NASA Astrophysics Data System (ADS)
Hurst, N. W.; Kusznir, N. J.
2005-05-01
A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted continental margin crustal thinning and an improved (and isochron independent) prediction of OCT location. The new method uses an empirical relationship to predict the thickness of oceanic crust as a function of lithosphere thinning factor controlled by two input parameters: a critical thinning factor for the start of ocean crust production and the maximum oceanic crustal thickness produced when the thinning factor = 1, corresponding to infinite lithosphere stretching. The disadvantage of using a uniform stretching age corresponding to the age of continental breakup is that the inversion fails to predict increasing thermal gravity correction towards the ocean ridge and incorrectly predicts thickening of oceanic crust with decreasing oceanic age. The new gravity inversion method has been applied to N. Atlantic rifted margins. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Kusznir, N. J.; Jordan, T. A.
2017-12-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Antarctic crustal thicknesses derived from gravity inversion are compared with seismic estimates from Baranov (2011) and An et al. (2015). We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift (LR) to the South Pole region, a distance of 2500 km. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new crustal thickness map produced by this gravity inversion study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts (DG) and Peter I Island (PI) in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region.
Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom
2017-04-01
Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Crustal thicknesses derived from gravity inversion are consistent with seismic estimates. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Ocean isochrons are used to define the cooling age of oceanic lithosphere. Crustal thicknesses from gravity inversion are compared with independent seismic estimates, which are still relatively sparse over Antarctica. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. Offshore an extensive region of either thick oceanic crust or highly thinned continental crust lies adjacent to Oates Land and north Victoria Land, and also off West Antarctica around the Amundsen Ridges. Thin crust is predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new maps produced by this study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts and Peter I Island in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region. Crustal thickness and lithosphere thinning derived from gravity inversion also allows the determination of circum-Antarctic ocean-continent transition structure and the mapping of continent-ocean boundary location. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of Southern Ocean rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation, is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Gozzard, Simon; Alvey, Andy
2016-04-01
The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.
NASA Astrophysics Data System (ADS)
Greenhalgh, E. E.; Kusznir, N. J.
2006-12-01
Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is predicted for the Jan Mayen micro- continent south of Jan Mayen Island, with crust of the order of 20 km thickness extending southwards to connect with both the Faroes-Iceland Ridge and N.E. Iceland. Predicted crustal thicknesses under the Faroes- Iceland Ridge are approximately 25 km. The lithosphere thermal model used to predict the lithosphere thermal gravity anomaly correction may be conditioned using magnetic isochron data to provide the age of oceanic lithosphere. The resulting crustal thickness determination and the location of ocean-continent transition (OCT) are however sensitive to errors in the magnetic isochron data. An alternative method of inverting satellite gravity to give crustal thickness, incorporating a lithosphere thermal correction, has been used which does not use magnetic isochron data and provides an independent prediction of crustal thickness and OCT location. The crustal thickness estimates and OCT locations detailed above are robust to these sensitivity tests.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto
2013-04-01
Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for volcanic addition due to decompression melting based on White & McKenzie (1989). Gravity inversion and the "synthetic" gravity derived RDA both show generally normal thickness oceanic crust, with some localised thin oceanic crust. Continental lithosphere thinning factors determined from gravity inversion and subsidence analysis are in good agreement and have been used to constrain COB location along the profile lines. These techniques show that the OCT in the eastern Gulf of Aden, is relatively narrow, with the distance between the COB and the margin hinge measuring less than 100km.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
NASA Astrophysics Data System (ADS)
Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue
2018-04-01
In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.
2012-12-01
It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a "synthetic" gravity derived RDA. Sediment corrected RDA for oceanic crust in the Gulf of Aden are positive (+750m) indicating anomalous uplift with respect to normal subsidence. Gravity inversion predicts normal thickness oceanic crust and a zero "synthetic" gravity derived RDA in the oceanic domain. The difference between the positive sediment corrected RDA and the zero "synthetic" gravity derived RDA, implies that the anomalous subsidence reported in the Gulf of Aden is the result of mantle dynamic uplift. For the oceanic crust outboard of Galicia Bank both the sediment corrected RDA and the "synthetic" gravity derived RDA are negative (-800m) and of similar magnitude, indicating anomalous subsidence, which is the result of anomalously thin oceanic crust, not mantle dynamic topography. We conclude that there is negligible mantle dynamic topography influencing the Galicia Bank region. In the Gulf of Lions, gravity inversion predicts thinner than average oceanic crust. Both sediment corrected RDA (-1km) and "synthetic" gravity derived RDA (-500m) are negative. The more negative sediment corrected RDA compared with the "synthetic" gravity derived RDA implies that the anomalous subsidence in the Gulf of Lions is the result of mantle dynamic subsidence as well as thinner than average oceanic crust.
Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy
2014-05-01
The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Crustal basement thicknesses of 10-15 km are predicted under the Laptev Sea which is interpreted as highly thinned continental crust formed at the eastward continuation of Eurasia Basin sea-floor spreading. Thin continental or oceanic crust of thickness 7 km or less is predicted under the North Chukchi Basin and has major implications for understanding the Mesozoic and Cenozoic plate tectonic history of the Siberian and Chukchi Amerasia Basin margins. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test and refine plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic and N Atlantic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. We interpret gravity inversion crustal thicknesses underneath Morris Jessop Rise & Yermak Plateau as continental crust which provided a barrier to the tectonic and palaeo-oceanic linkage between the Arctic & North Atlantic until the Oligocene. Before this time, we link the seafloor spreading within the Eurasia Basin to that in Baffin Bay.
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.
2004-01-01
This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov
Constraining Mass Anomalies Using Trans-dimensional Gravity Inversions
NASA Astrophysics Data System (ADS)
Izquierdo, K.; Montesi, L.; Lekic, V.
2016-12-01
The density structure of planetary interiors constitutes a key constraint on their composition, temperature, and dynamics. This has motivated the development of non-invasive methods to infer 3D distribution of density anomalies within a planet's interior using gravity observations made from the surface or orbit. On Earth, this information can be supplemented by seismic and electromagnetic observations, but such data are generally not available on other planets and inferences must be made from gravity observations alone. Unfortunately, inferences of density anomalies from gravity are non-unique and even the dimensionality of the problem - i.e., the number of density anomalies detectable in the planetary interior - is unknown. In this project, we use the Reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm to approach gravity inversions in a trans-dimensional way, that is, considering the magnitude of the mass, the latitude, longitude, depth and number of anomalies itself as unknowns to be constrained by the observed gravity field at the surface of a planet. Our approach builds upon previous work using trans-dimensional gravity inversions in which the density contrast between the anomaly and the surrounding material is known. We validate the algorithm by analyzing a synthetic gravity field produced by a known density structure and comparing the retrieved and input density structures. We find excellent agreement between the input and retrieved structure when working in 1D and 2D domains. However, in 3D domains, comprehensive exploration of the much larger space of possible models makes search efficiency a key ingredient in successful gravity inversion. We find that upon a sufficiently long RJMCMC run, it is possible to use statistical information to recover a predicted model that matches the real model. We argue that even more complex problems, such as those involving real gravity acceleration data of a planet as the constraint, our trans-dimensional gravity inversion algorithm provides a good option to overcome the problem of non-uniqueness while achieving parsimony in gravity inversions.
Toushmalani, Reza
2013-01-01
The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used also for training ANNs. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution reveals that fault model parameters are agree quite well with the known results. A more agreement has been found between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.
NASA Astrophysics Data System (ADS)
Chappell, A.; Kusznir, N. J.
2005-05-01
The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic origin for the axis shown by normal incidence seismic data, are consistent with a sea-floor spreading origin for the southern Rockall Trough and not formation by intra-continental rifting. We investigate the formation of the southern Rockall Trough using SfMargin, a new model of continental lithosphere thinning leading to continental breakup and sea-floor spreading initiation. Comparisons of the geometry of the southern Rockall Trough predicted by SfMargin with that observed are consistent with a short period (20Ma) of slow Cretaceous sea-floor spreading, followed by thermal subsidence to present day. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, ConocoPhillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.
NASA Technical Reports Server (NTRS)
Sunderland, P. B.; Yuan, Z.-G.; Krishnan, S. S.; Abshire, J. M.; Gore, J. P.
2003-01-01
Owing to the absence of past work involving flames similar to the Mir fire namely oxygen-enhanced, inverse gas-jet diffusion flames in microgravity the objectives of this work are as follows: 1. Observe the effects of enhanced oxygen conditions on laminar jet diffusion flames with ethane fuel. 2. Consider both earth gravity and microgravity. 3. Examine both normal and inverse flames. 4. Compare the measured flame lengths and widths with calibrated predictions of several flame shape models. This study expands on the work of Hwang and Gore which emphasized radiative emissions from oxygen-enhanced inverse flames in earth gravity, and Sunderland et al. which emphasized the shapes of normal and inverse oxygen-enhanced gas-jet diffusion flames in microgravity.
Next Generation Robots for STEM Education andResearch at Huston Tillotson University
2017-11-10
dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one
Predicted Sensitivity for Tests of Short-range Gravity with a Novel Parallel-plate Torsion Pendulum
NASA Astrophysics Data System (ADS)
Richards, Matthew; Baxley, Brandon; Hoyle, C. D.; Leopardi, Holly; Shook, David
2011-11-01
The parallel-plate torsion pendulum apparatus at Humboldt State University is designed to test the Weak Equivalence Principle (WEP) and the gravitational inverse-square law (ISL) of General Relativity at unprecedented levels in the sub-millimeter regime. Some versions of String Theory predict additional dimensions that might affect the gravitational inverse-square law (ISL) at sub-millimeter levels. Some models also predict the existence of unobserved subatomic particles, which if exist, could cause a violation in the WEP at short distances. Short-range tests of gravity and the WEP are also instrumental in investigating possible proposed mechanisms that attempt to explain the accelerated expansion of the universe, generally attributed to Dark Energy. The weakness of the gravitational force makes measurement very difficult at small scales. Testing such a minimal force requires highly isolated experimental systems and precise measurement and control instrumentation. Moreover, a dedicated test of the WEP has not been performed below the millimeter scale. This talk will discuss the improved sensitivity that we expect to achieve in short-range gravity tests with respect to previous efforts that employ different experimental configurations.
Velocity Structure of the Iran Region Using Seismic and Gravity Observations
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.
2015-12-01
We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2014-01-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.
Seabed topography beneath Larsen C Ice Shelf from seismic soundings
NASA Astrophysics Data System (ADS)
Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.
2013-08-01
Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.
Paradigm lost: Venus crater depths and the role of gravity in crater modification
NASA Technical Reports Server (NTRS)
Sharpton, Virgil L.
1992-01-01
Previous to Magellan, a convincing case had been assembled that predicted that complex impact craters on Venus were considerably shallower than their counterparts on Mars, Mercury, the Moon, and perhaps even Earth. This was fueled primarily by the morphometric observation that, for a given diameter (D), crater depth (d) seems to scale inversely with surface gravity for the other planets in the inner solar system. The unpredicted depth of fresh impact craters on Venus argues against a simple inverse relationship between surface gravity and crater depth. Factors that could contribute to deep craters on Venus include (1) more efficient excavation on Venus, possibly reflecting rheological effects of the hot venusian environment; (2) more melting and efficient removal of melt from the crater cavity; and (3) enhanced ejection of material out of the crater, possibly as a result of entrainment in an atmosphere set in motion by the passage of the projectile. The broader issue raised by the venusian crater depths is whether surface gravity is the predominant influence on crater depths on any planet. While inverse gravity scaling of crater depths has been a useful paradigm in planetary cratering, the venusian data do not support this model and the terrestrial data are equivocal at best. The hypothesis that planetary gravity is the primary influence over crater depths and the paradigm that terrestrial craters are shallow should be reevaluated.
Preliminary gravity inversion model of Frenchman Flat Basin, Nevada Test Site, Nevada
Phelps, Geoffrey A.; Graham, Scott E.
2002-01-01
The depth of the basin beneath Frenchman Flat is estimated using a gravity inversion method. Gamma-gamma density logs from two wells in Frenchman Flat constrained the density profiles used to create the gravity inversion model. Three initial models were considered using data from one well, then a final model is proposed based on new information from the second well. The preferred model indicates that a northeast-trending oval-shaped basin underlies Frenchman Flat at least 2,100 m deep, with a maximum depth of 2,400 m at its northeast end. No major horst and graben structures are predicted. Sensitivity analysis of the model indicates that each parameter contributes the same magnitude change to the model, up to 30 meters change in depth for a 1% change in density, but some parameters affect a broader area of the basin. The horizontal resolution of the model was determined by examining the spacing between data stations, and was set to 500 square meters.
NASA Astrophysics Data System (ADS)
Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei
2017-02-01
The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.
Internal model of gravity influences configural body processing.
Barra, Julien; Senot, Patrice; Auclair, Laurent
2017-01-01
Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.
3D joint inversion of gravity-gradient and borehole gravity data
NASA Astrophysics Data System (ADS)
Geng, Meixia; Yang, Qingjie; Huang, Danian
2017-12-01
Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.
NASA Astrophysics Data System (ADS)
Dionicio, V.; Rowe, C. A.; Maceira, M.; Zhang, H.; Londoño, J.
2009-12-01
We report on the three-dimensional seismic structure of western Colombia determined through the use of a new, simultaneous, joint inversion tomography algorithm. Using data recorded by the national Seismological Network of Colombia (RSNC), we have selected 3,609 earthquakes recorded at 33 sensors distributed throughout the country, with additional data from stations in neighboring countries. 20,338 P-wave arrivals and 17,041 S-wave arrivals are used to invert for structure within a region extending approximately 72.5 to 77.5 degrees West and 2 to 7.5 degrees North. Our algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program, with a fast LSQR solver operating on the gridded values jointly. The inversion uses gravity anomalies obtained during the GRACE2 satellite mission, and solves using these values with the seismic travel-times through application of an empirical relationship first proposed by Harkrider, mapping densities to Vp and Vs within earth materials. In previous work, Maceira and Ammon demonstrated that incorporation of gravity data predicts shear wave velocities more accurately than the inversion of surface waves alone, particularly in regions where the crust exhibits abrupt and significant lateral variations in lithology, such as the Tarim Basin. The significant complexity of crustal structure in Colombia, due to its active tectonic environment, makes it a good candidate for the application with gravity and body waves. We present the results of this joint inversion and compare it to results obtained using travel times alone
Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie
2013-04-01
It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness, incorporates a lithosphere thermal gravity anomaly correction and uses sediment thicknesses from 2D seismic data. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The difference between the sediment corrected RDA and the "synthetic" gravity derived RDA gives the component of the RDA which is not due to variations in oceanic crustal thickness. This RDA corrected for sediment loading and crustal thickness variation has a magnitude between +600m and +1000m (corresponding to anomalous uplift) and is comparable to that reported (+1km) by Lucazeau et al. (2008). We are unable to distinguish whether this anomalous uplift is due to mantle dynamic topography or anomalous subsidence with respect to classical rift model predictions.
The effect of Earth's oblateness on the seismic moment estimation from satellite gravimetry
NASA Astrophysics Data System (ADS)
Dai, Chunli; Guo, Junyi; Shang, Kun; Shum, C. K.; Wang, Rongjiang
2018-05-01
Over the last decade, satellite gravimetry, as a new class of geodetic sensors, has been increasingly studied for its use in improving source model inversion for large undersea earthquakes. When these satellite-observed gravity change data are used to estimate source parameters such as seismic moment, the forward modelling of earthquake seismic deformation is crucial because imperfect modelling could lead to errors in the resolved source parameters. Here, we discuss several modelling issues and focus on one modelling deficiency resulting from the upward continuation of gravity change considering the Earth's oblateness, which is ignored in contemporary studies. For the low degree (degree 60) time-variable gravity solutions from Gravity Recovery and Climate Experiment mission data, the model-predicted gravity change would be overestimated by 9 per cent for the 2011 Tohoku earthquake, and about 6 per cent for the 2010 Maule earthquake. For high degree gravity solutions, the model-predicted gravity change at degree 240 would be overestimated by 30 per cent for the 2011 Tohoku earthquake, resulting in the seismic moment to be systematically underestimated by 30 per cent.
Optic nerve dysfunction during gravity inversion. Visual field abnormalities.
Sanborn, G E; Friberg, T R; Allen, R
1987-06-01
Inversion in a head-down position (gravity inversion) results in an intraocular pressure of 35 to 40 mm Hg in normal subjects. We used computerized static perimetry to measure the visual fields of normal subjects during gravity inversion. There were no visual field changes in the central 6 degrees of the visual field compared with the baseline (preinversion) values. However, when the central 30 degrees of the visual field was tested, reversible visual field defects were found in 11 of 19 eyes. We believe that the substantial elevation of intraocular pressure during gravity inversion may pose potential risks to the eyes, and we recommend that inversion for extended periods of time be avoided.
Lower limit to the scale of an effective quantum theory of gravitation.
Caldwell, R R; Grin, Daniel
2008-01-25
An effective quantum theory of gravitation in which gravity weakens at energies higher than approximately 10(-3) eV is one way to accommodate the apparent smallness of the cosmological constant. Such a theory predicts departures from the Newtonian inverse-square force law on distances below approximately 0.05 mm. However, it is shown that this modification also leads to changes in the long-range behavior of gravity and is inconsistent with observed gravitational lenses.
NASA Astrophysics Data System (ADS)
Wang, Jun; Meng, Xiaohong; Li, Fang
2017-11-01
Generalized inversion is one of the important steps in the quantitative interpretation of gravity data. With appropriate algorithm and parameters, it gives a view of the subsurface which characterizes different geological bodies. However, generalized inversion of gravity data is time consuming due to the large amount of data points and model cells adopted. Incorporating of various prior information as constraints deteriorates the above situation. In the work discussed in this paper, a method for fast nonlinear generalized inversion of gravity data is proposed. The fast multipole method is employed for forward modelling. The inversion objective function is established with weighted data misfit function along with model objective function. The total objective function is solved by a dataspace algorithm. Moreover, depth weighing factor is used to improve depth resolution of the result, and bound constraint is incorporated by a transfer function to limit the model parameters in a reliable range. The matrix inversion is accomplished by a preconditioned conjugate gradient method. With the above algorithm, equivalent density vectors can be obtained, and interpolation is performed to get the finally density model on the fine mesh in the model domain. Testing on synthetic gravity data demonstrated that the proposed method is faster than conventional generalized inversion algorithm to produce an acceptable solution for gravity inversion problem. The new developed inversion method was also applied for inversion of the gravity data collected over Sichuan basin, southwest China. The established density structure in this study helps understanding the crustal structure of Sichuan basin and provides reference for further oil and gas exploration in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abers, G.A.
1994-03-10
Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivalsmore » for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.« less
Ghirardi-Rimini-Weber model with massive flashes
NASA Astrophysics Data System (ADS)
Tilloy, Antoine
2018-01-01
I introduce a modification of the Ghirardi-Rimini-Weber (GRW) model in which the flashes (or space-time collapse events) source a classical gravitational field. The resulting semiclassical theory of Newtonian gravity preserves the statistical interpretation of quantum states of matter in contrast with mean field approaches. It can be seen as a discrete version of recent proposals of consistent hybrid quantum classical theories. The model is in agreement with known experimental data and introduces new falsifiable predictions: (1) single particles do not self-interact, (2) the 1 /r gravitational potential of Newtonian gravity is cut off at short (≲10-7 m ) distances, and (3) gravity makes spatial superpositions decohere at a rate inversely proportional to that coming from the vanilla GRW model. Together, the last two predictions make the model experimentally falsifiable for all values of its parameters.
Combustion of solid carbon rods in zero and normal gravity
NASA Technical Reports Server (NTRS)
Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.
1979-01-01
In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.
3D Gravity Inversion using Tikhonov Regularization
NASA Astrophysics Data System (ADS)
Toushmalani, Reza; Saibi, Hakim
2015-08-01
Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.
On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.
Inversion of gravity gradient tensor data: does it provide better resolution?
NASA Astrophysics Data System (ADS)
Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.
2016-04-01
The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.
Estimating Antarctic Geothermal Heat Flux using Gravity Inversion
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina
2013-04-01
Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132-162. Rogozhina, I., Hagedoorn, J.M., Martinec, Z., Fleming, K., Soucek, O., Greve, R. & Thomas, M. 2012. Effects of uncertainties in the geothermal heat flux distribution on the Greenland Ice Sheet: An assessment of existing heat flow models. Journal of Geophysical Research-Earth Surface, 117 (F2), F02025. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-flow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012-8095.
a method of gravity and seismic sequential inversion and its GPU implementation
NASA Astrophysics Data System (ADS)
Liu, G.; Meng, X.
2011-12-01
In this abstract, we introduce a gravity and seismic sequential inversion method to invert for density and velocity together. For the gravity inversion, we use an iterative method based on correlation imaging algorithm; for the seismic inversion, we use the full waveform inversion. The link between the density and velocity is an empirical formula called Gardner equation, for large volumes of data, we use the GPU to accelerate the computation. For the gravity inversion method , we introduce a method based on correlation imaging algorithm,it is also a interative method, first we calculate the correlation imaging of the observed gravity anomaly, it is some value between -1 and +1, then we multiply this value with a little density ,this value become the initial density model. We get a forward reuslt with this initial model and also calculate the correaltion imaging of the misfit of observed data and the forward data, also multiply the correaltion imaging result a little density and add it to the initial model, then do the same procedure above , at last ,we can get a inversion density model. For the seismic inveron method ,we use a mothod base on the linearity of acoustic wave equation written in the frequency domain,with a intial velociy model, we can get a good velocity result. In the sequential inversion of gravity and seismic , we need a link formula to convert between density and velocity ,in our method , we use the Gardner equation. Driven by the insatiable market demand for real time, high-definition 3D images, the programmable NVIDIA Graphic Processing Unit (GPU) as co-processor of CPU has been developed for high performance computing. Compute Unified Device Architecture (CUDA) is a parallel programming model and software environment provided by NVIDIA designed to overcome the challenge of using traditional general purpose GPU while maintaining a low learn curve for programmers familiar with standard programming languages such as C. In our inversion processing, we use the GPU to accelerate our gravity and seismic inversion. Taking the gravity inversion as an example, its kernels are gravity forward simulation and correlation imaging, after the parallelization in GPU, in 3D case,the inversion module, the original five CPU loops are reduced to three,the forward module the original five CPU loops are reduced to two. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
NASA Astrophysics Data System (ADS)
Cardenas, Crystal; Harter, Andrew; Hoyle, C. D.; Leopardi, Holly; Smith, David
2014-03-01
Gravity was the first force to be described mathematically, yet it is the only fundamental force not well understood. The Standard Model of quantum mechanics describes interactions between the fundamental strong, weak and electromagnetic forces while Einstein's theory of General Relativity (GR) describes the fundamental force of gravity. There is yet to be a theory that unifies inconsistencies between GR and quantum mechanics. Scenarios of String Theory predicting more than three spatial dimensions also predict physical effects of gravity at sub-millimeter levels that would alter the gravitational inverse-square law. The Weak Equivalence Principle (WEP), a central feature of GR, states that all objects are accelerated at the same rate in a gravitational field independent of their composition. A violation of the WEP at any length would be evidence that current models of gravity are incorrect. At the Humboldt State University Gravitational Research Laboratory, an experiment is being developed to observe gravitational interactions below the 50-micron distance scale. The experiment measures the twist of a parallel-plate torsion pendulum as an attractor mass is oscillated within 50 microns of the pendulum, providing time varying gravitational torque on the pendulum. The size and distance dependence of the torque amplitude provide means to determine deviations from accepted models of gravity on untested distance scales. undergraduate.
Cady, John W.
1977-01-01
A computer program is presented which performs, for one or more bodies, along a profile perpendicular to strike, both forward calculations for the magnetic and gravity anomaly fields and independent gravity and magnetic inverse calculations for density and susceptibility or remanent magnetization.
DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data
NASA Astrophysics Data System (ADS)
Tian, Yu; Ke, Xiaoping; Wang, Yong
2018-04-01
This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.
NASA Astrophysics Data System (ADS)
Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.
2011-12-01
Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density distribution, well defining a central uplift area, ring structures and low density sediments. REFERENCES Cella F., and Fedi M., 2011, Inversion of potential field data using the structural index as weighting function rate decay, Geophysical Prospecting, doi: 10.1111/j.1365-2478.2011.00974.x Fedi M., Hansen P. C., and Paoletti V., 2005 Analysis of depth resolution in potential-field inversion. Geophysics, 70, NO. 6 Li, Y., 2001, 3-D inversion of gravity gradiometry data: 71st Annual Meeting, SEG, Expanded Abstracts, 1470-1473. Zhdanov, M. S., Ellis, R. G., and Mukherjee, S., 2004, Regularized focusing inversion of 3-D gravity tensor data: Geophysics, 69, 925-937.
Surface topography estimated by inversion of satellite gravity gradiometry observations
NASA Astrophysics Data System (ADS)
Ramillien, Guillaume
2015-04-01
An integration of mass elements is presented for evaluating the six components of the 2-order gravity tensor (i.e., second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven sphere topography consisting of juxtaposed vertical prisms. The method is based on Legendre polynomial series with the originality of taking elastic compensation of the topography by the Earth's surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily used for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. Moreover, an iterative least-square inversion of the observed gravity tensor values Γαβ is proposed to estimate a regional set of topographic heights. Several tests of recovery have been made by considering simulated gradiometry anomaly data, and for varying satellite altitudes and a priori levels of accuracy. In the case of GOCE-type gradiometry anomalies measured at an altitude of ~300 km, the search converges down to a stable and smooth topography after 20-30 iterations while the final r.m.s. error is ~100 m. The possibility of cumulating satellite information from different orbit geometries is also examined for improving the prediction.
Deviations from Newton's law in supersymmetric large extra dimensions
NASA Astrophysics Data System (ADS)
Callin, P.; Burgess, C. P.
2006-09-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case.
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy; Roberts, Alan
2017-04-01
The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.
Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method
NASA Astrophysics Data System (ADS)
Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng
2018-05-01
This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.
NASA Astrophysics Data System (ADS)
Schiltz, Kelsey Kristine
Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a SAGD project in the Athabasca oil sands deposit of Alberta reveals that the SAGD steam chamber has not developed uniformly. Core data confirm the presence of low permeability shale bodies within the reservoir. These shales can act as barriers and baffles to steam and limit production by prohibiting steam from accessing the full extent of the reservoir. Seismic data can be used to identify these shale breaks prior to siting new SAGD well pairs in order to optimize field development. To identify shale breaks in the study area, three types of seismic inversion and a probabilistic neural network prediction were performed. The predictive value of each result was evaluated by comparing the position of interpreted shales with the boundaries of the steam chamber determined through time-lapse analysis. The P-impedance result from post-stack inversion did not contain enough detail to be able to predict the vertical boundaries of the steam chamber but did show some predictive value in a spatial sense. P-impedance from pre-stack inversion exhibited some meaningful correlations with the steam chamber but was misleading in many crucial areas, particularly the lower reservoir. Density estimated through the application of a probabilistic neural network (PNN) trained using both PP and PS attributes identified shales most accurately. The interpreted shales from this result exhibit a strong relationship with the boundaries of the steam chamber, leading to the conclusion that the PNN method can be used to make predictions about steam chamber growth. In this study, reservoir characterization incorporating multicomponent seismic data demonstrated a high predictive value and could be useful in evaluating future well placement.
An Inversion of Gravity and Topography for Mantle and Crustal Structure on Mars
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Bills, Bruce G.; Nerem, R. Steven
1996-01-01
Analysis of the gravity and topography of Mars presently provides our primary quantitative constraints on the internal structure of Mars. We present an inversion of the long-wavelength (harmonic degree less than or equal to 10) gravity and topography of Mars for lateral variations of mantle temperature and crustal thickness. Our formulation incorporates both viscous mantle flow (which most prior studies have neglected) and isostatically compensated density anomalies in the crust and lithosphere. Our nominal model has a 150-km-thick high-viscosity surface layer over an isoviscous mantle, with a core radius of 1840 km. It predicts lateral temperature variations of up to a few hundred degrees Kelvin relative to the mean mantle temperature, with high temperature under Tharsis and to a lesser extent under Elysium and cool temperatures elsewhere. Surprisingly, the model predicts crustal thinning beneath Tharsis. If correct, this implies that thinning of the crust by mantle shear stresses dominates over thickening of the crust by volcanism. The major impact basins (Hellas, Argyre, Isidis, Chryse, and Utopia) are regions of crustal thinning, as expected. Utopia is also predicted to be a region of hot mantle, which is hard to reconcile with the surface geology. An alternative model for Utopia treats it as a mascon basin. The Utopia gravity anomaly is consistent with the presence of a 1.2 to 1.6 km thick layer of uncompensated basalt, in good agreement with geologic arguments about the amount of volcanic fill in this area. The mantle thermal structure is the dominant contributor to the observed geoid in our inversion. The mantle also dominates the topography at the longest wavelengths, but shorter wavelengths (harmonic degrees greater than or equal to 4) are dominated by the crustal structure. Because of the uncertainty about the appropriate numerical values for some of the model's input parameters, we have examined the sensitivity of the model results to the planetary structural model (core radius and core and mantle densities), the mantle's viscosity stratification, and the mean crustal thickness. The model results are insensitive to the specific thickness or viscosity contrast of the high-viscosity surface layer and to the mean crustal thickness in the range 25 to 100 km. Models with a large core radius or with an upper mantle low-viscosity zone require implausibly large lateral variations in mantle temperature.
Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.
Andrews-Hanna, Jeffrey C; Asmar, Sami W; Head, James W; Kiefer, Walter S; Konopliv, Alexander S; Lemoine, Frank G; Matsuyama, Isamu; Mazarico, Erwan; McGovern, Patrick J; Melosh, H Jay; Neumann, Gregory A; Nimmo, Francis; Phillips, Roger J; Smith, David E; Solomon, Sean C; Taylor, G Jeffrey; Wieczorek, Mark A; Williams, James G; Zuber, Maria T
2013-02-08
The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.
Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data
2012-09-01
CRUSTAL AND UPPER MANTLE STRUCTURE FROM JOINT INVERSION OF BODY WAVE AND GRAVITY DATA Eric A. Bergman1, Charlotte Rowe2, and Monica Maceira2...for these events include many readings of direct crustal P and S phases, as well as regional (Pn and Sn) and teleseismic phases. These data have been...the usefulness of the gravity data, we apply high-pass filtering, yielding gravity anomalies that possess higher resolving power for crustal and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.
NASA Astrophysics Data System (ADS)
Windhari, Ayuty; Handayani, Gunawan
2015-04-01
The 3D inversion gravity anomaly to estimate topographical density using a matlab source code from gridded data provided by Parker Oldenburg algorithm based on fast Fourier transform was computed. We extend and improved the source code of 3DINVERT.M invented by Gomez Ortiz and Agarwal (2005) using the relationship between Fourier transform of the gravity anomaly and the sum of the Fourier transform from the topography density. We gave density contrast between the two media to apply the inversion. FFT routine was implemented to construct amplitude spectrum to the given mean depth. The results were presented as new graphics of inverted topography density, the gravity anomaly due to the inverted topography and the difference between the input gravity data and the computed ones. It terminates when the RMS error is lower than pre-assigned value used as convergence criterion or until maximum of iterations is reached. As an example, we used the matlab program on gravity data of Banten region, Indonesia.
FORGE Newberry 3D Gravity Density Model for Newberry Volcano
Alain Bonneville
2016-03-11
These data are Pacific Northwest National Lab inversions of an amalgamation of two surface gravity datasets: Davenport-Newberry gravity collected prior to 2012 stimulations and Zonge International gravity collected for the project "Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems" in 2012. Inversions of surface gravity recover a 3D distribution of density contrast from which intrusive igneous bodies are identified. The data indicate a body name, body type, point type, UTM X and Y coordinates, Z data is specified as meters below sea level (negative values then indicate elevations above sea level), thickness of the body in meters, suscept, density anomaly in g/cc, background density in g/cc, and density in g/cc. The model was created using a commercial gravity inversion software called ModelVision 12.0 (http://www.tensor-research.com.au/Geophysical-Products/ModelVision). The initial model is based on the seismic tomography interpretation (Beachly et al., 2012). All the gravity data used to constrain this model are on the GDR: https://gdr.openei.org/submissions/760.
Gravity inversion of a fault by Particle swarm optimization (PSO).
Toushmalani, Reza
2013-01-01
Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.
NASA Astrophysics Data System (ADS)
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-01
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-07
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Joint Inversion of 3d Mt/gravity/magnetic at Pisagua Fault.
NASA Astrophysics Data System (ADS)
Bascur, J.; Saez, P.; Tapia, R.; Humpire, M.
2017-12-01
This work shows the results of a joint inversion at Pisagua Fault using 3D Magnetotellurics (MT), gravity and regional magnetic data. The MT survey has a poor coverage of study area with only 21 stations; however, it allows to detect a low resistivity zone aligned with the Pisagua Fault trace that it is interpreted as a damage zone. The integration of gravity and magnetic data, which have more dense sampling and coverage, adds more detail and resolution to the detected low resistivity structure and helps to improve the structure interpretation using the resulted models (density, magnetic-susceptibility and electrical resistivity). The joint inversion process minimizes a multiple target function which includes the data misfit, model roughness and coupling norms (crossgradient and direct relations) for all geophysical methods considered (MT, gravity and magnetic). This process is solved iteratively using the Gauss-Newton method which updates the model of each geophysical method improving its individual data misfit, model roughness and the coupling with the other geophysical models. For solving the model updates of magnetic and gravity methods were developed dedicated 3D inversion software codes which include the coupling norms with additionals geophysical parameters. The model update of the 3D MT is calculated using an iterative method which sequentially filters the priority model and the output model of a single 3D MT inversion process for obtaining the resistivity model coupled solution with the gravity and magnetic methods.
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick
2014-05-01
Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.
Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics
NASA Technical Reports Server (NTRS)
Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)
2001-01-01
We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.
NASA Astrophysics Data System (ADS)
Simeonov, J.; Holland, K. T.
2016-12-01
We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry (Idaho) using in situ and remote sensing measurements of surface currents and water surface elevation obtained during a 2010 field experiment.
Basement structures over Rio Grande Rise from gravity inversion
NASA Astrophysics Data System (ADS)
Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa
2017-04-01
The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.
Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina
2014-05-01
New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature, 479, 388-392. Petrunin, A., Rogozhina, I., Vaughan, A. P. M., Kukkonen, I. T., Kaban, M., Koulakov, I., Thomas, M. (2013): Heat flux variations beneath central Greenland's ice due to anomalously thin lithosphere. - Nature Geoscience, 6, 746-750.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khachatryan, Vardan; et al.,
The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 inverse femtobarns of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To testmore » this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.« less
Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids
NASA Astrophysics Data System (ADS)
Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.
2017-12-01
Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.
NASA Astrophysics Data System (ADS)
Chappell, A. R.; Kusznir, N. J.
2005-12-01
The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin seismic crust with some serpentinised mantle material included. We propose that the southern Rockall Trough was formed by continental break-up and a period of slow mid Cretaceous sea floor spreading rather than as an intra- continental rift basin. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, AR Chappell, J Eccles, RJ Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, VJ Tymms & R Spitzer.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
NASA Astrophysics Data System (ADS)
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.
Simulation gravity modeling to spacecraft-tracking data - Analysis and application
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Sjogren, W. L.; Abbott, E. A.; Zisk, S. H.
1978-01-01
It is proposed that line-of-sight gravity measurements derived from spacecraft-tracking data can be used for quantitative subsurface density modeling by suitable orbit simulation procedures. Such an approach avoids complex dynamic reductions and is analogous to the modeling of conventional surface gravity data. This procedure utilizes the vector calculations of a given gravity model in a simplified trajectory integration program that simulates the line-of-sight gravity. Solutions from an orbit simulation inversion and a dynamic inversion on Doppler observables compare well (within 1% in mass and size), and the error sources in the simulation approximation are shown to be quite small. An application of this technique is made to lunar crater gravity anomalies by simulating the complete Bouguer correction to several large young lunar craters. It is shown that the craters all have negative Bouguer anomalies.
