential smoking gun signatures of a departure from general relativity associated with this process. These signatures could show up within existing LIGO-Virgo searches.

  1. Mercury's Interior from MESSENGER Radio Science Data

    NASA Astrophysics Data System (ADS)

    Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental information on the status of the outer core and the presence of a solid inner core. We also present the latest solution of the tidal Love number k2 that enables us to constrain the basal temperature and rigidity of the outer molten core.

  2. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    NASA Astrophysics Data System (ADS)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and <3 m length respectively) were collected seaward of the Mississippi River Southwest Pass in 25-75 m water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  3. The French initiative for scientific cores virtual curating : a user-oriented integrated approach

    NASA Astrophysics Data System (ADS)

    Pignol, Cécile; Godinho, Elodie; Galabertier, Bruno; Caillo, Arnaud; Bernardet, Karim; Augustin, Laurent; Crouzet, Christian; Billy, Isabelle; Teste, Gregory; Moreno, Eva; Tosello, Vanessa; Crosta, Xavier; Chappellaz, Jérome; Calzas, Michel; Rousseau, Denis-Didier; Arnaud, Fabien

    2016-04-01

    Managing scientific data is probably one the most challenging issue in modern science. The question is made even more sensitive with the need of preserving and managing high value fragile geological sam-ples: cores. Large international scientific programs, such as IODP or ICDP are leading an intense effort to solve this problem and propose detailed high standard work- and dataflows thorough core handling and curating. However most results derived from rather small-scale research programs in which data and sample management is generally managed only locally - when it is … The national excellence equipment program (Equipex) CLIMCOR aims at developing French facilities for coring and drilling investigations. It concerns indiscriminately ice, marine and continental samples. As part of this initiative, we initiated a reflexion about core curating and associated coring-data management. The aim of the project is to conserve all metadata from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. In that aim, our demarche was conducted through an close relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative currently proposes a single web portal in which all scientifics teams can store their field data. For legacy samples, this will requires the establishment of a dedicated core lists with associated metadata. For forthcoming samples, we propose a mobile application, under Android environment to capture technical and scientific metadata on the field. This application is linked with a unique coring tools library and is adapted to most coring devices (gravity, drilling, percussion, etc...) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards or persistent identifiers (IGSN, ORCID and INSPIRE) and displayed in international portals (currently, NOAA's IMLGS). In this paper, we present the architecture of the integrated system, future perspectives and the approach we adopted to reach our goals. We will also present in front of our poster, one of the three mobile applications, dedicated more particularly to the operations of continental drillings.

  4. Constraining the interior density profile of a Jovian planet from precision gravity field data

    NASA Astrophysics Data System (ADS)

    Movshovitz, Naor; Fortney, Jonathan J.; Helled, Ravit; Hubbard, William B.; Thorngren, Daniel; Mankovich, Chris; Wahl, Sean; Militzer, Burkhard; Durante, Daniele

    2017-10-01

    The external gravity field of a planetary body is determined by the distribution of mass in its interior. Therefore, a measurement of the external field, properly interpreted, tells us about the interior density profile, ρ(r), which in turn can be used to constrain the composition in the interior and thereby learn about the formation mechanism of the planet. Planetary gravity fields are usually described by the coefficients in an expansion of the gravitational potential. Recently, high precision measurements of these coefficients for Jupiter and Saturn have been made by the radio science instruments on the Juno and Cassini spacecraft, respectively.The resulting coefficients come with an associated uncertainty. And while the task of matching a given density profile with a given set of gravity coefficients is relatively straightforward, the question of how best to account for the uncertainty is not. In essentially all prior work on matching models to gravity field data, inferences about planetary structure have rested on imperfect knowledge of the H/He equation of state and on the assumption of an adiabatic interior. Here we wish to vastly expand the phase space of such calculations. We present a framework for describing all the possible interior density structures of a Jovian planet, constrained only by a given set of gravity coefficients and their associated uncertainties. Our approach is statistical. We produce a random sample of ρ(a) curves drawn from the underlying (and unknown) probability distribution of all curves, where ρ is the density on an interior level surface with equatorial radius a. Since the resulting set of density curves is a random sample, that is, curves appear with frequency proportional to the likelihood of their being consistent with the measured gravity, we can compute probability distributions for any quantity that is a function of ρ, such as central pressure, oblateness, core mass and radius, etc. Our approach is also bayesian, in that it can utilize any prior assumptions about the planet's interior, as necessary, without being overly constrained by them.We demonstrate this approach with a sample of Jupiter interior models based on recent Juno data and discuss prospects for Saturn.

  5. Chemical data for bottom sediment in Mountain Creek Lake, Dallas, Texas, 1999-2000

    USGS Publications Warehouse

    Wilson, Jennifer T.

    2002-01-01

    Mountain Creek Lake is a reservoir adjacent to the Naval Weapons Industrial Reserve Plant and the former Naval Air Station in Dallas, Texas. The U.S. Geological Survey began studies of water, sediment, and biota in the reservoir in 1994 after a Resource Conservation and Recovery Act Facility Investigation detected concentrations of organic chemicals on both facilities. Additional reservoir bottom sediment samples were collected during December 1999–January 2000 at the request of the Southern Division Naval Facilities Engineering Command to further define the occurrence and distribution of selected constituents and to supplement available data. The U.S. Geological Survey National Water Quality Laboratory analyzed bottom-sediment samples from 16 box cores and 5 gravity cores for major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, grain size, and cesium-137.

  6. Geologic and engineering properties investigations: Project Sulky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutton, R.J.; Girucky, F.E.

    1966-09-01

    The Sulky event was a nuclear cratering experiment in which a device yielding 85 + 15 tons was detonated at a depth of 90 ft in jointed basalt. The explosion produced a rubble-covered mound roughly circular in plan and extending approximately 24 ft above the original ground surface. Prior to the event the Sulky site was explored by means of 6 core borings and the emplacement calyx hole. Geophysical logging was conducted and laboratory tests were performed on representative samples. Postshot investigations consisted of trenching through the mound and drilling 3 core borings to determine the extent of the rupturemore » zone. The rock consists of vesicular basalt over dense basalt and each type is structurally modified by layering of vesicles resulting from viscous flow of the lava. Unconfined compressive strengths range from about 10,000 psi for vesicular basalt to about 20,000 psi for dense basalt. Bulk specific gravities for dense basalt are about 2.74, but with increasing vesicle content the bulk specific gravity reaches values as low as 2.40.« less

  7. A role for self-gravity at multiple length scales in the process of star formation.

    PubMed

    Goodman, Alyssa A; Rosolowsky, Erik W; Borkin, Michelle A; Foster, Jonathan B; Halle, Michael; Kauffmann, Jens; Pineda, Jaime E

    2009-01-01

    Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity-even of unmagnetized isothermal material-can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in 'non-self-gravitating' simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.

  8. Resolving Supercritical Orion Cores

    NASA Astrophysics Data System (ADS)

    Li, Di; Chapman, N.; Goldsmith, P.; Velusamy, T.

    2009-01-01

    The theoretical framework for high mass star formation (HMSF) is unclear. Observations reveal a seeming dichotomy between high- and low-mass star formation, with HMSF occurring only in Giant Molecular Clouds (GMC), mostly in clusters, and with higher star formation efficiencies than low-mass star formation. One crucial constraint to any theoretical model is the dynamical state of massive cores, in particular, whether a massive core is in supercritical collapse. Based on the mass-size relation of dust emission, we select likely unstable targets from a sample of massive cores (Li et al. 2007 ApJ 655, 351) in the nearest GMC, Orion. We have obtained N2H+ (1-0) maps using CARMA with resolution ( 2.5", 0.006 pc) significantly better than existing observations. We present observational and modeling results for ORI22. By revealing the dynamic structure down to Jeans scale, CARMA data confirms the dominance of gravity over turbulence in this cores. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  9. Mechanism of secular increasing of mean gravity in Northern hemisphere and secular decreasing of mean gravity in Southern hemisphere

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2009-04-01

    Mechanism. To present time the observant data in various geosciences more and more confidently testify for the benefit of existence of secular drift of the Earth core in the direction of North Pole. 1). So the superfluous mass of a displaced core relatively to elastic mantle, obviously, results in displacement of the centre of mass of the Earth with respect to basic system of coordinates on a surface of the Earth also in northern direction. Methods of a space geodesy let us confidently to determine drift of the centre of mass to the north with velocity about 0.5 - 1.0 cm/yr. The fundamental phenomenon of drift of the centre of mass and the core of the Earth has been predicted in 1995 (Barkin, 1995) at the analysis of secular change of the pear-shaped form of the Earth in present epoch (velocity of drift of the centre of mass of the Earth was appreciated in 1.8 +/-1.0 cm/yr in the direction of North Pole of the Earth). For an explanation of observably drift of the centre of mass at once the model of drift of the core was offered and the geodynamic model of forced relative displacements and wanderings of interacting shells of the Earth under action of a gravitational attraction of external celestial bodies (Barkin, 1996, 2002) has been developed. 2). The core makes slow secular drift and cyclic displacements. Predicted spectrum of oscillations of the centre of mass of the Earth and its core (Barkin, 2001) has received precise confirmation as a result of the Fourier analysis of temporal series for coordinates of a geocenter (Kaftan, Tatevian, 2003; Barkin, Vilke, 2004; Barkin, Lyubushin, Zotov, 2007). 3). The displaced core makes active all bouquet of natural processes in all shells of the Earth (including an atmosphere, ocean and internal shells), varying in the certain rhythms and styles the tension conditions of shells, their thermodynamic conditions etc. The core as though "conducts" by all planetary processes at once. From here take the origin such fundamental phenomena as cyclicity and synchronism of planetary natural processes, inversion of activity of natural processes in opposite hemispheres. Numerous confirmations give the extensive data of every possible geophysical observations. The phenomenon of synchronism in annual variations of activity of various natural processes is rather brightly expressed - their phases are precisely synchronized, and the periods of extreme activity (or passivity) fall to February - March or August - September. In daily variations of natural processes similar laws are observed. Here we speak about modern processes, but similar laws take place in various time scales, including geological. In the given report we shall concentrate on the analysis of possible secular variations of a gravity at displacement of an external core (of its centre of mass) relatively to the elastic mantle. The analysis has shown, that gravitational influence of displaced superfluous mass of the core are a major factor of secular variations of a gravity. However the displaced core causes directed redistribution of atmospheric masses from a southern hemisphere in northern, and also complex slow redistribution of oceanic masses. Increase of loading of atmospheric and oceanic masses on an elastic crust of northern hemisphere results in its slow lowering. Return processes should observed in a southern hemisphere. All listed factors, certainly, directly influence variations of a gravity. In a more comprehensive sense redistribution of all fluid masses, including climatic character also result in changes of a gravity. Hemispheres mean secular trends of gravity. For an estimation of a role of factors of redistribution of air and fluid masses in variations of a gravity the point model of redistribution of masses of the Earth (Barkin, 2001), obtained very effective applications at studying of fundamental problems of geodynamics, has been used. Let's emphasize, that the Earth is active dynamic object at which activity in the certain regions (for example, in subduction zones, a hilly terrain, a zone of volcanism etc.) at times is more brightly shown. Therefore the steadfast attention should be paid to local factors of changes of a gravity. In result the phenomenon of inversion changes of a gravity in northern and southern hemispheres has been predicted: mean value of a gravity in northern hemisphere accrues with velocity 1.36 micro gals in year (mGal), and in southern decreases with the same velocity. Secular variations of a gravity depend from latitude and on equator (within the framework of considered model) change a sign: dg=2.72tsinф micro gals in year (mGal), where ф is a latitude of a place of observations, t is the time in years (Barkin, 2005). The data of gravimetric measurements at the European stations: Metsahovi, Potsdam, Moha, Vienna, Wettzell, Strastburg, Medicina etc., in Asia and Australia: Eshashi, Canberra etc., in Northern and South America: Bolder (Colorado), Patagonia (Argentina) etc., and also in Antarctic Region (station Syowa), will well be coordinated to the theoretical values of secular variations of a gravity predicted earlier at the specified stations. Gravity trends are studied and evaluated after removal effects of tides, local pressure and polar motion. The secular gravity variation at Potsdam is evaluated in 2.1 mGal/yr. During 1976-1986 the similar tendency - gravity trend with velocity 2.6 mGal/yr (absolute measurements) here have been observed. The similar tendency has been determined on measurements on superconducting gravimeters during 1993-1997: 2.3-2.5 mGal/yr (Neumeyer and Dittfeled, 1997). For more extensive period of observation (Neumayer, 2002) the similar result for gravity trend has been obtained. Observable annual variations of a gravity are characterized by amplitude about 3 mGal (on our model it is 3.5 mGal). Observations at Syowa station have been confirmed the developed model. Here it was expected negative gravity trend - decreasing of gravity with velocity -2.54 mGal/yr, that have actually confirmed SG observations during 1995-1998: -2.4 mGal/yr (Sato et al., 2001). Amplitudes of an annual and semi-annual variations approximately make 4.8 mGal/yr and 0.8 mGal/yr (theoretical values: 4.2 mGal/yr and 0.95 mGal/yr). References Barkin Yu.V. (2002) Explanation of endogenous activity of planets and satellites and its cyclicity. Izvestia cekzii nauk o Zemle. Rus. Acad. of Nat. Sciences, Issue 9, December 2002, M.: VINITI, pp. 45-97. In Russian. Barkin Yu.V., Ferrandiz J.M. (2008) Phenomenon of secular increasing of mean gravity in Northern hemisphere and secular decreasing of gravity in Southern hemisphere; predictions and new confirmations. EGU General Assembly (Vienna, Austria, 13-18 April 2008). Geophysical Research Abstracts, EGU General Assembly 2008. Vol. 10, EGU2008-A-10506.

  10. Effects of density stratification on the frequencies of the inertial-gravity modes of the Earth's fluid core

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Moradi, A.; Kamruzzaman, M.; Naseri, H.

    2015-08-01

    The Earth's outer core is a rotating ellipsoidal shell of compressible, stratified and self-gravitating fluid. As such, in the treatment of geophysical problems a realistic model of this body needs to be considered. In this work, we consider compressible and stratified fluid core models with different stratification parameters, related to the local Brunt-Väisälä frequency, in order to study the effects of the core's density stratification on the frequencies of some of the inertial-gravity modes of this body. The inertial-gravity modes of the core are free oscillations with periods longer than 12 hr. Historically, an incompressible and homogeneous fluid is considered to study these modes and analytical solutions are known for the frequencies and the displacement eigenfunctions of a spherical model. We show that for a compressible and stratified spherical core model the effects of non-neutral density stratification may be significant, and the frequencies of these modes may change from model to model. For example, for a spherical core model the frequency of the spin-over mode, the (2, 1, 1) mode, is unaffected while that of the (4, 1, 1) mode is changed from -0.410 for the Poincaré core model to -0.434, -0.447 and -0.483 for core models with the stability parameter β = -0.001, -0.002 and -0.005, respectively, a maximum change of about 18 per cent when β = -0.005. Our results also show that for small stratification parameter, |β| ≤ 0.005, the frequency of an inertial-gravity mode is a nearly linear function of β but the slope of the line is different for different modes, and that the effects of density stratification on the frequency of a mode is likely related to its spatial structure, which remains the same in different Earth models. We also compute the frequencies of some of the modes of the `PREM' (spherical shell) core model and show that the frequencies of these modes may also be significantly affected by non-zero β.

  11. Calculated in situ rock density from gravity observations, UA-1 (Cannikin) emplacement hole, Amchitka Island, Alaska

    USGS Publications Warehouse

    Healey, D.L.

    1971-01-01

    Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.

  12. Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992-2001

    USGS Publications Warehouse

    Van Metre, Peter; Wilson, Jennifer T.; Fuller, Christopher C.; Callender, Edward; Mahler, Barbara J.

    2004-01-01

    The U.S. Geological Survey Reconstructed Trends National Synthesis study collected sediment cores from 56 lakes and reservoirs between 1992 and 2001 across the United States. Most of the sampling was conducted as part of the National Water-Quality Assessment (NAWQA) Program. The primary objective of the study was to determine trends in particle-associated contaminants in response to urbanization; 47 of the 56 lakes are in or near one of 20 U.S. cities. Sampling was done with gravity, piston, and box corers from boats and push cores from boats or by wading, depending on the depth of water and thickness of sediment being sampled. Chemical analyses included major and trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, cesium-137, and lead-210. Age-dating of the cores was done on the basis of radionuclide analyses and the position of the pre-reservoir land surface in the reservoir and, in a few cases, other chemical or lithologic depth-date markers. Dates were assigned in many cores on the basis of assumed constant mass accumulation between known depth-date markers. Dates assigned were supported using a variety of other date markers including first occurrence and peak concentrations of DDT and polychlorinated biphenyls and peak concentration of lead. A qualitative rating was assigned to each core on the basis of professional judgment to indicate the reliability of age assignments. A total of 122 cores were collected from the 56 lakes and age dates were assigned to 113 of them, representing 54 of the 56 lakes. Seventy-four of the 122 cores (61 percent) received a good rating for the assigned age dates, 28 cores (23 percent) a fair rating, and 11 cores (9 percent) a poor rating; nine cores (7 percent) had no dates assigned. An analysis of the influence of environmental factors on the apparent quality of age-dating of the cores concluded that the most important factor was the mass accumulation rate (MAR) of sediment: the greater the MAR, the better the temporal discretization in the samples and the less important the effects of postdepositional sediment disturbance. These age-dated sediment cores provide the basis for local-, regional-, and national-scale interpretations of water-quality trends.

  13. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  14. GRAIL Twin Spacecraft -- Crust to Core Artist Concept

    NASA Image and Video Library

    2009-05-18

    The Gravity Recovery and Interior Laboratory GRAIL mission utilizes the technique of twin spacecraft flying in formation with a known altitude above the lunar surface and known separation distance to investigate the gravity field of the moon.

  15. Gravity Field and Internal Structure of Mercury from MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; hide

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  16. Gravity field and internal structure of Mercury from MESSENGER.

    PubMed

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  17. Age Estimates of Holocene Glacial Retreat in Lapeyrère Bay, Anvers Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Mead, K. A.; Wellner, J. S.; Rosenheim, B. E.

    2011-12-01

    Lapeyrère Bay is a fjord on the eastern side of Anvers Island, located off the Western Antarctic Peninsula. Anvers island has a maximum elevation of 2400m (comprised of ice overlaying bedrock), and experiences colder temperatures and more precipitation than the South Shetlands, which are ~230km to the north. Two glaciers enter Lapeyrère Bay, one large and vulnerable to avalanching, the Iliad Glacier, and one smaller glacier confined to a northern unnamed cove. Though several research cruises have visited Lapeyrère Bay, very little has been published on the fjord's glacial retreat history or sediment flux. The primary purpose of this study is to reconstruct the glacial retreat and sediment flux histories of Lapeyrère Bay using a SHALDRIL core and standard piston cores for chronology and sedimentary facies analysis, and multibeam swath bathymetry data for identifying seafloor morphological features. Preliminary core data from the proximal northern flank of Lapeyrère Bay show greenish grey sandy mud with scattered pebble and sand lens lithology. A core taken in the distal-most part of the fjord is largely diatomaceous sediment grading into grey silty mud with thin sandy turbidites. Multibeam data has exposed seafloor features including a grounding zone wedge at the entrance of the unnamed cove of northern Lapeyrère Bay, drumlins, glacial lineations, and a glacial outwash fan near the ocean-termination of the Iliad glacier. Additionally, this study seeks to assess the effectiveness of a novel 14C method of dating sediment lacking sufficient calcareous material for carbonate 14C dating. The method being tested is ramped pyrolysis radiocarbon analysis, which dates individual fractions of organic material. It is hypothesized that ramped pyrolysis will improve upon bulk acid insoluble organic material (AIOM) dating, as AIOM can include both autochthonous syndepositionally aged carbon and allochthonous pre-aged carbon, resulting in 14C ages inherently older than the age of deposition. Performing ramped pyrolysis 14C dating and carbonate 14C dating on the same cores and comparing the resulting ages will address this hypothesis. Carbonate radiocarbon dating has been completed for cores taken in the proximal fjord, from the glacial outwash fan. Four dates from a 20.3m drill core yield an average sedimentation rate of 2.2mm/yr. Four dates from the nearby 293cm gravity core yield a sedimentation rate of 1.4mm/yr. Ramped pyrolysis has been performed on a total of nine samples, six taken from the proximal drill core and three taken from the distal-most gravity core of the fjord. The average proximal sample TOC is 0.22%, and the average distal sample TOC is 0.55%. These values show a trend of increasing TOC values with increasing oceanic influence in the distal fjord.

  18. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  19. Shipboard report for Hawaii GLORIA ground-truth cruise F11-88-HW, 25 Oct.-7 Nov., 1988

    USGS Publications Warehouse

    Clague, David A.; Holcomb, Robin T.; Torresan, Michael E.; Ross, Stephanie L.

    1989-01-01

    GLORIA side-scan imagery of the region north of Oahu was collected during two cruises in the spring of 1988. These cruises, F4-88-HW and F6-88-HW, discovered an extensive lava flow field on the Hawaiian Arch and extensive landslide deposits that moved down through the Hawaiian Moat and up onto the Hawaiian Arch. These landslide deposits were apparently derived from two separate submarine failures on the north side of Molokai and the northeast side of Oahu. The cruise reports for these cruises will be released as USGS Open-File Reports in 1989.This report summarizes the results of a subsequent cruise, F11-88-HW on the R/V Farnella, to sample some of the features discovered during the prior GLORIA surveys. Cruise F11-88-HW began in Honolulu on Oct. 25, 1988 and ended in Honolulu on Nov. 7, 1988. The major objectives of the cruise were to sample the giant lava field north of Oahu (Figure 1), to sample an apparently young flow between Oahu and Kauai (Figure 2) , to do some preliminary sampling of the deposits of the Nuuanu giant landslide northnortheast of Oahu, and to determine the thickness of sediment on flows in this lava field to compare to the acoustic backscatter variations observed in the GLORIA imagery of the flow field.These objectives were modified during the cruise due to rough seas which limited the deployment of the camera sled and to problems with the coring equipment which limited us to collecting 10 ft gravity cores. In particular, we did not complete any work aimed directly at the Nuuanu landslide deposits. The comparison of sediment thickness on the flows to observed acoustic backscatter on the GLORIA images was not completed because flows with intermediate backscatter were found to have thicker sediment than we could sample. The other objectives were achieved and lava samples of the flows and vents of the flow field were recovered from 23 locations. Gravity cores on top of the flows also determined the sediment thickness at 12 locations. The flow between Oahu and Kauai was sampled and photographed and found to be young, but clearly not historic in age.

  20. The Shape of Enceladus' Core: Predictions for Degree-2 Nonhydrostatic Gravity, and Role in Survival of the Subsurface Ocean

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.

    2011-10-01

    The global shape of Enceladus is not consistent with a simultaneously hydrostatic and fully differentiated body, but hypotheses that Enceladus is either undifferentiated or preserves a globally unrelaxed figure from an earlier position closer to Saturn are implausible. Enceladus' geophysical activity (and surface) is best understood in the context of a differentiated (rock separated from ice) interior. Topographic profiles indicate that Enceladus' surface conforms to a triaxial shape, consistent with relaxation to a global geoid. Enceladus' rocky core need not be hydrostatic, however. A modestly "lumpy" core, either in terms of topography or density, and dynamically aligned, will act to enhance the global geoid. Explaining the global shape of Enceladus requires ~12 km of excess core polar ellipticity and ~5 km of excess core equatorial ellipticity, for a uniform density core. The stresses in Enceladus' core associated with this modest level of dynamically excess topography can be sustained indefinitely. Enceladus' icy shell should be isostatic with respect to the satellite's degree-2 gravity, but because the rocky core is not hydrostatic, Enceladus' degree-2 gravity coefficients J2 and C22 should not conform to the hydrostatic ratio of 10/3. The moments-of-inertia implied also indicate that Enceladus could be near a low-order spin-orbit librational resonance, and thus tidal heating associated with this resonance type could have contributed to the moon's phenomenal heat flow. Finally, the core c-axis will be depressed by some 8 km with respect to a hydrostatic shape. This true topographic variation can help preserve polar ocean remnants against freezing (and grounding elsewhere) during epochs of low tidal heating.

  1. Detailed gravity survey to help seismic microzonation: Mapping the thickness of unconsolidated deposits in Ottawa, Canada

    NASA Astrophysics Data System (ADS)

    Lamontagne, M.; Thomas, M.; Silliker, J.; Jobin, D.

    2011-11-01

    In this study, measurements of gravity were made to map and model the thickness of Quaternary deposits (sand and clay) overlying Ordovician limestones in a suburb of Ottawa (Orléans, Ontario). Because ground motion amplification is partly related to the thickness of unconsolidated deposits, this work helps refine the assessment of the earthquake damage potential of the area. It also helps the mapping of clay basins, which can locally exceed 100 m in thickness, where ground motion amplification can occur. Previous work, including well log data and seismic methods, have yielded a wealth of information on near-surface geology in Orléans, thereby providing the necessary constraints to test the applicability of gravity modeling in other locations where other methods cannot always be used. Some 104 gravity stations were occupied in an 8 × 12 km test area in the Orléans. Stations were accurately located with differential GPS that provided centimetric accuracy in elevation. Densities of the unconsolidated Quaternary deposits (Champlain Sea clay) determined on core samples and densities determined on limestone samples from outcrops were used to constrain models of the clay layer overlying the higher density bedrock formations (limestone). The gravity anomaly map delineates areas where clay basins attain > 100 m depth. Assuming a realistic density for the Champlain Sea clays (1.9-2.1 g/cm 3), the thickness over the higher density bedrock formations (Ordovician carbonate rocks) was modeled and compared with well logs and two seismic reflection profiles. The models match quite well with the information determined from well logs and seismic methods. It was found that gravity and the thickness of unconsolidated deposits are correlated but the uncertainties in both data sets preclude the definition of a direct correlation between the two. We propose that gravity measurements at a local scale be used as an inexpensive means of mapping the thickness of unconsolidated deposits in low-density urban areas. To obtain meaningful results, three conditions must exist. Firstly, elevations of gravity stations must be measured accurately using differential GPS; secondly, that the regional gravity field must be well defined, and thirdly, that the local geology be simple enough to be realistically represented with a two-layer model.

  2. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less

  3. Evaluation of dredged material proposed for ocean disposal from Hudson River, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.

    1996-09-01

    The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less

  4. Paleomagnetism of sedimentary cores from the Ross Sea outer shelf and continental slope (PNRA-ROSSLOPE II Project)

    NASA Astrophysics Data System (ADS)

    Macrì, Patrizia; Sagnotti, Leonardo; Caricchi, Chiara; Colizza, Ester

    2016-04-01

    We carried out a paleomagnetic and rock magnetic study of 4 gravity cores sampled in the Ross Sea continental slope of the area to the east of Pennell-Iselin banks. The cores (RS14-C1, C2, C3 and ANTA99-C20) consist of hemipelagic fine-grained (silty-clays) sediments with an IRD component. Rock magnetic and paleomagnetic measurements were carried out at 1-cm spacing on u-channel samples. The data indicate that the cored sediments carry a well-defined characteristic remanent magnetization (ChRM) and have a valuable potential to reconstruct dynamics and amplitude of the geomagnetic field variation at high southern latitudes (ca. 75°S) during the Holocene and the late Pleistocene. The paleomagnetic and rock magnetic data are integrated in a multidisciplinary context which includes previous geological, geophysical, oceanographic and morpho-bathimetric data obtained in the same area in the frame of the PNRA/ROSSLOPE (Past and present sedimentary dynamic in the ROSS Sea: a multidisciplinary approach to study the continental slope) Project. The main aim of the project is to investigate the relation between present and past water mass circulation and to provide a basis for paleoceanographic reconstructions and for the development of a depositional model of the modern processes active along the continental slope.

  5. From field to database : a user-oriented approche to promote cyber-curating of scientific drilling cores

    NASA Astrophysics Data System (ADS)

    Pignol, C.; Arnaud, F.; Godinho, E.; Galabertier, B.; Caillo, A.; Billy, I.; Augustin, L.; Calzas, M.; Rousseau, D. D.; Crosta, X.

    2016-12-01

    Managing scientific data is probably one the most challenging issues in modern science. In plaeosciences the question is made even more sensitive with the need of preserving and managing high value fragile geological samples: cores. Large international scientific programs, such as IODP or ICDP led intense effort to solve this problem and proposed detailed high standard work- and dataflows thorough core handling and curating. However many paleoscience results derived from small-scale research programs in which data and sample management is too often managed only locally - when it is… In this paper we present a national effort leads in France to develop an integrated system to curate ice and sediment cores. Under the umbrella of the national excellence equipment program CLIMCOR, we launched a reflexion about core curating and the management of associated fieldwork data. Our aim was then to conserve all data from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. To do so, our demarche was conducted through an intimate relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative proposes a single web portal in which all teams can store their fieldwork data. This portal is used as a national hub to attribute IGSNs. For legacy samples, this requires the establishment of a dedicated core list with associated metadata. However, for forthcoming core data, we developed a mobile application to capture technical and scientific data directly on the field. This application is linked with a unique coring-tools library and is adapted to most coring devices (gravity, drilling, percussion etc.) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards (IGSN and INSPIRE) and displayed in international portals (currently, NOAA's IMLGS). In this paper, we present the architecture of the integrated system, future perspectives and the approach we adopted to reach our goals. We will also present our mobile application through didactic examples.

  6. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.; Rotella, Anthony

    2008-01-01

    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  7. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood

    PubMed Central

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Context Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Methods Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Results Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). Main Conclusion Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees. PMID:26555144

  8. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    PubMed

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees.

  9. Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle

    PubMed

    Ishii; Tromp

    1999-08-20

    With the use of a large collection of free-oscillation data and additional constraints imposed by the free-air gravity anomaly, lateral variations in shear velocity, compressional velocity, and density within the mantle; dynamic topography on the free surface; and topography on the 660-km discontinuity and the core-mantle boundary were determined. The velocity models are consistent with existing models based on travel-time and waveform inversions. In the lowermost mantle, near the core-mantle boundary, denser than average material is found beneath regions of upwellings centered on the Pacific Ocean and Africa that are characterized by slow shear velocities. These anomalies suggest the existence of compositional heterogeneity near the core-mantle boundary.

  10. Occupational heat strain in a hot underground metal mine.

    PubMed

    Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R

    2014-04-01

    In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.

  11. The Dawn Gravity Investigation at Vesta and Ceres

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Asmar, S.W.; Bills, B. G.; Mastrodemos, N.; Park, R. S.; Raymond, C. A.; Smith, D. E.; Zuber, M. T.

    2011-01-01

    The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn's framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.

  12. Late Holocene sedimentary environments of south San Francisco Bay, California, illustrated in gravity cores

    USGS Publications Warehouse

    Woodrow, Donald L.; Fregoso, Theresa A.; Wong, Florence L.; Jaffe, Bruce E.

    2014-01-01

    Data are reported here from 51 gravity cores collected from the southern part of San Francisco Bay by the U.S. Geological Survey in 1990. The sedimentary record in the cores demonstrates a stable geographic distribution of facies and spans a few thousand years. Carbon-14 dating of the sediments suggests that sedimentation rates average about 1 mm/yr. The geometry of the bay floor and the character of the sediment deposited have remained about the same in the time spanned by the cores. However, the sedimentary record over periods of centuries or decades is likely to be much more variable. Sediments containing a few bivalve shells and bivalve or oyster coquinas are most often found west of the main channel and near the San Mateo Bridge. Elsewhere in the south bay, shells are rare except in the southernmost reaches where scattered gastropod shells are found.

  13. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamicmore » simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.« less

  14. Across-canyon movement of earthquake-induced sediment gravity flow offshore southwestern Taiwan.

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ting; Su, Chih-Chieh; Lu, Yi-Wei; Cheng, Yiya

    2017-04-01

    Caused by the origin of oblique collision between the Eurasian and Philippine Sea Plate, Taiwan Island inevitably faces the destiny to be continuously influenced by frequent and severe earthquake activities. Thus, earthquake-induced sediment gravity flows are common marine geo-hazards in the submarine region of Taiwan. The Pingtung Doublet earthquakes occurred in Dec. 2006 offshore Fangliao Township and two submarine cables were broken at the Fangliao Submarine Canyon (FLSC) head, simultaneously. On the eastern side of the FLSC head, chirp sonar profiles and high-resolution bathymetry data revealed linear seafloor failures along the northwest direction and merged into the FLSC. Moreover, cores taken from the seafloor failure area and in the FLSC also observed thick debrite and turbidite layers at core tops. Nevertheless, in the western side of the FLSC head, local fishermen reported disturbed water just after the Pingtung Doublet earthquakes. Hence series of cores and chirp sonar data were collected at the western side of the FLSC, trying to figure out the linkage of Pingtung Doublet earthquakes induced gravity flow deposits on both sides of the FLSC. The analysis results suggest that the deposits of disturbed water at the western side of FLSC head was caused by the finer suspended sediments separated from the main body at the top of the gravity flow. Our results point out besides the traditional well-known downward transportation in the canyon, the across-canyon movement may also leave stratigraphic records and help us to establish a more complete transportation process of a sediment gravity flow.

  15. Formation of a xerogel in reduced gravity using the acid catalysed silica sol-gel reaction

    NASA Astrophysics Data System (ADS)

    Pienaar, Christine L.; Steinberg, Theodore A.

    2006-01-01

    An acid catalysed silica sol-gel reaction was used to create a xerogel in reduced gravity. Samples were formed in a special apparatus which utilised vacuum and heating to speed up the gelation process. Testing was conducted aboard NASA's KC-135 aircraft which flies a parabolic trajectory, producing a series of 25 second reduced gravity periods. The samples formed in reduced gravity were compared against a control sample formed in normal gravity. 29Si NMR and nitrogen adsorption/desorption techniques yielded information on the molecular and physical structure of the xerogels. The microstructure of the reduced gravity samples contained more Q 4 groups and less Q 3 and Q2 groups than the control sample. The pore size of the reduced gravity samples was also larger than the control sample. This indicated that in a reduced gravity environment, where convection is lessened due to the removal of buoyancy forces, the microstructure formed through cyclisation reactions rather than bimolecularisation reactions. The latter requires the movement of molecules for reactions to occur whereas cyclisation only requires a favourable configuration. Q 4 groups are stabilised when contained in a ring structure and are unlikely to undergo repolymerisation. Thus reduced gravity favoured the formation of a xerogel through cyclisation, producing a structure with more highly coordinated Q groups. The xerogel formed in normal gravity contained both chain and ring structures as bimolecularisation reactions were able to effectively compete with cyclisation.

  16. Hawaii Gravity Model

    DOE Data Explorer

    Nicole Lautze

    2015-12-15

    Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.

  17. Comparison of various methods to determine bulk specific gravity of cores : an investigation of high values using AASHTO T275 - paraffin-coated method.

    DOT National Transportation Integrated Search

    2012-07-01

    A report from a MoDOT asphalt paving project was that unexpected results were obtained when adhering to the standard for determination of bulk specific gravity of compacted asphalt mixture (Gmb) specimens, AASHTO T 166. The test method requires speci...

  18. Physical-Property Measurements on Core samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada

    USGS Publications Warehouse

    Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant

    2009-01-01

    From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.

  19. Automatic robotic arm operations and sampling in near zero gravity environment - functional tests results from Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg

    The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous sampling; (ii) technical characteristics of both devices, i.e. progress cycles of CHOMIK device in different materials and torque in the manipulator joints during sampling operations; (iii) confirmation of applicability of both devices to perform such type of tasks. The phases in operational scenario were prepared to meet mission and system requirements mainly connected with: (i) environment (near zero gravity, vacuum, dust), (ii) safety and (iii) to avoid common operation of both devices at the same time.

  20. Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock using Microspines

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew; King, Jonathan P.; Thatte, Nitish

    2012-01-01

    The video presents microspine-based anchors be ing developed for gripping rocks on the surfaces of comets and asteroids, or for use on cliff faces and lava tubes on Mars. Two types of anchor prototypes are shown on supporting forces in all directions away from the rock; >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A compliant robotic ankle with two active degrees of freedom interfaces these anchors to the Lemur IIB robot for future climbing trials. Finally, a rotary percussive drill is shown coring into rock regardless of gravitational orientation. As a harder- than-zero-g proof of concept, inverted drilling was performed creating 20mm diameter boreholes 83 mm deep in vesicular basalt samples while retaining 12 mm diameter rock cores in 3-6 pieces.

  1. Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes

    USGS Publications Warehouse

    Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.; Sinton, John M.; Kauahikaua, Jim; Taylor, Brian

    2013-01-01

    The Hawaiian Islands are the most geologically studied hot-spot islands in the world yet surprisingly, the only large-scale compilation of marine and land gravity data is more than 45 years old. Early surveys served as reconnaissance studies only, and detailed analyses of the crustal-density structure have been limited. Here we present a new chain-wide gravity compilation that incorporates historical island surveys, recently published work on the islands of Hawai‘i, Kaua‘i, and Ni‘ihau, and >122,000 km of newly compiled marine gravity data. Positive residual gravity anomalies reflect dense intrusive bodies, allowing us to locate current and former volcanic centers, major rift zones, and a previously suggested volcano on Ka‘ena Ridge. By inverting the residual gravity data, we generate a 3-D view of the dense, intrusive complexes and olivine-rich cumulate cores within individual volcanoes and rift zones. We find that the Hāna and Ka‘ena ridges are underlain by particularly high-density intrusive material (>2.85 g/cm3) not observed beneath other Hawaiian rift zones. Contrary to previous estimates, volcanoes along the chain are shown to be composed of a small proportion of intrusive material (<30% by volume), implying that the islands are predominately built extrusively.

  2. Wood density and growth of some conifers introduced to Hawaii.

    Treesearch

    Roger G. Skolmen

    1963-01-01

    The specific gravity of the wood of 14 conifers grown in Hawaii was measured by means of increment cores. Most species were growing in environments quite different from their native habitats. The specific gravity and growth characteristics under several site conditions were compared. Described in some detail are Norfolk-Island-pine, slash pine, Jeffrey pine, jelecote...

  3. Gravity-Driven Deposits in an Active Margin (Ionian Sea) Over the Last 330,000 Years

    NASA Astrophysics Data System (ADS)

    Köng, Eléonore; Zaragosi, Sébastien; Schneider, Jean-Luc; Garlan, Thierry; Bachèlery, Patrick; Sabine, Marjolaine; San Pedro, Laurine

    2017-11-01

    In the Ionian Sea, the subduction of the Nubia plate underneath the Eurasia plate leads to an important sediment remobilization on the Calabrian Arc and the Mediterranean Ridge. These events are often associated with earthquakes and tsunamis. In this study, we analyze gravity-driven deposits in order to establish their recurrence time on the Calabrian Arc and the western Mediterranean Ridge. Four gravity cores collected on ridges and slope basins of accretionary prisms record turbidites, megaturbidites, slumping and micro-faults over the last 330,000 years. These turbidites were dated by correlation with a hemipelagic core with a multi-proxy approach: radiometric dating, δ18O, b* colour curve, sapropels and tephrochronology. The origin of the gravity-driven deposits was studied with a sedimentary approach: grain-size, lithology, thin section, geochemistry of volcanic glass. The results suggest three periods of presence/absence of gravity-driven deposits: a first on the western lobe of the Calabrian Arc between 330,000 and 250,000 years, a second between 120,000 years and present day on the eastern lobe of the Calabrian Arc and over the last 60,000 years on the western lobe, and a third on the Mediterranean Ridge over the last 37,000 years. Return times for gravity-driven deposits are around 1,000 years during the most important record periods. The turbidite activity also highlights the presence of volcaniclastic turbidites that seems to be link to the Etna changing morphology over the last 320,000 years.

  4. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique

    NASA Astrophysics Data System (ADS)

    Karimov, Kh. S.; Fatima, Noshin; Sulaiman, Khaulah; Mahroof Tahir, M.; Ahmad, Zubair; Mateen, A.

    2015-03-01

    The humidity sensing properties of the thin films of an organic semiconductor material orange dye (OD) and its composite with CNTs deposited at high gravity conditions have been reported. Impedance, phase angle, capacitance and dissipation of the samples were measured at 1 kHz and room temperature conditions. The impedance decreases and capacitance increases with an increase in the humidity level. It was found that the sensitivity of the OD-based thin film samples deposited at high gravity condition is higher than the samples deposited at low gravity condition. The impedances and capacitance sensitivities of the of the samples deposited under high gravity condition are 6.1 times and 1.6 times higher than the films deposited under low gravity condition.

  5. Interior rotation of a sample of γ Doradus stars from ensemble modelling of their gravity-mode period spacings

    NASA Astrophysics Data System (ADS)

    Van Reeth, T.; Tkachenko, A.; Aerts, C.

    2016-10-01

    Context. Gamma Doradus stars (hereafter γ Dor stars) are known to exhibit gravity- and/or gravito-intertial modes that probe the inner stellar region near the convective core boundary. The non-equidistant spacing of the pulsation periods is an observational signature of the stellar evolutions and current internal structure and is heavily influenced by rotation. Aims: We aim to constrain the near-core rotation rates for a sample of γ Dor stars for which we have detected period spacing patterns. Methods: We combined the asymptotic period spacing with the traditional approximation of stellar pulsation to fit the observed period spacing patterns using χ2-optimisation. The method was applied to the observed period spacing patterns of a sample of stars and used for ensemble modelling. Results: For the majority of stars with an observed period spacing pattern we successfully determined the rotation rates and the asymptotic period spacing values, although the uncertainty margins on the latter were typically large. This also resulted directly in the identification of the modes that correspond to the detected pulsation frequencies, which for most stars were prograde dipole gravity and gravito-inertial modes. The majority of the observed retrograde modes were found to be Rossby modes. We also discuss the limitations of the method that are due to the neglect of the centrifugal force and the incomplete treatment of the Coriolis force. Conclusions: Despite its current limitations, the proposed method was successful to derive the rotation rates and to identify the modes from the observed period spacing patterns. It forms the first step towards detailed seismic modelling based on observed period spacing patterns of moderately to rapidly rotating γDor stars. Based on data gathered with the NASA Discovery mission Kepler and the HERMES spectrograph, which is installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland, and the Thüringer Landessternwarte Tautenburg, Germany.

  6. A full virial analysis of the prestellar cores in the Ophiuchus molecular cloud

    NASA Astrophysics Data System (ADS)

    Pattle, Kate; Ward-Thompson, Derek

    2015-08-01

    We present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell (JCMT) Gould Belt Survey with the SCUBA-2 instrument. We demonstrate methods for combining these data with HARP CO, Herschel and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus.We perform a full virial analysis on the starless cores in Ophiuchus, including external pressure. We find that the majority of our cores are either bound or virialised, and that gravity and external pressure are typically of similar importance in confining cores. We find that the critical Bonnor-Ebert stability criterion is not a good indicator of the boundedness of our cores. We determine that N2H+ is a good tracer of the bound material of prestellar cores, and find that non-thermal linewidths decrease substantially between the intermediate-density gas traced by C18O and the high-density gas traced by N2H+, indicating the dissipation of turbulence within cores.We find variation from region to region in the virial balance of cores and the relative contributions of pressure and gravity to core support, as well as variation in the degree to which turbulence is dissipated within cores and in the relative numbers of protostellar and starless sources. We find further support for our previous hypothesis of a global evolutionary gradient from southwest to northeast across Ophiuchus, indicating sequential star formation across the region.

  7. Visual gravitational motion and the vestibular system in humans

    PubMed Central

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-01-01

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761

  8. Visual gravitational motion and the vestibular system in humans.

    PubMed

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  9. Optimization schemes for the inversion of Bouguer gravity anomalies

    NASA Astrophysics Data System (ADS)

    Zamora, Azucena

    Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the inversion parameters. Finally, in order to achieve higher resolution, Chapter 5 introduces a 3-D theoretical framework for the joint inversion of Bouguer gravity anomalies and surface wave dispersion using interior-point methods. Through this work, we expect to contribute to the creation of additional tools for the development of 2- and 3-D models depicting the Earth's geological processes and to the widespread use of constrained optimization techniques for the inversion of geophysical data sets.

  10. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for use on initial lunar surface power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxiliary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2007). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n). These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined.

  11. Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558

    NASA Technical Reports Server (NTRS)

    Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.

    1974-01-01

    Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.

  12. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  13. Coal Quality and Major, Minor, and Trace Elements in the Powder River, Green River, and Williston Basins, Wyoming and North Dakota

    USGS Publications Warehouse

    Stricker, Gary D.; Flores, Romeo M.; Trippi, Michael H.; Ellis, Margaret S.; Olson, Carol M.; Sullivan, Jonah E.; Takahashi, Kenneth I.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Wyoming Reservoir Management Group (RMG) of the Bureau of Land Management (BLM) and nineteen independent coalbed methane (CBM) gas operators in the Powder River and Green River Basins in Wyoming and the Williston Basin in North Dakota, collected 963 coal samples from 37 core holes (fig. 1; table 1) between 1999 and 2005. The drilling and coring program was in response to the rapid development of CBM, particularly in the Powder River Basin (PRB), and the needs of the RMG BLM for new and more reliable data for CBM resource estimates and reservoir characterization. The USGS and BLM entered into agreements with the gas operators to drill and core Fort Union coal beds, thus supplying core samples for the USGS to analyze and provide the RMG with rapid, real-time results of total gas desorbed, coal quality, and high pressure methane adsorption isotherm data (Stricker and others, 2006). The USGS determined the ultimate composition of all coal core samples; for selected samples analyses also included proximate analysis, calorific value, equilibrium moisture, apparent specific gravity, and forms of sulfur. Analytical procedures followed those of the American Society of Testing Materials (ASTM; 1998). In addition, samples from three wells (129 samples) were analyzed for major, minor, and trace element contents. Ultimate and proximate compositions, calorific value, and forms of sulfur are fundamental parameters in evaluating the economic value of a coal. Determining trace element concentrations, along with total sulfur and ash yield, is also essential to assess the environmental effects of coal use, as is the suitability of the coal for cleaning, gasification, liquefaction, and other treatments. Determination of coal quality in the deeper part (depths greater than 1,000 to 1,200 ft) of the PRB (Rohrbacher and others, 2006; Luppens and others, 2006) is especially important, because these coals are targeted for future mining and development. This report contains summary tables, histograms, and isopleth maps of coal analyses. Details of the compositional internal variability of the coal beds are based on the continuous vertical sampling of coal sequences, including beds in the deeper part of the PRB. Such sampling allows for close comparisons of the compositions of different parts of coal beds as well as within the same coal beds at different core hole locations within short distances of each other.

  14. Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila

    2015-03-28

    To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normalmore » to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.« less

  15. REXUS 16 Low Gravity Experiment

    NASA Astrophysics Data System (ADS)

    Manoliu, L.; Ciuca, I.; Lupu, E. S.; Ciobanu, I.; Cherciu, C.; Soare, C.; Murensan, C.; Dragomir, D.; Chitu, C.; Nachila, C.

    2015-09-01

    The REXUS/BEXUS is a programme realized under a bilateral agency agreement between the German Aerospace Centre (DLR) and the Swedish National Space Board (SNSB) (Source: www.rexusbexus.net) . Within this programme, the experiment proposed by LOW Gravity was given the opportunity to fly on board of REXUS 16 from Kiruna, Sweden, in May 2014. Since space settlements are within our reach and material processing in reduced gravity is a key requirement, we aim to improve this field by investigating the melting and welding processes taking place in milligravity on board of a sounding rocket. Our main objective is to analyze the surface deformation and physical properties of titanium and acid core solder alloys welded/melted under miligravity conditions with a 25W LASER diode. The main components of our experiment are the metal samples, the LASER diode and the control electronics. The metal samples are placed in front of an optical system and are shifted during approximately 120 seconds of milligravity. The optical system is connected via an optic fiber to the LASER diode. The electronics consists of two custom-made boards: the mainboard which is connected to the REXUS interface and controls the LASER diode and the sample shifting and the logboard which has an SD card to log all experiment data (sample position, experiment acceleration and rotation rate, pressure and temperature, battery voltage and LASER diode status). During the flight, due to unexpected vibration levels, the fiber optics was damaged at T+70 and the experiment could not fulfill its main objective. A GoPro camera mounted inside the experiment box recorded the experiment operation. Valuable information regarding temperature and battery voltage was also sent remotely to our Ground Station. This data enabled us to perform a thorough failure analysis. Parallel readings of these parameters taken by other experiments and by the REXUS Service Module corroborate our data and increase the accuracy of our analysis. The hypothesis for the failure is presented along with the lessons learnt.

  16. Non-planetary Science from Planetary Missions

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Rabe, K.; Daniels, K.

