Autonomous momentum management for space station
NASA Technical Reports Server (NTRS)
Hahn, E.
1984-01-01
Momentum management for the CDG planar space platform is discussed. It is assumed that the external torques on the space station are gravity gradient and aerodynamic, both have bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Techniques to counteract the bias torques and center the cyclic momentum and gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques are investigated.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Rajan, M.
1977-01-01
The effects of gravity gradient torques during boom deployment maneuvers of a spinning spacecraft are examined. Configurations where the booms extended only along the hub principal axes and where one or two booms are offset from the principal axes were considered. For the special case of symmetric deployment (principal axes booms) the stability boundaries are determined, and a stability chart is used to study the system behavior. Possible cases of instability during this type of maneuver are identified. In the second configuration an expression for gravity torque about the hub center of mass was developed. The nonlinear equations of motion are solved numerically, and the substantial influence of the gravity torque during asymmetric deployment maneuvers is indicated.
Autonomous momentum management for space station, exhibit A
NASA Technical Reports Server (NTRS)
Hahn, E.
1984-01-01
The report discusses momentum management for the CDG Planar Space Platform. The external torques on the Space Station are assumed to be gravity gradient and aerodynamic with both having bias and cyclic terms. The integrals of the cyclic torques are the cyclic momenti which will be stored in the momentum storage actuator. Various techniques to counteract the bias torques and center the cyclic momentum were investigated including gravity gradient desaturation by adjusting vehicle attitude, aerodynamic desaturation using solar panels and radiators and the deployment of flat plates at the end of long booms generating aerodynamic torques.
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Gravitational force and torque on a solar power satellite considering the structural flexibility
NASA Astrophysics Data System (ADS)
Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan
2017-11-01
The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.
Spacecraft stability and control
NASA Technical Reports Server (NTRS)
Barret, Chris
1992-01-01
The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Today, satellite stability and control has become a higher priority. For a satellite design that is to have a life expectancy of 14 years, appropriate spacecraft flight control systems will be reviewed, stability requirements investigated, and an appropriate flight control system recommended in order to see the design process. Disturbance torques, including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques, will be assessed to quantify the disturbance environment so that the required compensating torques can be determined. The control torques, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, inertia augmentation techniques, three-axis control, and reaction control systems (RCSs), will be considered. Conditions for stability will also be considered.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.
1973-01-01
Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.
Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data
NASA Technical Reports Server (NTRS)
Krening, Samantha C.
2013-01-01
A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.
Magnetic attitude control torque generation of a gravity gradient stabilized satellite
NASA Astrophysics Data System (ADS)
Suhadis, N. M.; Salleh, M. B.; Rajendran, P.
2018-05-01
Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
NASA Technical Reports Server (NTRS)
Barret, C.
1992-01-01
The Earth's first artificial satellite, Sputnik 1, slowly tumbled in orbit. The first U.S. satellite, Explorer 1, also tumbled out of control. Now, as we launch the Mars observer and the Cassini spacecraft, stability and control have become higher priorities. The flight control system design selection process is reviewed using as an example a geostationary communication satellite which is to have a life expectancy of 10 to 14 years. Disturbance torques including aerodynamic, magnetic, gravity gradient, solar, micrometeorite, debris, collision, and internal torques are assessed to quantify the disturbance environment so that the required compensating torque can be determined. Then control torque options, including passive versus active, momentum control, bias momentum, spin stabilization, dual spin, gravity gradient, magnetic, reaction wheels, control moment gyros, nutation dampers, inertia augmentation techniques, three-axis control, reactions control system (RCS), and RCS sizing, are considered. A flight control system design is then selected and preliminary stability criteria are met by the control gains selection.
Building complex simulations rapidly using MATRIX(x): The Space Station redesign
NASA Technical Reports Server (NTRS)
Carrington, C. K.
1994-01-01
MSFC's quick response to the Space Station redesign effort last year required the development of a computer simulation to model the attitude and station-keeping dynamics of a complex body with rotating solar arrays in orbit around the Earth. The simulation was written using a rapid-prototyping graphical simulation and design tool called MATRIX(x) and provided the capability to quickly remodel complex configuration changes by icon manipulation using a mouse. The simulation determines time-dependent inertia properties, and models forces and torques from gravity-gradient, solar radiation, and aerodynamic disturbances. Surface models are easily built from a selection of beams, plates, tetrahedrons, and cylinders. An optimization scheme was written to determine the torque equilibrium attitudes that balance gravity-gradient and aerodynamic torques over an orbit, and propellant-usage estimates were determined. The simulation has been adapted to model the attitude dynamics for small spacecraft.
Electrical torques on the electrostatic gyro in the gyro relativity experiment
NASA Technical Reports Server (NTRS)
Eby, P.; Darbo, W.
1980-01-01
A comprehensive discussion and calculation of electrical torques on an electrostatic gyro as they relate to the gyroscope experiment to test general relativity is presented. Drift rates were computed for some typical state of the art rotors, including higher harmonics in the rotor shape. The effect of orbital averaging of gravity gradient forces, roll averaging of torques, and the effect of spin averaging on the effective shape of the rotor were considered. The electrical torques are reduced sufficiently in a low g environment to permit a measurement of the relativistic drifts predicted by general relativity.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1993-01-01
Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.
Electrostatic analogy for symmetron gravity
NASA Astrophysics Data System (ADS)
Ogden, Lillie; Brown, Katherine; Mathur, Harsh; Rovelli, Kevin
2017-12-01
The symmetron model is a scalar-tensor theory of gravity with a screening mechanism that suppresses the effect of the symmetron field at high densities characteristic of the Solar System and laboratory scales but allows it to act with gravitational strength at low density on the cosmological scale. We elucidate the screening mechanism by showing that in the quasistatic Newtonian limit there are precise analogies between symmetron gravity and electrostatics for both strong and weak screening. For strong screening we find that large dense bodies behave in a manner analogous to perfect conductors in electrostatics. Based on this analogy we find that the symmetron field exhibits a lightning rod effect wherein the field gradients are enhanced near the ends of pointed or elongated objects. An ellipsoid placed in a uniform symmetron gradient is shown to experience a torque. By symmetry there is no gravitational torque in this case. Hence this effect unmasks the symmetron and might serve as the basis for future laboratory experiments. The symmetron force between a point mass and a large dense body includes a component corresponding to the interaction of the point mass with its image in the larger body. None of these effects have counterparts in the Newtonian limit of Einstein gravity. We discuss the similarities between symmetron gravity and the chameleon model as well as the differences between the two.
Torques on the gyro in the gyro relativity experiment
NASA Technical Reports Server (NTRS)
Eby, P.
1982-01-01
Whether the Newtonian drifts on the gyro as conceived in the gyro relativity experiment can be reduced to a level such that the geodetic and motional earth precessions of general relativity can be detected is addressed. Torques due to gas drag, electrical charging, mass unbalance, cosmic ray impacts, magnetic fields, and gravity gradients in a inclined orbit are calculated and discussed. The conditions necessary for the required accuracy are given.
Torque equilibrium attitudes for the Space Station
NASA Technical Reports Server (NTRS)
Thompson, Roger C.
1993-01-01
All spacecraft orbiting in a low earth orbit (LEO) experience external torques due to environmental effects. Examples of these torques include those induced by aerodynamic, gravity-gradient, and solar forces. It is the gravity-gradient and aerodynamic torques that produce the greatest disturbances to the attitude of a spacecraft in LEO, and large asymmetric spacecraft, such as the space station, are affected to a greater degree because the magnitude of the torques will, in general, be larger in proportion to the moments of inertia. If left unchecked, these torques would cause the attitude of the space station to oscillate in a complex manner and the resulting motion would destroy the micro-gravity environment as well as prohibit the orbiter from docking. The application of control torques will maintain the proper attitude, but the controllers have limited momentum capacity. When any controller reaches its limit, propellant must then be used while the device is reset to a zero or negatively-biased momentum state. Consequently, the rate at which momentum is accumulated is a significant factor in the amount of propellant used and the frequency of resupply necessary to operate the station. A torque profile in which the area curve for a positive torque is not equal to the area under the curve for a negative torque is 'biased,' and the consequent momentum build-up about that axis is defined as secular momentum because it continues to grow with time. Conversely, when the areas are equal, the momentum is cyclic and bounded. A Torque Equilibrium Attitude (TEA) is thus defined as an attitude at which the external torques 'balance' each other as much as possible, and which will result in lower momentum growth in the controllers. Ideally, the positive and negative external moments experienced by a spacecraft at the TEA would exactly cancel each other out and small cyclic control torques would be required only for precise attitude control. Over time, the only momentum build-up in the controllers would be due to electro-mechanical losses within the device. However, the atmospheric torques are proportional to the density of the atmosphere and the density varies with the orbital position, time of day, time of year, and the solar cycle. In addition, there are unmodeled disturbances and uncertainties in the mass and inertias. Therefore, there is no constant attitude that will completely balance the environmental torques and the dynamic TEA cannot be solved in closed form. The objective of this research was to determine a method to calculate a dynamic TEA such that the rate of momentum build-up in the controllers would be minimized and to implement this method in the MATRIX(x) simulation software by Integrated Systems, Inc.
A simple orbit-attitude coupled modelling method for large solar power satellites
NASA Astrophysics Data System (ADS)
Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi
2018-04-01
A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.
Effects of solar radiation pressure torque on the rotational motion of an artificial satellite
NASA Technical Reports Server (NTRS)
Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho
1992-01-01
The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.
Compensation of an attitude disturbance torque caused by magnetic substances in LEO satellites
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Wang, Jihe; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki
This research considers an attitude disturbance torque caused by ferromagnetic substances in a LEO satellite. In most LEO satellite missions, a gravity gradient torque, solar pressure torque, aerodynamic torque, and magnetic dipole moment torque are considered for their attitude control systems, however, the effect of the ferromagnetic substances causing a disturbance torque in the geomagnetic field is not considered in previous satellite missions. The ferromagnetic substances such as iron cores of MTQs and a magnetic hysteresis damper for a passive attitude control system are used in various small satellites. These substances cause a disturbance torque which is almost the same magnitude of the dipole magnetic disturbance and the dominant disturbance in the worst cases. This research proposes a method to estimate and compensate for the effect of the ferromagnetic substances using an extended Kalman filter. From simulation results, the research concludes that the proposed method is useful and attractive for precise attitude control for LEO satellite missions.
Measuring attitude with a gradiometer
NASA Technical Reports Server (NTRS)
Sonnabend, David; Gardner, Thomas G.
1994-01-01
This paper explores using a gravity gradiometer to measure the attitude of a satellite, given that the gravity field is accurately known. Since gradiometers actually measure a combination of the gradient and attitude rate and acceleration terms, the answer is far from obvious. The paper demonstrates that it can be done and at microradian accuracy. The technique employed is dynamic estimation, based on the momentum biased Euler equations. The satellite is assumed nominally planet pointed, and subject to control, gravity gradient, and partly radom drag torques. The attitude estimator is unusual. While the standard method of feeding back measurement residuals is used, the feedback gain matrix isn't derived from Kalman theory. instead, it's chosen to minimize a measure of the terminal covariance of the error in the estimate. This depends on the gain matrix and the power spectra of all the process and measurement noises. An integration is required over multiple solutions of Lyapunov equations.
Adaptive momentum management for the dual keel Space Station
NASA Technical Reports Server (NTRS)
Hopkins, M.; Hahn, E.
1987-01-01
The report discusses momentum management for a large space structure with the structure selected configuration being the Initial Orbital Configuration of the dual-keel Space Station. The external torques considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principal moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight-type computer. The method proposed is shown to be effective in the presence of attitude control bandwidths as low as 0.01 radian/sec.
Attitude stabilization of a spacecraft equipped with large electrostatic protection screens
NASA Astrophysics Data System (ADS)
Nikitin, D. Yu.; Tikhonov, A. A.
2018-05-01
A satellite with a system of three electrostatic radiation protection (ERP) screens is under consideration. The screens are constructed as electrostatically charged toroidal shields with characteristic size of order equal to 100 m. The interaction of electric charge with the Earth's magnetic field (EMF) give rise to the Lorentz torque acting upon a satellite attitude motion. As the sizes of ERP system are large, we derive the Lorentz torque taking into account the complex form of ERP screens and gradient of the EMF in the screen volume. It is assumed that the satellite center of charge coincides with the satellite mass center. The EMF is modeled by the straight magnetic dipole. In the paper we investigate the usage of Lorentz torque for passive attitude stabilization for satellite in a circular equatorial orbit. Mathematical model for attitude dynamics of a satellite equipped with ERP interacting with the EMF is derived and first integral of corresponding differential equations is constructed. The straight equilibrium position of the satellite in the orbital frame is found. Sufficient conditions for stability of satellite equilibrium position are constructed with the use of the first integral. The gravity gradient torque is taken into account. The satellite equilibrium stability domain is constructed.
A description of the thruster attitude control simulation and its application to the HEAO-C study
NASA Technical Reports Server (NTRS)
Brandon, L. B.
1971-01-01
During the design and evaluation of a reaction control system (RCS), it is desirable to have a digital computer program simulating vehicle dynamics, disturbance torques, control torques, and RCS logic. The thruster attitude control simulation (TACS) is just such a computer program. The TACS is a relatively sophisticated digital computer program that includes all the major parameters involved in the attitude control of a vehicle using an RCS for control. It includes the effects of gravity gradient torques and HEAO-C aerodynamic torques so that realistic runs can be made in the areas of fuel consumption and engine actuation rates. Also, the program is general enough that any engine configuration and logic scheme can be implemented in a reasonable amount of time. The results of the application of the TACS in the HEAO-C study are included.
NASA Astrophysics Data System (ADS)
Chi, Yong Mann
A numerical simulation model has been developed for the dynamical behavior of spacecraft propellant, both during the draining and the closing of the tank outlet at the onset of suction dip affected by the asymmetric combined gravity gradient and gravity jitter accelerations. In particular the effect of the surface tension of the fluids in the partially filled dewar (applicable to the Gravity Probe-B spacecraft dewar tank and fuel tanks for a liquid rocket) with rotation has been simulated and investigated. Two different cases of accelerations, one with gravity jitter dominated and the other equally weighted between gravity gradient and gravity jitter accelerations, are studied. In the development of this numerical simulation model, the NASA-VOF3D has been used as a supplement to the numerical program of this dissertation. The NASA-VOF3D code has been used for performing the three-dimensional incompressible flows with free surface. This is also used for controlling liquid sloshing inside the tank when the spacecraft is orbiting. To keep track of the location of the liquid, the fractional volume of fluid (VOF) technique was used. The VOF is based on the indicator function of the region occupied by the liquid with an Eulerian approach to solve the free surface phenomena between liquid and gas phases. For the calculation of surface tension force, the VOF model is also used. The newly developed simulation model is used to investigate the characteristics of liquid hydrogen draining in terms of the residual amount of trapped liquid at the onset of the suction dip and residual liquid volume at the time the dip of the liquid-vapor interface formed. This investigation simulates the characteristics of liquid oscillations due to liquid container outlet shut-off at the onset of suction dip. These phenomena checked how these mechanisms affected the excitation of slosh waves during the course of liquid draining and after shut-off tank outlet. In the present study, the dynamical evolution of sloshing dynamics excited by fluid stress forces, fluid stress moments, and the arm of fluid moment exerted on the dewar container, is considered. This excitation was driven by the combined gravity gradient and gravity jitter acceleration inside the tank during the draining process and closing the tank outlet. The time evolution of the liquid-vapor interface profiles and the bubble mass center fluctuation, as well as liquid mass center and fluctuations of angular momentum caused by slosh wave excitations with 0.1 rpm in a reduced gravity, are also investigated and simulated. Force, angular momentum, and torque vector time histories and Power Spectral Density (PSD) are also plotted and discussed. The results of this investigation may be applied to determine the magnitude and nature of control forces and torques needed to minimize influence of slosh on the dynamics of liquid fueled vehicles in near earth orbit. Results show that induced fluid forces (or angular momentum) exerted on the container wall along x and y-axes, which are non-existent at the beginning, are introduced by the slosh waves excited by asymmetric gravity gradient and the gravity jitter acceleration.
Internal Stresses Lead to Net Forces and Torques on Extended Elastic Bodies
NASA Astrophysics Data System (ADS)
Aharoni, Hillel; Kolinski, John M.; Moshe, Michael; Meirzada, Idan; Sharon, Eran
2016-09-01
A geometrically frustrated elastic body will develop residual stresses arising from the mismatch between the intrinsic geometry of the body and the geometry of the ambient space. We analyze these stresses for an ambient space with gradients in its intrinsic curvature, and show that residual stresses generate effective forces and torques on the center of mass of the body. We analytically calculate these forces in two dimensions, and experimentally demonstrate their action by the migration of a non-Euclidean gel disc in a curved Hele-Shaw cell. An extension of our analysis to higher dimensions shows that these forces are also generated in three dimensions, but are negligible compared to gravity.
The GOCE end-to-end system simulator
NASA Astrophysics Data System (ADS)
Catastini, G.; Cesare, S.; de Sanctis, S.; Detoma, E.; Dumontel, M.; Floberghagen, R.; Parisch, M.; Sechi, G.; Anselmi, A.
2003-04-01
The idea of an end-to-end simulator was conceived in the early stages of the GOCE programme, as an essential tool for assessing the satellite system performance, that cannot be fully tested on the ground. The simulator in its present form is under development at Alenia Spazio for ESA since the beginning of Phase B and is being used for checking the consistency of the spacecraft and of the payload specifications with the overall system requirements, supporting trade-off, sensitivity and worst-case analyses, and preparing and testing the on-ground and in-flight calibration concepts. The software simulates the GOCE flight along an orbit resulting from the application of Earth's gravity field, non-conservative environmental disturbances (atmospheric drag, coupling with Earth's magnetic field, etc.) and control forces/torques. The drag free control forces as well as the attitude control torques are generated by the current design of the dedicated algorithms. Realistic sensor models (star tracker, GPS receiver and gravity gradiometer) feed the control algorithms and the commanded forces are applied through realistic thruster models. The output of this stage of the simulator is a time series of Level-0 data, namely the gradiometer raw measurements and spacecraft ancillary data. The next stage of the simulator transforms Level-0 data into Level-1b (gravity gradient tensor) data, by implementing the following steps: - transformation of raw measurements of each pair of accelerometers into common and differential accelerations - calibration of the common and differential accelerations - application of the post-facto algorithm to rectify the phase of the accelerations and to estimate the GOCE angular velocity and attitude - computation of the Level-1b gravity gradient tensor from calibrated accelerations and estimated angular velocity in different reference frames (orbital, inertial, earth-fixed); computation of the spectral density of the error of the tensor diagonal components (measured gravity gradient minus input gravity gradient) in order to verify the requirement on the error of gravity gradient of 4 mE/sqrt(Hz) within the gradiometer measurement bandwidth (5 to 100 mHz); computation of the spectral density of the tensor trace in order to verify the requirement of 4 sqrt(3) mE/sqrt(Hz) within the measurement bandwidth - processing of GPS observations for orbit reconstruction within the required 10m accuracy and for gradiometer measurement geolocation. The current version of the end-to-end simulator, essentially focusing on the gradiometer payload, is undergoing detailed testing based on a time span of 10 days of simulated flight. This testing phase, ending in January 2003, will verify the current implementation and conclude the assessment of numerical stability and precision. Following that, the exercise will be repeated on a longer-duration simulated flight and the lesson learnt so far will be exploited to further improve the simulator's fidelity. The paper will describe the simulator's current status and will illustrate its capabilities for supporting the assessment of the quality of the scientific products resulting from the current spacecraft and payload design.
Orbiter/Space lab momentum management for POP orientations
NASA Technical Reports Server (NTRS)
Cox, J. W.
1974-01-01
An angular momentum management scheme applicable to the orbiter/spacelab is described. The basis of the scheme is to periodically maneuver the vehicle through a small angle thereby using the gravity gradient torque to dump momentum from the control moment gyro (CMG) control system. The orbiter is operated with its principal vehicle axis perpendicular to the orbital plane. Numerous case runs were conducted on the hybrid simulation and representative cases are included.
Satellite attitude prediction by multiple time scales method
NASA Technical Reports Server (NTRS)
Tao, Y. C.; Ramnath, R.
1975-01-01
An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.
Proposed CMG momentum management scheme for space station
NASA Technical Reports Server (NTRS)
Bishop, L. R.; Bishop, R. H.; Lindsay, K. L.
1987-01-01
A discrete control moment gyro (CMG) momentum management scheme (MMS) applicable to spacecraft with principal axes misalignments, such as the proposed NASA dual keel space station, is presented in this paper. The objective of the MMS is to minmize CMG angular momentum storage requirements for maintaining the space station near local vertical in the presence of environmental disturbances. It utilizes available environmental disturbances, namely gravity gradient torques, to minimize CMG momentum storage. The MMS is executed once per orbit and generates a commanded torque equilibrium attitude (TEA) time history which consists of a yaw, pitch and roll angle command profile. Although the algorithm is called only once per orbit to compute the TEA profile, the space station will maneuver several discrete times each orbit.
Adaptive momentum management for large space structures
NASA Technical Reports Server (NTRS)
Hahn, E.
1987-01-01
Momentum management is discussed for a Large Space Structure (LSS) with the structure selected configuration being the Initial Orbital Configuration (IOC) of the dual keel space station. The external forces considered were gravity gradient and aerodynamic torques. The goal of the momentum management scheme developed is to remove the bias components of the external torques and center the cyclic components of the stored angular momentum. The scheme investigated is adaptive to uncertainties of the inertia tensor and requires only approximate knowledge of principle moments of inertia. Computational requirements are minimal and should present no implementation problem in a flight type computer and the method proposed is shown to be effective in the presence of attitude control bandwidths as low as .01 radian/sec.
Pointing and tracking control for freedom's Solar Dynamic modules and vibration control of freedom
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Chen, Jiunn-Liang
1992-01-01
A control strategy is presented for pointing particular modules of flexible multibody space structures while simultaneously attenuating structural vibrations. The application that is addressed is the planned Space Station Freedom in a growth configuration with Solar Dynamic (SD) module. A NASTRAN model of Freedom is used to demonstrate the control strategy. Two cases of SD concentrator fine-pointing controller bandwidths are studied with examples. The effect of limiting the controller motor torques to realistic baseline values is examined. SD pointing and station vibration control is accomplished during realistic disturbances due to aerodynamic drag, Shuttle docking, and Shuttle reaction control system plume impingement on SD. Gravity gradient induced torques on SD are relatively small and pseudo-steady.
Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data
NASA Technical Reports Server (NTRS)
Williams, Trevor; Shulman, Seth; Sedlak, Joseph; Ottenstein, Neil; Lounsbury, Brian
2016-01-01
Extensive flight data is being collected throughout the MMS mission that includes quantities that are of interest for attitude dynamics studies such as spin rate, spin axis orientation nutation rate, etc. One example of such data is the long-term evolution of the spin rates of the four spacecraft. Spikes in these rates are observed that are separated by the MMS orbital period (just under 24 hr) and occur around perigee due to gravity-gradient torque. Periodic discontinuities in spin rate are caused by the controller resetting the spin rate approximately to the nominal 3.1 RPM value at the time of each maneuver. In between, a slow decay in spin rate can be seen to occur. The paper will discuss various disturbance torque mechanisms that could potentially be responsible for this behavior: these include magnetic hysteresis, eddy currents, solar radiation pressure, and a possible interaction between gravity-gradient and wire boom flexibility effects. One additional disturbance mechanism is produced by the Active Spacecraft Potential Control (ASPOC) devices: these emit positive indium ions to keep the MMS spacecraft electrically neutral, so as not to corrupt the electric field observations that are made by some of the on-board instruments. The spin rate decays that could be produced by these various mechanisms will be quantified in the paper, and their signatures described. Comparing these with the observations from flight data then allow the most likely candidate to be determined.
Quantifying anti-gravity torques for the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq
2013-03-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.
What triggers the continuous muscle activity during upright standing?
Masani, Kei; Sayenko, Dimitry G; Vette, Albert H
2013-01-01
The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.
GOCE, Satellite Gravimetry and Antarctic Mass Transports
NASA Astrophysics Data System (ADS)
Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger
2011-09-01
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.
Equilibria of a charged artificial satellite subject to gravitational and Lorentz torques
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Yehia A.; Shoaib, Muhammad
2014-07-01
The attitude dynamics of a rigid artificial satellite subject to a gravity gradient and Lorentz torques in a circular orbit are considered. Lorentz torque is developed on the basis of the electrodynamic effects of the Lorentz force acting on the charged satellite's surface. We assume that the satellite is moving in a Low Earth Orbit in the geomagnetic field, which is considered to be a dipole. Our model of torque due to the Lorentz force is developed for an artificial satellite with a general shape, and the nonlinear differential equations of Euler are used to describe its attitude orientation. All equilibrium positions are determined and conditions for their existence are obtained. The numerical results show that the charge q and radius ρ0 of the center of charge for the satellite provide a certain type of semi-passive control for the attitude of the satellite. The technique for this kind of control would be to increase or decrease the electrostatic screening on the satellite. The results obtained confirm that the change in charge can affect the magnitude of the Lorentz torque, which can also affect control of the satellite. Moreover, the relationship between magnitude of the Lorentz torque and inclination of the orbit is investigated.
Numerical studies of surface tensions
NASA Technical Reports Server (NTRS)
Hung, R. J.
1995-01-01
Liquid-vapor (bubble) interface disturbances caused by various types of accelerations, including centrifugal, lateral and axial impulses, gravity gradient and g-jitter accelerations associated with spinning and slew motion in microgravity, are reviewed. Understanding of bubble deformations and fluctuations is important in the development of spacecraft orbital and attitude control techniques to secure its normal operation. This review discusses bubble deformations and oscillations driven by various forces in the microgravity environment. The corresponding bubble mass center fluctuations and slosh reaction forces and torques due to bubble deformations are also reviewed.
NASA Technical Reports Server (NTRS)
Stoll, John C.
1995-01-01
The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must be... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... Earth's gravity, as described in § 1065.630. Calculate the reference torque as the weights' reference...
Dynamical Models for Sloshing Dynamics of Helium 2 Under Low-G Conditions
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.
1997-01-01
Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.
The accuracy of dynamic attitude propagation
NASA Technical Reports Server (NTRS)
Harvie, E.; Chu, D.; Woodard, M.
1990-01-01
Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.
Understanding movement control in infants through the analysis of limb intersegmental dynamics.
Schneider, K; Zernicke, R F; Ulrich, B D; Jensen, J L; Thelen, E
1990-12-01
One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.
Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis
NASA Technical Reports Server (NTRS)
Croom, Christopher A.; Tolson, Robert H.
1994-01-01
Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.
IMPACT OF GRAVITY LOADING ON POST-STROKE REACHING AND ITS RELATIONSHIP TO WEAKNESS
Beer, Randall F.; Ellis, Michael D.; Holubar, Bradley G.; Dewald, Julius P.A.
2010-01-01
The ability to extend the elbow following stroke depends on the magnitude and direction of torques acting at the shoulder. The mechanisms underlying this link remain unclear. The purpose of this study was to evaluate whether the effects of shoulder loading on elbow function were related to weakness or its distribution in the paretic limb. Ten subjects with longstanding hemiparesis performed movements with the arm either passively supported against gravity by an air bearing, or by activation of shoulder muscles. Isometric maximum voluntary torques at the elbow and shoulder were measured using a load cell. The speed and range of elbow extension movements were negatively impacted by actively supporting the paretic limb against gravity. However, the effects of gravity loading were not related to proximal weakness or abnormalities in the elbow flexor–extensor strength balance. The findings support the existence of abnormal descending motor commands that constrain the ability of stroke survivors to generate elbow extension torque in combination with abduction torque at the shoulder. PMID:17486581
Impact of gravity loading on post-stroke reaching and its relationship to weakness.
Beer, Randall F; Ellis, Michael D; Holubar, Bradley G; Dewald, Julius P A
2007-08-01
The ability to extend the elbow following stroke depends on the magnitude and direction of torques acting at the shoulder. The mechanisms underlying this link remain unclear. The purpose of this study was to evaluate whether the effects of shoulder loading on elbow function were related to weakness or its distribution in the paretic limb. Ten subjects with longstanding hemiparesis performed movements with the arm either passively supported against gravity by an air bearing, or by activation of shoulder muscles. Isometric maximum voluntary torques at the elbow and shoulder were measured using a load cell. The speed and range of elbow extension movements were negatively impacted by actively supporting the paretic limb against gravity. However, the effects of gravity loading were not related to proximal weakness or abnormalities in the elbow flexor-extensor strength balance. The findings support the existence of abnormal descending motor commands that constrain the ability of stroke survivors to generate elbow extension torque in combination with abduction torque at the shoulder.
Momentum Management Tool for Low-Thrust Missions
NASA Technical Reports Server (NTRS)
Swenka, Edward R.; Smith, Brett A.; Vanelli, Charles A.
2010-01-01
A momentum management tool was designed for the Dawn low-thrust interplanetary spacecraft en route to the asteroids Vesta and Ceres, in an effort to better understand the early creation of the solar system. Momentum must be managed to ensure the spacecraft has enough control authority to perform necessary turns and hold a fixed inertial attitude against external torques. Along with torques from solar pressure and gravity-gradients, ion-propulsion engines produce a torque about the thrust axis that must be countered by the four reaction wheel assemblies (RWA). MomProf is a ground operations tool built to address these concerns. The momentum management tool was developed during initial checkout and early cruise, and has been refined to accommodate a wide range of momentum-management issues. With every activity or sequence, wheel speeds and momentum state must be checked to avoid undesirable conditions and use of consumables. MomProf was developed to operate in the MATLAB environment. All data are loaded into MATLAB as a structure to provide consistent access to all inputs by individual functions within the tool. Used in its most basic application, the Dawn momentum tool uses the basic principle of angular momentum conservation, computing momentum in the body frame, and RWA wheel speeds, for all given orientations in the input file. MomProf was designed specifically to be able to handle the changing external torques and frequent de - saturations. Incorporating significant external torques adds complexity since there are various external torques that act under different operational modes.
NASA Astrophysics Data System (ADS)
Gómez, Natalia Ortiz; Walker, Scott J. I.
2015-08-01
The space debris population has grown rapidly over the last few decades with the consequent growth of impact risk between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary. However, current ADR methods that require physical contact with the target have limitations on the maximum angular momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth's gravity gradient and the eddy currents induced by the Earth's magnetic field. The gravity gradient is analysed using the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of the system. The induced torque and the characteristic time of decay are presented as a function of the object's magnetic tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth's magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation for the rotational speed decay observed between April 2013 and September 2013.
A new momentum management controller for the space station
NASA Technical Reports Server (NTRS)
Wie, B.; Byun, K. W.; Warren, V. W.
1988-01-01
A new approach to CMG (control moment gyro) momentum management and attitude control of the Space Station is developed. The control algorithm utilizes both the gravity-gradient and gyroscopic torques to seek torque equilibrium attitude in the presence of secular and cyclic disturbances. Depending upon mission requirements, either pitch attitude or pitch-axis CMG momentum can be held constant: yaw attitude and roll-axis CMG momentum can be held constant, while roll attitude and yaw-axis CMG momentum cannot be held constant. As a result, the overall attitude and CMG momentum oscillations caused by cyclic aero-dynamic disturbances are minimized. A state feedback controller with minimal computer storage requirement for gain scheduling is also developed. The overall closed-loop system is stable for + or - 30 percent inertia matrix variations and has more than + or - 10 dB and 45 deg stability margins in each loop.
Three-axis attitude determination via Kalman filtering of magnetometer data
NASA Technical Reports Server (NTRS)
Martel, Francois; Pal, Parimal K.; Psiaki, Mark L.
1988-01-01
A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for an attitude determination system. The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the International Geomagnetic Reference Field model is achieved. Covariance computation and simulation testing demonstrate the filter's accuracy. One test case, a gravity-gradient stabilized spacecraft with a pitch momentum wheel and a magnetically-anchored damper, is a real satellite on which this attitude determination system will be used. The application to a nadir pointing satellite and the estimation of disturbance torques represent the significant extensions contributed by this paper. Beyond its usefulness purely for attitude determination, this system could be used as part of a low-cost three-axis attitude stabilization system.
The dynamics and control of large flexible space structures-IV
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Kumar, V. K.; Krishna, R.; Reddy, A. S. S. R.
1981-01-01
The effects of solar radiation pressure as the main environmental disturbance torque were incorporated into the model of the rigid orbiting shallow shell and computer simulation results indicate that within the linear range the rigid modal amplitudes are excited in proportion to the area to mass ratio. The effect of higher order terms in the gravity-gradient torque expressions previously neglected was evaluated and found to be negligible for the size structures under consideration. A graph theory approach was employed for calculating the eigenvalues of a large flexible system by reducing the system (stiffness) matrix to lower ordered submatrices. The related reachability matrix and term rank concepts are used to verify controllability and can be more effective than the alternate numerical rank tests. Control laws were developed for the shape and orientation control of the orbiting flexible shallow shell and numerical results presented.
Satellite attitude motion models for capture and retrieval investigations
NASA Technical Reports Server (NTRS)
Cochran, John E., Jr.; Lahr, Brian S.
1986-01-01
The primary purpose of this research is to provide mathematical models which may be used in the investigation of various aspects of the remote capture and retrieval of uncontrolled satellites. Emphasis has been placed on analytical models; however, to verify analytical solutions, numerical integration must be used. Also, for satellites of certain types, numerical integration may be the only practical or perhaps the only possible method of solution. First, to provide a basis for analytical and numerical work, uncontrolled satellites were categorized using criteria based on: (1) orbital motions, (2) external angular momenta, (3) internal angular momenta, (4) physical characteristics, and (5) the stability of their equilibrium states. Several analytical solutions for the attitude motions of satellite models were compiled, checked, corrected in some minor respects and their short-term prediction capabilities were investigated. Single-rigid-body, dual-spin and multi-rotor configurations are treated. To verify the analytical models and to see how the true motion of a satellite which is acted upon by environmental torques differs from its corresponding torque-free motion, a numerical simulation code was developed. This code contains a relatively general satellite model and models for gravity-gradient and aerodynamic torques. The spacecraft physical model for the code and the equations of motion are given. The two environmental torque models are described.
Effective utilization of gravity during arm downswing in keystrokes by expert pianists.
Furuya, S; Osu, R; Kinoshita, H
2009-12-01
The present study investigated a skill-level-dependent interaction between gravity and muscular force when striking piano keys. Kinetic analysis of the arm during the downswing motion performed by expert and novice piano players was made using an inverse dynamic technique. The corresponding activities of the elbow agonist and antagonist muscles were simultaneously recorded using electromyography (EMG). Muscular torque at the elbow joint was computed while excluding the effects of gravitational and motion-dependent interaction torques. During descending the forearm to strike the keys, the experts kept the activation of the triceps (movement agonist) muscle close to the resting level, and decreased anti-gravity activity of the biceps muscle across all loudness levels. This suggested that elbow extension torque was produced by gravity without the contribution of agonist muscular work. For the novices, on the other hand, a distinct activity in the triceps muscle appeared during the middle of the downswing, and its amount and duration were increased with increasing loudness. Therefore, for the novices, agonist muscular force was the predominant contributor to the acceleration of elbow extension during the downswing. We concluded that a balance shift from muscular force dependency to gravity dependency for the generation of a target joint torque occurs with long-term piano training. This shift would support the notion of non-muscular force utilization for improving physiological efficiency of limb movement with respect to the effective use of gravity.
Gravity and positional homeostasis of the cell
NASA Technical Reports Server (NTRS)
Nace, G. W.
1983-01-01
The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.
Gravity and gravity gradient changes caused by a point dislocation
NASA Astrophysics Data System (ADS)
Huang, Jian-Liang; Li, Hui; Li, Rui-Hao
1995-02-01
In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.
NASA Astrophysics Data System (ADS)
Lin, Hou-Yuan; Zhao, Chang-Yin
2018-01-01
The rotational state of Envisat is re-estimated using the specular glint times in optical observation data obtained from 2013 to 2015. The model is simplified to a uniaxial symmetric model with the first order variation of its angular momentum subject to a gravity-gradient torque causing precession around the normal of the orbital plane. The sense of Envisat's rotation can be derived from observational data, and is found to be opposite to the sense of its orbital motion. The rotational period is estimated to be (120.674 ± 0.068) · exp((4.5095 ± 0.0096) ×10-4 · t) s , where t is measured in days from the beginning of 2013. The standard deviation is 0.760 s, making this the best fit obtained for Envisat in the literature to date. The results demonstrate that the angle between the angular momentum vector and the negative normal of the orbital plane librates around a mean value of 8.53 ° ± 0.42 ° with an amplitude from about 0.7 ° (in 2013) to 0.5 ° (in 2015), with the libration period equal to the precession period of the angular momentum, from about 4.8 days (in 2013) to 3.4 days (in 2015). The ratio of the minimum to maximum principal moments of inertia is estimated to be 0.0818 ± 0.0011 , and the initial longitude of the angular momentum in the orbital coordinate system is 40.5 ° ± 9.3 ° . The direction of the rotation axis derived from our results at September 23, 2013, UTC 20:57 is similar to the results obtained from satellite laser ranging data but about 20 ° closer to the negative normal of the orbital plane.
Control of large space structures
NASA Technical Reports Server (NTRS)
Gran, R.; Rossi, M.; Moyer, H. G.; Austin, F.
1979-01-01
The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only.
NASA Technical Reports Server (NTRS)
Liu, J. J. F.; Fitzpatrick, P. M.
1975-01-01
A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.
Runners do not push off the ground but fall forwards via a gravitational torque.
Romanov, Nicholas; Fletcher, Graham
2007-09-01
The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.
Force-sensed interface for control and training space robot
NASA Astrophysics Data System (ADS)
Moiseev, O. S.; Sarsadskikh, A. S.; Povalyaev, N. D.; Gorbunov, V. I.; Kulakov, F. M.; Vasilev, V. V.
2018-05-01
A method of positional and force-torque control of robots is proposed. Prototypes of the system and the master handle have been created. Algorithm of bias estimation and gravity compensation for force-torque sensor and force-torque trajectory correction are described.
NASA Astrophysics Data System (ADS)
Zheng, Wei; Hsu, Hou-Tse; Zhong, Min; Yun, Mei-Juan
2012-10-01
The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 2½ times higher than that measured by the three-dimensional gravity gradient Vij. Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10-12/s2, the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.
Preprocessing of gravity gradients at the GOCE high-level processing facility
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin
2009-07-01
One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Gravity gradient preprocessing at the GOCE HPF
NASA Astrophysics Data System (ADS)
Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.
2009-04-01
One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.
Weight optimization of ultra large space structures
NASA Technical Reports Server (NTRS)
Reinert, R. P.
1979-01-01
The paper describes the optimization of a solar power satellite structure for minimum mass and system cost. The solar power satellite is an ultra large low frequency and lightly damped space structure; derivation of its structural design requirements required accommodation of gravity gradient torques which impose primary loads, life up to 100 years in the rigorous geosynchronous orbit radiation environment, and prevention of continuous wave motion in a solar array blanket suspended from a huge, lightly damped structure subject to periodic excitations. The satellite structural design required a parametric study of structural configurations and consideration of the fabrication and assembly techniques, which resulted in a final structure which met all requirements at a structural mass fraction of 10%.
Attitude motion of a non-attitude-controlled cylindrical satellite
NASA Technical Reports Server (NTRS)
Wilkinson, C. K.
1988-01-01
In 1985, two non-attitude-controlled satellites were each placed in a low earth orbit by the Scout Launch Vehicle. The satellites were cylindrical in shape and contained reservoirs of hydrazine fuel. Three-axis magnetometer measurements, telemetered in real time, were used to derive the attitude motion of each satellite. Algorithms are generated to deduce possible orientations (and magnitudes) of each vehicle's angular momentum for each telemetry contact. To resolve ambiguities at each contact, a force model was derived to simulate the significant long-term effects of magnetic, gravity gradient, and aerodynamic torques on the angular momentum of the vehicles. The histories of the orientation and magnitude of the angular momentum are illustrated.
Load positioning system with gravity compensation
NASA Technical Reports Server (NTRS)
Hollow, R. H.
1984-01-01
A load positioning system with gravity compensation has a servomotor, position sensing feedback potentiometer and velocity sensing tachometer in a conventional closed loop servo arrangement to cause a lead screw and a ball nut to vertically position a load. Gravity compensating components comprise the DC motor, gears, which couple torque from the motor to the lead screw, and constant current power supply. The constant weight of the load applied to the lead screw via the ball nut tend to cause the lead screw to rotate, the constant torque of which is opposed by the constant torque produced by the motor when fed from the constant current source. The constant current is preset as required by the potentiometer to effect equilibration of the load which thereby enables the positioning servomotor to see the load as weightless under both static and dynamic conditions. Positioning acceleration and velocity performance are therefore symmetrical.