Response of amphibian egg cytoplasm to novel gravity orientation and centrifugation
NASA Technical Reports Server (NTRS)
Neff, A. W.; Wakahara, M.; Jurand, A.; Malacinski, G. M.
1983-01-01
The effects of inversion and centrifugation on the compartmentalization of cytoplasm in Xenopus laevis eggs are investigated experimentally. The rearrangement of yolk-platelet compartments (YPC) characterized by morphology, density, and viscosity differences is studied in fertilized, unfertilized, and unfertilized electrically activated eggs in normal, and inverted positions and with and without centrifugation at 10-183 x g for 5 min. The eggs are fixed and embedded in plastic or paraffin prior to sagittal sectioning (0.5, 4, or 8 microns) and microscopic examination; the results are presented in a diagram and discussed. A density-compartment model combining both animal/vegetal and dorsal/ventral polarities is proposed: YPC determined without gravity orientation during oogenesis respond to both sperm entrance point and gravity after fertilization, and the response involves breaking of the radial symmetry of the egg. It is predicted that Xenopus eggs in a microgravity environment will encounter difficulties in establishing a primary embryonic axis.
3D fast adaptive correlation imaging for large-scale gravity data based on GPU computation
NASA Astrophysics Data System (ADS)
Chen, Z.; Meng, X.; Guo, L.; Liu, G.
2011-12-01
In recent years, large scale gravity data sets have been collected and employed to enhance gravity problem-solving abilities of tectonics studies in China. Aiming at the large scale data and the requirement of rapid interpretation, previous authors have carried out a lot of work, including the fast gradient module inversion and Euler deconvolution depth inversion ,3-D physical property inversion using stochastic subspaces and equivalent storage, fast inversion using wavelet transforms and a logarithmic barrier method. So it can be say that 3-D gravity inversion has been greatly improved in the last decade. Many authors added many different kinds of priori information and constraints to deal with nonuniqueness using models composed of a large number of contiguous cells of unknown property and obtained good results. However, due to long computation time, instability and other shortcomings, 3-D physical property inversion has not been widely applied to large-scale data yet. In order to achieve 3-D interpretation with high efficiency and precision for geological and ore bodies and obtain their subsurface distribution, there is an urgent need to find a fast and efficient inversion method for large scale gravity data. As an entirely new geophysical inversion method, 3D correlation has a rapid development thanks to the advantage of requiring no a priori information and demanding small amount of computer memory. This method was proposed to image the distribution of equivalent excess masses of anomalous geological bodies with high resolution both longitudinally and transversely. In order to tranform the equivalence excess masses into real density contrasts, we adopt the adaptive correlation imaging for gravity data. After each 3D correlation imaging, we change the equivalence into density contrasts according to the linear relationship, and then carry out forward gravity calculation for each rectangle cells. Next, we compare the forward gravity data with real data, and comtinue to perform 3D correlation imaging for the redisual gravity data. After several iterations, we can obtain a satisfactoy results. Newly developed general purpose computing technology from Nvidia GPU (Graphics Processing Unit) has been put into practice and received widespread attention in many areas. Based on the GPU programming mode and two parallel levels, five CPU loops for the main computation of 3D correlation imaging are converted into three loops in GPU kernel functions, thus achieving GPU/CPU collaborative computing. The two inner loops are defined as the dimensions of blocks and the three outer loops are defined as the dimensions of threads, thus realizing the double loop block calculation. Theoretical and real gravity data tests show that results are reliable and the computing time is greatly reduced. Acknowledgments We acknowledge the financial support of Sinoprobe project (201011039 and 201011049-03), the Fundamental Research Funds for the Central Universities (2010ZY26 and 2011PY0183), the National Natural Science Foundation of China (41074095) and the Open Project of State Key Laboratory of Geological Processes and Mineral Resources (GPMR0945).
Bayesian Inference in Satellite Gravity Inversion
NASA Technical Reports Server (NTRS)
Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Kim, Hyung Rae; Torony, B.; Mayer-Guerr, T.
2005-01-01
To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 kilometer altitude over the South part of the Pannonian basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.
NASA Astrophysics Data System (ADS)
Bhatia, Pramod; Singh, Ravinder
2017-06-01
Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.
Constraining inverse-curvature gravity with supernovae.
Mena, Olga; Santiago, José; Weller, Jochen
2006-02-03
We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07
NASA Astrophysics Data System (ADS)
Cosburn, K.; Roy, M.; Rowe, C. A.; Guardincerri, E.
2017-12-01
Obtaining accurate static and time-dependent shallow subsurface density structure beneath volcanic, hydrogeologic, and tectonic targets can help illuminate active processes of fluid flow and magma transport. A limitation of using surface gravity measurements for such imaging is that these observations are vastly underdetermined and non-unique. In order to hone in on a more accurate solution, other data sets are needed to provide constraints, typically seismic or borehole observations. The spatial resolution of these techniques, however, is relatively poor, and a novel solution to this problem in recent years has been to use attenuation of the cosmic ray muon flux, which provides an independent constraint on density. In this study we present a joint inversion of gravity and cosmic ray muon flux observations to infer the density structure of a target rock volume at a well-characterized site near Los Alamos, New Mexico, USA. We investigate the shallow structure of a mesa formed by the Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez volcano in New Mexico. Gravity measurements were made using a Lacoste and Romberg D meter on the surface of the mesa and inside a tunnel beneath the mesa. Muon flux measurements were also made at the mesa surface and at various points within the same tunnel using a muon detector having an acceptance region of 45 degrees from the vertical and a track resolution of several milliradians. We expect the combination of muon and gravity data to provide us with enhanced resolution as well as the ability to sense deeper structures in our region of interest. We use Bayesian joint inversion techniques on the gravity-muon dataset to test these ideas, building upon previous work using gravity inversion alone to resolve density structure in our study area. Both the regional geology and geometry of our study area is well-known and we assess the inferred density structure from our gravity-muon joint inversion within this known geologic framework.
NASA Astrophysics Data System (ADS)
Uieda, Leonardo; Barbosa, Valéria C. F.
2017-01-01
Estimating the relief of the Moho from gravity data is a computationally intensive nonlinear inverse problem. What is more, the modelling must take the Earths curvature into account when the study area is of regional scale or greater. We present a regularized nonlinear gravity inversion method that has a low computational footprint and employs a spherical Earth approximation. To achieve this, we combine the highly efficient Bott's method with smoothness regularization and a discretization of the anomalous Moho into tesseroids (spherical prisms). The computational efficiency of our method is attained by harnessing the fact that all matrices involved are sparse. The inversion results are controlled by three hyperparameters: the regularization parameter, the anomalous Moho density-contrast, and the reference Moho depth. We estimate the regularization parameter using the method of hold-out cross-validation. Additionally, we estimate the density-contrast and the reference depth using knowledge of the Moho depth at certain points. We apply the proposed method to estimate the Moho depth for the South American continent using satellite gravity data and seismological data. The final Moho model is in accordance with previous gravity-derived models and seismological data. The misfit to the gravity and seismological data is worse in the Andes and best in oceanic areas, central Brazil and Patagonia, and along the Atlantic coast. Similarly to previous results, the model suggests a thinner crust of 30-35 km under the Andean foreland basins. Discrepancies with the seismological data are greatest in the Guyana Shield, the central Solimões and Amazonas Basins, the Paraná Basin, and the Borborema province. These differences suggest the existence of crustal or mantle density anomalies that were unaccounted for during gravity data processing.
Theory of microemulsions in a gravitational field
NASA Technical Reports Server (NTRS)
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
Joint two dimensional inversion of gravity and magnetotelluric data using correspondence maps
NASA Astrophysics Data System (ADS)
Carrillo Lopez, J.; Gallardo, L. A.
2016-12-01
Inverse problems in Earth sciences are inherently non-unique. To improve models and reduce the number of solutions we need to provide extra information. In geological context, this information could be a priori information, for example, geological information, well log data, smoothness, or actually, information of measures of different kind of data. Joint inversion provides an approach to improve the solution and reduce the errors due to suppositions of each method. To do that, we need a link between two or more models. Some approaches have been explored successfully in recent years. For example, Gallardo and Meju (2003), Gallardo and Meju (2004, 2011), and Gallardo et. al. (2012) used the directions of properties to measure the similarity between models minimizing their cross gradients. In this work, we proposed a joint iterative inversion method that use spatial distribution of properties as a link. Correspondence maps could be better characterizing specific Earth systems due they consider the relation between properties. We implemented a code in Fortran to do a two dimensional inversion of magnetotelluric and gravity data, which are two of the standard methods in geophysical exploration. Synthetic tests show the advantages of joint inversion using correspondence maps against separate inversion. Finally, we applied this technique to magnetotelluric and gravity data in the geothermal zone located in Cerro Prieto, México.
Long-wavelength Magnetic and Gravity Anomaly Correlations of Africa and Europe
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J. (Principal Investigator); Olivier, R.
1984-01-01
Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic Shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.
Long-wavelength magnetic and gravity anomaly correlations on Africa and Europe
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Olivier, R.; Hinze, W. J.
1985-01-01
Preliminary MAGSAT scalar magnetic anomaly data were compiled for comparison with long-wavelength-pass filtered free-air gravity anomalies and regional heat-flow and tectonic data. To facilitate the correlation analysis at satellite elevations over a spherical-Earth, equivalent point source inversion was used to differentially reduce the magnetic satellite anomalies to the radial pole at 350 km elevation, and to upward continue the first radial derivative of the free-air gravity anomalies. Correlation patterns between these regional geopotential anomaly fields are quantitatively established by moving window linear regression based on Poisson's theorem. Prominent correlations include direct correspondences for the Baltic shield, where both anomalies are negative, and the central Mediterranean and Zaire Basin where both anomalies are positive. Inverse relationships are generally common over the Precambrian Shield in northwest Africa, the Basins and Shields in southern Africa, and the Alpine Orogenic Belt. Inverse correlations also presist over the North Sea Rifts, the Benue Rift, and more generally over the East African Rifts. The results of this quantitative correlation analysis support the general inverse relationships of gravity and magnetic anomalies observed for North American continental terrain which may be broadly related to magnetic crustal thickness variations.
Optimization schemes for the inversion of Bouguer gravity anomalies
NASA Astrophysics Data System (ADS)
Zamora, Azucena
Data sets obtained from measurable physical properties of the Earth structure have helped advance the understanding of its tectonic and structural processes and constitute key elements for resource prospecting. 2-Dimensional (2-D) and 3-D models obtained from the inversion of geophysical data sets are widely used to represent the structural composition of the Earth based on physical properties such as density, seismic wave velocities, magnetic susceptibility, conductivity, and resistivity. The inversion of each one of these data sets provides structural models whose consistency depends on the data collection process, methodology, and overall assumptions made in their individual mathematical processes. Although sampling the same medium, seismic and non-seismic methods often provide inconsistent final structural models of the Earth with varying accuracy, sensitivity, and resolution. Taking two or more geophysical data sets with complementary characteristics (e.g. having higher resolution at different depths) and combining their individual strengths to create a new improved structural model can help achieve higher accuracy and resolution power with respect to its original components while reducing their ambiguity and uncertainty effects. Gravity surveying constitutes a cheap, non-invasive, and non-destructive passive remote sensing method that helps to delineate variations in the gravity field. These variations can originate from regional anomalies due to deep density variations or from residual anomalies related to shallow density variations [41]. Since gravity anomaly inversions suffer from significant non-uniqueness (allowing two or more distinct density structures to have the same gravity signature) and small changes in parameters can highly impact the resulting model, the inversion of gravity data represents an ill-posed mathematical problem. However, gravity studies have demonstrated the effectiveness of this method to trace shallow subsurface density variations associated with structural changes [16]; therefore, it complements those geophysical methods with the same depth resolution that sample a different physical property (e.g. electromagnetic surveys sampling electric conductivity) or even those with different depth resolution sampling an alternative physical property (e.g. large scale seismic reflection surveys imaging the crust and top upper mantle using seismic velocity fields). In order to improve the resolution of Bouguer gravity anomalies, and reduce their ambiguity and uncertainty for the modeling of the shallow crust, we propose the implementation of primal-dual interior point methods for the optimization of density structure models through the introduction of physical constraints for transitional areas obtained from previously acquired geophysical data sets. This dissertation presents in Chapter 2 an initial forward model implementation for the calculation of Bouguer gravity anomalies in the Porphyry Copper-Molybdenum (Cu-Mo) Copper Flat Mine region located in Sierra County, New Mexico. In Chapter 3, we present a constrained optimization framework (using interior-point methods) for the inversion of 2-D models of Earth structures delineating density contrasts of anomalous bodies in uniform regions and/or boundaries between layers in layered environments. We implement the proposed algorithm using three different synthetic gravitational data sets with varying complexity. Specifically, we improve the 2-dimensional density structure models by getting rid of unacceptable solutions (geologically unfeasible models or those not satisfying the required constraints) given the reduction of the solution space. Chapter 4 shows the results from the implementation of our algorithm for the inversion of gravitational data obtained from the area surrounding the Porphyry Cu-Mo Cooper Flat Mine in Sierra County, NM. Information obtained from previous induced polarization surveys and core samples served as physical constraints for the inversion parameters. Finally, in order to achieve higher resolution, Chapter 5 introduces a 3-D theoretical framework for the joint inversion of Bouguer gravity anomalies and surface wave dispersion using interior-point methods. Through this work, we expect to contribute to the creation of additional tools for the development of 2- and 3-D models depicting the Earth's geological processes and to the widespread use of constrained optimization techniques for the inversion of geophysical data sets.
NASA Astrophysics Data System (ADS)
Izquierdo, K.; Lekic, V.; Montesi, L.
2017-12-01
Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (<200 km), decreases with increasing depth. With higher computational resources, this THB method for gravity inversion could give new information about the overall density distribution of celestial bodies even when there is no other geophysical data available.
Ductile crustal flow in Europe's lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2011-12-01
Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
Is chemical heating a major cause of the mesosphere inversion layer?
NASA Technical Reports Server (NTRS)
Meriwether, John W.; Mlynczak, Martin G.
1995-01-01
A region of thermal enhancement of the mesosphere has been detected on numerous occasions by in situ measurements, remote sensing from space, and lidar techniques. The source of these 'temperature inversion layers' has been attributed in the literature to the dissipation relating to dynamical forcing by gravity wave or tidal activity. However, evidence that gravity wave breaking can produce the inversion layer with amplitude as large as that observed in lidar measurements has been limited to results of numerical modeling. An alternative source for the production of the thermal inversion layer in the mesosphere is the direct deposition of heat by exothermic chemical reactions. Two-dimensional modeling combining a comprehensive model of the mesosphere photochemistry with the dynamical transport of long-lived species shows that the region from 80 to 95 km may be heated as much as 3 to 10 K/d during the night and half this rate during the day. Given the uncertainties in our understanding of the dynamics and chemistry for the mesopause region, separating the two sources by passive observations of the mesosphere thermal structure looks to be difficult. Therefore we have considered an active means for producing a mesopause thermal layer, namely the release of ozone into the upper mesosphere from a rocket payload. The induced effects would include artificial enhancements of the OH and Na airglow intensities as well as the mesopause thermal structure. The advantages of the rocket release of ozone is that detection of these effects by ground-based imaging, radar, and lidar systems and comparison of these effects with model predictions would help quantify the partition of the artificial inversion layer production into sources of dynamical and chemical forcing.
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
2D data-space cross-gradient joint inversion of MT, gravity and magnetic data
NASA Astrophysics Data System (ADS)
Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop
2017-08-01
We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.
3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.
2017-04-01
Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.
NASA Technical Reports Server (NTRS)
Rummel, R.; Sjoeberg, L.; Rapp, R. H.
1978-01-01
A numerical method for the determination of gravity anomalies from geoid heights is described using the inverse Stokes formula. This discrete form of the inverse Stokes formula applies a numerical integration over the azimuth and an integration over a cubic interpolatory spline function which approximates the step function obtained from the numerical integration. The main disadvantage of the procedure is the lack of a reliable error measure. The method was applied on geoid heights derived from GEOS-3 altimeter measurements in the calibration area of the GEOS-3 satellite.
Test of Newtonian gravity at short range using pico-precision displacement sensor
NASA Astrophysics Data System (ADS)
Akiyama, Takashi; Hata, Maki; Ninomiya, Kazufumi; Nishio, Hironori; Ogawa, Naruya; Sekiguchi, Yuta; Watanabe, Kentaro; Murata, Jiro
2009-10-01
Recent theoretical models of physics beyond the standard model, including attempts to resolve the hierarchy problem, predict deviations from the Newtonian gravity at short distances below millimeters. Present NEWTON project aims an experimental test of the inverse-square law at the millimeter scale, using a torsion pendulum with a pico-precision displacement sensor, which was originally developed for the micron precision optical alignment system (OASys) for the PHENIX muon tracking chambers at RHIC, using digital image analysis technique. In order to examine the gravitational force at short range scale around micrometers, we have developed a new apparatus NEWTON-III, which can determine the local gravitational acceleration by measuring the motion of the torsion pendulum. In this presentation, the development status and the results of the NEWTON-experiment will be reported.
NASA Technical Reports Server (NTRS)
Wu, Xiao-Ping
1999-01-01
The response of the Greenland ice sheet to climate change could significantly alter sea level. The ice sheet was much thicker at the last glacial maximum. To gain insight into the global change process and the future trend, it is important to evaluate the ice mass variation as a function of time and space. The Gravity Recovery and Climate Experiment (GRACE) mission to fly in 2001 for 5 years will measure gravity changes associated with the current ice variation and the solid earth's response to past variations. Our objective is to assess the separability of different change sources, accuracy and resolution in the mass variation determination by the new gravity data and possible Global Positioning System (GPS) bedrock uplift measurements. We use a reference parameter state that follows a dynamic ice model for current mass variation and a variant of the Tushingham and Peltier ICE-3G deglaciation model for historical deglaciation. The current linear trend is also assumed to have started 5 kyr ago. The Earth model is fixed as preliminary reference Earth model (PREM) with four viscoelastic layers. A discrete Bayesian inverse algorithm is developed employing an isotropic Gaussian a priori covariance function over the ice sheet and time. We use data noise predicted by the University of Texas and JPL for major GRACE error sources. A 2 mm/yr uplift uncertainty is assumed for GPS occupation time of 5 years. We then carry out covariance analysis and inverse simulation using GRACE geoid coefficients up to degree 180 in conjunction with a number of GPS uplift rates. Present-day ice mass variation and historical deglaciation are solved simultaneously over 146 grids of roughly 110 km x 110 km and with 6 time increments of 3 kyr each, along with a common starting epoch of the current trend. For present-day ice thickness change, the covariance analysis using GRACE geoid data alone results in a root mean square (RMS) posterior root variance of 2.6 cm/yr, with fairly large a priori uncertainties in the parameters and a Gaussian correlation length of 350 km. Simulated inverse can successfully recover most features in the reference present-day change. The RMS difference between them over the grids is 2.8 cm/yr. The RMS difference becomes 1.1 cm/yr when both are averaged with a half Gaussian wavelength of 150 km. With a fixed Earth model, GRACE alone can separate the geoid signals due to past and current load fairly well. Shown are the reference geoid signatures of direct and elastic effects of the current trend, the viscoelastic effect of the same trend starting from 5 kyr ago, the Post Glacial Rebound (PGR), and the predicted GRACE geoid error. The difference between the reference and inverse modeled total viscoelastic signatures is also shown. Although past and current ice mass variations are allowed the same spatial scale, their geoid signals have different spatial patterns. GPS data can contribute to the ice mass determination as well. Additional information is contained in the original.
Topographic Change of the Dichotomy Boundary Suggested by Crustal Inversion
NASA Technical Reports Server (NTRS)
Neumann, G. A.
2004-01-01
Linear negative gravity anomalies in Acidalia Planitia along the eastern edge of Tempe Terra and along the northern edge of Arabia Terra have been noted in Mars Global Surveyor gravity fields. Once proposed to represent buried fluvial channels, it is now believed that these gravity troughs mainly arise from partial compensation of the hemispheric dichotomy topographic scarp. A recent inversion for crustal structure finds that mantle compensation of the scarp is offset from the present-day topographic expression of the dichotomy boundary. The offset suggests that erosion or other forms of mass wasting occurred after lithosphere thickened and no longer accomodated topographic change through viscous relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galanti, Eli; Kaspi, Yohai, E-mail: eli.galanti@weizmann.ac.il
2016-04-01
During 2016–17, the Juno and Cassini spacecraft will both perform close eccentric orbits of Jupiter and Saturn, respectively, obtaining high-precision gravity measurements for these planets. These data will be used to estimate the depth of the observed surface flows on these planets. All models to date, relating the winds to the gravity field, have been in the forward direction, thus only allowing the calculation of the gravity field from given wind models. However, there is a need to do the inverse problem since the new observations will be of the gravity field. Here, an inverse dynamical model is developed tomore » relate the expected measurable gravity field, to perturbations of the density and wind fields, and therefore to the observed cloud-level winds. In order to invert the gravity field into the 3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration. This tool is used for the examination of various scenarios, simulating cases in which the depth of the wind depends on latitude. We show that it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn, also taking into account measurement errors. Calculating the solution uncertainties, we show that the wind depth can be determined more precisely in the low-to-mid-latitudes. In addition, the gravitational moments are found to be particularly sensitive to flows at the equatorial intermediate depths. Therefore, we expect that if deep winds exist on these planets they will have a measurable signature by Juno and Cassini.« less
Superconducting gravity gradiometer and a test of inverse square law
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, Ho Jung
1989-01-01
The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.
Mass change distribution inverted from space-borne gravimetric data using a Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhou, X.; Sun, X.; Wu, Y.; Sun, W.
2017-12-01
Mass estimate plays a key role in using temporally satellite gravimetric data to quantify the terrestrial water storage change. GRACE (Gravity Recovery and Climate Experiment) only observes the low degree gravity field changes, which can be used to estimate the total surface density or equivalent water height (EWH) variation, with a limited spatial resolution of 300 km. There are several methods to estimate the mass variation in an arbitrary region, such as averaging kernel, forward modelling and mass concentration (mascon). Mascon method can isolate the local mass from the gravity change at a large scale through solving the observation equation (objective function) which represents the relationship between unknown masses and the measurements. To avoid the unreasonable local mass inverted from smoothed gravity change map, regularization has to be used in the inversion. We herein give a Markov chain Monte Carlo (MCMC) method to objectively determine the regularization parameter for the non-negative mass inversion problem. We first apply this approach to the mass inversion from synthetic data. Result show MCMC can effectively reproduce the local mass variation taking GRACE measurement error into consideration. We then use MCMC to estimate the ground water change rate of North China Plain from GRACE gravity change rate from 2003 to 2014 under a supposition of the continuous ground water loss in this region. Inversion result show that the ground water loss rate in North China Plain is 7.6±0.2Gt/yr during past 12 years which is coincident with that from previous researches.
A data-driven model for constraint of present-day glacial isostatic adjustment in North America
NASA Astrophysics Data System (ADS)
Simon, K. M.; Riva, R. E. M.; Kleinherenbrink, M.; Tangdamrongsub, N.
2017-09-01
Geodetic measurements of vertical land motion and gravity change are incorporated into an a priori model of present-day glacial isostatic adjustment (GIA) in North America via least-squares adjustment. The result is an updated GIA model wherein the final predicted signal is informed by both observational data, and prior knowledge (or intuition) of GIA inferred from models. The data-driven method allows calculation of the uncertainties of predicted GIA fields, and thus offers a significant advantage over predictions from purely forward GIA models. In order to assess the influence each dataset has on the final GIA prediction, the vertical land motion and GRACE-measured gravity data are incorporated into the model first independently (i.e., one dataset only), then simultaneously. The relative weighting of the datasets and the prior input is iteratively determined by variance component estimation in order to achieve the most statistically appropriate fit to the data. The best-fit model is obtained when both datasets are inverted and gives respective RMS misfits to the GPS and GRACE data of 1.3 mm/yr and 0.8 mm/yr equivalent water layer change. Non-GIA signals (e.g., hydrology) are removed from the datasets prior to inversion. The post-fit residuals between the model predictions and the vertical motion and gravity datasets, however, suggest particular regions where significant non-GIA signals may still be present in the data, including unmodeled hydrological changes in the central Prairies west of Lake Winnipeg. Outside of these regions of misfit, the posterior uncertainty of the predicted model provides a measure of the formal uncertainty associated with the GIA process; results indicate that this quantity is sensitive to the uncertainty and spatial distribution of the input data as well as that of the prior model information. In the study area, the predicted uncertainty of the present-day GIA signal ranges from ∼0.2-1.2 mm/yr for rates of vertical land motion, and from ∼3-4 mm/yr of equivalent water layer change for gravity variations.
Computer Model Inversion and Uncertainty Quantification in the Geosciences
NASA Astrophysics Data System (ADS)
White, Jeremy T.
The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for inversion. The worth of different types of tephra data to reduce parameter uncertainty is evaluated, as is the importance of different observation error models. The analyses reveal the importance using tephra granulometry data for inversion, which results in reduced uncertainty for most eruption parameters. In the third chapter, geophysical inversion is combined with hydrothermal modeling to evaluate the enthalpy of an undeveloped geothermal resource in a pull-apart basin located in southeastern Armenia. A high-dimensional gravity inversion is used to define the depth to the contact between the lower-density valley fill sediments and the higher-density surrounding host rock. The inverted basin depth distribution was used to define the hydrostratigraphy for the coupled groundwater-flow and heat-transport model that simulates the circulation of hydrothermal fluids in the system. Evaluation of several different geothermal system configurations indicates that the most likely system configuration is a low-enthalpy, liquid-dominated geothermal system.
Ocular manifestations of gravity inversion.
Friberg, T R; Weinreb, R N
To determine the ocular manifestations of inverting the human body into a head-down vertical position, we evaluated normal volunteers with applanation tonometry, fundus photography, fluorescein angiography, and ophthalmodynamometry. Compared with data obtained in the sitting position, the intraocular pressure more than doubled on inversion (35.6 +/- 4 v 14.1 +/- 2.8 mm Hg, n = 16), increasing to levels well within the glaucomatous range. Pressures in the central retinal artery underwent similar increases, while the caliber of the retinal arterioles decreased substantially. External ocular findings associated with gravity inversion included orbital congestion, conjunctival hyperemia, petechiae of the eyelids, excessive tearing (epiphora), and subconjunctival hemorrhage. We suggest that patients with retinal vascular abnormalities, macular degeneration, ocular hypertension, glaucoma, and similar disorders refrain from inversion altogether. Whether normal individuals will suffer irreversible damage from inversion is uncertain, but it seems prudent to recommend that prolonged periods of inverted posturing be avoided.
NASA Astrophysics Data System (ADS)
Bhatia, P.; Katta, V. R.; Krishnan, S. S.; Zheng, Y.; Sunderland, P. B.; Gore, J. P.
2012-10-01
Steady-state global chemistry calculations for 20 different flames were carried out using an axisymmetric Computational Fluid Dynamics (CFD) code. Computational results for 16 flames were compared with flame images obtained at the NASA Glenn Research Center. The experimental flame data for these 16 flames were taken from Sunderland et al. [4] which included normal and inverse diffusion flames of ethane with varying oxidiser compositions (21, 30, 50, 100% O2 mole fraction in N2) stabilised on a 5.5 mm diameter burner. The test conditions of this reference resulted in highly convective inverse diffusion flames (Froude numbers of the order of 10) and buoyant normal diffusion flames (Froude numbers ∼0.1). Additionally, six flames were simulated to study the effect of oxygen enhancement on normal diffusion flames. The enhancement in oxygen resulted in increased flame temperatures and the presence of gravity led to increased gas velocities. The effect of gravity-variation and oxygen enhancement on flame shape and size of normal diffusion flames was far more pronounced than for inverse diffusion flames. For normal-diffusion flames, their flame-lengths decreased (1 to 2 times) and flames-widths increased (2 to 3 times) when going from earth-gravity to microgravity, and flame height decreased by five times when going from air to a pure oxygen environment.
Fallon, Nevada FORGE Gravity and Magnetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Doug; Witter, Jeff; Carpenter, Thomas
This package contains principal facts for new gravity data collected September - November 2017 in support of the Fallon FORGE project. Also included are rock core density and magnetic susceptibility data for key core intervals, used in modeling 2D and 3D gravity inversions. Individual metadata summaries are provided as .pdf within each attached archive.
Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion
NASA Astrophysics Data System (ADS)
Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina
2013-04-01
Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of Cenozoic ice sheet formation and stability. References Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 174 (1), 1-13. Ferraccioli, F., Finn, C.A., Jordan, T.A., Bell, R.E., Anderson, L.M. & Damaske, D. 2011. East Antarctic rifting triggers uplift of the Gamburtsev Mountains Nature, 479, 388-392. Golynsky, A.V. & Golynsky, D.A. 2009. Rifts in the tectonic structure of East Antarctica (in Russian). Russian Earth Science Research in Antarctica, 2, 132-162. Vaughan, A.P.M., Kusznir, N.J., Ferraccioli, F. & Jordan, T.A.R.M. 2012. Regional heat-flow prediction for Antarctica using gravity inversion mapping of crustal thickness and lithosphere thinning. Geophysical Research Abstracts, 14, EGU2012-8095.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
NASA Astrophysics Data System (ADS)
Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean
2017-04-01
We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.
1984-04-01
5.15) where a is a positive constant and 11 IIH the Hilbert space norm associated with the chosen covariance function K. The constant a is arbitrary...Density Anomalies 14 5. Unknown Densities - Geophysical Inversion 16 6. Density Modelling Using Rectangular Prisms 24 6.1 Space Domain 24 6.2 Frequency...theory: to calculate the gravity potential and its derivatives in space due to 6 • given density distributions. When the prime interest is in "external
NASA Astrophysics Data System (ADS)
Zhou, Junjie; Meng, Xiaohong; Guo, Lianghui; Zhang, Sheng
2015-08-01
Three-dimensional cross-gradient joint inversion of gravity and magnetic data has the potential to acquire improved density and magnetization distribution information. This method usually adopts the commonly held assumption that remanent magnetization can be ignored and all anomalies present are the result of induced magnetization. Accordingly, this method might fail to produce accurate results where significant remanent magnetization is present. In such a case, the simplification brings about unwanted and unknown deviations in the inverted magnetization model. Furthermore, because of the information transfer mechanism of the joint inversion framework, the inverted density results may also be influenced by the effect of remanent magnetization. The normalized magnetic source strength (NSS) is a transformed quantity that is insensitive to the magnetization direction. Thus, it has been applied in the standard magnetic inversion scheme to mitigate the remanence effects, especially in the case of varying remanence directions. In this paper, NSS data were employed along with gravity data for three-dimensional cross-gradient joint inversion, which can significantly reduce the remanence effects and enhance the reliability of both density and magnetization models. Meanwhile, depth-weightings and bound constraints were also incorporated in this joint algorithm to improve the inversion quality. Synthetic and field examples show that the proposed combination of cross-gradient constraints and the NSS transform produce better results in terms of the data resolution, compatibility, and reliability than that of separate inversions and that of joint inversions with the total magnetization intensity (TMI) data. Thus, this method was found to be very useful and is recommended for applications in the presence of strong remanent magnetization.
NASA Technical Reports Server (NTRS)
Prasad, T. K.; Cline, M. G.
1987-01-01
Shoot inversion-induced release of apical dominance in Pharbitis nil is inhibited by rotating the plant at 0.42 revolutions per minute in a vertical plane perpendicular to the axis of rotation of a horizontal clinostat. Clinostating prevented lateral bud outgrowth, apparently by negating the restriction of the shoot elongation via reduction of ethylene production in the inverted shoot. Radial stem expansion was also decreased. Data from experiments with intact tissue and isolated segments indicated that shoot-inversion stimulates ethylene production by increasing the activity of 1-aminocyclopropane-1-carboxylic acid synthase. The results support the hypothesis that shoot inversion-induced release of apical dominance in Pharbitis nil is due to gravity stress and is mediated by ethylene-induced retardation of the elongation of the inverted shoot.
NASA Astrophysics Data System (ADS)
Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.
2017-01-01
Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.
NASA Astrophysics Data System (ADS)
Ammon, C. J.; Maceira, M.; Cleveland, M.
2010-12-01
We present a three-dimensional seismic-structure model of the Arabian-Eurasian collision zone obtained via simultaneous, joint inversion of surface-wave dispersion measurements, teleseismic P-wave receiver functions, and gravity observations. We use a simple, approximate relationship between density and seismic velocities so that the three data sets may be combined in a single inversion. The sensitivity of the different data sets are well known: surface waves provide information on the smooth variations in elastic properties, receiver functions provide information on abrupt velocity contrasts, and gravity measurements provide information on broad-wavenumber shallow density variations and long-wavenumber components of deeper density structures. The combination of the data provides improved resolution of shallow-structure variations, which in turn help produce the smooth features at depth with less contamination from the strong heterogeneity often observed in the upper crust. We also explore geologically based smoothness constraints to help resolve sharp features in the underlying shallow 3D structure. Our focus is on the region surrounding Iran from east Turkey and Iraq in the west, to Pakistan and Afghanistan in the east. We use Bouguer gravity anomalies derived from the global gravity model extracted from the GRACE satellite mission. Surface-wave dispersion velocities in the period range between 7 and 150 s are taken from previously published tomographic maps for the region. Preliminary results show expected strong variations in the Caspian region as well as the deep sediment regions of the Persian Gulf. Regions constrained with receiver-function information generally show sharper crust-mantle boundary structure than that obtained by inversion of the surface waves alone (with thin layers and smoothing constraints). Final results of the simultaneous inversion will help us to better understand one of the most prominent examples of continental collision. Such models also provide an important starting model for time-consuming and fully 3D inversions.
NASA Astrophysics Data System (ADS)
Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.
2016-12-01
The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.
NASA Astrophysics Data System (ADS)
Gozzard, S. P.; Kusznir, N.; Goodliffe, A.; Manatschal, G.
2007-12-01
Understanding how the continental crust and lithosphere thins at the propagating tip of sea-floor spreading is the key to understanding the continental breakup process. The Woodlark Basin, a young ocean basin located in the Western Pacific to the east of Papua New Guinea, commenced formation at approximately 8.4Ma and is propagating westwards at a rate of approximately 140km/Myr. Immediately to the west of the most recent segment of sea-floor spreading propagation, in the vicinity of the Moresby Seamount, evidence from bathymetry, subsidence and seismic Moho depth suggests that continental lithosphere is being thinned. In this study we have determined lithosphere thinning in the vicinity of the Moresby Seamount at the level of the whole lithosphere, the whole crust and the upper crust. Whole lithosphere thinning factors have been determined from subsidence analysis; whole continental crustal thinning factors have been determined from gravity inversions and upper crustal thinning factors have been determined from fault analysis. Three 2D seismic profiles surrounding the Moresby Seamount have been flexurally backstripped to the base of the syn-rift sediments to determine the water loaded subsidence. Using the McKenzie lithosphere extension model, modified to include volcanic addition at high thinning factors, whole thinning factors for the lithosphere have been determined from the water loaded subsidence. Results show that thermal subsidence alone cannot account for the observed subsidence, and that an additional initial subsidence is needed. Whole lithosphere thinning factors increase from an average of 0.5 to 0.8 across the Moresby Seamount eastwards towards the propagating tip. A satellite gravity inversion incorporating a lithosphere thermal gravity anomaly correction has been used to determine Moho depth, crustal thickness and thinning factors for the propagating tip in the Woodlark Basin. Moho depths are consistent with depths obtained from receiver function analysis (Ferris et al. 2006). Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thinning factors in the vicinity of the Moresby Seamount are similar to those observed for the whole lithosphere. Fault analysis of the three 2D profiles have been used to determine upper crustal thinning factors. Upper crustal thinning factors between 0.1 to 0.2 are observed for the vicinity of the Moresby Seamount, substantially lower than thinning factors predicted for the whole lithosphere and continental crust, suggesting depth-dependent lithosphere thinning. Crustal thicknesses predicted from gravity inversion immediately to the east of the Moresby Seamount are substantially greater than would be expected for oceanic lithosphere in this region, while highly thinned, has not completely ruptured.