    2015-12-01

    Planetary science is naturally focussed on the issues of the origin and history of solar systems, especially our own. The implications of an early turbulent history of our solar system reach into many areas including the origin of Earth's oceans, of ores in the Earth's crust and possibly the seeding of life. There are however other areas of science that stand to be developed greatly by planetary missions, primarily to small solar system bodies. The physics of granular materials has been well-studied in Earth's gravity, but lacks a general theory. Because of the compacting effects of gravity, some experiments desired for testing these theories remain impossible on Earth. Studying the behavior of a micro-gravity rubble pile -- such as many asteroids are believed to be -- could provide a new route towards exploring general principles of granular physics. These same studies would also prove valuable for planning missions to sample these same bodies, as techniques for anchoring and deep sampling are difficult to plan in the absence of such knowledge. In materials physics, first-principles total-energy calculations for compounds of a given stoichiometry have identified metastable, or even stable, structures distinct from known structures obtained by synthesis under laboratory conditions. The conditions in the proto-planetary nebula, in the slowly cooling cores of planetesimals, and in the high speed collisions of planetesimals and their derivatives, are all conditions that cannot be achieved in the laboratory. Large samples from comets and asteroids offer the chance to find crystals with these as-yet unobserved structures as well as more exotic materials. Some of these could have unusual properties important for materials science. Meteorites give us a glimpse of these exotic materials, several dozen of which are known that are unique to meteorites. But samples retrieved directly from small bodies in space will not have been affected by atmospheric entry, warmth or weathering. We give examples from both of these fields of enquiry.

  17. The Effects of Core-Mantle Interactions on Earth Rotation, Surface Deformation, and Gravity Changes

    NASA Astrophysics Data System (ADS)

    Watkins, A.; Gross, R. S.; Fu, Y.

    2017-12-01

    The length-of-day (LOD) contains a 6-year signal, the cause of which is currently unknown. The signal remains after removing tidal and surface fluid effects, thus the cause is generally believed to be angular momentum exchange between the mantle and core. Previous work has established a theoretical relationship between pressure variations at the core-mantle boundary (CMB) and resulting deformation of the overlying mantle and crust. This study examines globally distributed GPS deformation data in search of this effect, and inverts the discovered global inter-annual component for the CMB pressure variations. The geostrophic assumption is then used to obtain fluid flow solutions at the edge of the core from the CMB pressure variations. Taylor's constraint is applied to obtain the flow deeper within the core, and the equivalent angular momentum and LOD changes are computed and compared to the known 6-year LOD signal. The amplitude of the modeled and measured LOD changes agree, but the degree of period and phase agreement is dependent upon the method of isolating the desired component in the GPS position data. Implications are discussed, and predictions are calculated for surface gravity field changes that would arise from the CMB pressure variations.

  18. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  19. Numerical study of gravity effects on phase separation in a swirl chamber.

    PubMed

    Hsiao, Chao-Tsung; Ma, Jingsen; Chahine, Georges L

    2016-01-01

    The effects of gravity on a phase separator are studied numerically using an Eulerian/Lagrangian two-phase flow approach. The separator utilizes high intensity swirl to separate bubbles from the liquid. The two-phase flow enters tangentially a cylindrical swirl chamber and rotate around the cylinder axis. On earth, as the bubbles are captured by the vortex formed inside the swirl chamber due to the centripetal force, they also experience the buoyancy force due to gravity. In a reduced or zero gravity environment buoyancy is reduced or inexistent and capture of the bubbles by the vortex is modified. The present numerical simulations enable study of the relative importance of the acceleration of gravity on the bubble capture by the swirl flow in the separator. In absence of gravity, the bubbles get stratified depending on their sizes, with the larger bubbles entering the core region earlier than the smaller ones. However, in presence of gravity, stratification is more complex as the two acceleration fields - due to gravity and to rotation - compete or combine during the bubble capture.

  20. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on initial results from this new joint project for the carbonate sequences and impact lithologies.

  1. Limits on the Core Mass of Jupiter

    NASA Astrophysics Data System (ADS)

    Stevenson, D. J.

    2015-12-01

    The core is here defined as the central concentration of elements heavier than hydrogen and helium (it need not be solid and it need not be purely heavy elements and it will not have a sharp boundary). Its determination is a major goal of the Juno mission (2016-17) and it will be difficult to determine because it is expected to be only a few percent of the total mass. It has long been known that there is no prospect of determining the nature of this core (e.g., its density) from gravity measurements, even though the mass can be estimated. By consideration of simple models that are nonetheless faithful to the essential physics, it is further shown that should the core be contaminated with light elements (hydrogen and helium) then the gravity data can tell us the core mass as defined (with some caveats about the fuzziness of its boundary) but not the total mass within some small radius (which could include any light elements mixed in). This is both good and bad news: Good in that the core is thought to be diagnostic of the conditions under which the planet formed but bad in that the admixture also tells us more about both formation process and core erosion. Further, a linear perturbation theory has been developed that provides an easy approximate way of determining how errors in the equation of state (EOS) propagate into errors in the estimated core mass or envelope enrichment in heavies in models that nonetheless satisfy all observables. This theory does not require detailed models of the planet but provides an integral mapping from changes in the EOS into approximate changes in radius at fixed mass, and low degree gravity (or moment of inertia, MOI). This procedure also shows that there exist perturbations that leave the radius, mass and MOI unchanged but cause a change in J2, though in practice the non-uniqueness of structure by this consideration (~0.2% or less in MOI for example) is less than the non-uniqueness arising from likely EOS uncertainties (~1% in total mass, potentially 30% in core mass). Although the likely independent determination of MOI from precession is expected to help in the modeling procedure, the uncertainty in EOS and in the distribution of heavy elements (and resulting non-adiabaticity) will necessarily introduce ambiguity into the determination of core mass.

  2. Durability of building stones against artificial salt crystallization

    NASA Astrophysics Data System (ADS)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  3. Increment cores : how to collect, handle and use them

    Treesearch

    Robert R. Maeglin

    1979-01-01

    This paper describes increment cores (a useful tool in forestry and wood technology) and their uses which include age determination, growth increment, specific gravity determination, fiber length measurements, fibril angle measurements, cell measurements, and pathological investigations. Also described is the use and care of the increment borer which is essential in...

  4. Sea Ice as a Sink for CO2 and Biogeochemical Material: a Novel Sampling Method and Astrobiological Applications

    NASA Astrophysics Data System (ADS)

    Wilner, J.; Hofmann, A.; Hand, K. P.

    2017-12-01

    Accurately modelling the intensification of greenhouse gas effects in the polar regions ("polar amplification") necessitates a thorough understanding of the geochemical balance between atmospheric, sea ice, and oceanic layers. Sea ice is highly permeable to CO2 and therefore represents a major sink of oceanic CO2 in winter and of atmospheric CO2 in summer, sinks that are typically either poorly constrained in or fully absent from global climate models. We present a novel method for sampling both trapped and dissolved gases (CO2, CH4 and δ13CH4) in sea ice with a Picarro 2132-i Methane Analyzer, taking the following sampling considerations into account: minimization of water and air contamination, full headspace sampling, prevention of inadvertent sample bag double-puncturing, and ease of use. This method involves melting of vacuum-sealed ice cores to evacuate trapped gases to the headspace and sampling the headspace gas with a blunt needle sheathed by a beveled puncturing needle. A gravity catchment tube prevents input of dangerous levels of liquid water to the Picarro cavity. Subsequent ultrasonic degassing allows for dissolved gas measurement. We are in the process of using this method to sample gases trapped and dissolved in Arctic autumn sea ice cores and atmospheric samples collected during the 2016 Polarstern Expedition and during a May 2017 field campaign north of Barrow, Alaska. We additionally employ this method, together with inductively coupled plasma mass spectrometry (ICP-MS), to analyze the transfer of potential biogeochemical signatures of underlying hydrothermal plumes to sea ice. This has particular relevance to Europa and Enceladus, where hypothetical hydrothermal plumes may deliver seafloor chemicals to the overlying ice shell. Hence, we are presently investigating the entrainment of methane and other hydrothermal material in sea ice cores collected along the Gakkel Ridge that may serve as biosignatures of methanogenic organisms in seafloor oases analogous to icy ocean worlds.

  5. Arctic Ocean Paleoceanography and Future IODP Drilling

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, such as the Lomonosov Ridge. These new detailed climate records spanning time intervals from the (late Cretaceous/)Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. During the Polarstern Expedition PS87 in August-September 2014, new site survey data including detailed multibeam bathymetry, multi-channel seismic and Parasound profiling as well as geological coring, were obtained on Lomonosov Ridge (Stein, 2015), being the basis for a more precise planning and update for a future IODP drilling campaign. Reference: Stein, R. (Ed.), 2015. Cruise Report of Polarstern Expedition PS87-2014 (Arctic Ocean/Lomonosov Ridge). Reps. Pol. Mar. Res., in press. Stein, R. , Weller, P. , Backman, J. , Brinkhuis, H., Moran, K. , Pälike, H., 2014. Cenozoic Arctic Ocean Climate History: Some highlights from the IODP Arctic Coring Expedition (ACEX). Developments in Marine Geology 7, Elsevier Amsterdam/New York, pp. 259-293.

  6. The effect of substrate composition and storage time on urine specific gravity in dogs.

    PubMed

    Steinberg, E; Drobatz, K; Aronson, L

    2009-10-01

    The purpose of this study is to evaluate the effects of substrate composition and storage time on urine specific gravity in dogs. A descriptive cohort study of 15 dogs. The urine specific gravity of free catch urine samples was analysed during a 5-hour time period using three separate storage methods; a closed syringe, a diaper pad and non-absorbable cat litter. The urine specific gravity increased over time in all three substrates. The syringe sample had the least change from baseline and the diaper sample had the greatest change from baseline. The urine specific gravity for the litter and diaper samples had a statistically significant increase from the 1-hour to the 5-hour time point. The urine specific gravity from canine urine stored either on a diaper or in a non-absorbable litter increased over time. Although the change was found to be statistically significant over the 5-hour study period it is unlikely to be clinically significant.

  7. 76 FR 4097 - Erie Boulevard Hydropower, L.P.; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... Oswegatchie River and consists of: (1) A 941-foot-long dam with a 192-foot-long, 69-foot-high concrete gravity... consists of: (1) A 568-foot-long dam and a 120-foot-long earthen embankment with a concrete core wall, and a 229- foot-long, 70-foot-high concrete gravity spillway with a crest elevation of 1,080.0 feet msl...

  8. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  9. Mass Distribution in Galaxy Cluster Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar ( M {sub *}), gas ( M {sub gas}), and dark matter ( M {sub DM}) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both largemore » and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H α emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r {sup 1.1} expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r {sup 0.67} down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”.« less

  10. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-04-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multi-layered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With the decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  11. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  12. Biological, Physical and Chemical Data From Gulf of Mexico Gravity and Box Core MRD05-04

    USGS Publications Warehouse

    Osterman, Lisa E.; Campbell, Pamela L.; Swarzenski, Peter W.; Ricardo, John P.

    2010-01-01

    This paper presents the benthic foraminiferal census data, magnetic susceptibility measurements, vanadium and organic geochemistry (carbon isotope, sterols, and total organic carbon) data from the MRD05-04 gravity and box cores. The MRD05-04 cores were obtained from the Louisiana continental shelf in an on-going initiative to examine the geographic and temporal extent of hypoxia, low-oxygen bottom-water content, and geochemical transport. The development of low-oxygen bottom water conditions in coastal waters is dependent upon a new source of bio-available nutrients introduced into a well-stratified water column. A number of studies have concluded that the development of the current seasonal hypoxia (dissolved oxygen < 2 mg L-1) in subsurface waters of the northern Gulf of Mexico is related to increased transport of nutrients (primarily nitrogen, but possibly also phosphorous) by the Mississippi River. However, the development of earlier episodes of seasonal low-oxygen subsurface water on the Louisiana shelf may be related to Mississippi River discharge.

  13. Sedimentary processes on the Mekong subaqueous delta: Clay mineral and geochemical analysis

    NASA Astrophysics Data System (ADS)

    Xue, Zuo; Paul Liu, J.; DeMaster, Dave; Leithold, Elana L.; Wan, Shiming; Ge, Qian; Nguyen, Van Lap; Ta, Thi Kim Oanh

    2014-01-01

    Sedimentary processes on the inner Mekong Shelf were investigated by examining the characteristics of sediments sampled in gravity cores at 15 locations, including grain size, clay mineralogy, sediment accumulation rates, and the elemental and stable carbon isotopic composition of organic matter (atomic C/N ratios and δ13C). Deltaic deposits exhibit contrasting characteristics along different sides of the delta plain (South China Sea, SCS hereafter, to the east and Gulf of Thailand, GOT hereafter, to the west) as well as on and off the subaqueous deltaic system. On one hand, cores recovered from the subaqueous delta in the SCS/GOT are consisted of poorly/well sorted sediments with similar/different clay mineral assemblage with/from Mekong sediments. Excess 210Pb profiles, supported by 14C chronologies, indicate either "non-steady" (SCS side) or "rapid accumulation" (GOT side) processes on the subaqueous delta. The δ13C and C/N ratio indicate a mixture of terrestrial and marine-sourced organic matter in the deltaic sediment. On the other hand, cores recovered from areas with no deltaic deposits or seaward of the subaqueous delta show excess 210Pb profiles indicating "steady-state" accumulation with a greater proportion of marine-sourced organic matter. Core analysis's relevance with local depositional environment and previous acoustic profiling are discussed.

  14. Grief, traumatic stress, and posttraumatic growth in women who have experienced pregnancy loss.

    PubMed

    Krosch, Daniel Jay; Shakespeare-Finch, Jane

    2017-07-01

    Pregnancy loss is common and can be devastating for those who experience it. However, a historical focus on negative outcomes, and grief in particular, has rendered an incomplete portrait of both the gravity of the loss, and the potential for growth in its wake. Consistent with contemporary models of growth following bereavement, this study explored the occurrence of posttraumatic growth following pregnancy loss and further assessed the role of core belief disruptions and common loss context factors across perinatal grief, posttraumatic stress symptoms, and posttraumatic growth. Women who had experienced a miscarriage or stillbirth (N = 328) were recruited through perinatal loss support groups and completed an online survey that assessed core belief disruption, perinatal grief, posttraumatic stress symptoms, posttraumatic growth, loss context factors, and demographics. Hypotheses were tested via hierarchical multiple regression. All hypotheses were supported. Specifically, (a) moderate levels of posttraumatic growth were reported; (b) core belief disruptions predicted perinatal grief, posttraumatic stress symptoms, and posttraumatic growth; and (c) perinatal grief predicted posttraumatic stress symptoms and growth. Findings suggest that pregnancy loss can be a traumatic event, that core belief disruptions play a significant role in posttrauma outcomes, and that other factors may contribute to grief, posttraumatic stress symptoms, and posttraumatic growth following pregnancy loss that warrant further research (e.g., rumination). Despite potential methodological and sampling limitations, the use of validated measures to assess posttraumatic growth in a large sample represents a robust attempt to quantify the occurrence of posttrauma change following pregnancy loss. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Gravity investigations of the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Plescia, J.B.; Daniels, D.L.; Shah, A.K.

    2009-01-01

    The Chesapeake Bay impact structure is a complex impact crater, ??85 km in diameter, buried beneath postimpact sediments. Its main structural elements include a central uplift of crystalline bedrock, a surrounding inner crater filled with impact debris, and an annular faulted margin composed of block-faulted sediments. The gravity anomaly is consistent with that of a complex impact consisting of a central positive anomaly over the central uplift and an annular negative anomaly over the inner crater. An anomaly is not recognized as being associated with the faulted margin or the outer edge of the structure. Densities from the Eyreville drill core and modeling indicate a density contrast of ??0.3-0.6 g cm-3 between crystalline basement and the material that fills the inner crater (e.g., Exmore breccia and suevite). This density contrast is somewhat higher than for other impact structures, but it is a function of the manner in which the crater fill was deposited (as a marine resurge deposit). Modeling of the gravity data is consistent with a depth to basement of ??1600 m at the site of Eyreville drill hole and 800 m at the central uplift. Both depths are greater than the depth at which crystalline rocks were encountered in the cores, suggesting that the cored material is highly fractured para-allochthonous rock. ?? 2009 The Geological Society of America.

  16. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.

  17. Specific gravity of bovine colostrum immunoglobulins as affected by temperature and colostrum components.

    PubMed

    Mechor, G D; Gröhn, Y T; McDowell, L R; Van Saun, R J

    1992-11-01

    The effects of temperature and colostrum components on specific gravity in bovine colostrum were investigated. Thirty-nine first milking colostrum samples were collected from Holstein cows. The samples were assayed for alpha-tocopherol, fat, protein, total solids, and IgG. The concentrations of total solids, total protein, total IgG, and fat in colostrum were 26.6, 12.5, 3.7, and 9.4 g/100 g, respectively. A range of 1.8 to 24.7 micrograms/ml for alpha-tocopherol was measured in the colostrum samples. Specific gravity of the colostrum was measured using a hydrometer in increments of 5 degrees C from 0 to 40 degrees C. Specific gravity explained 76% of the variation in colostral total IgG at a colostrum temperature of 20 degrees C. The regression model was improved only slightly with the addition of protein, fat, and total solids. The model for samples at 20 degrees C was IgG (milligrams per milliliter) = 958 x (specific gravity) - 969. Measurement of specific gravity at variable temperatures necessitated inclusion of temperature in the model for estimation of IgG. Inclusion of the other components of colostrum into the model slightly improved the fit. The regression model for samples at variable temperatures was as follows: IgG (milligrams per milliliter) = 853 x (specific gravity) + .4 x temperature (Celsius degrees) - 866.

  18. Gravity Chromatic Imaging of the Eta Car's Core

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, Joel

    2018-04-01

    Eta Car is one of the most massive, and intriguing, Luminous Blue Variables known. In its core resides a binary with a 5.54 years orbital period. Visible, infrared, and X-raobservations suggest that the primary star exhibits a very dense wind with a terminal velocity of about 420 km/s, while the secondary shows a much faster and less dense wind with a terminal velocity of 3000 km/s. The wind-wind collision zone at the core of Eta Car is thus a complex region that deserves a detailed study to understand the effect of the binary interaction in the evolution of the system. Here, we will present a unique imaging campaign with GRAVITY/VLTI of the Eta Car's core. The superb quality of our interferometric data, together with state-of-the-art image reconstruction techniques, allowed us to obtain, with milliarcsecond resolution, continuum and chromatic images cross the BrG and HeI lines in the Eta Car K-band spectrum (R 4000). These new data together with models of the primary wind of Eta Car has letting us to characterize the spatial distribution of the dust and gas in the inner 40 AU wind-wind collision zone of the target.

  19. Explanation of observable secular variations of gravity and alternative methods of determination of drift of the center of mass of the Earth

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    The summary. On the basis of geodynamic model of the forced relative displacement of the centers of mass of the core and the mantle of the Earth the secular variations of a gravity and heights of some gravimetry stations on a surface of the Earth have ben studied. At the account of secular drift of the center of mass of the Earth which on our geodynamic model is caused by the unidirectional drift of the core of the Earth relatively to the mantle, the full explanation is given to observable secular variations of a gravity at stations Ny-Alesund (Norway), Churchill (Canada), Medicine (Italy), Sayowa (Antarctica), Strastburg (France), Membach (Belgium), Wuhan (China) and Metsahovi (Finland). Two new methods of determination of secular drift of the center of mass of the Earth, alternative to classical method of a space geodesy are offered: 1) on the basis of gravimetry data about secular trends of a gravity at the stations located on all basic regions of the Earth; 2) on the basis of the comparative analysis of altimetry and coastal data about secular changes of sea level also in basic regions of ocean. 1. Secular drift of the center of mass of the core and the center of mass of the Earth. A secular drift of the center of mass of the Earth to the North relatively to special center O on an axis of rotation of the Earth for which the coefficient of third zonal harmonic J3' = 0, has been predicted in the author work [1]. A drift in a direction to a geographical point (pole P) 70°0 N and 104°3 E has been established for the first time theoretically - as a result of the analysis of the global directed redistribution of masses of the Earth, explaining the observed secular drift of the pole of an axis of rotation of the Earth and not tidal acceleration of its axial rotation [2]. In [1] velocity of drift it has been estimated in 1-2 cm/yr. For specified center O the figure of a planet is as though deprived of pure-shaped form (J3' = 0). And in this sense the point O can be conditionally corresponded to the geocenter of the Earth approximately determined by position of stations of satellite observations, as the center of certain mantle systems of coordinates Oxyz. For an explanation of such significant drift of the center of mass of the Earth the mechanism of the unidirectional displacement of the core of the Earth (and its center of mass) relatively to a viscoelastic mantle [1, 2] has been offered. The next years attempts of determination of velocity of secular drift of the center of mass in the mantle reference frame by methods of a space geodesy on the basis of precision satellite observations were repeatedly undertaken. In our work [3] for determination of a trend of the center of mass the data of the International Service of Rotation of the Earth (IERS) for satellite observations of system DORIS have been used. For components of velocity of drift in geocentric Greenwich system of coordinates for period 1999-2007 estimations have been obtained: on coordinate x) -1.46 mm/yr, y) 0.79 mm/yr and z) 5.29 mm/yr (errors of the specified estimations make 5-10 %). The velocity of trend of the center of mass of the Earth and its direction are characterized by values: 5.54 mm/yr; latitude 72°6 N and a longitude 118°4 E. The direction of displacement of the center of mass will well be coordinated with a direction predicted earlier theoretically [2]: latitude 70° N and a longitude 104° E. We shall emphasize, that observable redistributions of superficial masses of the Earth explain only small part of observable displacement of the center of mass. It testifies in favour of a reality of secular relative displacement of the core and the mantle of the Earth. 2 Secular drift of the core to the North and variations of a gravity on the Earth surface. The displaced core of the Earth is characterized by the large superfluous mass approximately in 16.7 masses of the Moon. The superfluous mass is ditermined by contrast values of average densities of the core and the mantle and makes 19.32 % of mass of full the Earth. At displacement of the core relatively to the viscous-elastic mantle its superfluous mass causes observable drift of the center of mass, and also leads to changes of a gravity on the surface of the planet. Except for it the gravitational attraction of a displaced core causes deformations of all layers of the mantle, including a superficial layer. The deformed mantle produses some additional gravitational potential which gives the additional contribution to value of a gravity. Thus, noted factors lead to a secular variation of a gravity which is described by the simple formula [2]: dot g = 2gμmc-(1- h-2- 0.5k-2)ρdot-sin?, μmc = 0.1932m ⊙, g = 9.82022 m -s2 m ⊙ r⊙ (1) Here μmc = 0.1932m⊙ is a superflous mass of the Earth core in the masses of the Earth m⊙. g is an acceleration of free falling. k-2 and h-2 are Love numbers of the order (-2). ρdot is a velocity of the secular drift of the center of mass of the core relatively to the center of mass of the mantle. ?is an angle between dirtection to the pole P (in a direction to which the core of the Earth or its center of mass drifts), and direction to gravimetric station. For rough estimates of gravimetric effects as pole P the North Pole of the Earth has been accepted. Thus ? = ?-2 - φis a co-latitude. At more exact description of the core drift (or the center of mass drift) an angle? is determined by formula: cos? = cosφP cosφcos(λP - λ) + sinφP sinφ, where φP and λP is a latitude and longitude of pole P; φ and λ is a latitude and longitude of station. The Love numbers of the order (-2) in first have been evaluated in the paper [4] and have small values: k-2=-0.005004 and h-2=0.0062154. Approximately we can put ρdot m⊙ = μmcṙC, where ṙC is a velocity of the drift of the center of mass of the Earth. Then, neglecting small effects, for a variation of gravity (1) we obtain a following expression: ? r = 2ṙCg cos?-r⊙. Leaning on results of works [2], [3], we shall accept the following values of parameters of drift of the center of mass: ṙC=5.54 mm/yr, φP=70°0 N, λP=104°3 E. On the other hand a displacement of the center of mass of the Earth leads to effect of slow change of heights of gravimetric station: ḣ = -?dotC cos? = -5.54 × cos? mm/yr. Errors in determination of the specified characteristics in the given work we shall neglect. Besides the gravitational attraction of a displaced core leads also to effect of increase of horizontal component of gravitational force of an attraction of the Earth on its surface directed to the North along the corresponding meridian with pole P. For any point of a surface of the Earth this component of force is determined by the formula ?φ = ṙCg sin?-r⊙ and has positive values. And the maximal values ?φ are reached on equator, which plane is orthogonal to axes of drift of the core OP. Thus, final working formulas for studying of secular variations of components of force of a gravitational attraction of the Earth and for a variation of the heights caused by a drift of the center of mass of the Earth become: ?r = 1.74cos?-r⊙ ?Gal/yr, ?φ = 0.87sin?-r⊙ ?Gal/yr, ḣ = -5.54cos?-r⊙ mm/yr. Calculated values of mentioned gravimetric characteristics (2) for the wide list of gravimetry stations are resulted in work [5] and used in the given work. 3 Explanation of observable secular variations of a gravity and heights on gravimetric stations. We have been analysed observed variations of a gravity and heights available and accessible to us, namely their secular changes, for 8 known gravimetry stations. The periods of observations at mentioned stations make the order of 5-10 years, i.e. are not greater, but nevertheless the obtained results unequivocally testify in favour of that the basic contribution to secular variations of a gravity gives the drifting core of the Earth (by means of direct gravitational influence and due to a contribution to corresponding variations of heights). In the given work we did not consider other factors influencing on gravimetric measurements (superficial redistributions of fluid masses, variations of coefficients of the second and higher harmonics of a geopotential, etc.). As an example here we shall analyse secular variations of a gravity and heights at Ny-Alesund station (geographical coordinates: 78°93 N, 11°87 E, ? =23°16). Linear trends of a gravity and height observable at this station make -2.5±0.9 ?Gal/yr and + (6.9±0.9) mm/yr, accordingly, during 1998-2002 (Sato et.al., 2006). On our model a slow closing of the core to the Ny-Alesund station causes a positive variation of a gravity in 1.60 ?Gal/yr and a negative variation of height of station in -5.09 mm/yr [5]. These data testify a deformation of a surface of the Earth in area of station with a velocity +11.99±0.9 mm/yr owing to which the gravity tests a negative variation -3.74±0.28 ?Gal/yr. Putting effects of a variation of a gravity because of displacement of the core and from deformation of a surface, we obtain negative value for secular trend of gravity in - (2.14±0.28) ?Gal/yr, that within the limits of errors it will be coordinated with observable value - (2.5±0.9) ?Gal/yr. Similar results we have obtained for 7 another's gravimetric stations. All results are summarized in the table 1. Here we have used known data about observable secular trends of gravity and GPS heights at considered here stations of the following authors: Ny-Alesund (Sato et al., 2006); Churchill (Larson et al., 2000); Medicine (Zerbini et al., 2001); Syowa (Fukuda et.al., 2007); Strastburg (Almavict et. al., 2004); Membach (Francis et al., 2004); Wuhan (Xu et al., 2008); Metsahovi (Gitlein et. al., 2009). Table 1. Theoretical and observable values of secular variations of a gravity. Stations Core attractionSurface deformation Theory Observations Ny-Alesund+1.60 ?Gal/yr -(3.77±0.09) ?Gal/yr -(2.17±0.03) ?Gal/yr -(2.5±0.9) ?Gal/yr Churchill +1.11 ?Gal/yr -(3.38±0.28) ?Gal/yr -(2.22±0.28) ?Gal/yr -(2.13±0.23) ?Gal/yr Medicina +1.13 ?Gal/yr +(1.07±0.20) ?Gal/yr+(2.20±0.20) ?Gal/yr+(1.90±0.20) ?Gal/yr Syowa -1.44 ?Gal/yr +(0.63±0.08) ?Gal/yr-(0.81±0.08) ?Gal/yr -0.56 ?Gal/yr Strastburg +1.18 ?Gal/yr +(0.71±0.02) ?Gal/yr+(1.89±0.02) ?Gal/yr+(1.90±0.20) ?Gal/yr Membach +1.21 ?Gal/yr -(1.98±0.16) ?Gal/yr -(0.77±0.16) ?Gal/yr -(0.6±0.1) ?Gal/yr Wuhan +1.34 ?Gal/yr -(0.17±0.05) ?Gal/yr +(1.17±0.05) ?Gal/yr+(1.39±0.02) ?Gal/yr Metsahovi +1.47 ?Gal/yr -(2.82±0.06) ?Gal/yr +(1.35±0.06) ?Gal/yr-(0.88±0.52) ?Gal/yr

  20. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1980-01-01

    Describes an inexpensive apparatus for the detection of gravity waves traveling through the ionosphere. The detector consists of a modified transistor radio with a ferrite-core antenna. Numerous diagrams accompany a lengthy description. (CS)

  1. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  2. Upward Flame Spread Over Thin Solids in Partial Gravity

    NASA Technical Reports Server (NTRS)

    Feier, I. I.; Shih, H. Y.; Sacksteder, K. R.; Tien, J. S.

    2001-01-01

    The effects of partial-gravity, reduced pressure, and sample width on upward flame spread over a thin cellulose fuel were studied experimentally and the results were compared to a numerical flame spread simulation. Fuel samples 1-cm, 2-cm, and 4-cm wide were burned in air at reduced pressures of 0.2 to 0.4 atmospheres in simulated gravity environments of 0.1-G, 0.16-G (Lunar), and 0.38-G (Martian) onboard the NASA KC-135 aircraft and in normal-gravity tests. Observed steady flame propagation speeds and pyrolysis lengths were approximately proportional to the gravity level. Flames spread more quickly and were longer with the wider samples and the variations with gravity and pressure increased with sample width. A numerical simulation of upward flame spread was developed including three-dimensional Navier-Stokes equations, one-step Arrhenius kinetics for the gas phase flame and for the solid surface decomposition, and a fuel-surface radiative loss. The model provides detailed structure of flame temperatures, the flow field interactions with the flame, and the solid fuel mass disappearance. The simulation agrees with experimental flame spread rates and their dependence on gravity level but predicts a wider flammable region than found by experiment. Some unique three-dimensional flame features are demonstrated in the model results.

  3. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  4. Gravity-Independent Mobility and Drilling on Natural Rock using Microspines

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; Frost, Matthew; Thatte, Nitish; King, Jonathan P.

    2012-01-01

    To grip rocks on the surfaces of asteroids and comets, and to grip the cliff faces and lava tubes of Mars, a 250 mm diameter omni-directional anchor is presented that utilizes a hierarchical array of claws with suspension flexures, called microspines, to create fast, strong attachment. Prototypes have been demonstrated on vesicular basalt and a'a lava rock supporting forces in all directions away from the rock. Each anchor can support >160 N tangent, >150 N at 45?, and >180 N normal to the surface of the rock. A two-actuator selectively- compliant ankle interfaces these anchors to the Lemur IIB robot for climbing trials. A rotary percussive drill was also integrated into the anchor, demonstrating self-contained rock coring regardless of gravitational orientation. As a harder- than-zero-g proof of concept, 20mm diameter boreholes were drilled 83 mm deep in vesicular basalt samples, retaining a 12 mm diameter rock core in 3-6 pieces while in an inverted configuration, literally drilling into the ceiling.

  5. Aquifer Recharge Estimation In Unsaturated Porous Rock Using Darcian And Geophysical Methods.

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; De Carlo, L.; Masciale, R.; Turturro, A. C.; Perkins, K. S.; Caputo, M. C.

    2016-12-01

    Within the unsaturated zone a constant downward gravity-driven flux of water commonly exists at depths ranging from a few meters to tens of meters depending on climate, medium, and vegetation. In this case a steady-state application of Darcy's law can provide recharge rate estimates.We have applied an integrated approach that combines field geophysical measurements with laboratory hydraulic property measurements on core samples to produce accurate estimates of steady-state aquifer recharge, or, in cases where episodic recharge also occurs, the steady component of recharge. The method requires (1) measurement of the water content existing in the deep unsaturated zone at the location of a core sample retrieved for lab measurements, and (2) measurement of the core sample's unsaturated hydraulic conductivity over a range of water content that includes the value measured in situ. Both types of measurements must be done with high accuracy. Darcy's law applied with the measured unsaturated hydraulic conductivity and gravitational driving force provides recharge estimates.Aquifer recharge was estimated using Darcian and geophysical methods at a deep porous rock (calcarenite) experimental site in Canosa, southern Italy. Electrical Resistivity Tomography (ERT) and Vertical Electrical Sounding (VES) profiles were collected from the land surface to water table to provide data for Darcian recharge estimation. Volumetric water content was estimated from resistivity profiles using a laboratory-derived calibration function based on Archie's law for rock samples from the experimental site, where electrical conductivity of the rock was related to the porosity and water saturation. Multiple-depth core samples were evaluated using the Quasi-Steady Centrifuge (QSC) method to obtain hydraulic conductivity (K), matric potential (ψ), and water content (θ) estimates within this profile. Laboratory-determined unsaturated hydraulic conductivity ranged from 3.90 x 10-9 to 1.02 x 10-5 m/s over a volumetric water content range from 0.1938 to 0.4311 m3/m3. Using these measured properties, the water content estimated from geophysical measurements has been used to identify the unsaturated hydraulic conductivity indicative of the steady component of the aquifer recharge rate at Canosa.

  6. Venus Gravity Handbook

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1996-01-01

    This report documents the Venus gravity methods and results to date (model MGNP90LSAAP). It is called a handbook in that it contains many useful plots (such as geometry and orbit behavior) that are useful in evaluating the tracking data. We discuss the models that are used in processing the Doppler data and the estimation method for determining the gravity field. With Pioneer Venus Orbiter and Magellan tracking data, the Venus gravity field was determined complete to degree and order 90 with the use of the JPL Cray T3D Supercomputer. The gravity field shows unprecedented high correlation with topography and resolution of features to the 2OOkm resolution. In the procedure for solving the gravity field, other information is gained as well, and, for example, we discuss results for the Venus ephemeris, Love number, pole orientation of Venus, and atmospheric densities. Of significance is the Love number solution which indicates a liquid core for Venus. The ephemeris of Venus is determined to an accuracy of 0.02 mm/s (tens of meters in position), and the rotation period to 243.0194 +/- 0.0002 days.

  7. Geophysical interpretations of the Libby thrust belt, northwestern Montana

    USGS Publications Warehouse

    Kleinkopf, M. Dean; with sections by Harrison, Jack Edward; Stanley, W.D.

    1997-01-01

    Interpretations of gravity and aeromagnetic anomaly data, supplemented by results from two seismic reflection profiles and five magnetotelluric soundings, were used to study buried structure and lithology of the Libby thrust belt of northwestern Montana. The gravity anomaly data show a marked correlation with major structures. The Purcell anticlinorium and the Sylvanite anticline are very likely cored by stacks of thrust slices of dense crystalline basement rocks that account for the large gravity highs across these two structures. Gravity anomaly data for the Cabinet Mountains Wilderness show a string of four broad highs. The principal magnetic anomaly sources are igneous intrusive rocks, major fault zones, and magnetite-bearing sedimentary rocks of the Ravalli Group. The most important magnetic anomalies in the principal study area are five distinct positive anomalies associated with Cretaceous or younger cupolas and stocks.

  8. The interior structure of Enceladus from Cassini gravity measurements

    NASA Astrophysics Data System (ADS)

    Iess, Luciano

    2015-04-01

    The Cassini spacecraft flew by the small Saturnian moon Enceladus in three close flybys (April 28, 2010, November 30, 2010 and May 2, 2012, to carry out measurements of the satellite's gravity field [1]. One of the main motivations was the search for a hemispherical asymmetry in the gravity field, the gravitational counterpart of the striking North-South asymmetry shown by optical imaging and other Cassini instruments in the geological features of the moon. The estimation of Enceladus' gravity field by Cassini was especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction (only a few minutes) and the small, nearly impulsive, neutral particles drag occurring when the spacecraft crossed the south polar plume during the first and the third flyby. Including the non-gravitational acceleration due to the plume in the dynamical model was crucial to obtain a reliable solution for the gravity field. In order to maximize the sensitivity to the hemispherical asymmetry, controlled by the spherical harmonic coefficient J3, the closest approaches occurred at the low altitudes (respectively 100, 48 and 70 km), and at high latitudes in both hemispheres (89°S, 62°N, and 72°S). Enceladus' gravity field is dominated by large quadrupole terms not far from those expected for a body in a relaxed shape. Although the deviations from the hydrostaticity are weak (J2/C22=3.55±0.05), the straightforward application of the Radau-Darwin approximation yields a value of the moment of inertia factor (MOIF=C/MR2) that is incompatible (0.34) with the differentiated interior structure suggested by cryovolcanism and the large heat flow. The other remarkable feature of the gravity field is the small but still statistically significant value of J3 (106 x J3 = -115.3±22.9). A differentiated interior structure (corresponding to a smaller MOIF) may be reconciled with the gravity measurement by assuming that the rocky core has retained some memory of a faster rotation rate (about 10% above current). J3, whose value is uncontaminated by tides and rotation, provides a way to separate the non-hydrostatic contribution to J2 and C22, from which we infer a MOIF of about 0.336, now compatible with a differentiated structure. Similar conclusions are obtained from the analysis of the admittance. The interpretation of J3 and the associated, negative gravity anomaly (about 2.5 mGal) is non-unique. In a proposed explanation, the anomaly originates in the core and is not directly related to the presence of liquid masses beneath the surface. Our interpretation seeks the source of the anomaly in the observed 1 km depression in the southern polar region. This mass deficiency generates indeed a negative anomaly, but its magnitude is far smaller (about 20%) than expected from an uncompensated topography. An obvious source of compensation is a reservoir of liquid water at depth, in contact with the rocky core. This interpretation is consistent with the observed cryovolcanism and the presence of silicate grains in the plumes. The estimated gravity field is more consistent with a reservoir that extends in latitude about halfway to the equator, but our data cannot rule out a thin, global ocean.

  9. Introduction to paleoenvironments of Bear Lake, Utah and Idaho, and its catchment

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Kaufman, Darrell S.

    2009-01-01

    In 1996 a group led by the late Kerry Kelts (University of Minnesota) and Robert Thompson (U.S. Geological Survey) acquired three piston cores (BL96-1, -2, and -3) from Bear Lake. The coring arose from their recognition of Bear Lake as a potential repository of long records of paleoenvironmental change. They recognized that the lake is located in an area that is sensitive to changes in regional climate patterns (Dean et al., this volume), that the lake basin is long lived (see Colman, 2006; Kaufman et al., this volume), and that, unlike many lakes in the Great Basin, Bear Lake was never dry during warm dry periods. Bear Lake lies in the northeastern Great Basin to the northeast of Great Salt Lake, just south of the Snake River drainage, and a short distance west of the Green River drainage that makes up part of the Upper Colorado River Basin (Fig. 1). Similarity among the historic Bear Lake and Great Salt Lake hydrographs and flows on the Green River indicates that the hydrology of Bear Lake reflects regional precipitation (Fig. 2). Therefore, paleorecords from Bear Lake are important to understanding past climate for a large region, including the Upper Colorado River Basin, the source of much of the water for the southwestern United States. Initially, paleoenvironmental studies of Bear Lake sediments focused on cores BL96-1, -2, and -3. Additional coring was conducted to elucidate the spatial distribution of sedimentary units and to extend the record back in time. The study was also expanded to include extensive study of the catchment, including the properties of catchment materials and the processes that could potentially affect the delivery of catchment materials to the lake. Cores BL96-1, -2, and -3 were taken with a Kullenburg piston corer along an east–west profile in roughly 50, 40, and 30 m of water, respectively (Table 1, Fig. 3). These three cores, each taken as a single 4- to 5-m-long segment, provide a nearly complete composite section from ca. 26 cal ka to the late Holocene. In 1998 a number of short gravity cores were taken from the uppermost water-rich sediments that were not sampled by the 1996 cores. During 2000, cores were taken with a percussion piston corer (manufactured by UWITEC) at three locations in and around Mud Lake and at two locations in the northern end of Bear Lake (Fig. 3). Cores acquired with the percussion corer comprise as many as three overlapping segments up to 2 m in length. In 2002, additional percussion piston cores and associated gravity cores of the uppermost sediments were acquired from five sites in the northern half of the lake. In conjunction with two of the cores collected in 2000, these cores form a north–south profile along a seismic line and span water depths from less than 10 m to ~40 m. Data from this profile provide much of the evidence for lake-level variations (Smoot and Rosenbaum, this volume). Finally, during 2000, two long cores, BL00-1D and -1E (collectively referred to here simply as BL00-1), were taken at a site near the depocenter during testing of the GLAD800 coring platform (Fig. 4; Dean et al., 2002). These cores provide a record back to ca. 220 ka.

  10. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  11. Comparison of osmolality and refractometric readings of Hispaniolan Amazon parrot (Amazona ventralis) urine.

    PubMed

    Brock, A Paige; Grunkemeyer, Vanessa L; Fry, Michael M; Hall, James S; Bartges, Joseph W

    2013-12-01

    To evaluate the relationship between osmolality and specific gravity of urine samples from clinically normal adult parrots and to determine a formula to convert urine specific gravity (USG) measured on a reference scale to a more accurate USG value for an avian species, urine samples were collected opportunistically from a colony of Hispaniolan Amazon parrots (Amazona ventralis). Samples were analyzed by using a veterinary refractometer, and specific gravity was measured on both canine and feline scales. Osmolality was measured by vapor pressure osmometry. Specific gravity and osmolality measurements were highly correlated (r = 0.96). The linear relationship between refractivity measurements on a reference scale and osmolality was determined. An equation was calculated to allow specific gravity results from a medical refractometer to be converted to specific gravity values of Hispaniolan Amazon parrots: USGHAp = 0.201 +0.798(USGref). Use of the reference-canine scale to approximate the osmolality of parrot urine leads to an overestimation of the true osmolality of the sample. In addition, this error increases as the concentration of urine increases. Compared with the human-canine scale, the feline scale provides a closer approximation to urine osmolality of Hispaniolan Amazon parrots but still results in overestimation of osmolality.

  12. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests thatmore » most of the dense cores are pressure-confined.« less

  13. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    NASA Astrophysics Data System (ADS)

    Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Myers, Philip C.; Di Francesco, James; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Chen, How-Huan; Chun-Yuan Chen, Michael; Keown, Jared; Punanova, Anna; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Singh, Ayushi; Arce, Héctor G.; Goodman, Alyssa A.; Martin, Peter; Redaelli, Elena

    2017-09-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  14. Late-Quaternary changes of biogenic fluxes in the pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Giglio, F.; Langone, L.; Capotondi, L.; Morigi, C.; Focaccia, P.; Frignani, M.; Ravaioli, M.

    2003-04-01

    During the last decade the research project BIOSESO of the Italian National Research Program for Antarctica (PNRA) has collected 13 gravity cores and 3 box-cores along a N-S transect at about 175^oE in the Southern Ocean. In this presentation we discuss the results from 6 sediment cores sampled between 62^oS and 71^oS. This area embraces the Polar Front and the Marginal Ice Zone. The data set includes the contents of organic carbon, biogenic silica, CaCO_3 and some metals (Ba, Al, Fe, Mn) involved in the biogeochemical cycles. Chronologies were based on 230Thex profiles and the boundaries of the isotope stages were set assuming that biological productivity was enhanced during periods of less ice cover. Then , 230Thex, organic carbon, biogenic silica and biogenic Ba distributions were compared to the glacial-interglacial stage boundaries and corresponding ages of the δ18O record of Martinson et al. (1987). At the sampling sites sediment accumulation rates range between 0.2 to 3.8 cm ka-1. The higher values characterize the interglacial stages and the southern stations. Processes of sediment redistribution at sea bottom were enlightened by a comparison of measured and expected fluxes of 230Thex . The Polar Front zone is characterized by winnowing, whereas sediments along the continental slope of the Ross Sea are mainly subject to focussing processes. The environmental factors that drive changes of biogenic particle fluxes during glacial-interglacial transitions have been investigated.

  15. Revised South China Sea spreading history based on macrostructure analysis of IODP Expedition 349 core samples and geophysical data

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Ding, W.; Zhao, X.; Qiu, N.; Lin, J.; Li, C.

    2017-12-01

    In Internaltional Ocean Discovery Program (IODP) Expedition 349, four sites were drilled and cored successfully in the South China Sea (SCS). Three of them are close to the central spreading ridge (Sites U1431, U1433 and U1434), and one (Site U1435) is located on an outer rise,,providingsignificant information on the spreading history of the SCS.In order to constrain the spreading historymore accurately with the core results, we analyzed the identifiable macrostructures (over 300 fractures, veins and slickensides)from all the consolidated samples of these four drill sites. Then we made a retrograde reconstruction of the SCS spreading history with the constraints of the estimated fractures and veins, post-spreading volcanism,seismic interpretation, as well as free-air gravity and magnetic anomaly and topography analysis. Our study indicates that the spreading of the SCS experienced at least one ridge jump event and two events of ridge orientation and spreading direction adjustment, which mademagnetic anomaly orientation, ridge positionand facture zone directionskeep changing in the South China Sea. During the last spreading stage, the spreading direction was north-southward but lasted for a very short time period. The oceanic crust is wider in the eastern SCS and tapers out toward west.Due to the subductionof SCS beneath the Philippine Sea plate, the seafloor began to develop new fractures:the NWW-to EW-trending R' shear faults and the NE-trending P faultsbecame dominant faults and controlled the eruption of post-drift volcanism.

  16. Performance Evaluation and Analysis for Gravity Matching Aided Navigation.

    PubMed

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-04-05

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN.

  17. Performance Evaluation and Analysis for Gravity Matching Aided Navigation

    PubMed Central

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-01-01

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178

  18. 30 CFR 203.86 - What is in a G&G report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1, 1995; (3) Core data, if available; (4) Well correlation sections; (5) Pressure data; (6... description of anticipated hydrocarbon quality (i.e., specific gravity); and (3) The ranges within the...

  19. Wire Insulation Flammability Experiment: USML-1 One Year Post Mission Summary

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Sacksteder, Kurt R.; Kashiwagi, Takashi

    1994-01-01

    Herein we report the results from the Wire Insulation Flammability (WIF) Experiment performed in the Glovebox Facility on the USML-1 mission. This experiment explored various aspects of electrically induced fire scenarios in a reduced gravity environment. Under quiescent microgravity conditions, heat and mass transfer are dominated by diffusive and radiative transport; while in normal-gravity buoyancy induced convection often dominates. Of considerable scientific and practical interest is the intermediate situation of combustion occurring in the presence of imposed gas flows, with lower characteristic velocities than those induced by buoyancy in noma1 gravity. Two distinct cases naturally arise: flow direction opposed to, or concurrent with, the flame spread direction. Two tests of each kind were conducted in the WIF experiment, providing the first controlled demonstration of flame spreading in forced convection ever conducted in space. Four test modules were flown. The wire insulation, 1.5 mm in diameter, was polyethylene, extruded onto nichrome wire. Temperatures of the wh3 cores and insulation heated in quiescent and flowing environments were measured. Video and still-camera images of the samples, burning in air flowing at approximately 10 cm/sec, were recorded to obtain flame characteristics including spread rate, structure and temperature. Flame spread rates in concurrent flow were approximately twice those in opposed flow. In concurrent and opposed flow regimes, the spreading flames stabilized around a bead of molten insulation material, within which bubble nucleation was observed. An ignition attempt without flow mated a quiescent cloud of vaporized fuel which ignited dramatically yet failed to sustain normal flame spread. Finally, all tests produced substantial soot agglomerates, particularly the concurrent flow tests; and the collected soot has a morphology very distinct from soot formed in normal gravity flames. Several unexpected and unique microgravity combustion phenomena were observed.

  20. Employing 2D Forward Modeling of Gravity and Magnetic Data to Further Constrain the Magnitude of Extension Recorded by the Caetano Caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Ritzinger, B. T.; Glen, J. M. G.; Athens, N. D.; Denton, K. M.; Bouligand, C.

    2015-12-01

    Regionally continuous Cenozoic rocks in the Basin and Range that predate the onset of major mid-Miocene extension provide valuable insight into the sequence of faulting and magnitude of extension. An exceptional example of this is Caetano caldera, located in north-central Nevada, that formed during the eruption of the Caetano Tuff at the Eocene-Oligocene transition. The caldera and associated deposits, as well as conformable caldera-filling sedimentary and volcanic units allow for the reconstruction of post Oligocene extensional faulting. Extensive mapping and geochronologic, geochemical and paleomagnetic analyses have been conducted over the last decade to help further constrain the eruptive and extensional history of the Caetano caldera and associated deposits. Gravity and magnetic data, that highlight contrasts in density and magnetic properties (susceptibility and remanence), respectively, are useful for mapping and modeling structural and lithic discontinuities. By combining existing gravity and aeromagnetic data with newly collected high-resolution gravity data, we are performing detailed potential field modeling to better characterize the subsurface within and surrounding the caldera. Modeling is constrained by published geologic map and cross sections and by new rock properties for these units determined from oriented drill core and hand samples collected from outcrops that span all of the major rock units in the study area. These models will enable us to better map the margins of the caldera and more accurately determine subsurface lithic boundaries and complex fault geometries, as well as aid in refining estimates of the magnitude of extension across the caldera. This work highlights the value in combining geologic and geophysical data to build an integrated structural model to help characterize the subsurface and better constrain the extensional tectonic history if this part of the Great Basin.