Restructured Freedom configuration characteristics
NASA Technical Reports Server (NTRS)
Troutman, Patrick A.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.
1991-01-01
In Jan. 1991, the LaRc SSFO performed an assessment of the configuration characteristics of the proposed pre-integrated Space Station Freedom (SSF) concept. Of particular concern was the relationship of solar array operation and orientation with respect to spacecraft controllability. For the man-tended configuration (MTC), it was determined that torque equilibrium attitude (TEA) seeking Control Moment Gyroscope (CMG) control laws could not always maintain attitude. The control problems occurred when the solar arrays were tracking the sun to produce full power while flying in an arrow or gravity gradient flight mode. The large solar array articulations that sometimes result from having the functions of the alpha and beta joints reversed on MTC induced large product of inertia changes that can invalidate the control system gains during an orbit. Several modified sun tracking techniques were evaluated with respect to producing a controllable configuration requiring no modifications to the CMG control algorithms. Another assessment involved the permanently manned configuration (PMC) which has a third asymmetric PV unit on one side of the transverse boom. Recommendations include constraining alpha rotations for MTC in the arrow and gravity gradient flight modes and perhaps developing new non-TEA seeking control laws. Recommendations for PMC include raising the operational altitude and moving to a symmetric configuration as soon as possible.
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reference force is measured. The lever arm must be perpendicular to gravity (i.e., horizontal), and it must... known distance along a lever arm. Make sure the weights' lever arm is perpendicular to gravity (i.e... gravity (using this equation: force = mass · acceleration). The local acceleration of gravity, a g, at...
Space station preliminary design report
NASA Technical Reports Server (NTRS)
1982-01-01
The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.
Modelling and simulation of Space Station Freedom berthing dynamics and control
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.
1994-01-01
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.
Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients
NASA Astrophysics Data System (ADS)
Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.
2017-12-01
Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Keller, J.; LaCava, W.
2012-09-01
This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less
Probable Rotation States of Rocket Bodies in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Ojakangas, G.; Anz-Meador, P.; Cowardin, H.
2012-09-01
In order for Active Debris Removal to be accomplished, it is critically important to understand the probable rotation states of orbiting, spent rocket bodies (RBs). However, rotational dynamics is non-intuitive and misconceptions are common. Determinations of rotation and precession rates from light curves have been published that are inconsistent with the theory presented here. In a state of free precession, the total angular momentum of the object is constant, while kinetic energy decreases due to internal friction, approaching rotation about the axis of maximum inertia. For solid internal friction the timescale is hundreds to thousands of years for quality factors of ~100 and assuming metallic rigidities, but for friction in partially-filled liquid fuel tanks we predict that the preferred rotational state is approached rapidly, within days to months. However, history has shown that theoretical predictions of the timescale have been notoriously inaccurate. In free precession, the 3-1-3 Euler angle rates dphi/dt (precession rate of long axis about fixed angular momentum with cone angle theta) and dpsi/dt (roll rate around long axis) have comparable magnitudes until very close to theta=pi/2, so that otherwise the true rotation period is not simply twice the primary light curve period. Furthermore dtheta/dt, nonzero due to friction, becomes asymptotically smaller as theta=pi/2 is approached, so that theta can linger within several degrees of flat spin for a relatively long time. Such a condition is likely common, and cannot be distinguished from the wobble of a cylinder with a skewed inertia tensor unless the RB has non-axisymmetric reflectivity characteristics. For an RB of known dimensions, a given value of theta fixes the relative values of dpsi/dt and dphi/dt. In forced precession, the angular momentum precesses about a symmetry axis defined by the relevant torque. However, in LEO, only gravity gradient and magnetic eddy current torques are dominant, and these cannot cause precession periods shorter than a week, or more likely, months. Thus forced precession is probably not observable over observation campaigns spanning a few days or less. Spin-orbit resonances are likely for low rotation rates approaching the mean motion, possibly causing large deviations between the symmetry axis and the geocentric direction. An expression for the eddy current torque on an arbitrarily rotating cylinder, hitherto not available in the literature, is presented here. Numerical integrations of the equations of motion for a cylindrical RB in LEO with arbitrary initial conditions and subject to eddy current and gravity gradient torques as well as prescribed internal dissipation are in progress. Acknowledgements: This work was produced under NASA contract NNJ05HI05.
Atmospheric Gravitational Torque Variations Based on Various Gravity Fields
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Rowlands, David; Smith, David E. (Technical Monitor)
2001-01-01
Advancements in the study of the Earth's variable rate of rotation and the motion of its rotation axis have given impetus to the analysis of the torques between the atmosphere, oceans and solid Earth. The output from global general circulation models of the atmosphere (pressure, surface stress) is being used as input to the torque computations. Gravitational torque between the atmosphere, oceans and solid Earth is an important component of the torque budget. Computation of the gravitational torque involves the adoption of a gravitational model from a wide variety available. The purpose of this investigation is to ascertain to what extent this choice might influence the results of gravitational torque computations.
Investigation of Motorcycle Steering Torque Components
NASA Astrophysics Data System (ADS)
Cossalter, V.; Lot, R.; Massaro, M.; Peretto, M.
2011-10-01
When driving along a circular path, the rider controls a motorcycle mainly by the steering torque. This work addresses an in-depth analysis of the steady state cornering and in particular the decomposition of the motorcycle steering torque in its main components, such as road-tyre forces, gyroscopic torques, centrifugal and gravity effects. A detailed and experimentally validated multibody model of the motorcycle is used herein to analyze the steering torque components at different speeds and lateral accelerations. First the road tests are compared with the numerical results for three different vehicles and then a numerical investigation is carried out to decompose the steering torque. Finally, the effect of longitudinal acceleration and deceleration on steering torque components is presented.
Autonomous spacecraft attitude control using magnetic torquing only
NASA Technical Reports Server (NTRS)
Musser, Keith L.; Ebert, Ward L.
1989-01-01
Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.
Contribution of the GOCE gradiometer components to regional gravity solutions
NASA Astrophysics Data System (ADS)
Naeimi, Majid; Bouman, Johannes
2017-05-01
The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.
Effect of gravity-like torque on goal-directed arm movements in microgravity.
Bringoux, L; Blouin, J; Coyle, T; Ruget, H; Mouchnino, L
2012-05-01
Gravitational force level is well-known to influence arm motor control. Specifically, hyper- or microgravity environments drastically change pointing accuracy and kinematics, particularly during initial exposure. These modifications are thought to partly reflect impairment in arm position sense. Here we investigated whether applying normogravitational constraints at joint level during microgravity episodes of parabolic flights could restore movement accuracy equivalent to that observed on Earth. Subjects with eyes closed performed arm reaching movements toward predefined sagittal angular positions in four environment conditions: normogravity, hypergravity, microgravity, and microgravity with elastic bands attached to the arm to mimic gravity-like torque at the shoulder joint. We found that subjects overshot and undershot the target orientations in hypergravity and microgravity, respectively, relative to a normogravity baseline. Strikingly, adding gravity-like torque prior to and during movements performed in microgravity allowed subjects to be as accurate as in normogravity. In the former condition, arm movement kinematics, as notably illustrated by the relative time to peak velocity, were also unchanged relative to normogravity, whereas significant modifications were found in hyper- and microgravity. Overall, these results suggest that arm motor planning and control are tuned with respect to gravitational information issued from joint torque, which presumably enhances arm position sense and activates internal models optimally adapted to the gravitoinertial environment.
NASA Astrophysics Data System (ADS)
Tscherning, Carl Christian; Arabelos, Dimitrios; Reguzzoni, Mirko
2013-04-01
The GOCE satellite measures gravity gradients which are filtered and transformed to gradients into an Earth-referenced frame by the GOCE High Level processing Facility. More than 80000000 data with 6 components are available from the period 2009-2011. IAG Arctic gravity was used north of 83 deg., while data at the Antarctic was not used due to bureaucratic restrictions by the data-holders. Subsets of the data have been used to produce gridded values at 10 km altitude of gravity anomalies and vertical gravity gradients in 20 deg. x 20 deg. blocks with 10' spacing. Various combinations and densities of data were used to obtain values in areas with known gravity anomalies. The (marginally) best choice was vertical gravity gradients selected with an approximately 0.125 deg spacing. Using Least-Squares Collocation, error-estimates were computed and compared to the difference between the GOCE-grids and grids derived from EGM2008 to deg. 512. In general a good agreement was found, however with some inconsistencies in certain areas. The computation time on a usual server with 24 processors was typically 100 minutes for a block with generally 40000 GOCE vertical gradients as input. The computations will be updated with new Wiener-filtered data in the near future.
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer... the U.S. National Oceanographic and Atmospheric Administration's surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl. If this Web site is unavailable, you may use the...
40 CFR 1065.310 - Torque calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer... the U.S. National Oceanographic and Atmospheric Administration's surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl. If this Web site is unavailable, you may use the...
Satellite gravity gradient grids for geophysics
Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel
2016-01-01
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314
Extended transiting discs and rings around planets and brown dwarfs: theoretical constraints
NASA Astrophysics Data System (ADS)
Zanazzi, J. J.; Lai, Dong
2017-02-01
Newly formed planets (or brown dwarfs) may possess discs or rings which occupy an appreciable fraction of the planet's Hill sphere and extend beyond the Laplace radius, where the tidal torque from the host star dominates over the torque from the oblate planet. Such a disc/ring can exhibit unique, detectable transit signatures, provided that the disc/ring is significantly misaligned with the orbital plane of the planet. There exists tentative evidence for an extended ring system around the young K5 star 1 SWASP J140747-354542. We present a general theoretical study of the inclination (warp) profile of circumplanetary discs under the combined influences of the tidal torque from the central star, the torque from the oblate planet, and the self-gravity of the disc. We calculate the equilibrium warp profile (`generalized Laplace surface') and investigate the condition for coherent precession of the disc. We find that to maintain a non-negligible misalignment between the extended outer disc and the planet's orbital plane, and to ensure coherent disc precession, the disc surface density must be sufficiently large so that the self-gravity torque overcomes the tidal torque from the central star. Our analysis and quantitative results can be used to constrain the parameters of transiting circumplanetary discs which may be detected in the future.
NASA Astrophysics Data System (ADS)
He, Jun; Gao, Feng; Bai, Yongjun; Wu, Shengfu
2013-11-01
The large capacity servo press is traditionally realized by means of redundant actuation, however there exist the over-constraint problem and interference among actuators, which increases the control difficulty and the product cost. A new type of press mechanism with parallel topology is presented to develop the mechanical servo press with high stamping capacity. The dynamic model considering gravity counterbalance is proposed based on the virtual work principle, and then the effect of counterbalance cylinder on the dynamic performance of the servo press is studied. It is found that the motor torque required to operate the press is a lot less than the others when the ratio of the counterbalance force to the gravity of ram is in the vicinity of 1.0. The stamping force of the real press prototype can reach up to 25 MN on the position of 13 mm away from the bottom dead center. The typical deep-drawing process with 1 200 mm stroke at 8 strokes per minute is proposed by means of five order polynomial. On this process condition, the driving torques are calculated based on the above dynamic model and the torque measuring test is also carried out on the prototype. It is shown that the curve trend of calculation torque is consistent to the measured result and that the average error is less than 15%. The parallel mechanism is introduced into the development of large capacity servo press to avoid the over-constraint and interference of traditional redundant actuation, and its dynamic characteristics with gravity counterbalance are presented.
Improving GOCE cross-track gravity gradients
NASA Astrophysics Data System (ADS)
Siemes, Christian
2018-01-01
The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
Rarefied-flow pitching moment coefficient measurements of the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Hinson, E. W.
1988-01-01
An overview of the process for obtaining the Shuttle Orbiter rarefied-flow pitching moment from flight gyro data is presented. The extraction technique involves differentiation of the output of the pitch gyro after accounting for nonaerodynamic torques, such as those produced by gravity gradient and the Orbiter's auxiliary power unit and adjusting for drift biases. The overview of the extraction technique includes examples of results from each of the steps involved in the process, using the STS-32 mission as a typical sample case. The total pitching moment and moment coefficient (Cm) for that flight are calculated and compared with preflight predictions. The flight results show the anticipated decrease in Cm with increasing altitude. However, the total moment coefficient is less than predicted using preflight estimates.
GOCE gravity gradient data for lithospheric modeling and geophysical exploration research
NASA Astrophysics Data System (ADS)
Bouman, Johannes; Ebbing, Jörg; Meekes, Sjef; Lieb, Verena; Fuchs, Martin; Schmidt, Michael; Fattah, Rader Abdul; Gradmann, Sofie; Haagmans, Roger
2013-04-01
GOCE gravity gradient data can improve modeling of the Earth's lithosphere and upper mantle, contributing to a better understanding of the Earth's dynamic processes. We present a method to compute user-friendly GOCE gravity gradient grids at mean satellite altitude, which are easier to use than the original GOCE gradients that are given in a rotating instrument frame. In addition, the GOCE gradients are combined with terrestrial gravity data to obtain high resolution grids of gravity field information close to the Earth's surface. We also present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). We demonstrate how gravity gradients can increase confidence in the modeled structures by calculating the sensitvity of model geometry and applied densities at different observation heights; e.g. satellite height and near surface. Finally, this sensitivity analysis is used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data help especially to set up the regional crustal structure, which in turn allows to refine sedimentary thickness estimates and the regional heat-flow pattern. This can have implications for hydrocarbon exploration in the region.
3D joint inversion of gravity-gradient and borehole gravity data
NASA Astrophysics Data System (ADS)
Geng, Meixia; Yang, Qingjie; Huang, Danian
2017-12-01
Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.
2012-12-05
A 300-mile-long linear gravity anomaly on the far side of the moon has been revealed by gravity gradients measured by NASA GRAIL mission. GRAIL data are shown on the left, with red and blue corresponding to stronger gravity gradients.
NASA Astrophysics Data System (ADS)
Blakely, Richard J.
1994-02-01
The spatial correlation between a horizontal gradient in heat flow and a horizontal gradient in residual gravity in the Western Cascades of central Oregon has been interpreted by others as evidence of the western edge of a pervasive zone of high temperatures and partial melting at midcrustal depths (5-15 km). Both gradients are steep and relatively linear over north-south distances in excess of 150 km. The Western Cascades gravity gradient is the western margin of a broad gravity depression over most of the Oregon Cascade Range, implying that the midcrustal zone of anomalous temperatures lies throughout this region. Ideal-body theory applied to the gravity gradient, however, shows that the source of the Western Cascades gravity gradient cannot be deeper than about 2.5 km and is considerably shallower in some locations. These calculations are unique determinations, assuming that density contrasts associated with partial melting and elevated temperatures in the crust do not exceed 500 kg/cu m. Consequently, the gravity gradient and the heat flow gradient in the Western Cascades cannot be caused directly by the same source if the heat flow gradient originates at midcrustal depths. This conclusion in itself does not disprove the existence of a widespread midcrustal zone of anomalously high temperatures and partial melting in this area, but it does eliminate a major argument in support of its existence. The gravity gradient is most likely caused by lithologic varitions in the shallow crust, perhaps reflecting a relict boundary between the Cascade extensional trough to the west and Tertiary oceanic crust to the west. The boundary must have formed prior to Oligocene time, the age of the oldest rocks that now conceal it.
MAP stability, design, and analysis
NASA Technical Reports Server (NTRS)
Ericsson-Jackson, A. J.; Andrews, S. F.; O'Donnell, J. R., Jr.; Markley, F. L.
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L(2) Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L(2), aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. Thruster plume impingement torques that could affect the performance of the thruster modes were estimated and simulated, and a simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
NASA Astrophysics Data System (ADS)
Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo
2017-08-01
In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.
FSD- FLEXIBLE SPACECRAFT DYNAMICS
NASA Technical Reports Server (NTRS)
Fedor, J. V.
1994-01-01
The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD is written in FORTRAN 77, PASCAL, and MACRO assembler for batch execution and has been implemented on a DEC VAX series computer operating under VMS. The PASCAL and MACRO routines (in addition to the FORTRAN program) are supplied as both source and object code, so the PASCAL compiler is not required for implementation. This program was last updated in 1985.
Heat-driven spin torques in antiferromagnets
NASA Astrophysics Data System (ADS)
Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe
2018-04-01
Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Fullea, Javier
2015-03-01
We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.
Quantifying anti-gravity torques in the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq
2011-01-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.
Non-ferromagnetic retinal tacks are a tolerable risk in magnetic resonance imaging.
Kuethe, D O; Small, K W; Blinder, R A
1991-01-01
Should patients with cobalt alloy (ASTM F563) retinal tacks (Grieshaber cat. #611.95) in their eyes be subjected to the magnetic fields used in magnetic resonance imaging? Although the tacks are not ferromagnetic, they will experience a retarding torque when they are moved at the high angular velocities of human eye motion. Because retinal tacks are small (2.85 mm x 0.9 mm), the torque is difficult to measure. Rather, we measured the torque on a model 25.4 times larger and used a scaling law derived from Maxwell's equations to calculate the force on the tack. The scaling law states that the torque varies with the cube of the object's length. To mimic the motion, models of retinal tacks were attached to Plexiglas rods and the assemblies were swung as pendulums. The pendulums were oriented in the magnetic field of a 1.5 T imager to experience the greatest retardation. Retarding torques were estimated from the rate of decrease of the pendulum amplitude, both inside and outside the magnet. Even if the retinal tacks were as conductive as 6061T6 aluminum alloy (25 MS/m) and the velocity of the surface of the eye were 24 cm/s (angular vel. of 1130 deg/s), the retarding torque would be only 1.6 times the weight of the tack acting with a lever arm as long as the distance from its tip to its center of gravity. The maximum retarding torque on an implanted retinal tack in a 1.5 T magnet is similar to the torque produced by gravity alone acting on the tack and is a tolerable risk.(ABSTRACT TRUNCATED AT 250 WORDS)
GOCE gravity gradient data for lithospheric modeling - From well surveyed to frontier areas
NASA Astrophysics Data System (ADS)
Bouman, J.; Ebbing, J.; Gradmann, S.; Fuchs, M.; Fattah, R. Abdul; Meekes, S.; Schmidt, M.; Lieb, V.; Haagmans, R.
2012-04-01
We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. The idea is to invert satellite gravity gradients and terrestrial gravity data in the well explored and understood North-East Atlantic Margin and to compare the results of this inversion, providing improved information about the lithosphere and upper mantle, with results obtained by means of models based upon other sources like seismics and magnetic field information. Transfer of the obtained knowledge to the less explored Rub' al Khali desert is foreseen. We present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). The latter horizon is well resolved from gravity and especially magnetic data, whereas sedimentary layers are mainly constrained from seismic studies, but do in general not show a prominent effect in the gravity and magnetic field. We analyze how gravity gradients can increase confidence in the modeled structures by calculating a sensitivity matrix for the existing 3D model. This sensitivity matrix describes the relation between calculated gravity gradient data and geological structures with respect to their depth, extent and relative density contrast. As the sensitivity of the modeled bodies varies for different tensor components, we can use this matrix for a weighted inversion of gradient data to optimize the model. This sensitivity analysis will be used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data will be used to better identify the extent of anomalous structures within the basin, with the goal to improve the modeling for hydrocarbon exploration purposes.
Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes
NASA Astrophysics Data System (ADS)
Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.
1995-09-01
Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.
Gravity Gradients Frame Oceanus Procellarum
2014-10-01
Topography of Earth moon generated from data NASA LRO, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA GRAIL mission.
Major Fault Patterns in Zanjan State of Iran Based of GECO Global Geoid Model
NASA Astrophysics Data System (ADS)
Beheshty, Sayyed Amir Hossein; Abrari Vajari, Mohammad; Raoufikelachayeh, SeyedehSusan
2016-04-01
A new Earth Gravitational Model (GECO) to degree 2190 has been developed incorporates EGM2008 and the latest GOCE based satellite solutions. Satellite gradiometry data are more sensitive information of the long- and medium- wavelengths of the gravity field than the conventional satellite tracking data. Hence, by utilizing this new technique, more accurate, reliable and higher degrees/orders of the spherical harmonic expansion of the gravity field can be achieved. Gravity gradients can also be useful in geophysical interpretation and prospecting. We have presented the concept of gravity gradients with some simple interpretations. A MATLAB based computer programs were developed and utilized for determining the gravity and gradient components of the gravity field using the GGMs, followed by a case study in Zanjan State of Iran. Our numerical studies show strong (more than 72%) correlations between gravity anomalies and the diagonal elements of the gradient tensor. Also, strong correlations were revealed between the components of the deflection of vertical and the off-diagonal elements as well as between the horizontal gradient and magnitude of the deflection of vertical. We clearly distinguished two big faults in North and South of Zanjan city based on the current information. Also, several minor faults were detected in the study area. Therefore, the same geophysical interpretation can be stated for gravity gradient components too. Our mathematical derivations support some of these correlations.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry.
D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M
2017-12-22
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
Canceling the Gravity Gradient Phase Shift in Atom Interferometry
NASA Astrophysics Data System (ADS)
D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.
2017-12-01
Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Holland, R. L.
1978-01-01
A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.
NASA Astrophysics Data System (ADS)
Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David
2014-03-01
Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masset, F. S.; Casoli, J., E-mail: masset@fis.unam.m, E-mail: jules.casoli@cea.f, E-mail: masset@fis.unam.m
2010-11-10
We provide torque formulae for low-mass planets undergoing type I migration in gaseous disks. These torque formulae put special emphasis on the horseshoe drag, which is prone to saturation: the asymptotic value reached by the horseshoe drag depends on a balance between coorbital dynamics (which tends to cancel out or saturate the torque) and diffusive processes (which tend to restore the unperturbed disk profiles, thereby desaturating the torque). We entertain the question of this asymptotic value and derive torque formulae that give the total torque as a function of the disk's viscosity and thermal diffusivity. The horseshoe drag features twomore » components: one that scales with the vortensity gradient and another that scales with the entropy gradient and constitutes the most promising candidate for halting inward type I migration. Our analysis, which is complemented by numerical simulations, recovers characteristics already noted by numericists, namely, that the viscous timescale across the horseshoe region must be shorter than the libration time in order to avoid saturation and that, provided this condition is satisfied, the entropy-related part of the horseshoe drag remains large if the thermal timescale is shorter than the libration time. Side results include a study of the Lindblad torque as a function of thermal diffusivity and a contribution to the corotation torque arising from vortensity viscously created at the contact discontinuities that appear at the horseshoe separatrices. For the convenience of the reader mostly interested in the torque formulae, Section 8 is self-contained.« less
Spin torque and Nernst effects in Dzyaloshinskii-Moriya ferromagnets
Kovalev, Alexey A.; Zyuzin, Vladimir
2016-04-11
Here, we predict that a temperature gradient can induce a magnon-mediated intrinsic torque in systems with a nontrivial magnon Berry curvature. With the help of a microscopic linear response theory of nonequilibrium magnon-mediated torques and spin currents we identify the interband and intraband components that manifest in ferromagnets with Dzyaloshinskii-Moriya interactions and magnetic textures. To illustrate and assess the importance of such effects, we apply the linear response theory to the magnon-mediated spin Nernst and torque responses in a kagome lattice ferromagnet.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.
1979-01-01
The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes.
Project SKYLITE: A Design Exploration.
1987-09-01
5. Gravity Gradient Boom The SKYLITE satellite uses gravity gradient stabilization. This technique requires a gravity gradient boom for attitude ... attitude of the satellite. To satisfy SKYLITE mission requirements, the satellite contains an array of IR sensors for evaluation of radiation from the ...3.1 Extended GAS Canister. The Orion satellite has been designed with 7 thrusters. Six thrusters are .1 lbr rated, and used for spin up and attitude
Two gimbal bearing case studies: Some lessons learned
NASA Technical Reports Server (NTRS)
Loewenthal, Stuart H.
1988-01-01
Two troublesome, torque related problems associated with gimbal actuators are discussed. Large, thin section angular contact bearings can have a surprisingly high torque sensitivity to radial thermal gradients. A predictive thermal-mechanical bearing analysis, as described, was helpful in establishing a safe temperature operating envelope. In the second example, end-of-travel torque limits of an oscillatory gimbal bearing appoached motor stall during limit cycling life tests. Bearing modifications required to restore acceptable torque performance are described. The lessons learned from these case studies should benefit designers of precision gimbals where singular bearing torque related problems are not uncommon.
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sideris, Michael G.
2017-09-01
Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be connected to and employed in the first computational steps of the space-wise approach, where a time-wise Wiener filter is applied at the first stage of GOCE gravity gradient filtering. The results of this work can be extended to using other adaptive filtering algorithms, such as the recursive least-squares and recursive least-squares lattice filters.
Seafloor Topography Estimation from Gravity Gradient Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Yang, J.; Jekeli, C.; Liu, L.
2017-12-01
Inferring seafloor topography from gravimetry is an indirect yet proven and efficient means to map the ocean floor. Standard techniques rely on an approximate, linear relationship (Parker's formula) between topography and gravity. It has been reported that in the very rugged areas the discrepancies between prediction and ship soundings are very large, partly because the linear term of Parker's infinite series is dominant only in areas where the local topography is small compared with the regional topography. The validity of the linear approximation is therefore in need of analysis. In this study the nonlinear effects caused by terrain are quantified by both numerical tests and an algorithmic approach called coherency. It is shown that the nonlinear effects are more significant at higher frequencies, which suggests that estimation algorithms with nonlinear approximation in the modeled relationship between gravity gradient and topography should be developed in preparation for future high-resolution gravity gradient missions. The simulated annealing (SA) method is such an optimization technique that can process nonlinear inverse problems, and is used to estimate the seafloor topography parameters in a forward model by minimizing the difference between the observed and forward-computed vertical gravity gradients. Careful treatments like choosing suitable truncation distance, padding the vicinity of the study area with a known topography model, and using the relative cost function, are considered to improve the estimation accuracy. This study uses the gravity gradient, which is more sensitive to topography at short wavelengths than gravity anomaly. The gravity gradient data are derived from satellite altimetry, but the SA has no restrictions on data distribution, as required in Parker's infinite series model, thus enabling the use of airborne gravity gradient data, whose survey trajectories are irregular. The SA method is tested in an area of Guyots (E 156°-158° in longitude, N 20°-22° in latitude). Comparison between the estimation and ship sounding shows that half of the discrepancy is within 110 m, which improves the result from standard techniques by 32%.
Three-Axis Superconducting Gravity Gradiometer
NASA Technical Reports Server (NTRS)
Paik, Ho Jung
1987-01-01
Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.
Microgravimetry and the Measurement and Application of Gravity Gradients,
1980-06-01
Neumann, R., 1972, High precision gravimetry--recent develop- ments: Report to Paris Commission of E.A.E.G., Compagnie Generale de Geophysique , Massy...experimentation on vertical gradient: Compagnie Generale de Geophysique , Massy, France. 12. Fajklewicz, Z. J., 1976, Gravity vertical gradient
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.
Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry
NASA Astrophysics Data System (ADS)
Mahadeswaraswamy, Chetan
First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2 gravity gradient signature due to an underground void at Hansen Experimental Physics Building at Stanford was successfully measured using this mobile gradiometer.
Density interface topography recovered by inversion of satellite gravity gradiometry observations
NASA Astrophysics Data System (ADS)
Ramillien, G. L.
2017-08-01
A radial integration of spherical mass elements (i.e. tesseroids) is presented for evaluating the six components of the second-order gravity gradient (i.e. second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven spherical topography consisting of juxtaposed vertical prisms. The method uses Legendre polynomial series and takes elastic compensation of the topography by the Earth's surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily applied for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. An iterative least-squares inversion of measured gravity gradient coefficients is also proposed to estimate a regional set of juxtaposed topographic heights. Several tests of recovery have been made by considering simulated gradients created by idealistic conical and irregular Great Meteor seamount topographies, and for varying satellite altitudes and testing different levels of uncertainty. In the case of gravity gradients measured at a GOCE-type altitude of ˜ 300 km, the search converges down to a stable but smooth topography after 10-15 iterations, while the final root-mean-square error is ˜ 100 m that represents only 2 % of the seamount amplitude. This recovery error decreases with the altitude of the gravity gradient observations by revealing more topographic details in the region of survey.
Giant thermal spin torque assisted magnetic tunnel junction switching
NASA Astrophysics Data System (ADS)
Pushp, Aakash
Spin-polarized charge-currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer-torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin-currents from temperature gradients, and their associated thermal-spin-torques (TSTs) have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge-currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. Reference: A. Pushp*, T. Phung*, C. Rettner, B. P. Hughes, S.-H. Yang, S. S. P. Parkin, 112, 6585-6590 (2015).
NASA Astrophysics Data System (ADS)
Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue
2018-04-01
In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.
Closed Loop Software Control of the MIDEX Power System
NASA Technical Reports Server (NTRS)
Castell, Karen; Hernandez-Pellerano, Amri; Wismer, Margaret
1998-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The design and analysis of the MAP attitude control system (ACS) have been refined since work previously reported. The full spacecraft and instrument flexible model was developed in NASTRAN, and the resulting flexible modes were plotted and reduced with the Modal Significance Analysis Package (MSAP). The reduced-order model was used to perform the linear stability analysis for each control mode, the results of which are presented in this paper. Although MAP is going to a relatively disturbance-free Lissajous orbit around the Earth-Sun L2 Lagrange point, a detailed disturbance-torque analysis is required because there are only a small number of opportunities for momentum unloading each year. Environmental torques, including solar pressure at L2, and aerodynamic and gravity gradient during phasing-loop orbits, were calculated and simulated. A simple model of fuel slosh was derived to model its effect on the motion of the spacecraft. In addition, a thruster mode linear impulse controller was developed to meet the accuracy requirements of the phasing loop burns. A dynamic attitude error limiter was added to improve the performance of the ACS during large attitude slews. The result of this analysis is a stable ACS subsystem that meets all of the mission's requirements.
A novel single thruster control strategy for spacecraft attitude stabilization
NASA Astrophysics Data System (ADS)
Godard; Kumar, Krishna Dev; Zou, An-Min
2013-05-01
Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.
Saltus, R.W.; Day, W.C.
2006-01-01
The Yukon-Tanana Upland is a complex composite assemblage of variably metamorphosed crystalline rocks with strong North American affinities. At the broadest scale, the Upland has a relatively neutral magnetic character. More detailed examination, however, reveals a fundamental northeast-southwest-trending magnetic gradient, representing a 20-nT step (as measured at a flight height of 300 m) with higher values to the northwest, that extends from the Denali fault to the Tintina fault and bisects the Upland. This newly recognized geophysical gradient is parallel to, but about 100 km east of, the Shaw Creek fault. The Shaw Creek fault is mapped as a major left-lateral, strike-slip fault, but does not coincide with a geophysical boundary. A gravity gradient coincides loosely with the southwestern half of the magnetic gradient. This gravity gradient is the eastern boundary of a 30-mGal residual gravity high that occupies much of the western and central portions of the Big Delta quadrangle. The adjacent lower gravity values to the east correlate, at least in part, with mapped post-metamorphic granitic rocks. Ground-based gravity and physical property measurements were made in the southeastern- most section of the Big Delta quadrangle in 2004 to investigate these geophysical features. Preliminary geophysical models suggest that the magnetic boundary is deeper and more fundamental than the gravity boundary. The two geophysical boundaries coincide in and around the Tibbs Creek region, an area of interest to mineral exploration. A newly mapped tectonic zone (the Black Mountain tectonic zone of O'Neill and others, 2005) correlates with the coincident geophysical boundaries.
Effect of handling characteristics on minimum time cornering with torque vectoring
NASA Astrophysics Data System (ADS)
Smith, E. N.; Velenis, E.; Tavernini, D.; Cao, D.
2018-02-01
In this paper, the effect of both passive and actively-modified vehicle handling characteristics on minimum time manoeuvring for vehicles with 4-wheel torque vectoring (TV) capability is studied. First, a baseline optimal TV strategy is sought, independent of any causal control law. An optimal control problem (OCP) is initially formulated considering 4 independent wheel torque inputs, together with the steering angle rate, as the control variables. Using this formulation, the performance benefit using TV against an electric drive train with a fixed torque distribution, is demonstrated. The sensitivity of TV-controlled manoeuvre time to the passive understeer gradient of the vehicle is then studied. A second formulation of the OCP is introduced where a closed-loop TV controller is incorporated into the system dynamics of the OCP. This formulation allows the effect of actively modifying a vehicle's handling characteristic via TV on its minimum time cornering performance of the vehicle to be assessed. In particular, the effect of the target understeer gradient as the key tuning parameter of the literature-standard steady-state linear single-track model yaw rate reference is analysed.
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.; Rao, P. R.
2017-12-01
Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.
Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques
NASA Astrophysics Data System (ADS)
Kovalev, Alexey A.
2014-06-01
We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.
Joint Interpretation of Bathymetric and Gravity Anomaly Maps Using Cross and Dot-Products.
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Fontes, Sergio Luiz
2010-05-01
0.1 Summary We present the results of joint map interpretation technique based on cross and dot-products applied to bathymetric and gravity anomaly gradients maps. According to the theory (Gallardo, Meju, 2004) joint interpretation of different gradient characteristics help to localize and empathize patterns unseen on one image interpretation and gives information about the correlation of different spatial data. Values of angles between gradients and their cross and dot-product were used. This technique helps to map unseen relations between bathymetric and gravity anomaly maps if they are analyzed separately. According to the method applied for the southern segment of Eastern-Brazilian coast bathymetrical and gravity anomaly gradients indicates a strong source-effect relation between them. The details of the method and the obtained results are discussed. 0.2 Introduction We applied this method to investigate the correlation between bathymetric and gravity anomalies at the southern segment of the Eastern-Brazilian coast. Gridded satellite global marine gravity data and bathymetrical data were used. The studied area is located at the Eastern- Brazilian coast between the 20° W and 30° W meridians and 15° S and 25° S parallels. The volcanic events responsible for the uncommon width of the continental shelf at the Abrolhos bank also were responsible for the formation of the Abrolhos islands and seamounts including the major Vitoria-Trindade chain. According to the literature this volcanic structures are expected to have a corresponding gravity anomaly (McKenzie, 1976, Zembruscki, S.G. 1979). The main objective of this study is to develop and test joint image interpretation method to compare spatial data and analyze its relations. 0.3 Theory and Method 0.3.1 Data sources The bathymetrical satellite data were derived bathymetry 2-minute grid of the ETOPO2v2 obtained from NOAA's National Geophysical Data Center (http://www.ngdc.noaa.gov). The satellite marine gravity 1-minute gridded data were obtained from the Satellite Geodesy at the Scripps Institution of Oceanography, Smith & Sandwell (1997; http://topex.ucsd.edu. Gravity anomaly data were re-gridded using the ETOPO2v2 grid. All calculations and maps were made using MatLab 2007 software. 0.3.2 Cross-Product Cross-product is the result of multiplication of bathymetric and gravity anomaly gradient magnitudes by the sine of the angle between them. According to the definition of gradient cross-product minimal values are expected to be found in points where the angle between gradients is close to zero or where one or both of the gradient magnitudes have values close to zero. It creates an ambiguity and a problem for data interpretation since there is no exact correspondence between bathymetric structures and gravity anomalies. 0.3.3 Dot-Product Dot-product is the result of multiplication of bathymetric and gravity anomaly magnitudes by the cosine on the angle between them. According to the definition of dot-product, values close to zero can be generated by near perpendicular orientation of the gradients or small magnitudes of one or both gradients. So, the results are mutually increased in areas with larger magnitudes or smaller angles between gradients. Due to this mutual amplification dot-products are less affected by the ambiguity of cross-product explained above. The same statistical separation of cross-product was used to support the conclusions. 0.3.4 Statistics and Significance Criteria Statistical analysis was made in order to sort the data into two groups to reduce ambiguity effect: first group - data with magnitudes that could be considered anomalous (where the main minimizing source is the angle between the gradients and the second group - data with magnitudes variations that could be considered as (non significant or background (where cross-product value is determined by the small magnitude). It was chosen to use the mean value and standard deviation (std) to sort the data in such two groups. These values were determined for bathymetric and gravity anomaly gradient magnitudes creating two data sets - one where one or both gradient magnitudes are one standard deviation larger than the mean value with a total of 7831 (anomalous) and a second one where both magnitudes differ smaller than one standard deviation from the mean value with 85584 (background ). Statistical analysis of distribution patterns for both groups was made. 0.4 Examples of Method Application 0.4.1 Map of Angles Between Gradients Figure 1 shows the map of angle values. The angle values were divided into 4 equal intervals. The statistical distribution of angles between gradient in the given intervals is the following (percents of the total): 0 to 60° - 51.39% of the values; 60° to 90° -12.08%; 90° to 120° -14.92%; 120° to 180° -21.18%. It can be seen that 51% of the gradients have a small angle between them, 72% of gradients can be considered as parallel (72%) with angles smaller than 60° or bigger than 120° between them. After statistical separation in the anomalous group almost 91% of the gradients have an angle smaller than 60° while in the background group just 48.6%. From these results we can make a conclusion that the majority of the bathymetric and gravity anomaly gradients are related. Regions with higher gradient magnitudes are characterized by cosine values close to 1 (indicating a small angle between them). The size of the areas characterized by small angles between gradients exceed the size of bathymetric and gravity anomaly isolines characterizing the area of influence of the structures and their effects. Regions with no significant anomalies show uncorrelated value spots. 0.4.2 Map of Cross-Product The resulting map shows small spots of higher cross-product magnitudes following magnitude isolines. About 90% of the values are close to minimum. As was mentioned before, we can presume that areas where bathymetry and gravity anomaly gradient cross-products have smallest magnitudes there is a good correspondence between them indicating a good correspondence between shapes. According to these results for the studied area the shapes and positions of bathymetric structures and gravity anomalies are well correlated suggesting strong correlation between source and its effect. 0.4.3 Map of Dot-Product The resulting map resembles bathymetric and gravity anomaly isolines. All the sea mounts, banks, continental slope and other notable geomorphologic structures and gravity anomalies are well delimitated in the dot-product map eliminating uncorrelated areas where gradient orientations can be considered as near perpendicular. The dot-product map of the studied area suggests a strong source-effect between bathymetry and gravity anomaly. 0.5 Conclusions The joint image interpretation technique uses three different criteria that are sensitive to different gradient properties. Angles between gradients are a good indicator of areas where data are related and it is not sensitive to the magnitudes of the gradients. Angles maps can be used to find areas with direct and inverse relation between mapped properties and contour areas of influence of anomalies unseen on gradient magnitude maps alone. Statistical measures of distribution of angles can be an indicator of relation between data sets as show using significance criteria. Cross-product map has a spotted character of contours. To reduce the effects of the ambiguity the separation into two groups proved to be useful. It helps to separate the cross-product values that are minimized due to gradient magnitudes from those that minimize due to sine values which is a measure of correlation between them. Dot-product values contour areas where gradients are correlated. According to joint image interpretation technique applied bathymetric structures especially the volcanic seamounts and banks in the southern part of East-Brazilian Coast are closely related to the observed gravity anomalies and can be interpreted as sources and effect. This technique also helps to evaluate the shape and dispersion of the gravitational effect from a bathymetrical source. 0.6 References Dehlinger P., Marine Gravity, Elsevier, 1978. Gallardo, L. A., and M. A. Meju., Joint 2D cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification, Geophys. J. Int., 169, 1261-1272. (2007) Gallardo, L.A., M. A. Meju (2004), Joint two-dimensional dc resistivity and seismic traveltime inversion with cross-gradients constraints, J. Geophys. Res., 109, B03311, doi:10.1029/2003JB002716 Jacoby, W., and Smilde P. L., Gravity Interpretation, Springer, 2009. McKenzie D. & Bowin C. 1976. The relationship between bathymetry and gravity in Atlantic Ocean. Journal of Geophysical Research, 81: 1903-1915. Roy. K. K., Potential Theory in Applied Geophysics, Springer, 2008. Smith, W. H. F., and D. T. Sandwell, Global seafloor topography from satellite altimetry and ship depth soundings, Science, v. 277, p. 1957-1962, 26 Sept., 1997. Sandwell, D. T., and W. H. F. Smith, Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate, J. Geophys. Res., 114, B01411, doi:10.1029/2008JB006008, 2009. Zembruscki, S.G. 1979. Geomorfologia da Margem Continental Sul Brasileira e das Bacias Oceânicas Adjacentes. In: Geomorfologia da margem continental brasileira e das áreas oceânicas adjacentes. Série Projeto REMAC, N° 7.
Lyapunov optimal feedback control of a nonlinear inverted pendulum
NASA Technical Reports Server (NTRS)
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Eigenvector of gravity gradient tensor for estimating fault dips considering fault type
NASA Astrophysics Data System (ADS)
Kusumoto, Shigekazu
2017-12-01
The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.