NASA Astrophysics Data System (ADS)
Dossing, A.; Olesen, A. V.; Forsberg, R.
2010-12-01
Results of an 800 x 800 km aero-gravity and aeromagnetic survey (LOMGRAV) of the southern Lomonosov Ridge and surrounding area are presented. The survey was acquired by the Danish National Space Center, DTU in cooperation with National Resources Canada in spring 2009 as a net of ~NE-SW flight lines spaced 8-10 km apart. Nominal flight level was 2000 ft. We have compiled a detailed 2.5x2.5 km gravity anomaly grid based on the LOMGRAV data and existing data from the southern Arctic Ocean (NRL98/99) and the North Greenland continental margin (KMS98/99). The gravity grid reveals detailed, elongated high-low anomaly patterns over the Lomonosov Ridge which is interpreted as the presence of narrow ridges and subbasins. Distinct local topography is also interpreted over the southernmost part of the Lomonosov Ridge where existing bathymetry compilations suggest a smooth topography due to the lack of data. A new bathymetry model is presented for the region predicted by formalized inversion of the available gravity data. Finally, a detailed magnetic anomaly grid has been compiled from the LOMGRAV data and existing NRL98/99 and PMAP data. New tectonic features are revealed, particularly in the Amerasia Basin, compared with existing magnetic anomaly data from the region.
NASA Astrophysics Data System (ADS)
Cardenas, R.; Doser, D. I.; Baker, M. R.
2011-12-01
Summary The Border Ranges Fault (BRFS) system bounds the Cook Inlet and Susitna Basins, an important petroleum province within south-central Alaska. An initial research goal is to test several plausible models of structure along the Border Ranges Fault System by developing a novel, 3D inversion software package. The inversion utilizes gravity data constrained with geophysical, borehole, and surface geological information. The novel inversion approach involves directly modeling known geology, initially free-air corrected data, and revising a priori uncertainties on the geologic model to allow comparisons to alternative interpretations. This technique to evaluate 3D structure in regions of highly complex geology can be applied in other studies of energy resources. The software reads an ASCII text file containing the latitude, longitude, elevation, and Free Air anomalies of each gravity station as well as gridded surface files of known topology. The contributions of each node in the grid are computed in order to compare the theoretical gravity calculations from a forward model to the gravity observations. The computation of solutions to the "linearized" inversion yields a range of plausible densities. The user will have the option of varying body proportions and dimensions to compare variations in density for changing depths of the gridded surface. Introduction Previous modeling of the BRFS using geophysical data has been limited due to the complexity of local geology and structure, both of shallow crustal features and the deeper subduction zone. Since the inversion is based on a sequence of gridded surfaces, it is feasible to develop software to help build these gridded geologic models. Without a way to modify grid surface elevations, density, and magnetic susceptibility in real time, the inversion process for the geologist would be highly nonlinear and poorly constrained, especially in structural geology this complex. Without a basic understanding of the geometry of the BRFS, its role in the formation and petroleum generation processes of the upper Cook Inlet and Susitna Basins is poorly understood. Model Generation The gravitational contributions are computed using a geophysics formulation, namely the vertical line element. g = πR2Gρ(x2+y2+z2)-1/2 Each line element is semi-infinite and extends from the top to the bottom of each structural layer. The user may define a three-dimensional body at a location on the surface. Each vertex of the body will be represented as separate nodes in the grid. The contribution of the body to the gravity value will be computed as a volume integral and added to the overall gravity contributions of other nodes on the surface. The user will also be able to modify the elevation and density of the defined body in real time. The most noted effectiveness of the software is in the user-defined a priori information facilitating real time interpretations and the computational efficiency of the model solution by using vertical line elements to address structural bodies with complex geometry.
Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole
NASA Astrophysics Data System (ADS)
Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro
2018-04-01
Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.
NASA Astrophysics Data System (ADS)
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
ERIC Educational Resources Information Center
Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg
1998-01-01
Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)
Pareto joint inversion of 2D magnetotelluric and gravity data
NASA Astrophysics Data System (ADS)
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
The inverse gravimetric problem in gravity modelling
NASA Technical Reports Server (NTRS)
Sanso, F.; Tscherning, C. C.
1989-01-01
One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.
Modelisations et inversions tri-dimensionnelles en prospections gravimetrique et electrique
NASA Astrophysics Data System (ADS)
Boulanger, Olivier
The aim of this thesis is the application of gravity and resistivity methods for mining prospecting. The objectives of the present study are: (1) to build a fast gravity inversion method to interpret surface data; (2) to develop a tool for modelling the electrical potential acquired at surface and in boreholes when the resistivity distribution is heterogeneous; and (3) to define and implement a stochastic inversion scheme allowing the estimation of the subsurface resistivity from electrical data. The first technique concerns the elaboration of a three dimensional (3D) inversion program allowing the interpretation of gravity data using a selection of constraints such as the minimum distance, the flatness, the smoothness and the compactness. These constraints are integrated in a Lagrangian formulation. A multi-grid technique is also implemented to resolve separately large and short gravity wavelengths. The subsurface in the survey area is divided into juxtaposed rectangular prismatic blocks. The problem is solved by calculating the model parameters, i.e. the densities of each block. Weights are given to each block depending on depth, a priori information on density, and density range allowed for the region under investigation. The present code is tested on synthetic data. Advantages and behaviour of each method are compared in the 3D reconstruction. Recovery of geometry (depth, size) and density distribution of the original model is dependent on the set of constraints used. The best combination of constraints experimented for multiple bodies seems to be flatness and minimum volume for multiple bodies. The inversion method is tested on real gravity data. The second tool developed in this thesis is a three-dimensional electrical resistivity modelling code to interpret surface and subsurface data. Based on the integral equation, it calculates the charge density caused by conductivity gradients at each interface of the mesh allowing an exact estimation of the potential. Modelling generates a huge matrix made of Green's functions which is stored by using the method of pyramidal compression. The third method consists to interpret electrical potential measurements from a non-linear geostatistical approach including new constraints. This method estimates an analytical covariance model for the resistivity parameters from the potential data. (Abstract shortened by UMI.)
Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches
NASA Astrophysics Data System (ADS)
Hunter, J.; Watts, A. B.
2016-10-01
We have used ensemble averages of satellite-derived free-air gravity anomaly data, together with inverse modelling techniques, to determine the effective elastic thickness, Te, of circum-Pacific subducting oceanic lithosphere and its relationship to plate age. Synthetic modelling tests show that Te can be recovered best using gravity anomaly, rather than bathymetry, data and profiles that are at least 750 km long. Inverse modelling based on a uniform Te elastic plate suggests that Te increases with age of the subducting oceanic lithosphere and is given approximately by the depth to the 390 ± 10 °C oceanic isotherm based on a cooling plate model. Misfits between the observed and calculated gravity anomalies are significantly improved if a mechanically weak zone is included between the trench axis and the outer rise. This weak zone is coincident with observations of bend-faulting and seismicity. Inverse modelling shows that Te landward of the outer rise is generally 40-65 per cent less than the Te seaward of the outer rise. Both landward and seaward Te increases with age of the lithosphere and are given by the depth to the 342-349 °C and 671-714 °C oceanic isotherm, respectively. A dependence of Te on age is consistent with models for the cooling of oceanic lithosphere as it moves away from a mid-ocean ridge and the temperature-dependent ductile creep of oceanic lithospheric minerals such as olivine. By comparing the observed Te to the predicted Te based on laboratory-derived yield strength envelopes and an assumption of elastic-perfectly plastic deformation, we have attempted to constrain the rheology of oceanic lithosphere. Regardless of the assumed friction coefficient, the dry-olivine low-temperature plasticity flow laws of Goetze, Evans & Goetze, Raterron et al. and Mei et al. all provide quite a good fit to the observed Te at circum-Pacific subduction zones. This result contrasts with the Hawaiian Islands, where these flow laws are generally too strong to fit the observations. The discrepancy in rheology within Pacific plate may be caused by differences in the timescale of loading and therefore the amount of viscoelastic stress relaxation that has occurred. Other possibilities include thermal rejuvenation and magma-assisted flexure at the Hawaiian Islands.
The Effect of Microgravity on Flame Spread over a Thin Fuel
NASA Technical Reports Server (NTRS)
Olson, Sandra L.
1987-01-01
A flame spreading over a thermally thin cellulose fuel was studied in a quiescent microgravity environment. Flame spread over two different fuel thicknesses was studied in ambient oxygen-nitrogen environments from the limiting oxygen concentration to 100 percent oxygen at 1 atm pressure. Comparative normal-gravity tests were also conducted. Gravity was found to play an important role in the mechanism of flame spread. In lower oxygen environments, the buoyant flow induced in normal gravity was found to accelerate the flame spread rate as compared to the microgravity flame spread rates. It was also found to stabilize the flame in oxidizer environments, where microgravity flames in a quiescent environment extinguish. In oxygen-rich environments, however, it was determined that gravity does not play an important role in the flame spread mechanism. Fuel thickness influences the flame spread rate in both normal gravity and microgravity. The flame spread rate varies inversely with fuel thickness in both normal gravity and in an oxygen-rich microgravity environment. In lower oxygen microgravity environments, however, the inverse relationship breaks down because finite-rate kinetics and heat losses become important. Two different extinction limits were found in microgravity for the two thicknesses of fuel. This is in contrast to the normal-gravity extinction limit, which was found to be independent of fuel thickness. In microgravity the flame is quenched because of excessive thermal losses, whereas in normal gravity the flame is extinguished by blowoff.
Analysis of harmonic spline gravity models for Venus and Mars
NASA Technical Reports Server (NTRS)
Bowin, Carl
1986-01-01
Methodology utilizing harmonic splines for determining the true gravity field from Line-Of-Sight (LOS) acceleration data from planetary spacecraft missions was tested. As is well known, the LOS data incorporate errors in the zero reference level that appear to be inherent in the processing procedure used to obtain the LOS vectors. The proposed method offers a solution to this problem. The harmonic spline program was converted from the VAX 11/780 to the Ridge 32C computer. The problem with the matrix inversion routine that improved inversion of the data matrices used in the Optimum Estimate program for global Earth studies was solved. The problem of obtaining a successful matrix inversion for a single rev supplemented by data for the two adjacent revs still remains.
Effects of gravity on ontogeny in animals.
NASA Technical Reports Server (NTRS)
Pitts, G. C.
1973-01-01
Inversion or clinostat rotation of frogs' eggs demonstrated a critical period of enhanced gravity-sensitivity prior to the first cleavage. These results were corroborated by centrifugation studies which localized the period of maximal sensitivity at approximately 20 minutes post-fertilization. Eggs of various invertebrates suspended in aqueous solution proved capable of normal development following brief ultracentrifugation. Among fly larvae, grasshopper nymphs, turtles, mice, rats, and chickens, growth rates were inversely related to G-force, and maximal chronic acceleration tolerated was inversely related to body size. Body composition data demonstrated the importance of separately evaluating fat and the fat-free portion of the body in studies of the effect of acceleration on growth in homeotherms. The attempt to evaluate the effect of weightlessness on the development of frogs' eggs in Biosatellite 2 was inconclusive for technical reasons.
NASA Astrophysics Data System (ADS)
Masson, F.; Mouyen, M.; Hwang, C.; Wu, Y.-M.; Ponton, F.; Lehujeur, M.; Dorbath, C.
2012-11-01
Using a Bouguer anomaly map and a dense seismic data set, we have performed two studies in order to improve our knowledge of the deep structure of Taiwan. First, we model the Bouguer anomaly along a profile crossing the island using simple forward modelling. The modelling is 2D, with the hypothesis of cylindrical symmetry. Second we present a joint analysis of gravity anomaly and seismic arrival time data recorded in Taiwan. An initial velocity model has been obtained by local earthquake tomography (LET) of the seismological data. The LET velocity model was used to construct an initial 3D gravity model, using a linear velocity-density relationship (Birch's law). The synthetic Bouguer anomaly calculated for this model has the same shape and wavelength as the observed anomaly. However some characteristics of the anomaly map are not retrieved. To derive a crustal velocity/density model which accounts for both types of observations, we performed a sequential inversion of seismological and gravity data. The variance reduction of the arrival time data for the final sequential model was comparable to the variance reduction obtained by simple LET. Moreover, the sequential model explained about 80% of the observed gravity anomaly. New 3D model of Taiwan lithosphere is presented.
NASA Astrophysics Data System (ADS)
Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.
2013-12-01
Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.
Gravitropism in leafy dicot stems
NASA Technical Reports Server (NTRS)
Salisbury, F. B.
1984-01-01
In an attempt to separate plant responses to mechanical stresses from responses to gravity compensation, six treatments were automated: (1) upright stationary controls; (2) horizontal clinostat; (3) intermittent clinostat (plants upright 3.3 minutes out of every 4 minutes, horizontal and rotated once in the remaining time); (4) inversion every ten minutes (plants upside down half the time); (5) inversion and immediate return to the vertical; and (6) vertical rotation. Epinasty appeared only on clinostated and on inverted plants, both subjected to gravity compensation. The mechanics of gravitropic stem bending and the effects of a unilateral application of ethephon of gravitropic bending were also investigated.
The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion
ERIC Educational Resources Information Center
Bardi, Lara; Regolin, Lucia; Simion, Francesca
2014-01-01
Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…
Seafloor Topography Estimation from Gravity Gradient Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Yang, J.; Jekeli, C.; Liu, L.
2017-12-01
Inferring seafloor topography from gravimetry is an indirect yet proven and efficient means to map the ocean floor. Standard techniques rely on an approximate, linear relationship (Parker's formula) between topography and gravity. It has been reported that in the very rugged areas the discrepancies between prediction and ship soundings are very large, partly because the linear term of Parker's infinite series is dominant only in areas where the local topography is small compared with the regional topography. The validity of the linear approximation is therefore in need of analysis. In this study the nonlinear effects caused by terrain are quantified by both numerical tests and an algorithmic approach called coherency. It is shown that the nonlinear effects are more significant at higher frequencies, which suggests that estimation algorithms with nonlinear approximation in the modeled relationship between gravity gradient and topography should be developed in preparation for future high-resolution gravity gradient missions. The simulated annealing (SA) method is such an optimization technique that can process nonlinear inverse problems, and is used to estimate the seafloor topography parameters in a forward model by minimizing the difference between the observed and forward-computed vertical gravity gradients. Careful treatments like choosing suitable truncation distance, padding the vicinity of the study area with a known topography model, and using the relative cost function, are considered to improve the estimation accuracy. This study uses the gravity gradient, which is more sensitive to topography at short wavelengths than gravity anomaly. The gravity gradient data are derived from satellite altimetry, but the SA has no restrictions on data distribution, as required in Parker's infinite series model, thus enabling the use of airborne gravity gradient data, whose survey trajectories are irregular. The SA method is tested in an area of Guyots (E 156°-158° in longitude, N 20°-22° in latitude). Comparison between the estimation and ship sounding shows that half of the discrepancy is within 110 m, which improves the result from standard techniques by 32%.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Daly, E.; Tiberi, C.; Bastow, I. D.; O'Reilly, B. M.; Readman, P. W.; Hauser, F.
2011-03-01
The nature and extent of the regional lithosphere-asthenosphere interaction beneath Ireland and Britain remains unclear. Although it has been established that ancient Caledonian signatures pervade the lithosphere, tertiary structure related to the Iceland plume has been inferred to dominate the asthenosphere. To address this apparent contradiction in the literature, we image the 3-D lithospheric and deeper upper-mantle structure beneath Ireland via non-linear, iterative joint teleseismic-gravity inversion using data from the ISLE (Irish Seismic Lithospheric Experiment), ISUME (Irish Seismic Upper Mantle Experiment) and GRACE (Gravity Recovery and Climate Experiment) experiments. The inversion combines teleseismic relative arrival time residuals with the GRACE long wavelength satellite derived gravity anomaly by assuming a depth-dependent quasilinear velocity-density relationship. We argue that anomalies imaged at lithospheric depths probably reflect compositional contrasts, either due to terrane accretion associated with Iapetus Ocean closure, frozen decompressional melt that was generated by plate stretching during the opening of the north Atlantic Ocean, frozen Iceland plume related magmatic intrusions, or a combination thereof. The continuation of the anomalous structure across the lithosphere-asthenosphere boundary is interpreted as possibly reflecting sub-lithospheric small-scale convection initiated by the lithospheric compositional contrasts. Our hypothesis thus reconciles the disparity which exists between lithospheric and asthenospheric structure beneath this region of the north Atlantic rifted margin.
The inverse problem: Ocean tides derived from earth tide observations
NASA Technical Reports Server (NTRS)
Kuo, J. T.
1978-01-01
Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.
Langenheim, V.E.; Biehler, S.; Negrini, R.; Mickus, K.; Miller, D.M.; Miller, R.J.
2009-01-01
Gravity and aeromagnetic data provide the underpinnings of a hydrogeologic framework for the Mojave National Preserve by estimating the thickness of Cenozoic deposits and locating inferred structural features that influence groundwater flow. An inversion of gravity data indicates that thin (<1 km) basin deposits cover much of the Preserve, except for Ivanpah Valley and the Woods Mountains volcanic center. Localized areas of Cenozoic deposits thicker than 500 m are predicted beneath parts of Lanfair Valley, Fenner Valley, near Kelso, Soda Lake, and southeast of Baker. Along the southern margin of the Mojave National Preserve, basins greater than 1 km deep are located between the Clipper and Marble Mountains, between the Marble and Bristol Mountains, and south of the Bristol Mountains near Amboy. Both density and magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. Magnetization boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high groundwater storage. The accommodation for spatially varying gravity change would be most important for long-duration campaigns, campaigns with very rapid changes in gravity and (or) campaigns where especially precise observed relative-gravity differences are used in the network adjustment.
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Fowlis, W. W.
1980-01-01
The effect of a power law gravity field on baroclinic instability is examined, with a focus on the case of inverse fifth power gravity, since this is the power law produced when terrestrial gravity is simulated in spherical geometry by a dielectric force. Growth rates are obtained of unstable normal modes as a function of parameters of the problem by solving a second order differential equation numerically. It is concluded that over the range of parameter space explored, there is no significant change in the character of theoretical regime diagrams if the vertically averaged gravity is used as parameter.
NASA Astrophysics Data System (ADS)
Ma, X.; Lowry, A. R.
2015-12-01
The composition and thickness of crustal layering is fundamental to understanding the evolution and dynamics of continental lithosphere. Lowry and Pérez-Gussinyé (2011) found that the western Cordillera of the United States, characterized by active deformation and high heat flow, is strongly correlated with low bulk crustal seismic velocity ratio. They interpreted this observation as evidence that quartz controls continental tectonism and deformation. We will present new imaging of two-layer crustal composition and structure from cross-correlation of observed receiver functions and model synthetics. The cross-correlation coefficient of the two-layer model increases significantly relative to an assumed one-layer model, and the lower crustal thickness map from raw two-layer modeling (prior to Bayesian filtering with gravity models and Optimal Interpolation) clearly shows Colorado plateau and Appalachian boundaries, which are not apparent in upper crustal models, and also the high vP/vS fill the most of middle continental region while low vP/vS are on the west and east continental edge. In the presentation, we will show results of a new algorithm for joint Bayesian inversion of thickness and vP/vS of two-layer continental crustal structure. Recent thermodynamical modeling of geophysical models based on lab experiment data (Guerri et al., 2015) found that a large impedance contrast can be expected in the midcrust due to a phase transition that decreases plagioclase and increases clinopyroxene, without invoking any change in crustal chemistry. The depth of the transition depends on pressure, temperature and hydration, and in this presentation we will compare predictions of layer thicknesses and vP/vS predicted by mineral thermodynamics to those we observe in the USArray footprint.
NASA Technical Reports Server (NTRS)
Ganachaud, Alexandre; Wunsch, Carl; Kim, Myung-Chan; Tapley, Byron
1997-01-01
A global estimate of the absolute oceanic general circulation from a geostrophic inversion of in situ hydrographic data is tested against and then combined with an estimate obtained from TOPEX/POSEIDON altimetric data and a geoid model computed using the JGM-3 gravity-field solution. Within the quantitative uncertainties of both the hydrographic inversion and the geoid estimate, the two estimates derived by very different methods are consistent. When the in situ inversion is combined with the altimetry/geoid scheme using a recursive inverse procedure, a new solution, fully consistent with both hydrography and altimetry, is found. There is, however, little reduction in the uncertainties of the calculated ocean circulation and its mass and heat fluxes because the best available geoid estimate remains noisy relative to the purely oceanographic inferences. The conclusion drawn from this is that the comparatively large errors present in the existing geoid models now limit the ability of satellite altimeter data to improve directly the general ocean circulation models derived from in situ measurements. Because improvements in the geoid could be realized through a dedicated spaceborne gravity recovery mission, the impact of hypothetical much better, future geoid estimates on the circulation uncertainty is also quantified, showing significant hypothetical reductions in the uncertainties of oceanic transport calculations. Full ocean general circulation models could better exploit both existing oceanographic data and future gravity-mission data, but their present use is severely limited by the inability to quantify their error budgets.
NASA Astrophysics Data System (ADS)
Meeßen, Christian; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred
2017-04-01
Thin- and thick-skinned deformation styles in the foreland of the central Andes are the result of ongoing crustal shortening since the early Neogene. The mechanisms proposed for these different styles range from variations in subduction angle of the Nazca plate, lithospheric thickening to variations in temperature and strength of the crystalline crust. The latter hypothesis states a cold and strong lithosphere in the foreland of the Altiplano Plateau, facilitating thin-skinned shortening. In contrast, the foreland of the Puna plateau is proposed to be characterized by a warm lithosphere and strong upper crust, resulting in thick-skinned deformation. Whilst this hypothesis has been confirmed in numerical thermomechanical experiments, there is no evidence for this mechanism from data integrative modelling. We test this hypothesis by means of three-dimensional data integrative gravity, thermal and rheological modelling. Therefore, we constructed a lithospheric-scale density model of the foreland of northern Argentina and southern Bolivia using gravity forward modelling and inversion techniques. Into this density model we implemented sediment isopachs, data from receiver functions and densities from shear-wave velocities of the upper mantle. The model was verified using the observed Bouguer gravity anomaly. By assigning thermal and rheological properties to the modelled units we are able to quantify the strength of the lithosphere and test the predictions by the thermomechanical models.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
A numerical calculation for a non-dilute alloy solidification was performed using the FIDAP finite element code. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. Estimates of convection contributions for various gravity conditions was performed parametrically. For gravity levels higher then 1 0 -7 of earth's gravity it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by factor of 50% for precise orientation of the ampoule in the microgravity environment. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D modeling are compared with previous 2-D finding. A video film featuring melt convection will be presented.
Basement structures over Rio Grande Rise from gravity inversion
NASA Astrophysics Data System (ADS)
Constantino, Renata; Hackspacker, Peter Christian; Anderson de Souza, Iata; Sousa Lima Costa, Iago
2017-04-01
In this study, we show that from satellite-derived gravity field, bathymetry and sediment thicknesses, it is possible to give a 3-D model of the basement over oceanic areas, and for this purpose, we have chosen the Rio Grande Rise, in South Atlantic Ocean, to build a gravity-equivalent basement topography. The advantages of the method applied in this study are manifold: does not depend directly on reflection seismic data; can be applied quickly and with fewer costs for acquiring and interpreting the data; and as the main result, presents the physical surface below the sedimentary layer, which may be different from the acoustic basement. We evaluated the gravity effect of the sediments using the global sediment thickness model of NOAA, fitting a sediment compaction model to observed density values from Deep Sea Drilling Program (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the gravity inversion procedure. The modeled Moho depth values vary between 6 to 27 km over the area, being thicker under the Rio Grande Rise and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied for a gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. A description of the basement depth over Rio Grande Rise area is unprecedented in the literature, however, our results could be compared to in situ data, provided by DSDP, and a small difference of only 9 m between our basement depth and leg 516 F was found. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. We find several short-wavelengths structures not present in the bathymetry data. Seamounts, guyots and fracture zones are much more clearly defined in the basement than in the bathymetric model. An interesting NS structure that goes from 34S and extends through de São Paulo Ridge is interpreted in the basement model, and we propose that this feature can be related to the South Atlantic opening, revealing an extinct spreading center.
The Hula Valley subsurface structure inferred from gravity data
Rybakov, M.; Fleischer, L.; ten Brink, Uri S.
2003-01-01
We use the 3-D gravity inversion technique to model the shape of the Hula basin, a pull-apart basin along the Dead Sea Transform. The interpretation was constrained using the Notera-3-well density logs and current geological knowledge. The model obtained by inversion shows a rhomb-shaped graben filled with approximately 4 km of young sediments in the deepest part of the basin. The reliability of this model was verified using 3-D forward modeling with an accuracy of 0.5 km. Curvature attributes of the gravity field depict the main fault pattern, suggesting that the Hula basin is a subsiding rhomb-shaped graben, bordered by steep-sided, deep basement faults on the western and eastern sides (Qiryat Shemona and Jordan River faults) and by gradual, en-echelon step faults on the southern and northern margins of the basin. ?? 2003 Laser Pages Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halliday, M.E.; Cook, K.L.
Regional gravity data were collected in portions of the Pavant Range, Tushar Mountains, northern Sevier Plateau, the Antelope Range, and throughout Sevier Valley approximately between the towns of Richfield and Junction, Utah. Additionally, detailed gravity and ground magnetic data were collected in the vicinity of hot springs in both the Monroe and Joseph Known Geothermal Resource Areas (KGRA's) and subsurface geologic models were constructed. The regional gravity data were terrain corrected out to a distance of 167 km from the station and 948 gravity station values were compiled into a complete Bouguer gravity anomaly map of the survey area. Thismore » map shows a strong correlation with most structural features mapped in the survey area. Four regional gravity profiles were modeled using two-dimensional formerd and inverse algorithms.« less
NASA Astrophysics Data System (ADS)
An, Zhiguo; Di, Qingyun
2016-12-01
The Alxa area in Inner Mongolia has been selected as a possible site for geological disposal of high-level radioactive waste (HLRW). Based on results of a previous study on crustal stability, the Tamusu rock mass has been chosen as the target. To determine the geological structure of this rock mass, aeromagnetic and gravity data are collected and inverted. Three-dimensional (3D) inversion horizontal slices show that the internal density of the rock mass and the distribution of magnetic properties are not uniform, with fractures and fragmentation being present. To confirm this result, the controlled source audio-frequency magnetotelluric method (CSAMT) was applied to explore the geological structures, the typical CSAMT sounding curve was analyzed, and the response characteristics of the geological structure and surrounding rock are distinguished. The original data were processed and interpreted in combination with data from surface geology and drilling and logging data. It is found that the CSAMT results were consistent with those from 3D inversion of the gravity and magnetic data, confirming the existence of fractures and fragmentation in the exploration area.
Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; Essa, K. S.
2015-02-01
We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.
Density interface topography recovered by inversion of satellite gravity gradiometry observations
NASA Astrophysics Data System (ADS)
Ramillien, G. L.
2017-08-01
A radial integration of spherical mass elements (i.e. tesseroids) is presented for evaluating the six components of the second-order gravity gradient (i.e. second derivatives of the Newtonian mass integral for the gravitational potential) created by an uneven spherical topography consisting of juxtaposed vertical prisms. The method uses Legendre polynomial series and takes elastic compensation of the topography by the Earth's surface into account. The speed of computation of the polynomial series increases logically with the observing altitude from the source of anomaly. Such a forward modelling can be easily applied for reduction of observed gravity gradient anomalies by the effects of any spherical interface of density. An iterative least-squares inversion of measured gravity gradient coefficients is also proposed to estimate a regional set of juxtaposed topographic heights. Several tests of recovery have been made by considering simulated gradients created by idealistic conical and irregular Great Meteor seamount topographies, and for varying satellite altitudes and testing different levels of uncertainty. In the case of gravity gradients measured at a GOCE-type altitude of ˜ 300 km, the search converges down to a stable but smooth topography after 10-15 iterations, while the final root-mean-square error is ˜ 100 m that represents only 2 % of the seamount amplitude. This recovery error decreases with the altitude of the gravity gradient observations by revealing more topographic details in the region of survey.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua
2018-01-01
The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.
New Interpretations of the Rayn Anticlines in the Arabian Basin Inferred from Gravity Modelling
NASA Astrophysics Data System (ADS)
AlMogren, S. M.; Mukhopadhyay, M.
2014-12-01
The Ryan Anticlines comprise of a regularly-spaced set of super-giant anticlines oriented NNW, developed due to E-W compression in the Arabian Basin. Most prominent of these being: the Ghawar Anticline, followed by the Summan, Khurais Anticlines and Qatar Arch. Gravity anomaly is largely characteristic for both Ryan Anticlines and its smaller size version the Jinadriah Anticline in the Riyadh Salt Basin. It displays a bipolar gravity field - a zone of gravity high running along the fold axis that is flanked by asymmetric gravity lows. Available structural models commonly infer structural uplift for the median gravity high but ignore the flanking lows. Here we interpret the bipolar gravity anomaly due primarily to such anticline structures, while, the flanking gravity lows are due to greater sediment thickness largely compacted and deformed over the basement depressions. Further complexities are created due to the salt layer and its migration at the lower horizons of sediment strata. Such diagnostic gravity anomaly pattern is taken here as an evidence for basement tectonics due to prevailing crustal dynamics in the Arabian Basin. Density inversion provides details on the subsurface density variation due to the folding and structural configuration for the sediment layers, including the salt layer, affected by basement deformation. This interpretation is largely supported by gravity forward and inversion models given in the present study what is partly constrained by the available seismic, MT and deep resistivity lines and surface geologic mapping. Most of the oil-gas fields in this part of the Arabian Basin are further known for salt diapirism. In this study the gravity interpretation help in identification of salt diapirism directly overlying the basement is firstly given here for Jinadriah Anticline; that is next extended to a regional geologic cross-section traversing the Ryan Anticlines to infer probable subsurface continuation of salt diapirs directly overlying the metamorphosed basement, sediment deformation pattern skirting the anticlines as well as their relationship of faulting to basement tectonics.
NASA Astrophysics Data System (ADS)
Dybus, W.; Benoit, M. H.; Ebinger, C. J.
2011-12-01
The crustal thickness beneath much of the eastern half of the US is largely unconstrained. Though there have been several controlled source seismic surveys of the region, many of these studies suffer from rays that turn in the crust above the Moho, resulting in somewhat ambiguous crustal thickness values. Furthermore, the broadband seismic station coverage east of the Mississippi has been limited, and most of the region remains largely understudied. In this study, we estimated the depth to the Moho using both spectral analysis and inversion of Bouguer gravity anomalies. We systematically estimated depths to lithospheric density contrasts from radial power spectra of Bouguer gravity within 100 km X 100 km windows eastward from the Mississippi River to the Atlantic Coast, and northward from North Carolina to Maine. The slopes and slope breaks in the radial power spectra were computed using an automated algorithm. The slope values for each window were visually inspected and then used to estimate the depth to the Moho and other lithospheric density contrasts beneath each windowed region. Additionally, we performed a standard Oldenburg-Parker inversion for lithospheric density contrasts using various reference depths and density contrasts that are realistic for the different physiographic provinces in the Eastern US. Our preliminary results suggest that the gravity-derived Moho depths are similar to those found using seismic data, and that the crust is relatively thinner (~28-33 km) than expected in beneath the Piedmont region (~35-40 km). Given the relative paucity of seismic data in the eastern US, analysis of onshore gravity data is a valuable tool for interpolating between seismic stations.
NASA Astrophysics Data System (ADS)
Wang, Tai-Han; Huang, Da-Nian; Ma, Guo-Qing; Meng, Zhao-Hai; Li, Ye
2017-06-01
With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noisecontaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airborne gravity-gradiometry data from Vinton salt dome (southwest Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.
Integrated geophysical study of the northeastern margin of Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shi, L.; Meng, X.; Guo, L.
2011-12-01
Tibetan Plateau, the so-called "Roof of the World", is a direct consequence of collision of the Indian plate with the Eurasian plate starting in the early Cenozoic time. The continent-continent collision is still going on. The northeastern margin of Tibetan Plateau is the front part of the Tibetan Plateau extends to mainland and favorable area for studying uplift and deformation of the Tibetan Plateau. In the past decades, a variety of geophysical methods were conducted to study geodynamics and geological tectonics of this region. We assembled satellite-derived free-air gravity anomalies with a resolution of one arc-minute from the Scripps Institution of Oceanography, and reduced them to obtain Complete Bouguer Gravity Anomalies. Then we gridded Complete Bouguer Gravity Anomalies on a regular grid, and subsequently processed them with the preferential continuation method to attenuate high-frequency noise and analyzed regional and residual anomalies. We also calculated tilt-angle derivative of Complete Bouguer Gravity Anomalies to derive clearer geological structures with more details. Then we calculated the depth distribution of the Moho discontinuity surface in this area by 3D density interface inversion. From the results of preliminary processing, we analyzed the main deep faults and geological tectonics in this region. We extracted seven important profiles' data of Complete Bouguer Gravity Anomalies in this area, and then did forward modeling and inversion on each profile with constraints of geological information and other geophysical data. In the future, we will perform 3D constrained inversion of Complete Bouguer Gravity Anomalies in this region for better understanding deep structure and tectonics of the northeastern margin of Tibetan Plateau. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26 2011PY0184), and the National Natural Science Foundation of China (40904033).
NASA Astrophysics Data System (ADS)
Götze, Hans-Jürgen; Schmidt, Sabine
2014-05-01
Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information. A combination of different geophysical surveys employing seismic, gravity and EM, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere, natural deposits and underground cavities. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them Interactive gravity and magnetic modeling can play an important role in the depth imaging workflow of complex projects. The integration of the workflow and the tools is important to meet the needs of today's more interactive and interpretative depth imaging workflows. For the integration of gravity and magnetic models the software IGMAS+ can play an important role in this workflow. For simplicity the focus is on gravity modeling, but all methods can be applied to the modeling of magnetic data as well. Currently there are three common ways to define a 3D gravity model. Grid based models: Grids define the different geological units. The densities of the geological units are constant. Additional grids can be introduced to subdivide the geological units, making it possible to represent density depth relations. Polyhedral models: The interfaces between different geological units are defined by polyhedral, typically triangles. Voxel models: Each voxel in a regular cube has a density assigned. Spherical Earth modeling: Geophysical investigations may cover huge areas of several thousand square kilometers. The depression of the earth's surface due to the curvature of the Earth is 3 km at a distance of 200 km and 20 km at a distance of 500 km. Interactive inversion: Inversion is typically done in batch where constraints are defined beforehand and then after a few minutes or hours a model fitting the data and constraints is generated. As examples I show results from the Central Andes and the North Sea. Both gravity and geoid of the two areas were investigated with regard to their isostatic state, the crustal density structure and rigidity of the Lithosphere. Modern satellite measurements of the recent ESA campaigns are compared to ground observations in the region. Estimates of stress and GPE (gravitational potential energy) at the western South American margin have been derived from an existing 3D density model. Here, sensitivity studies of gravity and gravity gradients indicate that short wavelength lithospheric structures are more pronounced in the gravity gradient tensor than in the gravity field. A medium size example of the North Sea underground demonstrates how interdisciplinary data sets can support aero gravity investigations. At the micro scale an example from the detection of a crypt (Alversdorf, Northern Germany) is shown.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ebbing, Jörg
2017-04-01
In this study, we investigate the magnetic basement and crustal structure in the region of Iran by inverse and forward modeling of aeromagnetic data and gravity data. The main focus is on the definition of the magnetic top basement. The combination of multiple shallow magnetic sources and an assumed shallow Curie isotherm depth beneath the Iranian Plateau creates a complex magnetic architecture over the area. Qualitative analysis, including pseudo gravity, wavelength filtering and upward continuation allowed a first separation of probable deep and shallow features, like the Sanandaj Sirjan zone, Urumieh Dokhtar Magmatic Assemblage, Kopet Dagh structural unit and Central Iran domain. In the second step, we apply inverse modeling to generate an estimate of the top basement geometry. The initial model was established from top basement to (a) constant depth of 25 km and (b) Moho depth. The inversion result was used as starting model for more detailed modelling in 3D to evaluate the effect of susceptibility heterogeneities in the crust. Subsequently, the model was modified with respect to tectonic and geological characterization of the region. Further modification of model in regards more details of susceptibility distribution was led to separating upper crust to different magnetic domains. In addition, we refined the top basement geometry by using terrestrial gravity observation as well. The best fitting model is consistent with the Curie isotherm depth as the base of magnetization. The Curie isotherm was derived from independent geophysical-petrological model.
Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer
NASA Technical Reports Server (NTRS)
Paik, H. J.
1985-01-01
A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.
NASA Astrophysics Data System (ADS)
Lo, Y. T.; Yen, H. Y.
2012-04-01
Taiwan is located at a complex juncture between the Eurasian and Philippine Sea plates. The mountains in Taiwan are very young, formed as a result of the collision between an island arc system and the Asian continental margin. To separate sources of gravity field in depth, a method is suggested, based on upward and downward continuation. Both new methods are applied to isolate the contribution of the Moho interface to the total field and to find its 3D topography. At the first stage, we separate near surface and deeper sources. At the next stage, we isolate the effect of very deep sources. After subtracting this field from the total effect of deeper sources, we obtain the contribution of the Moho interface. We make inversion separately for the area. In this study, we use the detail gravity data around this area to investigate the reliable subsurface density structure. First, we combine with land and marine gravity data to obtain gravity anomaly. Second, considering the geology, tomography and other constrains, we simulate the 3D density structure. The main goal of our study is to understand the Moho topography and sediment-crustal boundary in Taiwan area. We expect that our result can consistent with previous studies.
Self-constrained inversion of potential fields
NASA Astrophysics Data System (ADS)
Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.
2013-11-01
We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.
Subsurface structures of buried features in the lunar Procellarum region
NASA Astrophysics Data System (ADS)
Wang, Wenrui; Heki, Kosuke
2017-07-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.
Performance of an inverted pendulum model directly applied to normal human gait.
Buczek, Frank L; Cooney, Kevin M; Walker, Matthew R; Rainbow, Michael J; Concha, M Cecilia; Sanders, James O
2006-03-01
In clinical gait analysis, we strive to understand contributions to body support and propulsion as this forms a basis for treatment selection, yet the relative importance of gravitational forces and joint powers can be controversial even for normal gait. We hypothesized that an inverted pendulum model, propelled only by gravity, would be inadequate to predict velocities and ground reaction forces during gait. Unlike previous ballistic and passive dynamic walking studies, we directly compared model predictions to gait data for 24 normal children. We defined an inverted pendulum from the average center-of-pressure to the instantaneous center-of-mass, and derived equations of motion during single support that allowed a telescoping action. Forward and inverse dynamics predicted pendulum velocities and ground reaction forces, and these were statistically and graphically compared to actual gait data for identical strides. Results of forward dynamics replicated those in the literature, with reasonable predictions for velocities and anterior ground reaction forces, but poor predictions for vertical ground reaction forces. Deviations from actual values were explained by joint powers calculated for these subjects. With a telescoping action during inverse dynamics, predicted vertical forces improved dramatically and gained a dual-peak pattern previously missing in the literature, yet expected for normal gait. These improvements vanished when telescoping terms were set to zero. Because this telescoping action is difficult to explain without muscle activity, we believe these results support the need for both gravitational forces and joint powers in normal gait. Our approach also begins to quantify the relative contributions of each.
Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?
ERIC Educational Resources Information Center
Puri, Avinash
2015-01-01
According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…
The Gravity Model for High School Students
ERIC Educational Resources Information Center
Tribble, Paul; Mitchell, William A.
1977-01-01
The authors suggest ways in which the gravity model can be used in high school geography classes. Based on Newton's Law of Molecular Gravitation, the law states that gravitation is in direct ratio to mass and inverse ratio to distance. One activity for students involves determination of zones of influence of cities of various sizes. (Author/AV)
NASA Astrophysics Data System (ADS)
Metivier, L.; Greff-Lefftz, M.; Panet, I.; Pajot-Métivier, G.; Caron, L.
2014-12-01
Joint inversion of the observed geoid and seismic velocities has been commonly used to constrain the viscosity profile within the mantle as well as the lateral density variations. Recent satellite measurements of the second-order derivatives of the Earth's gravity potential give new possibilities to understand these mantle properties. We use lateral density variations in the Earth's mantle based on slab history or deduced from seismic tomography. The main uncertainties are the relationship between seismic velocity and density -the so-called density/velocity scaling factor- and the variation with depth of the density contrast between the cold slabs and the surrounding mantle, introduced here as a scaling factor with respect to a constant value. The geoid, gravity and gravity gradients at the altitude of the GOCE satellite (about 255 km) are derived using geoid kernels for given viscosity depth profiles. We assume a layered mantle model with viscosity and conversion factor constant in each layer, and we fix the viscosity of the lithosphere. We perform a Monte Carlo search for the viscosity and the density/velocity scaling factor profiles within the mantle which allow to fit the observed geoid, gravity and gradients of gravity. We test a 2-layer, a 3-layer and 4-layer mantle. For each model, we compute the posterior probability distribution of the unknown parameters, and we discuss the respective contributions of the geoid, gravity and gravity gradients in the inversion. Finally, for the best fit, we present the viscosity and scaling factor profiles obtained for the lateral density variations derived from seismic velocities and for slabs sinking into the mantle.
NASA Astrophysics Data System (ADS)
Chakravarthi, V.; Sastry, S. Rajeswara; Ramamma, B.
2013-07-01
Based on the principles of modeling and inversion, two interpretation methods are developed in the space domain along with a GUI based JAVA code, MODTOHAFSD, to analyze the gravity anomalies of strike limited sedimentary basins using a prescribed exponential density contrast-depth function. A stack of vertical prisms all having equal widths, but each one possesses its own limited strike length and thickness, describes the structure of a sedimentary basin above the basement complex. The thicknesses of prisms represent the depths to the basement and are the unknown parameters to be estimated from the observed gravity anomalies. Forward modeling is realized in the space domain using a combination of analytical and numerical approaches. The algorithm estimates the initial depths of a sedimentary basin and improves them, iteratively, based on the differences between the observed and modeled gravity anomalies within the specified convergence criteria. The present code, works on Model-View-Controller (MVC) pattern, reads the Bouguer gravity anomalies, constructs/modifies regional gravity background in an interactive approach, estimates residual gravity anomalies and performs automatic modeling or inversion based on user specification for basement topography. Besides generating output in both ASCII and graphical forms, the code displays (i) the changes in the depth structure, (ii) nature of fit between the observed and modeled gravity anomalies, (iii) changes in misfit, and (iv) variation of density contrast with iteration in animated forms. The code is used to analyze both synthetic and real field gravity anomalies. The proposed technique yielded information that is consistent with the assumed parameters in case of synthetic structure and with available drilling depths in case of field example. The advantage of the code is that it can be used to analyze the gravity anomalies of sedimentary basins even when the profile along which the interpretation is intended fails to bisect the strike length.
GOCE gravity gradient data for lithospheric modeling - From well surveyed to frontier areas
NASA Astrophysics Data System (ADS)
Bouman, J.; Ebbing, J.; Gradmann, S.; Fuchs, M.; Fattah, R. Abdul; Meekes, S.; Schmidt, M.; Lieb, V.; Haagmans, R.
2012-04-01
We explore how GOCE gravity gradient data can improve modeling of the Earth's lithosphere and thereby contribute to a better understanding of the Earth's dynamic processes. The idea is to invert satellite gravity gradients and terrestrial gravity data in the well explored and understood North-East Atlantic Margin and to compare the results of this inversion, providing improved information about the lithosphere and upper mantle, with results obtained by means of models based upon other sources like seismics and magnetic field information. Transfer of the obtained knowledge to the less explored Rub' al Khali desert is foreseen. We present a case study for the North-East Atlantic margin, where we analyze the use of satellite gravity gradients by comparison with a well-constrained 3D density model that provides a detailed picture from the upper mantle to the top basement (base of sediments). The latter horizon is well resolved from gravity and especially magnetic data, whereas sedimentary layers are mainly constrained from seismic studies, but do in general not show a prominent effect in the gravity and magnetic field. We analyze how gravity gradients can increase confidence in the modeled structures by calculating a sensitivity matrix for the existing 3D model. This sensitivity matrix describes the relation between calculated gravity gradient data and geological structures with respect to their depth, extent and relative density contrast. As the sensitivity of the modeled bodies varies for different tensor components, we can use this matrix for a weighted inversion of gradient data to optimize the model. This sensitivity analysis will be used as input to study the Rub' al Khali desert in Saudi Arabia. In terms of modeling and data availability this is a frontier area. Here gravity gradient data will be used to better identify the extent of anomalous structures within the basin, with the goal to improve the modeling for hydrocarbon exploration purposes.
Determination of mean gravity anomalies in the Taiwan Island
NASA Technical Reports Server (NTRS)
Chang, Ruey-Gang
1989-01-01
The fitting and proper regression coefficients were made of one hundred seventeen 10 x 10' blocks with observed gravity data and corresponding elevation in the Taiwan Island. To compare five different predicted models, and the proper one for the mean gravity anomalies were determined. The predicted gravity anomalies of the non-observed gravity blocks were decided when the coefficients obtained through the model with the weighted mean method. It was suggested that the mean gravity anomalies of 10 x 10' blocks should be made when comprehensive the observed and predicted data.
NASA Astrophysics Data System (ADS)
Hou, Zhenlong; Huang, Danian
2017-09-01
In this paper, we make a study on the inversion of probability tomography (IPT) with gravity gradiometry data at first. The space resolution of the results is improved by multi-tensor joint inversion, depth weighting matrix and the other methods. Aiming at solving the problems brought by the big data in the exploration, we present the parallel algorithm and the performance analysis combining Compute Unified Device Architecture (CUDA) with Open Multi-Processing (OpenMP) based on Graphics Processing Unit (GPU) accelerating. In the test of the synthetic model and real data from Vinton Dome, we get the improved results. It is also proved that the improved inversion algorithm is effective and feasible. The performance of parallel algorithm we designed is better than the other ones with CUDA. The maximum speedup could be more than 200. In the performance analysis, multi-GPU speedup and multi-GPU efficiency are applied to analyze the scalability of the multi-GPU programs. The designed parallel algorithm is demonstrated to be able to process larger scale of data and the new analysis method is practical.
NASA Astrophysics Data System (ADS)
Schouten, D.
2015-12-01
CRM GeoTomography Technologies, Inc. is leading the way in applying muon tomography to discovery and definition of dense ore bodies for mineral exploration and resource estimation. We have successfully imaged volcanogenic massive sulfide (VMS) deposits at mines in North America using our suite of field-proven muon tracking detectors, and are at various stages of development for other applications. Recently we developed in-house inversion software that integrates data from assays, surface and borehole gravity, and underground muon flux measurements. We have found that the differing geophysical data sources provide complementary information and that dramatic improvements in inversion results are attained using various inversion performance metrics related to the excess tonnage of the mineral deposits, as well as their spatial extents and locations. This presentation will outline field tests of muon tomography performed by CRM Geotomography in some real world examples, and will demonstrate the effectiveness of joint muon tomography, assay and gravity inversion techniques in field tests (where data are available) and in simulations.
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.; Ferrandiz, J. M.
2009-04-01
Mechanism. To present time the observant data in various geosciences more and more confidently testify for the benefit of existence of secular drift of the Earth core in the direction of North Pole. 1). So the superfluous mass of a displaced core relatively to elastic mantle, obviously, results in displacement of the centre of mass of the Earth with respect to basic system of coordinates on a surface of the Earth also in northern direction. Methods of a space geodesy let us confidently to determine drift of the centre of mass to the north with velocity about 0.5 - 1.0 cm/yr. The fundamental phenomenon of drift of the centre of mass and the core of the Earth has been predicted in 1995 (Barkin, 1995) at the analysis of secular change of the pear-shaped form of the Earth in present epoch (velocity of drift of the centre of mass of the Earth was appreciated in 1.8 +/-1.0 cm/yr in the direction of North Pole of the Earth). For an explanation of observably drift of the centre of mass at once the model of drift of the core was offered and the geodynamic model of forced relative displacements and wanderings of interacting shells of the Earth under action of a gravitational attraction of external celestial bodies (Barkin, 1996, 2002) has been developed. 2). The core makes slow secular drift and cyclic displacements. Predicted spectrum of oscillations of the centre of mass of the Earth and its core (Barkin, 2001) has received precise confirmation as a result of the Fourier analysis of temporal series for coordinates of a geocenter (Kaftan, Tatevian, 2003; Barkin, Vilke, 2004; Barkin, Lyubushin, Zotov, 2007). 3). The displaced core makes active all bouquet of natural processes in all shells of the Earth (including an atmosphere, ocean and internal shells), varying in the certain rhythms and styles the tension conditions of shells, their thermodynamic conditions etc. The core as though "conducts" by all planetary processes at once. From here take the origin such fundamental phenomena as cyclicity and synchronism of planetary natural processes, inversion of activity of natural processes in opposite hemispheres. Numerous confirmations give the extensive data of every possible geophysical observations. The phenomenon of synchronism in annual variations of activity of various natural processes is rather brightly expressed - their phases are precisely synchronized, and the periods of extreme activity (or passivity) fall to February - March or August - September. In daily variations of natural processes similar laws are observed. Here we speak about modern processes, but similar laws take place in various time scales, including geological. In the given report we shall concentrate on the analysis of possible secular variations of a gravity at displacement of an external core (of its centre of mass) relatively to the elastic mantle. The analysis has shown, that gravitational influence of displaced superfluous mass of the core are a major factor of secular variations of a gravity. However the displaced core causes directed redistribution of atmospheric masses from a southern hemisphere in northern, and also complex slow redistribution of oceanic masses. Increase of loading of atmospheric and oceanic masses on an elastic crust of northern hemisphere results in its slow lowering. Return processes should observed in a southern hemisphere. All listed factors, certainly, directly influence variations of a gravity. In a more comprehensive sense redistribution of all fluid masses, including climatic character also result in changes of a gravity. Hemispheres mean secular trends of gravity. For an estimation of a role of factors of redistribution of air and fluid masses in variations of a gravity the point model of redistribution of masses of the Earth (Barkin, 2001), obtained very effective applications at studying of fundamental problems of geodynamics, has been used. Let's emphasize, that the Earth is active dynamic object at which activity in the certain regions (for example, in subduction zones, a hilly terrain, a zone of volcanism etc.) at times is more brightly shown. Therefore the steadfast attention should be paid to local factors of changes of a gravity. In result the phenomenon of inversion changes of a gravity in northern and southern hemispheres has been predicted: mean value of a gravity in northern hemisphere accrues with velocity 1.36 micro gals in year (mGal), and in southern decreases with the same velocity. Secular variations of a gravity depend from latitude and on equator (within the framework of considered model) change a sign: dg=2.72tsinф micro gals in year (mGal), where ф is a latitude of a place of observations, t is the time in years (Barkin, 2005). The data of gravimetric measurements at the European stations: Metsahovi, Potsdam, Moha, Vienna, Wettzell, Strastburg, Medicina etc., in Asia and Australia: Eshashi, Canberra etc., in Northern and South America: Bolder (Colorado), Patagonia (Argentina) etc., and also in Antarctic Region (station Syowa), will well be coordinated to the theoretical values of secular variations of a gravity predicted earlier at the specified stations. Gravity trends are studied and evaluated after removal effects of tides, local pressure and polar motion. The secular gravity variation at Potsdam is evaluated in 2.1 mGal/yr. During 1976-1986 the similar tendency - gravity trend with velocity 2.6 mGal/yr (absolute measurements) here have been observed. The similar tendency has been determined on measurements on superconducting gravimeters during 1993-1997: 2.3-2.5 mGal/yr (Neumeyer and Dittfeled, 1997). For more extensive period of observation (Neumayer, 2002) the similar result for gravity trend has been obtained. Observable annual variations of a gravity are characterized by amplitude about 3 mGal (on our model it is 3.5 mGal). Observations at Syowa station have been confirmed the developed model. Here it was expected negative gravity trend - decreasing of gravity with velocity -2.54 mGal/yr, that have actually confirmed SG observations during 1995-1998: -2.4 mGal/yr (Sato et al., 2001). Amplitudes of an annual and semi-annual variations approximately make 4.8 mGal/yr and 0.8 mGal/yr (theoretical values: 4.2 mGal/yr and 0.95 mGal/yr). References Barkin Yu.V. (2002) Explanation of endogenous activity of planets and satellites and its cyclicity. Izvestia cekzii nauk o Zemle. Rus. Acad. of Nat. Sciences, Issue 9, December 2002, M.: VINITI, pp. 45-97. In Russian. Barkin Yu.V., Ferrandiz J.M. (2008) Phenomenon of secular increasing of mean gravity in Northern hemisphere and secular decreasing of gravity in Southern hemisphere; predictions and new confirmations. EGU General Assembly (Vienna, Austria, 13-18 April 2008). Geophysical Research Abstracts, EGU General Assembly 2008. Vol. 10, EGU2008-A-10506.
NASA Astrophysics Data System (ADS)
Falcon, N.
2017-07-01
At cosmic scales the dynamics of the Universe are almost exclusively prescribed by the force of gravity; however the assumption of the law of gravitation, depending on the inverse of the distance, leads to the known problems of the rotation curves of galaxies and missing mass (dark matter). The problem of the coupling of gravity to changes in scale and deviations from the law of the inverse square is an old problem (Laplace, 1805; Seeliger 1898), which has motivated alternatives to Newtonian dynamics compatible with observations. The present paper postulates a modified Newtonian dynamics by adding an inverse Yukawa potential: U(r)≡U0(M)(r-r0)e-α/r is the the potential per unit mass (in N/kg) as a function of the barionic mass that causes the field, r0 is of the order of 50h-1 Mpc and alpha is a coupling constant of the order of 2.5 h-1 Mpc. This potential is zero within the solar system, slightly attractive at interstellar distances, very attractive in galactic range and repulsive at cosmic scales. Its origin is the barionic matter, it allows to include the Milgrow MoND theory to explain the rotation curves, it is compatible with the experiments Eovos type, and allows to deduce the law of Hubble to cosmic scales, in the form H0=100h km/s Mpc≍U0(M)/c, where U0(M)≍ 4pi×6.67 10-11m/s2, is obtained from the Laplace's equation, assuming that the gravitational force is the law of the inverse of the square plus a non-linear term type Yukawa inverse. It is concluded that the modification of the law of gravity with nonlinear terms, allows to model the dynamics of the Universe on a large scale and include non-locality without dark matter. (See Falcon et al. 2014, International Journal of Astronomy and Astrophysics, 4, 551-559).
Gravity and Magnetotelluric Modeling of the Santo Domingo Basin, Northern New Mexico
NASA Astrophysics Data System (ADS)
Zamudio, K. D.; Keithline, N.; Blum, C.; Cunningham, E.; Fromont, A.; Jorgensen, M.; Lee, R.; McBride, K.; Saez Berrios, P.; Harper, C.; Pellerin, L.; McPhee, D.; Ferguson, J. F.
2015-12-01
The Santo Domingo Basin, one of a series of basins within the Rio Grande Rift, is located between Santa Fe and Albuquerque, NM, and has been the focus of research by the Summer of Geophysical Experience (SAGE) program since 2000. Gravity, magnetotelluric (MT), and seismic data have been collected throughout the region, although we are concentrating on gravity and MT data collected during SAGE 2014 and 2015. The study area is located in the center of the Santo Domingo basin, an extensional, Miocene age, rift basin, in an area that was minimally involved in the preceding local Laramide orogenic activity. Rift sediments (~3.5 km thick) are underlain by Eocene age sediments that were shed from adjacent uplifts. Up to 3 km of Mesozoic and Paleozoic sediments are preserved above the Precambrian basement. Geologic outcrop, borehole and seismic reflection data, and known density values were used in the construction of a ~100 km-long, generalized geologic cross section from which a gravity response was calculated. The modeled gravity response makes fairly definitive predictions about the geometry of the basin as well as the stratigraphy and faulting within and bounding the basin. MT data was collected at ten stations within the basin. The MT sounding curves exhibit one-dimensional behavior at short periods (<10 s), not surprisingly considering the relatively flat local structure in the area. Layered-earth MT models, without geologic constraints, show a conductive (<10 ohm-m) layer at ~1.5 km above a more resistive layer (>1000 ohm-m) at ~ 3.5-4 km. Conductivities of the major stratigraphic units have been determined from well logs and previous MT modeling. Forward and inverse MT models constrained by the gravity-modeled geologic cross section are used to develop a conductivity model consistent with the geology, and are a step towards a better unified treatment of MT, seismic and gravity data.
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
A three-dimensional gravity inversion applied to São Miguel Island (Azores)
NASA Astrophysics Data System (ADS)
Camacho, A. G.; Montesinos, F. G.; Vieira, R.
1997-04-01
Gravimetric studies are becoming more and more widely acknowledged as a useful tool for studying and modeling the distributions of subsurface masses that are associated with volcanic activity. In this paper, new gravimetric data for the volcanic island of São Miguel (Azores) were analyzed and interpreted by a stabilized linear inversion methodology. An inversion model of higher resolution was calculated for the Caldera of Furnas, which has a larger density of data. In order to filter out the noncorrelatable anomalies, least squares prediction was used, resulting in a correlated gravimetric signal model with an accuracy of the order of 0.9 mGal. The gravimetric inversion technique is based on the adjustment of a three-dimensional (3-D) model of cubes of unknown density that represents the island's subsurface. The problem of non-uniqueness is solved by minimization with appropriate covariance matrices of the data (resulting from the least squares prediction) and of the unknowns. We also propose a criterion for choosing a balance between the data fit (which in this case corresponds to residues with rms of the order of 0.6 mGal) and the smoothness of the solution. The global model of the island includes a low-density zone in a WNW-ESE direction and a depth of the order of 20 km, associated with the Terceira rift spreading center. The minimums located at a depth of 4 km may be associated with shallow magmatic chambers beneath the main volcanoes of the island. The main high-density area is related to the Nordeste basaltic shield. With regard to the Caldera Furnas, in addition to the minimum that can be associated with a magmatic chamber, there are other shallow minimums that correspond to eruptive processes.
Lucchesi, David M; Peron, Roberto
2010-12-03
The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein's theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the γ and β parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength α and range λ. We obtained |α| ≲ 1 × 10(-11), a huge improvement at a range of about 1 Earth radius.
Polarization of Young Brown Dwarfs
NASA Astrophysics Data System (ADS)
Manjavacas, Elena; Miles-Páez, Paulo A.; Zapatero-Osorio, Maria Rosa; Goldman, Bertrand; Buenzli, Esther; Henning, Thomas; Pallé, Enric
2016-08-01
Linear polarization due to scattering processes can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inverse to the surface gravity.We aimed to measure optical linear polarization from a sample of six young brown dwarfs, with spectral types between M6 to L2, and cataloged previously as objects with low gravity using spectroscopy. These targets are believed to have dusty atmospheres as a consequence of their low gravity, therefore linearly polarized light is expected from these objects.Linear polarimetric data were collected in I and R-band using CAFOS at the 2.2m telescope in Calar Alto Observatory.We obtained results of linear polarization in the I-band compatible with non polarization for all the objects, and similar results for the polarization degree in the R-band for all objects with the exception of 2M0422. For this object we find a linear polarization degree of 0.81+-0.18%. 2M0422 is 10 deg to the south of the Taurus star-forming region, thus, we suspect that its polarization is caused by the dust in the cloud in which 2M0422 might be embedded.
NASA Astrophysics Data System (ADS)
Romano, F.; Lorito, S.; Piatanesi, A.; Volpe, M.; Lay, T.; Tolomei, C.; Murphy, S.; Tonini, R.; Escalante, C.; Castro, M. J.; Gonzalez-Vida, J. M.; Macias, J.
2017-12-01
The Chile subduction zone is one of the most seismically active regions in the world and it hosted a number of great tsunamigenic earthquakes in the past. In particular, during the last 7 years three M8+ earthquakes occurred nearby the Chilean coasts, that is the 2010 M8.8 Maule, the 2014 M8.1 Iquique, and the M8.3 2015 Illapel earthquakes. The rupture process of these earthquakes has been studied by using different kind of geophysical observations such as seismic, geodetic, and tsunami data; in particular, tsunami waveforms are important for constraining the slip on the offshore portion of the fault. However, it has been shown that forward modelling of tsunami data can be affected by unavailability of accurate bathymetric models, especially in the vicinity of the tide-gauges; and in the far field by water density gradients, ocean floor elasticity, or geopotential gravity changes, generally neglected. This could result in a mismatch between observed and predicted tsunami signals thus affecting the retrieved tsunami source image. Recently, a method has been proposed for automatic correction during the nonlinear inversion of the mismatch (optimal time alignment, OTA; Romano et al., GRL, 2016). Here, we present a reappraisal of the joint inversion of tsunami data with OTA procedure and geodetic data, for the Maule, Iquique, and Illapel earthquakes. We compare the results with those obtained by tsunami inversion without using OTA and with other published inversion results.
NASA Astrophysics Data System (ADS)
Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim
2016-10-01
In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.
NASA Astrophysics Data System (ADS)
Joulidehsar, Farshad; Moradzadeh, Ali; Doulati Ardejani, Faramarz
2018-06-01
The joint interpretation of two sets of geophysical data related to the same source is an appropriate method for decreasing non-uniqueness of the resulting models during inversion process. Among the available methods, a method based on using cross-gradient constraint combines two datasets is an efficient approach. This method, however, is time-consuming for 3D inversion and cannot provide an exact assessment of situation and extension of anomaly of interest. In this paper, the first attempt is to speed up the required calculation by substituting singular value decomposition by least-squares QR method to solve the large-scale kernel matrix of 3D inversion, more rapidly. Furthermore, to improve the accuracy of resulting models, a combination of depth-weighing matrix and compacted constraint, as automatic selection covariance of initial parameters, is used in the proposed inversion algorithm. This algorithm was developed in Matlab environment and first implemented on synthetic data. The 3D joint inversion of synthetic gravity and magnetic data shows a noticeable improvement in the results and increases the efficiency of algorithm for large-scale problems. Additionally, a real gravity and magnetic dataset of Jalalabad mine, in southeast of Iran was tested. The obtained results by the improved joint 3D inversion of cross-gradient along with compacted constraint showed a mineralised zone in depth interval of about 110-300 m which is in good agreement with the available drilling data. This is also a further confirmation on the accuracy and progress of the improved inversion algorithm.
NASA Astrophysics Data System (ADS)
Constantino, Renata Regina; Costa, Iago Sousa Lima; Hackspacher, Peter Christian; de Souza, Iata Anderson
2018-03-01
We investigate the Vema Channel in terms of spatial variations of the elastic thickness (Te) in the frame of the thin plate flexure model using the convolutive method. The modeling of the Moho in terms of the thin plate flexure model is done by a least squares approximation of the Moho obtained from gravity inversion. The flexure is calculated by the convolution of the crustal load with the point-load flexure response curves. The RMS difference between the gravity and flexure Moho surfaces is minimized by varying the Te by inverse modeling. The result is a solution of the flexed crust that is in best agreement with the long-wavelength component of the gravity field. The flexure Moho depths vary between 12 and 18 km and agree well with those obtained from gravity inversion. The spatial variations of Te range from 2 to 30 km and have a good correlation with the geological interpretation for an aborted ridge near Vema Channel, called in this paper as the Vema Aborted Ridge (VAR). The occurring of seamounts appears to be correlated to a weak and deformed region. Attempts of crustal breakup are marked by high Te values (30 km) while lower values (3-12 km) are found for the suggested aborted ridge. The VAR is on Isochron of 93 Ma and shows symmetrical older along both sides of its axis. Asymmetric magnetic anomalies are found over the ridge and may be related to upper-extended continental crust broken by the Vema.
The hidden flat like universe II. Quasi inverse power law inflation by
NASA Astrophysics Data System (ADS)
El Hanafy, W.; Nashed, G. G. L.
2016-08-01
In a recent work, a particular class of f(T) gravity, where T is the teleparallel torsion scalar, has been derived. This class has been identified by flat-like universe (FLU) assumptions (El Hanafy and Nashed 2015). The model is consistent with the early cosmic inflation epoch. A quintessence potential has been constructed from the FLU f(T)-gravity. We show that the first order potential of the induced quintessence is a quasi inverse power law inflation with an additional constant providing an end of the inflation with no need to an extra mechanism. At e-folds N_{*}= 55 before the end of the inflation, this type of potential can perform both E and B modes of the cosmic microwave background (CMB) polarization pattern.
Tests of gravity with future space-based experiments
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy
2018-03-01
Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.
NASA Astrophysics Data System (ADS)
Lambert, S. B.; Ziegler, Y.; Rosat, S.; Bizouard, C.
2017-12-01
Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the results of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by several analysis centers affiliated to the International VLBI Service for Geodesy and Astrometry, together with surface gravity data from about 15 SG stations. We address the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting to nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package. New estimates of the resonant periods are proposed and correlations between the parameters are investigated.
Gravity Data from Newark Valley, White Pine County, Nevada
Mankinen, Edward A.; McKee, Edwin H.
2007-01-01
The Newark Valley area, eastern Nevada is one of thirteen major ground-water basins investigated by the BARCAS (Basin and Range Carbonate Aquifer Study) Project. Gravity data are being used to help characterize the geophysical framework of the region. Although gravity coverage was extensive over parts of the BARCAS study area, data were sparse for a number of the valleys, including the northern part of Newark Valley. We addressed this lack of data by establishing seventy new gravity stations in and around Newark Valley. All available gravity data were then evaluated to determine their reliability, prior to calculating an isostatic residual gravity map to be used for subsequent analyses. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a view of subsurface shape of the basin and will provide information useful for the development of hydrogeologic models for the region.
Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data
McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.
2014-01-01
The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.
NASA Astrophysics Data System (ADS)
Claessens, S. J.
2016-12-01
Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.
The intracellular responses of frog eggs to novel orientations to gravity
NASA Technical Reports Server (NTRS)
Radice, G. P.; Neff, A. W.; Malacinski, G. M.
1982-01-01
It is found that multiple short doses of ultraviolet light are as effective as a single large dose in producing neural defects. In addition, 180 deg rotation (inversion) of irradiated eggs reduces the ultraviolet effect. Since yolk platelets may be the gravity sensing mechanism, their size, density, and distribution in normal and inverted eggs are investigated. Large platelets are denser and for the most part are in a distinct zone in the vegetal hemisphere, whereas small platelets are less dense and occur in the animal hemisphere. When inverted, the large platelets flow into the animal hemisphere as a coherent mass and partially displace the small platelets. Inversion is thought to rearrange cytoplasmic components necessary for later neural development into an appropriate configuration.
Long-Lived Inverse Chirp Signals from Core-Collapse in Massive Scalar-Tensor Gravity
NASA Astrophysics Data System (ADS)
Sperhake, Ulrich; Moore, Christopher J.; Rosca, Roxana; Agathos, Michalis; Gerosa, Davide; Ott, Christian D.
2017-11-01
This Letter considers stellar core collapse in massive scalar-tensor theories of gravity. The presence of a mass term for the scalar field allows for dramatic increases in the radiated gravitational wave signal. There are several potential smoking gun signatures of a departure from general relativity associated with this process. These signatures could show up within existing LIGO-Virgo searches.
NASA Technical Reports Server (NTRS)
1997-01-01
Session MP4 includes short reports on: (1) Face Recognition in Microgravity: Is Gravity Direction Involved in the Inversion Effect?; (2) Motor Timing under Microgravity; (3) Perceived Self-Motion Assessed by Computer-Generated Animations: Complexity and Reliability; (4) Prolonged Weightlessness Reference Frames and Visual Symmetry Detection; (5) Mental Representation of Gravity During a Locomotor Task; and (6) Haptic Perception in Weightlessness: A Sense of Force or a Sense of Effort?
Remote sensing of the solar photosphere: a tale of two methods
NASA Astrophysics Data System (ADS)
Viavattene, G.; Berrilli, F.; Collados Vera, M.; Del Moro, D.; Giovannelli, L.; Ruiz Cobo, B.; Zuccarello, F.
2018-01-01
Solar spectro-polarimetry is a powerful tool to investigate the physical processes occurring in the solar atmosphere. The different states of polarization and wavelengths have in fact encoded the information about the thermodynamic state of the solar plasma and the interacting magnetic field. In particular, the radiative transfer theory allows us to invert the spectro-polarimetric data to obtain the physical parameters of the different atmospheric layers and, in particular, of the photosphere. In this work, we present a comparison between two methods used to analyze spectro-polarimetric data: the classical Center of Gravity method in the weak field approximation and an inversion code that solves numerically the radiative transfer equation. The Center of Gravity method returns reliable values for the magnetic field and for the line-of-sight velocity in those regions where the weak field approximation is valid (field strength below 400 G), while the inversion code is able to return the stratification of many physical parameters in the layers where the spectral line used for the inversion is formed.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Kaspi, Yohai
2016-10-01
In light of the first orbits of Juno at Jupiter, we discuss the Juno gravity experiment and possible initial results. Relating the flow on Jupiter and Saturn to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecraft during 2016-17. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Current observations for the flow on these planets exists only at the cloud-level (0.1-1 bar). The observed cloud-level wind might be confined to the upper layers, or be a manifestation of deep cylindrical flows. Moreover, it is possible that in the case where the observed wind is superficial, there exists deep interior flow that is completely decoupled from the observed atmospheric flow.In this talk, we present a new adjoint based inverse model for inversion of the gravity measurements into flow fields. The model is constructed to be as general as possible, allowing for both cloud-level wind extending inward, and a decoupled deep flow that is constructed to produce cylindrical structures with variable width and magnitude, or can even be set to be completely general. The deep flow is also set to decay when approaching the upper levels so it has no manifestation there. The two sources of flow are then combined to a total flow field that is related to the density anomalies and gravity moments via a dynamical model. Given the measured gravitational moments from Jupiter and Saturn, the dynamical model, together with the adjoint inverse model are used for optimizing the control parameters and by this unfolding the deep and surface flows. Several scenarios are examined, including cases in which the surface wind and the deep flow have comparable effects on the gravity field, cases in which the deep flow is dominating over the surface wind, and an extreme case where the deep flow can have an unconstrained pattern. The method enables also the calculation of the uncertainties associated with each solution. We discuss the physical limitations to the method in view of the measurement uncertainties.
NASA Astrophysics Data System (ADS)
Bai, Yongliang; Dong, Dongdong; Kirby, Jon F.; Williams, Simon E.; Wang, Zhenjie
2018-04-01
Lithospheric effective elastic thickness (Te), a proxy for plate strength, is helpful for the understanding of subduction characteristics. Affected by curvature, faulting and magma activity, lithospheric strength near trenches should be weakened but some regional inversion studies have shown much higher Te values along some trenches than in their surroundings. In order to improve Te estimation accuracy, here we discuss the long-wavelength effect of dynamic topography and gravity on Te estimation by taking the Izu-Bonin-Mariana (IBM) Trench as a case study area. We estimate the long-wavelength influence of the density and negative buoyancy of the subducting slab on observed gravity anomalies and seafloor topography. The residual topography and gravity are used to map Te using the fan-wavelet coherence method. Maps of Te, both with and without the effects of dynamic topography and slab gravity anomaly, contain a band of high-Te values along the IBM Trench, though these values and their errors are lower when slab effects are accounted for. Nevertheless, tests show that the Te map is relatively insensitive to the choice of slab-density modelling method, even though the dynamic topography and slab-induced gravity anomaly vary considerably when the slab density is modelled by different methods. The continued presence of a high-Te band along the trench after application of dynamic corrections shows that, before using 2D inversion methods to estimate Te variations in subduction zones, there are other factors that should be considered besides the slab dynamic effects on the overriding plate.