  1. Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway

    NASA Astrophysics Data System (ADS)

    Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.

    2016-12-01

    More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.

  2. Harpoon-based sample Acquisition System

    NASA Astrophysics Data System (ADS)

    Bernal, Javier; Nuth, Joseph; Wegel, Donald

    2012-02-01

    Acquiring information about the composition of comets, asteroids, and other near Earth objects is very important because they may contain the primordial ooze of the solar system and the origins of life on Earth. Sending a spacecraft is the obvious answer, but once it gets there it needs to collect and analyze samples. Conceptually, a drill or a shovel would work, but both require something extra to anchor it to the comet, adding to the cost and complexity of the spacecraft. Since comets and asteroids are very low gravity objects, drilling becomes a problem. If you do not provide a grappling mechanism, the drill would push the spacecraft off the surface. Harpoons have been proposed as grappling mechanisms in the past and are currently flying on missions such as ROSETTA. We propose to use a hollow, core sampling harpoon, to act as the anchoring mechanism as well as the sample collecting device. By combining these two functions, mass is reduced, more samples can be collected and the spacecraft can carry more propellant. Although challenging, returning the collected samples to Earth allows them to be analyzed in laboratories with much greater detail than possible on a spacecraft. Also, bringing the samples back to Earth allows future generations to study them.

  3. ^4He experiments near T_λ with a heat current and reduced gravity in a low-gravity simulator

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming; Larson, Melora; Israelsson, Ulf

    1998-03-01

    Conventional ground-based helium experiments experience limitations due to a variation of the superfluid transition temperature (T_λ) caused by the gravity-induced hydrostatic pressure in a ^4He sample cell. A low-gravity simulator consisting a high field superconducting magnet has been built in our laboratory and the preliminary measurements demonstrated a reduction of gravity in the sample cell. (Melora Larson, Feng-Chuan Liu, and Ulf Israelsson, Czech. J. of Phys. 46, 179 (1996).) We report our latest improvements on the simulator and measurements with a new sample cell which had copper end plates, Vepsel sidewalls, and sidewall probes. The measurements showed that gravity can be canceled with a field-field gradient product of 20.7 T^2/cm (or B=15.5 Tesla), in excellent agreement with the theoretical prediction. The measurements also revealed that the boundary resistance between the thermometers and liquid helium increased from 1.6 cm^2 K/W at zero field to 2.0 cm^2 K/W at B=13.8 Tesla. The preliminary dynamic measurements near T_λ with a heat current and reduced gravity will also be presented. This research was supported by NASA.

  4. Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain).

    PubMed

    Borrego, J; López-González, N; Carro, B; Lozano-Soria, O

    2004-12-01

    Sc, Y, Th, Cu and rare earth elements (REE) concentrations have been analyzed in 14 samples of surface sediments and in two gravity cores by means of ICP-MS. Mean concentrations of Sc, Y and Th in surface sediments are 6.23, 4.76 and 16.30 ppm, respectively, lower than those present in the Upper Continental Crust (UCC). Cu concentration in these sediments is very high, 1466 ppm, and is caused by inputs from the Odiel and Tinto rivers, affected by acid mine drainage. SigmaREE mean concentration is 106.8 ppm, lower than that observed in other rivers and estuaries. In the cores, Sc, Y and Th concentrations show a significant increase in the intermediate levels, between 10 and 40 cm depth. The same pattern exists with Cu, where concentrations of 4440 ppm can be reached. Vertical evolution patterns for Sc, Y, Cu and heavy REE (HREE) are similar, and contrary to those shown by Th, light REE (LREE) and middle REE (MREE). Plots of North American Shale Composite (NASC)-normalized REE data of surface sediments show a slight depletion in REE concentrations. Most samples present with middle REE enrichment relative to light REE and heavy REE. Conversely, samples of the intermediate levels of the cores show significant enrichment of REE relative to NASC and high values in the (La/Gd)NASC and (La/Yb)NASC ratios. These anomalies in the fractionation patterns caused by enrichments in LREE and MREE concentrations is related to the presence of high concentrations of Th. They were generated by effluents from fertilizer factories between 1968 and 1998 which used phosphorite as source material.

  5. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    NASA Astrophysics Data System (ADS)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long term, multi-generational biological studies with large sample sizes and appropriate controls.

  6. O-star parameters from line profiles of wind-blanketed model atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voels, S.A.

    1989-01-01

    The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less

  7. Sedimentary Records of Hyperpycnal Flows and the Influence of River Damming on Sediment Dynamics of Estuaries: Examples from the Nelson, Churchill, Moisie and Sainte-Marguerite Rivers (Canada)

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Duboc, Q.; Boyer-Villemaire, U.; Lajeunesse, P.; Bernatchez, P.

    2015-12-01

    Sediment cores were sampled in the estuary of the Nelson and Churchill Rivers in western Hudson Bay, as well as in the estuary of the Moisie and Sainte-Marguerite Rivers in Gulf of St. Lawrence in order to evaluate the impact of hydroelectric dams on the sedimentary regime of these estuaries. The gravity cores at the mouth of the Nelson River recorded several cm-thick rapidly deposited layers with a reverse to normal grading sequence, indicating the occurrence of hyperpycnal flows generated by major floods during the last few centuries. These hyperpycnal flows were probably caused by ice-jam formation, which can increase both the flow and the sediment concentration following the breaching of such natural dams. Following the construction of hydroelectric dams since the 1960s, the regulation of river discharge prevented the formation of hyperpycnal flows, and hence the deposition of hyperpycnites in the upper part of the cores. In the core sampled in the estuary of the Churchill River, only one hyperpycnite was recorded. This lower frequency may be due to the enclosed estuary of the Churchill River, its weaker discharge and the more distal location of the coring site.In the Gulf of St. Lawrence, grain size measurements allowed the identification of a major flood around AD 1844±4 years in box cores from both the Sainte-Marguerite and Moisie Rivers, whereas a drastic decrease in variations in the median grain size occurred around AD ~1900 in the estuary of the Sainte-Marguerite River, highlighting the offshore impact of the SM1 dam construction in the early 1900s. Furthermore, sedimentological variations in the box cores from both estuaries have been investigated by wavelet analysis and the sharp disappearance of high frequencies around AD 1900 in the estuary of the dammed river (Sainte-Marguerite River), but not in the estuary of the natural river (Moisie River), also provides evidence of the influence of dams on the sedimentary regime of estuaries.

  8. Geophysical signatures and modeling results from a buried impact structure in Decorah, Iowa, USA

    NASA Astrophysics Data System (ADS)

    Kass, A.; Bedrosian, P.; Drenth, B.; Bloss, B. R.; McKay, R.; Liu, H. P.; French, B.; Witzke, B.

    2013-12-01

    The Decorah Impact Structure is a probable buried impact crater of Middle Ordovician age located in Northeast Iowa, USA. Originally hypothesized by the Iowa Geological and Water Survey though identification of a unique shale layer and shocked quartz from borehole samples, the 5.5 km diameter structure is nearly completely concealed beneath the town of Decorah, Iowa and the surrounding area. In late 2012 and early 2013, the US Geological Survey conducted airborne geophysical studies in the area to investigate structures and potential mineral resources associated with the 1.1 Ga Midcontinent Rift system. Full-tensor gravity gradiometry and airborne transient electromagnetic surveys were flown to investigate basement geometry and composition, as well as to map out the thick package of Phanerozoic sediments blanketing the region. Multiple survey lines intersected the impact structure, which was clearly visible in both the electromagnetic and gravity datasets. The electromagnetic data, acquired with a VTEM system from Geotech, Ltd., identified and mapped the post-impact Winneshiek Shale, which is present only in the crater (having been eroded everywhere else within the survey area). The resulting 5.5 km diameter circular conductor aligned nearly perfectly with the structure inferred by the Iowa Geological and Water Survey. The airborne full-tensor gravity gradient data, collected by Bell Geospace, clearly demarcates a density low in each component consistent with the center of the impact structure. The conductivity and density of some of the stratigraphic units both within as well as outside the impact structure were measured from core samples, and used to inform the modeling and inversion approaches. Both the electromagnetic data and the gravity gradiometry data underwent an extensive modeling and inversion procedure to investigate the geometry of the impact structure in three dimensions. From these results, we present a three dimensional model of the proposed Decorah Impact Structure and surrounding area. Not only will this model improve an understanding of the geology and hydrology of the region, but also will allow for more precise estimations of the energy and size of the impacting body. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  9. Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; Roberson, Luke B.; Roberts, Michael S.

    2010-01-01

    Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (< 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1.0 x 10(exp 5) cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 micro-g/L ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.

  10. Removal of phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super-gravity field

    NASA Astrophysics Data System (ADS)

    Gao, Jin-tao; Guo, Lei; Zhong, Yi-wei; Ren, Hong-ru; Guo, Zhan-cheng

    2016-07-01

    A new approach of removing the phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super- gravity field was investigated. The iron-slag separation by super-gravity resulted in phosphorus being effectively removed from the iron-rich phase and concentrated as a phosphorus-rich phase at a temperature below the melting point of iron. The samples obtained by super-gravity exhibited obvious layered structures. All the iron grains concentrated at the bottom of the sample along the super-gravity direction, whereas the molten slag concentrated in the upper part of the sample along the opposite direction. Meanwhile, fine apatite crystals collided and grew into larger crystals and concentrated at the slag-iron interface. Consequently, in the case of centrifugation with a gravity coefficient of G = 900, the mass fractions of the slag phase and iron-rich phase were similar to their respective theoretical values. The mass fraction of MFe in the iron-rich phase was as high as 97.77wt% and that of P was decreased to 0.092wt%.

  11. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim

    2016-10-01

    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  12. Methane Hydrate Recovered From A Mud Volcano in Santa Monica Basin, Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Normark, W. R.; Hein, J. R.; Powell, C. L.; Lorenson, T. D.; Lee, H. J.; Edwards, B. D.

    2003-12-01

    In July 2003, a short (2.1 m) piston core from the summit of a mud volcano recovered methane hydrate at a water depth of 813 m in Santa Monica Basin. The discovery core penetrated into in the hydrate as evidenced by chunks of ice and violent degassing of the core section between 162 and 212 cm depth. The core consists of shell hash and carbonate clasts (to 7-cm long) in silty mud. The methanogenic carbonates are of two types: massive, recrystallized nodular masses with an outer mm-thick sugary patina and a bivalve coquina with carbonate cement. Living clams including the genus Vesicomya, commonly found at cold-seep sites elsewhere, were recovered from the top of the core. Further sampling attempts using piston, gravity, and box corers, all of which were obtained within 15 m of the discovery core, recovered olive-brown silty mud with variable amounts of whole and fragmented bivalve shells and methanogenic carbonate fragments characteristic of cold-seep environments. Gases collected in cores adjacent to the discovery core contain elevated amounts of methane and trace amounts of heavier hydrocarbon gases, indicating some component from thermogenic sources. Hydrogen sulfide was also detected in these sediment samples. Vertical channels in one core may have served as fluid pathways. The existence of hydrate at such a shallow depth in the sediment was unexpected, however, the presence of Vesicomya and hydrogen sulfide indicate that the mud volcano is a site of active methane venting. The mud volcano, which is about 24 km west-southwest of Redondo Beach, is about 300 m in diameter at the base. No internal structure is resolved on either high resolution deep-tow boomer or single-channel air-gun profiles, most likely as a result of the gas content and sediment deformation. The diapiric structure has ascended through well-bedded sediment on the lower slope of the basin, producing as much as 30 m of bathymetric relief. It is located in an area where strike-slip motion along the San Pedro Basin fault zone to the south is replaced by convergent motion to the north. The source horizon for the gas in the hydrate is unknown but appears to be collecting in beds as shallow as 200 m below the regional seafloor based on the presence of a strong and irregular reflection interval.

  13. Systems and Methods for Gravity-Independent Gripping and Drilling

    NASA Technical Reports Server (NTRS)

    Thatte, Nitish (Inventor); King, Jonathan P. (Inventor); Parness, Aaron (Inventor); Frost, Matthew A. (Inventor)

    2016-01-01

    Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.

  14. Simulation of cracking cores when molding piston components

    NASA Astrophysics Data System (ADS)

    Petrenko, Alena; Soukup, Josef

    2014-08-01

    The article deals with pistons casting made from aluminum alloy. Pistons are casting at steel mold with steel core. The casting is provided by gravity casting machine. The each machine is equipped by two metal molds, which are preheated above temperature 160 °C before use. The steel core is also preheated by flame. The metal molds and cores are heated up within the casting process. The temperature of the metal mold raise up to 200 °C and temperature of core is higher. The surface of the core is treated by nitration. The mold and core are cooled down by water during casting process. The core is overheated and its top part is finally cracked despite its intensive water-cooling. The life time cycle of the core is decreased to approximately 5 to 15 thousands casting, which is only 15 % of life time cycle of core for production of other pistons. The article presents the temperature analysis of the core.

  15. Late Quaternary paleohydrology deduced from new marine sediment cores taken on the proximal Amazon continental margin

    NASA Astrophysics Data System (ADS)

    Nace, T.; Baker, P. A.; Dwyer, G. S.; Hollander, D. J.; Silva, C. G.

    2010-12-01

    Throughout the late Quaternary the Amazon Basin has been influenced by abrupt North-South climate forcing and has undergone several large climate variations as recorded in previously reported speleothem records. Despite its importance in the global carbon cycle there are few continuous, high-resolution records of the Amazon Basin that date back to and beyond the last glacial period. In this study, we report the first results of a marine geological expedition to the Amazon continental shelf and fan region. During this expedition we collected eight ~30 meter piston cores along with gravity, box and multicores. At both sites we undertook complementary multibeam and high resolution seismic reflection profiling. Analyses will be presented from two sets of box/gravity/piston cores. One core (32m) is from a high sedimentation site on the northern flank of the main submarine canyon within the Amazon Fan complex at 1700m water depth. The other core (30m) is located on a seamount to the south of the Amazon Fan complex at 3100m water depth. A mixed assemblage of foraminifera is used for 14C dating to obtain an age model and bulk organic geochemistry is analyzed to determine percent organic carbon, C/N ratios, δ13C and δ15N. The cores were continuously measured shipboard for magnetic susceptibility and gamma density using a GEOTEK logger. These findings uncover the contribution of pelagic and terrestrial organic matter, whether the terrigenous carbon is derived from C3 versus C4 vegetation, and whether the marine organic matter is composed of phytoplankton or marine algae.

  16. The ExoMars Sample Preparation and Distribution System

    NASA Astrophysics Data System (ADS)

    Schulte, Wolfgang; Hofmann, Peter; Baglioni, Pietro; Richter, Lutz; Redlich, . Daniel; Notarnicola, Marco; Durrant, Stephen

    2012-07-01

    The Sample Preparation and Distribution System (SPDS) is a key element of the ESA ExoMars Rover. It is a set of complex mechanisms designed to receive Mars soil samples acquired from the subsurface with a drill, to crush them and to distribute the obtained soil powder to the scientific instruments of the `Pasteur Payload', in the Rover Analytical Laboratory (ALD). In particular, the SPDS consists of: (1) a Core Sample Handling System (CSHS), including a Core Sample Transportation Mechanism (CSTM) and a Blank Sample Dispenser; (2) a Crushing Station (CS); (3) a Powder Sample Dosing and Distribution System (PSDDS); and (4) a Powder Sample Handling System (PSHS) which is a carousel carrying pyrolysis ovens, a re-fillable sample container and a tool to flatten the powder sample surface. Kayser-Threde has developed, undercontract with the ExoMars prime contractor Thales Alenia Space Italy, breadboards and an engineering model of the SPDS mechanisms. Tests of individual mechanisms, namely the CSTM, CS and PSDDS were conducted both in laboratory ambient conditions and in a simulated Mars environment, using dedicated facilities. The SPDS functionalities and performances were measured and evaluated. In the course of 2011 the SPDS Dosing Station (part of the PSDDS) was also tested in simulated Mars gravity conditions during a parabolic flight campaign. By the time of the conference, an elegant breadboard of the Powder Sample Handling System will have been built and tested. The next step, planned by mid of 2012, will be a complete end-to-end test of the sample handling and processing chain, combining all four SPDS mechanisms. The possibility to verify interface and operational aspects between the SPDS and the ALD scientific instruments using the available instruments breadboards with the end-to-end set-up is currently being evaluated. This paper illustrates the most recent design status of the SPDS mechanisms, summarizes the test results and highlights future development activities, including potential involvement of the ExoMars science experiments.

  17. Density and Specific Gravity Metrics in Biomass Research

    Treesearch

    Micheal C. Wiemann; G. Bruce Williamson

    2012-01-01

    Following the 2010 publication of Measuring Wood Specific Gravity… Correctly in the American Journal of Botany, readers contacted us to inquire about application of wood density and specific gravity to biomass research. Here we recommend methods for sample collection, volume measurement, and determination of wood density and specific gravity for...

  18. Five million years of compositionally diverse, episodic volcanism: Construction of Davidson Seamount atop an abandoned spreading center

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Duncan, R. A.; Huard, J. J.; Davis, A. S.; Castillo, P. R.; Lonsdale, P.; Devogelaere, A.

    2009-12-01

    Davidson Seamount, a volcano located about 80 km off the central California coast, has a volume of ˜320 km3 and consists of a series of parallel ridges serrated with steep cones. Davidson was sampled and its morphology observed during 27 ROV Tiburon dives. During those dives, 286 samples of lava, volcaniclastite, and erratics from the continental margin were collected, with additional samples from one ROV-collected push core and four gravity cores. We report glass compositions for 99 samples and 40Ar-39Ar incremental heating age data for 20 of the samples. The glass analyses are of hawaiite (62%), mugearite (13%), alkalic basalt (9%), and tephrite (8%), with minor transitional basalt (2%), benmoreite (2%), and trachyandesite (2%). The lithologies are irregularly distributed in space and time. The volcano erupted onto crust inferred to be 20 Ma from seafloor magnetic anomalies. Ages of the lavas range from 9.8 to 14.8 Ma. The oldest rocks are from the central ridge, and the youngest are from the flanks and southern end of the edifice. The compositions of the 18 reliably dated volcanic cones vary with age such that the oldest lavas are the most fractionated. The melts lost 65% to nearly 95% of their initial S because of bubble loss during vesiculation, and the shallowest samples have S contents similar to lava erupted subaerially in Hawaii. Despite this similarity in S contents, there is scant other evidence to suggest that Davidson was ever an island. The numerous small cones of disparate chemistry and the long eruptive period suggest episodic growth of the volcano over at least 5 Myr and perhaps as long as 10 Myr if it began to grow when the spreading ridge was abandoned.

  19. Flight performance of bumble bee as a possible pollinator in space agriculture under partial gravity

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Mitsuhata, Masahiro; Sasaki, Masami; Space Agriculture Task Force, J.

    Space agriculture is an advanced life support concept for habitation on extraterrestrial bodies based on biological and ecological function. Flowering plant species are core member of space agriculture to produce food and revitalize air and water. Selection of crop plant species is made on the basis of nutritional requirements to maintain healthy life of space crew. Species selected for space agriculture have several mode of reproduction. For some of plant species, insect pollination is effective to increase yield and quality of food. In terrestrial agriculture, bee is widely introduced to pollinate flower. For pollinator insect on Mars, working environment is different from Earth. Magnitude of gravity is 0.38G on Mars surface. In order to confirm feasibility of insect pollination for space agriculture, capability of flying pollinator insect under such exotic condition should be examined. Even bee does not possess evident gravity sensory system, gravity dominates flying performance and behavior. During flight or hovering, lifting force produced by wing beat sustains body weight, which is the product of body mass and gravitational acceleration. Flying behavior of bumble bee, Bombus ignitus, was documented under partial or micro-gravity produced by parabolic flight of jet plane. Flying behavior at absence of gravity differed from that under normal gravity. Ability of bee to fly under partial gravity was examined at the level of Mars, Moon and the less, to determine the threshold level of gravity for bee flying maneuver. Adaptation process of bee flying under different gravity level was evaluated as well by successive documentation of parabolic flight experiment.

  20. Immunoglobulin concentration, specific gravity, and nitrogen fractions of colostrum from Jersey cattle.

    PubMed

    Quigley, J D; Martin, K R; Dowlen, H H; Wallis, L B; Lamar, K

    1994-01-01

    Colostrum samples from 88 Jersey cows were analyzed for concentrations of IgG, IgM, IgA, total solids, specific gravity, and N fractions. Colostrum (50 ml) was sampled from each cow as soon as possible after parturition, and specific gravity was determined immediately using a hydrometer. Samples then were frozen prior to analysis of Ig, fat, and N fractions. Mean concentrations of IgG, IgM, and IgA were 65.8, 2.4, and 1.7 g/L, respectively. Concentration of IgG was lower, and IgA was higher, in colostrum from second lactation cows than from first lactation cows or from cows in third or later lactations; IgM increased linearly as lactation number increased. Total N, protein N, noncasein N, and fat contents also were lower in second lactation cows. Regression of total Ig (grams per liter) on specific gravity was -1172 + 1180 x specific gravity (r2 = .38). Relationship of total Ig to specific gravity differed from colostrum of Holstein cattle and may have been related to differences in fat and noncasein N concentrations. Use of specific gravity hydrometer to estimate Ig concentration using equations derived from Holstein cattle appears to underestimate Ig concentration in colostrum from Jersey cattle.

  1. Monitoring and modeling of water storage in karstic area (Larzac, France) with a continuous supraconducting gravimeter

    NASA Astrophysics Data System (ADS)

    Benjamin, Fores; Cédric, Champollion; Nicolas, Lemoigne; Jean, Chéry

    2014-05-01

    Quantitative knowledge of the groundwater storage and transfer in karstic area is crucial for water resources management and protection. As the karst hydro-geological properties are highly heterogeneous and scale dependent, geophysical observations such as time dependant gravity could be helpful to fill the gap between local (based on boreholes, moisture sensors, …) and global (based on chemistry, river flow, …) studies. Since more than 2 years, the iGrav #002 supraconducting gravimeter is continuously operating in the French GEK observatory(Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) in the Larzac karstic plateau (south of France). The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. First, the evaluation of the iGrav data (calibration, steps and drift) will be presented. Then a careful analysis of the global, topographic and building effects will be done to evaluate the local water storage only. The gravity data will be integrated with the water level data in nearby boreholes and petrophysical data from core samples. Finally, simple hydrological models will be presented to help the interpretation on the karst groundwater storage and transfer and to merge the whole dataset.

  2. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  3. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  4. Specific gravity of woody tissue from lowland Neotropical plants: differences among forest types.

    PubMed

    Casas, Luisa Fernanda; Aldana, Ana María; Henao-Diaz, Francisco; Villanueva, Boris; Stevenson, Pablo R

    2017-05-01

    Wood density, or more precisely, wood specific gravity, is an important parameter when estimating aboveground biomass, which has become a central tool for the management and conservation of forests around the world. When using biomass allometric equations for tropical forests, researchers are often required to assume phylogenetic trait conservatism, which allows us to assign genus- and family-level wood specific gravity mean values, to many woody species. The lack of information on this trait for many Neotropical plant species has led to an imprecise estimation of the biomass stored in Neotropical forests. The data presented here has information of woody tissue specific gravity from 2,602 individual stems for 386 species, including trees, lianas, and hemi-epiphytes of lowland tropical forests in Colombia. This data set was produced by us collecting wood cores from woody species in five localities in the Orinoco and Magdalena Basins in Colombia. We found lower mean specific gravity values in várzea than in terra firme and igapó. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  5. SPAR X Technical Report for Experiment 76-22 Directional Solidification of Magnetic Composites

    NASA Technical Reports Server (NTRS)

    Bethin, J.

    1984-01-01

    The effects of gravity on Bridgman-Stockbarger directional solidification of off-eutectic Bi/MnBi were studied in reduced gravity aboard the SPAR X flight and compared to normal-gravity investigations and previous eutectic Bi/MnBi SPAR flight experiments. The directional solidification of off-eutectic Bi/MnBi results in either a dendritic structure connected with local cooperative growth or a coupled low volume fraction faceted/non faceted aligned rod eutectic whose Mn macrosegregation, MnBi rod size, interrod spacing, and thermal and magnetic properties are sensitive functions of the solidification processing conditions. Two hypoeutectic and two hypereutectic samples were solidified during 605 sec of furnace travel, with an initial 265 sec low-gravity interval. Comparison Earth-gravity samples were solidified in the same furance assembly under identical processing conditions. Macrosegregation in the low-g samples was consistent with a metastable increase in Mn solubility in the Bi matrix, in partial agreement with previous Bi/MnBi SPAR findings of MnBi volume reduction.

  6. GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

    NASA Astrophysics Data System (ADS)

    N-Body Shop

    2017-10-01

    Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

  7. The equivalence principle in a quantum world

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Donoghue, John F.; El-Menoufi, Basem Kamal; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2015-09-01

    We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry — general coordinate invariance — that is used to organize the effective field theory (EFT).

  8. An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Bills, Bruce G.; Nerem, R. Steven

    1996-01-01

    Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary structural model (core radius and core and mantle densities), the mantle's viscosity stratification, and the mean crustal thickness. The model results are insensitive to the specific thickness or viscosity contrast of the high-viscosity surface layer and to the mean crustal thickness in the range 25 to 100 km. Models with a large core radius or with an upper mantle low-viscosity zone require implausibly large lateral variations in mantle temperature.

  9. Influence of refrigeration and formalin on the floatability of Giardia duodenalis cysts.

    PubMed

    Moitinho, M d; Bertoli, M; Guedes, T A; Ferreira, C S

    1999-01-01

    Giardia duodenalis cysts obtained from fresh fecal samples, fecal samples kept under refrigeration and fecal samples treated with formalin were studied as to their floatability on sucrose solutions with the following specific gravities: 1,040 kg/m3; 1,050 kg/m3; 1, 060 kg/m3; 1,070 kg/m3; 1,080 kg/m3; 1,090 kg/m3; 1,100 kgm3; 1,150 kg/m3; 1,200 kg/m3; and 1,250 kg/m3, contained within counting-chambers 0.17 mm high. Cysts that floated on and those settled down as sediments were counted, and had their percentages estimated. Sucrose solutions of 1,200 kg/m3 specific gravity (the average specific gravity of diluting liquids employed in floatation techniques) caused to float 77.7%, 78.4% and 6.6% of the G. duodenalis cysts obtained, respectively, from fresh fecal samples, fecal samples kept under refrigeration, and fecal samples treated with formalin. Cysts obtained both from fresh fecal samples and fecal samples kept under refrigeration presented similar results concerning floatability. It was observed, however, that the treatment of feces with formalin diminished the cysts floatability under the various specific gravities studied. This results should influence, the recommendations for transport and storage of fecal samples used for parasitological coproscopy.

  10. Effects of gravity, inertia, and surfactant on steady plug propagation in a two-dimensional channel

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Fujioka, H.; Grotberg, J. B.

    2007-08-01

    Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. Studies have shown that the effectiveness of these treatments may depend on how liquids distribute in the lung. Better understanding of the fundamental fluid mechanics of liquid plug transport will facilitate treatment strategies. In this paper, we develop a numerical model of steady plug propagation driven by gravity and pressure in a two-dimensional liquid-lined channel oriented at an angle α with respect to gravity. We investigate the effects of gravity through the Bond number, Bo, and α; the plug propagation speed through the capillary number, Ca, or the Reynolds number, Re; the plug length LP, and the surfactant concentration C0. Without gravity, i.e., Bo =0, the plug is symmetric, and there are two regimes for the flow: two wall layers and two trapped vortices in the core. There is no flow interaction between the upper and lower half plug domains. When Bo ≠0 and α ≠0, π, fluid is found to flow from the upper precursor film, through the core and into the lower trailing film. Then the number of vortices can be zero, one, or two, depending on the flow parameters. The vortices have stagnation points on the interface when C0=0, however when the surfactant is present (C0>0), the vortices detach from the interface and create saddle points inside the core. The front meniscus develops a capillary surface wave extending into the precursor film. This is where the film is thinnest and thus the wall shear stress is highest, as high as ˜100dyn /cm2 in adult airways, which indicates a significant risk of pulmonary airway epithelial cell damage. Adding surfactant can decrease the peak magnitude of the shear stress, thus reducing the risk of cell damage. The prebifurcation asymmetry of the plug is quantified by the volume ratio, Vr, defined as the ratio of the liquid above to that below the center line of the channel. Vr is found to increase with LP, Ca, Re, and C0, while it decreases with Bo. The total mass left behind in the trailing films increases with Bo for any α at α >2π/5, Ca and α for any value of Bo >0.

  11. Lunar regolith densification

    NASA Technical Reports Server (NTRS)

    Ko, Hon-Yim; Sture, Stein

    1991-01-01

    Core tube samples of the lunar regolith obtained during the Apollo missions showed a rapid increase in the density of the regolith with depth. Various hypotheses have been proposed for the possible cause of this phenomenon, including the densification of the loose regolith material by repeated shaking from the seismic tremors which have been found to occur at regular monthly intervals when the moon and earth are closest to one another. A test bed was designed to study regolith densification. This test bed uses Minnesota Lunar Simulant (MLS) to conduct shaking experiments in the geotechnical centrifuge with an inflight shake table system. By reproducing realistic in-situ regolith properties, the experiment also serves to test penetrator concepts. The shake table system was designed and used for simulation experiments to study effects of earthquakes on terrestrial soil structures. It is mounted on a 15 g-ton geotechnical centrifuge in which the self-weight induced stresses are replicated by testing an n-th scale model in a gravity field which is n times larger than Earth's gravity. A similar concept applies when dealing with lunar prototypes, where the gravity ratio required for proper simulation of lunar gravity effects is that between the centrifugal acceleration and the lunar gravity. Records of lunar seismic tremors, or moonquakes, were obtained. While these records are being prepared for use as the input data to drive the shake table system, records from the El Centro earthquake of 1940 are being used to perform preliminary tests, using a soil container which was previously used for earthquake studies. This container has a laminar construction, with the layers free to slide on each other, so that the soil motion during the simulated earthquake will not be constrained by the otherwise rigid boundaries. The soil model is prepared by pluviating the MLS from a hopper into the laminar container to a depth of 6 in. The container is mounted on the shake table and the centrifuge is operated to generate an acceleration of 10 times Earth's gravity or 60 times the lunar gravity, thus simulating a lunar regolith thickness of 30 ft. The shake table is then operated using the scaled 'moonquake' as the input motion. One or more model moonquakes are used in each experiment, after which the soil is analyzed for its density profile with depth. This is accomplished by removing from the soil bed a column of soil contained within a thin rubber sleeve which has been previously embedded vertically in the soil during pluviation. This column of soil is transferred to a gamma ray device, in which the gamma ray transmission transversely through the soil is measured and compared with standard calibration samples. In this manner, the density profile can be determined. Preliminary results to date are encouraging, and the Center plans to study the effects of duration of shaking, intensity of the shaking motion, and the frequency of the motion.

  12. Bulk specific gravity round-robin using the Corelok vacuum sealing device

    DOT National Transportation Integrated Search

    2002-11-01

    This project conducted an evaluation of the Corelok device for the determination of the bulk specific gravity of compacted hot mix asphalt samples. The project consisted of the bulk specific gravity determination for compacted HMA mixes utilizing the...

  13. Formation and relaxation of quasistationary states in particle systems with power-law interactions

    NASA Astrophysics Data System (ADS)

    Marcos, B.; Gabrielli, A.; Joyce, M.

    2017-09-01

    We explore the formation and relaxation of the so-called quasistationary states (QSS) for particle distributions in three dimensions interacting via an attractive radial pair potential V (r →∞ ) ˜1 /rγ with γ >0 , and either a soft core or hard core regularization at small r . In the first part of the paper, we generalize, for any spatial dimension d ≥2 , Chandrasekhar's approach for the case of gravity to obtain analytic estimates of the rate of collisional relaxation due to two-body collisions. The resultant relaxation rates indicate an essential qualitative difference depending on the integrability of the pair force at large distances: for γ >d -1 , the rate diverges in the large particle number N (mean-field) limit, unless a sufficiently large soft core is present; for γ

  14. Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.; Marsaglia, K. M.

    2015-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.

  15. Correction and update to 'The earth's C21 and S21 gravity coefficients and the rotation of the core'

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1990-01-01

    Wahr (1987) used satellite constraints on C21 and S21 (the spherical harmonic coefficients of the earth's external gravitational potential) to infer certain properties of the core and core/mantle boundary. It is shown here, contrary to the claim by Wahr, that it is not possible to use C21 and S21 to placed bounds on the core's products of inertia. As a result, Wahr's constraints on the l = 2, m = 1 components of the core/mantle boundary topography and on the angular orientation of the inner core with respect to the earth's rotation vector are not justified. On the other hand, Wahr's conclusions about the time-averaged torque between the core and mantle and the resulting implications for the l = 2, m = 1 components of fluid pressure at the top of the core can be strengthened. Wahr's conclusions about the mean rotational flow in the core are unaltered.

  16. Gravity model for the North Atlantic ocean mantle: results, uncertainties and links to regional geodynamics

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.; Artemieva, I. M.; Thybo, H.

    2015-12-01

    We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.

  17. Secondary arm coarsening and microsegregation in superalloy PWA-1480 single crystals: Effect of low gravity

    NASA Technical Reports Server (NTRS)

    Vijayakumar, M.; Tewari, S. N.; Lee, J. E.; Curreri, P. A.

    1990-01-01

    Single crystal specimens of nickel base superalloy PWA-1480 were directionally solidified on ground and during low gravity (20 sec) and high gravity (90 sec) parabolic maneuver of KC-135 aircraft. Thermal profiles were measured during solidification by two in-situ thermocouples positioned along the sample length. The samples were quenched during either high or low gravity cycles so as to freeze the structures of the mushy zone developing under different gravity levels. Microsegregation was measured by examining the solutal profiles on several transverse cross-sections across primary dendrites along their length in the quenched mushy zone. Effect of gravity level on secondary arm coarsening kinetics and microsegregation have been investigated. The results indicate that there is no appreciable difference in the microsegregation and coarsening kinetics behavior in the specimens grown under high or low gravity. This suggests that short duration changes in gravity/levels (0.02 to 1.7 g) do not influence convection in the interdendritic region. Examination of the role of natural convection, in the melt near the primary dendrite tips, on secondary arm spacings requires low gravity periods longer than presently available on KC-135. Secondary arm coarsening kinetics show a reasonable fit with the predictions from a simple analytical model proposed by Kirkwood for a binary alloy.

  18. Paleoenvironmental changes during the past 2000 years, evidence from Kongsfjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Jernas, P.; Kristensen, D.; Koc, N.; Skirbekk, K.

    2009-04-01

    Over the past decades the Arctic has received more attention due to the rapid warming that is more pronounced there than elsewhere on the globe. Instrumental time series are too short to capture the range of natural variability in the Arctic and we therefore have to rely on proxy records to describe the whole range of natural variability. In this context the late-Holocene climate variations are particularly important because natural forcings and the Earth's boundary conditions have been approximately similar to those operating today. Documenting past natural climate variability has therefore a vital role to play in understanding the present climate and predicting future change. Here we present a high resolution marine record from Kongsfjorden covering the last c. 2000 years. The core site is located in Kongsfjorden situated on the western coast of Spitsbergen (Svalbard). We focus on this region because it lies along the path of inflow of warmer and saline subsurface waters via the West Spitsbergen Current which is one of the important heat sources for the Arctic Ocean. This current is a major regulator of environmental changes and for example sea-ice distribution in the west Svalbard area. Therefore quantification of it's spatially and temporally variations through time are essential for understanding past environmental and climate changes. We have investigated faunal variations in benthic foraminifera from the upper 60 cm (covering the last two millennia) of a gravity core (510 cm total length) sampled with one-cm density. Chronology of the gravity core is established by AMS radiocarbon dating. The core was in addition investigated for grain size analysis and x-ray. The sediment analysis and x-ray show the upper part of the core contains large amounts of IRD from 7 cm - 25 cm corresponding to an age of 150-700 cal yr. It indicates that abundant icebergs melted over the core site depositing IRD. Further down core (1000-1800 cal yr) there is a significant dominance of fine grained sediment and decrease in ice rafting indicating less influence from glaciers. The foraminiferal species composition show decreasing content of agglutinated foraminifera down core caused by their low preservation potential. For this core site it confirms the importance of calcareous foraminifera as a fossil record tool. The two dominant species in the core are Elphidium excavatum and Nonionellina labradorica. During the last 2000 years the percentage of E. excavatum shows a general tendency to decrease while N. labradorica increases toward present. Elphidium excavatum is typical for arctic glaciomarine environments close to glaciers and ice caps, indicating harsh conditions (cold bottom waters temperatures, lower salinity) and probably extensive ice cover. Nonionellina labradorica indicates the vicinity of oceanographic fronts and high productivity. Another species Islandiella spp., often associated with increased productivity and presence of the sea ice edge, shows significant increase in percentage from 1000 to 800 cal yr BP. From 600 to 400 cal yr BP Bucella spp. start to decline suggesting increased sea ice cover and diminished influence of the Coastal Current on the inner shelf of Svalbard.

  19. An analysis of the geodesy and relativity experiments of BepiColombo

    NASA Astrophysics Data System (ADS)

    Imperi, Luigi; Iess, Luciano; Mariani, Mirco J.

    2018-02-01

    BepiColombo is a ESA-JAXA mission aimed to a comprehensive exploration of Mercury, the innermost planet of the solar system. The Mercury Orbiter Radio science Experiment (MORE) will exploit a state of the art microwave tracking system, including an advanced Ka-band transponder, to determine the gravity field and the rotational state of the planet, and to perform extensive tests of relativistic gravity. In this work we analyze all the aspects of the radio science investigation, which include: (i) the solar conjunction experiment in cruise; (ii) the gravimetry and rotation experiments; (iii) the fundamental physics test. We report on the results of numerical simulations based on the latest mission scenario, with launch in October 2018 and arrival at Mercury in December 2025. We show that the gravity and rotation measurements expected from BepiColombo will allow to better characterize the size of an inner solid core inside the outer liquid core, and the properties of the outer mantle and the crust. We discuss how the current estimate of several parametrized post-Newtonian (PPN) parameters can be improved by MORE through the determination of the heliocentric motion of Mercury and by measuring the propagation time of radio waves. We also assess in a quantitative way the benefits of an extended mission.

  20. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  1. Pressure dependence of the electrical properties of GaBi solidified in low gravity

    NASA Technical Reports Server (NTRS)

    Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Curreri, P. A.; Chu, C. W.

    1987-01-01

    Immiscible GaBi alloys were solidified during free fall in the NASA Marshall Space Flight Center drop tower, which provides about 4.5 seconds of low gravity. The electrical resistivity and magnetic susceptibility were measured as a function of pressure (up to 18 kbar) and temperature (300 K to 4.2 K) of drop tower (DT) and ground control (GC) samples prepared under identical conditions, except for gravity. At ambient pressure the electrical resistance of the DT sample exhibits a broad maximum at 100 K, while that of GC sample decreases rapidly as temperature decreases. Both DT and GC samples become superconducting at 7.7 K. However, a minor second superconducting phase with a transition temperature at 8.3 K is observed only in the DT samples.

  2. Titan's interior from Cassini-Huygens

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Baland, R.-M.; Lefevre, A.; Monteux, J.; Cadek, O.; Choblet, G.; Mitri, G.

    2013-09-01

    The Cassini-Huygens mission has brought many informations about Titan that can be used to infer its interior structure: the gravity field coefficients (up to degree 3, [1]), the surface shape (up to degree 6, [2]), the tidal Love number [1], the electric field [3], and the orientation of its rotation axis [4]. The measured obliquity and gravity perturbation due to tides, as well as the electric field, are lines of evidence for the presence of an internal global ocean beneath the ice surface of Titan [5,1,3]. The observed surface shape and gravity can be used to further constrain the structure of the ice shell above the internal ocean. The presence of a significant topography associated with weak gravity anomalies indicates that deflections of internal interface or lateral density variations may exist to compensate the topography. To assess the sources of compensation, we consider interior models including interface deflections and/or density variations, which reproduces simultaneously the surface gravity and long-wavelength topography data [6]. Furthermore, in order to test the long-term mechanical stability of the internal mass anomalies, we compute the relaxation rate of each internal interface in response to surface mass load. We show that the topography can be explained either by defections of the ocean/ice interface or by density variations in an upper crust [6]. For non-perfectly compensated models of the outer ice shell, the present-day structure is stable only for a conductive layer above a relatively cold ocean (for bottom viscosity > 1016 Pa.s, T < 250 K). For perfectly compensated models, a convective ice shell is stable (with a bottom viscosity lower than 1015 Pas) if the source of compensation is due to density variations in the upper crust (2-3 km below the surface). In this case, deep gravity anomalies are required to explain the observed geoid. Our calculations show that the high pressure ice layer cannot be the source of the residual gravity anomalies. The existence of mass anomalies in the rocky core is a most likely explanation. However, as the observed geoid and topography are mostly sensitive to the lateral structure of the outer ice shell, no information can be retrieved on the ice shell thickness, ocean density and/or size of the rocky core. Constraints on these internal parameters can be obtained from the tidal Love number and the obliquity. To derive the possible density profile, the obliquity is computed from a Cassini state model for a satellite with an internal liquid layer, each layer having an ellipsoidal shape consistent with the measured surface shape and gravity field [7]. We show that, once the observed surface flattening is taken into account, the measured obliquity can be reproduced only for internal models with a dense ocean (between 1275 and 1350 kg.m-3) above a differentiated interior with a full separation of rock and ice [7]. We obtain normalized moments of inertia between 0.31 and 0.33, significantly lower than the expected hydrostatic value (0.34). The tidal Love number is also found to be mostly sensitive to the ocean density and to a lesser extent the ice shell thickness. By combining obliquity and tidal Love number constraints, we show that the thickness of the outer ice shell is at least 40 km and the ocean thickness is less than 100 km, with an averaged density of 1275-1350 kg.m-3. Such a high density indicates that the ocean may contain a significant fraction of salts. Our calculations also imply that there is a significant difference of flattening between the surface and the ice/ocean interface. This is possible only if the ice layer is viscous enough to limit relaxation, as indicated above. This is also consistent with an ocean enriched in salts for which the crystallization point can be several tens of degree below the crystallization point of pure water system. The elevated density (> 3800 kg.m-3) found for the rocky core further suggests that Titan might have a differentiated iron core. The rocky core is likely fully dehydrated at present, suggesting warm conditions during most of its evolution. All the water contained in the deep interior has probably been expelled to the outer regions, thus potentially explaining the salt enrichments.

  3. On the evolution of vortices in massive protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Pierens, Arnaud; Lin, Min-Kai

    2018-05-01

    It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.

  4. A Millennial-Scale Sea Surface Temperature Record From the North Atlantic Based on Diatoms

    NASA Astrophysics Data System (ADS)

    Miettinen, A.; Koc, N.

    2008-12-01

    Sea surfaces temperatures (SSTs) are generated from a 1000-year-long sediment core from the eastern flank of Reykjanes Ridge in the subpolar North Atlantic with a time resolution of 2-10 years. 54.3 cm long box core (Rapid 21-12B) and 370 cm long gravity core (RAPID 21-3K) were recovered from deep-sea sediments (2630 m water depth) during the RRS Charles Darwin cruise 159 in 2004. The box core is dated using the 210Pb method and it is continuously subsampled and investigated at 0.5 cm intervals for the last 230 years with a two years average time resolution. The gravity core is dated 14C AMS method and it is investigated continuously at 1.0 cm intervals with a ten years average resolution for the interval representing 230-1000 cal. years BP. August SSTs are reconstructed using marine planktonic diatom species with the Weighted Averages - Partial Least Squares (WA-PLS) method. Results achieved from the box core indicate August SST warming of c. 1 °C from 1773 AD to the present. The interval 1773-1830 represents the cold period at the investigated site. It is followed by warm period between 1830 and 1885. After this the temperature frequency is more stable with short cool events around 1890 and 1930. The last 60 years represent the warm period with a slow warming trend, especially during the past 25 years. However, results do not indicate distinct SST warming since 1870s. The most high-frequency SST variability with amplitude of c. 1 °C appears after 1970 indicating several very warm years, but also coldest years since 1820s.

  5. A preliminary analysis of the data from experiment 77-13 and final report on glass fining experiments in zero gravity

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.; Smith, H. D.; Mattox, D. M.; Partlow, D. P.

    1981-01-01

    Thermal fining, thermal migration of bubbles under reduced gravity conditions, and data to verify current theoretical models of bubble location and temperatures as a function of time are discussed. A sample, sodium borate glass, was tested during 5 to 6 minutes of zero gravity during rocket flight. The test cell contained a heater strip; thermocouples were in the sample. At present quantitative data are insufficient to confirm results of theoretical calculations.

  6. Geophysical Characteristics of the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Lin, J.; Park, S. H.; Choi, H.; Lee, S. M.

    2014-12-01

    Between 2011 and 2013, the Korea Polar Research Institute (KOPRI) conducted three consecutive geologic surveys at the little explored eastern ends of the Australian-Antarctic Ridge (AAR) to characterize the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Using the Korean icebreaker R/V Araon, the multi-disciplinary research team collected bathymetry, gravity, magnetics, and rock and water column samples. In addition, Miniature Autonomous Plume Recorders (MAPRs) were deployed at wax-core rock sampling sites to detect the presence of active hydrothermal vents. Here we present a detailed analysis of a 300-km-long supersegment of the AAR to quantify the spatial variations in ridge morphology and robust axial and off-axis volcanisms. The ridge axis morphology alternates between rift valleys and axial highs within relatively short ridge segments. To obtain a geological proxy for regional variations in magma supply, we calculated residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography for seven sub-segments. The results of the analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle than the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the KR1 supersegment of the AAR. The axial topography of the KR1 supersegment exhibits a sharp transition from axial highs at the western end to rift valleys at the eastern end, with regions of axial highs being associated with more magma supply as indicated by more negative RMBA. We also compare and contrast the characteristics of the AAR supersegment with that of other ridges of intermediate spreading rates, including the Juan de Fuca Ridge, Galápagos Spreading Center, and Southeast Indian Ridge west of the Australian-Antarctic Discordance, to investigate the influence of ridge-hotspot interaction on ridge magma supply and tectonics.

  7. Geochronology of Mudflow Deposits on the Mississippi River Delta Front, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Keller, G. P.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.; Obelcz, J.; Maloney, J. M.

    2016-02-01

    Short multicores (<50cm) and longer gravity cores (up to 3m) were collected seaward of the Southwest Pass of the Mississippi River Delta (Gulf of Mexico) and were analyzed to assess the frequency, extent, and potential causes of submarine mass wasting events. Cores were analyzed for radionuclide activity, grain size, and density at 2cm resolution, with x-radiography for the whole core. Short-term sedimentation rates calculated from 7Be are 2-12cm/y, while longer-term accumulation from 210Pb are only 1.3-5.5cm/y. In most cores, 210Pb activity steadily decreases downcore without displaying a "stairstep" nature. However, six cores have layers of low 210Pb activity stratigraphically above layers with higher activity. In one long core from a mudflow gully, 210Pb steadily decreases for the upper 90cm before stabilizing for the remaining 130cm. Clay content generally ranges between 25-40% and sand ranges between 5-15% with silt making up the rest of each sample. Sedimentation rates derived from 210Pb in the short cores indicate that proximity to the river mouth has stronger influence than depositional environment (mudflow gully, depositional lobe, prodelta). This finding may be explained by rapid sedimentation rates coupled with a reduced tropical cyclone activity over the delta in the last seven years (2006-2013). The regions of decreased 210Pb activity may be evidence of scavenging effects of plume sedimentation because they do not correspond with decreases in clay fraction. The zone of homogenized activity below 90cm in the gully core occurs at a depth equivalent to 18 years, indicating mixing on a decadal scale, potentially from mudflows. These results may be explained by a lack of recent mass failures corresponding with lulls in tropical cyclone activity over the delta, preceded by a period of more active hurricane-driven mudflow activity.

  8. White dwarfs and revelations

    NASA Astrophysics Data System (ADS)

    Saltas, Ippocratis D.; Sawicki, Ignacy; Lopes, Ilidio

    2018-05-01

    We use the most recent, complete and independent measurements of masses and radii of white dwarfs in binaries to bound the class of non-trivial modified gravity theories, viable after GW170817/GRB170817, using its effect on the mass-radius relation of the stars. We show that the uncertainty in the latest data is sufficiently small that residual evolutionary effects, most notably the effect of core composition, finite temperature and envelope structure, must now accounted for if correct conclusions about the nature of gravity are to be made. We model corrections resulting from finite temperature and envelopes to a base Hamada-Salpeter cold equation of state and derive consistent bounds on the possible modifications of gravity in the stars' interiors, finding that the parameter quantifying the strength of the modification Y< 0.14 at 95% confidence, an improvement of a factor of three with respect to previous bounds. Finally, our analysis reveals some fundamental degeneracies between the theory of gravity and the precise chemical makeup of white dwarfs.