A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.
1988-01-01
Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.
The influence of installation angle of GGIs on full-tensor gravity gradient measurement
NASA Astrophysics Data System (ADS)
Wei, Hongwei; Wu, Meiping
2018-03-01
Gravity gradient plays an important role in many disciplines as a fundamental signal to reflect the information of the earth. Full-tensor gravity gradient measurement (FGGM) is an effective way to obtain the gravity gradient signal. In this paper, the installation mode of GGIs in FGGM is studied. It is expected that the accuracy of FGGM will be improved by optimizing the installation mode of GGIs. In addition, we analysed the relationship between GGIs’ installation angle and FGGM by establishing the measurement model of FGGM. Then the following conclusions was proved that there was no relationship between GGIs’ installation angle and the measurement result. This conclusion showed that there was no optimal angle for the GGIs’ installation in FGGM, and the installation angle only need to satisfy the relationship shown in the conclusion section of this paper. Finally, this conclusion was demonstrated by computer simulations.
Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves
NASA Astrophysics Data System (ADS)
Cheng, Yihong; Chen, Kai; Zhang, Shufeng
2018-01-01
We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.
Altered Orientation and Flight Paths of Pigeons Reared on Gravity Anomalies: A GPS Tracking Study
Blaser, Nicole; Guskov, Sergei I.; Meskenaite, Virginia; Kanevskyi, Valerii A.; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The “gravity vector” theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates. PMID:24194860
Altered orientation and flight paths of pigeons reared on gravity anomalies: a GPS tracking study.
Blaser, Nicole; Guskov, Sergei I; Meskenaite, Virginia; Kanevskyi, Valerii A; Lipp, Hans-Peter
2013-01-01
The mechanisms of pigeon homing are still not understood, in particular how they determine their position at unfamiliar locations. The "gravity vector" theory holds that pigeons memorize the gravity vector at their home loft and deduct home direction and distance from the angular difference between memorized and actual gravity vector. However, the gravity vector is tilted by different densities in the earth crust leading to gravity anomalies. We predicted that pigeons reared on different gravity anomalies would show different initial orientation and also show changes in their flight path when crossing a gravity anomaly. We reared one group of pigeons in a strong gravity anomaly with a north-to-south gravity gradient, and the other group of pigeons in a normal area but on a spot with a strong local anomaly with a west-to-east gravity gradient. After training over shorter distances, pigeons were released from a gravitationally and geomagnetically normal site 50 km north in the same direction for both home lofts. As expected by the theory, the two groups of pigeons showed divergent initial orientation. In addition, some of the GPS-tracked pigeons also showed changes in their flight paths when crossing gravity anomalies. We conclude that even small local gravity anomalies at the birth place of pigeons may have the potential to bias the map sense of pigeons, while reactivity to gravity gradients during flight was variable and appeared to depend on individual navigational strategies and frequency of position updates.
NASA Astrophysics Data System (ADS)
Hussain, Matloob; Eshagh, Mehdi; Ahmad, Zulfiqar; Sadiq, M.; Fatolazadeh, Farzam
2016-09-01
The earth's gravity changes are attributed to the redistribution of masses within and/or on the surface of the earth, which are due to the frictional sliding, tensile cracking and/or cataclastic flow of rocks along the faults and detectable by earthquake events. Inversely, the gravity changes are useful to describe the earthquake seismicity over the active orogenic belts. The time variable gravimetric data are hardly available to the public domain. However, Gravity Recovery and Climatic Experiment (GRACE) is the only satellite mission dedicated to model the variation of the gravity field and an available source to the science community. Here, we have tried to envisage gravity changes in terms of gravity anomaly (Δg), geoid (N) and the gravity gradients over the Indo-Pak plate with emphasis upon Kashmir earthquake of October 2005. For this purpose, we engaged the spherical harmonic coefficients of monthly gravity solutions from the GRACE satellite mission, which have good coverage over the entire globe with unprecedented accuracy. We have analysed numerically the solutions after removing the hydrological signals, during August to November 2005, in terms of corresponding monthly differentials of gravity anomaly, geoid and the gradients. The regional structures like Main Mantle Thrust (MMT), Main Karakoram Thrust (MKT), Herat and Chaman faults are in closed association with topography and with gravity parameters from the GRACE gravimetry and EGM2008 model. The monthly differentials of these quantities indicate the stress accumulation in the northeast direction in the study area. Our numerical results show that the horizontal gravity gradients seem to be in good agreement with tectonic boundaries and differentials of the gravitational elements are subtle to the redistribution of rock masses and topography caused by 2005 Kashmir earthquake. Moreover, the gradients are rather more helpful for extracting the coseismic gravity signatures caused by seismicity over the area. Higher positive values of gravity components having higher terrain elevations are more vulnerable to the seismicity and lower risk of diastrophism otherwise.
Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
NASA Astrophysics Data System (ADS)
ten Hagen, Borge; Wittkowski, Raphael; Takagi, Daisuke; Kümmel, Felix; Bechinger, Clemens; Löwen, Hartmut
2015-05-01
The self-propulsion of artificial and biological microswimmers (or active colloidal particles) has often been modelled by using a force and a torque entering into the overdamped equations for the Brownian motion of passive particles. This seemingly contradicts the fact that a swimmer is force-free and torque-free, i.e. that the net force and torque on the particle vanish. Using different models for mechanical and diffusiophoretic self-propulsion, we demonstrate here that the equations of motion of microswimmers can be mapped onto those of passive particles with the shape-dependent grand resistance matrix and formally external effective forces and torques. This is consistent with experimental findings on the circular motion of artificial asymmetric microswimmers driven by self-diffusiophoresis. The concept of effective self-propulsion forces and torques significantly facilitates the understanding of the swimming paths, e.g. for a microswimmer under gravity. However, this concept has its limitations when the self-propulsion mechanism of a swimmer is disturbed either by another particle in its close vicinity or by interactions with obstacles, such as a wall.
NASA Technical Reports Server (NTRS)
Robbins, J. W.
1985-01-01
An autonomous spaceborne gravity gradiometer mission is being considered as a post Geopotential Research Mission project. The introduction of satellite diometry data to geodesy is expected to improve solid earth gravity models. The possibility of utilizing gradiometer data for the determination of pertinent gravimetric quantities on a local basis is explored. The analytical technique of least squares collocation is investigated for its usefulness in local solutions of this type. It is assumed, in the error analysis, that the vertical gravity gradient component of the gradient tensor is used as the raw data signal from which the corresponding reference gradients are removed to create the centered observations required in the collocation solution. The reference gradients are computed from a high degree and order geopotential model. The solution can be made in terms of mean or point gravity anomalies, height anomalies, or other useful gravimetric quantities depending on the choice of covariance types. Selected for this study were 30 x 30 foot mean gravity and height anomalies. Existing software and new software are utilized to implement the collocation technique. It was determined that satellite gradiometry data at an altitude of 200 km can be used successfully for the determination of 30 x 30 foot mean gravity anomalies to an accuracy of 9.2 mgal from this algorithm. It is shown that the resulting accuracy estimates are sensitive to gravity model coefficient uncertainties, data reduction assumptions and satellite mission parameters.
Preparation, testing and analysis of zinc diffusion samples, NASA Skylab experiment M-558
NASA Technical Reports Server (NTRS)
Braski, D. N.; Kobisk, E. H.; Odonnell, F. R.
1974-01-01
Transport mechanisms of zinc atoms in molten zinc were investigated by radiotracer techniques in unit and in near-zero gravity environments. Each melt in the Skylab flight experiments was maintained in a thermal gradient of 420 C to 790 C. Similar tests were performed in a unit gravity environment for comparison. After melting in the gradient furnace followed by a thermal soak period (the latter was used for flight samples only), the samples were cooled and analyzed for Zn-65 distribution. All samples melted in a unit gravity environment were found to have uniform Zn-65 distribution - no concentration gradient was observed even when the sample was brought rapidly to melting and then quenched. Space-melted samples, however, showed textbook distributions, obviously the result of diffusion. It was evident that convection phenomena were the dominant factors influencing zinc transport in unit gravity experiments, while diffusion was the dominant factor in near-zero gravity experiments.
Frisbees, Can Lids, and Gyroscopic Effects.
ERIC Educational Resources Information Center
Crane, H. Richard
1983-01-01
Provides an explanation for the observed motion of frisbees, can lids, "clay pidgeons," and flat stones when these objects are thrown through the air. Explanation focuses on forces (gravity and air), torque, and gyroscopic precession. (JN)
Magsat attitude dynamics and control: Some observations and explanations
NASA Technical Reports Server (NTRS)
Stengle, T. H.
1980-01-01
Before its reentry 7 months after launch, Magsat transmitted an abundance of valuable data for mapping the Earth's magnetic field. As an added benefit, a wealth of attitude data for study by spacecraft dynamicists was also collected. Because of its unique configuration, Magsat presented new control problems. With its aerodynamic trim boom, attitude control was given an added dimension. Minimization of attitude drift, which could be mapped in relative detail, became the goal. Momentum control, which was accomplished by pitching the spacecraft in order to balance aerodynamic and gravity gradient torques, was seldom difficult to achieve. Several interesting phenomena observed as part of this activity included occasional momentum wheel instability and a rough correlation between solar flux and the pitch angle required to maintain acceptable momentum. An overview is presented of the attitude behavior of Magsat and some of the control problems encountered. Plausible explanations for some of this behavior are offered. Some of the control philosophy used during the mission is examined and aerodynamic trimming operations are summarized.
Implications for seismic hazard from new gravity data in Napa and vicinity, California
NASA Astrophysics Data System (ADS)
Morgan, K.; Langenheim, V. E.; Ritzinger, B. T.
2015-12-01
New gravity data refine the basin structure beneath the city of Napa, California and suggest continuity of the West Napa fault to the SE, near the city of Vallejo. Previous regional gravity data defined a basin 2-3 km deep beneath Napa where the 2014 M6.0 South Napa and the 2000 M4.9 Yountville earthquakes caused considerable damage. Higher ground motions were also recorded within the area of the gravity low. About 100 new gravity measurements sharpen gravity gradients along the eastern margin of the gravity low, where there was a concentration of red-tagged buildings from the 2014 earthquake. The new data also confirm the presence of an intrabasinal, arch, defined by slightly higher gravity values (~ 1 mGal) in the center of the basin and marked by the edge of a significant magnetic high (~150 nT). This arch coincides with the highest concentration of red-tagged buildings from the 2014 earthquake. Comparison of the potential-field anomalies with rock types encountered in water wells suggests that the arch is underlain by sediments which thin to the south where they are underlain by thick Sonoma Volcanics.. We speculate that the concentration of damage may be caused by shallowing of the basement or by a thicker sequence of basin sediments in the arch or both. Red-tagged buildings from the Yountville earthquake are near the western edge of the basin defined by significant potential-field gradients of the West Napa fault. A sharp basin boundary or guided waves along the fault may have contributed to concentration of damage in this area. Although the potential-field gradients decrease south of Napa, our new gravity data define a gradient aligned to the SE beneath the town of Vallejo. The gradient resides within Mesozoic basement rocks because it traverses outcrops of Great Valley Sequence. Although these data cannot prove Quaternary slip on this structure, its trend and location may indicate continuation of the West Napa fault to the SE.
Superconducting gravity gradiometer and a test of inverse square law
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, Ho Jung
1989-01-01
The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.
Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density
NASA Astrophysics Data System (ADS)
Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing
2017-12-01
Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.
Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N
2014-10-01
Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.
NASA Astrophysics Data System (ADS)
Jallouli, Chokri; Mogren, Saad; Mickus, Kevin; Turki, Mohamed Moncef
2013-11-01
The Atlas orogeny in northern Algeria and Tunisia led to the destruction of Tethys oceanic lithosphere and cumulated in a collision of microplates rifted off the European margin with the North African continental margin. The location of the boundary between African plate and Kabylian microplate is expressed in northern Algeria by a crustal wedge with double vergence of thrust sheets, whereas in northern Tunisia the geologic environment is more complex and the location of the plate boundary is ambiguous. In this study, we analyzed gravity data to constrain the crustal structure along the northern margin of Tunisia. The analysis includes a separation of regional and residual gravity anomalies and the application of gradient operators to locate density contrast boundaries. The horizontal gradient magnitude and directional gradient highlight a prominent regional E-W gravity gradient in the northern Tunisian Atlas interpreted as a deep fault (active since at least the Early Mesozoic) having a variable kinematic activity depending on the tectonic regime in the region. The main E-W gravity gradient separates two blocks having different gravitational and seismic responses. The southern block has numerous gravity lineaments trending in different directions implying several density variations within the crust, whereas the northern block shows a long-wavelength negative gravity anomaly with a few lineaments. Taking into account the geologic context of the Western Mediterranean region, we consider the E-W prominent feature as the boundary between African plate and Kabylian microplate in northern Tunisia that rifted off Europe. This hypothesis fits most previous geological and geophysical studies and has an important impact on the petroleum and mineral resource prospection as these two blocks were separated by an ocean and they did not belong to the same margin.
Application Number 3: Using Tethers for Attitude Control
NASA Technical Reports Server (NTRS)
Muller, R. M.
1985-01-01
Past application of the gravity gradient concept to satellite attitude control produced attitude stabilities of from 1 to 10 degrees. The satellite members were rigigly interconnected and any motion in one part of the satellite would cause motion in all members. This experience has restricted gravity gradient stabilization to applications that need attitude stability no better than 1 degree. A gravity gradient technique that combines the flexible tether with an active control that will allow control stability much better than 1 degree is proposed. This could give gravity gradient stabilization much broader application. In fact, for a large structure like a space station, it may become the preferred method. Two possible ways of demonstrating the techniques using the Tethered Satellite System (TSS) tether to control the attitude of the shuttle are proposed. Then a possible space station tether configuration is shown that could be used to control the initial station. It is then shown how the technique can be extended to the control of space stations of virtually any size.
NASA Astrophysics Data System (ADS)
Guo, Zhikui; Chen, Chao; Tao, Chunhui
2016-04-01
Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model tests and field applications indicate that the adaptive terrain correction method can be adopted as a rapid and accurate tool of marine gravity data processing. References Davis, K. &Kass, M.A. & Li, Y., 2011. Rapid gravity and gravity gradiometry terrain corrections via an adaptive quadtree mesh discretization, EXPLOR GEOPHYS, 42, 88-97. Sandwell, D.T., Müller, R.D., Smith, W.H., Garcia, E. & Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, SCIENCE, 346, 65-67. Tao, C., Li, H., Jin, X., Zhou, J., Wu, T., He, Y., Deng, X., Gu, C., Zhang, G. & Liu, W., 2014. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge, CHINESE SCI BULL, 59, 2266-2276. Tsoulis, D., 2012. Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals, GEOPHYSICS, 77, F1-F11.
Relation of the lunar volcano complexes lying on the identical linear gravity anomaly
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.
2015-12-01
There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.
Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids
NASA Astrophysics Data System (ADS)
Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.
2017-12-01
Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.
Rosene, J M; Matthews, T D; Mcbride, K J; Galla, A; Haun, M; Mcdonald, K; Gagne, N; Lea, J; Kasen, J; Farias, C
2015-12-01
The purpose of this investigation was to determine the effects of 3 d of creatine supplementation on thermoregulation and isokinetic muscular performance. Fourteen males performed two exercise bouts following 3 d of creatine supplementation and placebo. Subjects exercised for 60 min at 60-65% of VO2max in the heat followed by isokinetic muscular performance at 60, 180, and 300°·s(-1). Dependent variables for pre- and postexercise included nude body weight, urine specific gravity, and serum creatinine levels. Total body water, extracellular water and intracellular water were measured pre-exercise. Core temperature was assessed every 5 min during exercise. Peak torque and Fatigue Index were used to assess isokinetic muscular performance. Core temperature increased during the run for both conditions. Total body water and extracellular water were significantly greater (P<0.05) following creatine supplementation. No significant difference (P>0.05) was found between conditions for intracellular water, nude body weight, urine specific gravity, and serum creatinine. Pre-exercise scores for urine specific gravity and serum creatinine were significantly less (P<0.05) versus post-exercise. No significant differences (P>0.05) were found in peak torque values or Fatigue Index between conditions for each velocity. A significant (P<0.05) overall velocity effect was found for both flexion and extension. As velocity increased, mean peak torque values decreased. Three d of creatine supplementation does not affect thermoregulation during submaximal exercise in the heat and is not enough to elicit an ergogenic effect for isokinetic muscle performance following endurance activity.
Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients
NASA Astrophysics Data System (ADS)
Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin
2016-08-01
In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.
NASA Technical Reports Server (NTRS)
Song, Y. T.
1998-01-01
A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.
Derivation of the Torque Associated to Tesseral Resonances
NASA Astrophysics Data System (ADS)
El Moutamid, Maryame
2018-04-01
A so-called m+1:m Tesseral Resonance is simply equivalent to an inner m+1:m Lindblad Resonance or an outer Lindblad Resonance, where m is an integer. They are generated between a gravity anomaly that rotates with the primary and a test particle evolving around this primary, instead of being caused by a secondary, meaning that in this case the particle and the secondary do not share the same orbit. We show in this work that the torque is stronger for small values of |m|; as |m| tends to infinity, the torque tends to zero and that the Lagrange points are displaced away from the usual triangular configuration. These simple results have interesting implications on Saturn, Chariklo and Mars.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.
1995-01-01
The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.
The Influence of Surface Gravity Waves on Marine Current Turbine Performance
NASA Astrophysics Data System (ADS)
Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.
2013-12-01
Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging
Deformation of a micro-torque swimmer
Ishikawa, Takuji; Tanaka, Tomoyuki; Imai, Yohsuke; Omori, Toshihiro; Matsunaga, Daiki
2016-01-01
The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli. PMID:26997893
Zhang, Yue; Luo, Shijiang; Yang, Xiaofei; Yang, Chang
2017-05-17
In materials with the gradient of magnetic anisotropy, spin-orbit-torque-induced magnetization behaviour has attracted attention because of its intriguing scientific principle and potential application. Most of the magnetization behaviours microscopically originate from magnetic domain wall motion, which can be precisely depicted using the standard cooperative coordinate method (CCM). However, the domain wall motion in materials with the gradient of magnetic anisotropy using the CCM remains lack of investigation. In this paper, by adopting CCM, we established a set of equations to quantitatively depict the spin-orbit-torque-induced motion of domain walls in a Ta/CoFe nanotrack with weak Dzyaloshinskii-Moriya interaction and magnetic anisotropy gradient. The equations were solved numerically, and the solutions are similar to those of a micromagnetic simulation. The results indicate that the enhanced anisotropy along the track acts as a barrier to inhibit the motion of the domain wall. In contrast, the domain wall can be pushed to move in a direction with reduced anisotropy, with the velocity being accelerated by more than twice compared with that for the constant anisotropy case. This substantial velocity manipulation by anisotropy engineering is important in designing novel magnetic information devices with high reading speeds.
NASA Astrophysics Data System (ADS)
Gutknecht, B. D.; Götze, H.-J.; Jahr, T.; Jentzsch, G.; Mahatsente, R.; Zeumann, St.
2014-11-01
It is well known that the quality of gravity modelling of the Earth's lithosphere is heavily dependent on the limited number of available terrestrial gravity data. More recently, however, interest has grown within the geoscientific community to utilise the homogeneously measured satellite gravity and gravity gradient data for lithospheric scale modelling. Here, we present an interdisciplinary approach to determine the state of stress and rate of deformation in the Central Andean subduction system. We employed gravity data from terrestrial, satellite-based and combined sources using multiple methods to constrain stress, strain and gravitational potential energy (GPE). Well-constrained 3D density models, which were partly optimised using the combined regional gravity model IMOSAGA01C (Hosse et al. in Surv Geophys, 2014, this issue), were used as bases for the computation of stress anomalies on the top of the subducting oceanic Nazca plate and GPE relative to the base of the lithosphere. The geometries and physical parameters of the 3D density models were used for the computation of stresses and uplift rates in the dynamic modelling. The stress distributions, as derived from the static and dynamic modelling, reveal distinct positive anomalies of up to 80 MPa along the coastal Jurassic batholith belt. The anomalies correlate well with major seismicity in the shallow parts of the subduction system. Moreover, the pattern of stress distributions in the Andean convergent zone varies both along the north-south and west-east directions, suggesting that the continental fore-arc is highly segmented. Estimates of GPE show that the high Central Andes might be in a state of horizontal deviatoric tension. Models of gravity gradients from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission were used to compute Bouguer-like gradient anomalies at 8 km above sea level. The analysis suggests that data from GOCE add significant value to the interpretation of lithospheric structures, given that the appropriate topographic correction is applied.
NASA Astrophysics Data System (ADS)
Metivier, L.; Greff-Lefftz, M.; Panet, I.; Pajot-Métivier, G.; Caron, L.
2014-12-01
Joint inversion of the observed geoid and seismic velocities has been commonly used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent satellite measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to understand these mantle properties. We use lateral density variations in the Earth's mantle based on slab history or deduced from seismic tomography. The main uncertainties are the relationship between seismic velocity and density -the so-called density/velocity scaling factor- and the variation with depth of the density contrast between the cold slabs and the surrounding mantle, introduced here as a scaling factor with respect to a constant value. The geoid, gravity and gravity gradients at the altitude of the GOCE satellite (about 255 km) are derived using geoid kernels for given viscosity depth profiles. We assume a layered mantle model with viscosity and conversion factor constant in each layer, and we fix the viscosity of the lithosphere. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle which allow to fit the observed geoid, gravity and gradients of gravity. We test a 2-layer, a 3-layer and 4-layer mantle. For each model, we compute the posterior probability distribution of the unknown parameters, and we discuss the respective contributions of the geoid, gravity and gravity gradients in the inversion. Finally, for the best fit, we present the viscosity and scaling factor profiles obtained for the lateral density variations derived from seismic velocities and for slabs sinking into the mantle.
Regional gravity field modelling from GOCE observables
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
Measuring attitude with a gradiometer
NASA Technical Reports Server (NTRS)
Sonnabend, David; Born, George H.
1994-01-01
Static attitude estimation and dynamic attitude estimation are used to describe a gradiometer composed of a number of accelerometers that are used to measure a combination of the local gravity gradient and instrument rotation effects. After a series of measures to isolate the gradient, a global mesh of measurements can be obtained that determine the planetary external gravity potential. Orbital and spacecraft models are developed to determine if, when the gravity potential is known, the same measurements, unsupported by any other information can be used to infer the spacecraft attitude.
Analysis of magnetic gradients to study gravitropism.
Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan
2013-01-01
Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.
Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals
NASA Astrophysics Data System (ADS)
Hals, Kjetil M. D.; Brataas, Arne
2014-02-01
The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.
Intrinsic domain wall flexing from current-induced spin torque
NASA Astrophysics Data System (ADS)
Golovatski, Elizabeth; Flatté, Michael
2012-02-01
Spin torque generated by coherent carrier transport in domain walls [1] is a major component in the development of spintronic devices [2]. We model spin torque in N'eel walls [3] using a piecewise linear transfer-matrix method [4] to calculate spin torque on interior wall segments. For a π wall with a total positive torque (current left-to-right), we find the largest positive and negative spin torques left of the central region, 4-5 orders of magnitude larger than the center. The wall's rightward push comes from the back of the wall; all other significant regions pull to the left. Adding a second wall (both walls with positive total torque) changes the first wall little, but produces spin torques in the second wall with large canceling torques on the left, and the push rightward from a smaller torque on the right. The gradient of torque across the wall generates an intrinsic domain wall flexing (distinct from extrinsic wall flexing from pinning centers [5]). Work supported by an ARO MURI.[4pt] [1] M. Yamanouchi et al., Nature 428, 539 (2004).[0pt] [2] S. Parkin et al., Science 320, 190 (2008)[0pt] [3] G. Vignale and M. Flatt'e, Phys. Rev. Lett. 89, 098302 (2002)[0pt] [4] E. Golovatski and M. Flatt'e, Phys. Rev. B, 84, 115210 (2011)[0pt] [5] A. Balk et al., Phys. Rev. Lett. 107, 077205 (2011).
Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor
Yuan, Junhua; Fahrner, Karen A.; Turner, Linda; Berg, Howard C.
2010-01-01
Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque–speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the “knee speed” after which it falls rapidly to zero. This result is consistent with a “power-stroke” mechanism for torque generation. Here, we measure the torque–speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque–speed relationship might be optimum for the latter purpose we do not know. PMID:20615986
The Structure of a Quasi-Keplerian Accretion Disk around Magnetized Stars
NASA Astrophysics Data System (ADS)
Habumugisha, Isaac; Jurua, Edward; Tessema, Solomon B.; Simon, Anguma K.
2018-06-01
In this paper, we present the complete structure of a quasi-Keplerian thin accretion disk with an internal dynamo around a magnetized neutron star. We assume a full quasi-Keplerian disk with the azimuthal velocity deviating from the Keplerian fashion by a factor of ξ (0 < ξ < 2). In our approach, we vertically integrate the radial component of the momentum equation to obtain the radial pressure gradient equation for a thin quasi-Keplerian accretion disk. Our results show that, at large radial distance, the accretion disk behaves in a Keplerian fashion. However, close to the neutron star, pressure gradient force (PGF) largely modifies the disk structure, resulting into sudden dynamical changes in the accretion disk. The corotation radius is shifted inward (outward) for ξ > 1 (for ξ < 1), and the position of the inner edge with respect to the new corotation radius is also relocated accordingly, as compared to the Keplerian model. The resulting PGF torque couples with viscous torque (when ξ < 1) to provide a spin-down torque and a spin-up torque (when ξ > 1) while in the advective state. Therefore, neglecting the PGF, as has been the case in previous models, is a glaring omission. Our result has the potential to explain the observable dynamic consequences of accretion disks around magnetized neutron stars.
Geodynamics and temporal variations in the gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, D. C.; Wagner, C. A.
1989-01-01
Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.
The Zig-zag Instability of Streamlined Bodies
NASA Astrophysics Data System (ADS)
Guillet, Thibault; Coux, Martin; Quere, David; Clanet, Christophe
2017-11-01
When a floating bluff body, like a sphere, impacts water with a vertical velocity, its trajectory is straight and the depth of its dive increases with its initial velocity. Even though we observe the same phenomenon at low impact speed for axisymmetric streamlined bodies, the trajectory is found to deviate from the vertical when the velocity overcomes a critical value. This instability results from a competition between the destabilizing torque of the lift and the stabilizing torque of the Archimede's force. Balancing these torques yields a prediction on the critical velocity above which the instability appears. This theoretical value is found to depend on the position of the gravity center of the projectile and predicts with a full agreement the behaviour observed in our different experiments. Project funded by DGA.
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
Gravity Anomaly Intersects Moon Basin
2012-12-05
A linear gravity anomaly intersecting the Crisium basin on the nearside of the moon has been revealed by NASA GRAIL mission. The GRAIL gravity gradient data are shown at left, with the location of the anomaly indicated.
Theory of an experiment in an orbiting space laboratory to determine the gravitational constant.
NASA Technical Reports Server (NTRS)
Vinti, J. P.
1972-01-01
An experiment is discussed for determining the gravitational constant with the aid of an isolated system consisting of an artificial satellite moving around an artificial planet. The experiment is to be conducted in a spherical laboratory traveling in an orbit around the earth. Difficulties due to the gravity-gradient term are considered, and the three-tunnel method proposed by Wilk (1969) is examined. The rotation of the sphere is discussed together with aspects of the reference systems used, the equations of motion of the spacecraft and of the test objects, the field from the earth's gravity gradient at the test object, higher harmonic terms in the gravity gradient force, gravitational effects of the spacecraft itself, and a computer simulation.
Ferl, Robert J; Paul, Anna-Lisa
2016-01-01
Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721
Deformable micro torque swimmer
NASA Astrophysics Data System (ADS)
Ishikawa, Takuji; Tanaka, Tomoyuki; Omori, Toshihiro; Imai, Yohsuke
2015-11-01
We investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modeled as a capsule with a hyper elastic membrane enclosing Newtonian fluid. Thrust forces due to the ciliary beat were modeled as torques distributed above the cell body. Effects of the membrane elasticity, the aspect ratio of cell's reference shape and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like heart shape when Capillary number (Ca) was sufficiently large, and the swimming velocity decreased as Ca was increased. The gravity effect on the membrane tension suggested that the upwards and downwards swimming velocities of Paramecium might be reglated by the calcium ion channels distributed locally around the anterior end. Moreover, the gravity induced deformation made a cell directed vertically downwards, which resulted in a positive geotaxis like behavior with physical origin. These results are important to understand physiology of ciliate's biological responses to mechanical stimuli.
Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Kumar, Renjith R.; Qu, Min; Seywald, Hans
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan
2018-01-01
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δO and δP respectively, called the misalignment angles. The angle δO, coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δP would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δP component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δP is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10−7 g/√Hz (1 g ≈ 9.8 m/s2). PMID:29670021
Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Fan, Ji; Hu, Chenyuan; Tu, Liangcheng
2018-04-18
A method for automatic compensation of misalignment angles during matching the scale factors of two pairs of the accelerometers in developing the rotating accelerometer gravity gradient instrument (GGI) is proposed and demonstrated in this paper. The purpose of automatic scale factor matching of the four accelerometers in GGI is to suppress the common mode acceleration of the moving-based platforms. However, taking the full model equation of the accelerometer into consideration, the other two orthogonal axes which is the pendulous axis and the output axis, will also sense the common mode acceleration and reduce the suppression performance. The coefficients from the two axes to the output are δ O and δ P respectively, called the misalignment angles. The angle δ O , coupling with the acceleration along the pendulous axis perpendicular to the rotational plane, will not be modulated by the rotation and gives little contribution to the scale factors matching. On the other hand, because of coupling with the acceleration along the centripetal direction in the rotating plane, the angle δ P would produce a component with 90 degrees phase delay relative to the scale factor component. Hence, the δ P component coincides exactly with the sensitive direction of the orthogonal accelerometers. To improve the common mode acceleration rejection, the misalignment angle δ P is compensated by injecting a trimming current, which is proportional to the output of an orthogonal accelerometer, into the torque coil of the accelerometer during the scale factor matching. The experimental results show that the common linear acceleration suppression achieved three orders after the scale factors balance and five orders after the misalignment angles compensation, which is almost down to the noise level of the used accelerometers of 1~2 × 10 −7 g/√Hz (1 g ≈ 9.8 m/s²).
Hewett, Timothy E; Myer, Gregory D; Zazulak, Bohdanna T
2008-09-01
Our purpose was to determine if females demonstrate decreased hamstrings to quadriceps peak torque (H/Q) ratios compared to males and if H/Q ratios increase with increased isokinetic velocity in both sexes. Maturation disproportionately increases hamstrings peak torque at high velocity in males, but not females. Therefore, we hypothesised that mature females would demonstrate decreased H/Q ratios compared to males and the difference in H/Q ratio between sexes would increase as isokinetic velocity increased. Studies that analysed the H/Q ratio with gravity corrected isokinetic strength testing reported between 1967 and 2004 were included in our review and analysis. Keywords were hamstrings/quadriceps, isokinetics, peak torque and gravity corrected. Medline and Smart databases were searched combined with cross-checked bibliographic reference lists of the publications to determine studies to be included. Twenty-two studies were included with a total of 1568 subjects (1145 male, 423 female). Males demonstrated a significant correlation between H/Q ratio and isokinetic velocity (R=0.634, p<0.0001), and a significant difference in the isokinetic H/Q ratio at the lowest angular velocity (47.8+/-2.2% at 30 degrees /s) compared to the highest velocity (81.4+/-1.1% at 360 degrees /s, p<0.001). In contrast, females did not demonstrate a significant relationship between H/Q ratio and isokinetic velocity (R=0.065, p=0.77) or a change in relative hamstrings strength as the speed increased (49.5+/-8.8% at 30 degrees /s; 51.0+/-5.7% at 360 degrees /s, p=0.84). Gender differences in isokinetic H/Q ratios were not observed at slower angular velocities. However, at high knee flexion/extension angular velocities, approaching those that occur during sports activities, significant gender differences were observed in the H/Q ratio. Females, unlike males, do not increase hamstrings to quadriceps torque ratios at velocities that approach those of functional activities.
A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation
NASA Astrophysics Data System (ADS)
Rieser, Daniel; Mayer-Guerr, Torsten
2014-05-01
The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.
Titan's interior constrained from its obliquity and tidal Love number
NASA Astrophysics Data System (ADS)
Baland, Rose-Marie; Coyette, Alexis; Yseboodt, Marie; Beuthe, Mikael; Van Hoolst, Tim
2016-04-01
In the last few years, the Cassini-Huygens mission to the Saturn system has measured the shape, the obliquity, the static gravity field, and the tidally induced gravity field of Titan. The large values of the obliquity and of the k2 Love number both point to the existence of a global internal ocean below the icy crust. In order to constrain interior models of Titan, we combine the above-mentioned data as follows: (1) we build four-layer density profiles consistent with Titan's bulk properties; (2) we determine the corresponding internal flattening compatible with the observed gravity and topography; (3) we compute the obliquity and tidal Love number for each interior model; (4) we compare these predictions with the observations. Previously, we found that Titan is more differentiated than expected (assuming hydrostatic equilibrium), and that its ocean is dense and less than 100 km thick. Here, we revisit these conclusions using a more complete Cassini state model, including: (1) gravitational and pressure torques due to internal tidal deformations; (2) atmosphere/lakes-surface exchange of angular momentum; (3) inertial torque due to Poincaré flow. We also adopt faster methods to evaluate Love numbers (i.e. the membrane approach) in order to explore a larger parameter space.
Interpretation of Local Gravity Anomalies in Northern New York
NASA Astrophysics Data System (ADS)
Revetta, F. A.
2004-05-01
About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.
NASA Technical Reports Server (NTRS)
Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo
2017-01-01
The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.
Using the full tensor of GOCE gravity gradients for regional gravity field modelling
NASA Astrophysics Data System (ADS)
Lieb, Verena; Bouman, Johannes; Dettmering, Denise; Fuchs, Martin; Schmidt, Michael
2013-04-01
With its 3-axis gradiometer GOCE delivers 3-dimensional (3D) information of the Earth's gravity field. This essential advantage - e.g. compared with the 1D gravity field information from GRACE - can be used for research on the Earth's interior and for geophysical exploration. To benefit from this multidimensional measurement system, the combination of all 6 GOCE gradients and additionally the consistent combination with other gravity observations mean an innovative challenge for regional gravity field modelling. As the individual gravity gradients reflect the gravity field depending on different spatial directions, observation equations are formulated separately for each of these components. In our approach we use spherical localizing base functions to display the gravity field for specified regions. Therefore the series expansions based on Legendre polynomials have to be adopted to obtain mathematical expressions for the second derivatives of the gravitational potential which are observed by GOCE in the Cartesian Gradiometer Reference Frame (GRF). We (1) have to transform the equations from the spherical terrestrial into a Cartesian Local North-Oriented Reference Frame (LNOF), (2) to set up a 3x3 tensor of observation equations and (3) finally to rotate the tensor defined in the terrestrial LNOF into the GRF. Thus we ensure the use of the original non-rotated and unaffected GOCE measurements within the analysis procedure. As output from the synthesis procedure we then obtain the second derivatives of the gravitational potential for all combinations of the xyz Cartesian coordinates in the LNOF. Further the implementation of variance component estimation provides a flexible tool to diversify the influence of the input gradiometer observations. On the one hand the less accurate xy and yz measurements are nearly excluded by estimating large variance components. On the other hand the yy measurements, which show systematic errors increasing at high latitudes, could be manually down-weighted in the corresponding regions. We choose different test areas to compute regional gravity field models at mean GOCE altitudes for different spectral resolutions and varying relative weights for the observations. Further we compare the regional models with the static global GOCO03S model. Especially the flexible handling and combination of the 3D measurements promise a great benefit for geophysical applications from GOCE gravity gradients, as they contain information on radial as well as on lateral gravity changes.
Speed of the bacterial flagellar motor near zero load depends on the number of stator units.
Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M
2017-10-31
The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.
System noise analysis of the dumbbell tethered satellite for gravity-gradient measurements
NASA Technical Reports Server (NTRS)
Colombo, G.
1979-01-01
An analysis of the dumbbell gravity gradiometer concept for measuring short wavelength variations in the earth's gravity gradient is presented. Variations in the gradient are recorded by measuring tension variations in a vertically stabilized satellite consisting of heavy masses connected by a long wire or rod. Tension noise arises from the excitation of various mechanical oscillations of the system. The principal noise sources that were identified are fluctuations in atmospheric drag heating and drag force resulting from density variations and winds. Approximate analytical expressions are presented for the tension noise as a function of the system design parameters for various possible configurations. Computer simulations using numerical integration were performed to study the tension noise for several sample cases. Three designs consistent with Shuttle launch capabilities are discussed.
Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Walden, H.
1973-01-01
A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.
Gravity and the geoid in the Nepal Himalaya
NASA Technical Reports Server (NTRS)
Bilham, Roger
1992-01-01
Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. The process of uplift of materials within the Himalaya coupled with surface erosion is similar to the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the erosion rate which is invisible to geodetic measurements. Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya. These typically underestimate the real erosion rate since bed-load is not measured during times of heavy flood, and it is difficult to integrate widely varying suspended load measurements over many years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. If a control point moves vertically it should be accompanied by a reduction in gravity as the point moves away from the Earth's center of mass. There is a difference in the change of gravity between uplift with and without erosion corresponding to the difference between the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding thickness of rock. Essentially gravity should change precisely in accord with a change in elevation of the point in a free-air gradient if erosion equals uplift rate. We were funded by NASA to undertake a measurement of absolute gravity simultaneously with measurements of GPS height within the Himalaya. Since both absolute gravity and time are known in an absolute sense to 1 part in 10(exp 10) it is possible to estimate gravity with a precision of 0.1 mu gal. Known systematic errors reduce the measurement to an absolute uncertainty of 6 mu gal. The free air gradient at the point of measurement is typically about 3 mu gals/cm. At Simikot where our experiment was conducted we determined a vertical gravity gradient of 4.4 mu gals/cm.
Gyroscopic Motion: Show Me the Forces!
ERIC Educational Resources Information Center
Kaplan, Harvey; Hirsch, Andrew
2014-01-01
Gyroscopes are frequently used in physics lecture demonstrations and in laboratory activities to teach students about rotational dynamics, namely, angular momentum and torque. Use of these powerful concepts makes it difficult for students to fully comprehend the mechanism that keeps the gyroscope from falling under the force of gravity. The…
Using absolute gravimeter data to determine vertical gravity gradients
Robertson, D.S.
2001-01-01
The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.
Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress.
Muratov, Alexander; Baulin, Vladimir A
2015-12-01
Directional growth caused by gravitropism and corresponding bending of plant cells has been explored since 19th century, however, many aspects of mechanisms underlying the perception of gravity at the molecular level are still not well known. Perception of gravity in root and shoot gravitropisms is usually attributed to gravisensitive cells, called statocytes, which exploit sedimentation of macroscopic and heavy organelles, amyloplasts, to sense the direction of gravity. Gravity stimulus is then transduced into distal elongation zone, which is several mm far from statocytes, where it causes stretching. It is suggested that gravity stimulus is conveyed by gradients in auxin flux. We propose a theoretical model that may explain how concentration gradients and/or stretching may indirectly affect the global orientation of cortical microtubules, attached to the cell membrane and induce their dynamic reorientation perpendicular to the gradients. In turn, oriented microtubule arrays direct the growth and orientation of cellulose microfibrils, forming part of the cell external skeleton and determine the shape of the cell. Reorientation of microtubules is also observed in reaction to light in phototropism and mechanical bending, thus suggesting universality of the proposed mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.
Horizontal gravity gradient - An aid to the definition of crustal structure in North America
NASA Technical Reports Server (NTRS)
Sharpton, V. L.; Grieve, R. A. F.; Thomas, M. D.; Halpenny, J. F.
1987-01-01
A map of the magnitude of the horizontal Bouguer gravity gradient over the North American continent is used to delineate lateral discontinuities in upper crustal density and/or thickness associated with such processes as suturing and rifting. The usefulness of gradient trends in mapping major structural boundaries, which are sometimes poorly exposed or completely buried, is demonstrated by examples such as the buried southward extension of the Grenville Front and buried boundaries of the Superior Province. Gradient trends also draw attention to poorly known structures, which may have major tectonic significance, and to a continent-wide structural fabric, which may provide a record of the tectonic growth of the North American continent.
Kass, M. Andy
2013-01-01
Line spacing and flight height are critical parameters in airborne gravity gradient surveys; the optimal trade-off between survey costs and desired resolution, however, is different for every situation. This article investigates the additional benefit of reducing the flight height and line spacing though a study of a survey conducted over the Great Sand Dunes National Park and Preserve, which is the highest-resolution public-domain airborne gravity gradient data set available, with overlapping high- and lower-resolution surveys. By using Fourier analysis and matched filtering, it is shown that while the lower-resolution survey delineates the target body, reducing the flight height from 80 m to 40 m and the line spacing from 100 m to 50 m improves the recoverable resolution even at basement depths.