NASA Astrophysics Data System (ADS)
Bai, Yongliang; Dong, Dongdong; Kirby, Jon F.; Williams, Simon E.; Wang, Zhenjie
2018-07-01
Lithospheric effective elastic thickness (Te), a proxy for plIate strength, is helpful for the understanding of subduction characteristics. Affected by curvature, faulting and magma activity, lithospheric strength near trenches should be weakened but some regional inversion studies have shown much higher Te values along some trenches than in their surroundings. In order to improve Te-estimation accuracy, here we discuss the long-wavelength effect of dynamic topography and gravity on Te estimation by taking the Izu-Bonin-Mariana (IBM) Trench as a case study area. We estimate the long-wavelength influence of the density and negative buoyancy of the subducting slab on observed gravity anomalies and seafloor topography. The residual topography and gravity are used to map Te using the fan-wavelet coherence method. Maps of Te, both with and without the effects of dynamic topography and slab gravity anomaly, contain a band of high-Te values along the IBM Trench, though these values and their errors are lower when slab effects are accounted for. Nevertheless, tests show that the Te map is relatively insensitive to the choice of slab-density modelling method, even though the dynamic topography and slab-induced gravity anomaly vary considerably when the slab density is modelled by different methods. The continued presence of a high-Te band along the trench after application of dynamic corrections shows that, before using 2-D inversion methods to estimate Te variations in subduction zones, there are other factors that should be considered besides the slab dynamic effects on the overriding plate.
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
NASA Technical Reports Server (NTRS)
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.; Sunseri, Richard F.
2005-01-01
An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.
1982-03-01
gravity anomaly values computed from measured gravity at discrete points (x,y) within the 10 x 10 area. If the Ag are Bouguer gravity anomalies, the Ag is...a 10 x 10 mean Bouguer anomaly. If the Ag are free-air gravity anomalies, the Ag is a 10 x 10 mean free-air gravity anomaly. Either anomaly form can...it requires less subjective judgment. Predictions in continental areas always are made using Bouguer gravity anomalies because this anomaly form is
NASA Astrophysics Data System (ADS)
Frederick, B. C.; Gooch, B. T.; Richter, T.; Young, D. A.; Blankenship, D. D.; Aitken, A.; Siegert, M. J.
2013-12-01
Topography, sediment distribution and heat flux are all key boundary conditions governing the stability of the East Antarctic ice sheet (EAIS). Recent scientific scrutiny has been focused on several large, deep, interior EAIS basins including the submarine basal topography characterizing the Aurora Subglacial Basin (ASB). Numerical ice sheet models require accurate deformable sediment distribution and lithologic character constraints to estimate overall flow velocities and potential instability. To date, such estimates across the ASB have been derived from low-resolution satellite data or historic aerogeophysical surveys conducted prior to the advent of GPS. These rough basal condition estimates have led to poorly-constrained ice sheet stability models for this remote 200,000 sq km expanse of the ASB. Here we present a significantly improved quantitative model characterizing the subglacial lithology and sediment in the ASB region. The product of comprehensive ICECAP (2008-2013) aerogeophysical data processing, this sedimentary basin model details the expanse and thickness of probable Wilkes Land subglacial sedimentary deposits and density contrast boundaries indicative of distinct subglacial lithologic units. As part of the process, BEDMAP2 subglacial topographic results were improved through the additional incorporation of ice-penetrating radar data collected during ICECAP field seasons 2010-2013. Detailed potential field data pre-processing was completed as well as a comprehensive evaluation of crustal density contrasts based on the gravity power spectrum, a subsequent high pass data filter was also applied to remove longer crustal wavelengths from the gravity dataset prior to inversion. Gridded BEDMAP2+ ice and bed radar surfaces were then utilized to establish bounding density models for the 3D gravity inversion process to yield probable sedimentary basin anomalies. Gravity inversion results were iteratively evaluated against radar along-track RMS deviation and gravity and magnetic depth to basement results. This geophysical data processing methodology provides a substantial improvement over prior Wilkes Land sedimentary basin estimates yielding a higher resolution model based upon iteration of several aerogeophysical datasets concurrently. This more detailed subglacial sedimentary basin model for Wilkes Land, East Antarctica will not only contribute to vast improvements on EAIS ice sheet model constraints, but will also provide significant quantifiable controls for subglacial hydrologic and geothermal flux estimates that are also sizable contributors to the cold-based, deep interior basal ice dynamics dominant in the Wilkes Land region.
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Jordan, Thomas H.
1993-01-01
Long-wavelength variations in geoid height, bathymetry, and SS-S travel times are all relatable to lateral variations in the characteristic temperature and bulk composition of the upper mantle. The temperature and composition are in turn relatable to mantle convection and the degree of melt extraction from the upper mantle residuum. Thus the combined inversion of the geoid or gravity field, residual bathymetry, and seismic velocity information offers the promise of resolving fundamental aspects of the pattern of mantle dynamics. The use of differential body wave travel times as a measure of seismic velocity information, in particular, permits resolution of lateral variations at scales not resolvable by conventional global or regional-scale seismic tomography with long-period surface waves. These intermediate scale lengths, well resolved in global gravity field models, are crucial for understanding the details of any chemical or physical layering in the mantle and of the characteristics of so-called 'small-scale' convection beneath oceanic lithosphere. In 1991 a three-year project to the NASA Geophysics Program was proposed to carry out a systematic inversion of long-wavelength geoid anomalies, residual bathymetric anomalies, and differential SS-S travel time delays for the lateral variation in characteristic temperature and bulk composition of the oceanic upper mantle. The project was funded as a three-year award, beginning on 1 Jan. 1992.
The quest for the perfect gravity anomaly: Part 2 - Mass effects and anomaly inversion
Keller, Gordon R.; Hildenbrand, T.G.; Hinze, W. J.; Li, X.; Ravat, D.; Webring, M.
2006-01-01
Gravity anomalies have become an important tool for geologic studies since the widespread use of high-precision gravimeters after the Second World War. More recently the development of instrumentation for airborne gravity observations, procedures for acquiring data from satellite platforms, the readily available Global Positioning System for precise vertical and horizontal control, improved global data bases, and enhancement of computational hardware and software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases that are made available to the geoscience community by broadening their observational holdings and increasing the accuracy and precision of the included data. Currently the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States of America are being revised using new formats and standards. The objective of this paper is to describe the use of the revised standards for gravity data processing and modeling and there impact on geological interpretations. ?? 2005 Society of Exploration Geophysicists.
A Bayesian approach to modeling 2D gravity data using polygon states
NASA Astrophysics Data System (ADS)
Titus, W. J.; Titus, S.; Davis, J. R.
2015-12-01
We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.
Invariant models in the inversion of gravity and magnetic fields and their derivatives
NASA Astrophysics Data System (ADS)
Ialongo, Simone; Fedi, Maurizio; Florio, Giovanni
2014-11-01
In potential field inversion problems we usually solve underdetermined systems and realistic solutions may be obtained by introducing a depth-weighting function in the objective function. The choice of the exponent of such power-law is crucial. It was suggested to determine it from the field-decay due to a single source-block; alternatively it has been defined as the structural index of the investigated source distribution. In both cases, when k-order derivatives of the potential field are considered, the depth-weighting exponent has to be increased by k with respect that of the potential field itself, in order to obtain consistent source model distributions. We show instead that invariant and realistic source-distribution models are obtained using the same depth-weighting exponent for the magnetic field and for its k-order derivatives. A similar behavior also occurs in the gravity case. In practice we found that the depth weighting-exponent is invariant for a given source-model and equal to that of the corresponding magnetic field, in the magnetic case, and of the 1st derivative of the gravity field, in the gravity case. In the case of the regularized inverse problem, with depth-weighting and general constraints, the mathematical demonstration of such invariance is difficult, because of its non-linearity, and of its variable form, due to the different constraints used. However, tests performed on a variety of synthetic cases seem to confirm the invariance of the depth-weighting exponent. A final consideration regards the role of the regularization parameter; we show that the regularization can severely affect the depth to the source because the estimated depth tends to increase proportionally with the size of the regularization parameter. Hence, some care is needed in handling the combined effect of the regularization parameter and depth weighting.
Search for Lorentz Violation in a Short-Range Gravity Experiment
NASA Astrophysics Data System (ADS)
Bennett, D.; Skavysh, V.; Long, J.
2011-12-01
An experimental test of the Newtonian inverse square law at short range has been used to set limits on Lorentz violation in the pure gravity sector of the Standard-Model Extension. On account of the planar test mass geometry, nominally null with respect to 1/r2 forces, the limits derived for the SME coefficients of Lorentz violation are on the order bar sJK ˜ 104 .
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling
2010-09-01
crustal structures. But short periods are difficult to measure, especially in tectonically and geologically complex areas. On the other hand, gravity...East Africa Rift System Knowledge of crustal and upper mantle structure is of importance for understanding East Africa’s geodynamic evolution and for...area with less lateral heterogeneity but great tectonic complexity. To increase the effectiveness of the technique in this region, we explore gravity
Unexpected Occurrence of Mesospheric Frontal Gravity Wave Events Over South Pole (90°S)
NASA Astrophysics Data System (ADS)
Pautet, P.-D.; Taylor, M. J.; Snively, J. B.; Solorio, C.
2018-01-01
Since 2010, Utah State University has operated an infrared Advanced Mesospheric Temperature Mapper at the Amundsen-Scott South Pole station to investigate the upper atmosphere dynamics and temperature deep within the vortex. A surprising number of "frontal" gravity wave events (86) were recorded in the mesospheric OH(3,1) band intensity and rotational temperature images (typical altitude of 87 km) during four austral winters (2012-2015). These events are gravity waves (GWs) characterized by a sharp leading wave front followed by a quasi-monochromatic wave train that grows with time. A particular subset of frontal gravity wave events has been identified in the past (Dewan & Picard, 1998) as "bores." These are usually associated with wave ducting within stable mesospheric inversion layers, which allow them to propagate over very large distances. They have been observed on numerous occasions from low-latitude and midlatitude sites, but to date, very few have been reported at high latitudes. This study provides new analyses of the characteristics of frontal events at high latitudes and shows that most of them are likely ducted. The occurrence of these frontal GW events over this isolated region strongly supports the existence of horizontally extensive mesospheric thermal inversion layers over Antarctica, leading to regions of enhanced stability necessary for GW trapping and ducting.
Asgharian, Bahman; Price, Owen; Oberdörster, Gunter
2006-06-01
Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.
2004-01-01
The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.
Can inertia-gravity waves persistently alter the tropopause inversion layer?
NASA Astrophysics Data System (ADS)
Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar
2014-11-01
Previous simulations of baroclinic life cycles have shown, among many other features, the evolution of a tropopause inversion layer (TIL) as well as the spontaneous emission of inertia-gravity waves (IGWs). This study suggests that the latter two are related to each other, i.e., that IGWs may affect the TIL in a persistent manner. The IGWs are emitted along the jet and grow to large amplitudes, leading to the appearance of low-gradient Richardson numbers that indicate Kelvin-Helmholtz instability. Ensuing energy dissipation, local heating, and turbulence may persistently alter the thermodynamical structure of the tropopause region and, therefore, contribute to TIL formation or alter an existing TIL. Moreover, the flow in the region of the IGW favors the occurrence of wave capture, which may enhance the effect of wave breaking.
Search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam
NASA Astrophysics Data System (ADS)
Haddock, Christopher C.; Oi, Noriko; Hirota, Katsuya; Ino, Takashi; Kitaguchi, Masaaki; Matsumoto, Satoru; Mishima, Kenji; Shima, Tatsushi; Shimizu, Hirohiko M.; Snow, W. Michael; Yoshioka, Tamaki
2018-03-01
We describe an experimental search for deviations from the inverse-square law of gravity at the nanometer length scale using neutron scattering from noble gases on a pulsed slow neutron beam line. By measuring the neutron momentum transfer (q ) dependence of the differential cross section for xenon and helium and comparing to their well-known analytical forms, we place an upper bound on the strength of a new interaction as a function of interaction length λ which improves upon previous results in the region λ <0.1 nm , and remains competitive in the larger-λ region. A pseudoexperimental simulation is developed for this experiment and its role in the data analysis is described. We conclude with plans for improving sensitivity in the larger-λ region.
NASA Astrophysics Data System (ADS)
Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.
2013-12-01
Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.
Shallow structure of the Somma Vesuvius volcano from 3D inversion of gravity data
NASA Astrophysics Data System (ADS)
Cella, Federico; Fedi, Maurizio; Florio, Giovanni; Grimaldi, Marino; Rapolla, Antonio
2007-04-01
A gravity investigation was carried out in the Somma-Vesuvius complex area (Campania, Italy) based on a dataset recently enlarged with new measurements. These cover the volcanic top and fill some other important spatial gaps in previous surveys. Besides the new gravity map of the Vesuvius, we also present the results of a 3D inverse modelling, carried out by using constraints from deep well exploration and seismic reflection surveys. The resulting density model provides a complete reconstruction of the top of the carbonate basement. This is relevant mostly on the western side of the survey area, where no significant information was previously available. Other new information regards the Somma-Vesuvius structure. It consists of an annular volume of rocks around the volcanic vent and that extends down to the carbonate basement. It results to be denser with respect to the surrounding sedimentary cover of the Campanian Plain and to the material located just along the central axis of the volcanic structure. The coherence between these features and other geophysical evidences from previous studies, will be discussed together with the other results of this research.
An Indirect Role for Ethylene in Shoot-inversion Release of Apical Dominance in Pharbitis Nil
NASA Technical Reports Server (NTRS)
Cline, M. G.
1985-01-01
Evidence is presented which indicated that ethylene does not play a direct role in promoting or inhibiting bud outgrowth as a gravity response. It is concluded that the treatment of inactive or induced lateral buds with ethylene inhibitors or ethrel has no significant effect on bud outgrowth and that no changes occur in ethylene emanation in the Highest Lateral Bud (HLB) or HLB node following shoot inversion. Possible mechanisms by which ethylene released by shoot inversion may indirectly promote outgrowth of the HLB is presented.
Application of Newtonian physics to predict the speed of a gravity racer
NASA Astrophysics Data System (ADS)
Driscoll, H. F.; Bullas, A. M.; King, C. E.; Senior, T.; Haake, S. J.; Hart, J.
2016-07-01
Gravity racing can be studied using numerical solutions to the equations of motion derived from Newton’s second law. This allows students to explore the physics of gravity racing and to understand how design and course selection influences vehicle speed. Using Euler’s method, we have developed a spreadsheet application that can be used to predict the speed of a gravity powered vehicle. The application includes the effects of air and rolling resistance. Examples of the use of the application for designing a gravity racer are presented and discussed. Predicted speeds are compared to the results of an official world record attempt.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Fullea, Javier
2015-03-01
We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.
Modeling human perception of orientation in altered gravity
Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.
2015-01-01
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822
Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, H.A.; Paik, H.J.
1987-06-15
Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less
NASA Astrophysics Data System (ADS)
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
Joint Inversion and Forward Modeling of Gravity and Magnetic Data in the Ismenius Region of Mars
NASA Technical Reports Server (NTRS)
Milbury, C. A.; Raymond, C. A.; Jewell, J. B.; Smrekar, S. E.; Schubert, G.
2005-01-01
The unexpected discovery of remanent crustal magnetism on Mars was one of the most intriguing results from the Mars Global Surveyor mission. The origin of the pattern of magnetization remains elusive. Correlations with gravity and geology have been examined to better understand the nature of the magnetic anomalies. In the area of the Martian dichotomy between 50 and 90 degrees E (here referred to as the Ismenius Area), we find that both the Bouguer and the isostatic gravity anomalies appear to correlate with the magnetic anomalies and a buried fault, and allow for a better constraint on the magnetized crust].
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Tenzer, Robert
2017-05-01
We investigate a numerical performance of four different schemes applied to a regional recovery of the gravity anomalies from the third-order gravitational tensor components (assumed to be observable in the future) synthetized at the satellite altitude of 200 km above the mean sphere. The first approach is based on applying a regional inversion without modelling the far-zone contribution or long-wavelength support. In the second approach we separate integral formulas into two parts, that is, the effects of the third-order disturbing tensor data within near and far zones. Whereas the far-zone contribution is evaluated by using existing global geopotential model (GGM) with spectral weights given by truncation error coefficients, the near-zone contribution is solved by applying a regional inversion. We then extend this approach for a smoothing procedure, in which we remove the gravitational contributions of the topographic-isostatic and atmospheric masses. Finally, we apply the remove-compute-restore (r-c-r) scheme in order to reduce the far-zone contribution by subtracting the reference (long-wavelength) gravity field, which is computed for maximum degree 80. We apply these four numerical schemes to a regional recovery of the gravity anomalies from individual components of the third-order gravitational tensor as well as from their combinations, while applying two different levels of a white noise. We validated our results with respect to gravity anomalies evaluated at the mean sphere from EGM2008 up to the degree 250. Not surprisingly, better fit in terms of standard deviation (STD) was attained using lower level of noise. The worst results were gained applying classical approach, STD values of our solution from Tzzz are 1.705 mGal (noise value with a standard deviation 0.01 × 10 - 15m - 1s - 2) and 2.005 mGal (noise value with a standard deviation 0.05 × 10 - 15m - 1s - 2), while the superior from r-c-r up to the degree 80, STD fit of gravity anomalies from Tzzz with respect to the same counterpart from EGM2008 is 0.510 mGal (noise value with a standard deviation 0.01 × 10 - 15m - 1s - 2) and 1.190 mGal (noise value with a standard deviation 0.05 × 10 - 15m - 1s - 2).
NASA Astrophysics Data System (ADS)
Maksim, Nisa
Features such as the Home Plate plateau on Mars, a suspected remnant of an ancient phreatomagmatic eruption, can reveal important information about paleohydrologic conditions. The eruption intensity of a phreatomagmatic volcano is controlled mainly by the quantity of water and magma, the internal geometry of the volcano, and the depth of the interaction zone between magma and water. In order to understand the paleohydrologic conditions at the time of eruption, we must understand all the factors that influenced the phreatomagmatic event. I conducted an integrated geophysical survey, which are magnetic and gravity surveys, and a ground-penetrating radar (GPR) surveys at Kilbourne Hole, a phreatomagmatic crater in southern New Mexico. These investigations serve an analog paleo-hydrogeological study that could be conducted on Mars and the Moon with an implication for planetary exploration. These geophysical surveys are designed to delineate the internal structure of a phreatomagmatic volcano and to define the volumes and masses of volcanic dikes and excavation unit, the depth of feeder dikes, and impacted velocity of the volcanic blocks. For the gravity and magnetic surveys at Kilbourne Hole, I collected data at a total of 171 gravity survey stations and 166 magnetics survey stations. A 2D gravity and magnetic inverse model was developed jointly to map the body of the magma intrusions and the internal structure of Kilbourne Hole. A total of 6 GPR surveys lines were also completed at Kilbourne Hole to image and to define locations of pyroclastic deposits, volcanic sags and blocks, the sizes distribution of volcanic blocks, and the impact velocity of the volcanic blocks. Using the size distribution and impact velocity of volcanic blocks from our GPR data, I derived the initial gas expansion velocity and the time duration of the gas expansion phase of the Kilbourne Hole eruption. These obtained parameters (volumes, masses, and depths of the feeder dikes and the excavation zone, and the initial gas expansion velocity) are used to quantitatively calculate the mass, volume and condition of groundwater involved in the magma-water interaction process that caused Kilbourne Hole eruption. The joint gravity and magnetic 2D inversion reveals two main bodies of basaltic intrusion dike underneath Kilbourne Hole. The depth to the top of the dike is varied between 0.91 and 3.58 km from the ground surface. The models are able to delineate several complex areas of slumping blocks and collapsed crater, the area of the diatreme and the area of the original crater's excavation. The estimated depth of the diatreme is 13.6-15.8 km. The model shows that the tuff ring deposits extend 600 m to 1 km away from the crater rim and vary in thickness (50-150 m). Based on our 2D gravity and magnetic inverse models of Kilbourne Hole, we were able to calculate the mass of the magma and the final product of this research, which is the mass of water that fed the Kilbourne Hole eruption. The total mass of the magma (M m) is 1.38 +/- 0.15 x 1013 kg and the mass of water (Mw) is (1.09 +/- 0.31) x 10 13 kg. The water to rock mass ratio of the Kilbourne Hole eruption was 0.01-0-02. With the GPR surveys results, we estimate that the initial gas expansion velocity (V0) of the Kilbourne Hole eruption was 123 +/- 9 m/s and the time duration of the gas expansion phase was 92 +/- 11 s. The obtained initial gas expansion velocity and the depth of the dikes suggest that the eruption occurred at an initial pressure of 163 +/- 9 bar. I also utilized the lunar gravity field measured by the Gravity Recovery and Interior Laboratory (GRAIL) mission to reconstruct the history of lunar mascon basin formation and magmatic activity. We hypothesize that a combination of uplifted lunar Moho, impact melt sheets, and brecciated crust creates the gravity signature of lunar mascon basins. To test this hypothesis, We performed low-pass and preferential filtering on the free-air anomaly map derived from GRAIL lunar gravity model GL0660A. Using the preferential filtering method, we isolated the gravity anomalies associated with structures at 16 km and 30 km depth where we can avoid high-frequency gravity signal from the highly impacted subsurface topography and mare basalt. We construct four 2D inversion models from the filtered gravity data to visualize the internal structure of lunar mascon basins. We conclude from our 2D inversion models that the parameters that determine the gravity signatures of mascon basins are: (1) the extent of the impact-melt sheet; (2) the depth to the mantle; and (3) the thickness and density of the surrounding crust.
A deep structural ridge beneath central India
NASA Astrophysics Data System (ADS)
Agrawal, P. K.; Thakur, N. K.; Negi, J. G.
A joint-inversion of magnetic satellite (MAGSAT) and free air gravity data has been conducted to quantitatively investigate the cause for Bouguer gravity anomaly over Central Indian plateaus and possible fold consequences beside Himalayan zone in the Indian sub-continent due to collision between Indian and Eurasian plates. The appropriate inversion with 40 km crustal depth model has delineated after discriminating high density and magnetisation models, for the first time, about 1500 km long hidden ridge structure trending NW-SE. The structure is parallel to Himalayan fold axis and the Indian Ocean ridge in the Arabian Sea. A quantitative relief model across a representative anomaly profile confirms the ridge structure with its highest point nearly 6 km higher than the surrounding crustal level in peninsular India. The ridge structure finds visible support from the astro-geoidal contours.
On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels
NASA Astrophysics Data System (ADS)
Kumar, Chenthil; Kumar, Amit
2012-06-01
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).
CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.
2017-12-01
The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.
Small-scale density variations in the lunar crust revealed by GRAIL
NASA Astrophysics Data System (ADS)
Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W.; Milbury, C.; Kiefer, W. S.; Soderblom, J. M.; Zuber, M. T.
2017-07-01
Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that ∼98% of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2% of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10‧s of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by ± 10% over scales ranging from centimeters to 100‧s of kilometers.
Small-Scale Density Variations in the Lunar Crust Revealed by GRAIL
NASA Technical Reports Server (NTRS)
Jansen, J. C.; Andrews-Hanna, J. C.; Li, Y.; Lucey, P. G.; Taylor, G. J.; Goossens, S.; Lemoine, F. G.; Mazarico, E.; Head, J. W., III; Milbury, C.;
2017-01-01
Data from the Gravity Recovery and Interior Laboratory (GRAIL) mission have revealed that approximately 98 percent of the power of the gravity signal of the Moon at high spherical harmonic degrees correlates with the topography. The remaining 2 percent of the signal, which cannot be explained by topography, contains information about density variations within the crust. These high-degree Bouguer gravity anomalies are likely caused by small-scale (10's of km) shallow density variations. Here we use gravity inversions to model the small-scale three-dimensional variations in the density of the lunar crust. Inversion results from three non-descript areas yield shallow density variations in the range of 100-200 kg/m3. Three end-member scenarios of variations in porosity, intrusions into the crust, and variations in bulk crustal composition were tested as possible sources of the density variations. We find that the density anomalies can be caused entirely by changes in porosity. Characteristics of density anomalies in the South Pole-Aitken basin also support porosity as a primary source of these variations. Mafic intrusions into the crust could explain many, but not all of the anomalies. Additionally, variations in crustal composition revealed by spectral data could only explain a small fraction of the density anomalies. Nevertheless, all three sources of density variations likely contribute. Collectively, results from this study of GRAIL gravity data, combined with other studies of remote sensing data and lunar samples, show that the lunar crust exhibits variations in density by plus or minus 10 percent over scales ranging from centimeters to 100’s of kilometers.
NASA Astrophysics Data System (ADS)
Martin, Roland; Chevrot, Sébastien; Wang, Yi; Spangenberg, Hannah; Goubet, Marie; Monteiller, Vadim; Komatitsch, Dimitri; Seoane, Lucia; Dufréchou, Grégory
2017-04-01
We present a hybrid inversion method that allows us to image density distributions at the regional scale using both seismic and gravity data. One main goal is to obtain densities and seismic wave velocities (P and S) in the lithosphere with a fine resolution to get important constraints on the mineralogic composition and thermal state of the lithosphere. In the context of the Pyrenees (located between Spain and France), accurate Vp and Vs seismic velocity models are computed first on a 3D spectral element grid at the scale of the Pyrenees by inverting teleseismic full waveforms. In a second step, Vp velocities are mapped to densities using empirical relations to build an a priori density model. BGI and BRGM Bouguer gravity anomaly data sets are then inverted on the same 3D spectral element grid as the Vp model at a resolution of 1-2 km by using high-order numerical integration formulae. Solutions are compared to those obtained using classical semi-analytical techniques. This procedure opens the possibility to invert both teleseismic and gravity data on the same finite-element grid. It can handle topography of the free surface in the same spectral-element distorted mesh that is used to solve the wave equation, without performing extra interpolations between different grids and models. WGS84 curvature, SRTM or ETOPO1 topographies are used.
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Klemann, Volker; Martinec, Zdeněk
2012-09-01
We perform an inversion of gravity fields from the Gravity Recovery and Climate Experiment (GRACE) (August 2002 to August 2009) of four processing centres for glacial-isostatic adjustment (GIA) over North America and present-day ice-mass change in Alaska and Greenland. We apply a statistical filtering approach to reduce noise in the GRACE data by confining our investigations to GRACE coefficients containing a statistically significant linear trend. Selecting the subset of reliable coefficients in all GRACE time series (GFZ RL04, ITG 2010, JPL RL04 and CSR RL04) results in a non-isotropic smoothing of the GRACE gravity fields, which is effective in reducing the north-south oriented striping associated with correlated errors in GRACE coefficients. In a next step, forward models of GIA induced by the glacial history NAWI (Zweck and Huybrechts, 2005), as well as present-day ice mass changes in Greenland from ICESat (Sørensen et al., 2011) and Alaska from airborne laser altimetry (Arendt et al., 2002) are simultaneously adjusted in scale to minimize the misfit to the filtered GRACE trends. From the adjusted models, we derive the recent sea-level contributions for Greenland and Alaska (August 2002 to August 2009), and, interpret the residual misfit over the GIA-dominated region around the Hudson Bay, Canada, in terms of mantle viscosities beneath North America.
NASA Astrophysics Data System (ADS)
Steck, L.; Maceira, M.; Ammon, C. J.; Herrmann, R. B.
2013-12-01
Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, receiver functions, and gravity to determine structure of the crust and upper mantle of the western United States. Our target region is comprised of a one-degree grid that spans latitudes from 30 to 50 degrees North and longitudes from 95 to 125 degrees West. Receiver functions come from the Earthscope Automated Receiver system, and are stacked to produce an average model for each cell. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the gravity observations are extracted from the EGM2008 model. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Several different velocity/density relationships have been tested and all result in very similar models. Our inversion reduces RMS surface wave residuals by 58% and receiver function misfits by about 18%. Gravity residuals are reduced by more than 90%. While the reduction in residuals for receiver functions is not as profound as for surface waves or gravity, they are meaningful and produce sharper boundaries for the observed crustal anomalies. The addition of gravity produces subtle changes to the final model. Our final results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Additionally we see high and low velocity anomalies along the west coast that reflect ongoing subduction processes beneath the western US, including the subducting slab and slab window.
Universality of quantum gravity corrections.
Das, Saurya; Vagenas, Elias C
2008-11-28
We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Peace, Alexander L.; Geng, Meixia; Dehler, Sonya A.; Dickie, Kate
2018-05-01
Mesozoic to Cenozoic continental rifting, breakup, and spreading between North America and Greenland led to the opening, from south to north, of the Labrador Sea and eventually Baffin Bay between Baffin Island, northeast Canada, and northwest Greenland. Baffin Bay lies at the northern limit of this extinct rift, transform, and spreading system and remains largely underexplored. With the sparsity of existing crustal-scale geophysical investigations of Baffin Bay, regional potential field methods and quantitative deformation assessments based on plate reconstructions provide two means of examining Baffin Bay at the regional scale and drawing conclusions about its crustal structure, its rifting history, and the role of pre-existing structures in its evolution. Despite the identification of extinct spreading axes and fracture zones based on gravity data, insights into the nature and structure of the underlying crust have only been gleaned from limited deep seismic experiments, mostly concentrated in the north and east where the continental shelf is shallower and wider. Baffin Bay is partially underlain by oceanic crust with zones of variable width of extended continental crust along its margins. 3-D gravity inversions, constrained by bathymetric and depth to basement constraints, have generated a range of 3-D crustal density models that collectively reveal an asymmetric distribution of extended continental crust, approximately 25-30 km thick, along the margins of Baffin Bay, with a wider zone on the Greenland margin. A zone of 5 to 13 km thick crust lies at the centre of Baffin Bay, with the thinnest crust (5 km thick) clearly aligning with Eocene spreading centres. The resolved crustal thicknesses are generally in agreement with available seismic constraints, with discrepancies mostly corresponding to zones of higher density lower crust along the Greenland margin and Nares Strait. Deformation modelling from independent plate reconstructions using GPlates of the rifted margins of Baffin Bay was performed to gauge the influence of original crustal thickness and the width of the deformation zone on the crustal thicknesses obtained from the gravity inversions. These results show the best match with the results from the gravity inversions for an original unstretched crustal thickness of 34-36 km, consistent with present-day crustal thicknesses derived from teleseismic studies beyond the likely continentward limits of rifting around the margins of Baffin Bay. The width of the deformation zone has only a minimal influence on the modelled crustal thicknesses if the zone is of sufficient width that edge effects do not interfere with the main modelled domain.
NASA Astrophysics Data System (ADS)
Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.
2012-12-01
Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.
Fitting Orbits to Jupiter's Moons with a Spreadsheet.
ERIC Educational Resources Information Center
Bridges, Richard
1995-01-01
Describes how a spreadsheet is used to fit a circular orbit model to observations of Jupiter's moons made with a small telescope. Kepler's Third Law and the inverse square law of gravity are observed. (AIM)
A rigid and weathered ice shell on Titan.
Hemingway, D; Nimmo, F; Zebker, H; Iess, L
2013-08-29
Several lines of evidence suggest that Saturn's largest moon, Titan, has a global subsurface ocean beneath an outer ice shell 50 to 200 kilometres thick. If convection is occurring, the rigid portion of the shell is expected to be thin; similarly, a weak, isostatically compensated shell has been proposed to explain the observed topography. Here we report a strong inverse correlation between gravity and topography at long wavelengths that are not dominated by tides and rotation. We argue that negative gravity anomalies (mass deficits) produced by crustal thickening at the base of the ice shell overwhelm positive gravity anomalies (mass excesses) produced by the small surface topography, giving rise to this inverse correlation. We show that this situation requires a substantially rigid ice shell with an elastic thickness exceeding 40 kilometres, and hundreds of metres of surface erosion and deposition, consistent with recent estimates from local features. Our results are therefore not compatible with a geologically active, low-rigidity ice shell. After extrapolating to wavelengths that are controlled by tides and rotation, we suggest that Titan's moment of inertia may be even higher (that is, Titan may be even less centrally condensed) than is currently thought.
The orbital mechanics of flight mechanics
NASA Technical Reports Server (NTRS)
Dunning, R. S.
1973-01-01
A reference handbook on modern dynamic orbit theory is presented. Starting from the most basic inverse-square law, the law of gravity for a sphere is developed, and the motion of point masses under the influence of a sphere is considered. The reentry theory and the orbital theory are discussed along with the relative motion between two bodies in orbit about the same planet. Relative-motion equations, rectangular coordinates, and the mechanics of simple rigid bodies under the influence of a gravity gradient field are also discussed.
Testing the existence of optical linear polarization in young brown dwarfs
NASA Astrophysics Data System (ADS)
Manjavacas, E.; Miles-Páez, P. A.; Zapatero-Osorio, M. R.; Goldman, B.; Buenzli, E.; Henning, T.; Pallé, E.; Fang, M.
2017-07-01
Linear polarization can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inversely proportional to the surface gravity. We aimed to test the existence of optical linear polarization in a sample of bright young brown dwarfs, with spectral types between M6 and L2, observable from the Calar Alto Observatory, and cataloged previously as low gravity objects using spectroscopy. Linear polarimetric images were collected in I and R band using CAFOS at the 2.2-m telescope in Calar Alto Observatory (Spain). The flux ratio method was employed to determine the linear polarization degrees. With a confidence of 3σ, our data indicate that all targets have a linear polarimetry degree in average below 0.69 per cent in the I band, and below 1.0 per cent in the R band, at the time they were observed. We detected significant (I.e. P/σ ≥ 3) linear polarization for the young M6 dwarf 2MASS J04221413+1530525 in the R band, with a degree of p* = 0.81 ± 0.17 per cent.
Subjective Vertical Conflict Theory and Space Motion Sickness.
Chen, Wei; Chao, Jian-Gang; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng
2016-02-01
Space motion sickness (SMS) remains a troublesome problem during spaceflight. The subjective vertical (SV) conflict theory postulates that all motion sickness provoking situations are characterized by a condition in which the SV sensed from gravity and visual and idiotropic cues differs from the expected vertical. This theory has been successfully used to predict motion sickness in different vehicles on Earth. We have summarized the most outstanding and recent studies on the illusions and characteristics associated with spatial disorientation and SMS during weightlessness, such as cognitive map and mental rotation, the visual reorientation and inversion illusions, and orientation preferences between visual scenes and the internal z-axis of the body. The relationships between the SV and the incidence of and susceptibility to SMS as well as spatial disorientation were addressed. A consistent framework was presented to understand and explain SMS characteristics in more detail on the basis of the SV conflict theory, which is expected to be more advantageous in SMS prediction, prevention, and training.
Neutron stars in screened modified gravity: Chameleon versus dilaton
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine; Jha, Rahul
2017-04-01
We consider the scalar field profile around relativistic compact objects such as neutron stars for a range of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types. We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity parameters and the neutron star equation of state. This is exemplified by the modifications to the mass-radius relationship for a variety of model parameters.
Geophysical Studies of Irish Granites Using Magnetotelluric and Gravity Data
NASA Astrophysics Data System (ADS)
Farrell, T. F.; Muller, M. R.; Rath, V.; Feely, M.; Hogg, C.
2014-12-01
We present results of on-going geophysical studies of Caledonian radiothermal granite bodies in Ireland, which are being undertaken to investigate the volumetric depth extent and structural features of these granites. During three field seasons, magnetotelluric (MT) and audio-magnetotelluric (AMT) data were acquired at 156 sites targeting three separate granite bodies. These studies will contribute to a crustal-scale investigation of the geothermal energy potential of the granites and their contribution to the thermal field of the Irish crust. Across the calc-alkaline Galway granite, located on the Irish west coast, MT and AMT data were acquired at 75 sites distributed in a grid. Preliminary 3D inversion reveals the presence of a resistor, thickest beneath the central block of the granite where it extends to depths of 11 - 12 km. The greater depth of the resistor beneath the central block is in contrast to previous thinking that proposed the central block granites to have shallower depth extent than those of the western block, based on Bouguer anomaly maps of the area in which the western block exhibited a more pronounced negative Bouguer anomaly than the central block. At the S-type Leinster granite, in eastern Ireland and to the south of Dublin, MT and AMT data were acquired along two profiles (LGN - 27 sites and LGS - 32 sites). Preliminary 1D inversions of AMT data along profile LGN show the Northern Units of the Leinster granite to extend to a depth of 4.5 km and the Lugnaquilla pluton extending to 2.5 km depth. MT and AMT data were acquired at 22 sites along a profile across the buried Kentstown granite, 35 km to the NW of Dublin. The Kentstown granite was intersected by two mineral exploration boreholes at depths of 492 m and 663 m. Preliminary 2D inversions do not yet satisfactorily resolve the top of the buried granite. Inversion of MT and AMT data is continuing, with the electrical conductivity structures revealed by these inversions being used to constrain inversions of gravity data. The integration of MT and gravity data will provide an insight into the potential density distribution within the resistors associated with the granites and whether the granites, likely to have elevated heat-production (HP), are underlain by electrically resistive but denser, more mafic bodies, likely to be associated with lower HP.