  9. Moment of inertia of neutron star crust in alternative and modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Staykov, Kalin V.; Ekşi, K. Yavuz; Yazadjiev, Stoytcho S.; Türkoǧlu, M. Metehan; Arapoǧlu, A. Savaş

    2016-07-01

    The glitch activity of young pulsars arises from the exchange of angular momentum between the crust and the interior of the star. Recently, it was inferred that the moment of inertia of the crust of a neutron star is not sufficient to explain the observed glitches. Such estimates are presumed in Einstein's general relativity in describing the hydrostatic equilibrium of neutron stars. The crust of the neutron star has a spacetime curvature of 14 orders of magnitude larger than that probed in solar system tests. This makes gravity the weakest constrained physics input in the crust-related processes. We calculate the ratio of the crustal to the total moment of inertia of neutron stars in the scalar-tensor theory of gravity and the nonperturbative f (R )=R +a R2 gravity. We find for the former that the crust-to-core ratio of the moment of inertia does not change significantly from what is inferred in general relativity. For the latter, we find that the ratio increases significantly from what is inferred in general relativity in the case of high mass objects. Our results suggest that the glitch activity of pulsars may be used to probe gravity models, although the gravity models explored in this work are not appropriate candidates.

  10. On the role of covariance information for GRACE K-band observations in the Celestial Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Bentel, Katrin; Meyer, Ulrich; Arnold, Daniel; Jean, Yoomin; Jäggi, Adrian

    2017-04-01

    The Astronomical Institute at the University of Bern (AIUB) derives static and time-variable gravity fields by means of the Celestial Mechanics Approach (CMA) from GRACE (level 1B) data. This approach makes use of the close link between orbit and gravity field determination. GPS-derived kinematic GRACE orbit positions, inter-satellite K-band observations, which are the core observations of GRACE, and accelerometer data are combined to rigorously estimate orbit and spherical harmonic gravity field coefficients in one adjustment step. Pseudo-stochastic orbit parameters are set up to absorb unmodeled noise. The K-band range measurements in along-track direction lead to a much higher correlation of the observations in this direction compared to the other directions and thus, to north-south stripes in the unconstrained gravity field solutions, so-called correlated errors. By using a full covariance matrix for the K-band observations the correlation can be taken into account. One possibility is to derive correlation information from post-processing K-band residuals. This is then used in a second iteration step to derive an improved gravity field solution. We study the effects of pre-defined covariance matrices and residual-derived covariance matrices on the final gravity field product with the CMA.

  11. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Accaino, F.; Della Vedova, B.

    2008-04-01

    During the Antarctic summer of 2003 2004, new geophysical data were acquired from aboard the R/V OGS Explora in the BSR-rich area discovered in 1996 1997 along the South Shetland continental margin off the Antarctic Peninsula. The objective of the research program, supported by the Italian National Antarctic Program (PNRA), was to verify the existence of a potential gas hydrate reservoir and to reconstruct the tectonic setting of the margin, which probably controls the extent and character of the diffused and discontinuous bottom simulating reflections. The new dataset, i.e. multibeam bathymetry, seismic profiles (airgun and chirp), and two gravity cores analysed by computer-aided tomography as well as for gas composition and content, clearly shows active mud volcanism sustained by hydrocarbon venting in the region: several vents, located mainly close to mud volcanoes, were imaged during the cruise and their occurrence identified in the sediment samples. Mud volcanoes, vents and recent slides border the gas hydrate reservoir discovered in 1996 1997. The cores are composed of stiff silty mud. In core GC01, collected in the proximity of a mud volcano ridge, the following gases were identified (maximum contents in brackets): methane (46 μg/kg), pentane (45), ethane (35), propane (34), hexane (29) and butane (28). In core GC02, collected on the flank of the Vualt mud volcano, the corresponding data are methane (0 μg/kg), pentane (45), ethane (22), propane (0), hexane (27) and butane (25).

  12. Gravity Shifting Due to Distribution of Momentum in Black Hole and its Relation with Time Flux

    NASA Astrophysics Data System (ADS)

    Gholibeigian, Hassan; Gholibeygian, Mohammad Hossein

    2017-04-01

    There are many local convection systems of heat and mass in black holes. These large scale coupled systems including planets and molten masses which generate momentum in black hole and consequently generate coupled gravitational and electromagnetic waves. Therefore black hole's gravity is shifting due to distribution of masses/momentum in its convection systems. Two massive black holes which merged at a distance of 1.3 billion light years far from the Earth, produced different momentum and energy before, during, and after the event in different locations of the black hole. This energy and momentum produced gravitational waves which radiated away and recorded on September 14, 2015 by two detectors of the Laser Interferometry Gravitational Observatories (LIGO) in USA. On the other hand, the nature of time is wavy-like motion of the matter and nature of space is jerky-like motion of the matter. These two natures of space-time can be matched on wave-particle duality in quantum mechanics. And also magnitude of the time for an atom is momentum of its involved fundamental particles [Gholibeigian, adsabs.harvard.edu/abs/2016APS.APR.D1032G]. ∑ ⃗R(mv, σ,τ ) = (pnucleons + pelectrons) In which ⃗Ris time flux, σ&τare space and time coordinates on the string world sheet and p is momentum. Therefore, gravitational waves which travel from black hole to us including different fluxes of time which accompaniment propagated gravitational waves of momentum. As an observable factor, we can look at the 7 milliseconds difference of recorded at the time of arrival of the signals on September 14, 2015 by detector in Livingston before detector in Hanford. This difference of recorded time of signal GW150914 by LIGO cannot be due to warped space-time, because 3002 kilometers distance between two detectors with respect to the 1.3 billion light years (distance of black hole to detectors) is like zero! So, this 7 milliseconds difference between two time's fluxes can be due to gravitational waves propagated by different momentum which produced in different locations of the two merged black holes. We can see this phenomena in solar system like the Sun, Jupiter and our planet too, the Earth's gravity is shifting due to distribution of the mass/momentum in the Earth's core which resulted by the inner core dislocation and convection systems in the outer core. Because the inner core has a daily rotation around geophysical axis inverse of the Earth's spin due to its eccentricity and generates a huge variable momentum in the core [Gholibeigian, sabs.harvard.edu/abs/2012AGUFMPA23A1960G] - and therefore local gravity - inside the Earth is constantly changing. Results of the Gravity Recovery and Climate Experiment (GRACE) which lunched by NASA and the German Aerospace Center (DLR) in March 2002, approved this phenomena too. In other words generated momentum inside the large scale convection systems can be a source of coupled gravitational and electromagnetic fields in nature which has its own time flux.

  13. Magnetic Fields Versus Gravity

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal polarized emission toward all three sources. By extracting the magnetic field orientations from the polarization vectors, Koch and collaborators found that the molecular cloud contains an ordered magnetic field with never-before-seen structures. Several small clumps on the perimeter of the massive star-forming cores exhibit comet-shaped magnetic field structures, which could indicate that these smaller cores are being pulled toward the more massive cores.These findings hint that the magnetic field structure can tell us about the flow of material within star-forming regions key to understanding the nature of star formation itself.Maps of sin for two of the protostars (e2 and e8) and their surroundings. [Adapted from Koch et al. 2018]Guiding Star FormationDo the magnetic fields in W51 help or hinder star formation? To explore this question,Koch and collaborators introduced the quantity sin , where is the angle between the local gravity and the local magnetic field.When the angle between gravity and the magnetic field is small (sin 0), the magnetic field has little effect on the collapse of the cloud. If gravity and the magnetic field are perpendicular (sin 1), the magnetic field can slow the infall of gas and inhibit star formation.Based on this parameter, Koch and collaborators identified narrow channels where gravity acts unimpeded by the magnetic field. These magnetic channels may funnel gas toward the dense cores and aid the star-formation process.The authors observations demonstrate just one example of the broad realm ALMAs polarimetry capabilities have opened to discovery. These and future observations of dust polarization will continue to reveal more about the delicate magnetic structure within molecular clouds, furtherilluminating the role that magnetic fields play in star formation.CitationPatrick M. Koch et al 2018 ApJ 855 39. doi:10.3847/1538-4357/aaa4c1

  14. Gravity Effects on Combustion Synthesis of Glasses

    NASA Technical Reports Server (NTRS)

    Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Robinson, L. A.; Manerbino, A. R.; Schowengerdt, F. D.; Gokoglu, S. (Technical Monitor)

    2000-01-01

    The Combustion Synthesis technique has been used to produce glasses based on B2O3-Al2O3-MgO and CaO-Al2O3. The combustion characteristics of these combustion synthesis reactions using both small cylindrical pellets (SCP) and large spherical pellets (LSP) are presented. Low density pellets (approx. 35% of their theoretical density) were used, which made synthesis of low exothermic combustion reactions possible. Microstructural analysis of reacted samples was carried out to identify the glass-forming compositions. The effects of gravity on the glass formation were studied aboard the KC-135 using SCP samples. Gravity seemed to have such obvious effects on the combustion characteristics that the wave velocity was lower and the Width of the combustion wave was larger under reduced gravity conditions. Samples produced under low gravity also had more enhanced vitrification than those on ground, while some systems also exhibited lower combustion temperatures. It was also found that the container significantly affects both the combustion characteristics and microstructure. Substantially more divitrification occurred at the area which was in contact with the support (container).

  15. Comparing dark matter models, modified Newtonian dynamics and modified gravity in accounting for galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Li, Xin; Tang, Li; Lin, Hai-Nan

    2017-05-01

    We compare six models (including the baryonic model, two dark matter models, two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves. For the dark matter models, we assume NFW profile and core-modified profile for the dark halo, respectively. For the modified Newtonian dynamics models, we discuss Milgrom’s MOND theory with two different interpolation functions, the standard and the simple interpolation functions. For the modified gravity, we focus on Moffat’s MSTG theory. We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies. We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model. It is found that none of the six models can fit all the galaxy rotation curves well. Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter. MOND can fit the largest number of galaxies, and only one galaxy can be best fitted by the MSTG model. Core-modified model fits about half the LSB galaxies well, but no HSB galaxies, while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies. This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well. Supported by Fundamental Research Funds for the Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547305 and 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

  16. UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa

    2017-04-01

    In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378

  17. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Bill; Schechter, David S.

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  18. Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; hide

    2015-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).

  19. Preliminary Results on Mineralogy and Geochemistry of Loki's Castle Arctic Vents and Host Sediments

    NASA Astrophysics Data System (ADS)

    Barriga, Fernando; Carvalho, Carlos; Inês Cruz, M.; Dias, Ágata; Fonseca, Rita; Relvas, Jorge; Pedersen, Rolf

    2010-05-01

    The Loki's Castle hydrothermal vent field was discovered in the summer of 2008, during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF). Loki's Castle is the northernmost hydrothermal vent field discovered to date. It is located at the junction between the Mohns Ridge and the South Knipovich Ridge, in the Norwegian-Greenland Sea, at almost 74°N. This junction shows unique features and apparently there is no transform fault to accommodate the deformation generated by the bending of the rift valley from WSW-ENE to almost N-S. The Knipovich Rigde, being a complex structure, is an ultra-slow spreading ridge, with an effective spreading rate of only ~ 6 mm/y. It is partly masked by a substantial cover of glacial and post-glacial sediments, estimated to be between 12 and 20 ky old, derived from the nearby Bear Island fan, to the East of the ridge. The Loki's Castle vent site is composed of several active, over 10 m tall chimneys, producing up to 320°C fluid, at the top of a very large sulphide mound, which is estimated to be around 200 m in diameter. About a dozen gravity cores were obtained in the overall area. From these we collected nearly 200 subsamples. Eh and pH were measured in all subsamples. The Portuguese component of the H2Deep project is aimed at characterizing, chemically and mineralogically, the sulphide chimneys and the collected sediments around the vents (up to 5 meters long gravity cores). These studies are aimed at understanding the ore-forming system, and its implications for submarine mineral exploration, as well as the relation of the microbial population with the hydrothermal component of sediments. Here we present an overview of preliminary data on the mineralogical assemblage found in the analyzed sediments and chimneys. The identification of the different mineral phases was obtained through petrographic observations of polished thin sections under the microscope (with both transmitted and reflected light, for a clear identification of the ore paragenesis), X-Ray diffraction and electron microprobe analyses. The analyses were conducted in the geology labs of the University of Lisbon. The sulphide assemblage most commonly present in the samples consists of sphalerite (which seems also the most abundant), pyrite and pyrrhotite, with minor amounts of chalcopyrite. Sulphide-poor selected samples collected at the base of chimneys are mostly composed of halite, anhydrite, gypsum and talc. In sediment cores clays are largely predominant, mainly smectite and ilite, as well as chlorite. Combinations of quartz, calcite, anhydrite, gypsum and barite were also found in some of the samples.

  20. Fluid core size of Mars from detection of the solar tide

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2003-01-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.

  1. Fluid Core Size of Mars from Detection of the Solar Tide

    NASA Astrophysics Data System (ADS)

    Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.

    2003-04-01

    The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.

  2. Core solidification and dynamo evolution in a mantle-stripped planetesimal

    NASA Astrophysics Data System (ADS)

    Scheinberg, A.; Elkins-Tanton, L. T.; Schubert, G.; Bercovici, D.

    2016-01-01

    The physical processes active during the crystallization of a low-pressure, low-gravity planetesimal core are poorly understood but have implications for asteroidal magnetic fields and large-scale asteroidal structure. We consider a core with only a thin silicate shell, which could be analogous to some M-type asteroids including Psyche, and use a parameterized thermal model to predict a solidification timeline and the resulting chemical profile upon complete solidification. We then explore the potential strength and longevity of a dynamo in the planetesimal's early history. We find that cumulate inner core solidification would be capable of sustaining a dynamo during solidification, but less power would be available for a dynamo in an inward dendritic solidification scenario. We also model and suggest limits on crystal settling and compaction of a possible cumulate inner core.

  3. Using High-Precision Specific Gravity Measurements to Study Minerals in Undergraduate Geoscience Courses

    ERIC Educational Resources Information Center

    Brandriss, Mark E.

    2010-01-01

    This article describes ways to incorporate high-precision measurements of the specific gravities of minerals into undergraduate courses in mineralogy and physical geology. Most traditional undergraduate laboratory methods of measuring specific gravity are suitable only for unusually large samples, which severely limits their usefulness for student…

  4. The Geopotential Research Mission - Mapping the near earth gravity and magnetic fields

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Keating, T.; Smith, D. E.; Langel, R. A.; Schnetzler, C. C.; Kahn, W. D.

    1983-01-01

    The Geopotential Research Mission (GRM), NASA's low-level satellite system designed to measure the gravity and magnetic fields of the earth, and its objectives are described. The GRM will consist of two, Shuttle launched, satellite systems (300 km apart) that will operate simultaneously at a 160 km circular-polar orbit for six months. Current mission goals include mapping the global geoid to 10 cm, measuring gravity-field anomalies to 2 mgal with a spatial resolution of 100 km, detecting crustal magnetic anomalies of 100 km wavelength with 1 nT accuracy, measuring the vectors components to + or - 5 arc sec and 5 nT, and computing the main dipole or core field to 5 nT with a 2 nT/year secular variation detection. Resource analysis and exploration geology are additional applications considered.

  5. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major target of further investigation. By means of detailed studies of the sedimentary solid-phase, authigenic carbonates, clam layers and molecular biomarkers we will also try to reconstruct the history of venting and the dynamics of gas hydrate formation and decomposition in the Northern Congo fan area.

  6. Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores

    USGS Publications Warehouse

    Sejrup, H.P.; Miller, G.H.; Brigham-Grette, J.; Lovlie, R.; Hopkins, D.

    1984-01-01

    The palaeooceanography of the Arctic Ocean is less well known than any other ocean basin, due to difficulties in obtaining cores and in providing a secure chronological framework for those cores that have been raised. Most recent investigators have suggested that low sedimentation rates (0.05-0.1 cm kyr-1) have characterized the deep basins over the past 5 Myr (refs 1,2) despite the glacial-marine character of the sediment and proximity to major centres of shelf glaciation. These calculations have been primarily based on the down-core pattern in the inclination of magnetic minerals, supported by uranium-series, 14C and micropalaeontological evidence. Here we analyse amino acid diagnesis in foraminifera from two gravity cores raised from the floor of the Arctic Ocean, our results suggest that these cores span <200 kyr., conflicting with the earlier estimate of 3 Myr based on palaeomagnetic data. The chronology of other Arctic Ocean cores and previous palaeoenvironmental interpretations need re-evaluation. ?? 1984 Nature Publishing Group.

  7. A method for estimating radioactive cesium concentrations in cattle blood using urine samples.

    PubMed

    Sato, Itaru; Yamagishi, Ryoma; Sasaki, Jun; Satoh, Hiroshi; Miura, Kiyoshi; Kikuchi, Kaoru; Otani, Kumiko; Okada, Keiji

    2017-12-01

    In the region contaminated by the Fukushima nuclear accident, radioactive contamination of live cattle should be checked before slaughter. In this study, we establish a precise method for estimating radioactive cesium concentrations in cattle blood using urine samples. Blood and urine samples were collected from a total of 71 cattle on two farms in the 'difficult-to-return zone'. Urine 137 Cs, specific gravity, electrical conductivity, pH, sodium, potassium, calcium, and creatinine were measured and various estimation methods for blood 137 Cs were tested. The average error rate of the estimation was 54.2% without correction. Correcting for urine creatinine, specific gravity, electrical conductivity, or potassium improved the precision of the estimation. Correcting for specific gravity using the following formula gave the most precise estimate (average error rate = 16.9%): [blood 137 Cs] = [urinary 137 Cs]/([specific gravity] - 1)/329. Urine samples are faster to measure than blood samples because urine can be obtained in larger quantities and has a higher 137 Cs concentration than blood. These advantages of urine and the estimation precision demonstrated in our study, indicate that estimation of blood 137 Cs using urine samples is a practical means of monitoring radioactive contamination in live cattle. © 2017 Japanese Society of Animal Science.

  8. Density Anomalies in the Mantle and the Gravitational Core-Mantle Interaction

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Liu, Lanbo

    2003-01-01

    Seismic studies suggest that the bulk of the mantle is heterogeneous, with density variations in depth as well as in horizontal directions (latitude and longitude). This density variation produces a three- dimensional gravity field throughout the Earth. On the other hand, the core density also varies in both time and space, due to convective core flow. Consequently, the fluid outer core and the solid mantle interact gravitationally due to the mass anomalies in both regions. This gravitational core-mantle interaction could play a significant role in exchange of angular momentum between the core and the mantle, and thus the change in Earth's rotation on time scales of decades and longer. Aiming at estimating the significance of the gravitational core-mantle interaction on Earth's rotation variation, we introduce in our MoSST core dynamics model a heterogeneous mantle, with a density distribution derived from seismic results. In this model, the core convection is driven by the buoyancy forces. And the density variation is determined dynamically with the convection. Numerical simulation is carried out with different parameter values, intending to extrapolate numerical results for geophysical implications.

  9. Lithofacies and seismic-reflection interpretation of temperate glacimarine sedimentation in Tarr Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.

    1997-01-01

    High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.

  10. Sediment Gravity Flow Deposits Across the Désirade Basin (Lesser Antilles Arc), as Possible Markers of Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Seibert, C.; Nathalie, F.; Beck, C.; Ratzov, G.; Cattaneo, A.; Moreno, E.; Morena, P.

    2017-12-01

    The Lesser Antilles arc spreads over 800 km and results from the subduction of American plates below the Caribbean plate, at 2 cm/yr. The earthquake catalog begins in mid-17th century, with only two large reported historical earthquakes: the 1839 Mw8 Martinique and the 1843 Mw8.5 Guadeloupe earthquakes. These estimated magnitudes are however lower than the ones from other subduction areas and the origin of such earthquakes is poorly known and still a matter of debate. The detection of possible megathrust earthquakes and their time-distribution remain a challenge. This study is based on the identification and characterization of co-seismic-turbidites using an approach integrating geophysical data and marine sedimentary archives. A morpho-sedimentary analysis, based on bathymetric, backscatter and chirp data, acquired during the CASEIS cruise in 2016 (doi 10.17600/16001800) and during previous cruises allowed to constrain the sediment transport from the arc towards the forearc basins. We highlighted two distinct areas governed by different transfer modes on the two sides of the arc-perpendicular Désirade normal fault: the northern part, where sediments are transported through canyons on the 20°-steep slope, and the southern part, where all the islands are drained by channels developing on a gentle slope ( 2,5°) from the Quaternary reef platform. Both sides receive sediment from the accretionary prism. Sedimentary processes along the Lesser Antilles arc appear to be driven by both climatic and active tectonic forcings. The 26m-long CAS16-14PC core, was sampled on the Désirade basin which is connected to the shelf by numerous canyons, could contain a mixed sediment record. In addition to shipboard MSCL logging, layering, composition and texture, this core has been investigated through XRF profiles and laser microgranulometry, radiocarbon dating is in process. Preliminary integration of these data and 3,5 kHz seismic profiles suggest possible correlation of thick deposits from sediment gravity flows identified as "turbidites+homogenites" in several core sites. Because of their sedimentological specificities and their widespread distribution, we tentatively interpret them as markers of major earthquakes.

  11. Metal Deposition Along the Peru Margin Since the Last Glacial Maximum: Evidence For Regime Change at \\sim 6ka

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Cleaveland, L.; Herbert, T.; Altabet, M.

    2004-12-01

    The Peru Margin upwelling zone plays a key role in regulating marine biogeochemical cycles, particularly the fate of nitrate. High biological productivity and low oxygen waters fed into the oxygen minimum zone result in intense denitrification in the modern system, the consequences of which are global in nature. It has been very difficult, however, to study the paleoclimatic history of this region because of the poor preservation of carbonate in Peru Margin sediments. Here we present records of trace metal accumulation from two cores located in the heart of the suboxic zone off the central Peru coast. Chronology comes from multiple AMS 14C dates on the alkenone fraction of the sediment, as well as correlation using major features of the \\delta 15N record in each core. ODP Site 1228 provides a high resolution, continuous sediment record from the Recent to about 14ka, while gravity core W7706-41k extends the record to the Last Glacial Maximum. Both cores were sampled at a 100 yr resolution, then analyzed for % N, \\delta 15N, alkenones, and trace metal concentration. Analysis of redox-sensitive metals (Mo and V) alongside metals associated with changes in productivity (Ni and Zn) provides perspective on the evolution of the upwelling system and distinguishes the two major factors controlling the intensity of the oxygen minimum zone. The trace metal record exhibits a notable increase in the intensity and variability of low oxygen waters and productivity beginning around 6ka and extending to the present. Within this most recent 6ka interval, the data suggest fluctuations in oxygenation and productivity occur on 1000 yr timescales. Our core records, therefore, suggest that the Peru Margin upwelling system strengthened significantly during the mid to late Holocene.

  12. Geophysical Age Dating of Seamounts using Dense Core Flexure Model

    NASA Astrophysics Data System (ADS)

    Hwang, Gyuha; Kim, Seung-Sep

    2016-04-01

    Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.

  13. Ganymede G1 & G2 Encounters - Interior of Ganymede

    NASA Image and Video Library

    1997-12-16

    NASA's Voyager images are used to create a global view of Ganymede. The cut-out reveals the interior structure of this icy moon. This structure consists of four layers based on measurements of Ganymede's gravity field and theoretical analyses using Ganymede's known mass, size and density. Ganymede's surface is rich in water ice and Voyager and Galileo images show features which are evidence of geological and tectonic disruption of the surface in the past. As with the Earth, these geological features reflect forces and processes deep within Ganymede's interior. Based on geochemical and geophysical models, scientists expected Ganymede's interior to either consist of: a) an undifferentiated mixture of rock and ice or b) a differentiated structure with a large lunar sized "core" of rock and possibly iron overlain by a deep layer of warm soft ice capped by a thin cold rigid ice crust. Galileo's measurement of Ganymede's gravity field during its first and second encounters with the huge moon have basically confirmed the differentiated model and allowed scientists to estimate the size of these layers more accurately. In addition the data strongly suggest that a dense metallic core exists at the center of the rock core. This metallic core suggests a greater degree of heating at sometime in Ganymede's past than had been proposed before and may be the source of Ganymede's magnetic field discovered by Galileo's space physics experiments. http://photojournal.jpl.nasa.gov/catalog/PIA00519

  14. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration

    PubMed Central

    Yang, Chih-Yu; Chen, Fu-An; Chen, Chun-Fan; Liu, Wen-Sheng; Shih, Chia-Jen; Ou, Shuo-Ming; Yang, Wu-Chang; Lin, Chih-Ching; Yang, An-Hang

    2015-01-01

    Background The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration. Methods During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples. Results Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples. Conclusions The UPCR in samples with low or high specific gravity is more likely to overestimate or underestimate actual daily urine protein amount, respectively, especially in a dilute urine sample with its creatinine below 38.8 mg/dL or a concentrated sample with its creatinine above 61.5 mg/dL. In particular, UPCR results should be interpreted with caution in cases that involve dilute urine samples because its overestimation may lead to an erroneous diagnosis of proteinuric renal disease or an incorrect staging of chronic kidney disease. PMID:26353117

  15. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration.

    PubMed

    Yang, Chih-Yu; Chen, Fu-An; Chen, Chun-Fan; Liu, Wen-Sheng; Shih, Chia-Jen; Ou, Shuo-Ming; Yang, Wu-Chang; Lin, Chih-Ching; Yang, An-Hang

    2015-01-01

    The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration. During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples. Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples. The UPCR in samples with low or high specific gravity is more likely to overestimate or underestimate actual daily urine protein amount, respectively, especially in a dilute urine sample with its creatinine below 38.8 mg/dL or a concentrated sample with its creatinine above 61.5 mg/dL. In particular, UPCR results should be interpreted with caution in cases that involve dilute urine samples because its overestimation may lead to an erroneous diagnosis of proteinuric renal disease or an incorrect staging of chronic kidney disease.

  16. Alzheimer's disease cerebrospinal fluid biomarkers are not influenced by gravity drip or aspiration extraction methodology.

    PubMed

    Rembach, Alan; Evered, Lisbeth A; Li, Qiao-Xin; Nash, Tabitha; Vidaurre, Lesley; Fowler, Christopher J; Pertile, Kelly K; Rumble, Rebecca L; Trounson, Brett O; Maher, Sarah; Mooney, Francis; Farrow, Maree; Taddei, Kevin; Rainey-Smith, Stephanie; Laws, Simon M; Macaulay, S Lance; Wilson, William; Darby, David G; Martins, Ralph N; Ames, David; Collins, Steven; Silbert, Brendan; Masters, Colin L; Doecke, James D

    2015-11-19

    Cerebrospinal fluid (CSF) biomarkers, although of established utility in the diagnostic evaluation of Alzheimer's disease (AD), are known to be sensitive to variation based on pre-analytical sample processing. We assessed whether gravity droplet collection versus syringe aspiration was another factor influencing CSF biomarker analyte concentrations and reproducibility. Standardized lumbar puncture using small calibre atraumatic spinal needles and CSF collection using gravity fed collection followed by syringe aspirated extraction was performed in a sample of elderly individuals participating in a large long-term observational research trial. Analyte assay concentrations were compared. For the 44 total paired samples of gravity collection and aspiration, reproducibility was high for biomarker CSF analyte assay concentrations (concordance correlation [95%CI]: beta-amyloid1-42 (Aβ42) 0.83 [0.71 - 0.90]), t-tau 0.99 [0.98 - 0.99], and phosphorylated tau (p-tau) 0.82 [95 % CI 0.71 - 0.89]) and Bonferroni corrected paired sample t-tests showed no significant differences (group means (SD): Aβ42 366.5 (86.8) vs 354.3 (82.6), p = 0.10; t-tau 83.9 (46.6) vs 84.7 (47.4) p = 0.49; p-tau 43.5 (22.8) vs 40.0 (17.7), p = 0.05). The mean duration of collection was 10.9 minutes for gravity collection and <1 minute for aspiration. Our results demonstrate that aspiration of CSF is comparable to gravity droplet collection for AD biomarker analyses but could considerably accelerate throughput and improve the procedural tolerability for assessment of CSF biomarkers.

  17. Gravastars in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Ghosh, Shounak; Guha, B. K.; Das, Swapan; Rahaman, Farook; Ray, Saibal

    2017-06-01

    We propose a unique stellar model under the f (R ,T ) gravity by using the conjecture of Mazur-Mottola [P. Mazur and E. Mottola, Report No. LA-UR-01-5067, P. Mazur and E. Mottola, Proc. Natl. Acad. Sci. USA 101, 9545 (2004), 10.1073/pnas.0402717101] which is known as gravastar and a viable alternative to the black hole as available in literature. This gravastar is described by the three different regions, viz., (I) Interior core region, (II) Intermediate thin shell, and (III) Exterior spherical region. The pressure within the interior region is equal to the constant negative matter density which provides a repulsive force over the thin spherical shell. This thin shell is assumed to be formed by a fluid of ultrarelativistic plasma and the pressure, which is directly proportional to the matter-energy density according to Zel'dovich's conjecture of stiff fluid [Y. B. Zel'dovich, Mon. Not. R. Astron. Soc. 160, 1 (1972), 10.1093/mnras/160.1.1P], does counterbalance the repulsive force exerted by the interior core region. The exterior spherical region is completely vacuum and assumed to be de Sitter spacetime which can be described by the Schwarzschild solution. Under this specification we find out a set of exact and singularity-free solution of the gravastar which presents several other physically valid features within the framework of alternative gravity.

  18. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars.

    PubMed

    Bedding, Timothy R; Mosser, Benoit; Huber, Daniel; Montalbán, Josefina; Beck, Paul; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P; García, Rafael A; Miglio, Andrea; Stello, Dennis; White, Timothy R; De Ridder, Joris; Hekker, Saskia; Aerts, Conny; Barban, Caroline; Belkacem, Kevin; Broomhall, Anne-Marie; Brown, Timothy M; Buzasi, Derek L; Carrier, Fabien; Chaplin, William J; Di Mauro, Maria Pia; Dupret, Marc-Antoine; Frandsen, Søren; Gilliland, Ronald L; Goupil, Marie-Jo; Jenkins, Jon M; Kallinger, Thomas; Kawaler, Steven; Kjeldsen, Hans; Mathur, Savita; Noels, Arlette; Aguirre, Victor Silva; Ventura, Paolo

    2011-03-31

    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).

  19. Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.

    2017-12-01

    IODP Expedition 366 focused, in part, on the study of geo­chemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.

  20. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  1. Method for automatically scramming a nuclear reactor

    DOEpatents

    Ougouag, Abderrafi M.; Schultz, Richard R.; Terry, William K.

    2005-12-27

    An automatically scramming nuclear reactor system. One embodiment comprises a core having a coolant inlet end and a coolant outlet end. A cooling system operatively associated with the core provides coolant to the coolant inlet end and removes heated coolant from the coolant outlet end, thus maintaining a pressure differential therebetween during a normal operating condition of the nuclear reactor system. A guide tube is positioned within the core with a first end of the guide tube in fluid communication with the coolant inlet end of the core, and a second end of the guide tube in fluid communication with the coolant outlet end of the core. A control element is positioned within the guide tube and is movable therein between upper and lower positions, and automatically falls under the action of gravity to the lower position when the pressure differential drops below a safe pressure differential.

  2. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  3. No Presentism in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Wüthrich, Christian

    This essay offers a reaction to the recent resurgence of presentism in the philosophy of time. What is of particular interest in this renaissance is that a number of recent arguments supporting presentism are crafted in an untypically naturalistic vein, breathing new life into a metaphysics of time with a bad track record of co-habitation with modern physics. Against this trend, the present essay argues that the pressure on presentism exerted by special relativity and its core lesson of Lorentz symmetry cannot easily be shirked. A categorization of presentist responses to this pressure is offered. As a case in point, I analyze a recent argument by Monton (Presentism and quantum gravity, 263-280, 2006) presenting a case for the compatibility of presentism with quantum gravity. Monton claims that this compatibility arises because there are quantum theories of gravity that use fixed foliations of spacetime and that such fixed foliations provide a natural home for a metaphysically robust notion of the present. A careful analysis leaves Monton's argument wanting. In sum, the prospects of presentism to be alleviated from the stress applied by fundamental physics are faint.

  4. Lunar Prospector: overview.

    PubMed

    Binder, A B

    1998-09-04

    Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius.

  5. Mapping the earth's magnetic and gravity fields from space Current status and future prospects

    NASA Technical Reports Server (NTRS)

    Settle, M.; Taranik, J. V.

    1983-01-01

    The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

  6. Geology and assessment of undiscovered oil and gas resources of the Chukchi Borderland Province, 2008

    USGS Publications Warehouse

    Bird, Kenneth J.; Houseknecht, David W.; Moore, Thomas E.; Gautier, Donald L.

    2017-12-22

    The Chukchi Borderland is both a stand-alone petroleum province and assessment unit (AU) that lies north of the Chukchi Sea. It is a bathymetrically high-standing block of continental crust that was probably rifted from the Canadian continental margin. The sum of our knowledge of this province is based upon geophysical data (seismic, gravity, and magnetic) and a limited number of seafloor core and dredge samples. As expected from the limited data set, the basin’s petroleum potential is poorly known. A single assessment unit, the Chukchi Borderland AU, was defined and assigned an overall probability of about a 5 percent chance of at least one petroleum accumulation >50 million barrels of oil equivalent (MMBOE). No quantitative assessment of sizes and numbers of petroleum accumulations was conducted for this AU.

  7. Macromolecular assemblies in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.

    1990-01-01

    The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.

  8. Recent Developments in Gravity-Wave Effects in Climate Models and the Global Distribution of Gravity-Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2010-07-01

    by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic

  9. 3rd Karl Schwarzschild Meeting - Gravity and the Gauge/Gravity Correspondence

    NASA Astrophysics Data System (ADS)

    Nicolini, Piero; Kaminski, Matthias; Mureika, Jonas; Bleicher, Marcus

    2018-01-01

    The Karl Schwarzschild Meeting 2017 (KSM2017) has been the third instalment of the conference dedicated to the great Frankfurter scientist, who derived the first black hole solution of Einstein's equations about 100 years ago. The event has been a 5 day meeting in the field of black holes, AdS/CFT correspondence and gravitational physics. Like the two previous instalments, the conference continued to attract a stellar ensemble of participants from the world's most renowned institutions. The core of the meeting has been a series of invited talks from eminent experts (keynote speakers) as well as the presence of plenary research talks by students and junior speakers.

  10. GOCE, Satellite Gravimetry and Antarctic Mass Transports

    NASA Astrophysics Data System (ADS)

    Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger

    2011-09-01

    In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.

  11. Control rod drive for reactor shutdown

    DOEpatents

    McKeehan, Ernest R.; Shawver, Bruce M.; Schiro, Donald J.; Taft, William E.

    1976-01-20

    A means for rapidly shutting down or scramming a nuclear reactor, such as a liquid metal-cooled fast breeder reactor, and serves as a backup to the primary shutdown system. The control rod drive consists basically of an in-core assembly, a drive shaft and seal assembly, and a control drive mechanism. The control rod is driven into the core region of the reactor by gravity and hydraulic pressure forces supplied by the reactor coolant, thus assuring that common mode failures will not interfere with or prohibit scramming the reactor when necessary.

  12. Helium-4 Experiments near T-lambda in a Low-Gravity Simulator

    NASA Technical Reports Server (NTRS)

    Liu, Yuanming; Larson, Melora; Israelsson, Ulf

    2000-01-01

    We report our studies of gravity cancellation in a liquid helium sample cell along the lambda-line using a low-gravity simulator facility. The simulator consists of a superconducting magnet capable of producing B(delta-B/delta-z) = 22squareT)/cm. We have verified experimentally that the simulator can cancel gravity to about 0.01g in a cylindrical sample volume of 0.5 cm in diameter and 0.5 cm in height. This allows us to approach more closely the superfluid transition without entering the normal-superfluid two phase region induced by gravity. We also present the measurements of T-c(Q,P): depression of the superfluid transition temperature by a heat current(Q) along the lambda-line (P). The results are consistent with the Renormalization-group theory calculation. Measurements of thermal expansion coefficient in a heat current will also be discussed. The work has been carried out by JPL, California Institute of Technology under contract to NASA.

  13. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  14. Geomagnetic paleointensity dating of South China Sea sediments for the last 130 kyr

    NASA Astrophysics Data System (ADS)

    Xiaoqiang, Yang; Heller, Friedrich; Nengyou, Wu; Jie, Yang; Zhihua, Su

    2009-06-01

    Relative paleointensity records from the northern South China Sea, northwest Pacific Ocean were studied in two gravity piston cores. Continuous mineral magnetic and paleomagnetic measurements were made using discrete sediment samples. Detailed rock magnetic parameters, such as thermomagnetic and high-field hysteresis data, indicate that pseudo-single domain magnetite in a narrow range of grain-size and concentration is the main contributor to the remanent magnetization. The uniform magnetic mineralogy meets the commonly accepted criteria for establishing relative paleointensity records. The relative paleointensity (RPI) curves were constructed by normalizing the natural remanent magnetization (NRM) with isothermal remanent magnetization (IRM), both in the 20-60 mT demagnetization state. Dating constraints have been provided by radiocarbon ages in the upper 400 cm of both cores. Furthermore, we have correlated our paleointensity records with NAPIS-75, S.Atlantic-1089, Sint-200 and NOPAPIS-250 to determine the chronological RPI framework for the South China Sea (SCS-PIS). Although some temporal offsets of paleointensity features between the different records have been recognized, their similar shape suggests that relative paleointensity on the 10 3-10 4 year scale is globally coherent and can provide an age framework for sediments independent of δ18O ages.

  15. Application of medical X-ray computed tomography in the study of cold-water carbonate mounds

    NASA Astrophysics Data System (ADS)

    de Mol, L.; Pirlet, H.; van Rooij, D.; Blamart, D.; Cnudde, V.; Duyck, P.; Houbrechts, H.; Jacobs, P.; Henriet, J.-P.; Dufresne 169 Shipboard Party, The Marion

    2009-04-01

    During the R/V Marion Dufresne 169 'MiCROSYSTEMS' cruise (July 2008) to the El Arraiche mud volcano field in the Gulf of Cadiz cold-water coral mounds were targeted. Four on-mound gravity cores, with a total length of 17.5 m, were obtained for sedimentological and palaeoceanographic analyses in order to unveil the history of the uppermost meters of these cold-water coral build-ups. In parallel, four on-mound cores were taken on approximately the same location for microbiological and biogeochemical analyses. By comparing and correlating both results, more information can be revealed about the processes acting in the dead coral rubble fields which cover these mounds. Computed X-ray tomography (CT) was used for the identification and quantification of the corals inside the gravity cores. Furthermore, this technique is also useful for the investigation of sedimentological features, i.e. bioturbation, porosity, laminations... In this study, cores were scanned using a medical CT scanner on a relative high resolution which allows the three-dimensional visualization of the corals and sedimentological features. Slices were taken every 3 mm with an overlap of 1 mm. Based on these data it was possible to delineate different "CT" facies within the cores. On one hand there are intervals with a high amount of corals and on the other hand zones with a very low amount of corals or even no corals at all. In the first case two different facies can be distinguished: one facies with clearly recognizable, well preserved corals, and the second facies with crushed coral fragments. In both facies the corals are embedded in a homogenous matrix. Different facies could also be defined in the intervals containing little or no corals. For example, a homogenous facies with bioturbations and/or cracks. Also an important observation is the presence of pyrite which appears in all cores at a certain depth. Sometimes the pyrite could be observed in bioturbations or inside the corals. Besides that also the percentage of corals in these gravity cores were quantified using the "Morpho+" software, which was developed at the UGCT (Centre for X-ray Tomography, Ghent University, Belgium). Based on these results, a clear difference can be noticed between the four mounds. On Conger cliff, corals were only observed in the upper 34 cm while in the other locations corals can be found throughout the entire core with significant variations in the amount of corals. Finally, it was possible to identify different species of cold-water corals, namely Lophelia pertusa, Madrepora oculata, Desmophyllum cristagalli and Dendrophyllia. In conjunction with dating and palaeoenvironmental analyses of the corals and the sediment matrix, this can yield valuable information about the build-up of these cold-water coral mounds in the El Arraiche mud volcano field and the palaeoenvironmental characteristics at the time the corals were living.

  16. Biological patterns: Novel indicators for pharmacological assays

    NASA Technical Reports Server (NTRS)

    Johnson, Jacqueline U.

    1991-01-01

    Variable gravity testing using the KC-135 demonstrated clearly that biological pattern formation was definitely shown to result from gravity alone, and not from oxygen gradients in solution. Motile pattern formation of spermatozoa are driven by alternate mechanisms, and apparently not affected by short-term changes in gravity. The chemical effects found appear to be secondary to the primary effect of gravity. Cryopreservation may be the remedy to the problem of 'spare' or 'standing order' biological samples for testing of space lab investigations, but further studies are necessary.

  17. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  18. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; hide

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe-rich outer core of radius 2030 +/- 37 km, and an assumed solid inner core. Magnetic field measurements indicate a northward offset of Mercury's axial magnetic dipole from the geographic equator by 479 +/-3 km and provide evidence for a regional-scale magnetic field approximately collocated with the northern volcanic plains of possible crustal origin. These results from MESSENGER indicate a complex and asymmetric evolution of internal structure and dynamics in this end-member inner planet.

  19. Estuarine sedimentation, sediment character, and foraminiferal distribution in central San Francisco Bay, California

    USGS Publications Warehouse

    Chin, John L.; Woodrow, Donald L.; McGann, Mary; Wong, Florence L.; Fregoso, Theresa A.; Jaffe, Bruce E.

    2010-01-01

    Central San Francisco Bay is the deepest subembayment in the San Francisco Bay estuary and hence has the largest water volume of any of the subembayments. It also has the strongest tidal currents and the coarsest sediment within the estuary. Tidal currents are strongest over the west-central part of central bay and, correspondingly, this area is dominated by sand-size sediment. Much of the area east of a line from Angel Island to Alcatraz Island is characterized by muddy sand to sandy mud, and the area to the west of this line is sandy. The sand-size sediment over west-central bay furthermore is molded by the energetic tidal currents into bedforms of varying sizes and wavelengths. Bedforms typically occur in water depths of 15-25 m. High resolution bathymetry (multibeam) from 1997 and 2008 allow for subdivision of the west-central bayfloor into four basic types based on morphologic expression: featureless, sand waves, disrupted/man-altered, and bedrock knobs. Featureless and sand-wave morphologies dominate the bayfloor of west-central bay. Disrupted bayfloor has a direct association with areas that are undergoing alteration due to human activities, such as sand-mining lease areas, dredging, and disposal of dredge spoils. Change detection analysis, comparing the 1997 and 2008 multibeam data sets, shows that significant change has occurred in west-central bay during the roughly 10 years between surveys. The surveyed area lost about 5.45 million m3 of sediment during the decade. Sand-mining lease areas within west-central bay lost 6.77 million m3 as the bayfloor deepened. Nonlease areas gained 1.32 million m3 of sediment as the bayfloor shallowed slightly outside of sand-mining lease areas. Furthermore, bedform asymmetry did not change significantly, but some bedforms did migrate some tens of meters. Gravity cores show that the area east of Angel and Alcatraz Islands is floored by clayey silts or silty sand whereas the area to the west of the islands is floored dominantly by sand- to coarse sand-sized sediment. Sandy areas also include Raccoon Strait, off Point Tiburon, and on the subtidal Alcatraz, Point Knox, and Presidio Shoals. Drab-colored silty clays are the dominant sediment observed in gravity cores from central bay. Their dominance along the length of the core suggests that silty clays have been deposited consistently over much of this subembayment for the time period covered by the recovered sediments (Woodrow and others, this report). Stratification types include weakly-defined laminae, 1-3 mm thick. Few examples of horizontal lamination in very fine sand or silt were observed. Cross lamination, including ripples, was observed in seven cores. Erosional surfaces were evident in almost every core where x-radiographs were available (they are very difficult to observe visually). Minor cut-and-fill structures also were noted in three cores and inclined strata were observed in three cores. Textural patterns in central bay indicate that silts and clays dominate the shallow water areas and margins of the bay. Sand dominates the tidal channel just east of Angel and Alcatraz Islands and to the west of the islands to the Golden Gate. The pattern of sand-sized sediment, as determined by particle-size analysis, suggests that sand movement is easterly from the west-central part of the bay. A second pattern of sand movement is to the south from the southwestern extremity of San Pablo Bay (boundary approximated by the location of the Richmond-San Rafael Bridge). Age dates for central bay sediment samples were obtained by carbon-14 radiometric age dating. Age dates were determined from shell material that was interpreted to be largely in-place (not transported). Age dates subsequently were reservoir corrected and then converted to calendar years. Sediments sampled from central bay cores range in age from 330 to 4,155 years before present. Foraminiferal distribution in the San Francisco Bay estuary is fairly well

  20. Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: Application to weightless conditions

    NASA Astrophysics Data System (ADS)

    Wunenburger, R.; Chatain, D.; Garrabos, Y.; Beysens, D.

    2000-07-01

    We report a study concerning the compensation of gravity forces in two-phase (p-) hydrogen. The sample is placed near one end of the vertical z axis of a superconducting coil, where there is a near-uniform magnetic field gradient. A variable effective gravity level g can thus be applied to the two-phase fluid system. The vanishing behavior of the capillary length lC at the critical point is compensated by a decrease in g and lC is kept much smaller than the cell dimension. For g ranging from 1 to 0.25 times Earth's gravity (modulus g0) we compare the actual shape of the meniscus to the expected shape in a homogeneous gravity field. We determine lC in a wide range of reduced temperature τ=(TC-T)/TC=[10-4-0.02] from a fit of the meniscus shape. The data are in agreement with previous measurements further from TC performed in n-H2 under Earth's gravity. The effective gravity is homogeneous within 10-2g0 for a 3 mm diameter and 2 mm thickness sample and is in good agreement with the computed one, validating the use of the apparatus as a variable gravity facility. In the vicinity of the levitation point (where magnetic forces exactly compensate Earth's gravity), the computed axial component of the acceleration is found to be quadratic in z, whereas its radial component is proportional to the distance to the axis, which explains the gas-liquid patterns observed near the critical point.

  1. Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: application to weightless conditions

    PubMed

    Wunenburger; Chatain; Garrabos; Beysens

    2000-07-01

    We report a study concerning the compensation of gravity forces in two-phase (p-) hydrogen. The sample is placed near one end of the vertical z axis of a superconducting coil, where there is a near-uniform magnetic field gradient. A variable effective gravity level g can thus be applied to the two-phase fluid system. The vanishing behavior of the capillary length l(C) at the critical point is compensated by a decrease in g and l(C) is kept much smaller than the cell dimension. For g ranging from 1 to 0.25 times Earth's gravity (modulus g(0)) we compare the actual shape of the meniscus to the expected shape in a homogeneous gravity field. We determine l(C) in a wide range of reduced temperature tau=(T(C)-T)/T(C)=[10(-4)-0.02] from a fit of the meniscus shape. The data are in agreement with previous measurements further from T(C) performed in n-H2 under Earth's gravity. The effective gravity is homogeneous within 10(-2)g(0) for a 3 mm diameter and 2 mm thickness sample and is in good agreement with the computed one, validating the use of the apparatus as a variable gravity facility. In the vicinity of the levitation point (where magnetic forces exactly compensate Earth's gravity), the computed axial component of the acceleration is found to be quadratic in z, whereas its radial component is proportional to the distance to the axis, which explains the gas-liquid patterns observed near the critical point.

  2. 29 CFR Appendix B to Subpart Cc of... - Assembly/Disassembly: Sample Procedures for Minimizing the Risk of Unintended Dangerous Boom...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... center of gravity of the load must be identified if that is necessary for the method used for maintaining... identify the center of gravity, measures designed to prevent unintended dangerous movement resulting from an inaccurate identification of the center of gravity must be used. An example of the application of...

  3. 29 CFR Appendix B to Subpart Cc of... - Assembly/Disassembly: Sample Procedures for Minimizing the Risk of Unintended Dangerous Boom...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... center of gravity of the load must be identified if that is necessary for the method used for maintaining... identify the center of gravity, measures designed to prevent unintended dangerous movement resulting from an inaccurate identification of the center of gravity must be used. An example of the application of...

  4. 29 CFR Appendix B to Subpart Cc of... - Assembly/Disassembly: Sample Procedures for Minimizing the Risk of Unintended Dangerous Boom...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... center of gravity of the load must be identified if that is necessary for the method used for maintaining... identify the center of gravity, measures designed to prevent unintended dangerous movement resulting from an inaccurate identification of the center of gravity must be used. An example of the application of...