Langenheim, Victoria; Oaks, R.Q.; Willis, H.; Hiscock, A.I.; Chuchel, Bruce A.; Rosario, Jose J.; Hardwick, C.L.
2014-01-01
A new isostatic residual gravity map of the Tremonton 30' x 60' quadrangle of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over North Bay, northwest of Brigham City, and Malad and Blue Creek Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Promontory, Clarkston, and Wellsville Mountains. The highest gravity values are located in southern Curlew Valley and may be produced in part by deeper crustal density variations or crustal thinning. Steep, linear gravity gradients coincide with Quaternary faults bounding the Wellsville and Clarkston Mountains. Steep gradients also coincide with the margins of the Promontory Mountains, Little Mountain, West Hills, and the eastern margin of the North Promontory Mountains and may define concealed basin-bounding faults.
Deployment and Intelligent Nanosatellite Operations Colorado Final Technical Report
2006-09-28
environmental factors will cause disturbance torques during orbit around the Earth . These factors are solar radiation pressure from the sun , aerodynamic...software. The 3- axis sensing of the magnetometer allows a vector the B- field of the Earth to be sensed. Geopack 2003 then can be utilized with the orbit ...gradient torque can be represented as the following: g, ; 3wo21 Eq. 2-11 where ow is the angular velocity of the spacecraft as it orbits the earth . DINO’s
Disk in a groove with friction: An analysis of static equilibrium and indeterminacy
NASA Astrophysics Data System (ADS)
Donolato, Cesare
2018-05-01
This note studies the statics of a rigid disk placed in a V-shaped groove with frictional walls and subjected to gravity and a torque. The two-dimensional equilibrium problem is formulated in terms of the angles that contact forces form with the normal to the walls. This approach leads to a single trigonometric equation in two variables whose domain is determined by Coulomb's law of friction. The properties of solutions (existence, uniqueness, or indeterminacy) as functions of groove angle, friction coefficient and applied torque are derived by a simple geometric representation. The results modify some of the conclusions by other authors on the same problem.
NASA Astrophysics Data System (ADS)
Douch, Karim; Panet, Isabelle; Foulon, Bernard; Christophe, Bruno; Pajot-Métivier, Gwendoline; Diament, Michel
2014-05-01
Satellite missions such as CHAMP, GRACE and GOCE have led to an unprecedented improvement of global gravity field models during the past decade. However, for many applications these global models are not sufficiently accurate when dealing with wavelengths shorter than 100 km. This is all the more true in areas where gravity data are scarce and uneven as for instance in the poorly covered land-sea transition area. We suggest here, in line with spatial gravity gradiometry, airborne gravity gradiometry as a convenient way to amplify the sensitivity to short wavelengths and to cover homogeneously coastal region. Moreover, the directionality of the gravity gradients gives new information on the geometry of the gravity field and therefore of the causative bodies. In this respect, we analyze here the performances of a new airborne electrostatic acceleration gradiometer, GREMLIT, which permits along with ancillary measurements to determine the horizontal gradients of the horizontal components of the gravitational field in the instrumental frame. GREMLIT is composed of a compact assembly of 4 planar electrostatic accelerometers inheriting from technologies developed by ONERA for spatial accelerometers. After an overview of the functionals of the gravity field that are of interest for coastal oceanography, passive navigation and hydrocarbon exploration, we present the corresponding required precision and resolution. Then, we investigate the influence of the different parameters of the survey, such as altitude or cross-track distance, on the resolution and precision of the final measurements. To do so, we design numerical simulations of airborne survey performed with GREMLIT and compute the total error budget on the gravity gradients. Based on this error analysis, we infer by a method of error propagation the uncertainty on the different functionals of the gravity potential used for each application. This finally enables us to conclude on the requirements for a high resolution mapping of the gravity field in coastal areas.
NASA Technical Reports Server (NTRS)
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
Dynamics of a gravity-gradient stabilized flexible spacecraft
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Juang, J. N.
1974-01-01
The dynamics of gravity-gradient stabilized flexible satellite in the neighborhood of a deformed equilibrium configuration are discussed. First the equilibrium configuration was determined by solving a set of nonlinear differential equations. Then stability of motion about the deformed equilibrium was tested by means of the Liapunov direct method. The natural frequencies of oscillation of the complete structure were calculated. The analysis is applicable to the RAE/B satellite.
Bubble behavior in molten glass in a temperature gradient. [in reduced gravity rocket experiment
NASA Technical Reports Server (NTRS)
Meyyappan, M.; Subramanian, R. S.; Wilcox, W. R.; Smith, H.
1982-01-01
Gas bubble motion in a temperature gradient was observed in a sodium borate melt in a reduced gravity rocket experiment under the NASA SPAR program. Large bubbles tended to move faster than smaller ones, as predicted by theory. When the bubbles contacted a heated platinum strip, motion virtually ceased because the melt only imperfectly wets platinum. In some cases bubble diameter increased noticeably with time.
Torques Induced by Scattered Pebble-flow in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Pessah, Martin E.
2018-03-01
Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1997-01-01
The expanded equations for torque and force on a cylindrical permanent magnet core in a large-gap magnetic suspension system are presented. The core is assumed to be uniformly magnetized, and equations are developed for two orientations of the magnetization vector. One orientation is parallel to the axis of symmetry, and the other is perpendicular to this axis. Fields and gradients produced by suspension system electromagnets are assumed to be calculated at a point in inertial space which coincides with the origin of the core axis system in its initial alignment. Fields at a given point in the core are defined by expanding the fields produced at the origin as a Taylor series. The assumption is made that the fields can be adequately defined by expansion up to second-order terms. Examination of the expanded equations for the case where the magnetization vector is perpendicular to the axis of symmetry reveals that some of the second-order gradient terms provide a method of generating torque about the axis of magnetization and therefore provide the ability to produce six-degree-of-freedom control.
NASA Astrophysics Data System (ADS)
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.
NASA Astrophysics Data System (ADS)
Rahimi, A.; Shahrisvand, M.
2017-09-01
GRACE satellites (the Gravity Recovery And climate Experiment) are very useful sensors to extract gravity anomalies after earthquakes. In this study, we reveal co-seismic signals of the two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore, co-seismic activity can be better illustrated. For the first time, we show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from - 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from - 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.
Mechanics of torque generation in the bacterial flagellar motor.
Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George
2015-08-11
The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.
Using gravity as a proxy for stress accumulation in complex fault systems
NASA Astrophysics Data System (ADS)
Hayes, Tyler Joseph
The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction
Perimeter Security and Intruder Detection Using Gravity Gradiometry: A Feasibility Study
2011-03-24
design, build, and operate, and it is usually not feasible to integrate new technology into an already existing system. So far, however, the...gravitational gradients is not a new concept and has been applied across a variety of industries. The first device for gravity gradient measurement was the...which generates a new simulated GGI reading. The program loops for a set number of iterations, and then ends by calculating algorithm performance
Momentum flux measurements: Techniques and needs, part 4.5A
NASA Technical Reports Server (NTRS)
Fritts, D. C.
1984-01-01
The vertical flux of horizontal momentum by internal gravity waves is now recognized to play a significant role in the large-scale circulation and thermal structure of the middle atmosphere. This is because a divergence of momentum flux due to wave dissipation results in an acceleration of the local mean flow towards the phase speed of the gravity wave. Such mean flow acceleration are required to offset the large zonal accelerations driven by Coriolis torques acting on the diabatic meridional circulation. Techniques and observations regarding the momentum flux distribution in the middle atmosphere are discussed.
NASA Astrophysics Data System (ADS)
Stapley, Paul; Pozzo, Thierry
In normal gravity conditions the execution of voluntary movement involves the displacement of body segments as well as the maintenance of a stable reference value for equilibrium control. It has been suggested that centre of mass (CM) projection within the supporting base (BS) is the stabilised reference for voluntary action, and is conserved in weightlessness. The purpose of this study was to determine if the CM is stabilised during whole body reaching movements executed in weightlessness. The reaching task was conducted by two cosmonauts aboard the Russian orbital station MIR, during the Franco-Russian mission ALTAIR, 1993. Movements of reflective markers were recorded using a videocamera, successive images being reconstructed by computer every 40ms. The position of the CM, ankle joint torques and shank and thigh angles were computed for each subject pre- in- and post-flight using a 7-link mathematical model. Results showed that both cosmonauts adopted a backward leaning posture prior to reaching movements. Inflight, the CM was displaced throughout values in the horizontal axis three times those of pre-flight measures. In addition, ankle dorsi flexor torques inflight increased to values double those of pre- and post-flight tests. This study concluded that CM displacements do not remain stable during complex postural equilibrium tasks executed in weightlessness. Furthermore, in the absence of gravity, subjects changed their strategy for producing ankle torque during spaceflight from a forward to a backward leaning posture.
Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Veverka, J.
1976-01-01
The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.
Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.
Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya
2017-01-01
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339
A simple Bouguer gravity anomaly map of southwestern Saudi Arabia and an initial interpretation
Gettings, M.E.
1983-01-01
Approximately 2,200 gravity stations on a 10-km2 grid were used to construct a simple Bouguer gravity anomaly map at 1:2,000,000 scale along a 150-km-wide by 850-km-long strip of the Arabian Peninsula from Sanam, southwest of Ar Riyad, through the Farasan Islands and including offshore islands, the coastal plain, and the Hijaz-Asir escarpment from Jiddah to the Yemen border. On the Precambrian Arabian Shield, local positive gravity anomalies are associated with greenstone belts, gneiss domes, and the Najd fault zones. Local negative gravity anomalies correlate with granitic plutonic rocks. A steep gravity gradient of as much as 4 mgal-km-1 marks the continental margin on the coastal plain near the southwestern end of the strip. Bouguer gravity anomaly values range from -10 to +40 mgal southwest of this gradient and from -170 to -100 mgal in a 300-km-wide gravity minimum northeast of the gradient. Farther northeast, the minimum is terminated by a regional gradient of about 0.1 mgal-km-1 that increases toward the Arabian Gulf. The regional gravity anomaly pattern has been modeled by using seismic refraction and Raleigh wave studies, heat-flow measurements, and isostatic considerations as constraints. The model is consistent with the hypothesis of upwelling of hot mantle material beneath the Red Sea and lateral mantle flow beneath the Arabian plate. The model yields best-fitting average crustal densities of 2.80 g-cm-3 (0-20 km depth) and 3.00 g-cm-3 (20-40 km depth) southwest of the Nabitah suture zone and 2.74 g-cm-3 (0-20 km depth) and 2.94 g-cm-3 (20-40 km depth) northeast of the suture zone. The gravity model requires that the crust be about 20 km thick at the continental margin and that the lower crust between the margin and Bishah (lat 20? N., long 42.5? E.) be somewhat denser than the lower crust to the northeast. Detailed correlations between 1:250,000- and 1:500,000-scale geologic maps and the gravity anomaly map suggest that the greenstone belts associated with gravity highs contain a large proportion of gabbroic and dioritic intrusive rocks and that the bulk density of the upper crust associated with some of the batholithic complexes has been lowered by the large-scale intrusion of granitic material at depth, as well as by that exposed at the surface. A comparison of known base and precious metals occurrences with the Bouguer gravity anomaly field shows, in some cases, a correlation between such occurrences and the features of the gravity anomaly map. Several areas were identified between known mineral occurrences along gravity-defined structures that may contain mineral deposits if the lithologic environment is favorable.
Thermally driven magnetic precession in spin valves
NASA Astrophysics Data System (ADS)
Luc, David; Waintal, Xavier
2014-10-01
We investigate the angular dependence of the spin torque generated when applying a temperature difference across a spin valve. Our study shows the presence of a nontrivial fixed point in this angular dependence. This fixed point opens the possibility for a temperature gradient to stabilize radio frequency oscillations without the need for an external magnetic field. This so-called "wavy" behavior can already be found upon applying a voltage difference across a spin valve but we find that this effect is much more pronounced with a temperature difference. We find that a spin asymmetry of the Seebeck coefficient of the order of 20 μ VK -1 should be large enough for a temperature gradient of a few degrees to trigger the radio-frequency oscillations. Our semiclassical theory is fully parametrized with experimentally measured(able) parameters and allows one to quantitatively predict the amplitude of the torque.
Brownian motion and entropic torque driven motion of domain walls in antiferromagnets
NASA Astrophysics Data System (ADS)
Yan, Zhengren; Chen, Zhiyuan; Qin, Minghui; Lu, Xubing; Gao, Xingsen; Liu, Junming
2018-02-01
We study the spin dynamics in antiferromagnetic nanowire under an applied temperature gradient using micromagnetic simulations on a classical spin model with a uniaxial anisotropy. The entropic torque driven domain-wall motion and the Brownian motion are discussed in detail, and their competition determines the antiferromagnetic wall motion towards the hotter or colder region. Furthermore, the spin dynamics in an antiferromagnet can be well tuned by the anisotropy and the temperature gradient. Thus, this paper not only strengthens the main conclusions obtained in earlier works [Kim et al., Phys. Rev. B 92, 020402(R) (2015), 10.1103/PhysRevB.92.020402; Selzer et al., Phys. Rev. Lett. 117, 107201 (2016), 10.1103/PhysRevLett.117.107201], but more importantly gives the concrete conditions under which these conclusions apply, respectively. Our results may provide useful information on the antiferromagnetic spintronics for future experiments and storage device design.
Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.
Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H
2011-02-25
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society
Cooper, S E; Martin, J H; Ghez, C
2000-10-01
We previously showed that inactivating the anterior interpositus nucleus in cats disrupts prehension; paw paths, normally straight and accurate, become curved, hypometric, and more variable. In the present study, we determined the joint kinematic and dynamic origins of this impairment. Animals were restrained in a hammock and trained to reach and grasp a cube of meat from a narrow food well at varied heights; movements were monitored using the MacReflex analysis system. The anterior interpositus nucleus was inactivated by microinjection of the GABA agonist muscimol (0.25-0.5 microgram in 0.5 microliter saline). For each joint, we computed the torque due to gravity, inertial resistance (termed self torque), interjoint interactions (termed interaction torque), and the combined effects of active muscle contraction and passive soft tissue stretch (termed generalized muscle torque). Inactivation produced significant reductions in the amplitude, velocity, and acceleration of elbow flexion. However, these movements continued to scale normally with target height. Shoulder extension was reduced by inactivation but wrist angular displacement and velocity were not. Inactivation also produced changes in the temporal coordination between elbow, shoulder, and wrist kinematics. Dynamic analysis showed that elbow flexion both before and during inactivation was produced by the combined action of muscle and interaction torque, but that the timing depended on muscle torque. Elbow interaction and muscle torques were scaled to target height both before and during inactivation. Inactivation produced significant reductions in elbow flexor interaction and muscle torques. The duration of elbow flexor muscle torque was prolonged to compensate for the reduction in flexor interaction torque. Shoulder extension was produced by extensor interaction and muscle torques both before and during inactivation. Inactivation produced a reduction in shoulder extension, primarily by reduced interaction torque, but without compensation. Wrist plantarflexion, which occurred during elbow flexion, was driven by plantarflexor interaction and gravitational torques both before and during inactivation. Muscle torque acted in the opposite direction with a phase lead to restrain the plantarflexor interaction torque. During inactivation, there was a reduction in plantarflexor interaction torque and a loss of the phase lead of the muscle torque. Our findings implicate the C1/C3 anterior interpositus zone of the cerebellum in the anticipatory control of intersegmental dynamics during reaching, which zone is required for coordinating the motions of the shoulder and wrist with those of the elbow. In contrast, this cerebellar zone does not play a role in scaling the movement to match a target.
Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion
NASA Technical Reports Server (NTRS)
Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.
2015-01-01
Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
NASA Technical Reports Server (NTRS)
Wang, Y. M.
1989-01-01
The formulas for the determination of the coefficients of the spherical harmonic expansion of the disturbing potential of the earth are defined for data given on a sphere. In order to determine the spherical harmonic coefficients, the gravity anomalies have to be analytically downward continued from the earth's surface to a sphere-at least to the ellipsoid. The goal is to continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent elevation models. The basic method for the downward continuation is the gradient solution (the g sub 1 term). The terrain correction was also computed because of the role it can play as a correction term when calculating harmonic coefficients from surface gravity data. The fast Fourier transformation was applied to the computations.
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
Principal facts for gravity stations in the vicinity of San Bernardino, Southern California
Anderson, Megan L.; Roberts, Carter W.; Jachens, Robert C.
2000-01-01
New gravity measurements in the vicinity of San Bernardino, California were collected to help define the characteristics of the Rialto-Colton fault. The data were processed using standard reduction formulas and parameters. Rock properties such as lithology, magnetic susceptibility and density also were measured at several locations. Rock property measurements will be helpful for future modeling and density inversion calculations from the gravity data. On both the Bouguer and isostatic gravity maps, a prominent, 13-km long (8 mi), approximately 1-km (0.62 mi) wide gradient with an amplitude of 7 mGal, down to the northeast, is interpreted as the gravity expression of the Rialto-Colton fault. The gravity gradient strikes in a northwest direction and runs from the San Jacinto fault zone at its south end to San Sevine Canyon at the foot of the San Gabriel mountains at its north end. The Rialto-Colton fault has experienced both right-lateral strike-slip and normal fault motion that has offset basement rocks; therefore it is interpreted as a major, through-going fault.
Kinematic functions for redundancy resolution using configuration control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor)
1994-01-01
The invention fulfills new goals for redundancy resolution based on manipulator dynamics and end-effector characteristics. These goals are accomplished by employing the recently developed configuration control approach. Redundancy resolution is achieved by controlling the joint inertia matrix of the end-effector mass matrix that affect the inertial torques or by reducing the joint torques due to gravity loading and payload. The manipulator mechanical-advantage and velocity-ratio are also used as performance measures to be improved by proper utilization of redundancy. Furthermore, end-effector compliance, sensitivity, and impulsive force at impact are introduced as redundancy resolution criteria. The new goals for redundancy resolution allow a more efficient utilization of the redundant joints based on the desired task requirements.
The effect of tidal forces on the minimum energy configurations of the full three-body problem
NASA Astrophysics Data System (ADS)
Levine, Edward
We investigate the evolution of minimum energy configurations for the Full Three Body Problem (3BP). A stable ternary asteroid system will gradually become unstable due to the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect and an unpredictable trajectory will ensue. Through the interaction of tidal torques, energy in the system will dissipate in the form of heat until a stable minimum energy configuration is reached. We present a simulation that describes the dynamical evolution of three bodies under the mutual effects of gravity and tidal torques. Simulations show that bodies do not get stuck in local minima and transition to the predicted minimum energy configuration.
Lightweight Monorail Transport System
NASA Technical Reports Server (NTRS)
Weir, Harold F.; Wood, Kenneth E.; Strecker, Myron T.
1987-01-01
Report proposes monorail transportation system for zero-gravity environment. System carries materials and parts between locations on space station. Includes tubular rails instead of open channels usually found in overhead conveyor systems. Since resistance to torque of closed tube greater than that of open channel for same amount of material, tubular monorail designed for higher loads or for greater spacing between support points.
ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masset, F. S.; Casoli, J., E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f
2009-09-20
We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient,more » and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.« less
Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda
NASA Astrophysics Data System (ADS)
Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim
2018-03-01
A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.
Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients
NASA Astrophysics Data System (ADS)
Yu, Mingbiao; Cai, Tijing
2018-05-01
The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.
Pinhole/coronograph pointing control system integration and noise reduction analysis
NASA Technical Reports Server (NTRS)
Greene, M.
1981-01-01
The Pinhole Occulter Facility (P/OF) is a Space Shuttle based experiment for the production of solar coronographics and hard X-ray images. The system is basically pinhole camera utilizing a deployable 50-m flexible boom for separating the pinholes and coronograph shields from the recording devices located in the Shuttle bay. At the distal end of the boom from the Shuttle is a 25 kg mask containing pinholes and coronograph shields. At the proximal end the detectors are located and mounted, along with the deployable boom, to the ASPS gimbal pointing system (AGS). The mask must be pointed at the Sun with a high degree of pointing stability and accuracy to align the axes of the detectors with the pinholes and shields. Failure to do so will result in a blurring of the images on the detectors and a loss of resolution. Being a Shuttle based experiment, the system will be subjected to the disturbances of the Shuttle. The worst of these is thruster firing for orbit correction; the Shuttle uses a bang-bang thruster control system to maintain orbit to within preset limits. Other disturbances include man motion, motion induced by other systems, and gravity gradient torques.
Integrated propulsion for near-Earth space missions. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.
1981-01-01
Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.
Pinhole/coronograph pointing control system integration and noise reduction analysis
NASA Astrophysics Data System (ADS)
Greene, M.
1981-09-01
The Pinhole Occulter Facility (P/OF) is a Space Shuttle based experiment for the production of solar coronographics and hard X-ray images. The system is basically pinhole camera utilizing a deployable 50-m flexible boom for separating the pinholes and coronograph shields from the recording devices located in the Shuttle bay. At the distal end of the boom from the Shuttle is a 25 kg mask containing pinholes and coronograph shields. At the proximal end the detectors are located and mounted, along with the deployable boom, to the ASPS gimbal pointing system (AGS). The mask must be pointed at the Sun with a high degree of pointing stability and accuracy to align the axes of the detectors with the pinholes and shields. Failure to do so will result in a blurring of the images on the detectors and a loss of resolution. Being a Shuttle based experiment, the system will be subjected to the disturbances of the Shuttle. The worst of these is thruster firing for orbit correction; the Shuttle uses a bang-bang thruster control system to maintain orbit to within preset limits. Other disturbances include man motion, motion induced by other systems, and gravity gradient torques.
Complex physiological and molecular processes underlying root gravitropism
NASA Technical Reports Server (NTRS)
Chen, Rujin; Guan, Changhui; Boonsirichai, Kanokporn; Masson, Patrick H.
2002-01-01
Gravitropism allows plant organs to guide their growth in relation to the gravity vector. For most roots, this response to gravity allows downward growth into soil where water and nutrients are available for plant growth and development. The primary site for gravity sensing in roots includes the root cap and appears to involve the sedimentation of amyloplasts within the columella cells. This process triggers a signal transduction pathway that promotes both an acidification of the wall around the columella cells, an alkalinization of the columella cytoplasm, and the development of a lateral polarity across the root cap that allows for the establishment of a lateral auxin gradient. This gradient is then transmitted to the elongation zones where it triggers a differential cellular elongation on opposite flanks of the central elongation zone, responsible for part of the gravitropic curvature. Recent findings also suggest the involvement of a secondary site/mechanism of gravity sensing for gravitropism in roots, and the possibility that the early phases of graviresponse, which involve differential elongation on opposite flanks of the distal elongation zone, might be independent of this auxin gradient. This review discusses our current understanding of the molecular and physiological mechanisms underlying these various phases of the gravitropic response in roots.
Response of Materials Subjected to Magnetic Fields
2011-08-31
is a superconducting Helmholtz coil capable of operating at up to 6 Tesla. Access to the high magnetic field at the center of the magnet is by...conducting sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at low velocity (under the influence of gravity for 1 meter). Area...sphere moves through the magnetic field gradient (0 to 4 Tesla over ~20cm) at high velocity (under the influence of gravity for 1 meter). Figure 8
He, Li; Li, Huan; Li, Mo
2016-09-01
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.
He, Li; Li, Huan; Li, Mo
2016-01-01
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon’s polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry. PMID:27626072
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shi-Zeng
We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumbaugh, William D.; Cook, Kenneth L.
During the summers of 1975 and 1976, a gravity survey was conducted in the Cove Fort - Sulphurdale KGRA and north Mineral Mountains area, Millard and Beaver counties, Utah. The survey consisted of 671 gravity stations covering an area of about 1300 km{sup 2}, and included two orthogonal gravity profiles traversing the area. The gravity data are presented as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 1 mgal and as an isometric three-dimensional gravity anomaly surface. Selected anomaly separation techniques were applied to the hand-digitized gravity data (at 1-km intervals on the Universal Transverse Mercator grid)more » in both the frequency and space domains, including Fourier decomposition, second vertical derivative, strike-filter, and polynomial fitting analysis, respectively. Residual gravity gradients of 0.5 to 8.0 mgal/km across north-trending gravity contours observed through the Cove Fort area, the Sulphurdale area, and the areas east of the East Mineral Mountains, along the west flanks of the Tushar Mountains, and on both the east and west flanks of the north Mineral Mountains, were attributed to north-trending Basin and Range high-angle faults. Gravity highs exist over the community of Black Rock area, the north Mineral Mountains, the Paleozoic outcrops in the east Cove Creek-Dog Valley-White Sage Flats areas, the sedimentary thrust zone of the southern Payant Range, and the East Mineral Mountains. The gravity lows over north Milford Valley, southern Black Rock Desert, Cunningham Wash, and northern Beaver Valley are separated from the above gravity highs by steep gravity gradients attributed to a combination of crustal warping and faulting. A gravity low with a closure of 2 mgal corresponds with Sulphur Cove, a circular topographic features containing sulphur deposits.« less
Ring faults and ring dikes around the Orientale basin on the Moon.
Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T
2018-08-01
The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.
NASA Technical Reports Server (NTRS)
Masson, P. H.
1995-01-01
When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.
Gravity domains and assembly of the North American continent by collisional tectonics
NASA Technical Reports Server (NTRS)
Thomas, M. D.; Grieve, R. A. F.; Sharpton, V. L.
1988-01-01
A gravity trend map of North America, based on a horizontal Bouguer gravity gradient map produced from gravity data for Canada and the conterminous United States, is presented and used to define a continental mosaic of gravity trend domains akin to structural domains. Contrasting trend characteristics at gravity domain boundaries support the concept of outward growth of the continent primarily by accretionary tectonics. Gravity patterns, however, indicate a different style of tectonics dominated in the development of now-buried Proterozoic orogenic belts in the south-central United States, supporting a view that these belts formed along the leading edge of a southward-migrating Proterozoic continental margin.
Scheirer, Daniel S.; Andreasen, Arne Dossing
2008-01-01
In March 2008, we collected gravity data along 12 traverses across newly-mapped faults in the Moapa Valley region of Clark County, Nevada. In areas crossed by these faults, the traverses provide better definition of the gravity field and, thus, the density structure, than prior gravity observations. Access problems prohibited complete gravity coverage along all of the planned gravity traverses, and we added and adjusted the locations of traverses to maximize our data collection. Most of the traverses exhibit isostatic gravity anomalies that have gradients characteristic of exposed or buried faults, including several of the newly-mapped faults.
Tests of the Weak Equivalence Principal Below Fifty Microns
NASA Astrophysics Data System (ADS)
Leopardi, Holly; Hoyle, C. D.; Smith, Dave; Cardenas, Crystal; Harter, Andrew Conrad
2014-03-01
Due to the incompatibility of the Standard Model and General Relativity, tests of gravity remain at the forefront of experimental physics research. The Weak Equivalence Principle (WEP), which states that in a uniform gravitational field all objects fall with the same acceleration regardless of composition, total mass, or structure, is fundamentally the result of the equality of inertial mass and gravitational mass. The WEP has been effectively studied since the time of Galileo, and is a central feature of General Relativity; its violation at any length scale would bring into question fundamental aspects of the current model of gravitational physics. A variety of scenarios predict possible mechanisms that could result in a violation of the WEP. The Humboldt State University Gravitational Physics Laboratory is using a torsion pendulum with equal masses of different materials (a ``composition dipole'' configuration) to determine whether the WEP holds below the 50-micron distance scale. The experiment will measure the twist of a torsion pendulum as an attractor mass is oscillated nearby in a parallel-plate configuration, providing a time varying torque on the pendulum. The size and distance dependence of the torque variation will provide means to determine deviations from accepted models of gravity on untested distance scales. P.I.
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Mahaffey, D. W.; Levkulich, N. C.; Senkov, O. N.
2017-11-01
The radial temperature gradient developed via direct-resistance heating of round-bar hot-torsion specimens in a Gleeble® machine and its effect on the interpretation of plastic-flow behavior were established using a suite of experimental, analytical, and numerical-simulation tools. Observations of the microstructure variation developed within a γ'-strengthened nickel-base superalloy were used to infer the temperature gradient as well as differences between the temperature at the outer diameter and that indicated by thermocouples welded to the surface. At temperatures of the order of 1375 K (1102 °C), the radial variation of temperature was typically 20 K ( 20 °C). Such variations were in agreement with an analytical heat-conduction model based on the balance of input thermal energy and radiation heat loss at the free surface. Using a constitutive model for LSHR, the effect of the radial temperature gradient on plastic flow during hot torsion was assessed via numerical integration of the torque as a function of radial position for such cases as well as that corresponding to a uniformly-heated sample. These calculations revealed that the torque generated in the non-uniform case is almost identical to that developed in a sample uniformly preheated to a temperature corresponding to that experienced at a fractional radial location of 0.8 in the former case.
Hybrid gravity survey to search for submarine ore deposit
NASA Astrophysics Data System (ADS)
Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.
2011-12-01
Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.
Mechanics of torque generation in the bacterial flagellar motor
Mandadapu, Kranthi K.; Nirody, Jasmine A.; Berry, Richard M.; Oster, George
2015-01-01
The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual “power stroke.” Specifically, we propose that ion-induced conformational changes about a proline “hinge” residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque–speed and speed–ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator. PMID:26216959
Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela
2010-08-19
The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.
A new model to compute the desired steering torque for steer-by-wire vehicles and driving simulators
NASA Astrophysics Data System (ADS)
Fankem, Steve; Müller, Steffen
2014-05-01
This paper deals with the control of the hand wheel actuator in steer-by-wire (SbW) vehicles and driving simulators (DSs). A novel model for the computation of the desired steering torque is presented. The introduced steering torque computation does not only aim to generate a realistic steering feel, which means that the driver should not miss the basic steering functionality of a modern conventional steering system such as an electric power steering (EPS) or hydraulic power steering (HPS), and this in every driving situation. In addition, the modular structure of the steering torque computation combined with suitably selected tuning parameters has the objective to offer a high degree of customisability of the steering feel and thus to provide each driver with his preferred steering feel in a very intuitive manner. The task and the tuning of each module are firstly described. Then, the steering torque computation is parameterised such that the steering feel of a series EPS system is reproduced. For this purpose, experiments are conducted in a hardware-in-the-loop environment where a test EPS is mounted on a steering test bench coupled with a vehicle simulator and parameter identification techniques are applied. Subsequently, how appropriate the steering torque computation mimics the test EPS system is objectively evaluated with respect to criteria concerning the steering torque level and gradient, the feedback behaviour and the steering return ability. Finally, the intuitive tuning of the modular steering torque computation is demonstrated for deriving a sportier steering feel configuration.
Progress towards a space-borne quantum gravity gradiometer
NASA Technical Reports Server (NTRS)
Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute
2004-01-01
Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.
Langenheim, V.E.; Jachens, Robert C.; Morin, Robert L.; McCabe, Craig A.
2007-01-01
The Lake Pillsbury region is transected by the Bartlett Springs Fault zone, one of the main strike-slip faults of the San Andreas system north of San Francisco Bay, California. Gravity and magnetic data were collected to help characterize the geometry and offset of the fault zone as well as determine the geometry of the Gravelly Valley pull-apart basin and Potter Valley, an alluvial intermontane basin southwest of Lake Pillsbury. The Bartlett Springs fault zone lies at the base of a significant gravity gradient. Superposed on the gradient is a small gravity low centered over Lake Pillsbury and Gravelly Valley. Another small gravity low coincides with Potter Valley. Inversion of gravity data for basin thickness indicates a maximum thickness of 400 and 440 m for the Gravelly and Potter Valley depressions, respectively. Ground magnetic data indicate that the regional aeromagnetic data likely suffer from positional errors, but that large, long-wavelength anomalies, sourced from serpentinite, may be offset 8 km along the Bartlett Springs Fault zone. Additional gravity data collected either on the lake surface or bottom and in Potter Valley would better determine the shape of the basins. A modern, high-resolution aeromagnetic survey would greatly augment the ability to map and model the fault geometry quantitatively.
Isostatic Gravity Map with Geology of the Santa Ana 30' x 60' Quadrangle, Southern California
Langenheim, V.E.; Lee, Tien-Chang; Biehler, Shawn; Jachens, R.C.; Morton, D.M.
2006-01-01
This report presents an updated isostatic gravity map, with an accompanying discussion of the geologic significance of gravity anomalies in the Santa Ana 30 by 60 minute quadrangle, southern California. Comparison and analysis of the gravity field with mapped geology indicates the configuration of structures bounding the Los Angeles Basin, geometry of basins developed within the Elsinore and San Jacinto Fault zones, and a probable Pliocene drainage network carved into the bedrock of the Perris block. Total cumulative horizontal displacement on the Elsinore Fault derived from analysis of the length of strike-slip basins within the fault zone is about 5-12 km and is consistent with previously published estimates derived from other sources of information. This report also presents a map of density variations within pre-Cenozoic metamorphic and igneous basement rocks. Analysis of basement gravity patterns across the Elsinore Fault zone suggests 6-10 km of right-lateral displacement. A high-amplitude basement gravity high is present over the San Joaquin Hills and is most likely caused by Peninsular Ranges gabbro and/or Tertiary mafic intrusion. A major basement gravity gradient coincides with the San Jacinto Fault zone and marked magnetic, seismic-velocity, and isotopic gradients that reflect a discontinuity within the Peninsular Ranges batholith in the northeast corner of the quadrangle.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Waelbroeck, F. L.
2012-03-01
Static external resonant magnetic field perturbations (RMPs) have been added to the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186, 545 (2003)]. This allows nonlinear gyrokinetic simulations of the nonambipolar radial current flow jr, and the corresponding j→×B→ plasma torque (density) R[jrBp/c], induced by magnetic islands that break the toroidal symmetry of a tokamak. This extends the previous GYRO formulation for the transport of toroidal angular momentum (TAM) [R. E. Waltz, G. M. Staebler, J. Candy, and F. L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)]. The focus is on electrostatic full torus radial slice simulations of externally induced q =m/n=6/3 islands with widths 5% of the minor radius or about 20 ion gyroradii. Up to moderately strong E ×B rotation, the island torque scales with the radial electric field at the resonant surface Er, the island width w, and the intensity I of the high-n micro-turbulence, as Erw√I . The radial current inside the island is carried (entirely in the n =3 component) and almost entirely by the ion E ×B flux, since the electron E ×B and magnetic flutter particle fluxes are cancelled. The net island torque is null at zero Er rather than at zero toroidal rotation. This means that while the expected magnetic braking of the toroidal plasma rotation occurs at strong co- and counter-current rotation, at null toroidal rotation, there is a small co-directed magnetic acceleration up to the small diamagnetic (ion pressure gradient driven) co-rotation corresponding to the zero Er and null torque. This could be called the residual stress from an externally induced island. At zero Er, the only effect is the expected partial flattening of the electron temperature gradient within the island. Finite-beta GYRO simulations demonstrate almost complete RMP field screening and n =3 mode unlocking at strong Er.
Recursive computation of mutual potential between two polyhedra
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel J.
2013-11-01
Recursive computation of mutual potential, force, and torque between two polyhedra is studied. Based on formulations by Werner and Scheeres (Celest Mech Dyn Astron 91:337-349, 2005) and Fahnestock and Scheeres (Celest Mech Dyn Astron 96:317-339, 2006) who applied the Legendre polynomial expansion to gravity interactions and expressed each order term by a shape-dependent part and a shape-independent part, this paper generalizes the computation of each order term, giving recursive relations of the shape-dependent part. To consider the potential, force, and torque, we introduce three tensors. This method is applicable to any multi-body systems. Finally, we implement this recursive computation to simulate the dynamics of a two rigid-body system that consists of two equal-sized parallelepipeds.
New insights into root gravitropic signalling
Sato, Ethel Mendocilla; Hijazi, Hussein; Bennett, Malcolm J.; Vissenberg, Kris; Swarup, Ranjan
2015-01-01
An important feature of plants is the ability to adapt their growth towards or away from external stimuli such as light, water, temperature, and gravity. These responsive plant growth movements are called tropisms and they contribute to the plant’s survival and reproduction. Roots modulate their growth towards gravity to exploit the soil for water and nutrient uptake, and to provide anchorage. The physiological process of root gravitropism comprises gravity perception, signal transmission, growth response, and the re-establishment of normal growth. Gravity perception is best explained by the starch–statolith hypothesis that states that dense starch-filled amyloplasts or statoliths within columella cells sediment in the direction of gravity, resulting in the generation of a signal that causes asymmetric growth. Though little is known about the gravity receptor(s), the role of auxin linking gravity sensing to the response is well established. Auxin influx and efflux carriers facilitate creation of a differential auxin gradient between the upper and lower side of gravistimulated roots. This asymmetric auxin gradient causes differential growth responses in the graviresponding tissue of the elongation zone, leading to root curvature. Cell biological and mathematical modelling approaches suggest that the root gravitropic response begins within minutes of a gravity stimulus, triggering genomic and non-genomic responses. This review discusses recent advances in our understanding of root gravitropism in Arabidopsis thaliana and identifies current challenges and future perspectives. PMID:25547917
Spin diffusion and torques in disordered antiferromagnets
NASA Astrophysics Data System (ADS)
Manchon, Aurelien
2017-03-01
We have developed a drift-diffusion equation of spin transport in collinear bipartite metallic antiferromagnets. Starting from a model tight-binding Hamiltonian, we obtain the quantum kinetic equation within Keldysh formalism and expand it to the lowest order in spatial gradient using Wigner expansion method. In the diffusive limit, these equations track the spatio-temporal evolution of the spin accumulations and spin currents on each sublattice of the antiferromagnet. We use these equations to address the nature of the spin transfer torque in (i) a spin-valve composed of a ferromagnet and an antiferromagnet, (ii) a metallic bilayer consisting of an antiferromagnet adjacent to a heavy metal possessing spin Hall effect, and in (iii) a single antiferromagnet possessing spin Hall effect. We show that the latter can experience a self-torque thanks to the non-vanishing spin Hall effect in the antiferromagnet.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Chen, Chao
2018-02-01
A density interface modeling method using polyhedral representation is proposed to construct 3-D models of spherical or ellipsoidal interfaces such as the terrain surface of the Earth and applied to forward calculating gravity effect of topography and bathymetry for regional or global applications. The method utilizes triangular facets to fit undulation of the target interface. The model maintains almost equal accuracy and resolution at different locations of the globe. Meanwhile, the exterior gravitational field of the model, including its gravity and gravity gradients, is obtained simultaneously using analytic solutions. Additionally, considering the effect of distant relief, an adaptive computation process is introduced to reduce the computational burden. Then features and errors of the method are analyzed. Subsequently, the method is applied to an area for the ellipsoidal Bouguer shell correction as an example and the result is compared to existing methods, which shows our method provides high accuracy and great computational efficiency. Suggestions for further developments and conclusions are drawn at last.
Development of an Artificial Gravity Sleeper (AGS)
NASA Technical Reports Server (NTRS)
Cardus, David; Mctaggart, Wesley G.; Diamandis, Peter; Campbell, Scott
1990-01-01
The design and construction of a 2-meter radius 'human compatible' centrifuge termed the Artificial Gravity Sleeper (AGS) is considered. The centrifuge will accommodate up to four subjects at a time, operate at a broad range of speeds, and have safety features. Experiments that will be conducted on the AGS will help to investigate the quality of sleep during 100 percent gradient centrifugation. A microgravity simulation also will be studied using bed rest to assess the ability of 100 percent gradient centrifugation to function as a countermeasure to cardiovascular deconditioning.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
NASA Astrophysics Data System (ADS)
Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek
2015-06-01
The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.
NASA Astrophysics Data System (ADS)
Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc
2018-05-01
The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.
Biological patterns: Novel indicators for pharmacological assays
NASA Technical Reports Server (NTRS)
Johnson, Jacqueline U.
1991-01-01
Variable gravity testing using the KC-135 demonstrated clearly that biological pattern formation was definitely shown to result from gravity alone, and not from oxygen gradients in solution. Motile pattern formation of spermatozoa are driven by alternate mechanisms, and apparently not affected by short-term changes in gravity. The chemical effects found appear to be secondary to the primary effect of gravity. Cryopreservation may be the remedy to the problem of 'spare' or 'standing order' biological samples for testing of space lab investigations, but further studies are necessary.
Tests of general relativity in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1989-01-01
Interesting new tests of general relativity could be performed in earth orbit using a sensitive superconducting gravity gradiometer under development. Two such experiments are discussed here: a null test of the tracelessness of the Riemann tensor and detection of the Lense-Thirring term in the earth's gravity field. The gravity gradient signals in various spacecraft orientations are derived, and dominant error sources in each experimental setting are discussed. The instrument, spacecraft, and orbit requirements imposed by the experiments are derived.
Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.
2015-01-01
Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065
Energy transduction in the F1 motor of ATP synthase.
Wang, H; Oster, G
1998-11-19
ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central 'shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.
Energy transduction in the F1 motor of ATP synthase
NASA Astrophysics Data System (ADS)
Wang, Hongyun; Oster, George
1998-11-01
ATP synthase is the universal enzyme that manufactures ATP from ADP and phosphate by using the energy derived from a transmembrane protonmotive gradient. It can also reverse itself and hydrolyse ATP to pump protons against an electrochemical gradient. ATP synthase carries out both its synthetic and hydrolytic cycles by a rotary mechanism. This has been confirmed in the direction of hydrolysis, after isolation of the soluble F1 portion of the protein and visualization of the actual rotation of the central `shaft' of the enzyme with respect to the rest of the molecule, making ATP synthase the world's smallest rotary engine. Here we present a model for this engine that accounts for its mechanochemical behaviour in both the hydrolysing and synthesizing directions. We conclude that the F1 motor achieves its high mechanical torque and almost 100% efficiency because it converts the free energy of ATP binding into elastic strain, which is then released by a coordinated kinetic and tightly coupled conformational mechanism to create a rotary torque.
Domain wall dynamics along curved strips under current pulses: The influence of Joule heating
NASA Astrophysics Data System (ADS)
Raposo, Victor; Moretti, Simone; Hernandez, Maria Auxiliadora; Martinez, Eduardo
2016-01-01
The current-induced domain wall dynamics along curved ferromagnetic strips is studied by coupling the magnetization dynamics to the heat transport. Permalloy strips with uniform and non-uniform cross section are evaluated, taking into account the influence of the electrical contacts used to inject the current pulses and the substrate on top of which the ferromagnetic strip is sited. Micromagnetic simulations indicate that the geometry and the non-ferromagnetic materials in the system play a significant role in the current-induced domain wall dynamics. Due to the natural pinning, domain walls are hardly affected by the spin-transfer torques when placed in uniform cross section strips under current pulses with reduced magnitude. On the contrary, the current-induced domain wall displacement is significantly different in strips with non-uniform cross section, where thermal gradients emerge as due to the Joule heating. It is found that these thermal gradients can assist or act against the pure spin-transfer torques, in agreement with the recent experimental observations.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-09
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
Terrestrial gravity instrumentation in the 20th Century: A brief review
NASA Technical Reports Server (NTRS)
Valliant, H. D.
1989-01-01
At the turn of the century, only pendulum apparatuses and torsion balances were available for general exploration work. Both of these early techniques were cumbersome and time-consuming. It was no wonder that the development of the gravity meter was welcomed with a universal sigh of relief. By 1935 potential field measurements with gravity meters supplanted gradient measurements with torsion balances. Potential field measurements are generally characterized by three types: absolute - measurements are made in fundamental units, traceable to national standards of length and time at each observation site; relative with absolute scale - differences in gravity are measured in fundamental units traceable to national standards of length and time; and relative - differences in gravity are measured with arbitrary scale. Improvements in the design of gravity meters since their introduction has led to a significant reduction in size and greatly increased precision. As the precision increased, applications expanded to include the measurement of crustal motion, the search for non-Newtonian forces, archeology, and civil engineering. Apart from enhancements to the astatic gravity meter, few developments in hardware were achieved. One of these was the vibrating string gravity meter which was developed in the 1950s and was employed briefly for marine and borehole applications. Another is the cryogenic gravity meter which utilizes the stability of superconducting current to achieve a relative instrument with extremely low drift suitable for tidal and secular gravity measurements. An advance in performing measurements from a moving platform was achieved with the development of the straight-line gravity meter. The latter part of the century also saw the rebirth of gradient measurements which offers advantages for observations from a moving platform. Definitive testing of the Bell gradiometer was recently reported.
NASA Astrophysics Data System (ADS)
Kimura, M.; Kame, N.; Watada, S.; Ohtani, M.; Araya, A.; Imanishi, Y.; Ando, M.; Kunugi, T.
2017-12-01
Seismic waves radiated from an earthquake rupture induces density perturbations of the medium, which in turn generates prompt gravity changes at all distances before the arrival of seismic waves. Detection of the gravity signal before the seismic one is a challenge in seismology. In this study, we searched for the prompt gravity changes from the 2011 Tohoku-Oki earthquake in data recorded by gravimeters, seismometers, and tiltmeters. Predicted changes from the currently used simplified model were not identified using band-pass filtering and multi-station stacking even though sufficient signal-to-noise ratios were achieved. Our data analysis raised discrepancy between the data and the theoretical model. To interpret the absence of signals in the data, we investigated the effect of self-gravity deformation on the measurement of gravitational acceleration, which has been ignored in the existing theory. We analytically calculated the displacement of the observation station induced by the prompt gravity changes in an infinite homogeneous medium, and showed that before the arrival of P waves each point in the medium moves at an acceleration identical to the applied gravity change, i.e., free-falls. As a result of the opposite inertial force, gravity sensors attached to the medium lose their sensitivity to the prompt gravity changes. This new observation model incorporated with the self-gravity effect explains the absence of such prompt signals in the acceleration data. We have shown the negative observability in acceleration, but there remains a possibility of detection of its spatial gradients or spatial strain. For a future detection experiment, we derived an analytical expression of the theoretical gravity gradients from a general seismic source described as a moment tensor.
Manifestations of the rotation and gravity of the Earth in high-energy physics experiments
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2016-08-01
The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei
2017-02-01
The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.
Direct measurement of sub-surface mass change using the variable-baseline gravity gradient method
Kennedy, Jeffrey; Ferré, Ty P.A.; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin
2014-01-01
Time-lapse gravity data provide a direct, non-destructive method to monitor mass changes at scales from cm to km. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable-baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation change. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, non-invasive measurement of infiltration wetting front velocity and change in water content above the wetting front.
Gravity-regulated differential auxin transport from columella to lateral root cap cells
NASA Technical Reports Server (NTRS)
Ottenschlager, Iris; Wolff, Patricia; Wolverton, Chris; Bhalerao, Rishikesh P.; Sandberg, Goran; Ishikawa, Hideo; Evans, Mike; Palme, Klaus
2003-01-01
Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.
McMillan, Duncan G. G.; Watanabe, Rikiya; Ueno, Hiroshi; Cook, Gregory M.; Noji, Hiroyuki
2016-01-01
F1F0 ATP synthases are bidirectional molecular motors that translocate protons across the cell membrane by either synthesizing or hydrolyzing ATP. Alkaliphile ATP synthases are highly adapted, performing oxidative phosphorylation at high pH against an inverted pH gradient (acidin/alkalineout). Unlike mesophilic ATP synthases, alkaliphilic enzymes have tightly regulated ATP hydrolysis activity, which can be relieved in the presence of lauryldimethylamine oxide. Here, we characterized the rotary dynamics of the Caldalkalibacillus thermarum TA2.A1 F1 ATPase (TA2F1) with two forms of single molecule analysis, a magnetic bead duplex and a gold nanoparticle. TA2F1 rotated in a counterclockwise direction in both systems, adhering to Michaelis-Menten kinetics with a maximum rotation rate (Vmax) of 112.4 revolutions/s. TA2F1 displayed 120° unitary steps coupled with ATP hydrolysis. Torque measurements revealed the highest torque (52.4 piconewtons) derived from an F1 molecule using fluctuation theorem. The implications of high torque in terms of extreme environment adaptation are discussed. PMID:27624936
Distribution of peri-implant stresses with a countertorque device.
Sendyk, Claudio Luiz; Lopez, Thais Torralbo; de Araujo, Cleudmar Amaral; Sendyk, Wilson Roberto; Goncalvez, Valdir Ferreira
2013-01-01
To verify the effectiveness of a countertorque device in dental implants in redistributing stress to the bone-implant interface during tightening of the abutment screw. Two prismatic photoelastic samples containing implants were made, one with a 3.75-mm-diameter implant and the other with a 5.0-mm-diameter implant (both implants had an external-hexagon interface) and the respective abutments were attached (CeraOne). The samples were placed in a support and submitted to torques of 10, 20, 32, and 45 Ncm with an electronic torque meter. The torque application was repeated 10 times on each sample (n = 10) with and without a countertorque device. Photoelastic patterns were detected; thus, a photographic register of each test was selected. The fringe patterns were analyzed at discrete points near the implants' external arch. In both implants analyzed, a stress gradient reduction was observed through the implant with the countertorque device. The countertorque device used in this study proved to be effective in reducing the stresses generated in the peri-implant bone tissue during torque application.
Lin, Shi-Zeng
2017-07-06
We derive the skyrmion dynamics in response to a weak external drive, taking all the magnon modes into account. A skyrmion has rotational symmetry, and the magnon modes can be characterized by an angular momentum. For a weak distortion of a skyrmion, only the magnon modes with an angular momentum | m | = 1 govern the dynamics of skyrmion topological center. We also determine that the skyrmion inertia comes by way of the magnon modes in the continuum spectrum. For a skyrmion driven by a magnetic field gradient or by a spin transfer torque generated by a current, themore » dynamical response is practically instantaneous. This justifies the rigid skyrmion approximation used in Thiele's collective coordinate approach. For a skyrmion driven by a spin Hall torque, the torque couples to the skyrmion motion through the magnons in the continuum and damping; therefore the skyrmion dynamics shows sizable inertia in this case. The trajectory of a skyrmion is an ellipse for an ac drive of spin Hall torque.« less
Cerebellar ataxia: abnormal control of interaction torques across multiple joints.
Bastian, A J; Martin, T A; Keating, J G; Thach, W T
1996-07-01
1. We studied seven subjects with cerebellar lesions and seven control subjects as they made reaching movements in the sagittal plane to a target directly in front of them. Reaches were made under three different conditions: 1) "slow-accurate," 2) "fast-accurate," and 3) "fast as possible." All subjects were videotaped moving in a sagittal plane with markers on the index finger, wrist, elbow, and shoulder. Marker positions were digitized and then used to calculate joint angles. For each of the shoulder, elbow and wrist joints, inverse dynamics equations based on a three-segment limb model were used to estimate the net torque (sum of components) and each of the component torques. The component torques consisted of the torque due to gravity, the dynamic interaction torques induced passively by the movement of the adjacent joint, and the torque produced by the muscles and passive tissue elements (sometimes called "residual" torque). 2. A kinematic analysis of the movement trajectory and the change in joint angles showed that the reaches of subjects with cerebellar lesions were abnormal compared with reaches of control subjects. In both the slow-accurate and fast-accurate conditions the cerebellar subjects made abnormally curved wrist paths; the curvature was greater in the slow-accurate condition. During the slow-accurate condition, cerebellar subjects showed target undershoot and tended to move one joint at a time (decomposition). During the fast-accurate reaches, the cerebellar subjects showed target overshoot. Additionally, in the fast-accurate condition, cerebellar subjects moved the joints at abnormal rates relative to one another, but the movements were less decomposed. Only three subjects were tested in the fast as possible condition; this condition was analyzed only to determine maximal reaching speeds of subjects with cerebellar lesions. Cerebellar subjects moved more slowly than controls in all three conditions. 3. A kinetic analysis of torques generated at each joint during the slow-accurate reaches and the fast-accurate reaches revealed that subjects with cerebellar lesions produced very different torque profiles compared with control subjects. In the slow-accurate condition, the cerebellar subjects produced abnormal elbow muscle torques that prevented the normal elbow extension early in the reach. In the fast-accurate condition, the cerebellar subjects produced inappropriate levels of shoulder muscle torque and also produced elbow muscle torques that did not very appropriately with the dynamic interaction torques that occurred at the elbow. Lack of appropriate muscle torque resulted in excessive contributions of the dynamic interaction torque during the fast-accurate reaches. 4. The inability to produce muscle torques that predict, accommodate, and compensate for the dynamic interaction torques appears to be an important cause of the classic kinematic deficits shown by cerebellar subjects during attempted reaching. These kinematic deficits include incoordination of the shoulder and the elbow joints, a curved trajectory, and overshoot. In the fast-accurate condition, cerebellar subjects often made inappropriate muscle torques relative to the dynamic interaction torques. Because of this, interaction torques often determined the pattern of incoordination of the elbow and shoulder that produced the curved trajectory and target overshoot. In the slow-accurate condition, we reason that the cerebellar subjects may use a decomposition strategy so as to simplify the movement and not have to control both joints simultaneously. From these results, we suggest that a major role of the cerebellum is in generating muscle torques at a joint that will predict the interaction torques being generated by other moving joints and compensate for them as they occur.
Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle
NASA Astrophysics Data System (ADS)
Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.
2018-05-01
In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.
NASA Astrophysics Data System (ADS)
Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime
2006-12-01
Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys to the new network, the regional compilation of Bouguer gravity data and a new updated Bouguer gravity anomaly map for northeastern Mexico.
Meissner motor using high-Tc ceramic superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeoka, A.; Ishikawa, A.; Suzuki, M.
1989-03-01
The authors developed a brand new superconducting motor using high-Tc ceramic superconductors for the first time. This motor utilizes the repulsive force caused by the Meissner effect, which appears below Tc and disappears above that, and is therefore referred to as the Meissner Motor. The motor rotated at a maximum speed of 40 rpm. Though the repulsive force to drive the motor increased with the decrease of temperature or the increase of the gradient magnetic field, it was only about 1.1 gf/g at 77 K in 3500 G/cm. The motor has a maximum torque of 5.0 gf-cm theoretically, but actuallymore » had a torque below 0.66 gf-cm, because it took some time to be cooled below Tc. The rotating speed of the motor was limited by heating ability and its torque was limited by cooling ability.« less
Analytical characterization of selective benthic flux components in estuarine and coastal waters
King, Jeffrey N.
2011-01-01
Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.
Actin-based gravity-sensing mechanisms in unicellular plant model systems
NASA Astrophysics Data System (ADS)
Braun, Markus; Limbach, Christoph
2005-08-01
Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.
Drenth, Benjamin J.
2013-01-01
Airborne gravity gradient (AGG) data are rapidly becoming standard components of geophysical mapping programs, due to their advantages in cost, access, and resolution advantages over measurements of the gravity field on the ground. Unlike conventional techniques that measure the gravity field, AGG methods measure derivatives of the gravity field. This means that effects of terrain and near-surface geology are amplified in AGG data, and that proper terrain corrections are critically important for AGG data processing. However, terrain corrections require reasonable estimates of density for the rocks and sediments that make up the terrain. A recommended philosophical approach is to use the terrain and surface geology, with their strong expression in AGG data, to the interpreter’s advantage. An example of such an approach is presented here for an area with very difficult ground access and little ground gravity data. Nettleton-style profiling is used with AGG data to estimate the densities of the sand dunefield and adjacent Precambrian rocks from the area of Great Sand Dunes National Park in southern Colorado. Processing of the AGG data using the density estimate for the dunefield allows buried structures, including a hypothesized buried basement bench, to be mapped beneath the sand dunes.
Parsons, T.; Blakely, R.J.; Brocher, T.M.
2001-01-01
The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, L.; Ciani, G.; Dolesi, R.
The low frequency sensitivity of space-borne gravitational wave observatories will depend critically on the geodesic purity of the trajectories of orbiting test masses. Fluctuations in the temperature difference across the enclosure surrounding the free-falling test mass can produce noisy forces through several processes, including the radiometric effect, radiation pressure, and outgassing. We present here a detailed experimental investigation of thermal gradient-induced forces for the Laser Interferometer Space Antenna (LISA) gravitational wave mission and the LISA Pathfinder, employing high resolution torsion pendulum measurements of the torque on a LISA-like test mass suspended inside a prototype of the LISA gravitational reference sensormore » that will surround the test mass in orbit. The measurement campaign, accompanied by numerical simulations of the radiometric and radiation pressure effects, allows a more accurate and representative characterization of thermal-gradient forces in the specific geometry and environment relevant to LISA free-fall. The pressure dependence of the measured torques allows clear identification of the radiometric effect, in quantitative agreement with the model developed. In the limit of zero gas pressure, the measurements are most likely dominated by outgassing, but at a low level that does not threaten the current LISA noise estimate, which assumes a maximum net force per degree of temperature difference of 100(pN/K) for the overall thermal gradient-induced effects.« less
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Atmospheric tides on Venus. III - The planetary boundary layer
NASA Technical Reports Server (NTRS)
Dobrovolskis, A. R.
1983-01-01
Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.
Gravity dependent processes and intracellular motion
NASA Technical Reports Server (NTRS)
Todd, Paul
1991-01-01
Most organelles large enough to sediment or to undergo isothermal settling within eukaryotic cells are held in position by one or more components of the cytoskeleton. The interior of eukaryotic cells is considered to be very crowded, and the evaluation of natural-convective processes is very difficult. In a most simple view, the cell may be considered as consisting of four immiscible phases among which solutes are exchanged causing steep concentration gradients and thermodynamic conditions far from equilibrium. Extracellular gravity-related forces may include natural convection due to solute gradients external to single cells or the work performed by swimming, ciliated, or elongating cells.
Glacier mass balance in high-arctic areas with anomalous gravity
NASA Astrophysics Data System (ADS)
Sharov, A.; Rieser, D.; Nikolskiy, D.
2012-04-01
All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were graphically represented in the reference model geometry using Russian gravimetric maps 1:1000000 (1980s), ArcGP grid (2008) and GOCE gravity field data (Release 3, 2009-2011). 25-year long records of daily precipitation obtained from 38 coastal stations were involved in the causality analysis. Strong positive distance-weighted correlation was discovered between the magnitude of geopotential and gravity gradient on one hand and the precipitation amount, annual number of precipitation "events" and glacier elevation changes on the other, while it was noted that the correlation decreases in humid and mountainous areas. Relevant analytical and geophysical explanations were provided and tested using the basic concepts of hydrostatic stress, lapse rate and non-orographic gradient precipitation. It was concluded that the gravitational impact on the mass balance of arctic maritime ice caps is threefold. 1) Lateral variations of gravity influence directly the ambient lapse rate thereby modulating the atmospheric stability and leading to the increased intensity and frequency of heavy snowfalls over the areas with positive gravity anomalies. 2) Glacier ice deformation, flow, calving and meltwater runoff are gravity-driven phenomena, and the removal of glacier ice is closely interrelated with geopotential variations nearby. 3) Gravity anomalies affect processes of sea ice grow, drift and consolidation resulting in generally lower concentration and lesser thickness of the sea ice found in the aquatories with positive gravity. The advection of moist air to insular ice caps facilitates sea-effect snow events and makes glacier mass balance more positive. The effect is enhanced when the air mass advects toward the centre of positive anomaly. The idea about gradient (deviatoric) precipitation and related cryogravic processes does not contradict to the concept of gravity waves and has some analogy with the hypothesis on "ice lichens" devised by E.Gernet 80 years ago. Further analogies can be learned from another industry, e.g. technical chemistry. Several questions associated with the variability of evaporation, ice nucleation, aerosol deposition and snow redistribution in the heterogeneous field of gravity remain open.
By counteracting gravity, triceps surae sets both kinematics and kinetics of gait
Honeine, Jean‐Louis; Schieppati, Marco; Gagey, Oliver; Do, Manh‐Cuong
2014-01-01
Abstract In the single‐stance phase of gait, gravity acting on the center of mass (CoM) causes a disequilibrium torque, which generates propulsive force. Triceps surae activity resists gravity by restraining forward tibial rotation thereby tuning CoM momentum. We hypothesized that time and amplitude modulation of triceps surae activity determines the kinematics (step length and cadence) and kinetics of gait. Nineteen young subjects participated in two experiments. In the gait initiation (GI) protocol, subjects deliberately initiated walking at different velocities for the same step length. In the balance‐recovery (BR) protocol, subjects executed steps of different length after being unexpectedly released from an inclined posture. Ground reaction force was recorded by a large force platform and electromyography of soleus, gastrocnemius medialis and lateralis, and tibialis anterior muscles was collected by wireless surface electrodes. In both protocols, the duration of triceps activity was highly correlated with single‐stance duration (GI, R2 = 0.68; BR, R2 = 0.91). In turn, step length was highly correlated with single‐stance duration (BR, R2 = 0.70). Control of CoM momentum was obtained by decelerating the CoM fall via modulation of amplitude of triceps activity. By modulation of triceps activity, the central nervous system (CNS) varied the position of CoM with respect to the center of pressure (CoP). The CoM‐CoP gap in the sagittal plane was determinant for setting the disequilibrium torque and thus walking velocity. Thus, by controlling the gap, CNS‐modified walking velocity (GI, R2 = 0.86; BR, R2 = 0.92). This study is the first to highlight that by merely counteracting gravity, triceps activity sets the kinematics and kinetics of gait. It also provides evidence that the surge in triceps activity during fast walking is due to the increased requirement of braking the fall of CoM in late stance in order to perform a smoother step‐to‐step transition. PMID:24744898
NASA Astrophysics Data System (ADS)
AllahTavakoli, Yahya; Safari, Abdolreza
2017-08-01
This paper is counted as a numerical investigation into the capability of Poisson's Partial Differential Equation (PDE) at Earth's surface to extract the near-surface mass-density from land-based gravity data. For this purpose, first it focuses on approximating the gradient tensor of Earth's gravitational potential by means of land-based gravity data. Then, based on the concepts of both the gradient tensor and Poisson's PDE at the Earth's surface, certain formulae are proposed for the mass-density determination. Furthermore, this paper shows how the generalized Tikhonov regularization strategy can be used for enhancing the efficiency of the proposed approach. Finally, in a real case study, the formulae are applied to 6350 gravity stations located within a part of the north coast of the Persian Gulf. The case study numerically indicates that the proposed formulae, provided by Poisson's PDE, has the ability to convert land-based gravity data into the terrain mass-density which has been used for depicting areas of salt diapirs in the region of the case study.
Automatic Mass Balancing of Air-Bearing-Based Three-Axis Rotational Spacecraft Simulator
2009-06-01
required at all possible combinations of spacecraft attitude, angular/linear position of rotating/translating parts, maneuver rates, etc., which is...solution is to generate a desired spacecraft momentum trajectory that can provide persistent maneuvering of the spacecraft simulator. We define the...disturbance torque becomes zero. Because the spacecraft is con- stantly maneuvering , the center of gravity also converges to zero to have a zero
An Active Z Gravity Compensation System
1992-07-01
is necessary to convert the modified digital controller back into continuous time, assuming a zero -order hold for output, and using the Padd ...most likely higher frequency pole- zero pairs introduced by the motor and torque servo, these are generally non-oscillatory, and small in amplitude...on the output of the PI control. The detection scheme is the following: if the output of the fuzzy controller has remained zero (static system) for
Breniere, Y; Ribreau, C
1998-10-01
In order to analyze the influence of gravity and body characteristics on the control of center of mass (CM) oscillations in stepping in place, equations of motion in oscillating systems were developed using a double-inverted pendulum model which accounts for both the head-arms-trunk (HAT) segment and the two-legged system. The principal goal of this work is to propose an equivalent model which makes use of the usual anthropometric data for the human body, in order to study the ability of postural control to adapt to the step frequency in this particular paradigm of human gait. This model allows the computation of CM-to-CP amplitude ratios, when the center of foot pressure (CP) oscillates, as a parametric function of the stepping in place frequency, whose parameters are gravity and major body characteristics. Motion analysis from a force plate was used to test the model by comparing experimental and simulated values of variations of the CM-to-CP amplitude ratio in the frontal plane versus the frequency. With data from the literature, the model is used to calculate the intersegmental torque which stabilizes the HAT when the Leg segment is subjected to a harmonic torque with an imposed frequency.
Laser Vacuum Furnace for Zone Refining
NASA Technical Reports Server (NTRS)
Griner, D. B.; Zurburg, F. W.; Penn, W. M.
1986-01-01
Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.
NASA Technical Reports Server (NTRS)
Quast, Peter; Tung, Frank; West, Mark; Wider, John
2000-01-01
The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.
Free swimming organisms: Microgravity as an investigative tool
NASA Technical Reports Server (NTRS)
Kessler, John O.
1989-01-01
On earth, micro-organisms are in the grip of gravitational and viscous forces. These forces, in combination with sensory stimuli, determine the average orientation of the organisms' swimming trajectories relative to the fluid environment. Microgravity provides the opportunity to study the rules which govern the summation or orienting influences and to develop quantitative physical measurements of sensory responses, e.g. the measurement of phototactic orientation tendency in torque units. Also, by reducing or eliminating density anisotropy-driven buoyant convection, it will be possible to study illumination, temperature gradient and concentration gradient-mediated collective dynamics.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Elliott, E. Judith; Braun, Alexander
2017-11-01
Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.
Hardware development for Gravity Probe-B
NASA Technical Reports Server (NTRS)
Bardas, D.; Cheung, W. S.; Gill, D.; Hacker, R.; Keiser, G. M.
1986-01-01
Gravity Probe-B (GP-B), also known as the Stanford Relativity Gyroscope Experiment, will test two fundamental predictions of Einstein's General Theory of Relativity by precise measurement of the precessions of nearly perfect gyroscopes in earth orbit. This endeavor embodies state-of-the-art technologies in many fields, including gyroscope fabrication and readout, cryogenics, superconductivity, magnetic shielding, precision optics and alignment methods, and satellite control systems. These technologies are necessary to enable measurement of the predicted precession rates to the milliarcsecond/year level, and to reduce to 'near zero' all non-General Relativistic torques on the gyroscopes. This paper provides a brief overview of the experiment followed by descriptions of several specific hardware items with highlights on progress to date and plans for future development and tests.
Testing the gravitational inverse-square law at centimeter scales
NASA Astrophysics Data System (ADS)
Bonicalzi, Ricco
Many attempts to unify gravity with the Standard Model entail a gravitational inverse-square-law violation (ISLV) at some low level. This dissertation reports on the initial phase of a torsion-pendulum null experiment searching for such a violation in the interaction between two macroscopic bodies with a characteristic separation of 12 cm. Central to the experimental design is the special configuration of the mass distributions of both the pendulum and source mass to provide high-sensitivity to the horizontal gradient of the Laplacian of the interaction potential (a signature of ISLV), while strongly suppressing coupling through Newtonian gravity. Specifically, this design ensures that gravitational systematic effects arise only at second order in the fabrication errors of the pendulum and source mass. A key aspect of this work is the choice of the second-harmonic amplitude of pendulum oscillation as the torque observable, instead of the traditional oscillation frequency. This relatively recent torsion-pendulum method is markedly less sensitive to changes in torsion-fiber temperature and enables the ambient-temperature instrumentation of the initial phase to achieve necessary noise performance without heroic efforts to stabilize temperature. As details of the second-harmonic method have not yet been published, the presentation here dwells on a number of subtleties involved in analyzing the data. Experimental results are reported assuming a Yukawa-type interaction anomaly, where a is the strength of the Yukawa term relative to Newtonian gravity. A preliminary set of 34 data runs, each around a day in duration, produced a value of alpha = (-6.3 +/- 7.5) x 10-5. In the absence of significant systematic effects, even this interim result would have placed tighter bounds on ISLV than previously appearing in the literature. Unfortunately, an accelerated Department of Energy deadline for demolition of our Hanford laboratory facility compelled a shift of focus to the principal phase of this experiment before resolving two apparently marginal, but significant sources of systematic error. These and resolved systematic effects are discussed in the context of the second-harmonic method.
Baroclinic instability with variable gravity: A perturbation analysis
NASA Technical Reports Server (NTRS)
Giere, A. C.; Fowliss, W. W.; Arias, S.
1980-01-01
Solutions for a quasigeostrophic baroclinic stability problem in which gravity is a function of height were obtained. Curvature and horizontal shear of the basic state flow were omitted and the vertical and horizontal temperature gradients of the basic state were taken as constant. The effect of a variable dielectric body force, analogous to gravity, on baroclinic instability for the design of a spherical, baroclinic model for Spacelab was determined. Such modeling could not be performed in a laboratory on the Earth's surface because the body force could not be made strong enough to dominate terrestrial gravity. A consequence of the body force variation and the preceding assumptions was that the potential vorticity gradient of the basic state vanished. The problem was solved using a perturbation method. The solution gives results which are qualitatively similar to Eady's results for constant gravity; a short wavelength cutoff and a wavelength of maximum growth rate were observed. The averaged values of the basic state indicate that both the wavelength range of the instability and the growth rate at maximum instability are increased. Results indicate that the presence of the variable body force will not significantly alter the dynamics of the Spacelab experiment. The solutions are also relevant to other geophysical fluid flows where gravity is constant but the static stability or Brunt-Vaisala frequency is a function of height.
NASA Astrophysics Data System (ADS)
Supriyanto, Noor, T.; Suhanto, E.
2017-07-01
The Endut geothermal prospect is located in Banten Province, Indonesia. The geological setting of the area is dominated by quaternary volcanic, tertiary sediments and tertiary rock intrusion. This area has been in the preliminary study phase of geology, geochemistry, and geophysics. As one of the geophysical study, the gravity data measurement has been carried out and analyzed in order to understand geological condition especially subsurface fault structure that control the geothermal system in Endut area. After precondition applied to gravity data, the complete Bouguer anomaly have been analyzed using advanced derivatives method such as Horizontal Gradient (HG) and Euler Deconvolution (ED) to clarify the existance of fault structures. These techniques detected boundaries of body anomalies and faults structure that were compared with the lithologies in the geology map. The analysis result will be useful in making a further realistic conceptual model of the Endut geothermal area.
DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data
NASA Astrophysics Data System (ADS)
Tian, Yu; Ke, Xiaoping; Wang, Yong
2018-04-01
This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.
Diffusive-convective physical vapor transport of PbTe from a Te-rich solid source
NASA Technical Reports Server (NTRS)
Zoutendyk, J.; Akutagawa, W.
1982-01-01
Crystal growth of PbTe by physical vapor transport (sublimation) in a closed ampoule is governed by the vapor species in thermal equilibrium with the solid compound. Deviations from stoichiometry in the source material cause diffusion limitation of the transport rate, which can be modified by natural (gravity-driven) convection. Mass-transport experiments have been performed using Te-rich material wherein sublimation rates have been measured in order to study the effects of natural convection in diffusion-limited vapor transport. Linear velocities for both crystal growth and evaporation (back sublimation) have been measured for transport in the direction of gravity, horizontally, and opposite to gravity. The experimental results are discussed in terms of both the one-dimensional diffusive-advective model and current, more sophisticated theory which includes natural convection. There is some evidence that convection effects from radial temperature gradients and solutal density gradients have been observed.
The IfE Global Gravity Field Model Recovered from GOCE Orbit and Gradiometer Data
NASA Astrophysics Data System (ADS)
Wu, Hu; Muiller, Jurgen; Brieden, Phillip
2015-03-01
An independent global gravity field model is computed from the GOCE orbit and gradiometer data using our own IfE software. We analysed the same data period that were considered for the first released GOCE models. The Acceleration Approach is applied to process the orbit data. The gravity gradients are processed in the framework of the remove-restore technique by which the low-frequency noise of the original gradients are removed. For the combined solution, the normal equations are summed by the Variance Component Estimation Approach. The result in terms of accumulated geoid height error calculated from the coefficient difference w.r.t. EGM2008 is about 11 cm at D/O 200, which corresponds to the accuracy level of the first released TIM and DIR solutions. This indicates that our IfE model has a comparable performance as the other official GOCE models.
Gravity and thermal deformation of large primary mirror in space telescope
NASA Astrophysics Data System (ADS)
Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong
2016-10-01
The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.
Dynamic regimes of buoyancy-affected two-phase flow in unconsolidated porous media.
Stöhr, M; Khalili, A
2006-03-01
The invasion and subsequent flow of a nonwetting fluid (NWF) in a three-dimensional, unconsolidated porous medium saturated with a wetting fluid of higher density and viscosity have been studied experimentally using a light-transmission technique. Distinct dynamic regimes have been found for different relative magnitudes of viscous, capillary, and gravity forces. It is shown that the ratio of viscous and hydrostatic pressure gradients can be used as a relevant dimensionless number K for the characterization of the different flow regimes. For low values of K, the invasion is characterized by the migration and fragmentation of isolated clusters of the NWF resulting from the prevalence of gravity and capillary forces. At high values of K, the dominance of viscous and gravity forces leads to an anisotropic fingerlike invasion. When the invasion stops after the breakthrough of the NWF at the open upper boundary, the invasion structure retracts under the influence of gravity and transforms into stable vertical channels. It is shown that the stability of these channels is the result of a balance between hydrostatic and viscous pressure gradients.
NASA Astrophysics Data System (ADS)
Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav
2017-06-01
The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.
NASA Astrophysics Data System (ADS)
Liu, Jian; Zhu, Ka-Di
2017-02-01
In the present paper, we provide a scheme to probe the gradient of gravity at the nanoscale in a levitated nanomechanical resonator coupled to a cavity via two-field optical control. The enhanced sharp peak on the probe spectrum will suffer a distinct shift with the nonuniform force being taken into consideration. The nonlinear optics with very narrow bandwidth (10-8 Hz ) resulting from the extremely high-quality factor will lead to a superresolution of 10-20 N /m for the measurement of gravity gradient. The improved sensitivity may offer new opportunities for detecting Yukawa moduli forces and Kaluza-Klein gravitons in extra dimensions.
Extended mimetic gravity: Hamiltonian analysis and gradient instabilities
NASA Astrophysics Data System (ADS)
Takahashi, Kazufumi; Kobayashi, Tsutomu
2017-11-01
We propose a novel class of degenerate higher-order scalar-tensor theories as an extension of mimetic gravity. By performing a noninvertible conformal transformation on "seed" scalar-tensor theories which may be nondegenerate, we can generate a large class of theories with at most three physical degrees of freedom. We identify a general seed theory for which this is possible. Cosmological perturbations in these extended mimetic theories are also studied. It is shown that either of tensor or scalar perturbations is plagued with gradient instabilities, except for a special case where the scalar perturbations are presumably strongly coupled, or otherwise there appear ghost instabilities.
Validation of theoretical models of intrinsic torque in DIII-D
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Wang, W. X.; Battaglia, D. J.; Chrystal, C.; Solomon, W. M.; Degrassie, J. S.; Staebler, G. M.; Boedo, J. A.
2016-10-01
Plasma rotation experiments in DIII-D are validating models of main-ion intrinsic rotation by testing Reynolds stress induced toroidal flow in the plasma core and intrinsic rotation induced by ion orbit losses in the plasma edge. In the core of dominantly electron heated plasmas with Te=Ti, the main-ion intrinsic toroidal rotation undergoes a reversal that correlates with the critical gradient for ITG turbulence. Residual stress arising from zonal-flow ExB shear and turbulence intensity gradient produce residual stress and counter-current intrinsic torque, which is balanced by momentum diffusion, creating the hollow profile. Quantitative agreement is obtained for the first time between the measured main-ion toroidal rotation and the rotation profile predicted by nonlinear GTS gyrokinetic simulations. At the plasma boundary, new main-ion CER measurements show a co-current rotation layer and this is tested against ion orbit loss models as the source of bulk plasma rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.
An investigation of a movable mass-attitude stabilization system for artificial-G space
NASA Technical Reports Server (NTRS)
Childs, D. W.
1972-01-01
The application of a single movable mass to generate control torques for the attitude control of space vehicles is discussed. The feasibility of a movable mass control in stabilizing a cable-connected, artificial gravity configuration is proposed. A dynamic model for cable-connected configurations to account for the aggregate motion of the space station and relative torsional motion between the crew quarters and counter weight is developed.
Rolling Friction on a Wheeled Laboratory Cart
2012-01-01
by gravity, and a vehicle (such as a car or bicycle) accelerating along a level road is driven by a motor or by pedalling. In such cases, static...is slowing down, its acceleration a points downhill). The normal force N, frictional force f and axle torque four wheels. θ υ N a θ ω τ ƒ mg...friction force pointed backward (to translationally decelerate the object), then it would simultaneously rotationally accelerate the cylinder about its
Moisture content of southern pine as related to thrust, torque, and chip formation in boring
Charles W. McMillin; George E. Woodson
1972-01-01
Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,4000 rpm and removed chips 0.020 inch thick. For wood mositure contents ranging from ovendry to saturation, thrust was lower when boring along the grain (Average 98 pounds)...
Torque Induced on Lipid Microtubules with Optical Tweezers
NASA Astrophysics Data System (ADS)
wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.
2017-09-01
Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.
The properties of thin-section, four-point-contact ball bearings in space
NASA Technical Reports Server (NTRS)
Rowntree, R. A.
1985-01-01
Thin section, four-point-contact ball bearings are increasinly employed in spacecraft mechanisms because of the potential advantages they offer. However, litte was previously known of their torque, thermal conductance and stiffness properties at conditions anticipated for their use in space. An investigation of these properties are described. It was found that frictional (Coulomb) torque, thermal conductance and stiffness all show marked dependence on the bearing preload, the housing design, the bearing external fit (i.e., free fit or interference) and on the thermal gradient across the races. Optimum bearing performance is achieved only if these properties are well understood. The necessary data to understand these properties are provided.
Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
Li, Zhan; Ma, Wenhao; Yin, Ziguang; Guo, Hongliang
2017-11-01
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Y.; Luo, Z.; Zhou, H.; Xu, C.
2017-12-01
Regional gravity field recovery is of great importance for understanding ocean circulation and currents in oceanography and investigating the structure of the lithosphere in geophysics. Under the framework of remove-compute-restore methodology (RCR), a regional approach using spherical radial basis functions (SRBFs) is set up for gravity field determination using the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity gradient tensor, heterogeneous gravimetry and altimetry measurements. The additional value on regional model introduced by GOCE data is validated and quantified. Numerical experiments in a western European region show that the effects introduced by GOCE data display as long-wavelength patterns on the centimeter scale in terms of quasi-geoid heights, which may allow to highlight and reduce the remaining long-wavelength errors and biases in ground-based data and improve the regional model. The accuracy of the gravimetric quasi-geoid computed with a combination of three diagonal components is improved by 0.6 cm (0.5 cm) in the Netherlands (Belgium), compared to that derived from gravimetry and altimetry data alone, when GOCO05s is used as the reference model. Performances of different diagonal components and their combinations are not identical; the solution with vertical gradients shows highest quality when a single component is used. Incorporation of multiple components further improves the model, and the combination of three components shows the best fit to GPS/leveling data. Moreover, the contributions introduced by different components are heterogeneous in terms of spatial coverage and magnitude, although similar structures occur in the spatial domain. Contributions introduced by the vertical components have the most significant effects when a single component is applied. Combination of multiple components further magnifies these effects and improves the solutions, and the incorporation of three components has the most prominent effects. This work is supported by the State Scholarship Fund from Chinese Scholarship Council (201306270014), China Postdoctoral Science Foundation (No.2016M602301), and the National Natural Science Foundation of China (No. 41374023).
Gravity increase at the south pole
Behrendt, John C.
1967-01-01
Abstract. Measurements made between December 1957 and January 1966 of the gravity difference between the McMurdo Sound pendulum station, which is on bedrock, and the South Pole station, which is on the Antarctic ice sheet, show a gravity increase at the South Pole of 0.11 milligals per year. The most likely hypothesis for the increase is that it was caused by ice flowing downslope across a gravity gradient and by the sinking of the South Pole station as a result of accumulation of ice. An alternate hypothesis that the gravity increase was caused by a decrease in ice thickness, of about 40 centimeters per year, is theoretically possible but is not supported by direct evidence.
NASA Astrophysics Data System (ADS)
Shah, A. K.; Horton, J.; McNamara, D. E.; Spears, D.; Burton, W. C.