Standard rulers, candles, and clocks from the low-redshift universe.
Heavens, Alan; Jimenez, Raul; Verde, Licia
2014-12-12
We measure the length of the baryon acoustic oscillation (BAO) feature, and the expansion rate of the recent Universe, from low-redshift data only, almost model independently. We make only the following minimal assumptions: homogeneity and isotropy, a metric theory of gravity, a smooth expansion history, and the existence of standard candles (supernovæ) and a standard BAO ruler. The rest is determined by the data, which are compilations of recent BAO and type IA supernova results. Making only these assumptions, we find for the first time that the standard ruler has a length of 103.9±2.3h⁻¹ Mpc. The value is a measurement, in contrast to the model-dependent theoretical prediction determined with model parameters set by Planck data (99.3±2.1h⁻¹ Mpc). The latter assumes the cold dark matter model with a cosmological constant, and that the ruler is the sound horizon at radiation drag. Adding passive galaxies as standard clocks or a local Hubble constant measurement allows the absolute BAO scale to be determined (142.8±3.7 Mpc), and in the former case the additional information makes the BAO length determination more precise (101.9±1.9h⁻¹ Mpc). The inverse curvature radius of the Universe is weakly constrained and consistent with zero, independently of the gravity model, provided it is metric. We find the effective number of relativistic species to be N(eff)=3.53±0.32, independent of late-time dark energy or gravity physics.
Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone
NASA Astrophysics Data System (ADS)
Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu
2005-11-01
The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.
Seyed, Mohammadali Rahmati; Mostafa, Rostami; Borhan, Beigzadeh
2018-04-27
The parametric optimization techniques have been widely employed to predict human gait trajectories; however, their applications to reveal the other aspects of gait are questionable. The aim of this study is to investigate whether or not the gait prediction model is able to justify the movement trajectories for the higher average velocities. A planar, seven-segment model with sixteen muscle groups was used to represent human neuro-musculoskeletal dynamics. At first, the joint angles, ground reaction forces (GRFs) and muscle activations were predicted and validated for normal average velocity (1.55 m/s) in the single support phase (SSP) by minimizing energy expenditure, which is subject to the non-linear constraints of the gait. The unconstrained system dynamics of extended inverse dynamics (USDEID) approach was used to estimate muscle activations. Then by scaling time and applying the same procedure, the movement trajectories were predicted for higher average velocities (from 2.07 m/s to 4.07 m/s) and compared to the pattern of movement with fast walking speed. The comparison indicated a high level of compatibility between the experimental and predicted results, except for the vertical position of the center of gravity (COG). It was concluded that the gait prediction model can be effectively used to predict gait trajectories for higher average velocities.
2012-03-22
2003). This is particularly true at shallow depths where the shorter periods, which are primarily sensitive to upper crustal structures, are difficult...to measure, and especially true in tectonically and geologically complex areas. On the other hand, regional gravity inversions have the greatest...the slower deep crustal speeds into the Caspian region does not make sense geologically. These effects are driven by the simple Laplacian smoothness
Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994
NASA Astrophysics Data System (ADS)
Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.
Principal facts for gravity stations in the vicinity of San Bernardino, Southern California
Anderson, Megan L.; Roberts, Carter W.; Jachens, Robert C.
2000-01-01
New gravity measurements in the vicinity of San Bernardino, California were collected to help define the characteristics of the Rialto-Colton fault. The data were processed using standard reduction formulas and parameters. Rock properties such as lithology, magnetic susceptibility and density also were measured at several locations. Rock property measurements will be helpful for future modeling and density inversion calculations from the gravity data. On both the Bouguer and isostatic gravity maps, a prominent, 13-km long (8 mi), approximately 1-km (0.62 mi) wide gradient with an amplitude of 7 mGal, down to the northeast, is interpreted as the gravity expression of the Rialto-Colton fault. The gravity gradient strikes in a northwest direction and runs from the San Jacinto fault zone at its south end to San Sevine Canyon at the foot of the San Gabriel mountains at its north end. The Rialto-Colton fault has experienced both right-lateral strike-slip and normal fault motion that has offset basement rocks; therefore it is interpreted as a major, through-going fault.
Geophysical Data from Spring Valley to Delamar Valley, East-Central Nevada
Mankinen, Edward A.; Roberts, Carter W.; McKee, Edwin H.; Chuchel, Bruce A.; Morin, Robert L.
2007-01-01
Cenozoic basins in eastern Nevada and western Utah constitute major ground-water recharge areas in the eastern part of the Great Basin and these were investigated to characterize the geologic framework of the region. Prior to these investigations, regional gravity coverage was variable over the region, adequate in some areas and very sparse in others. Cooperative studies described herein have established 1,447 new gravity stations in the region, providing a detailed description of density variations in the middle to upper crust. All previously available gravity data for the study area were evaluated to determine their reliability, prior to combining with our recent results and calculating an up-to-date isostatic residual gravity map of the area. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill in the major valleys of the study area. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a much improved view of subsurface shapes of these basins and provides insights useful for the development of hydrogeologic models for the region.
NASA Astrophysics Data System (ADS)
Sleep, N. H.
1994-03-01
The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses about Mars plate tectonics.
The frequency-domain approach for apparent density mapping
NASA Astrophysics Data System (ADS)
Tong, T.; Guo, L.
2017-12-01
Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.
NASA Astrophysics Data System (ADS)
Klees, R.; Slobbe, D. C.; Farahani, H. H.
2018-03-01
The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.
NASA Astrophysics Data System (ADS)
Otsuka, Shigenori; Takeshita, Megumi; Yoden, Shigeo
2014-12-01
The tropopause inversion layer (TIL) is a persistent layer with high static stability. Although some mechanisms for the formation of the TIL have been proposed, the time evolution of the TIL under realistic conditions especially when factoring in the contribution of small-scale processes such as gravity waves is not well understood. To gain an understanding of this factor, we conducted a numerical experiment on an explosive cyclogenesis in mid-latitudes using a nonhydrostatic regional atmospheric model. Although the TIL in the model is consistent with previous observations in the sense that it is stronger in the negative vorticity areas, the relationship is clear only in the development and mature stages of a cyclone, suggesting that the evolution of the cyclone plays an important role in the formation of the TIL. To ascertain the effects of gravity waves on the TIL, vertical convergence at the tropopause is analyzed. Histograms of maximum buoyancy frequency squared within the TIL show that regions of vertical convergence have higher , in addition to regions with high ∂ 2 w/ ∂ z 2, implying that waves having downward phase propagation also play an important role in the dynamical formation of the TIL. This tendency is clearer in regions of negative relative vorticity at the tropopause. By taking account of the fact that the gravity wave activities associated with the cyclone and the jet streak are enhanced during the development and mature stages of the cyclone, vertical convergence due to gravity waves associated with synoptic weather systems can be seen to be a key process in the formation of the negative correlation between the strength of the TIL and the local relative vorticity at the tropopause.
NASA Astrophysics Data System (ADS)
Bora, Dipok K.; Borah, Kajaljyoti; Mahanta, Rinku; Borgohain, Jayanta Madhab
2018-03-01
b-value is one of the most significant seismic parameters for describing the seismicity of a given region at a definite time window. In this study, high-resolution map of the Gutenberg-Richter b-value, seismic moment-release, Bouguer gravity anomaly and fault-plane solutions containing faulting styles are analyzed in the Indo-Burma ranges of northeast India using the unified and homogeneous part of the seismicity record in the region (January 1964-December 2016). The study region is subdivided into few square grids of geographical window size 1° × 1° and b-values are calculated in each square grid. Our goal is to explore the spatial correlations and anomalous patterns between the b-value and parameters like seismic moment release, Bouguer gravity anomaly and faulting styles that can help us to better understand the seismotectonics and the state of present-day crustal stress within the Indo-Burma region. Most of the areas show an inverse correlation between b-value and seismic moment release as well as convergence rates. While estimating the b-value as a function of depth, a sudden increase of b-value at a depth of 50-60 km was found out and the receiver function modeling confirms that this depth corresponds to the crust-mantle transition beneath the study region. The region is also associated with negative Bouguer gravity anomalies and an inverse relation is found between Gravity anomaly and b-value. Comparing b-values with different faulting styles, reveal that the areas containing low b-values show thrust mechanism, while the areas associated with intermediate b-values show strike-slip mechanism. Those areas, where the events show thrust mechanism but containing a strike-slip component has the highest b-value.
Improving the geological interpretation of magnetic and gravity satellite anomalies
NASA Technical Reports Server (NTRS)
Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.
1987-01-01
Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.
Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China
NASA Astrophysics Data System (ADS)
Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing
2017-04-01
Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.
Using a Gravity Model to Predict Circulation in a Public Library System.
ERIC Educational Resources Information Center
Ottensmann, John R.
1995-01-01
Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…
The inverse-square law and quantum gravity
NASA Technical Reports Server (NTRS)
Nieto, Michael Martin; Goldman, T.; Hughes, Richard J.
1989-01-01
A program is described which measures the gravitational acceleration of antiprotons. This idea was approached from a particle physics point of view. That point of view is examined starting with some history of physics over the last 200 years.
NASA Astrophysics Data System (ADS)
Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter
2015-04-01
The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.
NASA Astrophysics Data System (ADS)
Pedrera, A.; García-Senz, J.; Ayala, C.; Ruiz-Constán, A.; Rodríguez-Fernández, L. R.; Robador, A.; González Menéndez, L.
2017-12-01
Recent models support the view that the Pyrenees were formed after the inversion of a previously highly extended continental crust that included exhumed upper mantle rocks. Mantle rocks remain near to the surface after compression and mountain building, covered by the latest Cretaceous to Paleogene sequences. 3-D lithospheric-scale gravity inversion demands the presence of a high-density mantle body placed within the crust in order to justify the observed anomalies. Exhumed mantle, having 50 km of maximum width, continuously extends beneath the Basque-Cantabrian Basin and along the northern side of the Pyrenees. The association of this body with rift, postrift, and inversion structural geometries is tested in a balanced cross section across the Basque-Cantabrian Basin that incorporates a major south-dipping ramp-flat-ramp extensional detachment active between Valanginian and early Cenomanian times. Results indicate that horizontal extension progressed 48 km at variable strain rates that increased from 1 to 4 mm/yr in middle Albian times. Low-strength Triassic Keuper evaporites and mudstones above the basement favor the decoupling of the cover with formation of minibasins, expulsion rollovers, and diapirs. The inversion of the extensional system is accommodated by doubly verging basement thrusts due to the reactivation of the former basin bounding faults in Eocene-Oligocene times. Total shortening is estimated in 34 km and produced the partial subduction of the continental lithosphere beneath the two sides of the exhumed mantle. Obtained results help to pinpoint the original architecture of the North Iberian Margin and the evolution of the hyperextended aborted intracontinental basins.
NASA Astrophysics Data System (ADS)
Revil, A.
2015-12-01
Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai
2017-07-01
The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galanti, Eli; Kaspi, Yohai; Durante, Daniele
The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulatedmore » Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.« less
NASA Technical Reports Server (NTRS)
Van Dresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluid will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
NASA Technical Reports Server (NTRS)
Vandresar, N. T.
1992-01-01
A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.
Bone loss and human adaptation to lunar gravity
NASA Technical Reports Server (NTRS)
Keller, T. S.; Strauss, A. M.
1992-01-01
Long-duration space missions and establishment of permanently manned bases on the Moon and Mars are currently being planned. The weightless environment of space and the low-gravity environments of the Moon and Mars pose an unknown challenge to human habitability and survivability. Of particular concern in the medical research community today is the effect of less than Earth gravity on the human skeleton, since the limits, if any, of human endurance in low-gravity environments are unknown. This paper provides theoretical predictions on bone loss and skeletal adaptation to lunar and other nonterrestrial-gravity environments based upon the experimentally derived relationship, density approximately (mass x gravity)(exp 1/8). The predictions are compared to skeletal changes reported during bed rest, immobilization, certrifugation, and spaceflight. Countermeasures to reduce bone losses in fractional gravity are also discussed.
Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity.
Sakstein, Jeremy
2015-11-13
The most general scalar-tensor theories of gravity predict a weakening of the gravitational force inside astrophysical bodies. There is a minimum mass for hydrogen burning in stars that is set by the interplay of plasma physics and the theory of gravity. We calculate this for alternative theories of gravity and find that it is always significantly larger than the general relativity prediction. The observation of several low mass red dwarf stars therefore rules out a large class of scalar-tensor gravity theories and places strong constraints on the cosmological parameters appearing in the effective field theory of dark energy.
NASA Astrophysics Data System (ADS)
Derakhshani, Maaneli
In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
NASA Astrophysics Data System (ADS)
Sugano, T.; Heki, K.
2002-12-01
Direct estimation of mass distribution on the lunar nearside surface using the Lunar Prospector (LP) line-of-sight (LOS) acceleration data has several merits over conventional methods to estimate Stokes' coefficients of the lunar gravity field, such as (1) high resolution gravity anomaly recovery without introducing Kaula's constraint, (2) fast inversion calculation by stepwise estimation of parameter sets enabled by small correlation between parameters sets. Resolution of the lunar free-air gravity anomaly map obtained here, is as high as a gravity model complete to degree/order 225, and yet less noisy than the recent models. Next we performed terrain correction for the raw LOS acceleration data using lunar topography model from the Clementine laser altimetry data and the average crustal density of 2.9 g/cm3. By conducting the same inversion for the data after the correction, we obtained the map of Bouguer gravity anomaly that mainly reflects the MOHO topography. By comparing maps we notice that signatures of medium-sized (80-300 km in diameter) craters visible as topographic depression and negative free air anomaly, disappear in the Bouguer anomaly. The absence of mass deficits in the Bouguer anomaly suggests that the MOHO beneath them is flat. Generally speaking, longer wavelength topographic features have to be supported by MOHO topography (Airy isostatic compensation) while small scale topographic features are supported by lithospheric strength. The boundary between these two modes constrains the lithosphere thickness, and hence thermal structure near the surface. Larger craters are known to have become Mascons; mantle plugs and high-density mare basalts cause positive gravity anomalies there. The smallest Mascon has diameters a little larger than 300 km (e.g. Schiller-Zuccius), and the boundary between the two compensation status seems to lie around 300 km. Thermal evolution history of the Moon suggests temporally increasing thickness of lithosphere over its entire history, and the lithosphere as thick as 50-100 km around 4.0 Ga. This is consistent with the isostatic compensation status of the craters studied here, and a model describing the degree of lithospheric supports for various wavelength topographies.
String duality transformations in f(R) gravity from Noether symmetry approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr
2016-01-01
We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less
Infrared modification of gravity from conformal symmetry
NASA Astrophysics Data System (ADS)
Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.
2016-03-01
We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2), and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late-time acceleration of the Universe. The coupling constant of the theory is dimensionless, which means that it is potentially renormalizable.
Gauss's law test of gravity at short range
NASA Technical Reports Server (NTRS)
Moody, M. V.; Paik, H. J.
1993-01-01
A null test of the gravitational inverse-square law can be performed by testing Gauss's law for the field. We have constructed a three-axis superconducting gravity gradiometer and carried out such a test. A lead pendulum weighing 1500 kg was used to produce a time-varying field. This experiment places a new (2-sigma) limit of alpha = (0.9 + or - 4.6) x 10 exp -4 at lambda of 1.5 m, where alpha and lambda are parameters for the generalized potential phi = -(GM/r)(l + alpha e exp -r/lambda).
A Fast Estimation Algorithm for Two-Dimensional Gravity Data (GEOFAST),
1979-11-15
to a wide class of problems (Refs. 9 and 17). The major inhibitor to the widespread appli- ( cation of optimal gravity data processing is the severe...extends directly to two dimensions. Define the nln 2xn1 n2 diagonal window matrix W as the Kronecker product of two one-dimensional windows W = W1 0 W2 (B...Inversion of Separable Matrices Consider the linear system y = T x (B.3-1) where T is block Toeplitz of dimension nln 2xnIn 2 . Its fre- quency domain
Bed topography of Jakobshavn Isbræ, Greenland from high-resolution gravity data
NASA Astrophysics Data System (ADS)
An, L.; Rignot, E. J.; Morlighem, M.; Paden, J. D.; Holland, D. M.
2015-12-01
Jakobshavn Isbræ (JKS) is one of the largest marine terminating outlet glaciers in Greenland, feeding a fjord about 800 m deep in the west coast. JKS sped up more than twofold since 2002 and contributed nearly 1 mm of global sea level rise during the period from 2000 to 2011. Holland et al. (2008) posit that these changes coincided with a change in ocean conditions beneath the former ice tongue, yet little is known about the depth of the glacier at its grounding line and upstream of the grounding line and the sea floor depth of the fjord is not well known either. Here, we present a new approach to infer the glacier bed topography, ice thickness and sea floor bathymetry near the grounding line of JKS using high-resolution airborne gravity data from AirGRAV. AirGRAV data were collected in August 2012 from a helicopter platform. The data combined with radio echo sounding data, discrete point soundings in the fjord and the mass conservation approach on land ice. AirGRAV acquired a 500m spacing grid of free-air gravity data at 50 knots with sub-milligal accuracy, i.e. much higher than NASA Operation IceBridge (OIB)'s 5.2km resolution at 290 knots. We use a 3D inversion of the gravity data combining our observations and a forward modeling of the surrounding gravity field, and constrained at the boundary by radar echo soundings and point bathymetry. We reconstruct seamless bed topography at the grounding line that matches interior data and the sea floor bathymetry. The results reveal the true depth at the elbow of the terminal valley and the bed reversal in the proximity of the current grounding line. The analysis provides guidelines for future gravity survey of narrow fjords in terms of spatial resolution and gravity precision. The results also demonstrate the practicality of using high resolution gravity survey to resolve bed topography near glacier snouts, in places where radar sounding has been significantly challenged in the past. The inversion results are critical to re-interpret the recent evolution of JKS and reduce uncertainties in projecting its future contribution to sea level. This work was conducted at UCI and at Caltech's Jet Propulsion Laboratory under a contract with the Gordon and Betty More Foundation and with NASA's Cryospheric Science Program.
Nonlinear modal resonances in low-gravity slosh-spacecraft systems
NASA Technical Reports Server (NTRS)
Peterson, Lee D.
1991-01-01
Nonlinear models of low gravity slosh, when coupled to spacecraft vibrations, predict intense nonlinear eigenfrequency shifts at zero gravity. These nonlinear frequency shifts are due to internal quadratic and cubic resonances between fluid slosh modes and spacecraft vibration modes. Their existence has been verified experimentally, and they cannot be correctly modeled by approximate, uncoupled nonlinear models, such as pendulum mechanical analogs. These predictions mean that linear slosh assumptions for spacecraft vibration models can be invalid, and may lead to degraded control system stability and performance. However, a complete nonlinear modal analysis will predict the correct dynamic behavior. This paper presents the analytical basis for these results, and discusses the effect of internal resonances on the nonlinear coupled response at zero gravity.
On the inversion of geodetic integrals defined over the sphere using 1-D FFT
NASA Astrophysics Data System (ADS)
García, R. V.; Alejo, C. A.
2005-08-01
An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.
Comparing multiple statistical methods for inverse prediction in nuclear forensics applications
Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela
2017-10-29
Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less
Comparing multiple statistical methods for inverse prediction in nuclear forensics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John R.; Zhang, Adah; Anderson-Cook, Christine Michaela
Forensic science seeks to predict source characteristics using measured observables. Statistically, this objective can be thought of as an inverse problem where interest is in the unknown source characteristics or factors ( X) of some underlying causal model producing the observables or responses (Y = g ( X) + error). Here, this paper reviews several statistical methods for use in inverse problems and demonstrates that comparing results from multiple methods can be used to assess predictive capability. Motivation for assessing inverse predictions comes from the desired application to historical and future experiments involving nuclear material production for forensics research inmore » which inverse predictions, along with an assessment of predictive capability, are desired.« less
NASA Astrophysics Data System (ADS)
Steck, L.; Maceira, M.; Herrmann, R. B.; Ammon, C. J.
2012-12-01
Joint inversion of multiple datasets should produce more realistic images of Earth structure. Here we simultaneously invert surface wave dispersion, gravity, and receiver functions to determine structure of the crust and upper mantle of the western United States. To date our receiver function dataset, from the EARS system, spans California and western Nevada, but it will be expanded to include the entire study area as the project continues. Rayleigh and Love dispersion data come from multiple filter analysis of regional earthquakes, while the PACES and GRACE campaigns provide the gravity measurements. Our starting model is comprised of an oceanic PREM model west of the Pacific coast, a western US model between that and the eastern front of the Rocky Mountains, and a continental PREM model east of the Rocky Mountain Front. Our inversion reduces surface wave residuals by 57% and receiver function residuals by about 10%, when the two datasets are weighted equally. Gravity residuals are reduced to less than 3 Mgal. Results are consistent with numerous previous studies in the region. In general, the craton exhibits higher velocities than the tectonically active regions to its west. We see high mid-crustal velocities under the Snake River Plain and the Colorado Plateau. In the lower crust we observe lowest velocities in the western Basin and Range and under the Colorado Mineral Belt. At 80km depth we see broad low velocities fanning out from the Snake River Plain associated with the mantle plume feeding Yellowstone Caldera. Other high and low velocity anomalies along the west coast and to the east are likely related to ongoing subduction processes beneath the western US.
Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model
NASA Astrophysics Data System (ADS)
Sutyrin Georgi, G.
2004-07-01
A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.
Langenheim, V.E.; Jachens, Robert C.; Morin, Robert L.; McCabe, Craig A.
2007-01-01
The Lake Pillsbury region is transected by the Bartlett Springs Fault zone, one of the main strike-slip faults of the San Andreas system north of San Francisco Bay, California. Gravity and magnetic data were collected to help characterize the geometry and offset of the fault zone as well as determine the geometry of the Gravelly Valley pull-apart basin and Potter Valley, an alluvial intermontane basin southwest of Lake Pillsbury. The Bartlett Springs fault zone lies at the base of a significant gravity gradient. Superposed on the gradient is a small gravity low centered over Lake Pillsbury and Gravelly Valley. Another small gravity low coincides with Potter Valley. Inversion of gravity data for basin thickness indicates a maximum thickness of 400 and 440 m for the Gravelly and Potter Valley depressions, respectively. Ground magnetic data indicate that the regional aeromagnetic data likely suffer from positional errors, but that large, long-wavelength anomalies, sourced from serpentinite, may be offset 8 km along the Bartlett Springs Fault zone. Additional gravity data collected either on the lake surface or bottom and in Potter Valley would better determine the shape of the basins. A modern, high-resolution aeromagnetic survey would greatly augment the ability to map and model the fault geometry quantitatively.
Investigation of Crustal Thickness in Eastern Anatolia Using Gravity, Magnetic and Topographic Data
NASA Astrophysics Data System (ADS)
Pamukçu, Oya Ankaya; Akçığ, Zafer; Demirbaş, Şevket; Zor, Ekrem
2007-12-01
The tectonic regime of Eastern Anatolia is determined by the Arabia-Eurasia continent-continent collision. Several dynamic models have been proposed to characterize the collision zone and its geodynamic structure. In this study, change in crustal thickness has been investigated using gravity, magnetic and topographic data of the region. In the first stage, two-dimensional low-pass filter and upward analytical continuation techniques were applied to the Bouguer gravity data of the region to investigate the behavior of the regional gravity anomalies. Next the moving window power spectrum method was used, and changes in the probable structural depths from 38 to 52 km were determined. The changes in crustal thickness where free air gravity and magnetic data have inversely correlated and the type of the anomaly resources were investigated applying the Euler deconvolution method to Bouguer gravity data. The obtained depth values are consistent with the results obtained using the power spectrum method. It was determined that the types of anomaly resources are different in the west and east of the 40° E longitude. Finally, using the obtained findings from this study and seismic velocity models proposed for this region by previous studies, a probable two-dimensional crust model was constituted.
NASA Astrophysics Data System (ADS)
Rietbroek, R.; Uebbing, B.; Lück, C.; Kusche, J.
2017-12-01
Ocean mass content (OMC) change due to the melting of the ice-sheets in Greenland and Antarctica, melting of glaciers and changes in terrestrial hydrology is a major contributor to present-day sea level rise. Since 2002, the GRACE satellite mission serves as a valuable tool for directly measuring the variations in OMC. As GRACE has almost reached the end of its lifetime, efforts are being made to utilize the Swarm mission for the recovery of low degree time-variable gravity fields to bridge a possible gap until the GRACE-FO mission and to fill up periods where GRACE data was not existent. To this end we compute Swarm monthly normal equations and spherical harmonics that are found competitive to other solutions. In addition to directly measuring the OMC, combination of GRACE gravity data with altimetry data in a global inversion approach allows to separate the total sea level change into individual mass-driven and steric contributions. However, published estimates of OMC from the direct and inverse methods differ not only depending on the time window, but also are influenced by numerous post-processing choices. Here, we will look into sources of such differences between direct and inverse approaches and evaluate the capabilities of Swarm to derive OMC. Deriving time series of OMC requires several processing steps; choosing a GRACE (and altimetry) product, data coverage, masks and filters to be applied in either spatial or spectral domain, corrections related to spatial leakage, GIA and geocenter motion. In this study, we compare and quantify the effects of the different processing choices of the direct and inverse methods. Our preliminary results point to the GIA correction as the major source of difference between the two approaches.
Signature of Europa's Ocean Density on Gravity Data
NASA Astrophysics Data System (ADS)
Castillo, J. C.; Rambaux, N.
2015-12-01
Observations by the Galileo mission at Europa and Cassini-Huygens mission at Europa, Ganymede, Callisto, Enceladus, and Titan have found deep oceans at these objects with evidence for the presence of salts. Salt compounds are the products of aqueous alteration of the rock phase under hydrothermal conditions and have been predicted theoretically for these objects per analogy with carbonaceous chondrite parent bodies. Evidence for salt enrichment comes from magnetometer measurements (Galilean satellites), direct detection in the case of Enceladus, and inversion of the gravity data obtained at Titan. While there is direct detection for the presence of chlorides in icy grains ejected from Enceladus, the chemistry of the oceans detected so far, or even their densities, remain mostly unconstrained. However the increased ocean density impacts the interpretation of the tidal Love number k2and this may introduce confusion in the inference of the icy shell thickness from that parameter. We will present estimates of k2for a range of assumptions on Europa's hydrospheric structure that build on geophysical observations obtained by the Galileo mission combined with new models of Europa's interior. These models keep track of the compositions of the hydrated core and oceanic composition in a self-consistent manner. We will also estimate the electrical conductivity corresponding to the modeled oceanic composition. Finally we will explore how combining electromagnetic, topographic, and gravity data can decouple the signatures of the shell thickness and ocean composition on these geophysical observations. Acknowledgement: This work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged.
Roecker, S.; Thurber, C.; McPhee, D.
2004-01-01
Taking advantage of large datasets of both gravity and elastic wave arrival time observations available for the Parkfield, California region, we generated an image consistent with both types of data. Among a variety of strategies, the best result was obtained from a simultaneous inversion with a stability requirement that encouraged the perturbed model to remain close to a starting model consisting of a best fit to the arrival time data. The preferred model looks essentially the same as the best-fit arrival time model in areas where ray coverage is dense, with differences being greatest at shallow depths and near the edges of the model where ray paths are few. Earthquake locations change by no more than about 100 m, the general effect being migration of the seismic zone to the northeast, closer to the surface trace of the San Andreas Fault. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Li, Changbo; Wang, Liangshu; Sun, Bin; Feng, Runhai; Wu, Yongjing
2015-09-01
In this paper, we introduce the method of Wavelet Multi-scale Decomposition (WMD) combined with Power Spectrum Analysis (PSA) for the separation of regional gravity and magnetic anomalies. The Songliao Basin is situated between the Siberian Plate and the North China Plate, and its main structural trend of gravity and magnetic anomaly fields is NNE. The study area shows a significant feature of deep collage-type construction. According to the feature of gravity field, the region was divided into five sub-regions. The gravity and magnetic fields of the Songliao Basin were separated using WMD with a 4th order separation. The apparent depth of anomalies in each order was determined by Logarithmic PSA. Then, the shallow high-frequency anomalies were removed and the 2nd-4th order wavelet detail anomalies were used to study the basin's major faults. Twenty-six faults within the basement were recognized. The 4th order wavelet approximate anomalies were used for the inversion of the Moho discontinuity and the Curie isothermal surface.
An enhanced trend surface analysis equation for regional-residual separation of gravity data
NASA Astrophysics Data System (ADS)
Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.
2016-12-01
Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.
Langenheim, V.E.; Miller, J.J.; Page, W.R.; Grow, J.A.
2001-01-01
Gravity and seismic-reflection data provide insights into the subsurface stratigraphy and structure of the California Wash area of southern Nevada. This area is part of the Lower Colorado flow system and stratigraphic and structural data are important inputs into developing the hydrogeologic framework. These data indicate that the basin beneath California Wash reaches depths of 2-3 km. The eastern margin of the basin coincides with a system of young (Quaternary and late Tertiary) faults, although both seismic and gravity data indicate that the major basin-bounding fault is 2-3 km west of the mapped young faults. Dry Lake Valley, the adjacent valley to the west, is characterized by thinner basin fill. The basin configuration beneath both California Wash and Dry Lake Valleys based on the inversion of gravity data is unconstrained because of the lack of gravity stations north of 36030?. Broad aeromagnetic anomalies beneath pre-Cenozoic basement in the Muddy Mountains and Arrow Canyon Range reflect Precambrian basement at depths of ~ 5 km. These rocks are probably barriers to ground-water flow,except where fractured.
Evidence for active hotspots on Venus from analysis of Magellan gravity data
NASA Technical Reports Server (NTRS)
Smrekar, Suzanne E.
1994-01-01
The 500-Myr average crater retention age for Venus has raised questions about the present-day level of tectonic activity. In this study we examine the relationship between the gravity and topography of four large volcanic swells, Beta, Atla, Bell, and Western Eistla Regiones, for clues about their stage evolution. The Magellan line-of-sight gravity data are inverted using a point mass model of the anomalous mass to solve for the local vertical gravity field. Spectral admittance calculated from both the local gravity inversions and a spherical harmonic model is compared to three models of compensation: local compensation, a 'flexural' model with local and regional compensation of surface and subsurface loads, and a 'hotspot' model of compensation that includes top loading by volcanoes and subsurface loading due to a deep, low density mass anomaly. The coherence is also calculated in each region, but yields an elastic thickness estimate only at Bell Regio. In all models, the long wavelengths are compensated locally. Our results may indicate a relatively old, possibly inactive plume.
NASA Astrophysics Data System (ADS)
Motavalli-Anbaran, Seyed-Hani; Zeyen, Hermann; Ebrahimzadeh Ardestani, Vahid
2013-02-01
We present a 3D algorithm to obtain the density structure of the lithosphere from joint inversion of free air gravity, geoid and topography data based on a Bayesian approach with Gaussian probability density functions. The algorithm delivers the crustal and lithospheric thicknesses and the average crustal density. Stabilization of the inversion process may be obtained through parameter damping and smoothing as well as use of a priori information like crustal thicknesses from seismic profiles. The algorithm is applied to synthetic models in order to demonstrate its usefulness. A real data application is presented for the area of northern Iran (with the Alborz Mountains as main target) and the South Caspian Basin. The resulting model shows an important crustal root (up to 55 km) under the Alborz Mountains and a thin crust (ca. 30 km) under the southernmost South Caspian Basin thickening northward to the Apsheron-Balkan Sill to 45 km. Central and NW Iran is underlain by a thin lithosphere (ca. 90-100 km). The lithosphere thickens under the South Caspian Basin until the Apsheron-Balkan Sill where it reaches more than 240 km. Under the stable Turan platform, we find a lithospheric thickness of 160-180 km.
NASA Astrophysics Data System (ADS)
Masters, Roy
2011-10-01
We revisit the theories describing the moon raising the tides by virtue of pull gravity combined with the moon's centripetal angular momentum. We show that if gravity is considered as the attractive interaction between individual bodies, then a laboring moon doing work would have fallen to earth eons ago. Isaac Newton's laws of motion cannot work with pull gravity, but they do with Einstein's gravity as a property of the universe, which produces a continuous infusion of energy. In other words, the moon-Earth system becomes the first observable vacuum gravity energy machine. In other words the dynamics of what appears to be a closed system has been producing energy that continues raising the tides into perpetuity along with the force needed for the moon to escape the Earth's gravitational pull 4cm per year. All this is in defiance of Newton's first law which says ``If no force is added to a body it cannot accelerate.'' In this theory, a flowing space-time curves with three dimensions of force. A (flowing) spatial fabric bends around mass and displaces the inverse square field vanishing point property of matter with the appearance of a push-force square of the distance. In other words, the immeasurable universal gravity field appears as measurable local gravitation, concentrating universal gravitational pressure with the square of the distance from the very point was supposed to have disappeared. Needless to say such ``gravity'' necessitates a different beginning.
Liquid jet impingement normal to a disk in zero gravity. Ph.D. Thesis Toledo Univ.
NASA Technical Reports Server (NTRS)
Labus, T. L.
1977-01-01
The free surface shapes of circular liquid jets impinging normal to sharp-edged disks in zero gravity are determined. Zero gravity drop tower experiments yielded three distinct flow patterns that were classified in terms of the relative effects of surface tension and inertial forces. An order of magnitude analysis was conducted that indicated regions where viscous forces were not significant in the computation of free surface shapes. The free surface analysis was simplified by transforming the governing potential flow equations and boundary conditions into the inverse plane, where the stream function and velocity potential became the coordinates. The resulting nonlinear equations were solved by standard finite difference methods, and comparisons were made with the experimental data for the inertia dominated regime.
Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i
Carbone, Daniele; Poland, Michael P.
2012-01-01
Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.
Studying molecular changes during gravity perception and response in a single cell.
Cannon, Ashley E; Salmi, Mari L; Bushart, Thomas J; Roux, Stanley J
2015-01-01
Early studies revealed a highly predictable pattern of gravity-directed growth and development in Ceratopteris richardii spores. This makes the spores a valuable model system for the study of how a single cell senses and responds to the force of gravity. Gravity regulates both the direction and magnitude of a trans-cell calcium current in germinating spores, and the orientation of this current predicts the polarization of spore development. Molecular techniques have been developed to evaluate the transcriptomic and proteomic profiles of spores before and after gravity establishes the polarity of their development. Here we describe these techniques, along with protocols for sterilizing the spores, sowing them in a solid or liquid growth media, and evaluating germination.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.
Seismic and gravity signature of the Ischia Island Caldera (Italy)
NASA Astrophysics Data System (ADS)
Capuano, P.; de Matteis, R.; Russo, G.