  5. Comparison of urine specific gravity values from total-solids refractometry and reagent strip method.

    PubMed

    Chatasingh, S; Tapaneya-Olarn, W

    1989-01-01

    The comparison of specific gravity values of 561 urine samples from TS meter and reagent strip was made. The data were divided into two groups: group 1-less than 2+ protein contained urine samples and group 2--equal or more than 2+ protein contained urine samples. The results revealed that the specific gravity values from both methods in both groups were statistically different (p less than 0.01) but they were correlated at r = 0.84 (p less than 0.001) and r = 0.73 (p less than 0.001) in group 1 and group 2, respectively. It was concluded that the reagent strip is suitable for use as a screening test but it should not be considered when precise measurement is necessary.

  6. A gravity model for the Sudbury Structure along the Lithoprobe seismic line

    NASA Astrophysics Data System (ADS)

    McGrath, P. H.; Broome, H. J.

    1994-05-01

    Previous gravity models of the Sudbury Structure (1850 Ma) were constrained by surface geology, and by density measurements of surface and borehole rock samples. Recent high-resolution seismic reflection data provide additional constraints for modeling new gravity observations made along the Sudbury Lithoprobe transect. Results indicate, (1) density distributions constrained by the seismic data yield calculated gravity values matching the Bouguer gravity data, (2) the main sources of gravitational disturbance are external to the Sudbury Structure, (3) the positive gravity anomaly trend south of the Sudbury Structure is associated with mafic rocks of Proterozoic age, and (4) the large, ramplike, gravity anomaly paralleling the northwest margin of the Sudbury Structure is an expression of a northward dipping boundary within the Archean basement. The presence of a hidden mafic layer beneath the Sudbury Structure is not required to model the Bouguer gravity data. An enigma is an 8 mGal, positive, gravity anomaly over the south central Sudbury Structure.

  7. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  8. Evaluation of dredged material proposed for ocean disposal from Bronx River Project Area, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruendell, B.D.; Gardiner, W.W.; Antrim, L.D.

    1996-12-01

    The objective of the Bronx River project was to evaluate proposed dredged material from the Bronx River project area in Bronx, New York, to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Bronx River was one of five waterways that the US Army Corps of Engineers-New York District (USAGE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and to evaluate for dredging and disposal. Sediment samples were submitted for physical and chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests, and bioaccumulation studies. Fifteen individual sediment core samplesmore » collected from the Bronx River project area were analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample, representing the entire reach of the area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which was prepared from the suspended-particulate phase (SPP) of the Bronx River sediment composite, were analyzed for metals, pesticides, and PCBS.« less

  9. The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding. Sixteenth quarterly progress report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.R.; Vadie, A.A.

    1998-01-20

    There are ten injection wells receiving nutrients and twenty producing wells in test patterns are being monitoring for responses. Petrophysical studies of recovered core sample from the 3 newly drilled wells are still in progress. Monthly collection of produced fluids from the test and control wells in all patterns continued with the following tasks being performed: aliphatic profile (gas chromatographic analysis); API gravity and absolute viscosity under reservoir temperature; pH of produced water; surface tension (ST) of produced water (water-air); interfacial tension (IFT) for produced oil-water system; microbiological population; and inorganic analyses (nitrate, phosphate, sulfate, sulfide, chloride, potassium, and hardness).more » Production data on all wells in all patterns continues to be evaluated. Increased gas production that has been noted in some wells could be the result of microbial activity or from previous unswept areas of the reservoir. Samples of gas were collected from selected production wells and analyzed by gas chromatography using a Fisher Model No. 12 Gas Partitioner. The results of analyses from four sets of samples are given.« less

  10. GOCE gravity field simulation based on actual mission scenario

    NASA Astrophysics Data System (ADS)

    Pail, R.; Goiginger, H.; Mayrhofer, R.; Höck, E.; Schuh, W.-D.; Brockmann, J. M.; Krasbutter, I.; Fecher, T.; Gruber, T.

    2009-04-01

    In the framework of the ESA-funded project "GOCE High-level Processing Facility", an operational hardware and software system for the scientific processing (Level 1B to Level 2) of GOCE data has been set up by the European GOCE Gravity Consortium EGG-C. One key component of this software system is the processing of a spherical harmonic Earth's gravity field model and the corresponding full variance-covariance matrix from the precise GOCE orbit and calibrated and corrected satellite gravity gradiometry (SGG) data. In the framework of the time-wise approach a combination of several processing strategies for the optimum exploitation of the information content of the GOCE data has been set up: The Quick-Look Gravity Field Analysis is applied to derive a fast diagnosis of the GOCE system performance and to monitor the quality of the input data. In the Core Solver processing a rigorous high-precision solution of the very large normal equation systems is derived by applying parallel processing techniques on a PC cluster. Before the availability of real GOCE data, by means of a realistic numerical case study, which is based on the actual GOCE orbit and mission scenario and simulation data stemming from the most recent ESA end-to-end simulation, the expected GOCE gravity field performance is evaluated. Results from this simulation as well as recently developed features of the software system are presented. Additionally some aspects on data combination with complementary data sources are addressed.

  11. Physics Meets Art in the General Education Core

    ERIC Educational Resources Information Center

    Dark, Marta L.; Hylton, Derrick J.

    2018-01-01

    This article describes a general education course offering, Physics and the Arts. During the development of this course, physics and arts faculty collaborated closely. We cover the usual physics phenomena for such a course--light, color, and sound--in addition to gravity, equilibrium, and spacetime. Goals of the course are to increase students'…

  12. G14A-06- Analysis of the DORIS, GNSS, SLR, VLBI and Gravimetric Time Series at the GGOS Core Sites

    NASA Technical Reports Server (NTRS)

    Moreaux, G.; Lemoine, F.; Luceri, V.; Pavlis, E.; MacMillan, D.; Bonvalot, S.; Saunier, J.

    2017-01-01

    Analysis of the time series at the 3-4 multi-technique GGOS sites to analyze and compare the spectral content of the space geodetic and gravity time series. Evaluate the level of agreement between the space geodesy measurements and the physical tie vectors.

  13. Measuring Fundamental Parameters of Substellar Objects. I. Surface Gravities

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Basri, Gibor; Jayawardhana, Ray; Allard, France; Hauschildt, Peter; Ardila, David

    2004-07-01

    We present an analysis of high-resolution optical spectra for a sample of very young, mid- to late-M, low-mass stellar and substellar objects: 11 in the Upper Scorpius association, and two (GG Tau Ba and Bb) in the Taurus star-forming region. Effective temperatures and surface gravities are derived from a multiple-feature spectral analysis using TiO, Na I, and K I, through comparison with the latest synthetic spectra. We show that these spectral diagnostics complement each other, removing degeneracies with temperature and gravity in the behavior of each. In combination, they allow us to determine temperature to within 50 K and gravity to within 0.25 dex, in very cool young objects. Our high-resolution spectral analysis does not require extinction estimates. Moreover, it yields temperatures and gravities independent of theoretical evolutionary models (although our estimates do depend on the synthetic spectral modeling). We find that our gravities for most of the sample agree remarkably well with the isochrone predictions for the likely cluster ages. However, discrepancies appear in our coolest targets: these appear to have significantly lower gravity (by up to 0.75 dex) than our hotter objects, even though our entire sample covers a relatively narrow range in effective temperature (~300 K). This drop in gravity is also implied by intercomparisons of the data alone, without recourse to synthetic spectra. We consider, and argue against, dust opacity, cool stellar spots, or metallicity differences leading to the observed spectral effects; a real decline in gravity is strongly indicated. Such gravity variations are contrary to the predictions of the evolutionary tracks, causing improbably low ages to be inferred from the tracks for our coolest targets. Through a simple consideration of contraction timescales, we quantify the age errors introduced into the tracks through the particular choice of initial conditions and demonstrate that they can be significant for low-mass objects that are only a few megayears old. However, we also find that these errors appear insufficient to explain the magnitude of the age offsets in our lowest gravity targets. We venture that this apparent age offset may arise from evolutionary model uncertainties related to accretion, deuterium burning and/or convection effects. Finally, when combined with photometry and distance information, our technique for deriving surface gravities and effective temperatures provides a way of obtaining masses and radii for substellar objects independent of evolutionary models; radius and mass determinations are presented in Paper II.

  14. An analysis of methods for gravity determination and their utilization for the calculation of geopotential numbers in the Slovak national levelling network

    NASA Astrophysics Data System (ADS)

    Majkráková, Miroslava; Papčo, Juraj; Zahorec, Pavol; Droščák, Branislav; Mikuška, Ján; Marušiak, Ivan

    2016-09-01

    The vertical reference system in the Slovak Republic is realized by the National Levelling Network (NLN). The normal heights according to Molodensky have been introduced as reference heights in the NLN in 1957. Since then, the gravity correction, which is necessary to determine the reference heights in the NLN, has been obtained by an interpolation either from the simple or complete Bouguer anomalies. We refer to this method as the "original". Currently, the method based on geopotential numbers is the preferred way to unify the European levelling networks. The core of this article is an analysis of different ways to the gravity determination and their application for the calculation of geopotential numbers at the points of the NLN. The first method is based on the calculation of gravity at levelling points from the interpolated values of the complete Bouguer anomaly using the CBA2G_SK software. The second method is based on the global geopotential model EGM2008 improved by the Residual Terrain Model (RTM) approach. The calculated gravity is used to determine the normal heights according to Molodensky along parts of the levelling lines around the EVRF2007 datum point EH-V. Pitelová (UELN-1905325) and the levelling line of the 2nd order NLN to Kráľova hoľa Mountain (the highest point measured by levelling). The results from our analysis illustrate that the method based on the interpolated value of gravity is a better method for gravity determination when we do not know the measured gravity. It was shown that this method is suitable for the determination of geopotential numbers and reference heights in the Slovak national levelling network at the points in which the gravity is not observed directly. We also demonstrated the necessity of using the precise RTM for the refinement of the results derived solely from the EGM2008.

  15. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    NASA Astrophysics Data System (ADS)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth, suggesting that most of the differential storage is taken by the epikarst. Second, we use STD gravity differences to determine the effective density values for each site. These integrative density values are compared to measured grain densities from core samples in order to obtain the apparent porosity and saturation representative to the investigated volume. We then discuss the relation between the physical characteristic of each non-saturated zone and its water storage capacity. It seems that epikarst water storage variation is only weakly related to lithology. We also discuss the reasons for specific water storage in the epikarst. Because epikarst water storage has been claimed to be a general characteristic of karst system, a gravimetric approach appears to be a promising method to verify quantitatively this hypothesis.

  16. Steady Flow Generated by a Core Oscillating in a Rotating Spherical Cavity

    NASA Astrophysics Data System (ADS)

    Kozlov, V. G.; Subbotin, S. V.

    2018-01-01

    Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).

  17. A study of the earth's free core nutation using international deployment of accelerometers gravity data

    NASA Technical Reports Server (NTRS)

    Cummins, Phil R.; Wahr, John M.

    1993-01-01

    In this study we consider the influence of the earth's free core nutation (FCN) on diurnal tidal admittance estimates for 11 stations of the globally distributed International Deployment of Accelerometers network. The FCN causes a resonant enhancement of the diurnal admittances which can be used to estimate some properties of the FCN. Estimations of the parameters describing the FCN (period, Q, and resonance strength) are made using data from individual stations and many stations simultaneously. These yield a result for the period of 423-452 sidereal days, which is shorter than theory predicts but is in agreement with many previous studies and suggests that the dynamical ellipticity of the core may be greater than its hydrostatic value.

  18. The Evolution and Stability of Massive Stars

    NASA Astrophysics Data System (ADS)

    Shiode, Joshua Hajime

    Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the envelope has the potential to unbind a significant amount of mass in close proximity to a star's eventual explosion as a core collapse supernova.

  19. Empirical models of Jupiter's interior from Juno data. Moment of inertia and tidal Love number k2

    NASA Astrophysics Data System (ADS)

    Ni, Dongdong

    2018-05-01

    Context. The Juno spacecraft has significantly improved the accuracy of gravitational harmonic coefficients J4, J6 and J8 during its first two perijoves. However, there are still differences in the interior model predictions of core mass and envelope metallicity because of the uncertainties in the hydrogen-helium equations of state. New theoretical approaches or observational data are hence required in order to further constrain the interior models of Jupiter. A well constrained interior model of Jupiter is helpful for understanding not only the dynamic flows in the interior, but also the formation history of giant planets. Aims: We present the radial density profiles of Jupiter fitted to the Juno gravity field observations. Also, we aim to investigate our ability to constrain the core properties of Jupiter using its moment of inertia and tidal Love number k2 which could be accessible by the Juno spacecraft. Methods: In this work, the radial density profile was constrained by the Juno gravity field data within the empirical two-layer model in which the equations of state are not needed as an input model parameter. Different two-layer models are constructed in terms of core properties. The dependence of the calculated moment of inertia and tidal Love number k2 on the core properties was investigated in order to discern their abilities to further constrain the internal structure of Jupiter. Results: The calculated normalized moment of inertia (NMOI) ranges from 0.2749 to 0.2762, in reasonable agreement with the other predictions. There is a good correlation between the NMOI value and the core properties including masses and radii. Therefore, measurements of NMOI by Juno can be used to constrain both the core mass and size of Jupiter's two-layer interior models. For the tidal Love number k2, the degeneracy of k2 is found and analyzed within the two-layer interior model. In spite of this, measurements of k2 can still be used to further constrain the core mass and size of Jupiter's two-layer interior models.

  20. Structure of a mushy layer at the inner core boundary

    NASA Astrophysics Data System (ADS)

    Deguen, R.; Huguet, L.; Bergman, M. I.; Labrosse, S.; Alboussiere, T.

    2015-12-01

    We present experimental results on the solidification of ammonium chloride from an aqueous solution, yielding a mushy zone, under hyper-gravity. A commercial centrifuge has been equipped with a slip-ring so that electric power, temperature and ultrasonic signals could be transmitted between the experimental setup and the laboratory. A Peltier element provides cooling at the bottom of the cell. Probes monitor the temperature along the height of the cell. Ultrasound measurements (2 to 6 MHz) is used to detect the position of the front of the mushy zone and to determine attenuation in the mush. A significant increase of solid fraction (or decrease of mushy layer thickness) and attenuation in the mush is observed as gravity is increased. Kinetic undercooling is significant in our experiments and has been included in a macroscopic mush model. The other ingredients of the model are conservation of energy and chemical species, along with heat/species transfer between the mush and the liquid phase: boundary-layer exchanges at the top of the mush and bulk convection within the mush (formation of chimneys). The outputs of the model compare well with our experiments. We have then run the model in a range of parameters suitable for the Earth's inner core, which has shown the role of bulk mush convection for the inner core and the reason why a solid fraction very close to unity should be expected. We have also run melting experiments: after crystallization of a mush, the liquid has been heated from above until the mush started to melt, while the bottom cold temperature was maintained. These melting experiments were motivated by the possible local melting at the inner core boundary that has been invoked to explain the formation of the anomalously slow F-layer at the bottom of the outer core or inner core hemispherical asymmetry. Oddly, the consequences of melting are an increase in solid fraction and a decrease in attenuation. It is hence possible that surface seismic velocity and attenuation of the inner core are strongly affected by melting.

  1. The Effects of Gravity on Combustion and Structure Formation During Combustion Synthesis in Gasless Systems

    NASA Technical Reports Server (NTRS)

    Varma, Arvind; Mukasyan, Alexander; Pelekh, Aleksey

    1997-01-01

    There have been relatively few publications examining the role of gravity during combustion synthesis (CS), mostly involving thermite systems. The main goal of this research was to study the influence of gravity on the combustion characteristics of heterogeneous gasless systems. In addition, some aspects of microstructure formation processes which occur during gasless CS were also studied. Four directions for experimental investigation have been explored: (1) the influence of gravity force on the characteristic features of heterogeneous combustion wave propagation (average velocity, instantaneous velocities, shape of combustion front); (2) the combustion of highly porous mixtures (with porosity greater than that for loose powders), which cannot be obtained in normal gravity; (3) the effect of gravity on sample expansion during combustion, in order to produce highly porous materials under microgravity conditions; and (4) the effect of gravity on the structure formation mechanism during the combustion synthesis of poreless composite materials.

  2. Evaluation of dredged material proposed for ocean disposal from Shark River Project area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.

    1996-09-01

    The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less

  3. Observations of aerosol-induced convective invigoration in the tropical east Atlantic

    NASA Astrophysics Data System (ADS)

    Storer, R. L.; van den Heever, S. C.; L'Ecuyer, T. S.

    2014-04-01

    Four years of CloudSat data have been analyzed over a region of the east Atlantic Ocean in order to examine the influence of aerosols on deep convection. The satellite data were combined with information about aerosols taken from the Global and Regional Earth-System Monitoring Using Satellite and In Situ Data model. Only those profiles fitting the definition of deep convective clouds were analyzed. Overall, the cloud center of gravity, cloud top, and rain top were all found to increase with increased aerosol loading. These effects were largely independent of the environment, and the differences between the cleanest and most polluted clouds sampled were found to be statistically significant. When examining an even smaller subset of deep convective clouds likely to be part of the convective core, similar trends were seen. These observations suggest that convective invigoration occurs with increased aerosol loading, leading to deeper, stronger storms in polluted environments.

  4. Introduction to the geologic and geophysical studies of Fort Irwin, California: Chapter A in Geology and geophysics applied to groundwater hydrology at Fort Irwin, California

    USGS Publications Warehouse

    Buesch, David C.

    2014-01-01

    Geologic and geophysical investigations in the vicinity of Fort Irwin National Training Center, California, have been completed in support of groundwater investigations, and are presented in eight chapters of this report. A generalized surficial geologic map along with field and borehole investigations conducted during 2010–11 provide a lithostratigraphic and structural framework for the area during the Cenozoic. Electromagnetic properties of resistivity were measured in the laboratory on hand and core samples, and compared to borehole geophysical resistivity data. These data were used in conjunction with ground-based time-domain and airborne data and interpretations to provide a framework for the shallow lithologic units and structure. Gravity and aeromagnetic maps cover areas ~4 to 5 times that of Fort Irwin. Each chapter includes hydrogeologic applications of the data or model results.

  5. VizieR Online Data Catalog: Massive stars in 30 Dor (Schneider+, 2018)

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Grafener, G.; Langer, N.; Ramirez-Agudelo, O. H.; Sabin-Sanjulian, C.; Simon-Diaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Henault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Apellaniz, J. M.; Markova, N.; Najarro, F.; Podsiadlowski, P.; Puls, J.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.; Norman, C.

    2018-02-01

    Through the use of the Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT), the VLT-FLAMES Tarantula Survey (VFTS) has obtained optical spectra of ~800 massive stars in 30 Dor, avoiding the core region of the dense star cluster R136 because of difficulties with crowding. Repeated observations at multiple epochs allow determination of the orbital motion of potentially binary objects. For a sample of 452 apparently single stars, robust stellar parameters-such as effective temperatures, luminosities, surface gravities, and projected rotational velocities-are determined by modeling the observed spectra. Composite spectra of visual multiple systems and spectroscopic binaries are not considered here because their parameters cannot be reliably inferred from the VFTS data. To match the derived atmospheric parameters of the apparently single VFTS stars to stellar evolutionary models, we use the Bayesian code Bonnsai. (2 data files).

  6. GOCE Precise Science Orbits for the Entire Mission and their Use for Gravity Field Recovery

    NASA Astrophysics Data System (ADS)

    Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Weigelt, Matthias

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA's first Earth Explorer Core Mission, was launched on March 17, 2009 into a sun-synchronous dusk-dawn orbit and re-entered into the Earth's atmosphere on November 11, 2013. It was equipped with a three-axis gravity gradiometer for high-resolution recovery of the Earth's gravity field, as well as with a 12-channel, dual-frequency Global Positioning System (GPS) receiver for precise orbit determination (POD), instrument time-tagging, and the determination of the long wavelength part of the Earth’s gravity field. A precise science orbit (PSO) product was provided during the entire mission by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data. We present the reduced-dynamic and kinematic PSO results for the entire mission period. Orbit comparisons and validations with independent Satellite Laser Ranging (SLR) measurements demonstrate the high quality of both orbit products being close to 2 cm 1-D RMS, but also reveal a correlation between solar activity, GPS data availability, and the quality of the orbits. We use the 1-sec kinematic positions of the GOCE PSO product for gravity field determination and present GPS-only solutions covering the entire mission period. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator, which may be traced back to the GPS carrier phase observations used for the kinematic orbit determination. The nature of the systematic errors is further investigated and reprocessed orbits free of systematic errors along the geomagnetic equator are derived. Eventually, the potential of recovering time variable signals from GOCE kinematic positions is assessed.

  7. Mercury's gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Margot, J. L.

    2015-12-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury's gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent. The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models. Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models. We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation.

  8. Mercury’s gravity field, tidal Love number k2, and spin axis orientation revealed with MESSENGER radio tracking data

    NASA Astrophysics Data System (ADS)

    Verma, Ashok Kumar; Margot, Jean-Luc

    2015-11-01

    We are conducting an independent analysis of two-way Doppler and two-way range radio tracking data from the MESSENGER spacecraft in orbit around Mercury from 2011 to 2015. Our goals are to estimate Mercury’s gravity field and to obtain independent estimates of the tidal Love number k2 and spin axis orientation. Our gravity field solution reproduces existing values with high fidelity, and prospects for recovery of the other quantities are excellent.The tidal Love number k2 provides powerful constraints on interior models of Mercury, including the mechanical properties of the mantle and the possibility of a solid FeS layer at the top of the core. Current gravity analyses cannot rule out a wide range of values (k2=43-0.50) and a variety of plausible interior models. We are seeking an independent estimate of tidal Love number k2 with improved errors to further constrain these models.Existing gravity-based solutions for Mercury's spin axis orientation differ from those of Earth-based radar and topography-based solutions. This difference may indicate an error in one of the determinations, or a real difference between the orientations about which the gravity field and the crust rotate, which can exist in a variety of plausible configuration. Securing an independent estimate of the spin axis orientation is vital because this quantity has a profound impact on the determination of the moment of inertia and interior models.We have derived a spherical harmonic solution of the gravity field to degree and order 40 as well as estimates of the tidal Love number k2 and spin axis orientation

  9. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    PubMed

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-04

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  10. Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Guinea, A.; Acworth, R. I.

    2014-03-01

    Evaluating the possibility of leakage through low permeability geological strata is critically important for sustainable water supplies, extraction of fuels from strata such as coal beds, and confinement of waste within the earth. Characterizing low or negligible flow rates and transport of solutes can require impractically long periods of field or laboratory testing, but is necessary for evaluations over regional areas and over multi-decadal timescales. The current work reports a custom designed centrifuge permeameter (CP) system, which can provide relatively rapid and reliable hydraulic conductivity (K) measurement compared to column permeameter tests at standard gravity (1g). Linear fluid velocity through a low K porous sample is linearly related to g-level during a CP flight unless consolidation or geochemical reactions occur. The CP module is designed to fit within a standard 2 m diameter, geotechnical centrifuge with a capacity for sample dimensions of 30 to 100 mm diameter and 30 to 200 mm in length. At maximum RPM the resultant centrifugal force is equivalent to 550g at base of sample or a total stress of ~2 MPa. K is calculated by measuring influent and effluent volumes. A custom designed mounting system allows minimal disturbance of drill core samples and a centrifugal force that represents realistic in situ stress conditions is applied. Formation fluids were used as influent to limit any shrink-swell phenomena which may alter the resultant K value. Vertical hydraulic conductivity (Kv) results from CP testing of core from the sites in the same clayey silt formation varied (10-7 to 10-9 m s-1, n = 14) but higher than 1g column permeameter tests of adjacent core using deionized water (10-9 to 10-11 m s-1, n = 7). Results at one site were similar to in situ Kv values (3 × 10-9 m s-1) from pore pressure responses within a 30 m clayey sequence in a homogenous area of the formation. Kv sensitivity to sample heterogeneity was observed, and anomalous flow via preferential pathways could be readily identified. Results demonstrate the utility of centrifuge testing for measuring minimum K values that can contribute to assessments of geological formations at large scale. The importance of using realistic stress conditions and influent geochemistry during hydraulic testing is also demonstrated.

  11. Late Holocene sedimentation in coastal areas of the northwestern Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Colizza, Ester; Finocchiaro, Furio; Kuhn, Gerhard; Langone, Leonardo; Melis, Romana; Mezgec, Karin; Severi, Mirko; Traversi, Rita; Udisti, Roberto; Stenni, Barbara; Braida, Martina

    2013-04-01

    Sediment cores and box cores collected in two coastal areas of the northwestern Ross Sea (Antarctica) highlight the possibility of studying the Late Holocene period in detail. In this work we propose a study on two box cores and two gravity cores collected in the Cape Hallett and Wood Bay areas during the 2005 PNRA oceanographic cruise. The two sites are feed by Eastern Antarctic Ice Shelf (EAIS) and previous studies have highlighted a complex postglacial sedimentary sequence, also influenced by local morphology. This study is performed within the framework of the PNRA-ESF PolarCLIMATE HOLOCLIP (Holocene climate variability at high-southern latitudes: an integrated perspective) Project. The data set includes: magnetic susceptibility, X-ray analyses, 210Pb, 14C dating, diatoms and foraminifera assemblages, organic carbon, and grain-size analyses. Furthermore XRF core scanner analyses, colour analysis from digital images, and major, minor and trace element concentration analyses (ICP-AES) are performed. Data show that the box core and upper core sediments represent a very recent sedimentation in which it is possible to observe the parameter variability probably linked to climate variability/changes: these variation will be compared with isotopic record form ice cores collected form the same Antarctic sector.

  12. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  13. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, Patrick T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered

  14. Properties of Interfacial Tribo-Films

    DTIC Science & Technology

    1993-06-01

    cf these rods is such as to have the center of gravity of or the attraction of water into the re-entrant peripheral gap the whole sample as close as...difference between the fluid dynamics, acoustic effects in stringed musical static and the kinetic friction coefficients increases with instruments...interfacial fluid molecules to static minimize oscillations, the center of gravity of the sample friction have been explored and, in this regard, adsorbed

  15. Testing a Novel Method to Approximate Wood Specific Gravity of Trees

    Treesearch

    Michael C. Wiemann; G. Bruce Williamson

    2012-01-01

    Wood specific gravity (SG) has long been used by foresters as an index for wood properties. More recently, SG has been widely used by ecologists as a plant functional trait and as a key variable in estimates of biomass. However, sampling wood to determine SG can be problematic; at present, the most common method is sampling with an increment borer to extract a bark-to-...

  16. Minero-chemical composition as environmental quality assessment tool of an artificial water reservoir: the case of the "Pietra del Pertusillo" lake (Basilicata, Italia)

    NASA Astrophysics Data System (ADS)

    fortunato, elisabetta; mongelli, giovanni; paternoster, michele; sinisi, rosa

    2016-04-01

    The Pietra del Pertusillo fresh-water reservoir is an artificial lake located in the High Agri River Valley (Basilicata); its dam was completed in 1963 for producing hydroelectric energy and providing water for human use to Puglia and Basilicata southern Italian regions (approximately 2 million people). Pertusillo lake lies within a national park because of the presence of many special protected areas. This reservoir is a natural laboratory for assessing the sediment pollution from human activities, including: waste-water treatment plants, landfills, farms, treatment oil plant, plastics and other industrial activities. In addition, the Pertusillo reservoir is located in the area of the largest oil field of continental Europe. This anthropogenic pressure may thus represent an impact factor on the environmental equilibrium and consequently the knowledge and control on their quality represents a relevant environmental challenge. This study reports the preliminary results of a multidisciplinary (sedimentological, mineralogical, geochemical) PhD research focused on the analysis of the lacustrine sediments filling the Pietra del Pertusillo fresh-water reservoir. The lakes and its sediments represent the natural sink for nutrients and possible pollutants which tend to accumulate in relation to the nature and composition of the solid matrix but also the concentration and characteristics of the substances themselves. Moreover the deeper sediments, deposited under undisturbed condition, represent the "historical memory" of the ecosystem. Sub-aqueous lake sediments were investigated in May 2014, sampled using a small platform and a gravity corer (UWITEC, Austria) of 90 mm diameter which allowed to drill 19 cores up to 2 m long from the sediment/water interface. Successively cores were studied and described by using facies analysis techniques; a large number of core samples (147) were collected from the working half of each core, stored in HPDE containers, and frozen at -20°C for subsequent chemical and mineralogical analysis. Further, in order to assess the provenance effects on the composition of lake sediments, the bedrock (Meso-Cenozoic rocks and Quaternary fluvial-lacustrine deposits) and the stream sediments of the main "Pietra del Pertusillo" tributaries, close to the detrital supply entry points of Pietra del Pertusillo lake were also sampled. The mineralogical composition was obtained from randomly oriented powders by XRPD. Chemistry (major, minor, and trace elements) was performed on powdered samples by ICP-MS technique after a four acids digestion and lithium metaborate/tetraborate fusion to facilitate the destruction of possible resistate minerals. Preliminary data related to the stream sediments show that both major and minor elements (including heavy metals, barium and arsenic) have a minor variability and are close to the median values of the bedrock. The mineralogical composition of the analysed samples can explain the elemental relationships,thus excluding any anthropogenic input. The mineralogical composition of the lacustrine samples is made of quartz, carbonates, feldspars, muscovite/illite, chlorite, and interstratified clay minerals, and it is constant throughout the cores. Finally, as further step ot he research plan, we are processing 20 of all lake samples with the highest peaks of interstratified clay minerals, which likely represent the most reactive phases in our sediment-water system.

  17. Sedimentation of the mud belt along the coast of China from the mouth of the Yangtze (Changjiang) River to northern Taiwan Strait: An Source-to-Sink Perspective

    NASA Astrophysics Data System (ADS)

    Chien, C. C.; Liu, J. T.; Yang, R.; Huh, C. A.; Su, C. C.

    2016-02-01

    Sediments in the Taiwan Strait are originated from Mainland China and Taiwan. The China Coastal Current, influenced by the northeast monsoon in winter, becomes enhanced, which caries the sediments exported from the Yangtze River to the southern East China Sea and the Taiwan Strait along the Zhemin-Taiwan Strait mud belt. The sediment transport process is also influenced by tidal current and Kuroshio Branch Current and Taiwan Warm Current, making the seafloor sediment signals complex. This study used R/V Ocean Researcher V (Cruise 0032), to collect six box cores and three gravity cores along the Zhemin mud belt and the mud belt in northern Taiwan Strait in the winter of 2014. From the core samples, grain-size distribution, Multi-Sensor Core Logger, and 7Be activity were measured to investigate the sedimentation process along the mud belts. The box core taken at the mouth of the Changjiang- is composed of homogeneous clay and rich in shell fragments. The core off the mouth of Ou River is composed of homogeneous clay, but showing horizontal laminations. Near the Taishan Island off the coast of Zhejiang the core is consisted of a homogeneous sandy sediments that turned into clay. Off the mouth of the Min River the core consists of clay with shell fragments. Off the coast of the Wu River on the west coast of the Taiwan, the core is mainly composed of muddy sediments, which has the siltstone layers of oblique bedding. Off the mouth of Zhuoshui River in central Taiwan, the core is composed of sandy sediments. From the mouth of the Changhjiang, Zhemin mud belt, the northern Taiwan Strait mud belt, to the central Taiwan Strait, 7Be activity in the seafloor sediment indicates that the freshness of the terrigenous sediments decreased. The Mass Magnetic Susceptiblity (MSI) demonstrates that the terrigenous sediments decreased from north to south. The MSI signals in the core off the mouth of the Minjiang are different from those in the neighboring cores. This is suspected due to the convergence of sediments from the Changjiang and Taiwan. The particle sizes of the cores show that the sediment became coarser from the north to south. In the future the study will make use of 210Pbex, and other environmental and provenance such as water dynamic mechanism variables to explore the sediment source and sink patterns along with the Zhemin-Taiwan Strait mud belts.

  18. Yucatan Subsurface Stratigraphy from Geophysical Data, Well Logs and Core Analyses in the Chicxulub Impact Crater and Implications for Target Heterogeneities

    NASA Astrophysics Data System (ADS)

    Canales, I.; Fucugauchi, J. U.; Perez-Cruz, L. L.; Camargo, A. Z.; Perez-Cruz, G.

    2011-12-01

    Asymmetries in the geophysical signature of Chicxulub crater are being evaluated to investigate on effects of impact angle and trajectory and pre-existing target structural controls for final crater form. Early studies interpreted asymmetries in the gravity anomaly in the offshore sector to propose oblique either northwest- and northeast-directed trajectories. An oblique impact was correlated to the global ejecta distribution and enhanced environmental disturbance. In contrast, recent studies using marine seismic data and computer modeling have shown that crater asymmetries correlate with pre-existing undulations of the Cretaceous continental shelf, suggesting a structural control of target heterogeneities. Documentation of Yucatan subsurface stratigraphy has been limited by lack of outcrops of pre-Paleogene rocks. The extensive cover of platform carbonate rocks has not been affected by faulting or deformation and with no rivers cutting the carbonates, information comes mainly from the drilling programs and geophysical surveys. Here we revisit the subsurface stratigraphy in the crater area from the well log data and cores retrieved in the drilling projects and marine seismic reflection profiles. Other source of information being exploited comes from the impact breccias, which contain a sampling of disrupted target sequences, including crystalline basement and Mesozoic sediments. We analyze gravity and seismic data from the various exploration surveys, including multiple Pemex profiles in the platform and the Chicxulub experiments. Analyses of well log data and seismic profiles identify contacts for Lower Cretaceous, Cretaceous/Jurassic and K/Pg boundaries. Results show that the Cretaceous continental shelf was shallower on the south and southwest than on the east, with emerged areas in Quintana Roo and Belize. Mesozoic and upper Paleozoic sediments show variable thickness, possibly reflecting the crystalline basement regional structure. Paleozoic and Precambrian basement outcrops are located farther to the southeast in Belize and northern Guatemala. Inferred shelf paleo-bathymetry supports existence of a sedimentary basin extending to the northeast, where crater rim and terrace zones are subdued in the seismic images.

  19. Description of core samples returned by Apollo 12

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.; Fryxell, R.

    1971-01-01

    Three core samples were collected by the Apollo 12 astronauts. Two are single cores, one of which (sample 12026) was collected close to the lunar module during the first extravehicular activity period and is 19.3 centimeters long. The second core (sample 12027) was collected at Sharp Crater during the second extravehicular activity period and is 17.4 centimeters long. The third sample is a double core (samples 12025 and 12028), which was collected near Halo Crater during the second extravehicular activity period. Unlike the other cores, the double-drive-tube core sample has complex layering with at least 10 clearly defined stratigraphic units. This core sample is approximately 41 centimeters long.

  20. Requirement for specific gravity and creatinine adjustments for urinary steroids and luteinizing hormone concentrations in adolescents.

    PubMed

    Singh, Gurmeet K S; Balzer, Ben W R; Desai, Reena; Jimenez, Mark; Steinbeck, Katharine S; Handelsman, David J

    2015-11-01

    Urinary hormone concentrations are often adjusted to correct for hydration status. We aimed to determine whether first morning void urine hormones in growing adolescents require adjustments and, if so, whether urinary creatinine or specific gravity are better adjustments. The study population was adolescents aged 10.1 to 14.3 years initially who provided fasting morning blood samples at 0 and 12 months (n = 343) and first morning urine every three months (n = 644). Unadjusted, creatinine and specific gravity-adjusted hormonal concentrations were compared by Deming regression and Bland-Altman analysis and grouped according to self-rated Tanner stage or chronological age. F-ratios for self-rated Tanner stages and age groups were used to compare unadjusted and adjusted hormonal changes in growing young adolescents. Correlations of paired serum and urinary hormonal concentration of unadjusted and creatinine and specific gravity-adjusted were also compared. Fasting first morning void hormone concentrations correlated well and were unbiased between unadjusted or adjusted by either creatinine or specific gravity. Urine creatinine concentration increases with Tanner stages, age and male gender whereas urine specific gravity was not influenced by Tanner stage, age or gender. Adjustment by creatinine or specific gravity of urinary luteinizing hormone, estradiol, testosterone, dihydrotestosterone and dehydroepiandrosterone concentrations did not improve correlation with paired serum concentrations. Urine steroid and luteinizing hormone concentrations in first morning void samples of adolescents are not significantly influenced by hydration status and may not require adjustments; however, if desired, both creatinine and specific gravity adjustments are equally suitable. © The Author(s) 2015.

  1. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.

    PubMed

    Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A

    2011-12-07

    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.

  2. Fiber pulling apparatus modification

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Workman, Gary L.

    1992-01-01

    A reduced gravity fiber pulling apparatus (FPA) was constructed in order to study the effects of gravity on glass fiber formation. The apparatus was specifically designed and built for use on NASA's KC-135 aircraft. Four flights have been completed to date during which E-glass fiber was successfully produced in simulated zero, high, and lunar gravity environments. In addition simulated lunar soil samples were tested for their fiber producing properties using the FPA.

  3. Specific gravity variation in robusta eucalyptus grown in Hawaii

    Treesearch

    Roger G. Skolmen

    1972-01-01

    The specific gravity (air-dry volume, ovendry weight) of Eucalyptus robusta wood was tested within and between trees from 10 stands. Mean specific gravity was 0.603, but the range in individual samples for 50 trees was 0.331 to 0.869, and was 0.357 to 0.755 within one cross section. A consistent increase was recorded in all trees from pith to cambium and from butt to...

  4. REVIEW ARTICLE: Geophysical signatures of oceanic core complexes

    NASA Astrophysics Data System (ADS)

    Blackman, Donna K.; Canales, J. Pablo; Harding, Alistair

    2009-08-01

    Oceanic core complexes (OCCs) provide access to intrusive and ultramafic sections of young lithosphere and their structure and evolution contain clues about how the balance between magmatism and faulting controls the style of rifting that may dominate in a portion of a spreading centre for Myr timescales. Initial models of the development of OCCs depended strongly on insights available from continental core complexes and from seafloor mapping. While these frameworks have been useful in guiding a broader scope of studies and determining the extent of OCC formation along slow spreading ridges, as we summarize herein, results from the past decade highlight the need to reassess the hypothesis that reduced magma supply is a driver of long-lived detachment faulting. The aim of this paper is to review the available geophysical constraints on OCC structure and to look at what aspects of current models are constrained or required by the data. We consider sonar data (morphology and backscatter), gravity, magnetics, borehole geophysics and seismic reflection. Additional emphasis is placed on seismic velocity results (refraction) since this is where deviations from normal crustal accretion should be most readily quantified. However, as with gravity and magnetic studies at OCCs, ambiguities are inherent in seismic interpretation, including within some processing/analysis steps. We briefly discuss some of these issues for each data type. Progress in understanding the shallow structure of OCCs (within ~1 km of the seafloor) is considerable. Firm constraints on deeper structure, particularly characterization of the transition from dominantly mafic rock (and/or altered ultramafic rock) to dominantly fresh mantle peridotite, are not currently in hand. There is limited information on the structure and composition of the conjugate lithosphere accreted to the opposite plate while an OCC forms, commonly on the inside corner of a ridge-offset intersection. These gaps preclude full testing of current models. However, with the data in hand there are systematic patterns in OCC structure, such as the 1-2 Myr duration of this rifting style within a given ridge segment, the height of the domal cores with respect to surrounding seafloor, the correspondence of gravity highs with OCCs, and the persistence of corrugations that mark relative (palaeo) slip along the exposed detachment capping the domal cores. This compilation of geophysical results at OCCs should be useful to investigators new to the topic but we also target advanced researchers in our presentation and synthesis of findings to date.

  5. Accurate Initial State Estimation in a Monocular Visual–Inertial SLAM System

    PubMed Central

    Chen, Jing; Zhou, Zixiang; Leng, Zhen; Fan, Lei

    2018-01-01

    The fusion of monocular visual and inertial cues has become popular in robotics, unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based fusion strategies outperform filtering strategies. Robust state estimation is the core capability for optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore, this paper aims to propose a more accurate initial state estimation method. On the basis of the known gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias separately, which is difficult to be distinguished under small rotation. Additionally, we propose an automatic termination criterion to determine when the initialization is successful. Once the initial state estimation converges, the initial estimated values are used to launch the nonlinear tightly coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset. Experimental results show that the proposed methods can achieve good initial state estimation, the gravity refinement approach is able to efficiently speed up the convergence process of the estimated gravity vector, and the termination criterion performs well. PMID:29419751

  6. Volatiles in glasses from the HSDP2 drill core

    NASA Astrophysics Data System (ADS)

    Seaman, Caroline; Sherman, Sarah Bean; Garcia, Michael O.; Baker, Michael B.; Balta, Brian; Stolper, Edward

    2004-09-01

    H2O, CO2, S, Cl, and F concentrations are reported for 556 glasses from the submarine section of the 1999 phase of HSDP drilling in Hilo, Hawaii, providing a high-resolution record of magmatic volatiles over ˜200 kyr of a Hawaiian volcano's lifetime. Glasses range from undegassed to having lost significant volatiles at near-atmospheric pressure. Nearly all hyaloclastite glasses are degassed, compatible with formation from subaerial lavas that fragmented on entering the ocean and were transported by gravity flows down the volcano flank. Most pillows are undegassed, indicating submarine eruption. The shallowest pillows and most massive lavas are degassed, suggesting formation by subaerial flows that penetrated the shoreline and flowed some distance under water. Some pillow rim glasses have H2O and S contents indicating degassing but elevated CO2 contents that correlate with depth in the core; these tend to be more fractionated and could have formed by mixing of degassed, fractionated magmas with undegassed magmas during magma chamber overturn or by resorption of rising CO2-rich bubbles by degassed magmas. Intrusive glasses are undegassed and have CO2 contents similar to adjacent pillows, indicating intrusion shallow in the volcanic edifice. Cl correlates weakly with H2O and S, suggesting loss during low-pressure degassing, although most samples appear contaminated by seawater-derived components. F behaves as an involatile incompatible element. Fractionation trends were modeled using MELTS. Degassed glasses require fractionation at p? ≈ 5-10 bars. Undegassed low-SiO2 glasses require fractionation at p? ≈ 50 bars. Undegassed and partially degassed high-SiO2 glasses can be modeled by coupled crystallization and degassing. Eruption depths of undegassed pillows can be calculated from their volatile contents assuming vapor saturation. The amount of subsidence can be determined from the difference between this depth and the sample's depth in the core. Assuming subsidence at 2.5 mm/y, the amount of subsidence suggests ages of ˜500 ka for samples from the lower 750 m of the core, consistent with radiometric ages. H2O contents of undegassed low-SiO2 HSDP2 glasses are systematically higher than those of high-SiO2 glasses, and their H2O/K2O and H2O/Ce ratios are higher than typical tholeiitic pillow rim glasses from Hawaiian volcanoes.

  7. The Ultramafic Complex of Reinfjord: from the Magnetic Petrology to the Interpretation of the Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; McEnroe, Suzanne; Church, Nathan; Fichler, Christine; ter Maat, Geertje W.; Fumagalli, Patrizia; Oda, Hirokuni; Larsen, Rune B.

    2017-04-01

    A 3D model of the geometry of the Reinfjord complex integrating geological and petrophysical data with high resolution aeromagnetic, ground magnetic and gravity data is developed. The Reinfjord ultramafic complex in northern Norway is one of the major ultramafic complexes of the Neoproterozoic Seiland Igneous Province (SIP). This province, now embedded in the Caledonian orogen, was emplaced deep in the crust (30 km of depth) and is believed to represent a section of the deep plumbing system of a large igneous province. The Reinfjord complex consists of three magmatic series formed during multiple recharging events resulting in the formation of a cylindrically zoned complex with a slightly younger dunite core surrounded by wehrlite and lherzolite units. Gabbros and gneiss form the host rock. The ultramafic complex has several distinct magnetic anomalies which do not match the mapped lithological boundaries, but are correlated with changes in magnetic susceptibilities. In particular, the deviating densities and magnetic susceptibilities at the northern side of the complex are interpreted to be due to serpentinization. Detailed studies of magnetic anomalies and magnetic properties of samples can provide a powerful tool for mapping petrological changes. Samples can have wide range of magnetic properties depending on composition, amount of ferromagnetic minerals, grain sizes and microstructures. Later geological processes such as serpentinization can alter this signal. Therefore a micro-scale study of magnetic anomalies at the thin section scale was carried out to understand better the link between the magnetic petrology and the magnetic anomalies. Serpentinization can significantly enhance the magnetic properties and therefore change the nature of the magnetic anomaly. The detailed gravity and magnetic model here presented shows the subsurface structure of the ultramafic complex refining the geological interpretation of the magnetic sources within it, and the local effects of serpentinization.

  8. Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano

    NASA Astrophysics Data System (ADS)

    Pánisová, Jaroslava; Balázs, Attila; Zalai, Zsófia; Bielik, Miroslav; Horváth, Ferenc; Harangi, Szabolcs; Schmidt, Sabine; Götze, Hans-Jürgen

    2017-12-01

    Three-dimensional geophysical modelling of the early Late Miocene Pásztori volcano (ca. 11-10 Ma) and adjacent area in the Little Hungarian Plain Volcanic Field of the Danube Basin was carried out to get an insight into the most prominent intra-crustal structures here. We have used gridded gravity and magnetic data, interpreted seismic reflection sections and borehole data combined with re-evaluated geological constraints. Based on petrological analysis of core samples from available six exploration boreholes, the volcanic rocks consist of a series of alkaline trachytic and trachyandesitic volcanoclastic and effusive rocks. The measured magnetic susceptibilities of these samples are generally very low suggesting a deeper magnetic source. The age of the modelled Pásztori volcano, buried beneath a 2 km-thick Late Miocene-to-Quaternary sedimentary sequence, is 10.4 +/- 0.3 Ma belonging to the dominantly normal C5 chron. Our model includes crustal domains with different effective induced magnetizations and densities: uppermost 0.3-1.8 km thick layer of volcanoclastics underlain by a trachytic-trachyandesitic coherent and volcanoclastic rock units of a maximum 2 km thickness, with a top situated at minimal depth of 2.3 km, and a deeper magmatic pluton in a depth range of 5-15 km. The 3D model of the Danube Basin is consistent with observed high ΔZ magnetic anomalies above the volcano, while the observed Bouguer gravity anomalies correlate better with the crystalline basement depth. Our analysis contributes to deeper understanding of the crustal architecture and the evolution of the basin accompanied by alkaline intraplate volcanism.

  9. Fine-Scale Community Structure Analysis of ANME in Nyegga Sediments with High and Low Methane Flux

    PubMed Central

    Roalkvam, Irene; Dahle, Håkon; Chen, Yifeng; Jørgensen, Steffen Leth; Haflidason, Haflidi; Steen, Ida Helene

    2012-01-01

    To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance, and diversity of anaerobic methanotrophs (ANME), we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. These data were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A down core stratification and high relative abundance of ANME were observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low methane horizons to ANME-1 dominance in horizons near the sulfate-methane transition zone. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through operational taxonomical units (OTU) clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free-living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The observation of specific ANME-2a/b OTUs at each location could reflect that organisms within this clade are adapted to different geochemical settings, perhaps due to differences in methane affinity. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments. PMID:22715336

  10. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  11. Comparison of lipid and calorie loss from donor human milk among 3 methods of simulated gavage feeding: one-hour, 2-hour, and intermittent gravity feedings.

    PubMed

    Brooks, Christine; Vickers, Amy Manning; Aryal, Subhash

    2013-04-01

    The objective of this study was to compare the differences in lipid loss from 24 samples of banked donor human milk (DHM) among 3 feeding methods: DHM given by syringe pump over 1 hour, 2 hours, and by bolus/gravity gavage. Comparative, descriptive. There were no human subjects. Twenty-four samples of 8 oz of DHM were divided into four 60-mL aliquots. Timed feedings were given by Medfusion 2001 syringe pumps with syringes connected to narrow-lumened extension sets designed for enteral feedings and connected to standard silastic enteral feeding tubes. Gravity feedings were given using the identical syringes connected to the same silastic feeding tubes. All aliquots were analyzed with the York Dairy Analyzer. Univariate repeated-measures analyses of variance were used for the omnibus testing for overall differences between the feeding methods. Lipid content expressed as grams per deciliter at the end of each feeding method was compared with the prefed control samples using the Dunnett's test. The Tukey correction was used for other pairwise multiple comparisons. The univariate repeated-measures analysis of variance conducted to test for overall differences between feeding methods showed a significant difference between the methods (F = 58.57, df = 3, 69, P < .0001). Post hoc analysis using the Dunnett's approach revealed that there was a significant difference in fat content between the control sample and the 1-hour and 2-hours feeding methods (P < .0001), but we did not find any significant difference in fat content between the control and the gravity feeding methods (P = .3296). Pairwise comparison using the Tukey correction revealed a significant difference between both gravity and 1-hour feeding methods (P < .0001), and gravity and 2-hour feeding method (P < .0001). There was no significant difference in lipid content between the 1-hour and 2-hour feeding methods (P = .2729). Unlike gravity feedings, the timed feedings resulted in a statistically significant loss of fat as compared with their controls. These findings should raise questions about how those infants in the neonatal intensive care unit are routinely gavage fed.