2013-12-01
Estimating seismic hazard in intraplate environments can be challenging partly because events are relatively rare and associated data thus limited. Additionally, in areas such as the central Virginia seismic zone, numerous pre-existing faults may or may not be candidates for modern tectonic activity, and other faults may not have been mapped. It is thus important to determine whether or not specific geologic features are associated with seismic events. Geophysical and geologic data collected in response to the Mw5.8 August 23, 2011 central Virginia earthquake provide excellent tools for this purpose. Portable seismographs deployed within days of the main shock showed a series of aftershocks mostly occurring at depths of 3-8 km along a southeast-dipping tabular zone ~10 km long, interpreted as the causative fault or fault zone. These instruments also recorded shallow (< 4 km) aftershocks clustered in several areas at distances of ~2-15 km from the main fault zone. We use new airborne geophysical surveys (gravity, magnetics, radiometrics, and LiDAR) to delineate the distribution of various surface and subsurface geologic features of interest in areas where the earthquake and aftershocks took place. The main (causative fault) aftershock cluster coincides with a linear, NE-trending gravity gradient (~ 2 mgal/km) that extends over 20 km in either direction from the Mw5.8 epicenter. Gravity modeling incorporating seismic estimates of Moho variations suggests the presence of a shallow low-density body overlying the main aftershock cluster, placing it within the upper 2-4 km of the main-fault hanging wall. The gravity, magnetic, and radiometric data also show a bend in generally NE-SW orientation of anomalies close to the Mw5.8 epicenter. Most shallow aftershock clusters occur near weaker short-wavelength gravity gradients of one to several km length. In several cases these gradients correspond to geologic contacts mapped at the surface. Along the gravity gradients, the aftershocks appear to cluster near areas with cross-cutting geologic features such as Jurassic diabase dikes. These associations suggest that local variations in rock density and/or rheology may have contributed to modifications of local stress regimes in a manner encouraging localized seismicity associated with the Mw5.8 event and its aftershocks. Such associations are comparable to results of previous studies recognizing correspondences between seismicity and features such as intrusive bodies and failed rifts in the New Madrid seismic zone and elsewhere. To explore whether similar correspondences may have occurred in the past, we use regional gravity and magnetic data to consider possible relations between historical earthquakes and comparable geologic features elsewhere in the central Virginia seismic zone.
NASA Astrophysics Data System (ADS)
Tyler, R.
2012-09-01
The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean surface area A, tidal equilibrium height ηF, dissipation quality factor Q,and c=(gh)1/2, cr=Ωa, with ocean thickness h, rotation rate Ω, and radius a. Torque due to tides forced by obliquity as a function of the parameters c/cr and Q. Retrograde ("Westward") and prograde ("Eastward") components shown in left and right panels, respectively. Log10 scale shown in colorbar.
Weakening gravity on redshift-survey scales with kinetic matter mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele
We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field asmore » well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.« less
First Impressions of a Scintrex CG-6 Portable Gravimeter in an Extensive Field Campaign
NASA Astrophysics Data System (ADS)
van Westrum, D.; Kanney, J.
2017-12-01
First Impressions of a Scintrex CG-6 Portable Gravimeter in an Extensive Field Campaign AGU Fall Meeting 2017 Derek van Westrum and Jeff Kanney NOAA's National Geodetic Survey conducted its third and final Geoid Slope Validation Survey (GSVS) this past summer in the rugged mountains of southern Colorado. In addition to leveling, long period GPS, and defelction of vertical observations, absolute gravity and vertical gravity gradients were measured at 235 bench marks (approximately 1.5 km spacing) along US-160 between Durango and Walsenburg, Colorado. In previous surveys (Texas-2011 and Iowa-2014), an A10 absolute gravimeter was used to measure graivty at approximately 10-15% of the bench marks. The remaining marks were determined by using LaCoste & Romberg relative gravimeters. The same relative instruments were also used to measure two-tier (linear) vertical gravity gradients at the A10 sites. In the current work - becuase of the rapidly changing terrain in the Rocky Mountains - it was decided to employ the A10 at all 235 bench marks, and acquire three-tier (quadratic) gradients at every bench mark using the new Scintrex CG-6 Autograv relative gravimeter. Using these results, we will provide a real worldsummary of the CG-6's behavior by examining noise levels, repeatability, and acquisition rates. In addition, the coincident A10 absolute data set allows us to evaluate the CG-6's accuracy, and allows us to simulate and discuss various relative gravity survey designs.
On the stability conditions for theories of modified gravity in the presence of matter fields
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios
2017-03-01
We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all the scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.
Inversion of gravity gradient tensor data: does it provide better resolution?
NASA Astrophysics Data System (ADS)
Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.
2016-04-01
The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.
NASA Technical Reports Server (NTRS)
Straube, Timothy Milton
1993-01-01
The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.
Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto.
Nimmo, F; Hamilton, D P; McKinnon, W B; Schenk, P M; Binzel, R P; Bierson, C J; Beyer, R A; Moore, J M; Stern, S A; Weaver, H A; Olkin, C B; Young, L A; Smith, K E
2016-12-01
The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto's tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin's present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.
Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto
NASA Astrophysics Data System (ADS)
Nimmo, F.; Hamilton, D. P.; McKinnon, W. B.; Schenk, P. M.; Binzel, R. P.; Bierson, C. J.; Beyer, R. A.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Beyer, R.; Binzel, R. P.; Buie, M.; Buratti, B.; Cheng, A.; Cruikshank, D.; Ore, C. Dalle; Earle, A.; Gladstone, R.; Grundy, W.; Howard, A. D.; Lauer, T.; Linscott, I.; Nimmo, F.; Parker, J.; Porter, S.; Reitsema, H.; Reuter, D.; Roberts, J. H.; Robbins, S.; Schenk, P. M.; Showalter, M.; Singer, K.; Strobel, D.; Summers, M.; Tyler, L.; White, O. L.; Umurhan, O. M.; Banks, M.; Barnouin, O.; Bray, V.; Carcich, B.; Chaikin, A.; Chavez, C.; Conrad, C.; Hamilton, D. P.; Howett, C.; Hofgartner, J.; Kammer, J.; Lisse, C.; Marcotte, A.; Parker, A.; Retherford, K.; Saina, M.; Runyon, K.; Schindhelm, E.; Stansberry, J.; Steffl, A.; Stryk, T.; Throop, H.; Tsang, C.; Verbiscer, A.; Winters, H.; Zangari, A.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Young, L. A.; Smith, K. E.
2016-12-01
The deep nitrogen-covered basin on Pluto, informally named Sputnik Planitia, is located very close to the longitude of Pluto’s tidal axis and may be an impact feature, by analogy with other large basins in the Solar System. Reorientation of Sputnik Planitia arising from tidal and rotational torques can explain the basin’s present-day location, but requires the feature to be a positive gravity anomaly, despite its negative topography. Here we argue that if Sputnik Planitia did indeed form as a result of an impact and if Pluto possesses a subsurface ocean, the required positive gravity anomaly would naturally result because of shell thinning and ocean uplift, followed by later modest nitrogen deposition. Without a subsurface ocean, a positive gravity anomaly requires an implausibly thick nitrogen layer (exceeding 40 kilometres). To prolong the lifetime of such a subsurface ocean to the present day and to maintain ocean uplift, a rigid, conductive water-ice shell is required. Because nitrogen deposition is latitude-dependent, nitrogen loading and reorientation may have exhibited complex feedbacks.
Newton vs. Munchhausen in upper-troposphere dynamics
NASA Astrophysics Data System (ADS)
Bergmann, Juan Carlos
2010-05-01
Atmospheric angular momentum (AM) balance depends crucially on the existence and magnitude of the planetary-scale AM transport by 'eddies' in the upper troposphere. Its divergence has to provide the torque, which is necessary to realise the upper-troposphere branch of meridional circulation. (In the boundary layer, the torque is provided by surface-friction.) The torques in neighbouring circulation cells are opposed, so that the AM transport mediates a torque-interaction between the circulation cells. This interaction corresponds to a clear requirement of Newton's Third Law: torques (forces) exist only in interaction with other bodies, and their sum is equal to zero. In Münchhausen's physics, force (and torque) exists without interaction: In a famous tale, Münchhausen saves himself (and his horse!) from drowning in a swamp-hole by pulling himself up at his hair. Münchhausen-physics situations arise in the dynamical analysis of the torque exerted by a single eddy and in analysis of the cause for the AM transport of the single eddy. The local AM transport of the single eddy is defined by the difference in zonal velocity between the pole-ward and equator-ward branches (Δu) multiplied with meridional velocity-magnitude (¦v¦). For the average over many eddies, it transforms to the average product of the deviations of zonal and meridional velocities from their local averages (, eddy-correlation; the complete formulations include the local radius of rotation but it is omitted here for simplicity reasons). This definition is phenomenological but not dynamical. In dynamical analysis it turns out that the torque-related zonal equation of motion of an AM-transporting single eddy can be formulated without torque-interaction with other bodies (torque-free eddy). Newton III implies also the phenomenological torque (transport divergence -δ(¦v¦Δu)/δy) to be zero for this case because there is no partner of torque-interaction. However, the dynamically torque-free single eddy has an unavoidable 'transport' divergence - especially in the turning-region of the meridional motion. Thus, there is a phenomenological 'torque' (non-zero 'transport' divergence) without torque-interaction - a classical Münchhausen situation! The dynamical cause of phenomenological 'AM transport' and associated phenomenological 'torques' of the dynamically torque-free single eddy is 'hidden' in the non-torque-related meridional equation of motion for steady-state: δv-δ t = - u δv-δx - vδv-δ y - f u(x) + Fy(x) = 0 . Strong variation of the meridional pressure-gradient force Fy(x) (no torque!) over the eddy-path (longitude x) produces varying zonal velocities u(x) that are falsely interpreted as 'AM transport' on the phenomenological level (the 'advective' terms are negligible outside the eddy's turning regions). Thus, creation and destruction of phenomenological 'AM transport' (Δu) in a single eddy do not originate from torque-interaction with other bodies - another classical Münchhausen situation! Should the previous analysis be ignored in favour of maintaining the 'established' ideas of upper-troposphere dynamics or should there be an effort to formulate new ideas that are in accordance with Newtonian physics?
2D data-space cross-gradient joint inversion of MT, gravity and magnetic data
NASA Astrophysics Data System (ADS)
Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop
2017-08-01
We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.
A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.
Dimensional stability of flakeboards as affected by board specific gravity and flake alignment
Robert L. Geimer
1982-01-01
The objective was to determine the relationship between the variables specific gravity (SG) and flake alignment and the dimensional stability properties of flakeboard. Boards manufactured without a density gradient were exposed to various levels of relative humidity and a vacuum-pressure soak (VPS) treatment. Changes in moisture content (MC), thickness swelling, and...
GEOPHYSICAL INVESTIGATIONS OF THE STRUCTURE OF THE EARTH’S CRUST IN THE ATLANTIC OCEAN REGION,
50--100 mgal and then increase to +50--70mgal. The Bouguer isoanomaly lines are denser in the transition zone and a considerable gravity gradient...data has also become more abundent. Investigations to determine relation between Bouguer gravity anomalies and the thickness of the earth’s crust
Adaptive topographic mass correction for satellite gravity and gravity gradient data
NASA Astrophysics Data System (ADS)
Holzrichter, Nils; Szwillus, Wolfgang; Götze, Hans-Jürgen
2014-05-01
Subsurface modelling with gravity data includes a reliable topographic mass correction. Since decades, this mandatory step is a standard procedure. However, originally methods were developed for local terrestrial surveys. Therefore, these methods often include defaults like a limited correction area of 167 km around an observation point, resampling topography depending on the distance to the station or disregard the curvature of the earth. New satellite gravity data (e.g. GOCE) can be used for large scale lithospheric modelling with gravity data. The investigation areas can include thousands of kilometres. In addition, measurements are located in the flight height of the satellite (e.g. ~250 km for GOCE). The standard definition of the correction area and the specific grid spacing around an observation point was not developed for stations located in these heights and areas of these dimensions. This asks for a revaluation of the defaults used for topographic correction. We developed an algorithm which resamples the topography based on an adaptive approach. Instead of resampling topography depending on the distance to the station, the grids will be resampled depending on its influence at the station. Therefore, the only value the user has to define is the desired accuracy of the topographic correction. It is not necessary to define the grid spacing and a limited correction area. Furthermore, the algorithm calculates the topographic mass response with a spherical shaped polyhedral body. We show examples for local and global gravity datasets and compare the results of the topographic mass correction to existing approaches. We provide suggestions how satellite gravity and gradient data should be corrected.
NASA Technical Reports Server (NTRS)
Atwater, James; Wheeler, Richard, Jr.; Akse, James; Jovanovic, Goran; Reed, Brian
2013-01-01
To support long-duration manned missions in space such as a permanent lunar base, Mars transit, or Mars Surface Mission, improved methods for the treatment of solid wastes, particularly methods that recover valuable resources, are needed. The ability to operate under microgravity and hypogravity conditions is essential to meet this objective. The utilization of magnetic forces to manipulate granular magnetic media has provided the means to treat solid wastes under variable gravity conditions by filtration using a consolidated magnetic media bed followed by thermal processing of the solid wastes in a fluidized bed reactor. Non-uniform magnetic fields will produce a magnetic field gradient in a bed of magnetically susceptible media toward the distributor plate of a fluidized bed reactor. A correctly oriented magnetic field gradient will generate a downward direct force on magnetic media that can substitute for gravitational force in microgravity, or which may augment low levels of gravity, such as on the Moon or Mars. This approach is termed Gradient Magnetically Assisted Fluidization (G-MAFB), in which the magnitude of the force on the fluidized media depends upon the intensity of the magnetic field (H), the intensity of the field gradient (dH/dz), and the magnetic susceptibility of the media. Fluidized beds based on the G-MAFB process can operate in any gravitational environment by tuning the magnetic field appropriately. Magnetic materials and methods have been developed that enable G-MAFB operation under variable gravity conditions.
Evidence for non-synchronous rotation of Europa. Galileo Imaging Team.
Geissler, P E; Greenberg, R; Hoppa, G; Helfenstein, P; McEwen, A; Pappalardo, R; Tufts, R; Ockert-Bell, M; Sullivan, R; Greeley, R; Belton, M J; Denk, T; Clark, B; Burns, J; Veverka, J
1998-01-22
Non-synchronous rotation of Europa was predicted on theoretical grounds, by considering the orbitally averaged torque exerted by Jupiter on the satellite's tidal bulges. If Europa's orbit were circular, or the satellite were comprised of a frictionless fluid without tidal dissipation, this torque would average to zero. However, Europa has a small forced eccentricity e approximately 0.01 , generated by its dynamical interaction with Io and Ganymede, which should cause the equilibrium spin rate of the satellite to be slightly faster than synchronous. Recent gravity data suggest that there may be a permanent asymmetry in Europa's interior mass distribution which is large enough to offset the tidal torque; hence, if non-synchronous rotation is observed, the surface is probably decoupled from the interior by a subsurface layer of liquid or ductile ice. Non-synchronous rotation was invoked to explain Europa's global system of lineaments and an equatorial region of rifting seen in Voyager images. Here we report an analysis of the orientation and distribution of these surface features, based on initial observations made by the Galileo spacecraft. We find evidence that Europa spins faster than the synchronous rate (or did so in the past), consistent with the possibility of a global subsurface ocean.
Moisture content of southern pine as related to thrust, torque, and chip formation in boring
C. W. McMillin; G. E. Woodson
1972-01-01
Holes 3-1/2 inches deep were bored with a 1-inch spur machine bit in southern pine having specific gravity of 0.53 (ovendry weight and volume at 10.4 percent moisture). The bit was rotated at 2,400 rpm and removed chips 0.020 inch thick. For wood moisture contents ranging from ovendry to saturation, thrust was lower when boring along the grain (average 98 pounds) than...
Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimschal, U.
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less
The snake geothermal drilling project. Innovative approaches to geothermal exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Evans, James P.; Liberty, Lee M.
2014-02-21
The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less
Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California
Schimschal, U.
1991-01-01
An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author
Instability of a gravity gradient satellite due to thermal distortion
NASA Technical Reports Server (NTRS)
Goldman, R. L.
1975-01-01
A nonlinear analytical model and a corresponding computer program were developed to study the influence of solar heating on the anomalous low frequency, orbital instability of the Naval Research Laboratory's gravity gradient satellite 164. The model's formulation was based on a quasi-static approach in which deflections of the satellite's booms were determined in terms of thermally induced bending without consideration of boom vibration. Calculations, which were made for variations in absorptivity, sun angle, thermal lag, and hinge stiffness, demonstrated that, within the confines of a relatively narrow stability criteria, the quasi-static model of NRL 164 not only becomes unstable, but, in a number of cases, responses were computed that closely resembled flight data.
NASA Technical Reports Server (NTRS)
Smith, H. D.; Mattox, D. M.; Wilcox, W. R.; Subramanian, R. S.; Meyyappan, M.
1982-01-01
An experiment was carried out on board a Space Processing Applications Rocket with the aim of demonstrating bubble migration in molten glass due to a temperature gradient under low gravity conditions. During the flight, a sample of a sodium borate melt with a specific bubble array, contained in a platinum/fused silica cell, was subjected to a well defined temperature gradient for more than 4 minutes. Photographs taken at one second intervals during the experiment clearly show that the bubbles move toward the hot spot on the platinum heater strip. This result is consistent with the predictions of the theory of thermocapillary driven bubble motion.
Preliminary design for a Zero Gravity Test Facility (ZGTF). Volume 1: Technical
NASA Technical Reports Server (NTRS)
Germain, A.
1981-01-01
The functional requirements and best conceptual design of a test facility that simulates weightless operating conditions for a high gain antenna systems (HGAS), that will broadcast to the Tracking Data Relay Satellites were defined. The typical HGAS defined is mounted on a low Earth orbiting satellite, and consists of an antenna with a double gimbal pointing system mounted on a 13 foot long mast. Typically, the gimbals are driven by pulse modulated dc motors or stepper motors. These drivers produce torques on the mast, with jitter that excites the satellite and may cause disturbances to sensitive experiments. The dynamic properties of the antenna support structure (mast), including flexible mode characteristics were defined. The torque profile induced on the spacecraft by motion of the high gain antenna was estimated. Gain and phase margins of the servo control loop of the gimbal drive electronics was also verified.
The fuelling of active galactic nuclei
NASA Technical Reports Server (NTRS)
Shlosman, Isaac; Begelman, Mitchell C.; Frank, Julian
1990-01-01
Accretion mechanisms for powering the central engines of active galactic nuclei (AGN) and possible sources of fuel are reviewed. It is a argued that the interstellar matter in the main body of the host galaxy is channeled toward the center, and the problem of angular momentum transport is addressed. Thin accretion disks are not a viable means of delivering fuel to luminous AGN on scales much larger than a parsec because of the long inflow time and effects of self-gravity. There are also serious obstacles to maintaining and regulating geometrically thick, hot accretion flows. The role of nonaxisymmetric perturbations of the gravitational potential on galactic scales and their triggers is emphasized. A unified model is outlined for fueling AGN, in which the inflow on large scales is driven by gravitational torques, and on small scales forms a mildly self-gravitating disk of clouds with inflow driven by magnetic torques or cloud-cloud collisions.
Pitching motion control of a butterfly-like 3D flapping wing-body model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji
2014-11-01
Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.
Superconducting tensor gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.
Annular beam with segmented phase gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shubo; Wu, Liang; Tao, Shaohua, E-mail: eshtao@csu.edu.cn
2016-08-15
An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owingmore » to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.« less
NASA Astrophysics Data System (ADS)
Jilinski, Pavel; Meju, Max A.; Fontes, Sergio L.
2013-10-01
The commonest technique for determination of the continental-oceanic crustal boundary or transition (COB) zone is based on locating and visually correlating bathymetric and potential field anomalies and constructing crustal models constrained by seismic data. In this paper, we present a simple method for spatial correlation of bathymetric and potential field geophysical anomalies. Angular differences between gradient directions are used to determine different types of correlation between gravity and bathymetric or magnetic data. It is found that the relationship between bathymetry and gravity anomalies can be correctly identified using this method. It is demonstrated, by comparison with previously published models for the southwest African margin, that this method enables the demarcation of the zone of transition from oceanic to continental crust assuming that this it is associated with geophysical anomalies, which can be correlated using gradient directions rather than magnitudes. We also applied this method, supported by 2-D gravity modelling, to the more complex Liberia and Cote d'Ivoire-Ghana sectors of the West African transform margin and obtained results that are in remarkable agreement with past predictions of the COB in that region. We suggest the use of this method for a first-pass interpretation as a prelude to rigorous modelling of the COB in frontier areas.
NASA Technical Reports Server (NTRS)
Jenkins, James T.; Louge, Michel Y.
1996-01-01
We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.
A three-dimensional spin-diffusion model for micromagnetics
Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter
2015-01-01
We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796
Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.
2012-01-01
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022
Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J
2012-03-20
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Turbulent Mixing in Gravity Currents with Transverse Shear
NASA Astrophysics Data System (ADS)
White, Brian; Helfrich, Karl; Scotti, Alberto
2010-11-01
A parallel flow with horizontal shear and horizontal density gradient undergoes an intensification of the shear by gravitational tilting and stretching, rapidly breaking down into turbulence. Such flows have the potential for substantial mixing in estuaries and the coastal ocean. We present high-resolution numerical results for the mixing efficiency of these flows, which can be viewed as gravity currents with transverse shear, and contrast them with the well-studied case of stably stratified, homogeneous turbulence (uniform vertical density and velocity gradients). For a sheared gravity current, the buoyancy flux, turbulent Reynolds stress, and dissipation are well out of equilibrium. The total kinetic energy first increases as potential energy is transferred to the gravity current, but rapidly decays once turbulence sets in. Despite the non-equilibrium character, mixing efficiencies are slightly higher but qualitatively similar to homogeneous stratified turbulence. Efficiency decreases in the highly energetic regime where the dissipation rate is large compared with viscosity and stratification, ɛ/(νN^2)>100, further declining as turbulence decays and kinetic energy dissipation dominates the buoyancy flux. In general, the mixing rate, parameterized by a turbulent eddy diffusivity, increases with the strength of the transverse shear.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Drenth, Benjamin J.
2014-01-01
The lower Paleozoic Elk Creek carbonatite is a 6–8-km-diameter intrusive complex buried under 200 m of sedimentary rocks in southeastern Nebraska. It hosts the largest known niobium deposit in the U.S. and a rare earth element (REE) deposit. The carbonatite is composed of several lithologies, the relations of which are poorly understood. Niobium mineralization is most enriched within a magnetite beforsite (MB) unit, and REE oxides are most concentrated in a barite beforsite unit. The carbonatite intrudes Proterozoic country rocks. Efforts to explore the carbonatite have used geophysical data and drilling. A high-resolution airborne gravity gradient and magnetic survey was flown over the carbonatite in 2012. The carbonatite is associated with a roughly annular vertical gravity gradient high and a subdued central low and a central magnetic high surrounded by magnetic field values lower than those over the country rocks. Geophysical, borehole, and physical property data are combined for an interpretation of these signatures. The carbonatite is denser than the country rocks, explaining the gravity gradient high. Most carbonatite lithologies have weaker magnetic susceptibilities than those of the country rocks, explaining why the carbonatite does not produce a magnetic high at its margin. The primary source of the central magnetic high is interpreted to be mafic rocks that are strongly magnetized and are present in large volumes. MB is very dense (mean density 3200 kg/m3) and strongly magnetized (median 0.073 magnetic susceptibility), producing a gravity gradient high and contributing to the aeromagnetic high. Barite beforsite has physical properties similar to most of the carbonatite volume, making it a poor geophysical target. Geophysical anomalies indicate the presence of dense and strongly magnetized rocks at depths below existing boreholes, either a large volume of MB or another unknown lithology.
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Balance performance was recorded under normal loading (NL, 1 g), UL (0.16 g 0.38 g) and OL (1.8 g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5 Hz (LF), medium 0.5-2 Hz (MF), high 2-6 Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
GOCE and Future Gravity Missions for Geothermal Energy Exploitation
NASA Astrophysics Data System (ADS)
Pastorutti, Alberto; Braitenberg, Carla; Pivetta, Tommaso; Mariani, Patrizia
2016-08-01
Geothermal energy is a valuable renewable energy source the exploitation of which contributes to the worldwide reduction of consumption of fossil fuels oil and gas. The exploitation of geothermal energy is facilitated where the thermal gradient is higher than average leading to increased surface heat flow. Apart from the hydrologic circulation properties which depend on rock fractures and are important due to the heat transportation from the hotter layers to the surface, essential properties that increase the thermal gradient are crustal thinning and radiogenic heat producing rocks. Crustal thickness and rock composition form the link to the exploration with the satellite derived gravity field, because both induce subsurface mass changes that generate observable gravity anomalies. The recognition of gravity as a useful investigation tool for geothermal energy lead to a cooperation with ESA and the International Renewable Energy Agency (IRENA) that included the GOCE derived gravity field in the online geothermal energy investigation tool of the IRENA database. The relation between the gravity field products as the free air gravity anomaly, the Bouguer and isostatic anomalies and the heat flow values is though not straightforward and has not a unique relationship. It is complicated by the fact that it depends on the geodynamical context, on the geologic context and the age of the crustal rocks. Globally the geological context and geodynamical history of an area is known close to everywhere, so that a specific known relationship between gravity and geothermal potential can be applied. In this study we show the results of a systematic analysis of the problem, including some simulations of the key factors. The study relies on the data of GOCE and the resolution and accuracy of this satellite. We also give conclusions on the improved exploration power of a gravity mission with higher spatial resolution and reduced data error, as could be achieved in principle by flying an atom interferometer sensor on board a satellite.
Impact of Orbit Position Errors on Future Satellite Gravity Models
NASA Astrophysics Data System (ADS)
Encarnacao, J.; Ditmar, P.; Klees, R.
2015-12-01
We present the results of a study of the impact of orbit positioning noise (OPN) caused by incomplete knowledge of the Earth's gravity field on gravity models estimated from satellite gravity data. The OPN is simulated as the difference between two sets of orbits integrated on the basis of different static gravity field models. The OPN is propagated into ll-SST data, here computed as averaged inter-satellite accelerations projected onto the Line of Sight (LoS) vector between the two satellites. We consider the cartwheel formation (CF), pendulum formation (PF), and trailing formation (TF) as they produce a different dominant orientation of the LoS vector. Given the polar orbits of the formations, the LoS vector is mainly aligned with the North-South direction in the TF, with the East-West direction in the PF (i.e. no along-track offset), and contains a radial component in the CF. An analytical analysis predicts that the CF suffers from a very high sensitivity to the OPN. This is a fundamental characteristic of this formation, which results from the amplification of this noise by diagonal components of the gravity gradient tensor (defined in the local frame) during the propagation into satellite gravity data. In contrast, the OPN in the data from PF and TF is only scaled by off-diagonal gravity gradient components, which are much smaller than the diagonal tensor components. A numerical analysis shows that the effect of the OPN is similar in the data collected by the TF and the PF. The amplification of the OPN errors for the CF leads to errors in the gravity model that are three orders of magnitude larger than those in case of the PF. This means that any implementation of the CF will most likely produce data with relatively low quality since this error dominates the error budget, especially at low frequencies. This is particularly critical for future gravimetric missions that will be equipped with highly accurate ranging sensors.
Muscle activity patterns altered during pedaling at different body orientations.
Brown, D A; Kautz, S A; Dairaghi, C A
1996-10-01
Gravity is a contributing force that is believed to influence strongly the control of limb movements since it affects sensory input and also contributes to task mechanics. By altering the relative contribution of gravitational force to the overall forces used to control pedaling at different body orientations, we tested the hypothesis that joint torque and muscle activation patterns would be modified to generate steady-state pedaling at altered body orientations. Eleven healthy subjects pedaled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload (80 J), cadence (60 rpm), and hip and knee kinematics. Pedal reaction forces and crank and pedal kinematics were measured and used to calculate joint torques and angles. EMG was recorded from four muscles (tibialis anterior, triceps surae, rectus femoris, biceps femoris). Measures of muscle activation (joint torque and EMG activity) showed strong dependence on body orientation, indicating that muscle activity is not fixed and is modified in response to altered body orientation. Simulations confirmed that, while joint torque changes were not necessary to pedal at different body orientations, observed changes were necessary to maintain consistent crank angular velocity profiles. Dependence of muscle activity on body orientation may be due to neural integration of sensory information with an internal model that includes characteristics of the endpoint, to produce consistent pedaling trajectories. Thus, both sensory consequences and mechanical aspects of gravitational forces are important determinants of locomotor tasks such as pedaling.
NASA Astrophysics Data System (ADS)
Hughes, J.; Schaub, H.
2017-12-01
Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.
Speed of the bacterial flagellar motor near zero load depends on the number of stator units
Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.
2017-01-01
The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322
Orbital Gravity Gradiometry Beyond GOCE: Mission Concepts
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.; Paik, Ho Jung; Moody, M. Vol; Venkateswara, Krishna Y.; Han, Shin-Chan; Ditmar, Pavel; Klees, Roland; Jekeli, Christopher;
2010-01-01
Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade, including cryocoolers, spacecraft architectures and cryogenic amplifiers. These enable considerably more complex instruments to be put into orbit for long-duration missions. One such instrument is the Superconducting Gravity Gradiometer (SGG) developed by Paik, et al. A magnetically levitated version is under consideration for a follow-on mission to GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer). With its inherently greater rejection of common mode accelerations and ability to cancel the coupling of angular accelerations into the gradient signal, the SGG can achieve [an accuracy of] 0.01 milli-Eotvos (gravitational gradient of the Earth) divided by the square root of frequency in hertz, with requirements for attitude control that can be met with existing spacecraft. In addition, the use of a cryocooler for cooling the instrument will alleviate the previously severe constraint on mission lifetime imposed by the use of superfluid helium,. enabling mission durations in the 5-10 year range. Studies are underway to determine requirements for orbit (polar versus sun-synchronous), altitude (which affects spacecraft drag), instrument temperature and stability, cryocooler vibration control, and control and readout electronics. These will be used to determine the SGG's sensitivity and ultimate resolution for gravity recovery. This paper will discuss preliminary instrument and spacecraft design, and toplevel mission requirements.
On the stability conditions for theories of modified gravity in the presence of matter fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios, E-mail: antonio.defelice@yukawa.kyoto-u.ac.jp, E-mail: fruscian@iap.fr, E-mail: papadomanolakis@lorentz.leidenuniv.nl
We present a thorough stability analysis of modified gravity theories in the presence of matter fields. We use the Effective Field Theory framework for Dark Energy and Modified Gravity to retain a general approach for the gravity sector and a Sorkin-Schutz action for the matter one. Then, we work out the proper viability conditions to guarantee in the scalar sector the absence of ghosts, gradient and tachyonic instabilities. The absence of ghosts can be achieved by demanding a positive kinetic matrix, while the lack of a gradient instability is ensured by imposing a positive speed of propagation for all themore » scalar modes. In case of tachyonic instability, the mass eigenvalues have been studied and we work out the appropriate expressions. For the latter, an instability occurs only when the negative mass eigenvalue is much larger, in absolute value, than the Hubble parameter. We discuss the results for the minimally coupled quintessence model showing for a particular set of parameters two typical behaviours which in turn lead to a stable and an unstable configuration. Moreover, we find that the speeds of propagation of the scalar modes strongly depend on matter densities, for the beyond Horndeski theories. Our findings can be directly employed when testing modified gravity theories as they allow to identify the correct viability space.« less
The reduction of a ""safety catastrophic'' potential hazard: A case history
NASA Technical Reports Server (NTRS)
Jones, J. P.
1971-01-01
A worst case analysis is reported on the safety of time watch movements for triggering explosive packages on the lunar surface in an experiment to investigate physical lunar structural characteristics through induced seismic energy waves. Considered are the combined effects of low pressure, low temperature, lunar gravity, gear train error, and position. Control measures constitute a seal control cavity and design requirements to prevent overbanking in the mainspring torque curve. Thus, the potential hazard is reduced to safety negligible.
Performance evaluation of candidate space suit elements for the next generation orbital EMU
NASA Technical Reports Server (NTRS)
West, Philip R.; Trausch, Stephanie V.
1992-01-01
The AX-5 all metallic, multibearing technologies developed at the Ames Research Center and the Mk III fabric and metallic technologies developed at the Johnson Space Center were evaluated using the current Space Shuttle space suit technologies as a baseline. Manned evaluations were performed in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft. Joint torque, range, cycle life, and environmental protection characteristics were analyzed during unmanned tests. Both numerical results and test subject comments on performance are presented.
The dynamics and control of large flexible space structures, part 11
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reddy, A. S. S. R; Diarra, Cheick M.; Li, Feiyue
1988-01-01
A mathematical model is developed to predict the dynamics of the proposed Spacecraft Control Laboratory Experiment during the stationkeeping phase. The Shuttle and reflector are assumed to be rigid, while the mass connecting the Shuttle to the reflector is assumed to be flexible with elastic deformations small as compared with its length. It is seen that in the presence of gravity-gradient torques, the system assumes a new equilibrium position primarily due to the offset in the mass attachment point to the reflector from the reflector's mass center. Control is assumed to be provided through the Shuttle's three torquers and throught six actuators located by painrs at two points on the mass and at the reflector mass center. Numerical results confirm the robustness of an LQR derived control strategy during stationkeeping with maximum control efforts significantly below saturation levels. The linear regulator theory is also used to derive control laws for the linearized model of the rigidized SCOLE configuration where the mast flexibility is not included. It is seen that this same type of control strategy can be applied for the rapid single axis slewing of the SCOLE through amplitudes as large as 20 degrees. These results provide a definite trade-off between the slightly larger slewing times with the considerable reduction in over-all control effort as compared with the results of the two point boundary value problem application of Pontryagin's Maximum Principle.
Braun, M; Limbach, C
2006-12-01
Gravitropically tip-growing rhizoids and protonemata of characean algae are well-established unicellular plant model systems for research on gravitropism. In recent years, considerable progress has been made in the understanding of the cellular and molecular mechanisms underlying gravity sensing and gravity-oriented growth. While in higher-plant statocytes the role of cytoskeletal elements, especially the actin cytoskeleton, in the mechanisms of gravity sensing is still enigmatic, there is clear evidence that in the characean cells actin is intimately involved in polarized growth, gravity sensing, and the gravitropic response mechanisms. The multiple functions of actin are orchestrated by a variety of actin-binding proteins which control actin polymerisation, regulate the dynamic remodelling of the actin filament architecture, and mediate the transport of vesicles and organelles. Actin and a steep gradient of cytoplasmic free calcium are crucial components of a feedback mechanism that controls polarized growth. Experiments performed in microgravity provided evidence that actomyosin is a key player for gravity sensing: it coordinates the position of statoliths and, upon a change in the cell's orientation, directs sedimenting statoliths to specific areas of the plasma membrane, where contact with membrane-bound gravisensor molecules elicits short gravitropic pathways. In rhizoids, gravitropic signalling leads to a local reduction of cytoplasmic free calcium and results in differential growth of the opposite subapical cell flanks. The negative gravitropic response of protonemata involves actin-dependent relocation of the calcium gradient and displacement of the centre of maximal growth towards the upper flank. On the basis of the results obtained from the gravitropic model cells, a similar fine-tuning function of the actomyosin system is discussed for the early steps of gravity sensing in higher-plant statocytes.
Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data
McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.
2014-01-01
The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.
Role of actin in auxin transport and transduction of gravity
NASA Astrophysics Data System (ADS)
Hu, S.; Basu, S.; Brady, S.; Muday, G.
Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)
Thermocapillary reorientation of Janus drops
NASA Astrophysics Data System (ADS)
Rosales, Rodolfo; Saenz, Pedro
2017-11-01
Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.
Experimental Assessment of the Hydraulics of a Miniature Axial-Flow Left Ventricular Assist Device
NASA Astrophysics Data System (ADS)
Smith, P. Alex; Cohn, William; Metcalfe, Ralph
2017-11-01
A minimally invasive partial-support left ventricular assist device (LVAD) has been proposed with a flow path from the left atrium to the arterial system to reduce left ventricular stroke work. In LVAD design, peak and average efficiency must be balanced over the operating range to reduce blood trauma. Axial flow pumps have many geometric parameters. Until recently, testing all these parameters was impractical, but modern 3D printing technology enables multi-parameter studies. Following theoretical design, experimental hydraulic evaluation in steady state conditions examines pressure, flow, pressure-flow gradient, efficiency, torque, and axial force as output parameters. Preliminary results suggest that impeller blades and stator vanes with higher inlet angles than recommended by mean line theory (MLT) produce flatter gradients and broader efficiency curves, increasing compatibility with heart physiology. These blades also produce less axial force, which reduces bearing load. However, they require slightly higher torque, which is more demanding of the motor. MLT is a low order, empirical model developed on large pumps. It does not account for the significant viscous losses in small pumps like LVADs. This emphasizes the importance of experimental testing for hydraulic design. Roderick D MacDonald Research Fund.
Geothermal Exploration of the Winston Graben, Central New Mexico, USA
NASA Astrophysics Data System (ADS)
Sophy, M. J.; Kelley, S. A.
2011-12-01
We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the intersection of basin bounding faults and the Chise lineament. Water table gradient information from phreatic aquifers less than 75 meters deep suggests both along axis and cross axis flow direction within the basin. Because the temperature anomalies trend east-west and water table gradients trend north-south, a two component hydrogeologic system may exist. The east-west trend may be the result of deep groundwater, heated along its flowpath beneath the basin and the Sierra Cuchillo, being forced to the surface at structural zones. Major rift bounding faults along the Sierra Cuchillo horst block serve as fluid pathways for the existing warm springs, and a low temperature geothermal resource may have formed as deep warm, and shallow cool waters interact. Planned work on this project includes collecting hydrogen and oxygen isotopic data of precipitation and groundwater which may show distinct water chemistries of a two component system, continued temperature logging of deeper wells in order to understand temperature distributions at depth, and an increased number of gravity measurements of the southern end of the Winston Graben to improve mapping of the southern accommodation zone relative to the hydrogeologic system.
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Duncan, R. V.
1993-01-01
A design is presented of a low gravity simulator where a magnetic field gradient is employed to oppose the hydrostatic pressure effects of gravity. It appears feasible to reduce the effective gravity environment of the helium in the cell by about two orders of magnitude. The corresponding shift in transition temperature with vertical height would be reduced to 12.7 nK/cm. Methods for instrumenting the simulator to perform high resolution investigations of non-equilibrium phenomena near the lambda point are presented. The advantages of using a low gravity simulator in searching for the predicted change in character of the superfluid transition from continuous to first order in the presence of a heat current are also discussed.
NASA Astrophysics Data System (ADS)
Khattab, M. M.
1993-04-01
The compiled Bouguer gravity anomaly map over parts of the ophiolite rocks of the Northern Oman Mountains suggests the existence of three partially serpentinized nappes: two along the Gulf of Oman coast with axes near Dadnah, near Fujira and the third 17 km SSE of Masafi. Modeling of the subsurface geology, beneath two gravity profiles (Diba-Kalba and Masafi-Fujira), is based on the occurrence (field evidence) of multiphase low-angle thrusting of the members of the Tethyan lithosphere in northern and Oman Mountains. An assumed crustal model at the Arabian continental margin, beneath the Masafi-Fujira profile, is made to explain an intense gravity gradient. Gravity interpretation is not inconsistent with a gliding mechanism for obduction of the ophiolite on this part of the Arabian continental margin.
Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios
NASA Astrophysics Data System (ADS)
Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.
2017-12-01
Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.
LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture1[OPEN
2017-01-01
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient. PMID:28821594
Supplementary active stabilization of nonrigid gravity gradient satellites
NASA Technical Reports Server (NTRS)
Keat, J. E.
1972-01-01
The use of active control for stability augmentation of passive gravity gradient satellites is investigated. The reaction jet method of control is the main interest. Satellite nonrigidity is emphasized. The reduction in the Hamiltonian H is used as a control criteria. The velocities, relative to local vertical, of the jets along their force axes are shown to be of fundamental significance. A basic control scheme which satisfies the H reduction criteria is developed. Each jet is fired when its velocity becomes appropriately large. The jet is de-energized when velocity reaches zero. Firing constraints to preclude orbit alteration may be needed. Control is continued until H has been minimized. This control policy is investigated using impulse and rectangular pulse models of the jet outputs.
Preliminary Isostatic Gravity Map of Joshua Tree National Park and Vicinity, Southern California
Langenheim, V.E.; Biehler, Shawn; McPhee, D.K.; McCabe, C.A.; Watt, J.T.; Anderson, M.L.; Chuchel, B.A.; Stoffer, P.
2007-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in Joshua Tree National Park, southern California. This map will serve as a basis for modeling the shape of basins beneath the Park and in adjacent valleys and also for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure, reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic or structural boundaries. High-density basement rocks exposed within the Eastern Transverse Ranges include crystalline rocks that range in age from Proterozoic to Mesozoic and these rocks are generally present in the mountainous areas of the quadrangle. Alluvial sediments, usually located in the valleys, and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range of densities, but, on average, are less dense than the pre-Cenozoic basement rocks. Basalt within the Park is as dense as crystalline basement, but is generally thin (less than 100 m thick; e.g., Powell, 2003). Isostatic residual gravity values within the map area range from about 44 mGal over Coachella Valley to about 8 mGal between the Mecca Hills and the Orocopia Mountains. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the San Andreas Fault bounding the east side of Coachella Valley and east-west-striking, left-lateral faults, such as the Pinto Mountain, Blue Cut, and Chiriaco Faults (Fig. 1). Gravity gradients also define concealed basin-bounding faults, such as those beneath the Chuckwalla Valley (e.g. Rotstein and others, 1976). These gradients result from juxtaposing dense basement rocks against thick Cenozoic sedimentary rocks.