2009-04-01
The Campania (Italy) coasts are characterized by the presence of several volcanoes. The island of Ischia, located at the northwestern end of the Gulf of Naples, belongs to the Neapolitan Volcanic District together with Phlegrean Fields and Vesuvius, having all these Pleistocene volcanoes erupted in historical times, and it is characterized by diffuse hydrothermal phenomena The island represents the emergent part of a more extensive volcanic area developed mainly westward of the island, with underwater volcanoes aligned along regional fault patterns. The activity of Ischia volcano is testified by the occurrence of eruptions in historical times, the presence of intense hydrothermal phenomena, and by seismic activity (e.g. the 1883 Casamicciola earthquake). Ischia is populated by about 50,000 inhabitants increasing, mainly in the summer, due to thriving tourism business, partially due to its active volcanic state. Hazard assessment at active, densely populated volcanoes is critically based on knowledge of the volcanoes past behavior and the definition of its present state. As a contribution to the definition of the present state of the Ischia island volcano, we obtain a model of the shallow crust using geophysical observables through seismic tomography and 3D gravity inversion. In particular we use travel times collected during the Serapis experiment on the island and its surroundings and free air anomaly. A new 3D gravity inversion procedure has been developed to take better into account the shape and the effects of topography approximating it by a triangular mesh. Below each triangle, a sequence of triangular prisms is built, the uppermost prism having the upper face coincident with the triangle following the topography. The inversion is performed searching for a regularized solution using the minimum norm stabilizer. The main results inferable from the 3D seismic and gravity images are the definition of the caldera rims hypothesize by many authors along the perimeter of the island, with a less evidence on the southern part, and the presence of an high velocity/density area inside the caldera that is consistent with the lateral extension of a resurgent block affecting the most recent dynamic of the island
Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)
NASA Astrophysics Data System (ADS)
Maceira, M.; Zhang, H.; Rowe, C. A.
2009-12-01
We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.
The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.
Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun
2017-04-01
This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.
Gravity Wave Predictability and Dynamics in Deepwave
NASA Astrophysics Data System (ADS)
Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.
2015-12-01
The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.
NASA Astrophysics Data System (ADS)
Sofyan, Yayan; Nishijima, Jun; Fujimitsu, Yasuhiro; Yoshikawa, Shin; Kagiyama, Tsuneomi; Ohkura, Takahiro
2016-01-01
At the end of 2010, the seismic activity in Aso volcano intensely increased and water level in the Nakadake crater decreased until early in 2011, then was followed by a small eruption in May 2011. After the eruption and heavy rain, the volcanic activity subsided to calm period, crater bottom was refilled with water, and water level increased in the Nakadake crater. The next tremor reappeared in 2014 and tracked to eruption in November 2014. This eruptive pattern and water level variation in the crater repeatedly appeared on the surface, and it should be related to the hydrothermal dynamics beneath Aso volcano. We initiated the gravity measurements in relation to hydrothermal dynamics in the subsurface of Aso volcano using Scintrex CG-5 (549) and LaCoste Romberg type G-1016 relative gravimeter at 28 benchmarks in April 2011, one month before the eruption. The repeated gravity measurements continue to monitor Aso volcano with a series of the measurement after the eruption in every three months to a half year. We analyze the gravity variation from 2011 to 2014 between the time of the phreatic and strombolian eruption. The measurements covered the area more than 60 km2 in the west side of Aso caldera. A new gravity network was also installed in May 2010 at seven benchmarks using A10-017 absolute gravimeter, which re-occupied in October 2010, June 2011 and two benchmarks in June 2014. As a result, the gravity changes distinguish hydrothermal dynamic in the subsurface, which has a direct correlation to water level fluctuation in the crater, after the first eruption and before the second discharge. The monitoring data notice large gravity changes between the surveys at benchmarks around Nakadake crater and Kusasenri area. The simple 3D inversion models of the 4-D gravity data deduce the density contrast distribution beneath Aso volcano. The inversion and mass change result generate the oscillation typical as a new understanding model. The variation of the mass shows a similar trend with the hydrothermal input rate to the crater of past research. The third year monitoring from April 2013 displays a large gravity and mass variation, while precipitation data in this period is smaller than the previous season. The largest increased mass about 43 million tons by Gaussian method occurred between May 2013 and September 2013. According to the three year gravity monitoring, the calm period in Aso volcano happens after May 2011 eruption until September 2013, which is followed by the active period, before the November 2014 eruption. This result will contribute to understand the process of eruption.
The estimation of the Earth's gravity field
NASA Astrophysics Data System (ADS)
Szabo, Bela
1986-06-01
The various methods for the description of the Earth's gravity field from direct and/or indirect observations are reviewed. Geopotential models produced by various organizations and in use during the past 15 years are discussed in detail. Recent and future programs for the improvement of global gravity fields are reviewed and the expected improvements from new observation and data processing techniques are estimated. The regional and local gravity field is also reviewed. The various data types and their spectral properties, the sensitivities of the different gravimetric quantities to datatypes are discussed. The techniques for the estimation of gravimetric quantities and the achievable accuracies are presented (e.g., integral formulae, collocation). The results of recent works in this area by prominent authors are reviewed. The prediction of gravity outside the earth from surface data is discussed in two forms: a) prediction of gravity disturbance at high altitudes and b) upward continuation of gravity anomalies. The achievable improvements of the high frequency field by airborne gradiometry are summarized utilizing recent investigations.
Physics of Gravitational Interaction: Geometry of Space or Quantum Field in Space
NASA Astrophysics Data System (ADS)
Baryshev, Yurij
2006-03-01
Thirring-Feynman's tensor field approach to gravitation opens new understanding on the physics of gravitational interaction and stimulates novel experiments on the nature of gravity. According to Field Gravity, the universal gravity force is caused by exchange of gravitons - the quanta of gravity field. Energy of this field is well-defined and excludes the singularity. All classical relativistic effects are the same as in General Relativity. The intrinsic scalar (spin 0) part of gravity field corresponds to ``antigravity'' and only together with the pure tensor (spin 2) part gives the usual Newtonian force. Laboratory and astrophysical experiments which may test the predictions of FG, will be performed in near future. In particular, observations at gravity observatories with bar and interferometric detectors, like Explorer, Nautilus, LIGO and VIRGO, will check the predicted scalar gravitational waves from supernova explosions. New types of cosmological models in Minkowski space are possible too.
Prediction of physical workload in reduced gravity environments
NASA Technical Reports Server (NTRS)
Goldberg, Joseph H.
1987-01-01
The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.
Geophysical Interpretation of Venus Gravity Data
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.
1985-01-01
The subsurface distribution of Venus was investigated through the analysis of the data from Pioneer Venus Orbiter (PVO). In particular, the Doppler tracking data were used to map the gravitational potential. These were compared to the topographic data from the PVO radar (ORAD). In order to obtain an unbiased comparison, the topography data obtained from the PVO-ORAD were filtered to introduce distortions which are the same as those of the gravity models. Both the gravity and filtered topography maps are derived by two stage processes with a common second stage. In the first stage, the topography was used to calculate a corresponding spacecraft acceleration under the assumptions that the topography has a uniform given density and no compensation. In the second stage, the acceleration measures found in the first stage were passed through a linear inverter to yield maps of gravity and topography. Because these maps are the result of the same inversion process, they contain the same distortion; a comparison between them is unbiased to first order.
Gravity survey of Dixie Valley, west-central Nevada
Schaefer, Donald H.
1983-01-01
Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)
Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity
NASA Astrophysics Data System (ADS)
Davison, Richard A.; Grozdanov, Sašo; Janiszewski, Stefan; Kaminski, Matthias
2016-11-01
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z = 1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
NASA Astrophysics Data System (ADS)
Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina
2017-12-01
Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.
Atmospheric effect in three-space scenario for the Stokes-Helmert method of geoid determination
NASA Astrophysics Data System (ADS)
Yang, H.; Tenzer, R.; Vanicek, P.; Santos, M.
2004-05-01
: According to the Stokes-Helmert method for the geoid determination by Vanicek and Martinec (1994) and Vanicek et al. (1999), the Helmert gravity anomalies are computed at the earth surface. To formulate the fundamental formula of physical geodesy, Helmert's gravity anomalies are then downward continued from the earth surface onto the geoid. This procedure, i.e., the inverse Dirichlet's boundary value problem, is realized by solving the Poisson integral equation. The above mentioned "classical" approach can be modified so that the inverse Dirichlet's boundary value problem is solved in the No Topography (NT) space (Vanicek et al., 2004) instead of in the Helmert (H) space. This technique has been introduced by Vanicek et al. (2003) and was used by Tenzer and Vanicek (2003) for the determination of the geoid in the region of the Canadian Rocky Mountains. According to this new approach, the gravity anomalies referred to the earth surface are first transformed into the NT-space. This transformation is realized by subtracting the gravitational attraction of topographical and atmospheric masses from the gravity anomalies at the earth surface. Since the NT-anomalies are harmonic above the geoid, the Dirichlet boundary value problem is solved in the NT-space instead of the Helmert space according to the standard formulation. After being obtained on the geoid, the NT-anomalies are transformed into the H-space to minimize the indirect effect on the geoidal heights. This step, i.e., transformation from NT-space to H-space is realized by adding the gravitational attraction of condensed topographical and condensed atmospheric masses to the NT-anomalies at the geoid. The effects of atmosphere in the standard Stokes-Helmert method was intensively investigated by Sjöberg (1998 and 1999), and Novák (2000). In this presentation, the effect of the atmosphere in the three-space scenario for the Stokes-Helmert method is discussed and the numerical results over Canada are shown. Key words: Atmosphere - Geoid - Gravity
A new insight on magma generation environment beneath Jeju (Cheju) volcanic island
NASA Astrophysics Data System (ADS)
Shin, Y.; CHOI, K.; Koh, J.; Yun, S.; Nakamura, E.; Na, S.
2011-12-01
We present a Moho undulation model from gravity inversion that gives a new insight on the magma generation environment beneath Jeju (Cheju) volcanic island, Korea. The island is an intra-plate volcanic island located behind Ryukyu Trench, the collisional boundary between Eurasian plate and Philippine plate. Jeju island is a symmetrical shield volcano of oval shape (74 km by 32 km) whose peak is Hallasan (Mt. Halla: 1950m). The landform, which is closely related to the volcanism, can be divided topographically into the lava plateau, the shield-shaped Halla volcanic edifice and the monogenetic cinder cones, which numbers over 365. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on volcanic stratigraphy, paleontology and geochronology, the Jeju basalts range from the early Pleistocene to Holocene in age. The mean density of the island is estimated to be very low, 2390 kg/cubic cm from gravity data analysis, which reflects the abundant unconsolidated pyroclastic sediments below the surface lava. The mean Moho depth is estimated to be 29.5 km from power spectral density of gravity anomaly, which means it has continental crust. It is noticeable that the gravity inversion indicates the island is developed above and along a swelled-up belt (ridge), several hundred meters higher than the surrounding area. The structure is also shows positive correlation with high magnetic anomaly distribution that could indicate existence of volcanic rocks. We interpret the Moho structure has a key to the magma generation: 1) the high gravity anomaly belt is formed by folding/buckling process under compressional environment, 2) it causes decrease of pressure beneath the lithosphere along the belt, and 3) it accelerates melting of basaltic magma in addition to the hot thermal structure widely distributed behind the collisional boundary.
NASA Technical Reports Server (NTRS)
Sen, Subhayu; Stefanescu, Doru M.; Catalina, A. V.; Juretzko, F.; Dhindaw, B. K.; Curreri, P. A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The interaction of an insoluble particle with a growing solid-liquid interface (SLI) has been a subject of investigation for the four decades. For a metallurgist or a material scientist understanding the fundamental physics of such an interaction is relevant for applications that include distribution of reinforcement particles in metal matrix composites, inclusion management in castings, and distribution of Y2Ba1Cu1O5 (211) precipitates (flux pinning sites) in Y1Ba2Cu3O7 (123) superconducting crystals. The same physics is also applicable to other areas including geological applications (frost heaving in soils) and preservation of biological cells. Experimentally this interaction can be quantified in terms of a critical growth velocity, Vcr, of the SLI below which particles are pushed ahead of the advancing interface, and above which the particles are engulfed. Past experimental evidence suggests that this Vcr is an inverse function of the particle radius, R. In order to isolate the fundamental physics that governs such a relationship it is necessary to minimize natural convection at the SLI that is inherent in ground based experiments. Hence for the purpose of producing benchmark data (Vcr vs. R) PEP is a natural candidate for micro-gravity experimentation. Accordingly, experiments with pure Al containing a dispersion of ZrO2 particles and an organic analogue, succinonitrile (SCN) containing polystyrene particles have been performed on the LMS and USMP-4 mission respectively. In this paper we will summarize the experimental data that was obtained during these two micro-gravity missions and show that the results differ compared to terrestrial experiments. We will also discuss the basic elements of our analytical and numerical model and present a comparison of the predictions of these models against micro-gravity experimental data. Finally. we will discuss our future experimental plan that includes the ISS glovebox and MSRRl.
Humans running in place on water at simulated reduced gravity.
Minetti, Alberto E; Ivanenko, Yuri P; Cappellini, Germana; Dominici, Nadia; Lacquaniti, Francesco
2012-01-01
On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate appendages, and limited muscle power. However, if gravity is reduced to less than Earth's gravity, running on water should require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able to run on water. We test these predictions in the laboratory using a reduced gravity simulator. We adapted a model equation, previously used by Glasheen and McMahon to explain the dynamics of Basilisk lizard, to predict the body mass, stride frequency and gravity necessary for a person to run on water. Progressive body-weight unloading of a person running in place on a wading pool confirmed the theoretical predictions that a person could run on water, at lunar (or lower) gravity levels using relatively small rigid fins. Three-dimensional motion capture of reflective markers on major joint centers showed that humans, similarly to the Basilisk Lizard and to the Western Grebe, keep the head-trunk segment at a nearly constant height, despite the high stride frequency and the intensive locomotor effort. Trunk stabilization at a nearly constant height differentiates running on water from other, more usual human gaits. The results showed that a hydrodynamic model of lizards running on water can also be applied to humans, despite the enormous difference in body size and morphology.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Šprlák, Michal
2016-02-01
The gravity field can be recovered locally from the satellite-to-satellite velocity differences (VDs) between twin-satellites moving in the same orbit. To do so, three different integral formulae are derived in this paper to recover geoid height, radial component of gravity anomaly and gravity disturbance at sea level. Their kernel functions contain the product of two Legendre polynomials with different arguments. Such kernels are relatively complicated and it may be impossible to find their closed-forms. However, we could find the one related to recovering the geoid height from the VD data. The use of spectral forms of the kernels is possible and one does not have to generate them to very high degrees. The kernel functions are well-behaving meaning that they reduce the contribution of far-zone data and for example a cap margin of 7° is enough for recovering gravity anomalies. This means that the inversion area should be larger by 7° from all directions than the desired area to reduce the effect of spatial truncation error of the integral formula. Numerical studies using simulated data over Fennoscandia showed that when the distance between the twin-satellites is small, higher frequencies of the anomalies can be recovered from the VD data. In the ideal case of having short distance between the satellites flying at 250 km level, recovering radial component of gravity anomaly with an accuracy of 7 mGal is possible over Fennoscandia, if the VD data is contaminated only with the spatial truncation error, which is an ideal assumption. However, the problem is that the power of VD signal is very low when the satellites are close and it is very difficult to recognise the signal amongst the noise of the VD data. We also show that for a successful determination of gravity anomalies at sea level from an altitude of 250 km mean VDs with better accuracy than 0.01 mm/s are required. When coloured noise at this level is used for the VDs at 250 km with separation of 300 km, the accuracy of recovery will be about 11 mGal over Fennoscandia. In the case of using the real velocities of the satellites, the main problems are downward/upward continuation of the VDs on the mean orbital sphere and taking the azimuthal integration of them.
New Data Bases and Standards for Gravity Anomalies
NASA Astrophysics Data System (ADS)
Keller, G. R.; Hildenbrand, T. G.; Webring, M. W.; Hinze, W. J.; Ravat, D.; Li, X.
2008-12-01
Ever since the use of high-precision gravimeters emerged in the 1950's, gravity surveys have been an important tool for geologic studies. Recent developments that make geologically useful measurements from airborne and satellite platforms, the ready availability of the Global Positioning System that provides precise vertical and horizontal control, improved global data bases, and the increased availability of processing and modeling software have accelerated the use of the gravity method. As a result, efforts are being made to improve the gravity databases publicly available to the geoscience community by expanding their holdings and increasing the accuracy and precision of the data in them. Specifically the North American Gravity Database as well as the individual databases of Canada, Mexico, and the United States are being revised using new formats and standards to improve their coverage, standardization, and accuracy. An important part of this effort is revision of procedures and standards for calculating gravity anomalies taking into account the enhanced computational power available, modern satellite-based positioning technology, improved terrain databases, and increased interest in more accurately defining the different components of gravity anomalies. The most striking revision is the use of one single internationally accepted reference ellipsoid for the horizontal and vertical datums of gravity stations as well as for the computation of the calculated value of theoretical gravity. The new standards hardly impact the interpretation of local anomalies, but do improve regional anomalies in that long wavelength artifacts are removed. Most importantly, such new standards can be consistently applied to gravity database compilations of nations, continents, and even the entire world. Although many types of gravity anomalies have been described, they fall into three main classes. The primary class incorporates planetary effects, which are analytically prescribed, to derive the predicted or modeled gravity, and thus, anomalies of this class are termed planetary. The most primitive version of a gravity anomaly is simply the difference between the value of gravity predicted by the effect of the reference ellipsoid and the observed gravity anomaly. When the height of the gravity station increases, the ellipsoidal gravity anomaly decreases because of the increased distance of measurement from the anomaly- producing masses. The two primary anomalies in geophysics, which are appropriately classified as planetary anomalies, are the Free-air and Bouguer gravity anomalies. They employ models that account for planetary effects on gravity including the topography of the earth. A second class of anomaly, geological anomalies, includes the modeled gravity effect of known or assumed masses leading to the predicted gravity by using geological data such as densities and crustal thickness. The third class of anomaly, filtered anomalies, removes arbitrary gravity effects of largely unknown sources that are empirically or analytically determined from the nature of the gravity anomalies by filtering.
Model selection and Bayesian inference for high-resolution seabed reflection inversion.
Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2009-02-01
This paper applies Bayesian inference, including model selection and posterior parameter inference, to inversion of seabed reflection data to resolve sediment structure at a spatial scale below the pulse length of the acoustic source. A practical approach to model selection is used, employing the Bayesian information criterion to decide on the number of sediment layers needed to sufficiently fit the data while satisfying parsimony to avoid overparametrization. Posterior parameter inference is carried out using an efficient Metropolis-Hastings algorithm for high-dimensional models, and results are presented as marginal-probability depth distributions for sound velocity, density, and attenuation. The approach is applied to plane-wave reflection-coefficient inversion of single-bounce data collected on the Malta Plateau, Mediterranean Sea, which indicate complex fine structure close to the water-sediment interface. This fine structure is resolved in the geoacoustic inversion results in terms of four layers within the upper meter of sediments. The inversion results are in good agreement with parameter estimates from a gravity core taken at the experiment site.
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
When people speak of "the Law of Gravity" they are generally referring to what is more specifically known as "Newton's Law of Gravitation." This law states that the gravitational force (that is, the mutual attraction) between any two physical bodies is directly proportional to the product of their individual masses and inversely proportional to…
On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.
Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C
2008-07-21
The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.
NASA Astrophysics Data System (ADS)
Prutkin, Ilya; Vajda, Peter; Jahr, Thomas; Bleibinhaus, Florian; Novák, Pavel; Tenzer, Robert
2017-01-01
We apply a novel method for the separation of potential field sources and their 3D inversion at the regional study area of Thuringian Basin in central Germany. The gravity and magnetic data are separated into long, medium and short wavelengths and then inverted separately. The main goal is to study uniqueness of the solution and its stability in all numerical steps of the interpretation process and to demonstrate, how geological constraints can diminish the degree of non-uniqueness by the interpretation of the gravity and magnetic anomalies. Our numerical experiments with medium wavelengths reveal that if we explain negative anomalies with the topography of near-surface layers, the obtained solution is not supported by borehole data. These negative anomalies are thus explained by restricted bodies (granitic intrusions) at the depths from 4 down to 10 km. These bodies are located above a density interface with topography at the depth of approximately 10 km. The 3D inversion of magnetic data (at short wavelengths) allows investigating a detailed structure of the upper boundary of the crystalline basement: two uplifts in the depths between 2.0 and 0.7 km are found. By using the residual negative anomalies we further study the salt tectonics, showing that the geometry of a salt pillow with a thickness of approximately 200 m closely agrees with borehole data.
Estimating Janka hardness from specific gravity for tropical and temperate species
Michael C. Wiemann; David W. Green
2007-01-01
Using mean values for basic (green) specific gravity and Janka side hardness for individual species obtained from the world literature, regression equations were developed to predict side hardness from specific gravity. Statistical and graphical methods showed that the hardnessâspecific gravity relationship is the same for tropical and temperate hardwoods, but that the...
Long-term Global Morphology of Gravity Wave Activity Using UARS Data
NASA Technical Reports Server (NTRS)
Eckermann, Stephen D.; Jackman, C. (Technical Monitor)
2000-01-01
An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.
NASA Astrophysics Data System (ADS)
Fernandes, M. J.; Bastos, L.; Tomé, P.
The region of the Azores archipelago is a natural laboratory for gravity field studies, due to its peculiar geodynamic and oceanographic features, related to rough structures in the gravity field. As a consequence, gravity data from various sources have been collected in the scope of various observation campaigns. The available data set comprises marine, airborne and satellite derived gravity anoma- lies. The satellite data have been derived by altimetric inversion of satellite altimeter data (Topex/Poseidon and ERS), to which processing methods tuned for optimal data recovery in coastal areas have been applied. Marine and airborne data along coinci- dent profiles, some of them coincident with satellite tracks, were collected during an observation campaign that took place in the Azores in 1997, in the scope of the Eu- ropean Union project AGMASCO. In addition, gravity anomalies from an integrated GPS/INS system installed aboard an aircraft, have also been computed from the posi- tion and navigation data collected during the AGMASCO campaign. This paper presents a comparison study between all available data sets. In particular, the improvement of the satellite derived anomalies near the shoreline is assessed with respect to existing satellite derived models and with the high resolution geopotential model GPM98. The impact of these data sets in the regional geoid improvement will also be presented.
Modelling the growth of triglycine sulphate crystals in Spacelab 3
NASA Technical Reports Server (NTRS)
Yoo, Hak-Do; Wilcox, William R.; Lal, Ravindra; Trolinger, James D.
1988-01-01
Two triglycine sulphate crystals were grown from an aqueous solution in Spacelab 3 aboard a Space Shuttle. Using a diffusion coefficient of 0.00002 sq cm/s, a computerized simulation gave reasonable agreement between experimental and theoretical crystal sizes and interferometric lines in the solution near the growing crystal. This diffusion coefficient is larger than most measured values, possibly due to fluctuating accelerations on the order of .001 g (Earth's gravity). The average acceleration was estimated to be less than .000001 g. At this level, buoyancy driven convection is predicted to add approx. 20 percent to the steady state growth rate. Only very slight distortion of the interferometric lines was observed at the end of a 33 hr run. It is suggested that the time to reach steady state convective transport may be inversely proportional to g at low g, so that the full effect of convection was not realized in these experiments.
Studies of oceanic tectonics based on GEOS-3 satellite altimetry
NASA Technical Reports Server (NTRS)
Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.
1979-01-01
Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.
NASA Astrophysics Data System (ADS)
Sun, Bin; Wang, Liangshu; Dong, Ping; Wu, YongJing; Li, Changbo; Hu, Bo; Wang, Chong
2012-11-01
The Hailar Basin is one of the typical basins among the NE China Basin Groups, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of magnetic, gravity, petrophysical, geothermal and seismological data, we separate the Gravity and Magnetic Anomalies (GMA) into four orders using Wavelet Multi-scale Decomposition (WMD). The apparent depths of causative sources were then assessed by Power Spectrum Analysis (PSA) of each order. Low-order wavelet detail anomalies were used to study the basin's basement structure such as major faults, the basement lithology, uplifts and depressions. High-order ones were used for the inversion of Moho and Curie discontinuities using the Parker method. The results show that the Moho uplifting area of the Hailar Basin is located at the NE part of the basin, the Curie uplifting area is at the NW part, and neither of them is consistent with the basin's sedimentary center. This indicates that the Hailar Basin may differ in basin building pattern from other middle and eastern basins of the basin groups, and the Hailar Basin might be of a passive type. When the Pacific Plate was subducting to NE China, the frontier of the plate lying on the mantle transition zone didn't pass through the Great Khingan Mountains region, so there is not an obvious magma upwelling or lithospheric extension in the Hailar Basin area. Finally, based on the seismological data and results of WMD, a probable 2D crust model is derived from an across-basin profile using the 2D forward modeling of the Bouguer gravity anomaly. The results agree with those from seismic inversion, suggesting WMD is suitable for identifying major crustal density interfaces.
Regional gravity field modelling from GOCE observables
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
NASA Astrophysics Data System (ADS)
Aboud, Essam; El-shrief, Adel; Alqahtani, Faisal; Mogren, Saad
2017-04-01
On 19 May, 2009, an earthquake of magnitude (M=5.4) shocked the most volcanically active recent basaltic fields, Luynnier volcanic field, northwestern Saudi Arabia. This event was the largest recorded one since long time ago. Government evacuated the surrounding residents around the epicenter for over 3 months away from any future volcanic activity. The seismic event caused damages to buildings in the village around the epicenter and resulted in surface fissure trending in NNW-SSE direction with about 8 km length. Seismologists from Saudi Geological Survey (SGS) worked out on locating the epicenter and the cause of this earthquake. They collected seismic data from Saudi Geological Surveys Station Network as well as installed broadband seismic stations around the region of the earthquake. They finally concluded that the main cause of the M=5.4 event is dike intrusion at depth of about 5 km (not reached to the surface). In the present work, we carried out detailed ground/airborne gravity survey around the surficial fissure to image the subsurface volcanic structure where about 380 gravity stations were recorded covering the main fissure in an area of 600 km2. Gravity data was analyzed using CET edge detection tools and 3D inversion technique. The results revealed that, there is a magma chamber/body beneath the surface at 5-20 km depth and the main reason for the M=5.4 earthquake is tectonic settings of the Red Sea. Additionally, the area is characterized by set of faults trending in NW direction, parallel to the Red Sea, and most of the volcanic cones were located on faults/contacts implying that, they are structurally controlled. The 8-km surficial crack is extended SE underneath the surface.
NASA Astrophysics Data System (ADS)
Hu, Weijian; Hao, Tianyao; Jiang, Weiwei; Xu, Ya; Zhao, Baimin; Jiang, Didi
2015-11-01
A series of drilling, dredge, and seismic investigations indicate that Mesozoic sediments exist in the South China Sea (SCS) which shows a bright prospect for oil and gas exploration. In order to study the distribution of Mesozoic strata and their residual thicknesses in the SCS, we carried out an integrated geophysical study based mainly on gravity data, gravity basement depth and distribution of residual Mesozoic thickness in the SCS were obtained using gravity inversion constrained with high-precision drilling and seismic data. In addition, the fine deep crustal structures and distribution characteristics of Mesozoic thicknesses of three typical profiles were obtained by gravity fitting inversion. Mesozoic strata in the SCS are mainly distributed in the south and north continental margins, and have been reformed by the later tectonic activities. They extend in NE-trending stripes are macro-controlled by the deep and large NE-trending faults, and cut by the NW-trending faults which were active in later times. The offset in NW direction of Mesozoic strata in Nansha area of the southern margin are more obvious as compared to the north margin. In the Pearl River Mouth Basin and Southwest Taiwan Basin of the north continental margin the Mesozoic sediments are continuously distributed with a relatively large thickness. In the Nansha area of the south margin the Mesozoic strata are discontinuous and their thicknesses vary considerably. According to the characteristics of Mesozoic thickness distribution and hydrocarbon potential analyses from drilling and other data, Dongsha Uplift-Chaoshan Depression, Southwest Taiwan Basin-Peikang Uplift and Liyue Bank have large thickness of the Mesozoic residual strata, have good hydrocarbon genesis capability and complete source-reservoir-cap combinations, show a bright prospect of Mesozoic oil/gas resources.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés
2018-05-01
Based on Hager and O'Connell's solution to mantle flow equations, the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modeling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data, while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study, we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modeling, the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern Andes. Additional large stress anomalies are detected along the central and southern Andes, while stresses under most of old, stable cratonic formations are much less pronounced or absent. A prevailing stress-vector orientation realistically resembles a convergent mantle flow and downward currents under continental basins that separate Andean Orogeny from the Amazonian Shield and adjacent cratons. Runcorn's (gravimetric) solution, on the other hand, reflects a tectonic response of the lithosphere to mantle flow, with the maximum stress intensity detected along the subduction zone between the Nazca and Altiplano plates and along the convergent tectonic margin between the Altiplano and South American plates. The results also reveal a very close agreement between the results obtained from the combined and Hager and O'Connell's solutions.
Parsons, T.; Blakely, R.J.; Brocher, T.M.
2001-01-01
The geologic structure of the Earth's upper crust can be revealed by modeling variation in seismic arrival times and in potential field measurements. We demonstrate a simple method for sequentially satisfying seismic traveltime and observed gravity residuals in an iterative 3-D inversion. The algorithm is portable to any seismic analysis method that uses a gridded representation of velocity structure. Our technique calculates the gravity anomaly resulting from a velocity model by converting to density with Gardner's rule. The residual between calculated and observed gravity is minimized by weighted adjustments to the model velocity-depth gradient where the gradient is steepest and where seismic coverage is least. The adjustments are scaled by the sign and magnitude of the gravity residuals, and a smoothing step is performed to minimize vertical streaking. The adjusted model is then used as a starting model in the next seismic traveltime iteration. The process is repeated until one velocity model can simultaneously satisfy both the gravity anomaly and seismic traveltime observations within acceptable misfits. We test our algorithm with data gathered in the Puget Lowland of Washington state, USA (Seismic Hazards Investigation in Puget Sound [SHIPS] experiment). We perform resolution tests with synthetic traveltime and gravity observations calculated with a checkerboard velocity model using the SHIPS experiment geometry, and show that the addition of gravity significantly enhances resolution. We calculate a new velocity model for the region using SHIPS traveltimes and observed gravity, and show examples where correlation between surface geology and modeled subsurface velocity structure is enhanced.
NASA Astrophysics Data System (ADS)
Hussain, Matloob; Eshagh, Mehdi; Ahmad, Zulfiqar; Sadiq, M.; Fatolazadeh, Farzam
2016-09-01
The earth's gravity changes are attributed to the redistribution of masses within and/or on the surface of the earth, which are due to the frictional sliding, tensile cracking and/or cataclastic flow of rocks along the faults and detectable by earthquake events. Inversely, the gravity changes are useful to describe the earthquake seismicity over the active orogenic belts. The time variable gravimetric data are hardly available to the public domain. However, Gravity Recovery and Climatic Experiment (GRACE) is the only satellite mission dedicated to model the variation of the gravity field and an available source to the science community. Here, we have tried to envisage gravity changes in terms of gravity anomaly (Δg), geoid (N) and the gravity gradients over the Indo-Pak plate with emphasis upon Kashmir earthquake of October 2005. For this purpose, we engaged the spherical harmonic coefficients of monthly gravity solutions from the GRACE satellite mission, which have good coverage over the entire globe with unprecedented accuracy. We have analysed numerically the solutions after removing the hydrological signals, during August to November 2005, in terms of corresponding monthly differentials of gravity anomaly, geoid and the gradients. The regional structures like Main Mantle Thrust (MMT), Main Karakoram Thrust (MKT), Herat and Chaman faults are in closed association with topography and with gravity parameters from the GRACE gravimetry and EGM2008 model. The monthly differentials of these quantities indicate the stress accumulation in the northeast direction in the study area. Our numerical results show that the horizontal gravity gradients seem to be in good agreement with tectonic boundaries and differentials of the gravitational elements are subtle to the redistribution of rock masses and topography caused by 2005 Kashmir earthquake. Moreover, the gradients are rather more helpful for extracting the coseismic gravity signatures caused by seismicity over the area. Higher positive values of gravity components having higher terrain elevations are more vulnerable to the seismicity and lower risk of diastrophism otherwise.
NASA Technical Reports Server (NTRS)
Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.
2006-01-01
The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
Middle Atmosphere Program. Handbook for MAP, volume 20
NASA Technical Reports Server (NTRS)
Bowhill, S. A. (Editor); Edwards, B. (Editor)
1986-01-01
Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.
High-resolution gravity field modeling using GRAIL mission data
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2015-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
NASA Astrophysics Data System (ADS)
Ishihara, Yoshiro; Yuri, Onishi; Tsuda, Keisuke; Yokokawa, Miwa
2017-04-01
Spaced planar laminations (SPL), or so-called traction carpet deposits, are frequently observed in deposits of sediment gravity flows. Several sedimentation models for a succession of inversely graded units have been suggested from field observations and flume experiments. The formation of the inversely graded unit could be summarized as follows: (1) abrupt sedimentation on freezing of an inversely graded layer, or (2) interruptions in flow causing a freezing of an inversely graded layer at the most basal part of flow. In either case, traction carpets as a bed load overlying the erosive boundary at the base of flow are required. Although some descriptions have reported SPLs forming antidune bedform-like structures and the association of SPLs with structureless massive deposits have not been clearly explained. In this study, we suggest a novel model of SPL formation by repetition of basal erosion and resurgence to high-sedimentation rates, based on detail examinations of SPLs both showing bedform-like structures and lateral extents of hundreds of meters. SPLs were investigated in the Mio-Pliocene Kiyosumi Formation in central Japan and the Miocene Aoshima Formation in southwest Japan. In a turbidite in the Kiyosumi Formation, SPLs show three mound-like structures, suggesting antidune bedforms with wavelengths of about 6 to 7 m. On the upcurrent flanks, SPLs show lenticular cross laminations or pinching out of units; those units do not show clear inverse grading. Rip-up mud clasts and relatively high-angle imbrications are also observed. On the other hand, SPLs on the downcurrent flanks show relatively clear inverse grading and transition downcurrent into a massive structureless bed. In the Aoshima Formation, SPLs with ca. 1 cm unit thickness continue approximately 50 m along a palaeocurrent direction without changes in thickness. These SPLs gradually transition upward into a massive structureless unit. From the observations described above, in addition to descriptions from previous studies, it is suggested that SPLs comprising mound-like bedforms exhibit erosive conditions in the upcurrent flanks and depositional conditions in the downcurrent flanks, whereas SPLs on flat sea-floor extensively maintain their structure. Also, massive structureless beds are observed when erosion did not occur. These facts indicate that SPLs are strongly associated with an erosional process at the base of sediment gravity flows under a supercritical flow condition. The formation of SPLs does not necessary require a traction carpet and they may reflect basal erosion with a lag deposit of fine-grained particles, followed by resurgence to conditions of high sedimentation rates and massive structureless bed deposition. Repetitions of inversely graded units could occur when basal shear stresses are changed by fluctuations of flow depth, such as internal waves in a sediment gravity flow. This model can explain the concurrence of massive structureless beds with SPLs and examples of bedform-like structures without a unit thickness control.
A model of precambrian geology of Kansas derived from gravity and magnetic data
NASA Astrophysics Data System (ADS)
Xia, Jianghai; Sprowl, Donald R.; Steeples, Don W.
1996-10-01
The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension.
Gravity-darkening exponents in semi-detached binary systems from their photometric observations. II.
NASA Astrophysics Data System (ADS)
Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Georgiades, N.; Erkapić, S.; Pavlović, R.
2006-01-01
This second part of our study concerning gravity-darkening presents the results for 8 semi-detached close binary systems. From the light-curve analysis of these systems the exponent of the gravity-darkening (GDE) for the Roche lobe filling components has been empirically derived. The method used for the light-curve analysis is based on Roche geometry, and enables simultaneous estimation of the systems' parameters and the gravity-darkening exponents. Our analysis is restricted to the black-body approximation which can influence in some degree the parameter estimation. The results of our analysis are: 1) For four of the systems, namely: TX UMa, β Per, AW Cam and TW Cas, there is a very good agreement between empirically estimated and theoretically predicted values for purely convective envelopes. 2) For the AI Dra system, the estimated value of gravity-darkening exponent is greater, and for UX Her, TW And and XZ Pup lesser than corresponding theoretical predictions, but for all mentioned systems the obtained values of the gravity-darkening exponent are quite close to the theoretically expected values. 3) Our analysis has proved generally that with the correction of the previously estimated mass ratios of the components within some of the analysed systems, the theoretical predictions of the gravity-darkening exponents for stars with convective envelopes are highly reliable. The anomalous values of the GDE found in some earlier studies of these systems can be considered as the consequence of the inappropriate method used to estimate the GDE. 4) The empirical estimations of GDE given in Paper I and in the present study indicate that in the light-curve analysis one can apply the recent theoretical predictions of GDE with high confidence for stars with both convective and radiative envelopes.