  12. Great Explorations in Math and Science[R] (GEMS[R]) Space Science. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2012

    2012-01-01

    "Great Explorations in Math and Science[R] (GEMS[R]) Space Science" is an instructional sequence for grades 3-5 that covers fundamental concepts, including planetary sizes and distance, the Earth's shape and movement, gravity, and moon phases and eclipses. Part of the "GEMS"[R] core curriculum, "GEMS[R] Space Science"…

  13. Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Earth

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Bentley, C. R.; Bilham, R.; Carton, J. A.; Eanes, R. J.; Herring, T. A.; Kaula, W. M.; Lagerloef, G. S. E.; Rojstaczer, S.; Smith, W. H. F.; hide

    1998-01-01

    The Earth is a dynamic system-it has a fluid, mobile atmosphere and oceans, a continually changing distribution of ice, snow, and groundwater, a fluid core undergoing hydromagnetic motion, a mantle undergoing both thermal convection and rebound from glacial loading of the last ice age, and mobile tectonic plates.

  14. Evaluation of mixed hardwood studs manufactured by the Saw-Dry-Rip (SDR) process

    Treesearch

    R. R. Maeglin; R. S. Boone

    1985-01-01

    This paper describes increment cores (a useful tool in forestry and wood technology) and their uses which include age determination, growth increment, specific gravity determination, fiber length measurements, fibril angle measurements, cell measurements, and pathological investigations. Also described is the use and care of the increment borer which is essential in...

  15. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    NASA Astrophysics Data System (ADS)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  16. Effect of altered gravity on temperature regulation in mammals: Investigation of gravity effect on temperature regulation in mammals

    NASA Technical Reports Server (NTRS)

    Horwitz, B. A.; Horowitz, J. M.

    1977-01-01

    Male, Long-Evans hooded rats were instrumented for monitoring core and hypothalamic temperatures as well as shivering and nonshivering thermogenesis in response to decreased ambient temperature in order to characterize the nature of the neural controller of temperature in rats at 1G and evaluate chronic implantation techniques for the monitoring of appropriate parameters at hypergravic fields. The thermoregulatory responses of cold-exposed rats at 2G were compared to those at 1G. A computer model was developed to simulate the thermoregulatory system in the rat. Observations at 1 and 2G were extended to acceleration fields of 1.5, 3.0 and 4.0G and the computer model was modified for application to altered gravity conditions. Changes in the acceleration field resulted in inadequate heat generation rather than increased heat loss. Acceleration appears to impair the ability of the neurocontroller to appropriately integrate input signals for body temperature maintenance.

  17. Geophysical interpretation of the gneiss terrane of northern Washington and southern British Columbia, and its implications for uranium exploration

    USGS Publications Warehouse

    Cady, John W.; Fox, Kenneth F.

    1984-01-01

    The Omineca crystalline belt of northeastern Washington and southern British Columbia has a regional Bouguer gravity high, and individual gneiss domes within the terrane are marked by local gravity highs. Models of crustal structure that satisfy the limited available seismic-refraction data and explain the gravity high over the gneiss terrane permit the hypothesis that the core metamorphic complexes are the surface expression of a zone of dense infrastructure that makes up the upper 20 km (kilometers) of the crust within the crystalline belt. The Omineca crystalline belt is characterized regionally by low aeromagnetic relief. The gneiss domes and biotite- and biotite-muscovite granites are generally marked by low magnetic relief, whereas hornblende-biotite granites often cause magnetic highs. Exceptional magnetic highs mark zones of magnetic rock within the biotite- and biotite-muscovite granites and the gneiss domes; these areas are worthy of study, both to determine the origin and disposition of the magnetite and to explore the possible existence of uraniferous magnetite deposits.

  18. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  19. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure

    NASA Astrophysics Data System (ADS)

    Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider

    2017-02-01

    Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2 Gz for 30 min and an intermittent (INTER) protocol with repeated intervals of +2 Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46 min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure.

  20. Enriching and Separating Primary Copper Impurity from Pb-3 Mass Pct Cu Melt by Super-Gravity Technology

    NASA Astrophysics Data System (ADS)

    Yang, Yuhou; Song, Bo; Song, Gaoyang; Yang, Zhanbing; Xin, Wenbin

    2016-10-01

    In this study, super-gravity technology was introduced in the lead bullion-refining process to investigate the enriching and separating laws of copper impurity from Pb-3 mass pct Cu melt. With the gravity coefficient G = 700 at the cooling rate of ν = 5 K min-1, the entire copper phase gathers at the upper area of the sample, and it is hard to find any copper particles at the bottom area of the sample. The floatation movement of copper phase was greatly intensified by super gravity and the mass pct of copper in tailing lead is up to 8.631 pct, while that in the refined lead is only 0.113 pct. The refining rate of lead bullion reached up to 94.27 pct. Copper-phase impurity can be separated effectively from Pb-3 mass pct Cu melt by filtration method in super-gravity field, and the separation efficiency increased with the increasing gravity coefficient in the range of G ≥ 10. After filtration at 613 K (340 °C) with gravity coefficient G = 100 for 10 minutes, the refined lead, with just 0.157 mass pct copper impurity, was separated to the bottom of the crucible, and the copper dross containing only 23.56 mass pct residual lead was intercepted by the carbon fiber felt, leading to the separation efficiency up to 96.18 pct (meaning a great reduction in metal loss).

  1. Time-Variable Gravity from Satellite Laser-Ranging: The Low-Degree Components and Their Connections with Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Satellite laser-ranging (SLR) has been observing the tiny variations in Earth s global gravity for over 2 decades. The oblateness of the Earth's gravity field, J2, has been observed to undergo a secular decrease of J2 due mainly to the post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again towards normal. This anomaly signifies a large interannual change in global mass distribution. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. In fact, a strong correlation has been found between the J2 variability and the Pacific decadal oscillation. It is relatively more difficult to solve for corresponding signals in the shorter wavelength harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal harmonic components have significant interannual signal that appears to be related to mass transport related to climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a monthly time sequence of low-degree component map of the time-variable gravity complete through degree 4, and examine possible geophysical/climatic causes.

  2. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  3. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  4. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  5. 43 CFR 3593.1 - Core or test hole cores, samples, cuttings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (d) When drilling on lands with potential for encountering high pressure oil, gas or geothermal... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Core or test hole cores, samples, cuttings...) EXPLORATION AND MINING OPERATIONS Bore Holes and Samples § 3593.1 Core or test hole cores, samples, cuttings...

  6. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents (hyperpycnal flow). The depositional models may be applicable to oil and gas exploration and production from sediment gravity flow systems in similar lacustrine depositional environments elsewhere.

  7. Compact Stars in Eddington-inspired Born-Infeld Gravity and General Relativity

    NASA Astrophysics Data System (ADS)

    Sham, Yu Hin

    In this thesis we apply the Eddington inspired Born-Infeld (EiBI) gravity to study the structure and the properties of compact stars. The hydrostatic equilibrium structure of compact stars characterized by different equations of state (EOSs) is considered and it is found that EiBI gravity can lead to different new features that are not found in standard general relativity (GR). A unified framework to study radial perturbations and the stability of compact stars in this theory is also developed. As in the GR case, the frequency- square of the fundamental oscillation mode vanishes for the maximum mass stellar configuration. Also, the oscillation modes depend on the parameter kappa introduced in EiBI gravity and the dependence is stronger for higher-order modes. We also discover that EiBI gravity imposes certain constraints on the EOSs that allow physical stable equilibrium states of compact stars to exist. However, such constraints are unphysical as the validity of an EOS should be independent of the theory of gravity, hinting that EiBI gravity needs to be modified. On the other hand, we demonstrate that two universal relations of compact stars, namely the I-Love-Q relation, which relates the moment of intertia, the tidal Love number and the quadrupole moment of compact stars, and the f-I relation, which links the f-mode oscillation frequency and the moment of inertia of compact stars together, still hold in EiBI gravity within the observational bounds of kappa. The origin of the two universal relations is then studied and it is found that a stiff EOS at the core of the compact star guarantees the universality. The two universal relations are further extended and universal relations relating the multipolar f-mode oscillation frequency and the corresponding multipolar tidal Love number, which can be derived analytically in the Newtonian limit for stars with sufficiently stiff EOSs, are found.

  8. Ground Penetrating Radar, Magnetic and Compositional Analysis of Sediment Cores and Surface Samples: The Relationships Between Lacustrine Sediments and Holocene Lake- Level and Climate Change at Deming Lake, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Murray, R.; Lascu, I.; Plank, C.

    2007-12-01

    Deming Lake is a small (<1 square km), deep (about 17m), meromictic kettle lake situated near the prairie- forest boundary, in Itasca State Park, MN. Because of the lake's location and morphology, the accumulated sediments comprise a high-resolution record of limnological and ecological changes in response to Holocene climate variations. We used a shore perpendicular transect of three cores (located in littoral, mid-slope, and profundal settings) and ground penetrating radar (GPR) profiles to investigate Holocene lake-level variability at Deming. Cores were sampled continuously at a 1-2 cm resolution and sediment composition (in terms of percent organic matter, carbonate material, and minerogenic residue) was determined via loss on ignition (LOI). Isothermal remanent magnetization (IRM) and anhysteretic remanent magnetization (ARM) were used as proxies of magnetic mineral concentration and grain size. Four lithostratigraphic units were identified and correlated between cores based on these analyses. Changes in GPR facies corroborate the correlation between the two shallow cores. In order to inform our interpretation of down-core variations in magnetic properties and LOI values in terms of variations in lake depth, a suite of over 70 modern sediment samples were collected from the basin and analyzed. LOI compositional variability across the basin was high, with no clear trends related to depth or distance from shore. A sharp decrease in minerogenic content was observed at depths consistent with a predicted wave-base of 0.5 m, but aside from this trend it appears the steep slopes of much of the basin promote gravity driven slumping and mixing of sediments at depth. In the profundal sediments IRM values are routinely 5% higher than in the slope and littoral environments, while ARM/IRM ratios indicate an increase in magnetic grain size with water depth. We infer that an increase in coarse organic material in the shallow-water cores of Deming records a period of aridity (associated with a decrease lake-level less than 2m based on GPR profiles) and/or increased water clarity during the regionally expansive mid-Holocene dry period. We do not see clear evidence of late-Holocene lake level change of a significant magnitude (i.e. >1m). While remanence measurements (especially IRM) often correlate with the LOI residue, interference in the IRM resulting from the dissolution of magnetic minerals casts uncertainty into the reliability of our magnetic measurements as a signal of climate driven limnological change. Additional measurements must be performed before definite interpretations about the lake-level changes at Deming can be made. We suggest that future studies look more closely at the near-shore record (water depths <1m), as our results indicate shoreline migration in response to moisture balance fluctuations during the last 1000 years (as recorded at numerous sites in the great plains and upper Midwest) may have been subtle.

  9. Sedimentary records of Typhoon Haiyan in the South China Sea

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Chen, Y. H.; Chang, J. H.; Hsu, H. H.; Yu, P. S.; Liu, C. S.

    2016-12-01

    South China Sea (SCS), which is located at the boundary of the Eurasian, Philippine Sea, and Indian plates, is the largest marginal sea of the northwest Pacific and also on the North Western Pacific corridor of typhoons. The unique tectonic setting and climatic conditions make it has to face the severe natural hazards, like submarine landslides, and high sediment discharges which induced by typhoon. On November 8, 2013, the Typhoon Haiyan, which was one of the largest tropical cyclones ever recorded in western Pacific, devastated Philippines and caused catastrophic destruction. Before the Typhoon Haiyan reached Hainan Province, China and Quangninh Province, Vietnam, it emerged over the SCS. How was the large amount of terrestrial materials distributed and recorded in deep sea sediments by such intense typhoon? Is it possible for us to reconstruct the history of extreme tropical cyclones by using deep sea cores? In this study, twelve gravity cores were collected in the Central SCS Basin and around Taiping Island (Itu Aba Island) from 2014 to 2015 and a series of analysis including Multi-Sensor Core Logger, XRF Core Scanner, core surface and X-radiograph images, grain size, and excess 210Pb chronology were conducted for modern extreme event records in cores and attempt to evaluate the possibility of reconstructed extreme typhoon records in cores from the SCS. On core surface images, an obvious brownish oxidized layer exist in core top with higher 210Pb activities beneath the layer. According to the sampling time, we conjecture the oxidized layer might formed by Typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippines. The Power Barge 103 of Napocor in Estancia IIoilo was dislodged from its mount by Typhoon Haiyan and the United Nations Disaster Assessment and Coordination Team reported 600,000 liters of bunker fuel had spilled. To clarify the relationship between the oil spill and high manganese records in sediments, some further analysis is needed. Our analysis result shows, in the Central SCS Basin, over 80 cm turbidite layer was deposited by Typhoon Haiyan and it will take more than 4000 years to deposit on seafloor without the impact of extreme events.

  10. On the preservation of laminated sediments along the western margin of North America

    USGS Publications Warehouse

    VanGeen, A.; Zheng, Yen; Bernhard, J.M.; Cannariato, K.G.; Carriquiry, J.; Dean, W.E.; Eakins, B.W.; Ortiz, J.D.; Pike, J.

    2003-01-01

    Piston, gravity, and multicores as well as hydrographic data were collected along the Pacific margin of Baja California to reconstruct past variations in the intensity of the oxygen-minimum zone (OMZ). Gravity cores collected from within the OMZ north of 24??N did not contain laminated surface sediments even though bottom water oxygen (BWO) concentrations were close to 5 ??mol/kg. However, many of the cores collected south of 24??N did contain millimeter- to centimeter-scale, brown to black laminations in Holocene and older sediments but not in sediments deposited during the Last Glacial Maximum. In addition to the dark laminations, Holocene sediments in Soledad Basin, silled at 290 m, also contain white coccolith laminae that probably represent individual blooms. Two open margin cores from 430 and 700 m depth that were selected for detailed radiocarbon dating show distinct transitions from bioturbated glacial sediment to laminated Holocene sediment occurring at 12.9 and 11.5 ka, respectively. The transition is delayed and more gradual (11.3-10.0 ka) in another dated core from Soledad Basin. The observations indicate that bottom-water oxygen concentrations dropped below a threshold for the preservation of laminations at different times or that a synchronous hydrographic change left an asynchronous sedimentary imprint due to local factors. With the caveat that laminated sections should therefore not be correlated without independent age control, the pattern of older sequences of laminations along the North American western margin reported by this and previous studies suggests that multiple patterns of regional productivity and ventilation prevailed over the past 60 kyr. Copyright 2003 by the American Geophysical Union.

  11. ASTEROSEISMOLOGY OF THE NEARBY SN II PROGENITOR RIGEL. II. {epsilon}-MECHANISM TRIGGERING GRAVITY-MODE PULSATIONS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moravveji, Ehsan; Moya, Andres; Guinan, Edward F., E-mail: moravveji@iasbs.ac.ir

    2012-04-10

    The cores of luminous B- and A-type (BA) supergiant stars are the seeds of later core-collapse supernovae. Thus, constraining the near-core conditions in this class of stars can place tighter constraints on the size, mass, and chemical composition of supernova remnants. Asteroseismology of these massive stars is one possible approach into such investigations. Recently, Moravveji et al. in 2012 (hereafter Paper I) extracted 19 significant frequencies from a 6-year radial velocity monitoring of Rigel ({beta} Ori, B8 Ia). The periods they determined broadly range from 1.22 to 74.74 days. Based on our differentially rotating stellar structure and evolution model, Rigel,more » at its current evolutionary state, is undergoing core He burning and shell H burning. Linear fully non-adiabatic non-radial stability analyses result in the excitation of a dense spectrum of non-radial gravity-dominated mixed modes. The fundamental radial mode (l = 0) and its overtones are all stable. When the hydrogen-burning shell is located even partially in the radiative zone, a favorable condition for destabilization of g-modes through the so-called {epsilon}-mechanism becomes viable. Only those g-modes that have high relative amplitudes in the hydrogen-burning (radiative) zone can survive the strong radiative damping. From the entire observed range of variability periods of Rigel (found in Paper I), and based on our model, only those modes with periods ranging between 21 and 127 days can be theoretically explained by the {epsilon}-mechanism. The origin of the short-period variations (found in Paper I) still remains unexplained. Because Rigel is similar to other massive BA supergiants, we believe that the {epsilon}-mechanism may be able to explain the long-period variations in {alpha} Cygni class of pulsating stars.« less

  12. Coring the Chesapeake Bay impact crater

    USGS Publications Warehouse

    Poag, C.W.

    2004-01-01

    In July 1983, the shipboard scientists of Deep Sea Drilling Project Leg 95 found an unexpected bonus in a core taken 150 kilometers east of Atlantic City, N.J. At Site 612, the scientists recovered a 10-centimeter-thick layer of late Eocene debris ejected from an impact about 36 million years ago. Microfossils and argon isotope ratios from the same layer reveal that the ejecta were part of a broad North American impact debris field, previously known primarily from the Gulf of Mexico and Caribbean Sea. Since that serendipitous beginning, years of seismic reflection profiling, gravity measurements and core drilling have confirmed the source of that strewn field - the Chesapeake Bay impact crater, the largest structure of its kind in the United States, and the sixth-largest impact crater on Earth.

  13. Pseudonephritis is associated with high urinary osmolality and high specific gravity in adolescent soccer players.

    PubMed

    Van Biervliet, Stephanie; Van Biervliet, Jean Pierre; Watteyne, Karel; Langlois, Michel; Bernard, Dirk; Vande Walle, Johan

    2013-08-01

    The study aimed to evaluate the effect of exercise on urine sediment in adolescent soccer players. In 25 15-year-old (range 14.4-15.8 yrs) athletes, urinary protein, osmolality and cytology were analyzed by flow cytometry and automated dipstick analysis before (T(0)), during (T(1)), and after a match (T(2)). All athletes had normal urine analysis and blood pressure at rest, tested before the start of the soccer season. Fifty-eight samples were collected (T(0): 20, T(1): 17, T(2): 21). Proteinuria was present in 20 of 38 samples collected after exercise. Proteinuria was associated with increased urinary osmolality (p < .001) and specific gravity (p < .001). Hyaline and granular casts were present in respectively 8 of 38 and 8 of 38 of the urinary samples after exercise. The presence of casts was associated with urine protein concentration, osmolality, and specific gravity. This was also the case for hematuria (25 of 38) and leucocyturia (9 of 38). Squamous epithelial cells were excreted in equal amounts to white and red blood cells. A notable proportion of adolescent athletes developed sediment abnormalities, which were associated with urinary osmolality and specific gravity.

  14. Gravity, aeromagnetic and rock-property data of the central California Coast Ranges

    USGS Publications Warehouse

    Langenheim, V.E.

    2014-01-01

    Gravity, aeromagnetic, and rock-property data were collected to support geologic-mapping, water-resource, and seismic-hazard studies for the central California Coast Ranges. These data are combined with existing data to provide gravity, aeromagnetic, and physical-property datasets for this region. The gravity dataset consists of approximately 18,000 measurements. The aeromagnetic dataset consists of total-field anomaly values from several detailed surveys that have been merged and gridded at an interval of 200 m. The physical property dataset consists of approximately 800 density measurements and 1,100 magnetic-susceptibility measurements from rock samples, in addition to previously published borehole gravity surveys from Santa Maria Basin, density logs from Salinas Valley, and intensities of natural remanent magnetization.

  15. Megablocks and melt pockets in the Chesapeake Bay impact structure constrained by magnetic field measurements and properties of the Eyreville and Cape Charles cores

    USGS Publications Warehouse

    Shah, A.K.; Daniels, D.L.; Kontny, A.; Brozena, J.

    2009-01-01

    We use magnetic susceptibility and remanent magnetization measurements of the Eyreville and Cape Charles cores in combination with new and previously collected magnetic field data in order to constrain structural features within the inner basin of the Chesapeake Bay impact structure. The Eyreville core shows the first evidence of several-hundred-meter-thick basement-derived megablocks that have been transported possibly kilometers from their pre-impact location. The magnetic anomaly map of the structure exhibits numerous short-wavelength (<2 km) variations that indicate the presence of magnetic sources within the crater fill. With core magnetic properties and seismic reflection and refraction results as constraints, forward models of the magnetic field show that these sources may represent basementderived megablocks that are a few hundred meters thick or melt bodies that are a few dozen meters thick. Larger-scale magnetic field properties suggest that these bodies overlie deeper, pre-impact basement contacts between materials with different magnetic properties such as gneiss and schist or gneiss and granite. The distribution of the short-wavelength magnetic anomalies in combination with observations of small-scale (1-2 mGal) gravity field variations suggest that basement-derived megablocks are preferentially distributed on the eastern side of the inner crater, not far from the Eyreville core, at depths of around 1-2 km. A scenario where additional basement-derived blocks between 2 and 3 km depth are distributed throughout the inner basin-and are composed of more magnetic materials, such as granite and schist, toward the east over a large-scale magnetic anomaly high and less magnetic materials, such as gneiss, toward the west where the magnetic anomaly is lower-provides a good model fi t to the observed magnetic anomalies in a manner that is consistent with both gravity and seismic-refraction data. ?? 2009 The Geological Society of America.

  16. The effects of creatine supplementation on thermoregulation and isokinetic muscular performance following acute (3-day) supplementation.

    PubMed

    Rosene, J M; Matthews, T D; Mcbride, K J; Galla, A; Haun, M; Mcdonald, K; Gagne, N; Lea, J; Kasen, J; Farias, C

    2015-12-01

    The purpose of this investigation was to determine the effects of 3 d of creatine supplementation on thermoregulation and isokinetic muscular performance. Fourteen males performed two exercise bouts following 3 d of creatine supplementation and placebo. Subjects exercised for 60 min at 60-65% of VO2max in the heat followed by isokinetic muscular performance at 60, 180, and 300°·s(-1). Dependent variables for pre- and postexercise included nude body weight, urine specific gravity, and serum creatinine levels. Total body water, extracellular water and intracellular water were measured pre-exercise. Core temperature was assessed every 5 min during exercise. Peak torque and Fatigue Index were used to assess isokinetic muscular performance. Core temperature increased during the run for both conditions. Total body water and extracellular water were significantly greater (P<0.05) following creatine supplementation. No significant difference (P>0.05) was found between conditions for intracellular water, nude body weight, urine specific gravity, and serum creatinine. Pre-exercise scores for urine specific gravity and serum creatinine were significantly less (P<0.05) versus post-exercise. No significant differences (P>0.05) were found in peak torque values or Fatigue Index between conditions for each velocity. A significant (P<0.05) overall velocity effect was found for both flexion and extension. As velocity increased, mean peak torque values decreased. Three d of creatine supplementation does not affect thermoregulation during submaximal exercise in the heat and is not enough to elicit an ergogenic effect for isokinetic muscle performance following endurance activity.

  17. The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.

    2016-01-01

    The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.

  18. The Whole AMS Matrix: Using the Owens Lake, Ardath Slump, and Gaviota Slide cores to explore classification of ellipsoid shapes

    NASA Astrophysics Data System (ADS)

    Schwehr, K.; Driscoll, N.; Tauxe, L.

    2004-12-01

    Categorizing sediment history using Anisotropy of Magnetic Susceptibility (AMS) has been a long standing challenge for the paleomagnetic community. The goal is to have a robust test of shape fabrics that allows workers to classify sediments in terms of being primary depositional fabric, deposition in with currents, or altered fabrics. Additionally, it is important to be able to distinguish altered fabrics into such classes as slumps, crypto-slumps, drilling deformation (such as fluidization from drilling mud and flow-in), and so forth. To try to bring a unified test scheme to AMS interpretation, we are using three example test cases. First is the Owens Lake OL92 core, which has provided previous workers with a long core example in a lacustrian environment. OL92 was classified into five zones based on visual observations of the core photographs. Using these groupings, Rosenbaum et al. (2000) was able to use the deflection of the minimum eigen vector from vertical to classify each individual AMS sample. Second is the Ardath Shale location, which provides a clear case of a lithified outcrop scale problem that showed success with the bootstrap eigen value test. Finally is the Gaviota Slide in the Santa Barbara Basin, which provides usage of 1-2 meter gravity cores. Previous work has focused on Flinn, Jelinek, and bootstrap plots of eigen values. In supporting the shape characterization we have also used a 95% confidence F-Test by means of Hext's statistical work. We have extended the F-Test into a promising new plot of the F12 and F23 confidence values, which shows good clustering in early tests. We have applied all of the available techniques to the above three test cases and will present how each technique either succeeds or fails. Since each method has its own strengths and weaknesses, it is clear that the community needs to carefully evaluate which technique should be applied to any particular problem.

  19. Holocene laminated biogenic mud in Wood Bay (western Ross Sea, Antarctica): geochemical data and preliminary paleoclimatic interpretation.

    NASA Astrophysics Data System (ADS)

    Colizza, Ester; Finocchiaro, Furio; Giglio, Federico; Kuhn, Gerhard; Langone, Leonardo; Presti, Massimo

    2010-05-01

    The study of LGM and Holocene marine sediments is an important goal in Antarctic research and needs high-resolution sequences to reconstruct paleoclimatic events in detail. Literature reports a large number of data coming from inner-shelf bays and fjords, especially around Antarctic peninsula, but also from western Ross Sea. In this note we discuss compositional data from a gravity core (BAY05-45c; 74° 09.7' S, 165° 57.7' E; water depth: 1058 m; core length: 445.5 cm) collected in 2005 during the Italian PNRA cruise into the inner part of Wood Bay, in front of the Aviator Ice tongue. Wood Bay sea floor morphology is charcterised by a narrow basin, deeper than 1,000 m, oriented WNW-ESE, and transversally connected, by a 800-m deep sill, to the Drygalski basin, streching NE-SW. Core sediment is composed by laminated biosiliecous mud, with a strong hydrogen sulphide odour and black in colour. Within a few days from core sampling, sediment became oxidized: laminae colour ranges from dark (from dark olive grey to black) to light (from olive grey to olive). Some lighter laminae have cotton-like texture. Data set include X-ray images, magnetic susceptibility, AMS 14C dating, organic carbon, biogenic silica, XRF-scan of major and minor elements. Discussion of the data will point out inferences about sedimentary processes, paleoproductivity and oceanographic conditions during the Holocene. The most apparent feature is the occurrence, down-core, of at least two intervals of increased productivity, characterised by higher organic carbon and biogenic silica. Within such intervals, a few cm-thick levels show peaks of biogenic silica, as well as of barium, which correspond to relatively lows in organic carbon contents. Organic carbon content is higher in darker laminae, whereas lighter and fluffy laminae display an increased percentage of biogenic silica. Such levels probably mark a rapid and not persistent change in phytoplankton assemblage compositions.

  20. Coring Sample Acquisition Tool

    NASA Technical Reports Server (NTRS)

    Haddad, Nicolas E.; Murray, Saben D.; Walkemeyer, Phillip E.; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Kriechbaum, Kristopher L.; Richardson, Megan; Klein, Kerry J.

    2012-01-01

    A sample acquisition tool (SAT) has been developed that can be used autonomously to sample drill and capture rock cores. The tool is designed to accommodate core transfer using a sample tube to the IMSAH (integrated Mars sample acquisition and handling) SHEC (sample handling, encapsulation, and containerization) without ever touching the pristine core sample in the transfer process.

  1. Fate of the Hoop Conjecture in Quantum Gravity.

    PubMed

    Anzà, Fabio; Chirco, Goffredo

    2017-12-08

    We consider a closed region R of 3D quantum space described via SU(2) spin networks. Using the concentration of measure phenomenon we prove that, whenever the ratio between the boundary ∂R and the bulk edges of the graph overcomes a finite threshold, the state of the boundary is always thermal, with an entropy proportional to its area. The emergence of a thermal state of the boundary can be traced back to a large amount of entanglement between boundary and bulk degrees of freedom. Using the dual geometric interpretation provided by loop quantum gravity, we interpret such phenomenon as a pregeometric analogue of Thorne's "hoop conjecture," at the core of the formation of a horizon in general relativity.

  2. KSC-2011-6513

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- Technicians lower NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft into place atop a United Launch Alliance Delta II rocket on Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  3. KSC-2011-6103

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to begin two days of fueling activities on NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  4. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2010-12-01

    During the spring-summer intersession, we annually offer an intensive three-week field course designed to provide hands-on instruction and training for graduate and upper-level undergraduate students in the acquisition, processing, interpretation, and visualization of marine geological and geophysical data. Now in year four, the course covers high-resolution air gun and streamer seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students first participate in three days of classroom instruction designed to provide theoretical and technical background on each field method and impart geologic context of the study area. Students then travel to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22’ aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA’s R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used for high-resolution seismic reflection, CHIRP sub-bottom profiling, gravity coring, and vibracoring. Students assist with survey design, learn systems setup and acquisition parameters, and safe instrument deployment and retrieval techniques. Students also perform on-shore sedimentology lab work, data quality control, data processing and visualization using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. During the course’s final week, students return to the classroom where, collaborating in teams of three, they integrate and interpret data in a final project which examines the geologic history and/or sedimentary processes as typified by the Gulf Coast continental shelf. The course culminates in a series of professional-level final presentations and discussions. Following the course, students report a greater understanding of marine geology and geophysics via the course’s intensive, hands-on, team approach, and low instructor to student ratio. This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  5. Environmental changes in two lakes of Northern Patagonia (Chile): A 1000 yr reconstruction based on pollen and charcoal

    NASA Astrophysics Data System (ADS)

    Nicole, Vargas; Laura, Torres; Alberto, Araneda; Fabiola, Cruces; Fernando, Torrejón; Denisse, Alvarez; G, Bizama; Nathalie, Fagel; Roberto, Urrutia

    2010-05-01

    We aim to reconstruct the environmental changes experimented in Patagonian ecosystems during the last 1000 years. We analyze sediment cores from two lakes (Thompson and Burgos), located in Aysen Region, Southern Chile. The samples were obtained using a gravity corer and sampled at intervals of 1 cm to 30 cm depth and every 5 cm until the end of the core. Thompson lake sediment core was sampled every 5 cm. Age model is based on radiocarbon datings on bulk sediments and macroremains. In Burgos lake we evidence two main climatic changes. A wet period between 876-1444 AD is marked by the presence of Pteridophytes. A colder and dryer period is then evidenced by an increase of Berberis sp between 1444 and 1656 AD. From 1834 AD to Present the sediment record is mainly affected by human activities. High concentrations of carbon particles and a sharp change in pollen assemblage (increase of Poaceae, decrease of Nothofagus dombeyi-Type) are indicators of two large fire events. The lacustrine sediment of Thompson is characterized by a wetter period, between 874 - 1168 AD, with abundance of Pteridophytes. Then from 1168 AD to Present the environmental conditions of the watershed were characterized by lower ferns and fire events. Two major fires were evidenced between 1850 AD and Present. Like in Burgos they are marked by major changes in plant associations (sharp increase in Poaceae, drastic loss of Nothofagus dombeyi-Type). Wet periods identified in both lakes at the base of the sediment record could correspond to manifestations of a warm climate anomaly like the Medieval Warm Period. The dry and cold period, especially obvious in the Burgos record, could be associated to a cold climate anomaly. Finally the great changes in vegetation that occurred from the year ~ 1830 in the basin of the two lakes were directly related to human activities (forest cutting) developed during the ninetheenth and twentieth centuries. This research is funded by both Chilean and Belgian projects (Fondecyt project N° 1070508; WBI Wallonie-Chile cooperation project, FNRS and ULg fundings).

  6. Biogeochemical and Microbial Survey of Gravity Cores from the Guaymas Basin and Sonora Margin

    NASA Astrophysics Data System (ADS)

    Buckley, A.; Mckay, L. J.; Chanton, J.; Hensen, C.; Turner, T.; Aiello, I. W.; Ravelo, A. C.; Mortera, C.; Teske, A.

    2015-12-01

    During the cruise "Guaymas14" with RV El Puma (Oct. 14-25, 2014), 15 sediment cores were obtained from the Guaymas Basin Ridge flanks and the Sonora Margin, to contrast the shallow subsurface sediments of the seafloor set at this spreading center and its adjacent continental margin. Here we present biogeochemical profiles of porewater dissolved gases and stable ions, along with high-throughout 16S rRNA gene sequencing of selected samples. Cores from the NW and SE ends of the Guaymas Basin ridge flanks were not sulfidic, and showed neither sulfate depletion nor methane accumulation. In contrast, samples of compression-impacted Sonora Margin on the NE edge of Guaymas Basin and from the upper Sonora Margin beneath the oxygen minimum zone showed an abundance of sulfide, DIC with sulfate depletion, and accumulation of biogenic methane (δ13C-CH4 ca. -85 to -88 ‰) at supersaturated concentrations below sulfate-replete sediment. Samples from an attenuated off-axis seep site on the NW flank of Guaymas Basin differed from both Sonora Margin and Guaymas Basin. The off-axis seep sediments contained 1 to 1.5 mM methane, with distinct δ13C -isotopic content (δ13C-CH4 near -60 ‰); intermediate to the biogenic methane of the Sonora Margin and the hydrothermally produced methane at Guaymas Basin. Unaltered sulfate and low sulfide concentrations indicate insufficiently reduced conditions, suggesting the methane was not produced in situ. Porewater DIC concentrations in the old seep site and the control site were similar to each other (3-5 mM), and lower than in the Sonora Margin sites (ca. 20-40 mM), indicating low bioremineralization in the old seep site and control sediments. Diverse seafloor habitats are expected to result in distinct microbiota that range from strictly anaerobic seep specialists and methane-cycling archaea in the Sonora Margin to diversified heterotrophic communities in the off-axis ridge flank sediments of Guaymas Basin; high-throughput sequencing should also address potential hydrothermal microbial signature in the attenuated off-axis seep site.

  7. Evaluating Core Quality for a Mars Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.

    2012-01-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).

  8. An initial study of void formation during solidification of aluminum in normal and reduced-gravity

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Foerster, George; Gotti, Daniel J.; Neumann, Eric S.; Johnston, J. C.; De Witt, Kenneth J.

    1992-01-01

    Void formation due to volumetric shrinkage during aluminum solidification was observed in real time using a radiographic viewing system in normal and reduced gravity. An end chill directional solidification furnace with water quench was developed to solidify aluminum samples during the approximately 16 seconds of reduced gravity (+/- 0.02g) achieved by flying an aircraft through a parabolic trajectory. Void formation was recorded for two cases: first a nonwetting system; and second, a wetting system where wetting occurs between the aluminum and crucible lid. The void formation in the nonwetting case is similar in normal and reduced gravity, with a single vapor cavity forming at the top of the crucible. In the wetting case in reduced gravity, surface tension causes two voids to form in the top corners of the crucible, but in normal gravity only one large voids forms across the top.

  9. Reprocessing the GRACE-derived gravity field time series based on data-driven method for ocean tide alias error mitigation

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Sneeuw, Nico; Jiang, Weiping

    2017-04-01

    GRACE mission has contributed greatly to the temporal gravity field monitoring in the past few years. However, ocean tides cause notable alias errors for single-pair spaceborne gravimetry missions like GRACE in two ways. First, undersampling from satellite orbit induces the aliasing of high-frequency tidal signals into the gravity signal. Second, ocean tide models used for de-aliasing in the gravity field retrieval carry errors, which will directly alias into the recovered gravity field. GRACE satellites are in non-repeat orbit, disabling the alias error spectral estimation based on the repeat period. Moreover, the gravity field recovery is conducted in non-strictly monthly interval and has occasional gaps, which result in an unevenly sampled time series. In view of the two aspects above, we investigate the data-driven method to mitigate the ocean tide alias error in a post-processing mode.

  10. Note: Planetary gravities made simple: Sample test of a Mars rover wheel.

    PubMed

    Viera-López, G; Serrano-Muñoz, A; Amigó-Vega, J; Cruzata, O; Altshuler, E

    2017-08-01

    We introduce an instrument for a wide spectrum of experiments on gravities other than our planet's. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is able to detect the falling (or rising) and then the stabilization of the effective gravity and to trigger actuators depending on the experiment. Gravities within the range 0.4 g-1.2 g are easily achieved with acceleration noise of the order of 0.01 g. Under Martian gravity, we are able to perform experiments of approximately 1.5 s duration. The system includes features such as WiFi and a web interface with tools for the setup, monitoring, and data analysis of the experiment. We briefly show a case study in testing the performance of a model Mars rover wheel in low gravities.

  11. Note: Planetary gravities made simple: Sample test of a Mars rover wheel

    NASA Astrophysics Data System (ADS)

    Viera-López, G.; Serrano-Muñoz, A.; Amigó-Vega, J.; Cruzata, O.; Altshuler, E.

    2017-08-01

    We introduce an instrument for a wide spectrum of experiments on gravities other than our planet's. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is able to detect the falling (or rising) and then the stabilization of the effective gravity and to trigger actuators depending on the experiment. Gravities within the range 0.4 g-1.2 g are easily achieved with acceleration noise of the order of 0.01 g. Under Martian gravity, we are able to perform experiments of approximately 1.5 s duration. The system includes features such as WiFi and a web interface with tools for the setup, monitoring, and data analysis of the experiment. We briefly show a case study in testing the performance of a model Mars rover wheel in low gravities.

  12. Collapse scenarios in magnetized star-forming regions

    NASA Astrophysics Data System (ADS)

    Juarez, Carmen

    2017-04-01

    Turbulence, magnetic fields and gravity driven flows are important for the formation of new stars. Although magnetic fields have been proven to be important in the formation of stars, only a few works have been done combining magnetic field and kinematic information. Such studies are important to analyze both gravity and gas dynamics and be able to compare them with the magnetic field. In this thesis we will combine dust polarization studies with kinematic analysis towards different star-forming regions. We aim to study the physical properties at core scales (<0.1 pc) from molecular line and dust emission, and study the role of the magnetic field in their dynamic evolution. For this, we will use millimeter and submillimeter observational data taken towards low- and high- mass star-forming regions in different environments and evolutionary states. The first project is the study of the physical, chemical and magnetic properties of the pre-stellar core FeSt1-457 in the Pipe nebula. We studied the emission of the molecular line N2H+(1-0) which is a good tracer of dense gas and therefore describes well the structure of the core. In addition, we detected more than 15 molecular lines and found a clear chemical spatial differentiation for molecules with nitrogen, oxygen and sulfur. Using the ARTIST radiative transfer code (Brinch & Hogerheijde 2010, Padovani et al., 2011, 2012, Jørgensen et al., 2014), we simulated the emission of the different molecules detected and estimated their abundance. In addition, we estimated the magnetic field properties of the core (using the Chandrasekhar-Fermi approximation) from polarization data previously obtained by Alves et al., (2014). Finally, we found interesting correlations between the polarization properties and the chemistry in the region. The second project is the study of a high-mass star-forming region called NGC6334V. NGC6334V is in a more advanced evolutionary state and in an environment surrounded by other massive star-forming regions. During the project we studied the magnetic field from the polarized emission of the dust and also the kinematics of the gas from the molecular line emission of the different tracers of dense gas. From the molecular emission of the gas tracing the envelope of the dense core, we see two different velocity structures separated by 2 km/s and converging towards the potential well in the region. In addition, the magnetic field also presents a bimodal pattern following the distribution of the two velocity structures. Finally, we compared the observational results with 3D magnetohydrodynamic simulations of star-forming regions dominated by gravity. The last project is the study of a lower-mass star-forming region, L1287. From the data obtained with the SMA, the dust continuum structure shows six main dense cores with masses between 0.4 and 4 solar masses. The dense gas tracer DCN(3- 2) shows two velocity structures separated by 2-3 km/s, converging towards the highest-density region, the young stellar object IRAS 00338+6312, in a similar scenario to the one observed in the higher-mass case of NGC6334V. Finally, the studies of the pre-stellar core FeSt1-457 and the massive region NGC6334V, show how the magnetic field has been overcome by gravity and is not enough to avoid the gravitational collapse. In addition, NGC6334V and the lower- mass region L1287 present very similar scenarios with the material converging from large scales ( 0.1 pc) to the potential wells of both regions at smaller scales ( 0.02 pc) through two dense gas flows separated by 2-3 km/s. In a similar scenario, FeSt1-457 is located just in the region where two dense gas structures separated by 3 km/s appear to converge.

  13. Effect of midrotation fertilization on growth and specific gravity of loblolly pine

    Treesearch

    Finto Antony; Lewis Jordan; Richard F. Daniels; Laurence R. Schimleck; Alexander Clark III; Daniel B. Hall

    2009-01-01

    Wood properties and growth were measured on breast-height cores and on disks collected at different heights from a thinned and fertilized midrotation loblolly pine (Pinus taeda L.) plantation in the lower Coastal Plain of North Carolina. The study was laid out in a randomized complete-block design receiving four levels of nitrogen (N) fertilizer: unfertilized...

  14. Effects-Based Decision Making in the War on Terror

    DTIC Science & Technology

    2005-06-01

    systems. The first “ actionable ” publication in the field of EBO was Thinking Effects, Effects-Based Methodology for Joint Operations by Mann...of those issues . First, the concept of a center of gravity has been a core part of military planning since Clausewitz. Joint Publication 1-02...Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are

  15. EMERGENCY SHUTDOWN FOR NUCLEAR REACTORS

    DOEpatents

    Paget, J.A.; Koutz, S.L.; Stone, R.S.; Stewart, H.B.

    1963-12-24

    An emergency shutdown or scram apparatus for use in a nuclear reactor that includes a neutron absorber suspended from a temperature responsive substance that is selected to fail at a preselected temperature in excess of the normal reactor operating temperature, whereby the neutron absorber is released and allowed to fall under gravity to a preselected position within the reactor core is presented. (AEC)

  16. One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays

    NASA Astrophysics Data System (ADS)

    Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander

    2018-05-01

    The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

  17. Preparation of Geophysical Fluid Flow Experiments With The Rotating Spherical Gap Flow Model In Space

    NASA Astrophysics Data System (ADS)

    Egbers, C.

    The'GeoFlow' is an ESA experiment planned for the Fluid Science Laboratory on ISS under the scientific coordination (PI) of the Department of Aerodynamics and Fluid Mechanics (LAS) at the Brandenburg Technical University (BTU) of Cottbus, Germany. The objective of the experiment is to study thermal convection in the gap between two concentric rotating (full) spheres. A central symmetric force field simi- lar to the gravity field acting on planets can be produced by applying a high voltage between inner and outer sphere using the dielectrophoretic effect (rotating capacitor). To counter the unidirectional gravity under terrestrial conditions, this experiment re- quires a microgravity environment. The parameters of the experiment are chosen in analogy to the thermal convective motions in the outer core of the Earth. In analogy to geophysical motions in the Earth`s liquid core the experiment can rotate as solid body as well as differential (inner to outer). Thermal convection is produced by heat- ing the inner sphere and cooling the outer ones. Furtheron, the variation of radius ratio between inner and outer sphere is foreseen as a parameter variation. The flows to be investigated will strongly depend on the gap width and on the Prandtl number.

  18. The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Youdin, Andrew N.

    2016-09-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (I.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.

  19. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    NASA Astrophysics Data System (ADS)

    Pan, E.; Chen, J. Y.; Bevis, M.; Bordoni, A.; Barletta, V. R.; Molavi Tabrizi, A.

    2015-12-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core the gravity in each layer varies linearly in r with constant density. These approximations dramatically simplify the subsequent mathematical analysis and render closed-form expressions for the expansion coefficients. We implement our solution in a MATLAB code and perform a benchmark which shows both the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth anisotropy on the LLNs.

  20. Accurate core position control in polymer optical waveguides using the Mosquito method for three-dimensional optical wiring

    NASA Astrophysics Data System (ADS)

    Date, Kumi; Ishigure, Takaaki

    2017-02-01

    Polymer optical waveguides with graded-index (GI) circular cores are fabricated using the Mosquito method, in which the positions of parallel cores are accurately controlled. Such an accurate arrangement is of great importance for a high optical coupling efficiency with other optical components such as fiber ribbons. In the Mosquito method that we developed, a core monomer with a viscous liquid state is dispensed into another liquid state monomer for cladding via a syringe needle. Hence, the core positions are likely to shift during or after the dispensing process due to several factors. We investigate the factors, specifically affecting the core height. When the core and cladding monomers are selected appropriately, the effect of the gravity could be negligible, so the core height is maintained uniform, resulting in accurate core heights. The height variance is controlled in +/-2 micrometers for the 12 cores. Meanwhile, larger shift in the core height is observed when the needle-tip position is apart from the substrate surface. One of the possible reasons of the needle-tip height dependence is the asymmetric volume contraction during the monomer curing. We find a linear relationship between the original needle-tip height and the core-height observed. This relationship is implemented in the needle-scan program to stabilize the core height in different layers. Finally, the core heights are accurately controlled even if the cores are aligned on various heights. These results indicate that the Mosquito method enables to fabricate waveguides in which the cores are 3-dimensionally aligned with a high position accuracy.

  1. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns

    NASA Astrophysics Data System (ADS)

    Shi, Xuefa; Liu, Shengfa; Fang, Xisheng; Qiao, Shuqing; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2015-06-01

    A high density sampling program during two joint China-Thailand scientific cruises in 2011-2012 included collection of 152 gravity box cores in the Gulf of Thailand (GoT). Samples from the top 5 cm of each core were analyzed by X-ray diffraction for clay mineral content. Several systemic analytical approaches were applied to examine the distribution pattern and the constraint factors of clay minerals in the surface sediments of the western GoT. The clay minerals mainly comprise illite, kaolinite, chlorite and smectite, having the average weight percent distributions of 50%, 34%, 14% and 2%, respectively. Based on the spatial distribution characteristics and statistical results, the study area can be classified into three provinces. Province I contains high concentrations of smectite, and covers the northern GoT, sediments in this province are mainly from rivers discharging into the upper GoT, especially the Chao Phraya and Mae Klong Rivers. Sediments in Province II are characterized by higher values of illite, located in the central GoT, where fine sediments are contributed by the Mekong River and from the South China Sea. Province Ш, in the coastal regions of southwestern GoT close to Malaysia, exhibits a clay mineral assemblage with complex distribution patterns, and may contain terrestrial materials from the Mae Klong River as well as re-suspended sediments. Results of integrative analysis also demonstrate that the hydrodynamic environment in the study area, especially the seasonal various circumfluence and eddies, play an important role in the spatial distribution and dispersal of clay fraction in sediments.

  2. Black Sea nitrogen cycling and the preservation of phytoplankton δ15N signals during the Holocene

    NASA Astrophysics Data System (ADS)

    Fulton, James M.; Arthur, Michael A.; Freeman, Katherine H.

    2012-06-01

    The stable isotopic compositions of bulk, clay-bound, organic, and compound-specific nitrogen were determined for mid to late Holocene Black Sea sediments from a set of box and gravity cores. The data demonstrate that cyanobacterial N2fixation provided ˜55% of phytoplankton-derived N preserved in the top 1-2 cm of the sediments. Prior to widespread agricultural and industrial development in the catchment, N2fixation was more prominent, providing 70-80% of phytoplankton N. Organic and clay-bound nitrogen fractions record different down-coreδ15N trends that reflect phytoplankton and detrital sources, respectively, and in samples with low organic matter content, the clay-bound fraction comprises up to 38% of bulk nitrogen. Compared with bulk samples, pyropheophytina (Pphe a), which is a chlorophyll a (Chl a) degradation product, provides a more accurate record of changing phytoplankton δ15N values during the Holocene. An examination of the δ15NPphe a values in light of published and new estimates of the isotopic difference between biomass and Chl a suggests that most of the preserved Pphe a was derived from eukaryotic algae, not cyanobacteria. We infer from these data that cyanobacterial biomass is rapidly recycled in the photic zone, with 15N-depleted NH4+ released during heterotrophy and assimilated by other phytoplankton. A conceptual model for N2 fixation in the Black Sea is presented, drawing upon water column nutrient and hydrographic data as well as regional climate variability to explain the proposed temporal variability in N2 fixation.

  3. The response of single human cells to zero-gravity

    NASA Technical Reports Server (NTRS)

    Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Stock, D.; Shulz, W. W.; Kimzey, S. L.; Thirolf, R. G.; Rogers, T.

    1977-01-01

    Microscopic and histochemical evaluations of human embrionic lung cells after exposure to zero-gravity are reported. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of fixed cells revealed no effects on the cultures. Minor unexplained differences have been found in biochemical constituents of the samples.

  4. Evaluating Long-Term Impacts of Soil-Mixing Source-Zone Treatment using Cryogenic Core Collection

    DTIC Science & Technology

    2017-06-01

    to (a) coring equipment freezing downhole, (b) freezing or binding of the core sample in barrel, and ( c ) running out of LN in the vicinity of sampling...encountered due to (a) coring equipment freezing downhole, (b) freezing or binding of the core sample in barrel, and ( c ) running out of LN in the...equipment freezing downhole, (b) freezing or binding of the core sample in barrel, and ( c ) running out of LN in the vicinity of sampling. Downhole

  5. Constraints from fluid inclusions on sulfide precipitation mechanisms and ore fluid migration in the Viburnum Trend lead district, Missouri

    USGS Publications Warehouse

    Rowan, E.L.; Leach, D.L.