Satellite gravity gradient views help reveal the Antarctic lithosphere
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Ebbing, J.; Pappa, F.; Kern, M.; Forsberg, R.
2017-12-01
Here we present and analyse satellite gravity gradient signatures derived from GOCE and superimpose these on tectonic and bedrock topography elements, as well as seismically-derived estimates of crustal thickness for the Antarctic continent. The GIU satellite gravity component images the contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. The new images also suggest that more distributed wide-mode lithospheric and crustal extension affects both the Ross Sea Embayment and the less well known Ross Ice Shelf segment of the rift system. However, this pattern is less clear towards the Bellingshousen Embayment, indicating that the rift system narrows towards the southern edge of the Antarctic Peninsula. In East Antarctica, the satellite gravity data provides new views into the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding augments recent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events. Thick crust is imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane. The GIA and GIU components help delineate the edges of several of these lithospheric provinces. One of the most prominent lithospheric-scale features discovered in East Antarctica from satellite gravity gradient imaging is the Trans East Antarctic Shear Zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and appears to form the southern boundary of the Recovery Province. We propose, based on geological data in the Lutzow Holm Complex region and formerly adjacent segments of India, Madagascar and eastern Africa that it may represent a major Pan-African age suture and/or shear zone related to Gondwana assembly.
Maui Gravity and Soil Gas Surveys
John Akerley
2010-04-01
Contains a ground-based gravity survey of South Maui and a series of soil CO2 flux and temperature surveys encompassing Maui and the Big Island. The gravity survey was collected from approximately 284 km2 and consisted of 400 gravity stations with 400 m spacing. Locations were derived with full DGPS. Station and line location, Complete Bouger Anomaly, first vertical derivative and horizontal gradient maps were calculated and produced. The soil CO2 flux and temperature surveys were conducted on the islands of Hawaii and Maui in April and July 2010. Average soil temperatures were measured over 10 cm depth using a hand-held thermocouple. Soil CO2 fluxes were measured using a portable accumulation chamber instrument.
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
Development of a Transportable Gravity Gradiometer Based on Atom Interferometry
NASA Astrophysics Data System (ADS)
Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.
2007-12-01
JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.
Gravity-independent constant force resistive exercise unit
NASA Technical Reports Server (NTRS)
Colosky, Jr., Paul E. (Inventor); Ruttley, Tara M. (Inventor)
2004-01-01
This invention describes a novel gravity-independent exercise unit designed for use in microgravity, or on the ground, as a means by which to counter muscle atrophy and bone degradation due to disuse or underuse. Modular resistive packs comprising constant torque springs provide constant force opposing the withdrawal of an exercise cable from the device. In addition to uses within the space program, the compact resistive packs of the CFREU allow the unit to be small enough for easy use as a home gym for personal use, or as a supplement for rehabilitation programs. Resistive packs may be changed conveniently out of the CFREU according to the desired exercise regimen. Thus, the resistive packs replace the need for expensive, heavy, and bulky traditional weight plates. The CFREU may be employed by hospitals, rehabilitation and physical therapy clinics, and other related professional businesses.
On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs
NASA Astrophysics Data System (ADS)
Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.
2016-05-01
The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.
Burrowes, Kelly S; Hunter, Peter J; Tawhai, Merryn H
2005-11-01
A computational model of blood flow through the human pulmonary arterial tree has been developed to investigate the relative influence of branching structure and gravity on blood flow distribution in the human lung. Geometric models of the largest arterial vessels and lobar boundaries were first derived using multidetector row x-ray computed tomography (MDCT) scans. Further accompanying arterial vessels were generated from the MDCT vessel endpoints into the lobar volumes using a volume-filling branching algorithm. Equations governing the conservation of mass and momentum were solved within the geometric model to calculate pressure, velocity, and vessel radius. Blood flow results in the anatomically based model, with and without gravity, and in a symmetric geometric model were compared to investigate their relative contributions to blood flow heterogeneity. Results showed a persistent blood flow gradient and flow heterogeneity in the absence of gravitational forces in the anatomically based model. Comparison with flow results in the symmetric model revealed that the asymmetric vascular branching structure was largely responsible for producing this heterogeneity. Analysis of average results in varying slice thicknesses illustrated a clear flow gradient because of gravity in "lower resolution" data (thicker slices), but on examination of higher resolution data, a trend was less obvious. Results suggest that although gravity does influence flow distribution, the influence of the tree branching structure is also a dominant factor. These results are consistent with high-resolution experimental studies that have demonstrated gravity to be only a minor determinant of blood flow distribution.
A Technique for Rapidly Deploying a Concentration Gradient with Applications to Microgravity
NASA Technical Reports Server (NTRS)
Leslie, Fred; Ramachandran, Narayanan
2000-01-01
The latter half of the last century has seen rapid advancements in semiconductor crystal growth powered by the demand for high performance electronics in myriad applications. The reduced gravity environment of space has also been used for crystal growth tests, especially in instances where terrestrial growth has largely been unsuccessful. While reduced gravity crystal growth affords some control of the gravity parameter, many crystals grown in space, to date, have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. In order to study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received growing interest in recent times. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Results of the ground-based experiments indicate that the concentration distribution is within 3% of the predicted value. Although any range of concentations can be realized, photometric constraints are discussed which impose some limitations on measurements.
Gravity-height correlations for unrest at calderas
NASA Astrophysics Data System (ADS)
Berrino, G.; Rymer, H.; Brown, G. C.; Corrado, G.
1992-11-01
Calderas represent the sites of the world's most serious volcanic hazards. Although eruptions are not frequent at such structures on the scale of human lifetimes, there are nevertheless often physical changes at calderas that are measurable over periods of years or decades. Such calderas are said to be in a state of unrest, and it is by studying the nature of this unrest that we may begin to understand the dynamics of eruption precursors. Here we review combined gravity and elevation data from several restless calderas, and present new data on their characteristic signatures during periods of inflation and deflation. We find that unless the Bouguer gravity anomaly at a caldera is extremely small, the free-air gradient used to correct gravity data for observed elevation changes must be the measured or calculated gradient, and not the theoretical gradient, use of which may introduce significant errors. In general, there are two models that fit most of the available data. The first involves a Mogi-type point source, and the second is a Bouguer-type infinite horizontal plane source. The density of the deforming material (usually a magma chamber) is calculated from the gravity and ground deformation data, and the best fitting model is, to a first approximation, the one producing the most realistic density. No realistic density is obtained where there are real density changes, or where the data do not fit the point source or slab model. We find that a point source model fits most of the available data, and that most data are for periods of caldera inflation. The limited examples of deflation from large silicic calderas indicate that the amount of mass loss, or magma drainage, is usually much less than the mass gain during the preceding magma intrusion. In contrast, deflationary events at basaltic calderas formed in extensional tectonic environments are associated with more significant mass loss as magma is injected into the associated fissure swarms.
Modification of the magnetization dynamics of a NiFe nanodot due to thermal spin injection
NASA Astrophysics Data System (ADS)
Asam, Nagarjuna; Yamanoi, Kazuto; Kimura, Takashi
2018-06-01
An array of NiFe nanodots has been prepared on a Cu/CoFeAl film. Since a thermal spin current is expected to be excited owing to a large spin-dependent Seebeck coefficient for the CoFeAl, we investigate the magnetization dynamics of the NiFe dots under the temperature gradient along the vertical direction. By using vector network analyzer measurements, we have demonstrated that the temperature gradient produces modulations of the frequency of ferromagnetic resonance and the linewidth of the resonance spectra. The observed parabolic dependences are well explained by the damping-like and field-like components of spin transfer torque.
Langenheim, Victoria; Athens, N.D.; Churchel, B.A.; Willis, H.; Knepprath, N.E.; Rosario, Jose J.; Roza, J.; Kraushaar, S.M.; Hardwick, C.L.
2013-01-01
A new isostatic residual gravity map of the Newfoundland Mountains and east of the Wells 30×60 quadrangles of Utah is based on compilation of preexisting data and new data collected by the Utah and U.S. Geological Surveys. Pronounced gravity lows occur over Grouse Creek Valley and locally beneath the Great Salt Lake Desert, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Newfoundland, Silver Island, and Little Pigeon Mountains. Gravity values measured on pre-Tertiary basement to the north in the Bovine and Hogup Mountains are as much as 10mGal lower. Steep, linear gravity gradients may define basin-bounding faults concealed along the margins of the Newfoundland, Silver Island, and Little Pigeon Mountains, Lemay Island and the Pilot Range.
Preferred negative geotactic orientation in mobile cells: Tetrahymena results.
Noever, D A; Cronise, R; Matsos, H C
1994-01-01
For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved alternating periods of low (0.01 g) and high (1.8 g; g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectories as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (if it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research. Images FIGURE 1 PMID:7858146
Preferred Negative Geotactic Orientation in Mobile Cells: Tetrahymena Results
NASA Technical Reports Server (NTRS)
Noever, David A.; Cronise, Raymond; Matsos, Helen C.
1994-01-01
For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved altemating periods of low (0.01 g) and high (1.8 g, g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectores as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (it it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research.
NASA Astrophysics Data System (ADS)
Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.
2011-12-01
Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density distribution, well defining a central uplift area, ring structures and low density sediments. REFERENCES Cella F., and Fedi M., 2011, Inversion of potential field data using the structural index as weighting function rate decay, Geophysical Prospecting, doi: 10.1111/j.1365-2478.2011.00974.x Fedi M., Hansen P. C., and Paoletti V., 2005 Analysis of depth resolution in potential-field inversion. Geophysics, 70, NO. 6 Li, Y., 2001, 3-D inversion of gravity gradiometry data: 71st Annual Meeting, SEG, Expanded Abstracts, 1470-1473. Zhdanov, M. S., Ellis, R. G., and Mukherjee, S., 2004, Regularized focusing inversion of 3-D gravity tensor data: Geophysics, 69, 925-937.
Effects of artificial gravity on the cardiovascular system: Computational approach
NASA Astrophysics Data System (ADS)
Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.
2016-09-01
Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.
Solitary plasma rings and magnetic field generation involving gravity and differential rotation
NASA Astrophysics Data System (ADS)
Coppi, B.
2012-12-01
A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.
Spin-Orbit Misalignment of Two-Planet-System KOI-89 Via Gravity Darkening
NASA Astrophysics Data System (ADS)
Ahlers, Jonathon; Barnes, Jason W.; Barnes, Rory
2015-12-01
We investigate the potential causes of spin-orbit misalignment in multiplanetary systems via two-planet-system KOI-89. We focus on this system because it can experimentally constrain the outstanding hypotheses that have been proposed to cause misalignments. Using gravity darkening, we constrain both the spin-orbit angles and the angle between the planes of the orbits. Our best-fit model shows that the 85-day-orbit and 208-day-orbit planets are misaligned from the host star's rotation axis by 72° ± 3° and 73° (+11 -5°), respectively. From these results, we limit KOI-89's potential causes of spin-orbit misalignment based on three criteria: agreement with KOI-89's fundamental parameters, the capability to cause extreme misalignment, and conformance with mutually aligned planets. Our results disfavor planet-embryo collisions, chaotic evolution of stellar spin, magnetic torquing, coplanar high-eccentricity migration, and inclination resonance, limiting possible causes to star-disk binary interactions, disk warping via planet-disk interactions, Kozai resonance, planet-planet scattering, or internal gravity waves in the convective interior of the star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Arnab, E-mail: arnabbose@ee.iitb.ac.in; Jain, Sourabh; Asam, Nagarjuna
We report the thermally driven giant field-like spin-torque in magnetic tunnel junctions (MTJ) on application of heat current from top to bottom. The field-like term is detected by the shift of the magneto-resistance hysteresis loop applying temperature gradient. We observed that the field-like term depends on the magnetic symmetry of the MTJ. In asymmetric structures, with different ferromagnetic materials for free and fixed layers, the field-like term is greatly enhanced. Our results show that a pure spin current density of the order of 10{sup 9 }A/m{sup 2} can be produced by creating a 120 mK temperature difference across 0.9 nm thick MgOmore » tunnelling barrier. Our results will be useful for writing MTJ and domain wall-based memories using thermally driven spin torque.« less
Non-collinear magnetism with analytic Bond-Order Potentials
NASA Astrophysics Data System (ADS)
Ford, Michael E.; Pettifor, D. G.; Drautz, Ralf
2015-03-01
The theory of analytic Bond-Order Potentials as applied to non-collinear magnetic structures of transition metals is extended to take into account explicit rotations of Hamiltonian and local moment matrix elements between locally and globally defined spin-coordinate systems. Expressions for the gradients of the energy with respect to the Hamiltonian matrix elements, the interatomic forces and the magnetic torques are derived. The method is applied to simulations of the rotation of magnetic moments in α iron, as well as α and β manganese, based on d-valent orthogonal tight-binding parametrizations of the electronic structure. A new weighted-average terminator is introduced to improve the convergence of the Bond-Order Potential energies and torques with respect to tight-binding reference values, although the general behavior is qualitatively correct for low-moment expansions.
The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates
NASA Astrophysics Data System (ADS)
Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.
2018-02-01
We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.
Satellite borne gravity gradiometer study
NASA Technical Reports Server (NTRS)
Metzger, E.; Jircitano, A.; Affleck, C.
1976-01-01
Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.
Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah
Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.
1999-01-01
Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the north reflects the southern flank of a structural dome that led to the Pavant Range homocline and whose southern edge lies along the Clear Creek downwarp.
Toward an improved determination of Earth's lithospheric magnetic field from satellite observations
NASA Astrophysics Data System (ADS)
Kotsiaros, S.
2016-12-01
An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rummel and van Gelderen (1992) for the gravity potential, shows that when the tensor elements are grouped into sets of semi-tangential and pure-tangential parts, they produce almost identical signal content as the normal element. Moreover, simple eigenvalue relations can be derived between these sets and the spherical harmonic expansion of the potential. This theoretical development generally applies to any potential field. First, the analysis of Rummel and van Gelderen (1992) is adapted to the magnetic field case and then the elements of the magnetic gradient tensor are estimated by 2 years of Swarm data and grouped into Γ(1) = {[∇B]rθ,[∇B]rφ} resp. Γ(2) = {[∇B]θθ-[∇B]φφ, 2[∇B]θφ}. It is shown that the estimated combinations Γ(1) and Γ(2) produce similar signal content as the theoretical radial gradient [∇B]rr. These results demonstrate the ability of multi-satellite missions such as Swarm, which cannot directly measure the radial gradient, to retrieve similar signal content by means of the horizontal gradients. Finally, lithospheric field models are derived using the gradient combinations Γ(1) and Γ(2) and compared with models derived from traditional vector and gradient data. The model resulting from Γ(1) leads to a very similar, and in particular cases improved, model compared to models retrieved by using approximately three times more data, i.e. a full set of vector, North-South and East-West gradients. ReferencesRummel, R., and M. van Gelderen (1992), Spectral analysis of the full gravity tensor, Geophysical Journal International, 111 (1), 159-169.
Improving the quality of marine geophysical track line data: Along-track analysis
NASA Astrophysics Data System (ADS)
Chandler, Michael T.; Wessel, Paul
2008-02-01
We have examined 4918 track line geophysics cruises archived at the U.S. National Geophysical Data Center (NGDC) using comprehensive error checking methods. Each cruise was checked for observation outliers, excessive gradients, metadata consistency, and general agreement with satellite altimetry-derived gravity and predicted bathymetry grids. Thresholds for error checking were determined empirically through inspection of histograms for all geophysical values, gradients, and differences with gridded data sampled along ship tracks. Robust regression was used to detect systematic scale and offset errors found by comparing ship bathymetry and free-air anomalies to the corresponding values from global grids. We found many recurring error types in the NGDC archive, including poor navigation, inappropriately scaled or offset data, excessive gradients, and extended offsets in depth and gravity when compared to global grids. While ˜5-10% of bathymetry and free-air gravity records fail our conservative tests, residual magnetic errors may exceed twice this proportion. These errors hinder the effective use of the data and may lead to mistakes in interpretation. To enable the removal of gross errors without over-writing original cruise data, we developed an errata system that concisely reports all errors encountered in a cruise. With such errata files, scientists may share cruise corrections, thereby preventing redundant processing. We have implemented these quality control methods in the modified MGD77 supplement to the Generic Mapping Tools software suite.
Gravitropic mechanisms derived from space experiments and magnetic gradients.
NASA Astrophysics Data System (ADS)
Hasenstein, Karl H.; Park, Myoung Ryoul
2016-07-01
Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex and different responses to microgravity conditions, induced curvature, ground controls, clinorotation, and magnetic field exposure.
Spaceborne gravity gradiometry characterizing the data type
NASA Technical Reports Server (NTRS)
Sonnabend, D.
1987-01-01
Satellite gravity gradiometers, particularly the two stage drag free carrier vehicle are discussed. An inner stage, carrying the tracking antenna(s), measures the relative position of the internal free proof mass, and feeds this to a set of magnetic forcers, acting against the outer or main vehicle. As the external forces on the inner stage are low, and as the position relative to the proof mass is tightly controlled, carrier phase disturbances are greatly reduced. The arrangement lowers instantaneous accelerations. It is stressed that gravity gradiometers do not measure gradients, they measure components of an intrinsic tensor.
New 2D dilaton gravity for nonsingular black holes
NASA Astrophysics Data System (ADS)
Kunstatter, Gabor; Maeda, Hideki; Taves, Tim
2016-05-01
We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock (ELL) gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoff’s theorem. In complete analogy with spherically symmetric ELL gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black hole spacetimes than previously available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohner, Bíborka; Endrődi, Balázs; Tóth, Ágota, E-mail: atoth@chem.u-szeged.hu
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence ofmore » a strong gravity current.« less
Geographic variation in wood specific gravity: effects of latitude, temperature, and precipitation
Michael C. Wiemann; G. Bruce Williamson
2002-01-01
Wood basic specific gravity (SG) was compared at sites located along a gradient from 52°N latitude to the equator. Mean SG increased by 0.0049 per °C mean annual temperature (MAT), and decreased by 0.00017 per cm of mean annual precipitation (MAP). Considered alone, MAT was a better predictor of mean SG across the temperate zone (3-22°C MAT,...
Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data
NASA Astrophysics Data System (ADS)
Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.
2017-12-01
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.
Lineaments in the Shamakhy-Gobustan and Absheron hydrocarbon containing areas using gravity data
NASA Astrophysics Data System (ADS)
Elmas, Ali; Karsli, Hakan; Kadirov, Fakhraddin A.
2018-02-01
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy-Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker-Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy-Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Sen, Subhayu; Mukherjee, Sundeep; Catalina, Adrian; Stefanescu, Doru M.
1999-01-01
Numerical modeling was undertaken to analyze the influence of radial thermal gradient on solid/liquid (s/1) interface shape and convection patterns during solidification of pure Al and Al-4 wt% Cu alloy. The objective of the numerical task was to predict the influence of convective velocity on an insoluble particle near a s/l interface. These predictions would then be used to define the minimum gravity level (g) required to investigate the fundamental physics of interaction between a particle and a s/I interface. To satisfy this objective, steady state calculations were performed for different gravity levels and orientations with the gravity vector. ne furnace configuration used in this analysis is the proposed International Space Station Furnace, Quench Module Insert (QMI) 1. Results from a thermal model of the furnace core were used as initial boundary conditions for solidification modeling. General model of binary alloy solidification was based on the finite element code FIDAP. It was found that for the worst case orientation of 90 degrees with the gravity vector and a g level of 10(exp -4)g(sub o) (g(sub o) = 9.8 m/s(exp 2)) the dominant forces acting on the particle would be the fundamental drag and interfacial forces.
Di, Shengmeng; Tian, Zongcheng; Qian, Airong; Gao, Xiang; Yu, Dan; Brandi, Maria Luisa; Shang, Peng
2011-12-01
Studies of animals and humans subjected to spaceflight demonstrate that weightlessness negatively affects the mass and mechanical properties of bone tissue. Bone cells could sense and respond to the gravity unloading, and genes sensitive to gravity change were considered to play a critical role in the mechanotransduction of bone cells. To evaluate the fold-change of gene expression, appropriate reference genes should be identified because there is no housekeeping gene having stable expression in all experimental conditions. Consequently, expression stability of ten candidate housekeeping genes were examined in osteoblast-like MC3T3-E1, osteocyte-like MLO-Y4, and preosteoclast-like FLG29.1 cells under different apparent gravities (μg, 1 g, and 2 g) in the high-intensity gradient magnetic field produced by a superconducting magnet. The results showed that the relative expression of these ten candidate housekeeping genes was different in different bone cells; Moreover, the most suitable reference genes of the same cells in altered gravity conditions were also different from that in strong magnetic field. It demonstrated the importance of selecting suitable reference genes in experimental set-ups. Furthermore, it provides an alternative choice to the traditionally accepted housekeeping genes used so far about studies of gravitational biology and magneto biology.
Access to high beta advanced inductive plasmas at low injected torque
NASA Astrophysics Data System (ADS)
Solomon, W. M.; Politzer, P. A.; Buttery, R. J.; Holcomb, C. T.; Ferron, J. R.; Garofalo, A. M.; Grierson, B. A.; Hanson, J. M.; In, Y.; Jackson, G. L.; Kinsey, J. E.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Okabayashi, M.; Petty, C. C.; Turco, F.; Welander, A. S.
2013-09-01
Recent experiments on DIII-D demonstrate that advanced inductive (AI) discharges with high equivalent normalized fusion gain can be accessed and sustained with very low amounts (∼1 N m) of externally injected torque, a level of torque that is anticipated to drive a similar amount of rotation as the beams on ITER, via simple consideration of the scaling of the moment of inertia and confinement time. The AI regime is typically characterized by high confinement, and high βN, allowing the possibility for high performance, high gain operation at reduced plasma current. Discharges achieved βN ∼ 3.1 with H98(y,2) ∼ 1 at q95 ∼ 4, and are sustained for the maximum duration of the counter neutral beams (NBs). In addition, plasmas using zero net NB torque from the startup all the way through to the high βN phase have been created. AI discharges are found to become increasingly susceptible to m/n = 2/1 neoclassical tearing modes as the torque is decreased, which if left unmitigated, generally slow and lock, terminating the high performance phase of the discharge. Access is not notably different whether one ramps the torque down at high βN, or ramps βN up at low torque. The use of electron cyclotron heating (ECH) and current drive proved to be an effective method of avoiding such modes, enabling stable operation at high beta and low torque, a portion of phase space that has otherwise been inaccessible. Thermal confinement is significantly reduced at low rotation, a result that is reproduced using the TGLF transport model. Although it is thought that stiffness is increased in regions of low magnetic shear, in these AI plasmas, the reduced confinement occurs at radii outside the low shear, and in fact, higher temperature gradients can be found in the low shear region at low rotation. Momentum transport is also larger at low rotation, but a significant intrinsic torque is measured that is consistent with a previous scaling considering the role of the turbulent Reynolds stress and thermal ion orbit loss. Although high normalized fusion performance has been achieved in these discharges, more detailed projections suggest that enhancement in the confinement needs to be realized in order to obtain a low current solution consistent with ITER Q = 10 performance, and this remains a future research challenge.
Radiation-driven rotational motion of nanoparticles
Liang, Mengning; Harder, Ross; Robinson, Ian
2018-04-25
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Radiation-driven rotational motion of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Mengning; Harder, Ross; Robinson, Ian
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. I. MIGRATION IN ISOTHERMAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casoli, J.; Masset, F. S., E-mail: jules.casoli@cea.f, E-mail: frederic.masset@cea.f, E-mail: jules.casoli@cea.f
2009-09-20
We investigate the unsaturated horseshoe drag exerted on a low-mass planet by an isothermal gaseous disk. In the globally isothermal case, we use a formalism, based on the use of a Bernoulli invariant, that takes into account pressure effects, and that extends the torque estimate to a region wider than the horseshoe region. We find a result that is strictly identical to the standard horseshoe drag. This shows that the horseshoe drag accounts for the torque of the whole corotation region, and not only of the horseshoe region, thereby deserving to be called corotation torque. We find that evanescent wavesmore » launched downstream of the horseshoe U-turns by the perturbations of vortensity exert a feedback on the upstream region, that render the horseshoe region asymmetric. This asymmetry scales with the vortensity gradient and with the disk's aspect ratio. It does not depend on the planetary mass, and it does not have any impact on the horseshoe drag. Since the horseshoe drag has a steep dependence on the width of the horseshoe region, we provide an adequate definition of the width that needs to be used in horseshoe drag estimates. We then consider the case of locally isothermal disks, in which the temperature is constant in time but depends on the distance to the star. The horseshoe drag appears to be different from the case of a globally isothermal disk. The difference, which is due to the driving of vortensity in the vicinity of the planet, is intimately linked to the topology of the flow. We provide a descriptive interpretation of these effects, as well as a crude estimate of the dependency of the excess on the temperature gradient.« less
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
Langenheim, Victoria; Willis, H.; Athens, N.D.; Chuchel, Bruce A.; Roza, J.; Hiscock, H.I.; Hardwick, C.L.; Kraushaar, S.M.; Knepprath, N.E.; Rosario, Jose J.
2013-01-01
A new isostatic residual gravity map of the northwest corner of Utah is based on compilation of preexisting data and new data collected by the Utah and United States Geological Surveys. Pronounced gravity lows occur over Junction, Grouse Creek, and upper Raft River Valleys, indicating significant thickness of low-density Tertiary sedimentary rocks and deposits. Gravity highs coincide with exposures of dense pre-Cenozoic rocks in the Raft River Mountains. Higher values in the eastern part of the map may be produced in part by deeper crustal density variations or crustal thinning. Steep linear gravity gradients coincide with mapped Neogene normal faults near Goose Creek and may define basin-bounding faults concealed beneath Junction and Upper Raft River Valleys.
NASA Technical Reports Server (NTRS)
Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina;
2013-01-01
Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.
Moho depth model for the Central Asian Orogenic Belt from satellite gravity gradients
NASA Astrophysics Data System (ADS)
Guy, Alexandra; Holzrichter, Nils; Ebbing, Jörg
2017-09-01
The main purpose of this study is to construct a new 3-D model of the Central Asian Orogenic Belt (CAOB) crust, which can be used as a starting point for future lithospheric studies. The CAOB is a Paleozoic accretionary orogen surrounded by the Siberian Craton to the north and the North China and Tarim Cratons to the south. This area is of great interest due to its enigmatic and still not completely understood geodynamic evolution. First, we estimate an initial crustal thickness by inversion of the vertical gravity component of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and DTU10 models. Second, 3-D forward modeling of the GOCE gravity gradients is performed, which determines the topography of the Moho, the geometry, and the density distribution of the deeper parts of the CAOB and its surroundings, taking into account the lateral and vertical density variations of the crust. The model is constrained by seismic refraction, reflection, and receiver function studies and geological studies. In addition, we discuss the isostatic implications of the differences between the seismic Moho and the resulting 3-D gravity Moho, complemented by the analysis of the lithostatic load distribution at the upper mantle level. Finally, the correlation between the contrasting tectonic domains and the thickness of the crust reveals the inheritance of Paleozoic and Mesozoic geodynamics, particularly the magmatic provinces and the orocline which preserve their crustal features.
Experimental studies of protozoan response to intense magnetic fields and forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine
Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
Agrawal, Sunil K; Banala, Sai K; Fattah, Abbas; Sangwan, Vivek; Krishnamoorthy, Vijaya; Scholz, John P; Hsu, Wei-Li
2007-09-01
The gravity balancing exoskeleton, designed at University of Delaware, Newark, consists of rigid links, joints and springs, which are adjustable to the geometry and inertia of the leg of a human subject wearing it. This passive exoskeleton does not use any motors but is designed to unload the human leg joints from the gravity load over its range-of-motion. The underlying principle of gravity balancing is to make the potential energy of the combined leg-machine system invariant with configuration of the leg. Additionally, parameters of the exoskeleton can be changed to achieve a prescribed level of gravity assistance, from 0% to 100%. The goal of the results reported in this paper is to provide preliminary quantitative assessment of the changes in kinematics and kinetics of the walking gait when a human subject wears such an exoskeleton. The data on kinematics and kinetics were collected on four healthy and three stroke patients who wore this exoskeleton. These data were computed from the joint encoders and interface torque sensors mounted on the exoskeleton. This exoskeleton was also recently used for a six-week training of a chronic stroke patient, where the gravity assistance was progressively reduced from 100% to 0%. The results show a significant improvement in gait of the stroke patient in terms of range-of-motion of the hip and knee, weight bearing on the hemiparetic leg, and speed of walking. Currently, training studies are underway to assess the long-term effects of such a device on gait rehabilitation of hemiparetic stroke patients.
Analysis of the depletion of a stored aerosol in low gravity
NASA Technical Reports Server (NTRS)
Squires, P.
1977-01-01
The depletion of an aerosol stored in a container has been studied in l-g and in low gravity. Models were developed for sedimentation, coagulation and diffusional losses to the walls. The overall depletion caused by these three mechanisms is predicted to be of order 5 to 8 percent per hour in terrestrial conditions, which agrees with laboratory experience. Applying the models to a low gravity situation indicates that there only coagulation will be significant. (Gravity influences diffusional losses because of convection currents caused by random temperature gradients). For the types of aerosol studied, the rate of depletion of particles should be somewhat less than 0.001 N percent per hour, where N is the concentration per cu cm.
NASA Astrophysics Data System (ADS)
Hu, W.-R.
1984-09-01
The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.
Healey, D.L.
1971-01-01
Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.
Interpretation of gravity anomalies in the northwest Adirondack lowlands, northern New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revetta, F.A.; O'Brian, B.
1993-03-01
Twelve hundred gravity measurements were made in the Adirondack Highlands and northwest Adirondack Lowlands, New York between 44[degree]15 minutes and 44[degree]30 minutes N. Latitude and 75[degree]00 minutes W. Longitude. A Bouguer gravity map constructed from the gravity measurements includes the Carthage-Colton Mylonite Zone, a major structural boundary between the highlands and lowlands. The gravity map indicates the gravity contours trend parallel to the CCMZ along most of its length however in some areas the contours cross the boundary. No clear-cut relationships exists between the CCMZ and gravity contours. The Bouguer gravity map shows several prominent gravity anomalies which correlate withmore » the geology seismicity and mineral deposits in the area. Gravity lows of 20 to 30 g.u. are centered over the Gouverneur, Hyde and Payne Lake Alaskite gneiss bodies. A gravity high of 20 g.u. occurs over the Pleasant Lake gabbro pluton. Gravity highs of 35 and 100 g.u. occur over the Sylvia Lake Zinc District and marble just north of the district. A gravity high at Russell, N.Y. coincides with a cluster of nine earthquake epicenters. Finally a steep gravity gradient separates high density rocks from lower density rocks along the Black Lake fault. Two-dimensional computer modeling of the geologic features is underway and quantitative models of the structures will be presented.« less
NASA Astrophysics Data System (ADS)
Zhou, Junjie; Meng, Xiaohong; Guo, Lianghui; Zhang, Sheng
2015-08-01
Three-dimensional cross-gradient joint inversion of gravity and magnetic data has the potential to acquire improved density and magnetization distribution information. This method usually adopts the commonly held assumption that remanent magnetization can be ignored and all anomalies present are the result of induced magnetization. Accordingly, this method might fail to produce accurate results where significant remanent magnetization is present. In such a case, the simplification brings about unwanted and unknown deviations in the inverted magnetization model. Furthermore, because of the information transfer mechanism of the joint inversion framework, the inverted density results may also be influenced by the effect of remanent magnetization. The normalized magnetic source strength (NSS) is a transformed quantity that is insensitive to the magnetization direction. Thus, it has been applied in the standard magnetic inversion scheme to mitigate the remanence effects, especially in the case of varying remanence directions. In this paper, NSS data were employed along with gravity data for three-dimensional cross-gradient joint inversion, which can significantly reduce the remanence effects and enhance the reliability of both density and magnetization models. Meanwhile, depth-weightings and bound constraints were also incorporated in this joint algorithm to improve the inversion quality. Synthetic and field examples show that the proposed combination of cross-gradient constraints and the NSS transform produce better results in terms of the data resolution, compatibility, and reliability than that of separate inversions and that of joint inversions with the total magnetization intensity (TMI) data. Thus, this method was found to be very useful and is recommended for applications in the presence of strong remanent magnetization.
Shah, Anjana K.; Horton, J. Wright; Burton, William C.; Spears, David B; Gilmer, Amy K
2014-01-01
Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (Mw) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the Mw5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
NASA Astrophysics Data System (ADS)
Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer
2018-03-01
Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.
Automated Target Planning for FUSE Using the SOVA Algorithm
NASA Technical Reports Server (NTRS)
Heatwole, Scott; Lanzi, R. James; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly
2007-01-01
The SOVA algorithm was originally developed under the Resilient Systems and Operations Project of the Engineering for Complex Systems Program from NASA s Aerospace Technology Enterprise as a conceptual framework to support real-time autonomous system mission and contingency management. The algorithm and its software implementation were formulated for generic application to autonomous flight vehicle systems, and its efficacy was demonstrated by simulation within the problem domain of Unmanned Aerial Vehicle autonomous flight management. The approach itself is based upon the precept that autonomous decision making for a very complex system can be made tractable by distillation of the system state to a manageable set of strategic objectives (e.g. maintain power margin, maintain mission timeline, and et cetera), which if attended to, will result in a favorable outcome. From any given starting point, the attainability of the end-states resulting from a set of candidate decisions is assessed by propagating a system model forward in time while qualitatively mapping simulated states into margins on strategic objectives using fuzzy inference systems. The expected return value of each candidate decision is evaluated as the product of the assigned value of the end-state with the assessed attainability of the end-state. The candidate decision yielding the highest expected return value is selected for implementation; thus, the approach provides a software framework for intelligent autonomous risk management. The name adopted for the technique incorporates its essential elements: Strategic Objective Valuation and Attainability (SOVA). Maximum value of the approach is realized for systems where human intervention is unavailable in the timeframe within which critical control decisions must be made. The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, launched in 1999, has been collecting science data for eight years.[1] At its beginning of life, FUSE had six gyros in two IRUs and four reaction wheels. Over time through various failures, the satellite has been left with one reaction wheel on the vehicle skew axis and two gyros. To remain operational, a control scheme has been implemented using the magnetic torque rods and the remaining momentum wheel.[2] As a consequence, there are attitude regions where there is insufficient torque authority to overcome environmental disturbances (e.g. gravity gradient torques). The situation is further complicated by the fact that these attitude regions shift inertially with time as the spacecraft moves through earth s magnetic field during the course of its orbit. Under these conditions, the burden of planning targets and target-to-target slew maneuvers has increased significantly since the beginning of the mission.[3] Individual targets must be selected so that the magnetic field remains roughly aligned with the skew wheel axis to provide enough control authority to the other two orthogonal axes. If the field moves too far away from the skew axis, the lack of control authority allows environmental torques to pull the satellite away from the target and can potentially cause it to tumble. Slew maneuver planning must factor the stability of targets at the beginning and end, and the torque authority at all points along the slew. Due to the time varying magnetic field geometry relative to any two inertial targets, small modifications in slew maneuver timing can make large differences in the achievability of a maneuver.
Gravity of Living Systems: May the Force Be With You
NASA Technical Reports Server (NTRS)
Hargens, Alan R.; Holton, Emily M. (Technical Monitor)
1998-01-01
Gravity, the force which shapes the architecture of organisms from single cells to dinosaurs, has been the most constant environmental factor during the evolution of species on Earth. With long-duration space flight, an understanding of how gravity affects living systems gains greater urgency in order to maintain the health and performance of crews who will explore the solar system. For example, the cardiovascular and musculoskeletal systems are normally exposed to gravitational gradients of blood pressure and weight on Earth. Such gradients increase blood pressure and tissue weight in dependent tissues of the body. Thus, from a physiologic standpoint, these systems are greatly affected by altered gravity. Exposure to actual and simulated microgravity causes blood and tissue fluid to shift from the legs to the head. Studies of humans in space have documented facial edema, space adaptation syndrome, decreased plasma volume, muscle atrophy, and loss of bone strength. Return of astronauts to Earth is accompanied by orthostatic intolerance, decreased neuromuscular coordination, and reduced exercise capacity. These factors decrease performance during descent from orbit and increase risk during emergency egress from the space craft. Models of simulated microgravity include 60 head-down tilt, immersion, and prolonged horizontal bedrest. Head-down tilt and dry immersion are the most accepted models and studies using these models of up to one year have been performed in Russia. Sensitive animal models which offer clear insights into the role of gravity on structure and function include the developing giraffe and snakes from various habitats. Finally, possible countermeasures to speed readaptation of astronauts to gravity after prolonged space flight include exercise, lower body negative pressure, and centrifugation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieberg, Scott
Ground gravity is a common and useful tool for geothermal exploration. Gravity surveys map density changes in the subsurface that may be caused by tectonic deformation such as faulting, fracturing, plutonism, volcanism, hydrothermal alteration, etc. Full Tensor Gravity Gradient (FTG) data has been used for over a decade in both petroleum and mining exploration to map changes in density associated with geologic structure. Measuring the gravity gradient, rather than the gravity field, provides significantly higher resolution data. Modeling studies have shown FTG data to be a viable tool for geothermal exploration, but no FTG data had been acquired for geothermalmore » applications to date. Electromagnetic methods have been used for geothermal exploration for some time. The Z-Axis Tipper Electromagnetic (ZTEM) was a newer technology that had found success in mapping deep conductivity changes for mining applications. ZTEM had also been used in limited tests for geothermal exploration. This newer technology provided the ability to cost effectively map large areas whilst detailing the electrical properties of the geological structures at depths. The ZTEM is passive and it uses naturally occurring audio frequency magnetic (AFMAG) signals as the electromagnetic triggering source. These geophysical methods were to be tested over a known geothermal site to determine whether or not the data provided the information required for accurately interpreting the subsurface geologic structure associated with a geothermal deposit. After successful acquisition and analysis of the known source area, an additional survey of a “greenfield” area was to be completed. The final step was to develop a combined interpretation model and determine if the combination produced a higher confident geophysical model compared to models developed using each of the technologies individually.« less
Microgravity Particle Dynamics
NASA Technical Reports Server (NTRS)
Clark, Ivan O.; Johnson, Edward J.
1996-01-01
This research seeks to identify the experiment design parameters for future flight experiments to better resolve the effects of thermal and velocity gradients on gas-solid flows. By exploiting the reduced body forces and minimized thermal convection current of reduced gravity experiments, features of gas-solid flow normally masked by gravitationally induced effects can be studied using flow regimes unattainable under unigravity. This paper assesses the physical scales of velocity, length, time, thermal gradient magnitude, and velocity gradient magnitude likely to be involved in laminar gas-solid multiphase flight experiments for 1-100 micro-m particles.
A Large Motion Suspension System for Simulation of Orbital Deployment
NASA Technical Reports Server (NTRS)
Straube, T. M.; Peterson, L. D.
1994-01-01
This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.
On the timing behaviour of PSR B1259-63 under the propeller torque from a transient accretion disc
NASA Astrophysics Data System (ADS)
Yi, Shu-Xu; Cheng, K. S.
2018-05-01
The γ-ray pulsar binary system PSR B1259-63 flares in GeV after each periastron. The origin of these flares is still under debate. Recently, in 2017, we proposed a mechanism that might explain the GeV flares. In that model, a transient accretion disc is expected to be formed from the matter that was gravity-captured by the neutron star from the main-sequence companion's circumstellar disc. The transient accretion disc exerts a spin-down torque on the neutron star (i.e. the propeller effect), which might be traceable via pulsar timing observations of PSR B1259-63. In this paper, we consider the propeller effect phenomenologically using a parameter χ, which describes the coupling between the disc matter and the neutron star. Comparing the expected timing residuals with recent observations by Shannon et al., we conclude that the angular momentum transfer is very weak (with the coupling parameter χ ≤ 10-4).
A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
Ni, Jiangsheng; Hiramatsu, Seiji; Kato, Atsuo
2003-08-01
The human locomotion was studied on the basis of the interaction of the musculo-skeletal system, the neural system and the environment. A mathematical model of human locomotion under position constraint condition was established. Besides the neural rhythm generator, the posture controller and the sensory system, the environment feedback controller and the stability controller were taken into account in the model. The environment feedback controller was proposed for two purposes, obstacle avoidance and target position control of the swing foot. The stability controller was proposed to imitate the self-balancing ability of a human body and improve the stability of the model. In the stability controller, the ankle torque was used to control the velocity of the body gravity center. A prediction control algorithm was applied to calculate the torque magnitude of the stability controller. As an example, human stairs climbing movement was simulated and the results were given. The simulation result proved that the mathematical modeling of the task was successful.
GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force Models
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Qu, Min
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude, near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
Experimental challenges to stiffness as a transport paradigm
Luce, Timothy C.; Burrell, Keith H.; Holland, Christopher; ...
2018-01-04
Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans are presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the casemore » of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that ExB shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating ExB shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Lastly, possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.« less
Experimental challenges to stiffness as a transport paradigm
NASA Astrophysics Data System (ADS)
Luce, T. C.; Burrell, K. H.; Holland, C.; Marinoni, A.; Petty, C. C.; Smith, S. P.; Austin, M. E.; Grierson, B. A.; Zeng, L.
2018-02-01
Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans is presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the case of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that E × B shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating E × B shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.
Experimental challenges to stiffness as a transport paradigm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luce, Timothy C.; Burrell, Keith H.; Holland, Christopher
Two power scans were carried out in H-mode plasmas in DIII-D; one employed standard co-current neutral beam injection (NBI), while the other used a mixture of co-current and counter-current NBI to scan power while holding the torque to a low fixed value. Analysis of the ion and electron heat transport, ion toroidal angular momentum transport, and thermal deuterium transport from these scans are presented. Invariance of the gradients or gradient scalelengths, as might be expected from stiff transport, was not generally observed. When invariance was seen, it was not accompanied by a strong increase in transport, except in the casemore » of the absolute deuterium ion transport. Conduction in the ion channel is the dominant energy loss mechanism. The variation of the ion heat transport with applied power is similar for the co-injection and fixed torque scans, indicating that ExB shearing is not determining the plasma response to additional power. There is however, a quantitative difference in the transport between the two scans, indicating ExB shearing does play a role in the transport. Comparison of these results with a previous experiment that directly probed stiffness at a single radius leads to the following conclusion: while local stiffness as formally defined may hold, invariance of the gradients or normalized scalelengths does not follow from stiff transport in more practical scaling experiments, such as the power scans discussed here. Lastly, possible reasons for the lack of correspondence between the local picture and the global expectations are discussed.« less
Brenière, Y
2001-04-01
A double-inverted pendulum model of body oscillations in the frontal plane during stepping [Brenière and Ribreau (1998) Biol Cybern 79: 337-345] proposed an equivalent model for studying the body oscillating behavior induced by step frequency in the form of: (1) a kinetic body parameter, the natural body frequency (NBF), which contains gravity and which is invariable for humans, (2) a parametric function of frequency, whose parameter is the NBF, which explicates the amplitude ratio of center of mass to center of foot pressure oscillation, and (3) a function of frequency which simulates the equivalent torque necessary for the control of the head-arms-trunk segment oscillations. Here, this equivalent model is used to simulate the duration of gait initiation, i.e., the duration necessary to initiate and execute the first step of gait in subgravity, as well as to calculate the step frequencies that would impose the same minimum and maximum amplitudes of the oscillating responses of the body center of mass, whatever the gravity value. In particular, this simulation is tested under the subgravity conditions of the Moon, Mars, and Phobos, where gravity is 1/6, 3/8, and 1/1600 times that on the Earth, respectively. More generally, the simulation allows us to establish and discuss the conditions for gait adaptability that result from the biomechanical constraints particular to each gravity system.
A Computational Study of the Mechanics of Gravity-induced Torque on Cells
NASA Astrophysics Data System (ADS)
Haranas, Ioannis; Gkigkitis, Ioannis; Zouganelis, George D.
2013-10-01
In this paper, we study the effects of the acceleration gravity on the sedimentation deposition probability, as well as the aerosol deposition rate on the surface of the Earth and Mars, but also aboard a spacecraft in orbit around Earth and Mars as well. For particles with density ?p = 1300 kg/m3, diameters dp = 1, 10, 30 μm and residence times t = 0.0272, 0.2 s respectively, we find that, on the surface of Earth and Mars the deposition probabilities are higher at the poles when compared to the ones at the equator. Similarly, when in orbit around Earth we find that the deposition probabilities exhibit 0.0001 % higher percentage difference in equatorial circular and elliptical orbits when compared to polar ones. For both residence times particles with the diameters considered above in circular and elliptical orbits around Mars, the deposition probabilities appear to be the same for all orbital inclinations. Sedimentation probability increases drastically with particle diameter and orbital eccentricity of the orbiting spacecraft. Finally, as an alternative framework for the study of interaction and the effect of gravity in biology, and in particular gravity and the respiratory system we introduce is the term information in a way Shannon has introduced it, considering the sedimentation probability as a random variable. This can be thought as a way in which gravity enters the cognitive processes of the system (processing of information) in the cybernetic sense.
Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity.
Duke, J C
1983-06-01
This paper is a report of the first investigation of the effect of excess gravity on in vitro mammalian limb chondrogenesis. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis. There was a proximodistal gradient of sensitivity to excess gravity in the limb with proximal structures being less susceptible than distal ones. In some cases, proximal limb elements present prior to explantation disappeared upon exposure to excess gravity. Hypergravity's teratogenic effect is assumed to operate via changes in tension and/or pressure on the cells, accompanied by alterations in cell morphometry and membrane properties.
NASA Astrophysics Data System (ADS)
Auclair-Desrotour, P.; Mathis, S.; Laskar, J.
2018-02-01
Context. Thermal atmospheric tides can torque telluric planets away from spin-orbit synchronous rotation, as observed in the case of Venus. They thus participate in determining the possible climates and general circulations of the atmospheres of these planets. Aims: The thermal tidal torque exerted on an atmosphere depends on its internal structure and rotation and on the tidal frequency. Particularly, it strongly varies with the convective stability of the entropy stratification. This dependence has to be characterized to constrain and predict the rotational properties of observed telluric exoplanets. Moreover, it is necessary to validate the approximations used in global modelings such as the traditional approximation, which is used to obtain separable solutions for tidal waves. Methods: We wrote the equations governing the dynamics of thermal tides in a local vertically stratified section of a rotating planetary atmosphere by taking into account the effects of the complete Coriolis acceleration on tidal waves. This allowed us to analytically derive the tidal torque and the tidally dissipated energy, which we used to discuss the possible regimes of tidal dissipation and to examine the key role played by stratification. Results: In agreement with early studies, we find that the frequency dependence of the thermal atmospheric tidal torque in the vicinity of synchronization can be approximated by a Maxwell model. This behavior corresponds to weakly stably stratified or convective fluid layers, as observed previously. A strong stable stratification allows gravity waves to propagate, and makes the tidal torque negligible. The transition is continuous between these two regimes. The traditional approximation appears to be valid in thin atmospheres and in regimes where the rotation frequency is dominated by the forcing or the buoyancy frequencies. Conclusions: Depending on the stability of their atmospheres with respect to convection, observed exoplanets can be tidally driven toward synchronous or asynchronous final rotation rates. The domain of applicability of the traditional approximation is rigorously constrained by calculations.
Maglev Facility for Simulating Variable Gravity
NASA Technical Reports Server (NTRS)
Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.
2010-01-01
An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful, variously, as rocket fuels or as working fluids for heat transfer devices. A drop of water 45 mm in diameter and a small laboratory mouse have been levitated in this apparatus.
Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research
NASA Technical Reports Server (NTRS)
Jules, Kenol
2006-01-01
One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.
Prisk, G Kim
2005-09-01
The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.
NASA Technical Reports Server (NTRS)
Revenaugh, Justin; Parsons, Barry
1987-01-01
Adopting the formalism of Parsons and Daly (1983), analytical integral equations (Green's function integrals) are derived which relate gravity anomalies and dynamic boundary topography with temperature as a function of wavenumber for a fluid layer whose viscosity varies exponentially with depth. In the earth, such a viscosity profile may be found in the asthenosphere, where the large thermal gradient leads to exponential decrease of viscosity with depth, the effects of a pressure increase being small in comparison. It is shown that, when viscosity varies rapidly, topography kernels for both the surface and bottom boundaries (and hence the gravity kernel) are strongly affected at all wavelengths.
NASA Technical Reports Server (NTRS)
Prisk, G. Kim
2005-01-01
The lung is exquisitely sensitive to gravity, which induces gradients in ventilation, blood flow, and gas exchange. Studies of lungs in microgravity provide a means of elucidating the effects of gravity. They suggest a mechanism by which gravity serves to match ventilation to perfusion, making for a more efficient lung than anticipated. Despite predictions, lungs do not become edematous, and there is no disruption to, gas exchange in microgravity. Sleep disturbances in microgravity are not a result of respiratory-related events; obstructive sleep apnea is caused principally by the gravitational effects on the upper airways. In microgravity, lungs may be at greater risk to the effects of inhaled aerosols.
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Bragg gravity-gradiometer using the 1S0–3P1 intercombination transition of 88Sr
NASA Astrophysics Data System (ADS)
del Aguila, R. P.; Mazzoni, T.; Hu, L.; Salvi, L.; Tino, G. M.; Poli, N.
2018-04-01
We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely 88Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow 1S0–3P1 intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches 1.5 × 10‑5 s‑2 for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 104 times lower than the sensitivity of alkali-atom based gradiometers, limited by the interferometer sensitivity. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.
Magnetic method for stimulating transport in fluids
Martin, James E.; Solis, Kyle J.
2016-10-18
A method for producing mass and heat transport in fluids, wherein the method does not rely on conventional convection, that is, it does not require gravity, a thermal gradient, or a magnetic field gradient. This method gives rise to a unique class of vigorous, field-controllable flow patterns termed advection lattices. The advection lattices can be used to transport heat and/or mass in any desired direction using only magnetic fields.
Major results of gravity and magnetic studies at Yucca Mountain, Nevada
Oliver, H.W.; Ponce, D.A.; Sikora, R.F.; ,
1991-01-01
About 4,000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1,220??150 m, an estimate that was subsequently confirmed by drilling to be 1,244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3,000 m. Gravity interpretations also identified the Silent Canyon caldera before geologic mapping of Pahute Mesa and provided an estimate of the thickness of the volcanic section there of nearly 5 km.
NASA Technical Reports Server (NTRS)
Papazian, J. M.; Wilcox, W. R.
1977-01-01
The behavior of bubbles at a dendritic solidification interface was studied during the coasting phase of a sounding rocket flight. Sequential photographs of the gradient freeze experiment showed nucleation, growth and coalescence of bubbles at the moving interface during both the low-gravity and one-gravity tests. In the one-gravity test the bubbles were observed to detach from the interface and float to the top of the melt. However, in the low-gravity tests no bubble detachment from the interface or steady state bubble motion occurred and large voids were grown into the crystal. These observations are discussed in terms of the current theory of thermal migration of bubbles and in terms of their implications on the space processing of metals.
Gravitational dynamics of biosystems - Some speculations
NASA Technical Reports Server (NTRS)
Kessler, J. O.; Bier, M.
1976-01-01
The response of organisms to gravity is generally discussed in terms of hypotheses involving sedimentation and other static effects. This paper considers several complex, inhomogeneous fluid-containing systems that are intended to model some possible dynamic effects of gravity on biosystems. It is shown that the presence of gravity may result in modified long range transport, concentration oscillations, and broken symmetries. The magnitude of density-gradient-driven convective transport times, and their ratios to diffusive transport times, are calculated for cell dimensions of six different plant varieties. The results indicate that further investigation of gravitational convection effects may be realistic in some cases and is definitely not in others. The results of this paper should aid in the planning of 'zero-gravity' experiments concerning plant geotropism and bio-materials processing.
The origin of lunar mascon basins.
Melosh, H J; Freed, Andrew M; Johnson, Brandon C; Blair, David M; Andrews-Hanna, Jeffrey C; Neumann, Gregory A; Phillips, Roger J; Smith, David E; Solomon, Sean C; Wieczorek, Mark A; Zuber, Maria T
2013-06-28
High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull's-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.
Healy, D.L.; Miller, C.H.
1962-01-01
The gravity survey of the Nevada Test Site and contiguous areas of southern Nevada and southeastern California (fig. 1) has been made by the U.S. Geological Survey on behalf of the U.S. Atomic Energy Commission.The objective of this study is to delineate and interpret gravity anomalies and regional trends so that the configuration and depth of the buried erosional surface of the Paleozoic rocks may be determined. This buried surface is of utmost importance in understanding the geologic history of the Nevada Test Site region, the thickness and distribution of the overlying volcanic rocks and alluvium, and the movement of ground water. The Paleozoic rocks cause positive gravity anomalies where they outcrop or occur near the surface and negative anomalies where they are buried in valleys or capped by low-density Tertiary volcanic rocks. Gravity trends which extend over the entire area provide a basis for computing the regional gravity gradient. The regional gravity gradient must be removed from the data for geologic interpretation of the paleotopographic surface in any limited area. Knowledge of the thickness of low-density material overlying the paleotopographic surface is useful in several ways. Proposed underground test sites, such as drill holes and tunnels, may be evaluated in terms of rock unit thickness and alluvial cover requirements. Recent work by the Water Resources Division of the U.S. Geological Survey has demonstrated ground-water movement through the Paleozoic rocks in the vicinity of the Nevada Test Site. Therefore, knowledge of the position of buried Paleozoic rocks is important in evaluating (a) the rate and direction of flow of the ground water, (b) ground-water supplies for domestic and industrial uses, and (c) the possibility of radioactive contamination of ground water. Finally, regional gravity trends and paleotopography are useful in working out the structural history of the area in connection with geologic studies now in progress. The purpose of this interim report is to present the major part of the gravity data obtained as of December 31, 1961. The data are presented as a complete Bouguer gravity anomaly map. Although the gravity contours are somewhat generalized because the map has a scale of 1:250,000 and a contour interval of 5 milligals, the largest anomalies are adequately delineated. Preliminary results of this gravity survey have been reported by Wilmarth and others, 1960, and by Diment and others, 1959 and 1960.
Fluid mechanics and solidification investigations in low-gravity environments
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.
1980-01-01
Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.
Smith, R W; Yang, B J; Huang, W D
2004-11-01
Liquid diffusion experiments conducted on the MIR space station using the Canadian Space Agency QUELD II processing facility and the microgravity isolation mount (MIM) showed that g-jitter significantly increased the measured solute diffusion coefficients. In some experiments, milli-g forced vibration was superimposed on the sample when isolated from the ambient g-jitter; this resulted in markedly increased solute transport. To further explore the effects arising in these long capillary diffusion couples from the absence of unit-gravity and the presence of the forced g-jitter, the effects of a 1 milli-g forcing vibration on the mass transport in a 1.5 mm diameter long capillary diffusion couple have been simulated. In addition, to increase understanding of the role of unit gravity in determining the extent to which gravity can influence measured diffusion coefficient values, comparative experiments involving gold, silver, and antimony diffusing in liquid lead have been carried out using a similar QUELD II facility to that employed in the QUELD II/MIM/MIR campaign but under terrestrial conditions. It was found that buoyancy-driven convection may still persist in the liquid even when conditions are arranged for a continuously decreasing density gradient up the axis of a vertical long capillary diffusion couple due to the presence of small radial temperature gradients.
Ritzmann, Ramona; Freyler, Kathrin; Weltin, Elmar; Krause, Anne; Gollhofer, Albert
2015-01-01
Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support. PMID:26053055
Spin current and spin transfer torque in ferromagnet/superconductor spin valves
NASA Astrophysics Data System (ADS)
Moen, Evan; Valls, Oriol T.
2018-05-01
Using fully self-consistent methods, we study spin transport in fabricable spin valve systems consisting of two magnetic layers, a superconducting layer, and a spacer normal layer between the ferromagnets. Our methods ensure that the proper relations between spin current gradients and spin transfer torques are satisfied. We present results as a function of geometrical parameters, interfacial barrier values, misalignment angle between the ferromagnets, and bias voltage. Our main results are for the spin current and spin accumulation as functions of position within the spin valve structure. We see precession of the spin current about the exchange fields within the ferromagnets, and penetration of the spin current into the superconductor for biases greater than the critical bias, defined in the text. The spin accumulation exhibits oscillating behavior in the normal metal, with a strong dependence on the physical parameters both as to the structure and formation of the peaks. We also study the bias dependence of the spatially averaged spin transfer torque and spin accumulation. We examine the critical-bias effect of these quantities, and their dependence on the physical parameters. Our results are predictive of the outcome of future experiments, as they take into account imperfect interfaces and a realistic geometry.
Wang, Wanyue; Dounskaia, Natalia
2016-12-17
How gravity influences neural control of arm movements remains under debate. We tested three alternative interpretations suggested by previous research: (1) that muscular control includes two components, tonic which compensates for gravity and phasic which produces the movement; (2) that there is a tendency to exploit gravity to reduce muscle effort; and (3) that there is a tendency to use a trailing pattern of joint control during which either the shoulder or elbow is rotated actively and the other joint rotates predominantly passively, and to exploit gravity for control of the passively rotated joint. A free-stroke drawing task was performed that required production of center-out strokes within a circle while selecting stroke directions randomly. The circle was positioned in the horizontal, sagittal, and frontal plane. The arm joints freely rotated in space. In each plane, the distribution of the strokes across directions was non-uniform. Directional histograms were built and their peaks were used to identify preferred movement directions. The directional preferences were especially pronounced in the two vertical planes. The upward directions were most preferred. To test the three interpretations, we used a kinetic analysis that determined the role of gravitational torque in the production of movement in the preferred directions. The results supported the third interpretation and provided evidence against the first and second interpretation. The trailing pattern has been associated with reduced neural effort for joint coordination, and therefore, we conclude that the major tendency with respect to gravity is to exploit it for simplification of joint coordination. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit
Stone, William C.; Witzgall, Christoph
2006-01-01
A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926
Modeling of postural stability borders during heel-toe rocking.
Murnaghan, Chantelle D; Elston, Beth; Mackey, Dawn C; Robinovitch, Stephen N
2009-08-01
To maintain balance during movements such as bending and reaching, the CNS must generate muscle forces to counteract destabilizing torques produced by gravitational (position-dependent) and inertial (acceleration-dependent) forces. This may create a trade-off between the attainable frequency and amplitude of movements. We used experiments and mathematical modeling to examine this relationship during the task of heel-toe rocking. During the experiments, participants (n=15) rocked about the ankles in the sagittal plane with maximum attainable amplitude at a frequency of 0.33 Hz or 0.66 Hz. As the frequency doubled, the maximum anterior position of the whole-body centre-of-gravity (COG) with respect to the ankle decreased by 11% of foot length (from 11.9 cm (S.D. 1.6) to 9.2 cm (S.D. 1.2); p<0.001), the minimum anterior position of the COG increased by 8% of foot length (from 1.6 cm to 3.5 cm in front on the ankle; p<0.0005), and the ankle stiffness increased from 787 Nm/rad (S.D. 156) to 1625 Nm/rad (S.D. 339). However, there was no difference between conditions in the maximum anterior position of the COP (p=0.51), the minimum anterior position of the COP (p=0.23), or the peak ankle torque (p=0.39). An inverted pendulum model driven by a rotational spring predicted the measured ankle stiffness to within 0.9% (S.D. 6.8), and the maximum anterior COG position to within 1.2% (S.D. 4.0). These results indicate that COG amplitude decreases with increasing rocking frequency, due to (a) invariability in peak ankle torque and (b) the need to allocate torque between gravitational and inertial components, the latter of which scales with the square of frequency.
Gravity compensation of an upper extremity exoskeleton.
Moubarak, S; Pham, M T; Moreau, R; Redarce, T
2010-01-01
This paper presents a new gravity compensation method for an upper extremity exoskeleton mounted on a wheel chair. This new device is dedicated to regular and efficient rehabilitation training for post-stroke and injured people without the continuous presence of a therapist. The exoskeleton is a wearable robotic device attached to the human arm. The user provides information signals to the controller by means of the force sensors around the wrist and the arm, and the robot controller generates the appropriate control signals for different training strategies and paradigms. This upper extremity exoskeleton covers four basic degrees of freedom of the shoulder and the elbow joints with three additional adaptability degrees of freedom in order to match the arm anatomy of different users. For comfortable and efficient rehabilitation, a new heuristic method have been studied and applied on our prototype in order to calculate the gravity compensation model without the need to identify the mass parameters. It is based on the geometric model of the robot and accurate torque measurements of the prototype's actuators in a set of specifically chosen joint positions. The weight effect has been successfully compensated so that the user can move his arm freely while wearing the exoskeleton without feeling its mass.
How tides get dissipated in Saturn? A question probably answerable by Cassni
NASA Astrophysics Data System (ADS)
Luan, Jing
2017-06-01
Tidal dissipation inside a giant planet is important in understanding the orbital evolutions of its natural satellites and perhaps some of the extrasolar giant planets. The tidal dissipation is conventionally parameterized by the tidal quality factor, Q. The corresponding tidal torque declines rapidly with distance adopting constant Q. However, the current fast migration rates of some Saturnian satellites reported by Lainey et al. (2015) conflict this conventional conceptual belief. Alternatively, resonance lock between a satellite and an internal oscillation mode or wave of Saturn, proposed by Fuller et al. (2016), could naturally match the observational migration rates. However, the question still remains to be answered what type of mode or wave is locked with each satellite. There are two candidates for resonance lock, one is gravity mode, and the other is inertial wave attractor. They generate very different gravity acceleration anomaly near the surface of Saturn, which may be distinguishable by the data to be collected by Cassini during its proximal orbits between April and September, 2017. Indicative information about the interior of Saturn may be extracted since the existence of both gravity mode and inertial wave attractor depends on the internal structure of Saturn.
Thermotropism by primary roots of maize
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortin, M.-C.; Poff, K.L.
1990-05-01
Sensing in the roots of higher plants has long been recognized to be restricted mainly to gravitropism and thigmotropism. However, root responses to temperature gradients have not been extensively studied. We have designed experiments under controlled conditions to test if and how root direction of maize can be altered by thermal gradients perpendicular to the gravity vector. Primary roots of maize grown on agar plates exhibit positive thermotropism (curvature toward the warmer temperature) when exposed to gradients of 0.5 to 4.2{degree}C cm{sup {minus}1}. The extent of thermotropism depends on the temperature gradient and the temperature at which the root ismore » placed within the gradient. The curvature cannot be accounted for by differential growth as a direct effect of temperature on each side of the root.« less
On the West Coast of the Ocean of Storms Artist Concept
2014-10-01
A view of Earth moon looking south across Oceanus Procellarum, representing how the western border structures may have looked while active. This image combines gravity gradient from NASA GRAIL and LRO.
Temperature sensing by primary roots of maize
NASA Technical Reports Server (NTRS)
Poff, K. L.
1990-01-01
Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.
Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia.
Savadjiev, P; Whitford, T J; Hough, M E; Clemm von Hohenberg, C; Bouix, S; Westin, C-F; Shenton, M E; Crow, T J; James, A C; Kubicki, M
2014-05-01
The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.
Magnetophoretic induction of curvature in coleoptiles and hypocotyls
NASA Technical Reports Server (NTRS)
Kuznetsov, O. A.; Hasenstein, K. H.
1997-01-01
Coleoptiles of barley (Hordeum vulgare) were positioned in a high gradient magnetic field (HGMF, dynamic factor gradient of H(2)/2 of 10(9)-10(10) Oe2 cm-1), generated by a ferromagnetic wedge in a uniform magnetic field and rotated on a 1 rpm clinostat. After 4 h 90% of coleoptiles had curved toward the HGMF. The cells affected by HGMF showed clear intracellular displacement of amyloplasts. Coleoptiles in a magnetic field next to a non-ferromagnetic wedge showed no preferential curvature. The small size of the area of nonuniformity of the HGMF allowed mapping of the sensitivity of the coleoptiles by varying the initial position of the wedge relative to the coleoptile apex. When the ferromagnetic wedge was placed 1 mm below the coleoptile tip only 58% of the coleoptiles curved toward the wedge indicating that the cells most sensitive to intracellular displacement of amyloplasts and thus gravity sensing are confined to the top 1 mm portion of barley coleoptiles. Similar experiments with tomato hypocotyls (Lycopersicum esculentum) also resulted in curvature toward the HGMF. The data strongly support the amyloplast-based gravity-sensing system in higher plants and the usefulness of HGMF to substitute gravity in shoots.
NASA Astrophysics Data System (ADS)
Sobh, M.; Ebbing, J.; Goetze, H. J.; Abdelsalam, M. G.
2016-12-01
For the Saharan Metacraton in northern Africa only a few geophysical results exists, which can be used to characterize its deep structure. We combine recent seismological models with satellite gravity gradients to build a 3D lithospheric density model of the metacraton and its surrounding regions. Due to the sparse distribution of seismic data, we estimate the Moho boundary by non-linear gravity inversion in spherical coordinates. The model is constrained by some wide angle refraction seismic profiles and receiver function Moho depths. Despite the high topography of the Darfur and Tibisti Cenozoic volcanic provinces, we estimate thin crust which indicates an upper mantle contribution to the isostatic balance. In combination with seismic tomography models, we found that the lithospheric thickness in the western part of the Metacraton is thicker than in the eastern part. This indicates that the western resembles the remnants of the pre-Neoproterozoic Sahara craton (e.g. the Marzuk craton which escaped the metacratonization process). In order to explain the partial loss of the expected cratonic root beneath the Metacraton, we present different petrological-geophysical scenario testing for different upper mantle compositions.
NASA Astrophysics Data System (ADS)
Grafarend, E. W.; Heck, B.; Knickmeyer, E. H.
1985-03-01
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.
The orbital mechanics of flight mechanics
NASA Technical Reports Server (NTRS)
Dunning, R. S.
1973-01-01
A reference handbook on modern dynamic orbit theory is presented. Starting from the most basic inverse-square law, the law of gravity for a sphere is developed, and the motion of point masses under the influence of a sphere is considered. The reentry theory and the orbital theory are discussed along with the relative motion between two bodies in orbit about the same planet. Relative-motion equations, rectangular coordinates, and the mechanics of simple rigid bodies under the influence of a gravity gradient field are also discussed.
Role of body surface pressure and kinematics in fish turning
NASA Astrophysics Data System (ADS)
Costello, John; Costello, Sean; Dabiri, John; Leftwich, Megan C.
2017-11-01
Experiments on freely swimming zebrafish were conducted to study the relative contributions to angular acceleration from both the induced pressure field in the fluid surrounding the animal as well as changes in the body moment of inertia due bending during turning maneuvers. PIV-based pressure measurements indicated that turning is initiated by subtle changes to body posture that create large pressure gradients at the head and tail of the animal. The angular turning motion that results from this pressure-based torque is amplified by the animal bending, which reduces the body moment of inertia during the turn. The demonstrated ability to decouple torque generation and body kinematics, using a combination PIV-based pressure measurements and image-based inertia measurements, can facilitate exploration of maneuvering dynamics in a broader range of swimming species, including a search for possible convergent maneuvering strategies that might be common among aquatic animals.
Moving base Gravity Gradiometer Survey System (GGSS) program
NASA Astrophysics Data System (ADS)
Pfohl, Louis; Rusnak, Walter; Jircitano, Albert; Grierson, Andrew
1988-04-01
The GGSS program began in early 1983 with the objective of delivering a landmobile and airborne system capable of fast, accurate, and economical gravity gradient surveys of large areas anywhere in the world. The objective included the development and use of post-mission data reduction software to process the survey data into solutions for the gravity disturbance vector components (north, east and vertical). This document describes the GGSS equipment hardware and software, integration and lab test procedures and results, and airborne and land survey procedures and results. Included are discussions on test strategies, post-mission data reduction algorithms, and the data reduction processing experience. Perspectives and conclusions are drawn from the results.
Using Magnetic Forces to Probe the Gravi-response of Swimming Paramecium
NASA Astrophysics Data System (ADS)
Guevorkian, Karine; Valles, James M., Jr.
2004-03-01
Paramecium Caudatum, a single celled ciliate, alters its swimming behavior when subjected to different gravity environments (e.g. centrifugation and micro-gravity). To dissect the mechanisms behind this gravi-response and that of other biological systems, we are developing the use of magnetic body forces as a means of creating a rapidly tunable, simulated variable gravity environment. Since biological materials are weakly diamagnetic, we must subject them to intense inhomogeneous magnetic fields with characteristic field-field gradient products on the order of 16 T^2/cm. We will describe experiments on Paramecium Caudatum in which we adjust their net buoyancy with magnetic forces and measure the resulting changes in their swimming behavior.
Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1
NASA Technical Reports Server (NTRS)
Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.
Deer Lodge Valley investigations, western Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wideman, C.J.; Sonderegger, J.; Crase, E.
1982-07-01
A review of the geothermal investigations conducted in the Deer Lodge Valley of Western Montana is briefly presented. Maps of the generalized geology and Bouguer gravity and graphs of selected geothermal gradients and resistivity sounding profiles are presented. (MJF)
Digital data from the Great Sand Dunes airborne gravity gradient survey, south-central Colorado
Drenth, B.J.; Abraham, J.D.; Grauch, V.J.S.; Labson, V.F.; Hodges, G.
2013-01-01
This report contains digital data and supporting explanatory files describing data types, data formats, and survey procedures for a high-resolution airborne gravity gradient (AGG) survey at Great Sand Dunes National Park, Alamosa and Saguache Counties, south-central Colorado. In the San Luis Valley, the Great Sand Dunes survey covers a large part of Great Sand Dunes National Park and Preserve. The data described were collected from a high-resolution AGG survey flown in February 2012, by Fugro Airborne Surveys Corp., on contract to the U.S. Geological Survey. Scientific objectives of the AGG survey are to investigate the subsurface structural framework that may influence groundwater hydrology and seismic hazards, and to investigate AGG methods and resolution using different flight specifications. Funding was provided by an airborne geophysics training program of the U.S. Department of Defense's Task Force for Business & Stability Operations.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.; Zu, G. J.
1996-01-01
The coupling of slosh dynamics within a partially filled rotating dewar of superfluid helium 11 with spacecraft orbital dynamics is investigated in response to the environmental disturbances of (a) lateral impulses, (b) gravity gradients and (c) g-jitter forces. The purpose of this study is to investigate how the coupling of helium 11 fluid slosh dynamics driven by three cases of environmental force with spacecraft dynamics can affect the bubble deformations and their associated fluid and spacecraft mass centre fluctuations. The numerical computation of slosh dynamics is based on a rotational frame, while the spacecraft dynamics is associated with a non-rotational frame. Results show that the major contribution of orbital dynamics is driven by coupling with slosh dynamics. Neglecting the effect of slosh dynamics acting on the spacecraft may lead to the wrong results for the development of orbital and attitude control techniques.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
Gradient Heating Facility in the Materials Science Double Rack (MSDR) on Spacelab-1 Module
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle was designed to carry large payloads into Earth orbit. One of the most important payloads is Spacelab. The Spacelab serves as a small but well-equipped laboratory in space to perform experiments in zero-gravity and make astronomical observations above the Earth's obscuring atmosphere. In this photograph, Payload Specialist, Ulf Merbold, is working at Gradient Heating Facility on the Materials Science Double Rack (MSDR) inside the science module in the Orbiter Columbia's payload bay during STS-9, Spacelab-1 mission. Spacelab-1, the joint ESA (European Space Agency)/NASA mission, was the first operational flight for the Spacelab, and demonstrated new instruments and methods for conducting experiments that are difficult or impossible in ground-based laboratories. This facility performed, in extremely low gravity, a wide variety of materials processing experiments in crystal growth, fluid physics, and metallurgy. The Marshall Space Flight Center had overall management responsibilities.
A gravity gradient stabilized solar power satellite design
NASA Technical Reports Server (NTRS)
Bowden, M. L.
1981-01-01
The concept of a solar power satellite (SPS) is reviewed, and a design proposed for such a satellite taking advantage of solar radiation pressure and gravity gradient forces to eliminate much of the structure from the baseline configuration. The SPS design consists of a solar cell array lying in the orbital plane and a free floating mirror above to reflect sunlight down onto it. The structural modes of the solar cell array are analyzed and found to be well within control limitations. Preliminary calculations concerning the free floating mirror and its position-keeping propellant requirements are also performed. A numerical example is presented, which shows that, even in terms of mass only, this configuration is a competitive design when compared to the conventional Department of Energy reference design. Other advantages, such as easier assembly in orbit, lower position-keeping propellant requirements, possibilities for decreasing necessary solar cell area, and longer solar cell life, may make this design superior.
Test and On-Orbit Experiences of FalconSAT-3
NASA Astrophysics Data System (ADS)
Saylor, W. W.; France, M. E. B.
2008-08-01
The fundamental objectives of the capstone design project in the Department of Astronautics at the United States Air Force Academy (USAFA) are for cadets to learn important engineering lessons by executing a real space mission on a Department of Defense-funded satellite project. FalconSAT-3 is a 50 kg, gravity gradient-stabilized designed and built by cadets and launched March 2007 on the first ESPA (Enhanced extended launch vehicle Satellite Payload Adapter) mission. FalconSAT-3 was one of six satellites integrated onto the launch vehicle and the nature of the mission made it that the satellite was subject to the full formality of testing requirements. Two successive gravity gradient booms failed either design requirements or environmental testing; design requirements grew dramatically during the design phase; ambiguous thermal vacuum test results led to uncertainty at launch; and after launch it was not possible to contact the satellite for several weeks.
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2010-05-01
The basic observables of the recently launched satellite gravity gradiometry mission GOCE are the second derivatives of the earth gravitational potential (components of the full Marussi tensor). These gravity gradients are highly sensitive to mass anomalies and mass transports in the earth system. The high- and mid-frequency components of the gradients are mainly affected by the topographic and isostatic masses whereby the downward continuation of the gradients is a rather difficult task. In order to stabilize this process the gradients have to be smoothed by applying topographic and isostatic reductions. In the space domain the modelling of topographic effects is based on the evaluation of functionals of the Newton integral. In the case of GOCE the second-order derivatives are required. Practical numerical computations rely on a discretisation of the earth's topography and a subdivision into different mass elements. Considering geographical gridlines tesseroids (spherical prisms) are well suited for the modelling of the topographic masses. Since the respective volume integrals cannot be solved in an elementary way in the case of tesseroids numerical approaches such as Taylor series expansion, Gauss-Legendre cubature or a point-mass approximation have to be applied. In this paper the topography is represented by the global Digital Terrain Model DTM2006.0 which was also used for the compilation of the Earth Gravitation Model EGM2008. In addition, each grid element of the DTM is classified as land, see or ice providing further information on the density within the evaluation of topographic effects. The computation points are located on a GOCE-like circular orbit. The mass elements are arranged on a spherical earth of constant radius and, in a more realistic composition, on the surface of an ellipsoid of revolution. The results of the modelling of each version are presented and compared to each other with regard to computation time and accuracy. Acknowledgements: This research has been financially supported by the German Federal Ministry of Education and Research (BMBF) within the REAL-GOCE project of the GEOTECHNOLOGIEN Programme.
Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228
Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila
2015-03-28
To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normalmore » to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.« less
Hong, Zhiling; Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.
^4He experiments near T_λ with a heat current and reduced gravity in a low-gravity simulator
NASA Astrophysics Data System (ADS)
Liu, Yuanming; Larson, Melora; Israelsson, Ulf
1998-03-01
Conventional ground-based helium experiments experience limitations due to a variation of the superfluid transition temperature (T_λ) caused by the gravity-induced hydrostatic pressure in a ^4He sample cell. A low-gravity simulator consisting a high field superconducting magnet has been built in our laboratory and the preliminary measurements demonstrated a reduction of gravity in the sample cell. (Melora Larson, Feng-Chuan Liu, and Ulf Israelsson, Czech. J. of Phys. 46, 179 (1996).) We report our latest improvements on the simulator and measurements with a new sample cell which had copper end plates, Vepsel sidewalls, and sidewall probes. The measurements showed that gravity can be canceled with a field-field gradient product of 20.7 T^2/cm (or B=15.5 Tesla), in excellent agreement with the theoretical prediction. The measurements also revealed that the boundary resistance between the thermometers and liquid helium increased from 1.6 cm^2 K/W at zero field to 2.0 cm^2 K/W at B=13.8 Tesla. The preliminary dynamic measurements near T_λ with a heat current and reduced gravity will also be presented. This research was supported by NASA.
An analytical model of SAGD process considering the effect of threshold pressure gradient
NASA Astrophysics Data System (ADS)
Morozov, P.; Abdullin, A.; Khairullin, M.
2018-05-01
An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.
Local gravity field modeling using spherical radial basis functions and a genetic algorithm
NASA Astrophysics Data System (ADS)
Mahbuby, Hany; Safari, Abdolreza; Foroughi, Ismael
2017-05-01
Spherical Radial Basis Functions (SRBFs) can express the local gravity field model of the Earth if they are parameterized optimally on or below the Bjerhammar sphere. This parameterization is generally defined as the shape of the base functions, their number, center locations, bandwidths, and scale coefficients. The number/location and bandwidths of the base functions are the most important parameters for accurately representing the gravity field; once they are determined, the scale coefficients can then be computed accordingly. In this study, the point-mass kernel, as the simplest shape of SRBFs, is chosen to evaluate the synthesized free-air gravity anomalies over the rough area in Auvergne and GNSS/Leveling points (synthetic height anomalies) are used to validate the results. A two-step automatic approach is proposed to determine the optimum distribution of the base functions. First, the location of the base functions and their bandwidths are found using the genetic algorithm; second, the conjugate gradient least squares method is employed to estimate the scale coefficients. The proposed methodology shows promising results. On the one hand, when using the genetic algorithm, the base functions do not need to be set to a regular grid and they can move according to the roughness of topography. In this way, the models meet the desired accuracy with a low number of base functions. On the other hand, the conjugate gradient method removes the bias between derived quasigeoid heights from the model and from the GNSS/leveling points; this means there is no need for a corrector surface. The numerical test on the area of interest revealed an RMS of 0.48 mGal for the differences between predicted and observed gravity anomalies, and a corresponding 9 cm for the differences in GNSS/leveling points.
Egg buoyancy variability in local populations of Atlantic cod (Gadus morhua).
Jung, Kyung-Mi; Folkvord, Arild; Kjesbu, Olav Sigurd; Agnalt, Ann Lisbeth; Thorsen, Anders; Sundby, Svein
2012-01-01
Previous studies have found strong evidences for Atlantic cod ( Gadus morhua ) egg retention in fjords, which are caused by the combination of vertical salinity structure, estuarine circulation, and egg specific gravity, supporting small-scaled geographical differentiations of local populations. Here, we assess the variability in egg specific gravity for selected local populations of this species, that is, two fjord-spawning populations and one coastal-spawning population from Northern Norway (66-71°N/10-25°E). Eggs were naturally spawned by raised broodstocks (March to April 2009), and egg specific gravity was measured by a density-gradient column. The phenotype of egg specific gravity was similar among the three local populations. However, the associated variability was greater at the individual level than at the population level. The noted gradual decrease in specific gravity from gastrulation to hatching with an increase just before hatching could be a generic pattern in pelagic marine fish eggs. This study provides needed input to adequately understand and model fish egg dispersal.
Morohashi, Keita; Okamoto, Miki; Yamazaki, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Kobayashi, Akie; Takahashi, Hideyuki
2017-09-01
Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Influence of core flows on the decade variations of the polar motion
NASA Astrophysics Data System (ADS)
Hulot, G.; Le Huy, M.; Le Mouël, J.-L.
We address the possibility for the core flows that generate the geomagnetic field to contribute significantly to the decade variations of the mean pole position (generally called the Markowitz wobble). This assumption is made plausible by the observation that the flow at the surface of the core-estimated from the geomagnetic secular variation models-experiences important changes on this time scale. We discard the viscous and electromagnetic core-mantle couplings and consider only the pressure torque pf resulting from the fluid flow overpressure acting on the non-spherical core-mantle boundary (CMB) at the bottom of the mantle, and the gravity torque gf due to the density heterogeneity driving the core flow. We show that forces within the core balance each other on the time scale considered and, using global integrals over the core, the mantle and the whole Earth, we write Euler's equation for the mantle in terms of two more useful torques Pgeo and . The "geostrophic torque", γ Pgeo incorporates γpf and part of γgf, while γ is another fraction of γgf. We recall how the geostrophic pressure pgeo, and thus γPgeo for a given topography, can be derived from the flow at the CMB and compute the motion of the mean pole from 1900 to 1990, assuming in a first approach that the unknown γ can be neglected. The amplitude of the computed pole motion is three to ten times less than the observed one and out of the phase with it. In order to estimate the possible contribution of γ we then use a second approach and consider the case in which the reference state for the Earth is assumed to be the classical axisymmetric ellipsoidal figure with an almost constant ellipticity within the core. We show that (γPgeo + γ) is then equal to a pseudo-electromagnetic torque γL3, the torque exerted on the core by the component of the Lorentz force along the axis of rotation (this torque exists even though the mantle is assumed insulating). This proves that, at least in this case and probably in the more general case of a bumpy CMB, γ is not negligible compared with γ Pgeo. Eventually, we estimate the order of magnitude of γL3, show that it is likely to be small and conclude with further possibilities for the Markowitz wobble to be excited from within the core.