    1989-01-01

    Homogenization temperatures and freezing point depressions were determined for fluid inclusions in Bonneterre Dolomite-hosted dolomite cements in mine samples, as well as drill core from up to 13 km outside of the district. A well-defined cathodoluminescent zonation distinguishes dolomite growth zones as older or younger than main-stage mineralization. Homogenization temperatures and salinities in samples from mines are not systematically different from those of samples outside of the district. The absence of a significant, recognizable decrease in temperature either vertically within the section or east-west across the district, coupled with the minor amount of silica in the district, argues against cooling as a primary cause of sulfide precipitation. In a reduced sulfur mineralization model with Pb carried as chloride complexes, dilution is also a possible sulfide precipitation mechanism. The difference in Pb solubility in the extremes of the chloride concentration range, 3.9 vs. 5.9 molal, reaches 1 ppm only for pH values below approximately 4.5. The distribution of warm inclusions beyond the Viburnum Trend district implies that fluid migration was regional in scale. Elevated temperatures observed in fluid inclusions at shallow stratigraphic depths are consistent with a gravity flow hydrologic system characterized by rapid flow rates and the capacity for advective heat transport. -from Authors

  6. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  7. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  8. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  9. Numerical Analysis of Temperature Gradients and Interface Shape During Directional Solidification of Al and Al-Cu Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.

    1999-01-01

    Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.

  10. Dynamic Measurements Near the Lambda-point in a Low-gravity Simulator on the Ground

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Chui, T. C. P.; Larson, M.; Duncan, R. V.

    1993-01-01

    The properties of liquid helium very near the lambda-transition in the presence of a heat current has received recent theoretical and experimental attention. In this regime, gravity induced pressure effects place severe constraints on the types of experiments that can be performed. A new experiment is described which largely overcomes these difficulties by magnetostrictively canceling gravity influences in the helium sample with a suitable magnetic coil. Design limitations of the technique and a discussion of proposed experiments is presented.

  11. Gravity or turbulence? - III. Evidence of pure thermal Jeans fragmentation at ˜0.1 pc scale

    NASA Astrophysics Data System (ADS)

    Palau, Aina; Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Sánchez-Monge, Álvaro; Estalella, Robert; Fall, S. Michael; Zapata, Luis A.; Camacho, Vianey; Gómez, Laura; Naranjo-Romero, Raúl; Busquet, Gemma; Fontani, Francesco

    2015-11-01

    We combine previously published interferometric and single-dish data of relatively nearby massive dense cores that are actively forming stars to test whether their `fragmentation level' is controlled by turbulent or thermal support. We find no clear correlation between the fragmentation level and velocity dispersion, nor between the observed number of fragments and the number of fragments expected when the gravitationally unstable mass is calculated including various prescriptions for `turbulent support'. On the other hand, the best correlation is found for the case of pure thermal Jeans fragmentation, for which we infer a core formation efficiency around 13 per cent, consistent with previous works. We conclude that the dominant factor determining the fragmentation level of star-forming massive dense cores at 0.1 pc scale seems to be thermal Jeans fragmentation.

  12. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  13. Thermal Conductivity Measurements of Helium 4 Near the Lambda-Transition Using a Magnetostrictive Low Gravity Simulator

    NASA Technical Reports Server (NTRS)

    Larson, Melora; Israelsson, Ulf E.

    1995-01-01

    There has been a recent increase in interest both experimentally and theoretically in the study of liquid helium very near the lambda-transition in the presence of a heat current. In traditional ground based experiments there are gravitationally induced pressure variations in any macroscopic helium sample that limit how closely the transition can be approached. We have taken advantage of the finite magnetic susceptibility of He 4 to build a magnetostrictive low gravity simulator. The simulator consists of a superconducting magnet with field profile shaped to counteract the force of gravity in a helium sample. When the magnet is operated with B x dB/dz = 21T(exp 2)/cm at the location of the cell, the gravitationally induced pressure variations will be canceled to within 1% over a volume of 0.5 cm in height and 0.5 cm in diameter. This technique for canceling the pressure variations in a long sample cell allows the lambda-transition to be studied much closer in reduced temperature and under a wider range of applied heat currents than is possible using other ground based techniques. Preliminary results using this low gravity simulator and the limitations of the magnetostrictive technique in comparison to doing space based experiments will be presented.

  14. Mineralogy and Acid-Extractable Geochemistry from the Loki's Castle Hydrothermal Field, Norwegian Sea at 74 degrees N (South Knipovich Ridge)

    NASA Astrophysics Data System (ADS)

    Barriga, F. J.; Fonseca, R.; Dias, S.; Cruz, I.; Carvalho, C.; Relvas, J. M.; Pedersen, R.

    2010-12-01

    The Loki’s Castle hydrothermal vent field was discovered in the summer of 2008 during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF; see Pedersen et al., 2010, AGU Fall Meeting, Session OS26). Fresh volcanic glasses analyzed by EPMA are basalts. The vent site is composed of several active, over 10 m tall chimneys, producing up to 320 C fluid, at the top of a very large sulfide mound (estimated diameter 200 m). Mineralogy: The main sulfide assemblage in chimneys consists of sphalerite (Sp), pyrite (Py) and pyrrhotite, with lesser chalcopyrite (Ccp). Sulphide-poor selected samples collected at the base of chimneys are mostly composed of anhydrite (Anh), gypsum and talc (Tlc). Association of quartz, anhydrite, gypsum and barite were also found in some of the samples. The sulphide-poor samples from the base of the chimneys denote seawater interaction with the hydrothermal fluid and consequent decrease in temperature, precipitating sulfates. Sphalerite compositions are Zn(0.61-0.70)Fe(0.39-0.30)S. The variations in Fe content are consistent with those of hot, reduced hydrothermal fluids. The observed sulfide assemblage is consistent with the temperature of 320C measured in Loki’s Castle vents. Compositional zonation in sphalerites suggests different pulses of activity of the hydrothermal system, with higher contents of Zn in the center of the crystals. Geochemistry: Here we report preliminary data part of a major analytical task of sequential extraction of metals from sediments in the vicinity of Loki’s Castle, in an attempt to detect correlations with microbial populations and/or subseafloor mineralized intervals. The abundances of Cu, Pb, Ni, Cr, Zn, Fe, Mn and Co in sediments were determined by aqua regia extraction on subsamples from 7 gravity cores. Several anomalous intervals were sampled, in which Cu<707ppm, Ni shows many weak peaks (<50ppm), Cr shows 6 peaks (<121ppm), Zn shows 4 well-defined peaks (<234ppm). Fe varies up to ~9% and Mn, not surprisingly, is enriched in the upper few centimeters of each core. Co shows hardly any peaks. The various metals show variable degrees of intercorrelation. Cores GC6 and GC7, both located ~25 km to the SW of Loki’s Castle, contain the most anomalous intervals. Some intervals contain clusters of anomalous values of most analyzed metals, in others the anomalies are scattered vertically through both cores. The variations in metal contents along the GC6 and GC7 cores indicate oscillation in hydrothermal activity during sediment formation, suggesting different pulses of activity of the hydrothermal field. These two cores also reveal an enrichment in Mn in the upper layers, which could indicate either oxyhydroxide precipitation directly under the seafloor, due to the gradual mixing of the hydrothermal plumes with seawater (cooler and more oxidizing). Collectively, these data suggest both layered and cross-cutting metal-enriched intervals. The latter may correspond to hydrothermal upflow of mineralized solutions through the sediments.

  15. A new class of g-modes in neutron stars

    NASA Technical Reports Server (NTRS)

    Reisenegger, Andreas; Goldreich, Peter

    1992-01-01

    Because a neutron star is born hot, its internal composition is close to chemical equilibrium. In the fluid core, this implies that the ratio of the number densities of charged particles (protons and electrons) to neutrons is an increasing function of the mass density. This composition gradient stably stratifies the matter giving rise to a Brunt-Vaisala frequency N of about 500/s. Consequently, a neutron star core provides a cavity that supports gravity modes (g-modes). These g-modes are distinct from those previously identified with the thermal stratification of the surface layers and the chemical stratification of the crust. We compute the lowest-order, quadrupolar, g-modes for cold, Newtonian, neutron star models with M/solar M = 0.581 and M/solar M = 1.405, and show that the crustal and core g-modes have similar periods. We also discuss damping mechanisms and estimate damping rates for the core g-modes. Particular attention is paid to damping due to the emission of gravitational radiation.

  16. Tests of Rock Cores Scott Study Area, Missouri

    DTIC Science & Technology

    1970-05-01

    porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark gray volcanic breccia. Specific gravity, * Schmidt...petrographically identified as predominantly rhyolite and dacite porphyry with some granodiorite and small amounts of dolomite, acid metavolcanics, and dark...exhibit- ing little, if any, hysteresis. 9. Direct and indirect tensile strengths exhibited by tne rhyro- lite and dacite porphyry and granite are very high

  17. Combustion of solid carbon rods in zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.

    1979-01-01

    In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

  18. Gravitational Effects on Closed-Cellular-Foam Microstructure

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.; Wessling, Francis C.; McMannus, Samuel P.; Mathews, John; Patel, Darayas

    1996-01-01

    Polyurethane foam has been produced in low gravity for the first time. The cause and distribution of different void or pore sizes are elucidated from direct comparison of unit-gravity and low-gravity samples. Low gravity is found to increase the pore roundness by 17% and reduce the void size by 50%. The standard deviation for pores becomes narrower (a more homogeneous foam is produced) in low gravity. Both a Gaussian and a Weibull model fail to describe the statistical distribution of void areas, and hence the governing dynamics do not combine small voids in either a uniform or a dependent fashion to make larger voids. Instead, the void areas follow an exponential law, which effectively randomizes the production of void sizes in a nondependent fashion consistent more with single nucleation than with multiple or combining events.

  19. Advanced reservoir characterization and evaluation of CO{sub 2} gravity drainage in the naturally fractured Spraberry Trend Area, Class III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, Tracy; Schechter, David S.

    2000-04-11

    The overall goal of this project was to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO{sub 2} gravity drainage in Spraberry whole cores. This report provides results of the fourth year of the five-year project for each of the four areas including a status report of field activities leading upmore » to injection of CO{sub 2}.« less

  20. Time-Variable Gravity: The Low-Degree Components and their Connections with Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Cox, Christopher M.; Chao, Benjamin F.; Au, Andrew Y.

    2004-01-01

    The oblateness of the Earth's gravity field, J2, has long been observed to undergo a slight decrease due to post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again. Presently, the time series appears to be returning to the value that would nominally have been reached had the anomaly not occurred. This anomaly signifies a large interannual change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound over such timescales. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing.

  1. KSC-2011-6092

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to transport the protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft to the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  2. KSC-2011-6465

    NASA Image and Video Library

    2011-08-12

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., a protective canister encases NASA's twin Gravity Recovery and Interior Laboratory spacecraft. Preparations are under way to transport the lunar probes, attached to a spacecraft adapter ring in their side-by-side launch configuration, to the launch pad. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  3. KSC-2011-6097

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- The protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft is lifted from around the mylar-covered spacecraft in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  4. KSC-2011-6104

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians examine NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft before they are moved onto workstands in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  5. KSC-2011-6320

    NASA Image and Video Library

    2011-08-09

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., preparations are under way to determine the weight of one of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft before the spacecraft are stacked in their launch configuration in readiness for transport to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  6. KSC-2011-6110

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to lift the second of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft to a workstand in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  7. KSC-2011-6095

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians oversee the lift of the protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft from the transporter in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  8. KSC-2011-6099

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians push NASA's mylar-covered twin Gravity Recovery and Interior Laboratory lunar spacecraft toward the work area of the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  9. KSC-2011-6105

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Preparations are under way to lift one of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft onto a workstand in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  10. KSC-2011-6321

    NASA Image and Video Library

    2011-08-09

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., Lockheed Martin technicians determine the readiness of one of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft before the spacecraft are stacked in their launch configuration in preparation for transport to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-6096

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians oversee the placement of the protective canister housing NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft on the workroom floor in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  12. Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.W.; Sande, J.J.; Doe, P.H.

    1995-04-01

    Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type andmore » was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.« less

  13. Factors associated with colostral specific gravity in dairy cows.

    PubMed

    Morin, D E; Constable, P D; Maunsell, F P; McCoy, G C

    2001-04-01

    The objectives of this study were to identify factors associated with colostral specific gravity in dairy cows, as measured by a commercially available hydrometer (Colostrometer). Colostral specific gravity was measured in 1085 first-milking colostrum samples from 608 dairy cows of four breeds on a single farm during a 5-yr period. Effects of breed, lactation number, and month and year of calving on colostral specific gravity were determined, as were correlations between colostral specific gravity, nonlactating period length, and 305-d yields of milk, protein, and fat. For 75 multiparous Holstein cows, relationships between colostral specific gravity, colostral IgG1, protein, and fat concentrations, and season of calving were determined. Colostral specific gravity values were lower for Brown Swiss and Ayrshire cows than for Jersey and Holstein cows, and lower for cows entering first or second lactation than third or later lactations. Month of calving markedly affected colostral specific gravity values, with highest values occurring in autumn and lowest values in summer. In multiparous Holstein cows, colostral specific gravity was more strongly correlated with colostral protein concentration (r = 0.76) than IgG1 concentration (r = 0.53), and colostral protein concentration varied seasonally (higher in autumn than summer). Our results demonstrate that colostral specific gravity more closely reflects colostral protein concentration than IgG1 concentration and is markedly influenced by month of calving. These results highlight potential limitations of using colostral specific gravity as an indicator of IgG1 concentration.

  14. Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity

    NASA Technical Reports Server (NTRS)

    Chao, Ben F.; Cox, C. M.

    2005-01-01

    Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.

  15. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    PubMed

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  16. Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.

    2003-01-01

    Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.

  17. Secondary School Students' Conceptions Relating to Motion under Gravity

    ERIC Educational Resources Information Center

    Apostolides, Themos; Valanides, Nikos

    2008-01-01

    The study investigated tenth-, eleventh-, and twelfth-grade students' alternative ideas relating to the motion of a body travelling in the field of gravity with an initial horizontal velocity. The sample of the study consisted of 40 tenth-grade students, and 33 and 40 eleventh-grade students that attended different sections of upper secondary…

  18. Children's Cosmographies: Understanding the Earth's Shape and Gravity.

    ERIC Educational Resources Information Center

    Sneider, Cary; Pulos, Steven

    1983-01-01

    Assessed Nussbaum's developmental model (SE 024 045) using a new sample given no special instructions in spherical earth/gravity concepts. Also identified distribution of notions among students (N=159 in grades three to eight), compared distribution of notions at each age level with those in other studies, and explored role of individual…

  19. Influence of item distribution pattern and abundance on efficiency of benthic core sampling

    USGS Publications Warehouse

    Behney, Adam C.; O'Shaughnessy, Ryan; Eichholz, Michael W.; Stafford, Joshua D.

    2014-01-01

    ore sampling is a commonly used method to estimate benthic item density, but little information exists about factors influencing the accuracy and time-efficiency of this method. We simulated core sampling in a Geographic Information System framework by generating points (benthic items) and polygons (core samplers) to assess how sample size (number of core samples), core sampler size (cm2), distribution of benthic items, and item density affected the bias and precision of estimates of density, the detection probability of items, and the time-costs. When items were distributed randomly versus clumped, bias decreased and precision increased with increasing sample size and increased slightly with increasing core sampler size. Bias and precision were only affected by benthic item density at very low values (500–1,000 items/m2). Detection probability (the probability of capturing ≥ 1 item in a core sample if it is available for sampling) was substantially greater when items were distributed randomly as opposed to clumped. Taking more small diameter core samples was always more time-efficient than taking fewer large diameter samples. We are unable to present a single, optimal sample size, but provide information for researchers and managers to derive optimal sample sizes dependent on their research goals and environmental conditions.

  20. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, M. C.; Daily, J. W.; Abbud-Madrid, A.

    1996-01-01

    This annual report summarizes the latest results obtained in a NASA-supported project to investigate the effect of gravity on the ignition and combustion of bulk metals. The experimental arrangement used for this purpose consists of a 1000-W xenon lamp that irradiates the top surface of cylindrical titanium and magnesium specimens, 4 mm in diameter and 4 mm in height, in a quiescent, pure-oxygen environment at 1 atm. Reduced gravity is obtained from the NASA LeRC DC-9 aircraft flying parabolic trajectories. Values of critical and ignition temperatures are obtained from thermocouple records. Qualitative observations and propagation rates are extracted from high-speed cinematography. Emission spectra of gas-phase reactions are obtained with an imaging spectrograph/diode array system. It was found that high applied heating rates and large internal conduction losses generate critical and ignition temperatures that are several hundred degrees above the values obtained from isothermal experiments. Because of high conduction and radiation heat losses, no appreciable effect on ignition temperatures with reduced convection in low gravity is detected. Lower propagation rates of the molten interface on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicates the importance of the influence of natural convection-enhanced oxygen transport on combustion rates. Lower oxygen flux and lack of oxide product removal in the absence of convective currents appear to be responsible for longer burning times of magnesium diffusion flames at reduced gravity. The accumulation of condensed oxide particles in the flame front at low gravity produces a previously unreported unsteady explosion phenomenon in bulk magnesium flames. This spherically symmetric explosion phenomenon seems to be driven by increased radiation heat transfer from the flame front to an evaporating metal core covered by a porous, flexible oxide coating. These important results have revealed the significant role of gravity on the burning of metals, and are now being used as the database for future experiments to be conducted with different metals at various pressures, oxygen concentrations and gravity levels.

  1. M551 metals melting experiment

    NASA Technical Reports Server (NTRS)

    Busch, G.

    1977-01-01

    Electron beam welding studies were conducted in the Skylab M551 metals melting experiment, on three different materials; namely 2219-T87 aluminum alloy, 304L stainless steel, and commercially pure tantalum (0.5 wt % columbium). Welds were made in both one gravity and zero gravity (Skylab) environments. Segments from each of the welds were investigated by microhardness, optical microscopy, scanning microscopy, and electron probe techniques. In the 2219-T87 aluminum alloy samples, macroscopic banding and the presence of an eutectic phase in the grain boundaries of the heat affected zone were observed. The stainless steel samples exhibited a sharp weld interface and macroscopic bands. The primary microstructural features found in the tantalum were the presence of either columnar grains (ground base) or equiaxed grains (Skylab). The factors contributing to these effects are discussed and the role of reduced gravity in welding is considered.

  2. Lightweight Low Force Rotary Percussive Coring Tool for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Hironaka, Ross; Stanley, Scott

    2010-01-01

    A prototype low-force rotary-percussive rock coring tool for use in acquiring samples for geological surveys in future planetary missions was developed. The coring tool could eventually enable a lightweight robotic system to operate from a relatively small (less than 200 kg) mobile or fixed platform to acquire and cache Mars or other planetary rock samples for eventual return to Earth for analysis. To gain insight needed to design an integrated coring tool, the coring ability of commercially available coring bits was evaluated for effectiveness of varying key parameters: weight-on-bit, rotation speed, percussive rate and force. Trade studies were performed for different methods of breaking a core at its base and for retaining the core in a sleeve to facilitate sample transfer. This led to a custom coring tool design which incorporated coring, core breakage, core retention, and core extraction functions. The coring tool was tested on several types of rock and demonstrated the overall feasibility of this approach for robotic rock sample acquisition.

  3. Joint-inversion of gravity data and cosmic ray muon flux to detect shallow subsurface density structure beneath volcanoes: Testing the method at a well-characterized site

    NASA Astrophysics Data System (ADS)

    Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.

    2016-12-01

    The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.

  4. CONTROL RODS FOR NUCLEAR REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, F.R.

    1963-01-16

    A means for controlling the control rod in emergency, when it is desired to shutdown the reactor with the shortest possible delay, is described. When the emergency occurs the control rod is allowed to drop freely under gravity from the control rod support tube into the bore in the reactor core. A normal shutdown is reached almost at the lowest rod position. In the shut-down position and also below it, the control rod had its full effect of reducing the level of activity in the core. When the shut-down position was reached, a brake came into action to decelerate themore » rod and reduce shock and the likelihood of damage. (C.E.S.)« less

  5. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    USGS Publications Warehouse

    Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-01-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  6. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  7. High-Resolution Seafloor Observations of an Active Mud Volcano Offshore SW Taiwan - Results of a Repeated Survey after Four Years

    NASA Astrophysics Data System (ADS)

    Hsu, H. H.; Chen, T. T.; Liu, C. S.; Su, C. C.; Paull, C. K.; Caress, D. W.; Gwiazda, R.; Chen, Y. H.

    2017-12-01

    Mud Volcano V (MV5) is an active submarine mud volcano sitting on top of a mud diapir ridge at water depths of 600 m in the active margin offshore of southwestern Taiwan. This cone-shape mud volcano is almost 3-km-wide, 200-m-high, with 9.5° slopes, and explosively ejects streams of mud every 1.5-3 minutes. It was first mapped in 2013 with MBARI's mapping AUV (autonomous underwater vehicle). In 2017, a repeated AUV mapping survey was conducted to see if significant bathymetric changes took place since 2013, and to investigate the fluxes of fluids that pass through diapiric structures in an active continental margin. In addition to high-resolution bathymetry (1-m-resolution), sub-bottom profiling and side-scan sonar data acquired by the AUV, and videos and samples collected by MBARI's miniROV, we also incorporate multichannel seismic reflection data and gravity core sample analyses in this study. AUV bathymetry data reveal that there are two gryphons on the eastern slope of MV5. In the 2017 survey the mapped sizes of the two side cones were 80 m wide, 35 m long, 20 m relief and 40 m wide, 40 m long, 12 m relief, respectively. Comparing the bathymetry mapped in the 2017 AUV survey with that surveyed in 2013, no obvious overall morphological changes in MV5 are detected, except around the two gryphons. In the time period between the surveys, due to venting of mud from the two gryphons, two series of flow deposits which can be up to 5 meters thick are observed along the slope in the east side of both gryphons. The center depressions of these two gryphons have increased by 1-5 meters depth in their west side. Seismic and sub-bottom profiles reveal amplitude anomalies in the sub-strata of MV5 which indicate possible fluid migration paths of mud flows from deep. The trace of mud flow from the top of MV5 to its foot can be delineated from the side-scan sonar images. On the basis of 210Pbex chronology dating method, the sedimentation rate on the surface of MV5 is very slow (0.057 cm/y). High methane anomalies are discovered on MV5 based on the geochemical analysis results of gravity core samples, but the heat probe did not detect obvious temperature changes before and after venting episodes in the 2017 survey. Based on this comprehensive study, a three-step model is proposed to explain mud volcano venting processes in the active margin offshore of SW Taiwan.

  8. Internal structure of Puna Ridge: evolution of the submarine East Rift Zone of Kilauea Volcano, Hawai ̀i

    NASA Astrophysics Data System (ADS)

    Leslie, Stephen C.; Moore, Gregory F.; Morgan, Julia K.

    2004-01-01

    Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawai ̀i, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early arrival times or 'pull-up' of sediment reflections on time sections imply a region of high P-wave velocity ( Vp) along the submarine ERZ. Refraction measurements along the axis of the ridge yield Vp values of 2.7-4.85 km/s within the upper 1 km of the volcanic pile and 6.5-7 km/s deeper within the edifice. Few coherent reflections are observed on seismic reflection sections within the high-velocity area, suggesting steeply dipping dikes and/or chaotic and fractured volcanic materials. Southeastward dipping reflections beneath the NW flank of Puna Ridge are interpreted as the buried flank of the older Hilo Ridge, indicating that these two ridges overlap at depth. Gravity measurements define a high-density anomaly coincident with the high-velocity region and support the existence of a complex of intrusive dikes associated with the ERZ. Gravity modeling shows that the intrusive core of the ERZ is offset to the southeast of the topographic axis of the rift zone, and that the surface of the core dips more steeply to the northwest than to the southeast, suggesting that the dike complex has been progressively displaced to the southeast by subsequent intrusions. The gravity signature of the dike complex decreases in width down-rift, and is absent in the distal portion of the rift zone. Based on these observations, and analysis of Puna Ridge bathymetry, we define three morphological and structural regimes of the submarine ERZ, that correlate to down-rift changes in rift zone dynamics and partitioning of intrusive materials. We propose that these correspond to evolutionary stages of developing rift zones, which may partially control volcano growth, mobility, and stability, and may be observable at many other oceanic volcanoes.

  9. Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.

    2018-04-01

    We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.

  10. Lunar Rotation, Orientation and Science

    NASA Astrophysics Data System (ADS)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  11. NUT SCREW MECHANISMS

    DOEpatents

    Glass, J.A.F.

    1958-07-01

    A reactor control mechanism is described wherein the control is achieved by the partial or total withdrawal of the fissile material which is in the form of a fuel rod. The fuel rod is designed to be raised and lowered from the reactor core area by means of two concentric ball nut and screw assemblies that may telescope one within the other. These screw mechanisms are connected through a magnetic clutch to a speed reduction gear and an accurately controllable prime motive source. With the clutch energized, the fuel rod may be moved into the reactor core area, and fine adjustments may be made through the reduction gearing. However, in the event of a power failure or an emergency signal, the magnetic clutch will become deenergized, and the fuel rod will drop out of the core area by the force of gravity, thus shutting down the operation of the reactor.

  12. Tectonics at the Southeast Indian Ridge 79 to 99 E. Results from the GEISEIR cruises

    NASA Astrophysics Data System (ADS)

    Briais, A.; Hemond, C.; Maia, M. A.; Hanan, B. B.; Graham, D. W.; Geiseir Scientific Team; Geiseir2 Scientific Team

    2011-12-01

    During the GEISEIR (Géochimie Isotopique de la SEIR) and GEISEIR2 cruises on N/O Marion Dufresne in 2009 and 2010, we collected geophysical data, high-density wax-core or dredge basalt samples, and water column profiles along the Southeast Indian Ridge (SEIR) between 79E and 99E. This section of the intermediate-spreading SEIR is located between the St Paul-Amsterdam hotspot plateau and the Australia-Antarctic Discordance. We completed the multibeam bathymetry mapping of the axis and transform faults of the 79-88E and the 96-99E sections, and mapped the axial zone and discontinuities of the 88-96E section up to 800 kyr. These ridge sections were sampled at 20 km, 5 km and 10 km spacing, respectively. This presentation focusses on the results of a structural and geophysical analysis of the axial domain and the off-axis area up to 800 kyr. We merged the bathymetry data collected during the GEISEIR and GEISEIR2 cruises with those of the previous (Westward 9 and 10 and Boomerang 6) cruises. We also compiled the shipborne gravity data and estimated mantle Bouguer anomalies (MBA). The ridge displays large variations in axial depth and morphology, from a rifted axial high to an axial valley, at the scale of ridge segments. Ridge offsets vary in morphology from overlapping-spreading centers, to propagating rifts, to transform faults. Shalllow segments have pronounced axial MBA lows, probably resulting from a thicker ocean crust, and the presence of hotter mantle beneath the ridge axis. Water-column profiling at each wax-core sampling site reveals numerous moderate to strong signals of hydrothermal activity. The distribution of the hydrothermal vent signals does not always coincide with the magmatic robustness of the ridge axis, suggesting that tectonic activity also controls the vent setting. The recent evolution of the ridge discontinuities is marked by southeastward propagators at 92E and 95E, and by the eastward migration of the 96E transform fault. These areas correspond to relatively high MBA suggestive of thin crust. Some transform faults also appear to have changed orientation, and show intra-transform ridges suggestive of compressive deformation. The ridge flanks show large off-axis seamounts and seamount chains, clearly observed in the satellite-derived gravity maps. We mapped and sampled some of these seamounts. The ridge sections showing the most robust morphology are sometimes associated with off-axis seamounts, but some seamounts also occur close to relatively starved axial areas. These structural and geophysical observations of the SEIR suggest a much larger variety of ridge processes and discontinuity evolution than predicted from the intermediate-spreading rate quasi-constant along the surveyed axis. GEISEIR cruise scientific team: Claire Bassoulet, Dass Bissessur, Erwan Cambrai, Mathieu Clog, Céline Dantas, Ludovic Menjot, Emanuele Paganelli, Fabienne de Parseval, Marc Ulrich. GEISEIR2 cruise scientific team: Erwan Cambrai, Romain Chateau, Cédric Hamelin, Jabrane Labidi, Maximilliano Melchiorre, Ludovic Menjot, Emanuele Paganelli.

  13. [Relationship between the refractive index and specific gravity of the rat urine (author's transl)].

    PubMed

    Kitagawa, Y F; Takahashi, T; Hayashi, H

    1981-07-01

    The relationship between the refractive index and specific gravity of urine was studied with specimens from 165 Sprague-Dawley rats, by graphic analysis of the plot of the refractometrically determined index against the specific gravity which was measured with a pycnometer. 1. A linear regression was demonstrated between the refractive index and specific gravity. 2. The nomogram fitted the data of even those samples with high refractive index and specific gravity, irrespective of changes in food or water intake and protein or glucose contents in the urine. 3. The nomogram was in good agreement, in respect of linearity, with the regression line derived from the conversion table of TS meter by the American Optical Corporation and also with the nomogram of the Japanese Society of Clinical Pathology. It approximated more closely to the former than to the latter.

  14. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores andmore » the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.« less

  15. The Interior of Enceladus from Gravity and Topography

    NASA Astrophysics Data System (ADS)

    Iess, L.

    2015-12-01

    The combination of gravity and topography has been the method of choice to obtain quantitative information on the interior of Enceladus, but its application was challenging because of the small mass of the moon and the short gravitational interaction time with the Cassini spacecraft. The main observable quantity used in the estimation of the gravity field was the spacecraft range rate, measured by the antennas of NASA's Deep Space Network to an accuracy of about 0.03 mm/s (at 60 s integration time). In spite of these challenges and thanks to the careful design of three gravity flybys, Cassini was able to catch the essential features of Enceladus's gravity field, in particular to estimate its quadrupole and detect the sought-for hemispherical asymmetry [1]. Crucial for the correct fit of the Doppler data was the inclusion in the dynamical model of the drag acceleration from the plume's neutral particles. Although the largest quadrupole coefficients indicate only a mild deviation from hydrostatic equilibrium (J2/C22=3.55±0.05), a reliable determination of the MOIF uses J3 to separate the hydrostatic and non-hydrostatic components of the quadrupole field. The application of this method results in a MOIF (0.336) compatible with a differentiated structure. (An admittance analysis leads to a similar value.) The magnitude and the sign of J3 indicate that the gravity anomaly associated to the striking topographic depression (-1 km) in the southern polar regions is largely compensated by denser material at depth. The obvious (but not the only) interpretation points to a liquid water mass, denser than the surrounding ice and sandwiched between the ice shell and the rocky core. The gravity field and the topography provide also rough estimate of the size of the water mass and the depth at which it is located. Starting from the consideration that the hydrostatic J2/C22 ratio for a fast rotator like Enceladus is about 3.25 and not 10/3, a recent work [2] offers some adjustments to this picture. [1] L. Iess, D.J. Stevenson, et al.: "The Gravity Field and Interior Structure of Enceladus", Science, 344, 78-80 (2014) DOI: 10.1126/science.1250551 [2] W.B. McKinnon: "Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity", GRL, 42, 2137-2143 (2015) DOI:10.1002/2015GL063384

  16. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  17. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  18. Geochemical and geological factors controlling the spatial distribution of sulfate-methane transition zone in the Ría de Vigo (NW Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Carreño, N.; García-Gil, S.; Cartelle, V.; de Blas, E.; Ramírez-Pérez, A. M.; Insua, T. L.

    2017-05-01

    High-resolution seismic profiles, gravity core analysis and radiocarbon data have been used to identify the factors behind the methane production and free gas accumulation in the Ría de Vigo. Lithological and geochemical parameters (sulfate and methane concentration) from seventeen gravity cores were analyzed to characterize the sediment of the ria. The distribution of methane-charged sediments is mainly controlled by the quantity and quality of organic matter. Geochemical analyses reveal minimum methane concentrations ranging between 1 μM and 1 mM in sediments located outside the acoustic gas field, while gas-bearing sediments, show methane concentrations up to 5 mM. A shallowing of the sulfate-methane transition zone (SMTZ) is observed from the outer to the inner area of the ria. The presence of methane in the sulfate reduction zone (SRZ) likely to reflect the existence of methylotropic methanogenesis and/or migration processes of deeper methane gas in the sediments of the Ría de Vigo. The presence of an 'anomalous' high-sulfate concentration layer below the SMTZ in the inner and middle area of the ria, is attributed to the intrusion of sulfate-rich waters from adjacent areas that could be transported laterally through more porous layers.

  19. Experiments with the Skylab fire detectors in zero gravity

    NASA Technical Reports Server (NTRS)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  20. Crustal Structure of the Iceland Region from Spectrally Correlated Free-air and Terrain Gravity Data

    NASA Technical Reports Server (NTRS)

    Leftwich, T. E.; vonFrese, R. R. B.; Potts, L. V.; Roman, D. R.; Taylor, P. T.

    2003-01-01

    Seismic refraction studies have provided critical, but spatially restricted constraints on the structure of the Icelandic crust. To obtain a more comprehensive regional view of this tectonically complicated area, we spectrally correlated free-air gravity anomalies against computed gravity effects of the terrain for a crustal thickness model that also conforms to regional seismic and thermal constraints. Our regional crustal thickness estimates suggest thickened crust extends up to 500 km on either side of the Greenland-Scotland Ridge with the Iceland-Faeroe Ridge crust being less extended and on average 3-5 km thinner than the crust of the Greenland-Iceland Ridge. Crustal thickness estimates for Iceland range from 25-35 km in conformity with seismic predictions of a cooler, thicker crust. However, the deepening of our gravity-inferred Moho relative to seismic estimates at the thermal plume and rift zones of Iceland suggests partial melting. The amount of partial melting may range from about 8% beneath the rift zones to perhaps 20% above the plume core where mantle temperatures may be 200-400 C above normal. Beneath Iceland, areally limited regions of partial melting may also be compositionally and mechanically layered and intruded. The mantle plume appears to be centered at (64.6 deg N, 17.4 deg W) near the Vatnajokull Glacier and the central Icelandic neovolcanic zones.

  1. Conformally-flat, non-singular static metric in infinite derivative gravity

    NASA Astrophysics Data System (ADS)

    Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam

    2018-06-01

    In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.

  2. Vesta's Elemental Composition

    NASA Technical Reports Server (NTRS)

    Prettyman, T. H.; Beck, A. W.; Feldman, W. C.; Lawrence, D. J.; McCoy, T. J.; McSween, H. Y.; Mittlefehldt, D. W.; Peplowski, P. N.; Raymond, C. A.; Reedy, R. C.; hide

    2014-01-01

    Many lines of evidence (e.g. common geochemistry, chronology, O-isotope trends, and the presence of different HED rock types in polymict breccias) indicate that the howardite, eucrite, and diogenite (HED) meteorites originated from a single parent body. Meteorite studies show that this protoplanet underwent igneous differentiation to form a metallic core, an ultramafic mantle, and a basaltic crust. A spectroscopic match between the HEDs and 4 Vesta along with a plausible mechanism for their transfer to Earth, perhaps as chips off V-type asteroids ejected from Vesta's southern impact basin, supports the consensus view that many of these achondritic meteorites are samples of Vesta's crust and upper mantle. The HED-Vesta connection was put to the test by the NASA Dawn mission, which spent a year in close proximity to Vesta. Measurements by Dawn's three instruments, redundant Framing Cameras (FC), a Visible-InfraRed (VIR) spectrometer, and a Gamma Ray and Neutron Detector (GRaND), along with radio science have strengthened the link. Gravity measurements by Dawn are consistent with a differentiated, silicate body, with a dense Fe-rich core. The range of pyroxene compositions determined by VIR overlaps that of the howardites. Elemental abundances determined by nuclear spectroscopy are also consistent with HED-compositions. Observations by GRaND provided a new view of Vesta inaccessible by telescopic observations. Here, we summarize the results of Dawn's geochemical investigation of Vesta and their implications.

  3. Speciation and distribution characteristics of heavy metals and pollution assessments in the sediments of Nashina Lake, Heilongjiang, China.

    PubMed

    Li, Miao; Zang, Shuying; Xiao, Haifeng; Wu, Changshan

    2014-05-01

    Sediment core samples from Nashina Lake, Heilongjiang, China were collected using a gravity sampler. The cores were sliced horizontally at 1 cm each to determine the particle size, total concentrations and speciation of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. Total concentrations of heavy metals were extracted using an acid mixture (containing hydro fluoric acid, nitric acid, and sulphuric acid) and analyzed using an inductively coupled plasma spectrometry. A sequential extraction procedure was employed to separate chemical species. Analysis of results indicate that the concentrations of heavy metals in the sediments of Nashina Lake in descending order are Mn, Cr, Zn, Pb, Ni, Cu, and Cd. The ratios of the average concentrations of four heavy metals (e.g.Cr, Cu, Ni, Zn) to their background values were >1; and those of Mn, Cd, and Pb were >1. Moreover, some toxic metals were mainly distributed in bioavailable fractions. For instance, both Cd and Mn were typically found in Acid-extractable species or Fe-Mn oxide species, and thus can be easily remobilized and enter the food chain. Finally, the analysis of geo-accumulation index showed that anthropogenic pollution levels of Cr, Cu, Mn, Ni, Zn were low, but those of Pb and Cd were at the moderate level. As both Pb and Cd are toxic metals, it is highly necessary to prohibit their transformation and accumulation in the sediments.

  4. Morphological characteristics of loblolly pine wood as related to specific gravity, growth rate and distance from pith

    Treesearch

    Charles W. McMillin

    1968-01-01

    Earlywood and latewood tracheid length and transverse cellular dimensions of wood removed from stems of loblolly pine (Pinus taeda L.) and factorially aegregated by specific gravity, rings from the pith, and growth rate were determined from sample chips. The independent relationships of each factor with fiber morphology are described.

  5. Specific Gravity Variation in a Lower Mississippi Valley Cottonwood Population

    Treesearch

    R. E. Farmer; J. R. Wilcox

    1966-01-01

    Specific gravity varied from 0,32 to 0.46, averaging 0.38. Most of the variation was associated with individual trees; samples within locations accounted for a smaller, but statistically significant, portion of the variation. Variation between locatians was not significant. It was concluded that individual high-density trees' should be sought throughout the...

  6. Gravitational influences on the liquid-state homogenization and solidification of aluminum antimonide. [space processing of solar cell material

    NASA Technical Reports Server (NTRS)

    Ang, C.-Y.; Lacy, L. L.

    1979-01-01

    Typical commercial or laboratory-prepared samples of polycrystalline AlSb contain microstructural inhomogeneities of Al- or Sb-rich phases in addition to the primary AlSb grains. The paper reports on gravitational influences, such as density-driven convection or sedimentation, that cause microscopic phase separation and nonequilibrium conditions to exist in earth-based melts of AlSb. A triple-cavity electric furnace is used to homogenize the multiphase AlSb samples in space and on earth. A comparative characterization of identically processed low- and one-gravity samples of commercial AlSb reveals major improvements in the homogeneity of the low-gravity homogenized material.

  7. Paleocurrents in the Charlie-Gibbs Fracture Zone during the Late Quaternary

    NASA Astrophysics Data System (ADS)

    Bashirova, L. D.; Dorokhova, E.; Sivkov, V.; Andersen, N.; Kuleshova, L. A.; Matul, A.

    2017-12-01

    The sedimentary processes prevailing in the Charlie-Gibbs Fracture Zone (CGFZ) are gravity flows. They rework pelagic sediments and contourites, and hereby mask the paleoceanographic information partly. The aim of this work is to study sediments of the AMK-4515 core taken in eastern part of the CGFZ. The sediment core AMK-4515 (52°03.14" N, 29°00.12" W; 370 cm length, water depth 3590 m) is located in the southern valley of the CGFZ. This natural deep corridor is influenced by both the westward Iceland-Scotland Overflow Water and underlying counterflow from the Newfoundland Basin. An alternation of the calcareous silty clays and hemipelagic clayey muds in the studied section indicates similarity between our core and long cores taking from CGFZ. A sharp facies shift was found at 80 cm depth in the investigated core. Only the upper section (0-80 cm) is valid for paleoreconstruction. Planktonic foraminiferal distribution and sea-surface temperature (SST) derived from these allow for tracing the PF and NAC latitudinal migrations during investigated period. So-called sortable silt mean size (SS) was used as proxy for reconstruction of bottom current intensity. The age model is based on δ18O and AMS 14C dating, as well as ice-rafted debris (IRD) counts and CaCO3 content. Stratigraphic subdivision of this section allows to allocate 2 marine isotope stages (MIS) covering the last 27 ka. We refer sediments below this level (80-370 cm) to upper part of turbidite, which was formed as a result of massive slide in the southern channel of the CGFZ. Sandy particles were deposited first, underlying silts and clays. This short-term event occurred so quickly that pelagic sedimentation played no role and was not reflected in the grain size distributions. There is evidence for the significant role of gravity flows in sedimentation in the southern channel of the CGFZ. According to our data, the massive sediment slide occurred in the CGFZ about 27 ka. The authors are grateful to RSF (grant No.14-50-00095) for financial support of analytical studies. Absolute datings were obtained with support from the IKBFU 5-100 Russian academic excellence project.

  8. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  9. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  10. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  11. The effect of altered gravity on immune cells (Ground studies: TRIPLE LUX-A BIOLAB experiment)

    NASA Astrophysics Data System (ADS)

    Horn, Astrid; Huber, Kathrin; Kuebler, Ulrich; Briganti, Luca; Baerwalde, Sven; Zander, Vanja; Ullrich, Oliver; Hemmersbach, Ruth

    The experiment TRIPLE LUX A, whose performance on Biolab is foreseen for 2010, aims to increase the information about the functioning of immune cells during space flight. Thus, we investigate the impact of altered gravity -microgravity and hypergravity conditions -on the immune response of mammalian macrophages. Previous studies had already demonstrated that phagocytosis in macrophages, an essential step in the innate immune response, is decreased on a fast rotating clinostat. Now, the production of ROS (reactive oxygen species) within the oxidative burst reaction, was measured by means of a luminol assay (luminescence + photo-multiplier technique) comparable to the set up which will be used in the TRIPLE LUX flight hardware. The kinetics of the ROS production was investigated a) under 1 g conditions, b) on a clinostat (with one rotation axis) under varied rotational speed c) in short-term real micro-gravity on a parabolic flight and d) in hypergravity (1.8 g) on the Short Arm Human Centrifuge (SAHC) at DLR Cologne. By means of a photomultiplier clinostat online kinetic luminescent measurements during clinorotation were possible. Permanent fast clinorotation (60 rpm) leads to a dramatic reduction of the oxidative burst signal by up to 60% compared to the signal at 1 g. Slower rotation (30 rpm to 2 rpm) reduces the signal strength even more by up to 90% of the original strength. 60 rpm clinorotation as well as short-term real microgravity (22 s) during parabolic flight likewise decreases the signal of the oxidative burst to a comparable amount, thus the term "simulated weightlessness" is valid for the chosen experimental condi-tion. In contrast, hypergravity leads to a significant signal increase. The results demonstrate a clear effect of altered gravity on the immune response of the macrophages. In the upcoming ISS experiment the established test system (oxidative burst of macrophages) will be tested in continues microgravity within the Biolab hardware, designed by EADS Astrium. The core of the TRIPLELUX experiment hardware onboard the International Space Station consists of two specifically developed Biolab Advanced Experiment Containers (AECs) that, exploiting Biolab automatic features such as the robotic arm Handling Mechanism, allow for fully-automated life support of sample cells as well as investigations of their behaviour in microgravity through the measurement of luminescence.

  12. The use of mini-samples in palaeomagnetism

    NASA Astrophysics Data System (ADS)

    Böhnel, Harald; Michalk, Daniel; Nowaczyk, Norbert; Naranjo, Gildardo Gonzalez

    2009-10-01

    Rock cores of ~25 mm diameter are widely used in palaeomagnetism. Occasionally smaller diameters have been used as well which represents distinct advantages in terms of throughput, weight of equipment and core collections. How their orientation precision compares to 25 mm cores, however, has not been evaluated in detail before. Here we compare the site mean directions and their statistical parameters for 12 lava flows sampled with 25 mm cores (standard samples, typically 8 cores per site) and with 12 mm drill cores (mini-samples, typically 14 cores per site). The site-mean directions for both sample sizes appear to be indistinguishable in most cases. For the mini-samples, site dispersion parameters k on average are slightly lower than for the standard samples reflecting their larger orienting and measurement errors. Applying the Wilcoxon signed-rank test the probability that k or α95 have the same distribution for both sizes is acceptable only at the 17.4 or 66.3 per cent level, respectively. The larger mini-core numbers per site appears to outweigh the lower k values yielding also slightly smaller confidence limits α95. Further, both k and α95 are less variable for mini-samples than for standard size samples. This is interpreted also to result from the larger number of mini-samples per site, which better averages out the detrimental effect of undetected abnormal remanence directions. Sampling of volcanic rocks with mini-samples therefore does not present a disadvantage in terms of the overall obtainable uncertainty of site mean directions. Apart from this, mini-samples do present clear advantages during the field work, as about twice the number of drill cores can be recovered compared to 25 mm cores, and the sampled rock unit is then more widely covered, which reduces the contribution of natural random errors produced, for example, by fractures, cooling joints, and palaeofield inhomogeneities. Mini-samples may be processed faster in the laboratory, which is of particular advantage when carrying out palaeointensity experiments.

  13. GRAVITATIONAL ACCRETION OF PARTICLES ONTO MOONLETS EMBEDDED IN SATURN's RINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasui, Yuki; Ohtsuki, Keiji; Daisaka, Hiroshi, E-mail: y.yasui@whale.kobe-u.ac.jp, E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2014-12-20

    Using a local N-body simulation, we examine gravitational accretion of ring particles onto moonlet cores in Saturn's rings. We find that gravitational accretion of particles onto moonlet cores is unlikely to occur in the C ring and probably difficult in the inner B ring as well provided that the cores are rigid water ice. Dependence of particle accretion on ring thickness changes when the radial distance from the planet and/or the density of particles is varied: the former determines the size of the core's Hill radius relative to its physical size, while the latter changes the effect of self-gravity ofmore » accreted particles. We find that particle accretion onto high-latitude regions of the core surface can occur even if the rings' vertical thickness is much smaller than the core radius, although redistribution of particles onto the high-latitude regions would not be perfectly efficient in outer regions of the rings such as the outer A ring, where the size of the core's Hill sphere in the vertical direction is significantly larger than the core's physical radius. Our results suggest that large boulders recently inferred from observations of transparent holes in the C ring are not formed locally by gravitational accretion, while propeller moonlets in the A ring would be gravitational aggregates formed by particle accretion onto dense cores. Our results also imply that the main bodies of small satellites near the outer edge of Saturn's rings may have been formed in rather thin rings.« less

  14. Opportunities and Challenges of Linking Scientific Core Samples to the Geoscience Data Ecosystem

    NASA Astrophysics Data System (ADS)

    Noren, A. J.

    2016-12-01

    Core samples generated in scientific drilling and coring are critical for the advancement of the Earth Sciences. The scientific themes enabled by analysis of these samples are diverse, and include plate tectonics, ocean circulation, Earth-life system interactions (paleoclimate, paleobiology, paleoanthropology), Critical Zone processes, geothermal systems, deep biosphere, and many others, and substantial resources are invested in their collection and analysis. Linking core samples to researchers, datasets, publications, and funding agencies through registration of globally unique identifiers such as International Geo Sample Numbers (IGSNs) offers great potential for advancing several frontiers. These include maximizing sample discoverability, access, reuse, and return on investment; a means for credit to researchers; and documentation of project outputs to funding agencies. Thousands of kilometers of core samples and billions of derivative subsamples have been generated through thousands of investigators' projects, yet the vast majority of these samples are curated at only a small number of facilities. These numbers, combined with the substantial similarity in sample types, make core samples a compelling target for IGSN implementation. However, differences between core sample communities and other geoscience disciplines continue to create barriers to implementation. Core samples involve parent-child relationships spanning 8 or more generations, an exponential increase in sample numbers between levels in the hierarchy, concepts related to depth/position in the sample, requirements for associating data derived from core scanning and lithologic description with data derived from subsample analysis, and publications based on tens of thousands of co-registered scan data points and thousands of analyses of subsamples. These characteristics require specialized resources for accurate and consistent assignment of IGSNs, and a community of practice to establish norms, workflows, and infrastructure to support implementation.

  15. Comparison of 3 Methods to Assess Urine Specific Gravity in Collegiate Wrestlers.

    PubMed

    Stuempfle, Kristin J.; Drury, Daniel G.

    2003-12-01

    OBJECTIVE: To investigate the reliability and validity of refractometry, hydrometry, and reagent strips in assessing urine specific gravity in collegiate wrestlers. DESIGN AND SETTING: We assessed the reliability of refractometry, hydrometry, and reagent strips between 2 trials and among 4 testers. The validity of hydrometry and reagent strips was assessed by comparison with refractometry, the criterion measure for urine specific gravity. SUBJECTS: Twenty-one National Collegiate Athletic Association Division III collegiate wrestlers provided fresh urine samples. MEASUREMENTS: Four testers measured the specific gravity of each urine sample 6 times: twice by refractometry, twice by hydrometry, and twice by reagent strips. RESULTS: Refractometer measurements were consistent between trials (R =.998) and among testers; hydrometer measurements were consistent between trials (R =.987) but not among testers; and reagent-strip measurements were not consistent between trials or among testers. Hydrometer (1.018 +/- 0.006) and reagent-strip (1.017 +/- 0.007) measurements were significantly higher than refractometer (1.015 +/- 0.006) measurements. Intraclass correlation coefficients were moderate between refractometry and hydrometry (R =.869) and low between refractometry and reagent strips (R =.573). The hydrometer produced 28% false positives and 2% false negatives, and reagent strips produced 15% false positives and 9% false negatives. CONCLUSIONS: Only the refractometer should be used to determine urine specific gravity in collegiate wrestlers during the weight-certification process.

  16. Comparison of 3 Methods to Assess Urine Specific Gravity in Collegiate Wrestlers

    PubMed Central

    Drury, Daniel G.

    2003-01-01

    Objective: To investigate the reliability and validity of refractometry, hydrometry, and reagent strips in assessing urine specific gravity in collegiate wrestlers. Design and Setting: We assessed the reliability of refractometry, hydrometry, and reagent strips between 2 trials and among 4 testers. The validity of hydrometry and reagent strips was assessed by comparison with refractometry, the criterion measure for urine specific gravity. Subjects: Twenty-one National Collegiate Athletic Association Division III collegiate wrestlers provided fresh urine samples. Measurements: Four testers measured the specific gravity of each urine sample 6 times: twice by refractometry, twice by hydrometry, and twice by reagent strips. Results: Refractometer measurements were consistent between trials (R = .998) and among testers; hydrometer measurements were consistent between trials (R = .987) but not among testers; and reagent-strip measurements were not consistent between trials or among testers. Hydrometer (1.018 ± 0.006) and reagent-strip (1.017 ± 0.007) measurements were significantly higher than refractometer (1.015 ± 0.006) measurements. Intraclass correlation coefficients were moderate between refractometry and hydrometry (R = .869) and low between refractometry and reagent strips (R = .573). The hydrometer produced 28% false positives and 2% false negatives, and reagent strips produced 15% false positives and 9% false negatives. Conclusions: Only the refractometer should be used to determine urine specific gravity in collegiate wrestlers during the weight-certification process. PMID:14737213

  17. Mars Technology Rover with Arm-Mounted Percussive Coring Tool, Microimager, and Sample-Handling Encapsulation Containerization Subsystem

    NASA Technical Reports Server (NTRS)

    Younse, Paulo J.; Dicicco, Matthew A.; Morgan, Albert R.

    2012-01-01

    A report describes the PLuto (programmable logic) Mars Technology Rover, a mid-sized FIDO (field integrated design and operations) class rover with six fully drivable and steerable cleated wheels, a rocker-bogey suspension, a pan-tilt mast with panorama and navigation stereo camera pairs, forward and rear stereo hazcam pairs, internal avionics with motor drivers and CPU, and a 5-degrees-of-freedom robotic arm. The technology rover was integrated with an arm-mounted percussive coring tool, microimager, and sample handling encapsulation containerization subsystem (SHEC). The turret of the arm contains a percussive coring drill and microimager. The SHEC sample caching system mounted to the rover body contains coring bits, sample tubes, and sample plugs. The coring activities performed in the field provide valuable data on drilling conditions for NASA tasks developing and studying coring technology. Caching of samples using the SHEC system provide insight to NASA tasks investigating techniques to store core samples in the future.

  18. Gravity field, shape, and moment of inertia of Titan.

    PubMed

    Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W

    2010-03-12

    Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.

  19. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explainmore » many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.« less

  20. Interior Structure of Ceres Artist Concept

    NASA Image and Video Library

    2016-08-03

    This artist's concept shows a diagram of how the inside of Ceres could be structured, based on data about the dwarf planet's gravity field from NASA's Dawn mission. Using information about Ceres' gravity and topography, scientists found that Ceres is "differentiated," which means that it has compositionally distinct layers at different depths. The densest layer is at the core, which scientists suspect is made of hydrated silicates. Above that is a volatile-rich shell, topped with a crust of mixed materials. This research teaches scientists about what internal processes could have occurred during the early history of Ceres. It appears that, during a heating phase early in the history of Ceres, water and other light materials partially separated from rock. These light materials and water then rose to the outer layer of Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20867

  1. KSC-2011-6340

    NASA Image and Video Library

    2011-08-10

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., NASA's Gravity Recovery and Interior Laboratory-B (GRAIL-B) lunar probe is secured on the spacecraft adapter ring. After the twin GRAIL spacecraft are attached to the adapter ring in their side-by-side launch configuration, they will be transported to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  2. KSC-2011-6111

    NASA Image and Video Library

    2011-07-30

    CAPE CANAVERAL, Fla. -- Lockheed Martin technicians inspect the second of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft as they prepare to move it to a workstand in the Hazardous Processing Facility (HPF) at Astrotech Space Operation's payload processing facility in Titusville, Fla. In the HPF, the spacecraft will undergo two days of fueling activities. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Charisse Nahser

  3. KSC-2011-6502

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft will be lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  4. KSC-2011-6351

    NASA Image and Video Library

    2011-08-10

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., Lockheed Martin technicians verify that NASA's Gravity Recovery and Interior Laboratory-A (GRAIL-A) lunar probe is positioned correctly on the spacecraft adapter ring. After the twin GRAIL spacecraft are attached to the adapter ring in their side-by-side launch configuration, they will be transported to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  5. KSC-2011-6500

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft arrives at their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-6504

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-6551

    NASA Image and Video Library

    2011-08-24

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station in Florida, the sections of the clamshell-shaped Delta payload fairing close in around NASA's twin Gravity Recovery and Interior Laboratory spacecraft. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Launch aboard a United Launch Alliance Delta II rocket from Pad 17B is scheduled for Sept. 8. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-6544

    NASA Image and Video Library

    2011-08-23

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station in Florida, NASA's twin Gravity Recovery and Interior Laboratory spacecraft are uncovered and ready for enclosure in the Delta payload fairing. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Launch aboard a United Launch Alliance Delta II rocket from Pad 17B is scheduled for Sept. 8. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-6327

    NASA Image and Video Library

    2011-08-10

    CAPE CANAVERAL, Fla. -- This 3-D image shows NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft attached to the spacecraft adapter ring in their launch configuration in Astrotech Space Operation's payload processing facility in Titusville, Fla. To view this image, use green and magenta 3-D glasses. Preparations are under way to transport the lunar probes to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  10. KSC-2011-6333

    NASA Image and Video Library

    2011-08-10

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., NASA's Gravity Recovery and Interior Laboratory-B (GRAIL-B) lunar probe is lowered toward the spacecraft adapter ring. After the twin GRAIL spacecraft are attached to the adapter ring in their side-by-side launch configuration, they will be transported to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-6545

    NASA Image and Video Library

    2011-08-23

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station in Florida, NASA's twin Gravity Recovery and Interior Laboratory spacecraft are secured atop a Delta II rocket awaiting enclosure in the Delta payload fairing. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Launch aboard a United Launch Alliance Delta II rocket from Pad 17B is scheduled for Sept. 8. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  12. KSC-2011-6503

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-6552

    NASA Image and Video Library

    2011-08-24

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station in Florida, the sections of the Delta payload fairing form a protective cocoon around NASA's twin Gravity Recovery and Interior Laboratory spacecraft. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Launch aboard a United Launch Alliance Delta II rocket from Pad 17B is scheduled for Sept. 8. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  14. KSC-2011-6505

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  15. Composition of Sediment Inputs to the Hikurangi Subduction Margin: A Prelude to IODP Expedition 375

    NASA Astrophysics Data System (ADS)

    Underwood, M.

    2017-12-01

    Expedition 375 of the International Ocean Discovery Program is scheduled to begin drilling offshore New Zealand in March 2018. Two sites will be cored seaward of the Hikurangi subduction front (subduction inputs), plus one site at the toe of the accretionary prism, and one site in the forearc above a zone of well-documented slow-slip events. One of the challenges during planning for Expedition 375 has been the total absence of pre-existing compositional data from the region; that lack of basic information impacts such tasks as mixing and analysis of appropriate standards for X-ray diffraction, error analysis, computation of accurate normalization factors, and QA/QC. To help overcome those deficiencies, I analyzed a total of 152 samples from ODP Sites 1123 (Quaternary to Eocene), 1124 (Quaternary to Cretaceous), and 1125 (Quaternary to Miocene), plus piston/gravity-core samples from the repositories at Lamont-Doherty, Oregon State, and NIWA. The results reveal an unusually large range of compositions for the bulk sediments. The relative abundance of total clay minerals ranges from 3 to 64 wt%. Quartz ranges from 0 to 39 wt%. Feldspar ranges from 0 to 40 wt%, and calcite ranges from 0 to 93 wt%. Samples from the Hikurangi Plateau and Chatham Rise are carbonate-rich, with many bordering on almost-pure nannofossil chalk. Hemipelagic muds from the floor of Hikurangi Trough, Ruatoria slide, and the landward slope of the trench are fairly uniform, with averages of 36 wt% total clay minerals, 27 wt% quartz, 24 wt% feldspar, and 13 wt% calcite. Unlike many other subduction zones, this diversity of lithologies will save shipboard scientists from repetitive, mind-numbing descriptions and analyses, and shorebased experiments for frictional properties, permeability, and consolidation will need to pay close attention to the compositional attributes of the specimens. In addition, results from the four IODP boreholes can be interpreted within a broader, regional-scale framework of sediment provenance and dispersal.

  16. AuScope research infrastructure - supporting Australian mineral discovery

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Rawling, T.

    2016-12-01

    Earth and geospatial scientists are heavy users of data products. When industry geologists access spatial data from the field and the exploration office they require data products that are discoverable, searchable, interoperable and attributed with robust metadata. Over the last decade AuScope has utilised NCRIS funding to provide a variety of data products including geophysical data (reflection and passive seismic, magnetotellurics and gravity), GIS layers from state and national geological survey organisations, hyperspectral core logging (National Virtual Core Library) and time-series geospatial data from GNSS and VLBI instruments - all delivered using AuScope GRID technologies based on the Spatial Information Services Stack (SiSS). Perhaps one of the best examples of collaboration to deliver data products to industry users is the National Mineral Library. Working with researchers at Curtin Universities John de Laeter Centre and ANDS, AuScope has also supported the development of a Laboratory Information Management System (LIMS). The project has produced an entirely new workflow, based around a TESCAN TIMA field emission scanning electron microscope, that allows metadata to be collected and recorded from the sample collection and preparation right through to data delivery and publication. This process has facilitated the scanning of a large stockpile of mineral samples from across Western Australia that will produce a state-wide Mineral Library, allowing mineral explorers to better understand the composition of critical rock outcrop samples from all over the state. This new NCRIS supported initiative provides a dataset that underpins both academic and applied research programs and is important for the economic future of Australia. Mining companies do a lot of heavy mineral analysis in research and development but, because there isn't a baseline for mineralogy across each state, it is difficult to have full confidence in the heavy mineral data. This creates an issue for pinpointing where the next major mineral deposits are. Having solid baseline data will help improve targeting, which in turn reduces the costs associated with exploration and supports new discovery.

  17. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    NASA Astrophysics Data System (ADS)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found that anisotropic turbulent thermal diffusivity has a strong destabilising effect on magneto-convective instabilities, which may relax the tight energy budget constraining geodynamo models. The enhanced instability is not due to a reduction of the total diffusivity. The anisotropy also strengthens instabilities which break the symmetry of the underlying state, which may facilitate magnetic field reversal. Geostrophic flow appears to suppress the symmetry breaking modes and magnetic instabilities. Through symmetry breaking and the geostrophic flow the anisotropy may provide a mechanism of magnetic field reversal and its suppression in computational dynamo models.

  18. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  19. Investigation of microgravity effects on solidification phenomena of selected materials

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Hansen, Patricia A.

    1992-01-01

    A Get Away Special (GAS) experiment payload to investigate microgravity effects on solidification phenomena of selected experimental samples has been designed for flight. It is intended that the first flight of the assembly will (1) study the p-n junction characteristics for advancing semiconductor device applications, (2) study the effects of gravity-driven convection on the growth of HgCd crystals, (3) compare the textures of the sample which crystallizes in microgravity with those found in chondrite meteorites, and (4) modify glass optical characteristics through divalent oxygen exchange. The space flight experiment consists of many small furnaces. While the experiment payload is in the low gravity environment of orbital flight, the payload controller will sequentially activate the furnaces to heat samples to their melt state and then allow cooling to resolidification in a controlled fashion. The materials processed in the microgravity environment of space will be compared to the same materials processed on earth in a one-gravity environment. This paper discusses the design of all subassemblies (furnance, electronics, and power systems) in the experiment. A complete description of the experimental materials is also presented.

  20. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija

    2015-04-01

    We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.

  1. HowTo - Easy use of global unique identifier

    NASA Astrophysics Data System (ADS)

    Czerniak, A.; Fleischer, D.; Schirnick, C.

    2013-12-01

    The GEOMAR sample- and core repository covers several thousands of samples and cores and was collected over the last decades. In the actual project, we bring this collection up to the new generation and tag every sample and core with a unique identifier, in our case the International Geo Sample Number (ISGN). This work is done with our digital Ink and hand writing recognition implementation. The Smart Pen technology was save time and resources to record the information on every sample or core. In the procedure of recording, there are several steps systematical are done: 1. Getting all information about the core or sample, such as cruise number, responsible person and so on. 2. Tag with unique identifiers, in our case a QR-Code. 3. Wrote down the location of sample or core. After transmitting the information from Smart Pen, actually via USB but wireless is a choice too, into our server infrastructure the link to other information began. As it linked in our Virtual Research Environment (VRE) with the unique identifier (ISGN) sample or core can be located and the QR-Code was simply linked back from core or sample to ISGN with additional scientific information. On the QR-Code all important information are on it and it was simple to produce thousand of it.

  2. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.

  3. ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik

    2013-04-01

    The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. H.; Reigel, M. M.

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposedmore » to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.« less

  5. The influence of gravity level during directional solidification of immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.; Schmale, A. L.; Sandlin, A. C.

    1992-01-01

    During directional solidification of immiscible (hypermonotectic) alloys it is theoretically possible to establish a stable macroscopically-planar solidification front, and thus avoid sedimentation. Unfortunately, convective instabilities often occur which interfere with the directional solidification process. In this paper, stability conditions are discussed and results presented from directional solidification studies carried out aboard NASA's KC-135 zero-g aircraft. Samples were directionally solidified while the effective gravity level was varied from approximately 0.01 g for 25 s to 1.8 g for 45 s. Dramatic variations in microstructure were observed with gravity level during solidification.

  6. The curious case of Mercury's internal structure

    NASA Astrophysics Data System (ADS)

    Hauck, Steven A.; Margot, Jean-Luc; Solomon, Sean C.; Phillips, Roger J.; Johnson, Catherine L.; Lemoine, Frank G.; Mazarico, Erwan; McCoy, Timothy J.; Padovan, Sebastiano; Peale, Stanton J.; Perry, Mark E.; Smith, David E.; Zuber, Maria T.

    2013-06-01

    The recent determination of the gravity field of Mercury and new Earth-based radar observations of the planet's spin state afford the opportunity to explore Mercury's internal structure. These observations provide estimates of two measures of the radial mass distribution of Mercury: the normalized polar moment of inertia and the fractional polar moment of inertia of the solid portion of the planet overlying the liquid core. Employing Monte Carlo techniques, we calculate several million models of the radial density structure of Mercury consistent with its radius and bulk density and constrained by these moment of inertia parameters. We estimate that the top of the liquid core is at a radius of 2020 ± 30 km, the mean density above this boundary is 3380 ± 200 kg m-3, and the density below the boundary is 6980 ± 280 kg m-3. We find that these internal structure parameters are robust across a broad range of compositional models for the core and planet as a whole. Geochemical observations of Mercury's surface by MESSENGER indicate a chemically reducing environment that would favor the partitioning of silicon or both silicon and sulfur into the metallic core during core-mantle differentiation. For a core composed of Fe-S-Si materials, the thermodynamic properties at elevated pressures and temperatures suggest that an FeS-rich layer could form at the top of the core and that a portion of it may be presently solid.

  7. Combustion of Metals in Carbon Dioxide and Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Branch, M. C.; Abbud-Madrid, A.; Modak, A.; Dreyer, C. B.; Daily, J. W.

    2001-01-01

    Ongoing exploration and future mission2001110444 s to Mars have given impetus to research on the use of natural resources of the planet. Since carbon dioxide (CO2) constitutes approximately 95% of the Mars atmosphere and since it reacts directly and vigorously with several metals, this investigation focuses on metal-CO2 reactions as a possible combination for rocket-propellant production and energy generation. Magnesium (Mg) has been initially selected as the metal fuel owing to its low ignition temperature and high specific impulse and burning rate in CO2. Our studies in this field started with low gravity (g) combustion tests of Mg in O2, CO2, and CO. Reduced gravity provided a clear picture of the burning phenomena by eliminating the intrusive buoyant flows in high-temperature metal reactions and by removing the destructive effect of gravity on the shape of molten metal samples. Suspended cylindrical metal samples of 2, 3, and 4-mm in diameter and length were radiatively ignited in low-g to generate free-floating samples exhibiting a spherically symmetric flame with increasing metal-oxide accumulation in an outer shell. For the Mg-CO2 combination, burning times twice as long as in normal-g and five times longer than in Mg-O2 flames were observed, revealing a diffusion-controlled reaction. The burning time is proportional to the square of the sample diameter. In tests conducted with pure CO, combustion was not possible without constant heating of the sample due to the formation of a thick carbon-containing coating around the Mg sample generated by surface reactions. The following work presents two new studies that attempt to explain some of the low-g experimental observations. First, a simplified one-dimensional, quasi-steady numerical model is developed to obtain temperature, species concentrations, and burning rates of the spherically symmetric diffusion flame around the Mg sample burning in O2 and CO2. Second, a Planar Laser Induced Fluorescence (PLIF) technique is implemented to provide spatially resolved measurements of magnesium oxide (MgO) in the reaction zone of Mg samples burning in O2 and CO2. These experiments reveal fundamental differences between the two combustion systems.

  8. The nuclear bomb carbon curve recorded in tree-rings and lake sediments near Taal Volcano, Central Philippines

    NASA Astrophysics Data System (ADS)

    Liou, M. S.; Li, H. C.; Huang, S. K.; Guan, B. T.

    2017-12-01

    Dendrochronologies built from precisely dated annual rings have shown to record the regional bomb pulse and the C-14 concentration variations caused by local events. In this study, we collected teak trees Tectona grandis near the Lake Taal, Central Philippines in 2011 for dendrochronological analysis and radiocarbon dating. The tree-ring sample contains 90 rings dated from 1922 to 2011. Currently, 28 selected subsamples have been measured by AMS 14C on bulk carbon with a few samples on holocellulose. The 14C results of the samples indicate that: 1) the results of AMS 14C dating between holocellulose and whole wood from the same ring are similar, so we select whole wood for AMS 14C dating. 2) The nuclear bomb 14C pulse was clearly recorded in the Tectona grandis growth rings. The Δ14C values rose dramatically in 1960 and reached a maximum of 692‰ in 1966. The magnitude and the peak year of the bomb curve in the Tectona grandis tree-ring record are comparable to other published tree-ring records in the tropical regions. 3) The Δ14C values suddenly dropped in 1950, 1964 and 1968, probably affected by CO2 gas releasing due to the Taal volcanic activities. Further study on the tree-ring 14C dating will allow us to evaluate the bomb pulse trends more precisely, and the volcanic activities of Pinatubo and Taal Volcanoes. The tree-ring Δ14C record not only confirms existence of the bomb curve in Taal Lake area, but also allows us compare to the Δ14C record in the lake sediment for chronological construction. A 120-cm gravity core, TLS-2, collected from Lake Taal in 2008, shows the nuclear bomb carbon curve in the TOC of the core. However, the magnitude of the nuclear bomb 14C pulse in the TOC of TLS-2 is much lower than that in the tree-ring records, due to mixing effect of different organic carbon sources, smoothing effect of 14CO2 in multiple years plant growths, local old CO2 emission from volcanic activity, degassing from the lake bottom, and industrial and city pollutions. Nevertheless, by comparing the bomb curves, the chronology of Core TLS-2 is about 60 years with a mean sedimentary rate of 2 cm/yr.

  9. CHAMP Magnetic Anomalies of the Antarctic Crust

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo

    2003-01-01

    Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, S.; Classen, L.; Heber, U., E-mail: geier@sternwarte.uni-erlangen.de

    Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very thin hydrogen envelopes. In order to form an sdB, the progenitor has to lose almost all of its hydrogen envelope right at the tip of the red-giant branch. In binary systems, mass transfer to the companion provides the extraordinary mass loss required for their formation. However, apparently single sdBs exist as well and their formation has been unclear for decades. The merger of helium white dwarfs (He-WDs) leading to an ignition of core helium burning or the merger of a helium core and a low-mass star during themore » common envelope phase have been proposed as processes leading to sdB formation. Here we report the discovery of EC 22081-1916 as a fast-rotating, single sdB star of low gravity. Its atmospheric parameters indicate that the hydrogen envelope must be unusually thick, which is at variance with the He-WD merger scenario, but consistent with a common envelope merger of a low-mass, possibly substellar object with a red-giant core.« less

  11. Surface Gravities for 228 M, L, and T Dwarfs in the NIRSPEC Brown Dwarf Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Emily C.; Mace, Gregory N.; McLean, Ian S.

    2017-03-20

    We combine 131 new medium-resolution ( R ∼ 2000) J -band spectra of M, L, and T dwarfs from the Keck NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS) with 97 previously published BDSS spectra to study surface-gravity-sensitive indices for 228 low-mass stars and brown dwarfs spanning spectral types M5–T9. Specifically, we use an established set of spectral indices to determine surface gravity classifications for all of the M6–L7 objects in our sample by measuring the equivalent widths (EW) of the K i lines at 1.1692, 1.1778, and 1.2529 μ m, and the 1.2 μ m FeH{sub J} absorption index. Our resultsmore » are consistent with previous surface gravity measurements, showing a distinct double peak—at ∼L5 and T5—in K i EW as a function of spectral type. We analyze the K i EWs of 73 objects of known ages and find a linear trend between log(Age) and EW. From this relationship, we assign age ranges to the very low gravity, intermediate gravity, and field gravity designations for spectral types M6–L0. Interestingly, the ages probed by these designations remain broad, change with spectral type, and depend on the gravity-sensitive index used. Gravity designations are useful indicators of the possibility of youth, but current data sets cannot be used to provide a precise age estimate.« less

  12. A hybrid scenario for gas giant planet formation in rings

    NASA Astrophysics Data System (ADS)

    Durisen, Richard H.; Cai, Kai; Mejía, Annie C.; Pickett, Megan K.

    2005-02-01

    The core-accretion mechanism for gas giant formation may be too slow to create all observed gas giant planets during reasonable gas disk lifetimes, but it has yet to be firmly established that the disk instability model can produce permanent bound gaseous protoplanets under realistic conditions. Based on our recent simulations of gravitational instabilities in disks around young stars, we suggest that, even if instabilities due to disk self-gravity do not produce gaseous protoplanets directly, they may create persistent dense rings that are conducive to accelerated growth of gas giants through core accretion. The rings occur at and near the boundary between stable and unstable regions of the disk and appear to be produced by resonances with discrete spiral modes on the unstable side.

  13. Planet formation in binary systems: simulating coagulation using analytically determined collision velocities.

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman

    2017-06-01

    The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by moderately damaging collisions can also prevent growth from occurring.

  14. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample

    DOEpatents

    Maerefat, Nicida L.; Parmeswar, Ravi; Brinkmeyer, Alan D.; Honarpour, Mehdi

    1994-01-01

    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  15. Identification of specific gravity sensitive signal transduction pathways in human A431 carcinoma cells

    NASA Astrophysics Data System (ADS)

    Rijken, P. J.; de Groot, R. P.; Kruijer, W.; de Laat, S. W.; Verkleij, A. J.; Boonstra, J.

    Epidermal growth factor (EGF) activates a well characterized signal transduction cascade in human A431 epidermoid carcinoma cells. The influence of gravity on EGF-induced EGF-receptor clustering and early gene expression as well as on actin polymerization and actin organization have been investigated. Different signalling pathways induced by the agents TPA, forskolin and A23187 that activate gene expression were tested for sensitivity to gravity. EGF-induced c-fos and c-jun expression were decreased in microgravity. However, constitutive β-2 microglobulin expression remained unaltered. Under simulated weightlessness conditions EGF- and TPA-induced c-fos expression was decreased, while forskolin- and A23187-induced c-fos expression was independent of the gravity conditions. These results suggest that gravity affects specific signalling pathways. Preliminary results indicate that EGF-induced EGF-receptor clustering remained unaltered irrespective of the gravity conditions. Furthermore, the relative filamentous actin content of steady state A431 cells was enhanced under microgravity conditions and actin filament organization was altered. Under simulated weightlessness actin filament organization in steady state cells as well as in EGF-treated cells was altered as compared to the 1 G reference experiment. Interestingly the microtubule and keratin organization in untreated cells showed no difference with the normal gravity samples. This indicates that gravity may affect specific components of the signal transduction circuitry.

  16. Ceiling Fires Studied to Simulate Low-Gravity Fires

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    2001-01-01

    A unique new way to study low-gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low-stretch environments, a normal gravity low-stretch diffusion flame was generated using a cylindrical PMMA sample of varying large radii, as shown in the photograph. These experiments have demonstrated that low-gravity flame characteristics can be generated in normal gravity through the proper use of scaling. On the basis of this work, it is feasible to apply this concept toward the development of an Earth-bound method of evaluating material flammability in various gravitational environments from normal gravity to microgravity, including the effects of partial gravity low-stretch rates such as those found on the Moon (1/6g) or Mars (1/3g). During these experiments, the surface regression rates for PMMA were measured for the first time over the full range of flammability in air, from blowoff at high stretch, to quenching at low stretch, as plotted in the graph. The solid line drawn through the central portion of the data (3

  17. Oscillatory Dynamics of Single Bubbles and Agglomeration in a Sound Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.; Trinh, Eugene H.; Depew, Jon; Asaki, Thomas J.

    1994-01-01

    A dual-frequency acoustic levitator containing water was developed for studying bubble and drop dynamics in low gravity. It was flown on USML-1 where it was used in the Glovebox facility. High frequency (21 or 63 kHz) ultrasonic waves were modulated by low frequencies to excite shape oscillations on bubbles and oil drops ultrasonically trapped in the water. Bubble diameters were typically close to 1 cm or larger. When such large bubbles are acoustically trapped on the Earth, the acoustic radiation pressure needed to overcome buoyancy tends to shift the natural frequency for quadrupole (n = 2) oscillations above the prediction of Lamb's equation. In low gravity, a much weaker trapping force was used and measurements of n = 2 and 3 mode frequencies were closer to the ideal case. Other video observations in low gravity include: (i) the transient reappearance of a bulge where a small bubble has coalesced with a large one, (ii) observations of the dynamics of bubbles coated by oil indicating that shape oscillations can shift a coated bubble away from the oil-water interface of the coating giving a centering of the core, and (iii) the agglomeration of bubbles induced by the sound field.

  18. Gravity and Magnetic Signatures of Different Types of Spreading at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Alodia, G.; Green, C. M.; McCaig, A. M.; Paton, D.; Campbell, S.

    2017-12-01

    In recent years it has been recognised that parts of slow spreading ridges such as the mid-Atlantic Ridge (MAR) are characterised by typical magmatic spreading, while other parts are characterised by the formation of detachment faults and oceanic core complexes (OCC). These different spreading modes can be clearly identified in the near-ridge environment in the bathymetry, with magmatic mode crust characterised by linear fault-bounded ridges, and detachment mode crust by more chaotic bathymetric signatures. The aim of this project is to characterise the magnetic and gravity signatures of lithosphere created by different modes of spreading, with the aim of using these signatures to identify different modes of spreading in ocean-continent transitions where the bathymetry is often hidden beneath sediment. In this presentation, we first characterise different modes of spreading using available high-resolution bathymetry data in the 28-32 N section of the MAR up to 20 My of age. The identified characteristics are then related to the corresponding ship-borne gravity and magnetic data in the same area. As most magnetic anomalies found in the near-axis environment are caused by the remanent magnetisation, it is found that in places where OCCs are present, magnetic anomalies are not as symmetrical as those found in magmatic mode regions. In both gravity and magnetic data, gradients are strongly clustered in the spreading direction in magmatic mode crust, but much more variable in detachment mode. We present a range of parameters extracted from the data that characterise different spreading modes, and use these to test whether transitions between detachment and magmatic mode crust identified in the bathymetry can be readily identified in gravity and magnetic data with different degrees of resolution.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkis, Avishai; Soker, Noam; Papish, Oded, E-mail: agilkis@tx.technion.ac.il, E-mail: soker@physics.technion.ac.il, E-mail: papish@campus.technion.ac.il

    We suggest that the energetic radiation from core-collapse super-energetic supernovae (SESNe) is due to a long-lasting accretion process onto the newly born neutron star (NS), resulting from an inefficient operation of the jet-feedback mechanism (JFM). The jets that are launched by the accreting NS or black hole maintain their axis due to a rapidly rotating pre-collapse core and do not manage to eject core material from near the equatorial plane. The jets are able to eject material from the core along the polar directions and reduce the gravity near the equatorial plane. The equatorial gas expands, and part of itmore » falls back over a timescale of minutes to days to prolong the jet-launching episode. According to the model for SESNe proposed in the present paper, the principal parameter that distinguishes between the different cases of core-collapse supernova (CCSN) explosions, such as between normal CCSNe and SESNe, is the efficiency of the JFM. This efficiency, in turn, depends on the pre-collapse core mass, envelope mass, core convection, and, most of all, the angular momentum profile in the core. One prediction of the inefficient JFM for SESNe is the formation of a slow equatorial outflow in the explosion. The typical velocity and mass of this outflow are estimated to be v {sub eq} ≈ 1000 km s{sup −1} and M {sub eq} ≳ 1 M {sub ⊙}, respectively, though quantitative values will have to be checked in future hydrodynamic simulations.« less

  20. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.

    PubMed

    Valbuena, Miguel A; Manzano, Aránzazu; Vandenbrink, Joshua P; Pereda-Loth, Veronica; Carnero-Diaz, Eugénie; Edelmann, Richard E; Kiss, John Z; Herranz, Raúl; Medina, F Javier

    2018-06-08

    Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.

  1. Thought-Experiments About Gravity in the History of Science and in Research into Children's Thinking

    NASA Astrophysics Data System (ADS)

    Blown, E. J.; Bryce, T. G. K.

    2013-03-01

    This article examines the main strands of thinking about gravity through the ages and the continuity of thought-experiments, from the early Greeks, through medieval times, to Galileo, Newton and Einstein. The key ideas are used to contextualise an empirical study of 247 children's ideas about falling objects carried out in China and New Zealand, including the use of scenarios involving thrown and dropped items, and objects falling down deep well holes (as in Carroll's Alice in Wonderland). The sample included 68 pre-school pupils, 68 primary school pupils, 56 middle school students, and 55 high school students; with approximately equal numbers in each group and of boys and girls in each group in each culture. The methodology utilised Piagetian interviews with three media (verbal language, drawing, and play-dough), a shadow stick; and everyday items including model people and soft model animals. The data from each group was categorised and analysed with Kolmogorov- Smirnov Two- Sample Tests and Spearman r s coefficients. It was hypothesised and confirmed (at K- S alpha levels .05; r s : p < .001) that cross-age and cross-cultural research and analysis would reveal that (a) an intuitive sense of gravity is present from an early age and develops in association with concepts like Earth shape and motion; (b) the development of concepts of gravity is similar in cultures such as China and New Zealand where teachers hold a scientific world view; and (c) children's concepts of Earth motion, Earth shape, and gravity are coherent rather than fragmented. It was also demonstrated that multi-media interviews together with concrete experiences and thought-experiments afforded children the opportunity to share their emerging concepts of gravity. The findings provide information that teachers might use for lessons at an appropriate level.

  2. Treatment of ocean tide aliasing in the context of a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Hauk, Markus; Pail, Roland

    2018-04-01

    Current temporal gravity field solutions from GRACE suffer from temporal aliasing errors due to under-sampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean), and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high resolution temporal gravity fields from future gravity missions such as GRACE Follow-on and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parameterize ocean tide parameters of the 8 main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from one to three years leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 per cent and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.

  3. Electron Micrographs of Quail Limb Bones formed in microgravity

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Electron micrographs of quail limb bones that formed under the influence of microgravity show decreased mineralization compared to bones formed in normal gravity. The letters B and C indicate bone and cartilage sides of the sample, respectively, with the arrows marking the junction between bone and cartilage cells. The asterisks indicate where mineralization begins. The bone that developed during spaceflight (top) shows less mineral compared to the control sample (bottom); the control sample clearly shows mineral deposits (dark spots) that are absent in the flight sample. Quail eggs are small and develop quickly, making them ideal for space experiments. In late 2001, the Avian Development Facility (ADF) made its first flight and carried eggs used in two investigations, development and function of the irner-ear balance system in normal and altered gravity environments, and skeletal development in embryonic quail.

  4. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    NASA Astrophysics Data System (ADS)

    Davis, M. B.; Gulick, S. P.; Allison, M. A.; Goff, J. A.; Duncan, D. D.; Saustrup, S.

    2011-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year five, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students seek to understand coastal and sedimentary processes of the Gulf Coast and continental shelf through application of these techniques in an exploratory mode. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. In the field, students rotate between two small research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibracoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for particle size analysis and initial data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Focus, Landmark, Caris, and Fledermaus. The course concludes with a series of professional-level final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf. With course completion, students report a greater understanding of marine geology and geophysics via the course's intensive, hands-on, team approach and low instructor to student ratio. This course satisfies field experience requirements for some degree programs and thus provides a unique alternative to land-based field courses.

  5. The Svalbard REU Program: A High-Latitude Undergraduate Research Program in Glacial, Fluvial and Marine Processes Relevant to Arctic Climate Change

    NASA Astrophysics Data System (ADS)

    Powell, R.; Brigham-Grette, J.; Cumpston, R.; Trusel, L.; Werner, A.; Roof, S.; Retelle, M.

    2005-12-01

    A pilot-study field season was conducted this past summer from the most northerly permanent settlement in the world as part of our ongoing Svalbard REU program funded by the National Science Foundation (award OPP-0244097). Ny Alesund, on the island of Spitsbergen, Svalbard, is an international research center operated by Norway, and during summers, hosts about 100 scientists from over 15 nations. With NSF support, the US now participates in a new marine laboratory that opened this year, and we made that our operations center. The success of our field program is enhanced by tight logistics and research objectives integrated with UNIS (the University Centre on Svalbard), the Norwegian Polar Institute and Kings Bay AS. Our program provides genuine research experiences in Arctic Quaternary science for undergraduates. Research focuses on modern glacial sedimentation processes relevant to understanding records of past climate changes preserved in marine and lacustrine basins. Students in this marine portion of the program had a total immersion experience, being surrounded by scientists from different nations and from disciplines differing widely from theirs. They interacted with these scientists formally and informally, discussing their science plans, attending weekly science talks, and enjoying conversations at meal times. First, we introduced the students to arctic glacial and marine systems, and then through discussion and demonstration they developed their own research plans and made decisions on modifying sampling schemes through the field season. Studies focused on sediment transport and deposition in Kongsfjorden by polythermal tidewater glaciers, icebergs, meltwater streams and marine currents. Students sampled glaciers and icebergs for debris concentrations, collected seawater samples for suspended sediment concentrations, performed CTD casts to define water column structure, conducted bathymetric profiling using GPS control, and collected fjord sediment samples with small box-cores and short gravity cores. Also students were able to initially process samples in the marine lab. But in a practical sense they also learned survival away from home comforts, and how to deal and cope with unexpected occurrences as always arise when working in these environments. They are currently conducting laboratory research on samples and reducing and analyzing data, which will lead to theses and presentations at scientific meetings.

  6. Unified Model for the Overall Efficiency of Inlets Sampling from Horizontal Aerosol Flows

    NASA Astrophysics Data System (ADS)

    Hangal, Sunil Pralhad

    When sampling aerosols from ambient or industrial air environments, the sampled aerosol must be representative of the aerosol in the free stream. The changes that occur during sampling must be assessed quantitatively so that sampling errors can be compensated for. In this study, unified models have been developed for the overall efficiency of tubular sharp-edged inlets sampling from horizontal aerosol flows oriented at 0 to 90^circ relative to the wind direction in the vertical (pitch) and horizontal plane(yaw). In the unified model, based on experimental data, the aspiration efficiency is represented by a single equation with different inertial parameters at 0 to 60^ circ and 45 to 90^circ . Tnt transmission efficiency is separated into two components: one due to gravitational settling in the boundary layer and the other due to impaction. The gravitational settling component is determined by extending a previously developed isoaxial sampling model to nonisoaxial sampling. The impaction component is determined by a new model that quantifies the particle losses caused by wall impaction. The model also quantifies the additional particle losses resulting from turbulent motion in the vena contracta which is formed in the inlet when the inlet velocity is higher than the wind velocity. When sampling aerosols in ambient or industrial environments with an inlet, small changes in wind direction or physical constraints in positioning the inlet in the system necessitates the assessment of sampling efficiency in both the vertical and horizontal plane. The overall sampling efficiency of tubular inlets has been experimentally investigated in yaw and pitch orientations at 0 to 20 ^circ from horizontal aerosol flows using a wind tunnel facility. The model for overall sampling efficiency has been extended to include both yaw and pitch sampling based on the new data. In this model, the difference between yaw and pitch is expressed by the effect of gravity on the impaction process inside the inlet described by a newly developed gravity effect angle. At yaw, the gravity effect angle on the wall impaction process does not change with sampling angle. At pitch, the gravity effect on the impaction process results in particle loss increase for upward and decrease for downward sampling. Using the unified model, graphical representations have been developed for sampling at small angles. These can be used in the field to determine the overall sampling efficiency of inlets at several operating conditions and the operating conditions that result in an acceptable sampling error. Pitch and diameter factors have been introduced for relating the efficiency values over a wide range of conditions to those of a reference condition. The pitch factor determines the overall sampling efficiency at pitch from yaw values, and the diameter factor determines the overall sampling efficiency at different inlet diameters.

  7. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  8. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin

    2014-05-01

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  9. ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED CORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Xu; Zhou Tingtao; Lin, D. N. C., E-mail: xuhuang@princeton.edu

    2013-05-20

    Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense cores' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. Inmore » this paper, we investigate the dynamical origin of the mass function of starless cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for cores with masses larger than the cores' Bonnor-Ebert mass.« less

  10. [Comparative measurement of urine specific gravity: reagent strips, refractometry and hydrometry].

    PubMed

    Costa, Christian Elías; Bettendorff, Carolina; Bupo, Sol; Ayuso, Sandra; Vallejo, Graciela

    2010-06-01

    The urine specific gravity is commonly used in clinical practice to measure the renal concentration/dilution ability. Measurement can be performed by three methods: hydrometry, refractometry and reagent strips. To assess the accuracy of different methods to measure urine specific gravity. We analyzed 156 consecutive urine samples of pediatric patients during April and May 2007. Urine specific gravity was measured by hydrometry (UD), refractometry (RE) and reagent strips (TR), simultaneously. Urine osmolarity was considered as the gold standard and was measured by freezing point depression. Correlation between different methods was calculated by simple linear regression. A positive and acceptable correlation was found with osmolarity for the RE as for the UD (r= 0.81 and r= 0.86, respectively). The reagent strips presented low correlation (r= 0.46). Also, we found good correlation between measurements obtained by UD and RE (r= 0.89). Measurements obtained by TR, however, had bad correlation when compared to UD (r= 0.46). Higher values of specific gravity were observed when measured with RE with respect to UD. Reagent strips are not reliable for measuring urine specific gravity and should not be used as an usual test. However, hydrometry and refractometry are acceptable alternatives for measuring urine specific gravity, as long as the same method is used for follow-up.

  11. Lake Worth bottom sediments : A chronicle of water-quality changes in western Fort Worth, Texas, 1914-2001

    USGS Publications Warehouse

    Braun, Christopher L.; Harwell, Glenn R.

    2004-01-01

    In spring 2000, the Texas Department of Health issued a fish-consumption advisory for Lake Worth, Tex., because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish (Texas Department of Health, 2000). In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey (USGS) collected 21 surficial samples and three deeper gravity core samples from the sediment deposited at the bottom of Lake Worth. The purpose of that study was to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of selected metals and hydrophobic organic contaminants (HOCs) to Lake Worth. Hydrophobic (literally “water fearing”) contaminants tend to chemically adsorb to soils and sediments. Fifteen of the top 20 contaminants on the Agency for Toxic Substances and Disease Registry (2001) priority list of hazardous substances are hydrophobic. Chemical analysis of sediment cores is one method that can be used to determine trends in HOCs such as PCBs. As sediments accumulate in lakes and reservoirs, they generate a partial historical record of water quality. This fact sheet describes the collection of sediment cores, age-dating methods, and historical trends in PCBs in Lake Worth sediments. The fact sheet also describes the spatial distribution of PCBs in surficial sediments and concludes with objectives for the second phase of data collection and the approach that will be used to achieve these objectives. The USGS published a comprehensive report on the first phase of the study (Harwell and others, 2003). Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth in Tarrant County. In 1914, the City of Fort Worth completed the reservoir to serve as a municipal water supply. Lake Worth has a surface area of 13.2 square kilometers and a storage capacity of 47 million cubic meters. The drainage area to the reservoir is 5,350 square kilometers(Ruddy and Hitt, 1990). The surrounding area to the south and east is primarily urban, and the area to the north and northwest is mostly residential.

  12. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  13. Buoyancy and Pressure Effects on Bulk Metal-Oxygen Reactions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; McKnight, C.; Branch, M. C.; Daily, J. W.; Friedman, R. (Technical Monitor)

    1998-01-01

    The combustion behavior of metal-oxygen reactions if a weakly buoyant environment is studied to understand the rate-controlling mechanisms in the homogeneous and heterogeneous combustion of bulk metals. Cylindrical titanium and magnesium specimens are ignited in pure-oxygen at pressures ranging from 0.1 to 4.0 atm. Reduced gravity is obtained from an aircraft flying parabolic trajectories. A weakly buoyant environment is generated at low pressures under normal gravity and also at 1 atm under reduced gravity (0.01g). The similarity between these two experimental conditions comes from the p(exp 2)g buoyancy scale extracted from the Grashof number. Lower propagation rates of the molten interface on titanium samples are found at progressively lower pressures at 1 g. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicate the importance values indicate the importance of natural convection enhanced oxygen transport on combustion rates. For magnesium, progressively longer burning times are experienced at lower pressures and 1 g. Under reduced gravity conditions at 1 atm, a burning time twice as long as in 1 g is exhibited. However, in this case, the validity of the p(exp 2)g buoyancy scale remains untested due to the inability to obtain steady gas-phase burning of the magnesium sample at 0.1 atm. Nevertheless, longer burning times and larger flame standoff distance at low pressures and at low gravity points to a diffusion/convection controlled reaction.

  14. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    NASA Astrophysics Data System (ADS)

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-04-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity measurements are linked to density by a 3-D integration encompassing the whole studied domain. We establish the mathematical expressions of these integration formulas - called acquisition kernels - and derive the resolving kernels that are spatial filters relating the true unknown density structure to the density distribution actually recovered from the available data. The resolving kernels approach allows to quantitatively describe the improvement of the resolution of the density models achieved by merging gravity data and muon radiographies. The method developed in this paper may be used to optimally design the geometry of the field measurements to perform in order to obtain a given spatial resolution pattern of the density model to construct. The resolving kernels derived in the joined muon/gravimetry case indicate that gravity data are almost useless to constrain the density structure in regions sampled by more than two muon tomography acquisitions. Interestingly the resolution in deeper regions not sampled by muon tomography is significantly improved by joining the two techniques. The method is illustrated with examples for La Soufrière of Guadeloupe volcano.

  15. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.

  16. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.

  17. Galactic cold cores. VIII. Filament formation and evolution: Filament properties in context with evolutionary models

    NASA Astrophysics Data System (ADS)

    Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.

    2017-05-01

    Context. The onset of star formation is intimately linked with the presence of massive unstable filamentary structures. These filaments are therefore key for theoretical models that aim to reproduce the observed characteristics of the star formation process in the Galaxy. Aims: As part of the filament study carried out by the Herschel Galactic Cold Cores Key Programme, here we study and discuss the filament properties presented in GCC VII (Paper I) in context with theoretical models of filament formation and evolution. Methods: A conservatively selected sample of filaments located at a distance D< 500 pc was extracted from the GCC fields with the getfilaments algorithm. The physical structure of the filaments was quantified according to two main components: the central (Gaussian) region of the filament (core component), and the power-law-like region dominating the filament column density profile at larger radii (wing component). The properties and behaviour of these components relative to the total linear mass density of the filament and the column density of its environment were compared with the predictions from theoretical models describing the evolution of filaments under gravity-dominated conditions. Results: The feasibility of a transition from a subcritical to supercritical state by accretion at any given time is dependent on the combined effect of filament intrinsic properties and environmental conditions. Reasonably self-gravitating (high Mline,core) filaments in dense environments (AV≳ 3 mag) can become supercritical on timescales of t 1 Myr by accreting mass at constant or decreasing width. The trend of increasing Mline,tot (Mline,core and Mline,wing) and ridge AV with background for the filament population also indicates that the precursors of star-forming filaments evolve coevally with their environment. The simultaneous increase of environment and filament AV explains the observed association between dense environments and high Mline,core values, and it argues against filaments remaining in constant single-pressure equilibrium states. The simultaneous growth of filament and background in locations with efficient mass assembly, predicted in numerical models of filaments in collapsing clouds, presents a suitable scenario for the fulfillment of the combined filament mass-environment criterium that is in quantitative agreement with Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132-162. Rogozhina, I., Hagedoorn, J.M., Martinec, Z., Fleming, K., Soucek, O., Greve, R. & Thomas, M. 2012. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models. Journal of Geophysical Research-Earth Surface, 117 (F2), F02025. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-flow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012-8095.

  19. Gravastars in f (G ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Shamir, M. Farasat; Ahmad, Mushtaq

    2018-05-01

    This work proposes a stellar model under Gauss-Bonnet f (G ,T ) gravity with the conjecture theorized by Mazur and Mottola, well known as the gravitational vacuum stars (gravastars). By taking into account the f (G ,T ) stellar model, the structure of the gravastar with its exclusive division of three different regions, namely, (i) the core interior region, (ii) the junction region (shell), and (iii) the exterior region, has been investigated with reference to the existence of energy density, pressure, ultrarelativistic plasma, and repulsive forces. The different physical features, like the equation of state parameter, length of the shell, entropy, and energy-thickness relation of the gravastar shell model, have been discussed. Also, some other physically valid aspects have been presented with the connection to nonsingular and event-horizon-free gravastar solutions, which in contrast to a black hole solution, might be stable without containing any information paradox.

  20. AMI SZ observation of galaxy-cluster merger CIZA J2242+5301: perpendicular flows of gas and dark matter

    NASA Astrophysics Data System (ADS)

    Rumsey, Clare; Perrott, Yvette C.; Olamaie, Malak; Saunders, Richard D. E.; Hobson, Michael P.; Stroe, Andra; Schammel, Michel P.; Grainge, Keith J. B.

    2017-10-01

    Arcminute Microkelvin Imager observations towards CIZA J2242+5301, in comparison with observations of weak gravitational lensing and X-ray emission from the literature, are used to investigate the behaviour of non-baryonic dark matter (NBDM) and gas during the merger. Analysis of the Sunyaev-Zel'dovich (SZ) signal indicates the presence of high pressure gas elongated perpendicularly to the X-ray and weak-lensing morphologies, which, given the merger-axis constraints in the literature, implies that high pressure gas is pushed out into a linear structure during core passing. Simulations in the literature closely matching the inferred merger scenario show the formation of gas density and temperature structures perpendicular to the merger axis. These SZ observations are challenging for modified gravity theories in which NBDM is not the dominant contributor to galaxy-cluster gravity.

Top