NASA Astrophysics Data System (ADS)
Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo
2016-08-01
The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.
Quantum-gravity predictions for the fine-structure constant
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron; Wetterich, Christof
2018-07-01
Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.
Flexural isostasy: Constraints from gravity and topography power spectra
NASA Astrophysics Data System (ADS)
Watts, Tony; Moore, James
2017-04-01
We have used the spherical harmonic coefficients that describe the EGM2008 gravity and topography model (Pavlis et al. 2010) to quantify the role of flexural isostasy in contributing to Earth's gravity and topography. Power spectra show that the gravity effect of the topography and its flexural compensation contributes significantly to the observed free-air gravity anomaly field for degree 33-180, which corresponds approximately to wavelengths of 220-1200 km. The best fit is for an elastic thickness of the lithosphere, Te, of 34.0±4.0 km. Smaller values of Te, under-predict while high values of Te, over-predict the observed gravity spectra. The best fit value is a global average and so it is reasonable to speculate that regions exist where Te is both lower and higher. This is confirmed in studies of selected regions such as the Hawaiian-Emperor seamount chain and the Ganges-Himalaya foreland fold and thrust belt where we show that flexural isostatic anomalies are near zero in regions where Te approaches 34 km (e.g. Hawaiian ridge) and of large amplitude in regions of lower (e.g. Emperor) and higher Te (e.g. Ganges-Himalaya). Plate flexure may be significant at higher (180-441) and lower (12-33) degrees, but topography appears either uncompensated or fully compensated at these degrees, irrespective of the actual Te. Nevertheless, all isostatic models under-predict the observed gravity spectra at degree <12 and so we interpret the low order Earth's gravity field as caused by non-isostatic processes due to dynamic motions such as those associated with mantle convection.
NASA Astrophysics Data System (ADS)
Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.
2008-05-01
In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and basement gravity (green) highlight domains with common geophysical characteristics and, by inference, lithology. The observed patterns suggest that much of the basin is underlain by Devonian to Jurassic oceanic rocks that probably have little or no potential for hydrocarbon generation. The coastal plain surficial deposits in the northern part of ANWR conceal another frontier basin with hydrocarbon potential. Proprietary aeromagnetic and gravity data were used, along with seismic reflection profiles, to construct a structural and stratigraphic model of this highly deformed sedimentary basin for use in an energy resource assessment. Matched-filtering techniques were used to separate short-wavelength magnetic and gravity anomalies attributed to sources near the top of the sedimentary section from longer-wavelength anomalies attributed to deeper basin and basement sources. Models along the seismic reflection lines indicate that the primary sources of the short-wavelength anomalies are folded and faulted sedimentary beds truncated at the Pleistocene erosion surface. In map view, the aeromagnetic and gravity anomalies produced by the sedimentary units were used to identify possible structural trapping features and geometries, but they also indicated that these features may be significantly disrupted by faulting.
Amphibian egg cytoplasm response to altered g-forces and gravity orientation
NASA Technical Reports Server (NTRS)
Neff, A. W.; Smith, R. C.; Malacinski, G. M.
1986-01-01
Elucidation of dorsal/ventral polarity and primary embryonic axis development in amphibian embryos requires an understanding of cytoplasmic rearrangements in fertile eggs at the biophysical, physiological, and biochemical levels. Evidence is presented that amphibian egg cytoplasmic components are compartmentalized. The effects of altered orientation to the gravitational vector (i.e., egg inversion) and alterations in gravity force ranging from hypergravity (centrifugation) to simulated microgravity (i.e., horizontal clinostat rotation) on cytoplasmic compartment rearrangements are reviewed. The behavior of yolk compartments as well as a newly defined (with monoclonal antibody) nonyolk cytoplasmic compartment, in inverted eggs and in eggs rotated on horizontal clinostats at their buoyant density, is discussed.
Linking axionlike dark matter to neutrino masses
NASA Astrophysics Data System (ADS)
Carvajal, C. D. R.; Sánchez-Vega, B. L.; Zapata, O.
2017-12-01
We present a framework linking axionlike particles (ALPs) to neutrino masses through the minimal inverse seesaw (ISS) mechanism in order to explain the dark matter (DM) puzzle. Specifically, we explore three minimal ISS cases where mass scales are generated through gravity-induced operators involving a scalar field hosting ALPs. In all of these cases, we find gravity-stable models that provide the observed DM relic density and, simultaneously, are consistent with the phenomenology of neutrinos and ALPs. Remarkably, in one of the ISS cases, the DM can be made of ALPs and sterile neutrinos. Furthermore, other considered ISS cases have ALPs with parameters that are within the reach of proposed ALP experiments.
Ground Magnetic Data for West-Central Colorado
Richard Zehner
2012-03-08
Modeled ground magnetic data was extracted from the Pan American Center for Earth and Environmental Studies database at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was then imported into an Excel spreadsheet. This spreadsheet data was converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and magnetic field strength in nano-Teslas. This point shapefile was then interpolated to an ESRI grid using an inverse-distance weighting method, using ESRI Spatial Analyst. The grid was used to create a contour map of magnetic field strength.
Reliability of CHAMP Anomaly Continuations
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.
2003-01-01
CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.
A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data
NASA Astrophysics Data System (ADS)
Wu, Xiaoping; Kusche, Jürgen; Landerer, Felix W.
2017-06-01
Geocentre motion between the centre-of-mass of the Earth system and the centre-of-figure of the solid Earth surface is a critical signature of degree-1 components of global surface mass transport process that includes sea level rise, ice mass imbalance and continental-scale hydrological change. To complement GRACE data for complete-spectrum mass transport monitoring, geocentre motion needs to be measured accurately. However, current methods of geodetic translational approach and global inversions of various combinations of geodetic deformation, simulated ocean bottom pressure and GRACE data contain substantial biases and systematic errors. Here, we demonstrate a new and more reliable unified approach to geocentre motion determination using a recently formed satellite laser ranging based geocentric displacement time-series of an expanded geodetic network of all four space geodetic techniques and GRACE gravity data. The unified approach exploits both translational and deformational signatures of the displacement data, while the addition of GRACE's near global coverage significantly reduces biases found in the translational approach and spectral aliasing errors in the inversion.
NASA Astrophysics Data System (ADS)
Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.
2015-06-01
The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.
Oil-in-oil emulsions stabilised solely by solid particles.
Binks, Bernard P; Tyowua, Andrew T
2016-01-21
A brief review of the stabilisation of emulsions of two immiscible oils is given. We then describe the use of fumed silica particles coated with either hydrocarbon or fluorocarbon groups in acting as sole stabilisers of emulsions of various vegetable oils with linear silicone oils (PDMS) of different viscosity. Transitional phase inversion of emulsions, containing equal volumes of the two oils, from silicone-in-vegetable (S/V) to vegetable-in-silicone (V/S) occurs upon increasing the hydrophobicity of the particles. Close to inversion, emulsions are stable to coalescence and gravity-induced separation for at least one year. Increasing the viscosity of the silicone oil enables stable S/V emulsions to be prepared even with relatively hydrophilic particles. Predictions of emulsion type from calculated contact angles of a silica particle at the oil-oil interface are in agreement with experiment provided a small polar contribution to the surface energy of the oils is included. We also show that stable multiple emulsions of V/S/V can be prepared in a two-step procedure using two particle types of different hydrophobicity. At fixed particle concentration, catastrophic phase inversion of emulsions from V/S to S/V can be effected by increasing the volume fraction of vegetable oil. Finally, in the case of sunflower oil + 20 cS PDMS, the study is extended to particles other than silica which differ in chemical type, particle size and particle shape. Consistent with the above findings, we find that only sufficiently hydrophobic particles (clay, zinc oxide, silicone, calcium carbonate) can act as efficient V/S emulsion stabilisers.
Light, Gravity and Black Holes
ERIC Educational Resources Information Center
Falla, David
2012-01-01
The nature of light and how it is affected by gravity is discussed. Einstein's prediction of the deflection of light as it passes near the Sun was verified by observations made during the solar eclipse of 1919. Another prediction was that of gravitational redshift, which occurs when light emitted by a star loses energy in the gravitational field…
Testing gravity with EG: mapping theory onto observations
NASA Astrophysics Data System (ADS)
Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine
2015-12-01
We present a complete derivation of the observationally motivated definition of the modified gravity statistic EG. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of EG. We forecast errors on EG for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of EG under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using EG to test gravity with future surveys.
Thermosyphon Flooding in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Gibson, Marc Andrew
2013-01-01
An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.
A combined magnetometry and gravity study across Zagros orogeny in Iran
NASA Astrophysics Data System (ADS)
Abedi, Maysam; Oskooi, Behrooz
2015-11-01
In this work, the structural geology and the tectonic conditions of the Zagros orogeny along the route of Qom to Kermanshah cities were investigated using the combined geophysical methods of the airborne magnetometry and the ground-based gravity data. Airborne magnetometry data of Iran with a line space of survey, 7.5 km, were used to model the magnetic susceptibility property along the route. At first, the airborne magnetic data were stably 500-m downward continued to the ground surface in order to enhance minor changes of the Earth's magnetic field over the studied region. Afterward, 3D inverse modeling of the magnetic data was implemented to the downward continued data, and subsequently the section of magnetic susceptibility variation along the desired route was extracted and imaged at depth. The acquired model could appropriately predict the observed magnetic data, showing low misfit values between the observation and the predicted data. The analytic signal filter was applied to the reduced-to-pole (RTP) magnetic data leading to the determination of the active and probable hidden faults in the structural zones of the Zagros, such as Sanandaj-Sirjan, Central Domain (CD) and Urumieh-Dokhtar based upon the generated peaks along the profile of analytic signal filter. In addition, the density variations of the subsurface geological layers were determined by 3D inverting of the ground-based gravity data over the whole study area, and extracting this property along the route. The joint models of magnetic susceptibility and density variation could appropriately localize the traces of faults along with the geologically and tectonically structural boundaries in the region. The locations of faults correspond well to the variation of geophysical parameters on the inverted sections. Probable direction, slope and extension at depth of these faults were also determined on the sections, indicating a high tectonized zone of the Sanandaj-Sirjan Zone (SSZ) parallel to the zone of the Urumieh-Dokhtar Magmatic Assemblage (UDMA). The UDMA zone increases the magnetic and the Bouguer anomalies by intruding into the CD zone as well.
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
Experimental observation of negative effective gravity in water waves.
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.
Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis
NASA Technical Reports Server (NTRS)
Olevsky, Eugene; German, Randall M.
2012-01-01
A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.
Experimental Observation of Negative Effective Gravity in Water Waves
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132
NASA Astrophysics Data System (ADS)
Elling, R. P.; Stein, C. A.; Stein, S.; Kley, J.; Keller, G. R.; Wysession, M. E.
2017-12-01
Continental rifts evolve to seafloor spreading and are preserved in passive margins, or fail and remain as fossil features in continents. Rifts at different stages give insight into these evolutionary paths. Of particular interest is the evolution of volcanic passive margins, which are characterized by seaward dipping reflectors, volcanic rocks yielding magnetic anomalies landward of the oldest spreading anomalies, and are underlain by high-velocity lower crustal bodies. How and when these features form remains unclear. Insights are given by the Midcontinent Rift (MCR), which began to form during the 1.1 Ga rifting of Amazonia from Laurentia, but failed when seafloor spreading was established elsewhere. MCR volcanics are much thicker than other continental flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift's geometry but a LIP's magma volume. The MCR provides a snapshot of the deposition of a thick and highly magnetized volcanic section during rifting. Surface exposures and reflection seismic data near Lake Superior show a rift basin filled by inward-dipping flood basalt layers. Had the rift evolved to seafloor spreading, the basin would have split into two sets of volcanics with opposite-facing SDRs, each with a magnetic anomaly. Because the rift formed as a series of alternating half-grabens, structural asymmetries between conjugate margins would have naturally occurred had it gone to completion. Hence the MCR implies that many passive margin features form prior to seafloor spreading. Massive inversion of the MCR long after it failed has provided a much clearer picture of its structure compared to failed rifts with lesser degrees of inversion. Seismic imaging as well as gravity and magnetic modeling provide important insight into the effects of inversion on failed rifts. The MCR provides an end member for the evolution of actively extending rifts, characterized by upwelling mantle and negative gravity anomalies, to failed and inverted rifts without upwelling mantle and positive gravity anomalies.
Superconducting gravity gradiometer mission. Volume 1: Study team executive summary
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1989-01-01
An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.
Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H
2014-04-18
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20 μm (95% C.L.).
Superconducting gravity gradiometer mission. Volume 2: Study team technical report
NASA Technical Reports Server (NTRS)
Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)
1988-01-01
Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.
GRAIL Gravity Map of Orientale Basin
2016-10-27
This color-coded map shows the strength of surface gravity around Orientale basin on Earth's moon, derived from data obtained by NASA's GRAIL mission. The GRAIL mission produced a very high-resolution map of gravity over the surface of the entire moon. This plot is zoomed in on the part of that map that features Orientale basin, where the two GRAIL spacecraft flew extremely low near the end of their mission. Their close proximity to the basin made the probes' measurements particularly sensitive to the gravitational acceleration there (due to the inverse squared law). The color scale plots the gravitational acceleration in units of "gals," where 1 gal is one centimeter per second squared, or about 1/1000th of the gravitational acceleration at Earth's surface. (The unit was devised in honor of the astronomer Galileo). Labels on the x and y axes represent latitude and longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21050
Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera
NASA Technical Reports Server (NTRS)
Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.
2011-01-01
Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.
Study of gravity and magnetic anomalies using MAGSAT data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.
Investigation of the free flow electrophoretic process. Volume 2: Technical analysis
NASA Technical Reports Server (NTRS)
Weiss, R. A.; Lanham, J. W.; Richman, D. W.; Walker, C. D.
1979-01-01
The effect of gravity on the free flow electrophoretic process was investigated. The demonstrated effects were then compared with predictions made by mathematical models. Results show that the carrier buffer flow was affected by gravity induced thermal convection and that the movement of the separating particle streams was affected by gravity induced buoyant forces. It was determined that if gravity induced buoyant forces were included in the mathematical models, then effective predictions of electrophoresis chamber separation performance were possible. The results of tests performed using various methods of electrophoresis using supportive media show that the mobility and the ability to separate were essentially independent of concentration, providing promise of being able to perform electrophoresis with higher inlet concentrations in space.
An inverse dynamic analysis on the influence of upper limb gravity compensation during reaching.
Essers, J M N Hans; Meijer, Kenneth; Murgia, Alessio; Bergsma, Arjen; Verstegen, Paul
2013-06-01
Muscular dystrophies (MDs) are characterized by progressive muscle wasting and weakness. Several studies have been conducted to investigate the influence of arm supports in an attempt to restore arm function. Lowering the load allows the user to employ the residual muscle force for movement as well as for posture stabilization. In this pilot study three conditions were investigated during a reaching task performed by three healthy subjects and three MD subjects: a control condition involving reaching; a similar movement with gravity compensation using braces to support the forearm; an identical reaching movement in simulated zero-gravity. In the control condition the highest values of shoulder moments were present, with a maximum of about 6 Nm for shoulder flexion and abduction. In the gravity compensation and zero gravity conditions the maximum shoulder moments were decreased by more than 70% and instead of increasing during reaching, they remained almost unvaried, fluctuating around an offset value less than 1 Nm. Similarly, the elbow moments in the control condition were the highest with a peak around 3.3 Nm for elbow flexion, while the moments were substantially reduced in the remaining two conditions, fluctuating around offset values between 0 to 0.5 Nm. In conclusion, gravity compensation by lower arm support is effective in healthy subjects and MD subjects and lowers the amount of shoulder and elbow moments by an amount comparable to a zero gravity environment. However the influence of gravity compensation still needs to be investigated on more people with MDs in order to quantify any beneficial effect on this population.
Mass Intrusion at Mount St. Helens (WA) From Temporal Gravity Variations
NASA Astrophysics Data System (ADS)
Battaglia, M.; Lisowski, M.; Dzurisin, D.; Poland, M. P.; Schilling, S. P.; Diefenbach, A. K.; Wynn, J.
2015-12-01
Repeated high-precision gravity measurements made at Mount St. Helens (WA) have revealed systematic temporal variations in the gravity field several years after the end of the 2004-2008 dome-building eruption. Changes in gravity with respect to a stable reference station 36 km NW of the volcano were measured at 10 sites on the volcanic edifice and at 4 sites far afield (10 to 36 km) from the summit in August 2010, August 2012 and August 2014. After simulating and removing the gravity signal associated with changes in mass of the crater glacier, the local hydrothermal aquifer, and vertical deformation, the residual gravity field observed at sites near the volcano's summit significantly increased with respect to the stable reference site during 2010-2012 (maximum change 48 ± 15 mgal). No significant change was measured during 2012-2014. The pattern of gravity increase is radially symmetrical, with a half-width of about 2.5 km and a point of maximum change centered at the 2004-2008 lava dome. Forward modeling of residual gravity data using the same source geometry, depth, and location as that inferred from geodetic data (a spheroidal source centered 7.5 km beneath the 2004-2008 dome) indicates a mass increase rate of the order of 1011 kg/year. For a reasonable magma density (~2250 kg/m3), the volume rate of magma intrusion beneath the summit region inferred from gravity (~ 0.1 km3/yr) greatly exceeds the volume inferred from inversion of geodetic data (0.001 km3/yr between 2008-2011), suggesting that either magma compressibility or other processes are important aspects of magma storage at Mount St. Helens, or that the data argue for a different source.
de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.
2014-01-01
The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
NASA Astrophysics Data System (ADS)
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1989-03-01
Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.
NASA Astrophysics Data System (ADS)
Gonçalves, L. D.; Rocco, E. M.; de Moraes, R. V.
2013-10-01
A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
NASA Astrophysics Data System (ADS)
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1990-05-01
Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.
Mankinen, Edward A.; McKee, Edwin H.
2011-01-01
Increasing demands on the Colorado River system within the arid Southwestern United States have focused attention on finding new, alternative sources of water. Particular attention is being paid to the eastern Great Basin, where important ground-water systems occur within a regionally extensive sequence of Paleozoic carbonate rocks and in the Cenozoic basin-fill deposits that occur throughout the region. Geophysical investigations to characterize the geologic framework of aquifers in eastern Nevada and western Utah began in a series of cooperative agreements between the U.S. Geological Survey and the Southern Nevada Water Authority in 2003. These studies were intended to better understand the formation of basins, define their subsurface shape and depth, and delineate structures that may impede or enhance groundwater flow. We have combined data from gravity stations established during the current study with previously available data to produce an up-to-date isostatic-gravity map of the study area, using a gravity inversion method to calculate depths to pre-Cenozoic basement rock and to estimate alluvial/volcanic fill in the valleys.
3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx
NASA Astrophysics Data System (ADS)
Dean, C.; Soloviev, A.
2015-12-01
Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.
A ground-base Radar network to access the 3D structure of MLT winds
NASA Astrophysics Data System (ADS)
Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.
2016-12-01
The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.
Efficacy of specific gravity as a tool for prediction of biodiesel-petroleum diesel blend ratio
USDA-ARS?s Scientific Manuscript database
Prediction of volumetric biodiesel/petrodiesel blend ratio (VBD) from specific gravity (SG) data was the subject of the current investigation. Fatty acid methyl esters obtained from soybean, palm, and rapeseed oils along with chicken fat (SME-1, SME-2, PME, RME, and CFME) were blended (0 to 20 volum...
Zero-G experiments in two-phase fluids flow regimes
NASA Technical Reports Server (NTRS)
Heppner, D. B.; King, C. D.; Littles, J. W.
1975-01-01
The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.
Effective utilization of gravity during arm downswing in keystrokes by expert pianists.
Furuya, S; Osu, R; Kinoshita, H
2009-12-01
The present study investigated a skill-level-dependent interaction between gravity and muscular force when striking piano keys. Kinetic analysis of the arm during the downswing motion performed by expert and novice piano players was made using an inverse dynamic technique. The corresponding activities of the elbow agonist and antagonist muscles were simultaneously recorded using electromyography (EMG). Muscular torque at the elbow joint was computed while excluding the effects of gravitational and motion-dependent interaction torques. During descending the forearm to strike the keys, the experts kept the activation of the triceps (movement agonist) muscle close to the resting level, and decreased anti-gravity activity of the biceps muscle across all loudness levels. This suggested that elbow extension torque was produced by gravity without the contribution of agonist muscular work. For the novices, on the other hand, a distinct activity in the triceps muscle appeared during the middle of the downswing, and its amount and duration were increased with increasing loudness. Therefore, for the novices, agonist muscular force was the predominant contributor to the acceleration of elbow extension during the downswing. We concluded that a balance shift from muscular force dependency to gravity dependency for the generation of a target joint torque occurs with long-term piano training. This shift would support the notion of non-muscular force utilization for improving physiological efficiency of limb movement with respect to the effective use of gravity.
NASA Astrophysics Data System (ADS)
Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian
2017-04-01
Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity
NASA Technical Reports Server (NTRS)
Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor
1996-01-01
The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.
Reducing gravity takes the bounce out of running.
Polet, Delyle T; Schroeder, Ryan T; Bertram, John E A
2018-02-13
In gravity below Earth-normal, a person should be able to take higher leaps in running. We asked 10 subjects to run on a treadmill in five levels of simulated reduced gravity and optically tracked centre-of-mass kinematics. Subjects consistently reduced ballistic height compared with running in normal gravity. We explain this trend by considering the vertical take-off velocity (defined as maximum vertical velocity). Energetically optimal gaits should balance the energetic costs of ground-contact collisions (favouring lower take-off velocity), and step frequency penalties such as leg swing work (favouring higher take-off velocity, but less so in reduced gravity). Measured vertical take-off velocity scaled with the square root of gravitational acceleration, following energetic optimality predictions and explaining why ballistic height decreases in lower gravity. The success of work-based costs in predicting this behaviour challenges the notion that gait adaptation in reduced gravity results from an unloading of the stance phase. Only the relationship between take-off velocity and swing cost changes in reduced gravity; the energetic cost of the down-to-up transition for a given vertical take-off velocity does not change with gravity. Because lower gravity allows an elongated swing phase for a given take-off velocity, the motor control system can relax the vertical momentum change in the stance phase, thus reducing ballistic height, without great energetic penalty to leg swing work. Although it may seem counterintuitive, using less 'bouncy' gaits in reduced gravity is a strategy to reduce energetic costs, to which humans seem extremely sensitive. © 2018. Published by The Company of Biologists Ltd.
Secondary Structure Predictions for Long RNA Sequences Based on Inversion Excursions and MapReduce.
Yehdego, Daniel T; Zhang, Boyu; Kodimala, Vikram K R; Johnson, Kyle L; Taufer, Michela; Leung, Ming-Ying
2013-05-01
Secondary structures of ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Experimental observations and computing limitations suggest that we can approach the secondary structure prediction problem for long RNA sequences by segmenting them into shorter chunks, predicting the secondary structures of each chunk individually using existing prediction programs, and then assembling the results to give the structure of the original sequence. The selection of cutting points is a crucial component of the segmenting step. Noting that stem-loops and pseudoknots always contain an inversion, i.e., a stretch of nucleotides followed closely by its inverse complementary sequence, we developed two cutting methods for segmenting long RNA sequences based on inversion excursions: the centered and optimized method. Each step of searching for inversions, chunking, and predictions can be performed in parallel. In this paper we use a MapReduce framework, i.e., Hadoop, to extensively explore meaningful inversion stem lengths and gap sizes for the segmentation and identify correlations between chunking methods and prediction accuracy. We show that for a set of long RNA sequences in the RFAM database, whose secondary structures are known to contain pseudoknots, our approach predicts secondary structures more accurately than methods that do not segment the sequence, when the latter predictions are possible computationally. We also show that, as sequences exceed certain lengths, some programs cannot computationally predict pseudoknots while our chunking methods can. Overall, our predicted structures still retain the accuracy level of the original prediction programs when compared with known experimental secondary structure.
Crustal structure of an exhumed IntraCONtinental Sag (ICONS): the Mekele Basin in Northern Ethiopia.
NASA Astrophysics Data System (ADS)
Alemu, T. B.; Abdelsalam, M. G.
2017-12-01
The Mekele Sedimentary Basin (MSB) in Ethiopia is a Paleozoic-Mesozoic IntraCONtinental Sag (ICONS) exposed due to Cenozoic domal and rift flank uplift associated with the Afar mantle plume and Afar Depression (AD). ICONS are formed over stable lithosphere, and in contrast to rift and foreland basins, show circular-elliptical shape in map view, saucer shaped in cross section, and concentric gravity minima. Surface geological features of the MSB have been shown to exhibit geologic characteristics similar to those of other ICONS. We used the World Gravity Map (WGM 2012) data to investigate subsurface-crustal structure of the MSB. We also used 2D power spectrum analysis and inversion of the gravity field to estimate the Moho depth. Our results show the Bouguer anomalies of the WGM 2012 ranges between 130 mGal and - 110 mGal with the highest values within the AD. Despite the effect of the AD on the gravity anomalies, the MSB is characterized by the presence of gravity low anomaly that reaches in places -110 mGal, especially in its western part. The Moho depth estimates, from both spectral analysis and inversion of the gravity data, is between 36 and 40 km depth over most of the western and southern margins of the MSB. However, as the AD is approached, in the eastern margins of the MSB, crustal thickness estimates are highly affected by the anomalously thin and magmatic segment of the AD, and the Moho depth range between 30 and 25 km. Our results are consistent with that of seismic studies in areas far from the MSB, but within the Northwestern Ethiopian Plateau where the MSB is located. Those studies have reported an abrupt decrease in Moho depth from 40 km beneath the Northwestern plateau, to 20 km in the adjacent AD. Though the MSB is small (100 kmX100 km) compared to other ICONS, and affected by the neighboring AD, it is characterized by elliptical gravity minima and a relatively thicker crust that gradually thickens away from the rift. In addition, seismic imaging of faster shear wave velocity beneath the southwestern MSB at 80 km depth by previous studies mimic the surface and shallow subsurface features that we interpret as indicative of major characteristics of ICONS. Due to their location away from active plate boundaries, most ICONS are buried since the time of their formation. The MSB represents a rare example of a completely exhumed ICONS.
Lutetia: an example of prediction of polyhedra in shapes of small cosmic bodies
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2011-10-01
The following prediction based on rules of the wave planetology [1-12] was published before the Rosetta spacecraft imaged asteroid Lutetia [13]. "A 100 km long flattened asteroid 21-Lutetia will be imaged by the "Ros etta' s pacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia -gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies 'accelerations imply inertia -gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four direct ions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising s trongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) ma kes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the ess entially dichotomous s imp les t Plato's figure. In this polyhedron always there is an oppos ition of extension (a face) to contraction (a vertex). The firs t overtone wave2 (long πR) ma kes tectonic s ectors , als o ris en and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes a nd is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the ma in s equence and the individual wave (a ls o long 2π R) a re in the s tron gest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - "orbits make s tructures ." [13]. Below are some examples of cosmic polyhedra belonging to small bodies of various classes (asteroids, satellites, comets), s izes and compos itions . Thus , the prediction of Lutetia' s hape (s trengthened by the later Tempel's images ) was bas ed on rathe r representative observations.
2012-05-10
Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and
Three waves for quantum gravity
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Latosh, Boris
2018-03-01
Using effective field theoretical methods, we show that besides the already observed gravitational waves, quantum gravity predicts two further massive classical fields leading to two new massive waves. We set a limit on the masses of these new modes using data from the Eöt-Wash experiment. We point out that the existence of these new states is a model independent prediction of quantum gravity. We then explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of neutron stars or black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.
Low gravity two-phase flow with heat transfer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1991-01-01
A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.
Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy
Ackermann, Marko; van den Bogert, Antonie J.
2012-01-01
The investigation of gait strategies at low gravity environments gained momentum recently as manned missions to the Moon and to Mars are reconsidered. Although reports by astronauts of the Apollo missions indicate alternative gait strategies might be favored on the Moon, computational simulations and experimental investigations have been almost exclusively limited to the study of either walking or running, the locomotion modes preferred under Earth's gravity. In order to investigate the gait strategies likely to be favored at low gravity a series of predictive, computational simulations of gait are performed using a physiological model of the musculoskeletal system, without assuming any particular type of gait. A computationally efficient optimization strategy is utilized allowing for multiple simulations. The results reveal skipping as more efficient and less fatiguing than walking or running and suggest the existence of a walk-skip rather than a walk-run transition at low gravity. The results are expected to serve as a background to the design of experimental investigations of gait under simulated low gravity. PMID:22365845
Predictive simulation of gait at low gravity reveals skipping as the preferred locomotion strategy.
Ackermann, Marko; van den Bogert, Antonie J
2012-04-30
The investigation of gait strategies at low gravity environments gained momentum recently as manned missions to the Moon and to Mars are reconsidered. Although reports by astronauts of the Apollo missions indicate alternative gait strategies might be favored on the Moon, computational simulations and experimental investigations have been almost exclusively limited to the study of either walking or running, the locomotion modes preferred under Earth's gravity. In order to investigate the gait strategies likely to be favored at low gravity a series of predictive, computational simulations of gait are performed using a physiological model of the musculoskeletal system, without assuming any particular type of gait. A computationally efficient optimization strategy is utilized allowing for multiple simulations. The results reveal skipping as more efficient and less fatiguing than walking or running and suggest the existence of a walk-skip rather than a walk-run transition at low gravity. The results are expected to serve as a background to the design of experimental investigations of gait under simulated low gravity. Copyright © 2012 Elsevier Ltd. All rights reserved.
On the use of infrasound for constraining global climate models
NASA Astrophysics Data System (ADS)
Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David
2017-11-01
Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.
New universal attractor in nonminimally coupled gravity: Linear inflation
NASA Astrophysics Data System (ADS)
Racioppi, Antonio
2018-06-01
Once quantum corrections are taken into account, the strong coupling limit of the ξ -attractor models (in metric gravity) might depart from the usual Starobinsky solution and move into linear inflation. Furthermore, it is well known that the metric and Palatini formulations of gravity lead to different inflationary predictions in presence of nonminimally couplings between gravity and the inflaton. In this paper, we show that for a certain class of nonminimally coupled models, loop corrections will lead to a linear inflation attractor regardless of the adopted gravity formulation.
Holographic description of a quantum black hole on a computer
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun
2014-05-01
Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics.
NASA Technical Reports Server (NTRS)
Prasad, T. K.; Cline, M. G.
1987-01-01
Inversion of the upper shoot of Pharbitis nil results in the inhibition of elongation in the inverted stem. The objective of the present study was to determine how shoot inversion-induced gravity stress inhibited elongation and to elucidate the possible role of ethylene-induced glycoprotein and lignin in this process. Determinations of hydroxyproline, peroxidase, phenylalanine ammonia-lyase (PAL), phenol, and lignin content/activity were carried out by appropriate spectrophotometric methods. It was found that inversion and Ethrel treatments of upright shoots caused significant increases in hydroxyproline content, peroxidase, and PAL activity in 12 hours and in phenol and lignin contents in 24 hours. All of these increases except for that of cytoplasmic peroxidase activity were partially reversed by AgNO3, the ethylene action inhibitor. It is concluded that possible cross-linking associated with the accumulation of the ethylene-induced hydroxyproline-rich glycoprotein and lignin may be responsible for the later stages of cessation of elongation in the inverted Pharbitis shoot.
Tectonics of the Philippines and ambient regions from geophysical inversions
NASA Astrophysics Data System (ADS)
Liu, W.; Li, C.; Zhou, Z.; Fairhead, J. D.
2012-12-01
The geological study in the Philippines and ambient regions is relatively low so far for the rather scanty data and complex geological structure. Therefore it is a challenge to do the research with limited data. In this paper, an investigation of the Philippines and surrounding area has been carried out using regional magnetic and gravity anomalies. Owing to the difficulties and limitations in reduction to the pole at the low latitudes, analytical signal amplitudes of magnetic anomalies are calculated as the equivalent substitute. Application of the Parker-Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. Curie-point depths are estimated from the magnetic anomalies using a windowed wavenumber-domain algorithm. This paper aims to reveal the structure of the Manila subduction zone accurately, and moreover, to clarify the interplay between the magmatism and subduction in the Manila Trench and East Luzon Trough. On the basis of Bouguer gravity anomaly and AS(analytical signal) of magnetic anomaly, the positions of hydrated mantle wedge in the subduction zones of this area are identified in the areas charicterizd by the distribution of high-and low value of Bouguer gravity anomaly or the paralell high value of Bouguer gravity anomaly and AS. Using our inversion results together with some other published information, the boundaries of Palawan Block, Philippine Mobile Belt and Sulu-Celebes Block are defined and the collision history of PCB(Palawan continental block)-PMB (Philippine mobile belt) and PCB-Sulu Sea is also discussed. A "seismic gap" near the 14 degree north latitude on Manila Trench, mentioned in previous studies, is thought to be induced by the slab melting and plastic behavior due to the relatively high geothermal gradient. In the central Philippines, it is likely that an incipient collision-related rifting is proceeding. Furthermore, a possible new evolution model of Sulu Sea, in which the Cagayan Ridge area is thought to be the palaeo-subduction zone and volcanic arc and Palawan Trough is supposed to be a foredeep rather than an extinct trench, is presented. In addition, mantle serpentinization extent of this area is also estimated according to Curie point and Moho depths.
Predicting gravity and sediment thickness in Afghanistan
NASA Astrophysics Data System (ADS)
Jung, W.; Brozena, J.; Peters, M.
2013-02-01
The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff wavelength 132 km which is approximately equivalent to the reported safe degree and order 250 of GOCO02S at 34º N) combined airborne free-air anomalies. The rms difference between the two data sets was 12.4 mGal. The observed admittance in the western Afghanistan mountains appears to be best fit to a theoretical elastic plate compensation model (with an effective elastic thickness of 5 km and crustal thickness of 22 km) where the ratio between surface load and subsurface load is equal.
The effect of power-law body forces on a thermally driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
The effect of power law body forces on a thermally-driven flow between concentric rotating spheres
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1985-01-01
A numerical study is conducted to determine the effect of power-law body forces on a thermally-driven axisymmetric flow field confined between concentric co-rotating spheres. This study is motivated by Spacelab geophysical fluid-flow experiments, which use an electrostatic force on a dielectric fluid to simulate gravity; this force exhibits a (1/r)sup 5 distribution. Meridional velocity is found to increase when the electrostatic body force is imposed, relative to when the body force is uniform. Correlation among flow fields with uniform, inverse-square, and inverse-quintic force fields is obtained using a modified Grashof number.
NASA Technical Reports Server (NTRS)
Demoulin, P.; Forbes, T. G.
1992-01-01
A technique which incorporates both photospheric and prominence magnetic field observations is used to analyze the magnetic support of solar prominences in two dimensions. The prominence is modeled by a mass-loaded current sheet which is supported against gravity by magnetic fields from a bipolar source in the photosphere and a massless line current in the corona. It is found that prominence support can be achieved in three different kinds of configurations: an arcade topology with a normal polarity; a helical topology with a normal polarity; and a helical topology with an inverse polarity. In all cases the important parameter is the variation of the horizontal component of the prominence field with height. Adding a line current external to the prominence eliminates the nonsupport problem which plagues virtually all previous prominence models with inverse polarity.
Venus gravity - Analysis of Beta Regio
NASA Technical Reports Server (NTRS)
Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.
1982-01-01
Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.
NASA Astrophysics Data System (ADS)
Tang, H.; Sun, W.
2016-12-01
The theoretical computation of dislocation theory in a given earth model is necessary in the explanation of observations of the co- and post-seismic deformation of earthquakes. For this purpose, computation theories based on layered or pure half space [Okada, 1985; Okubo, 1992; Wang et al., 2006] and on spherically symmetric earth [Piersanti et al., 1995; Pollitz, 1997; Sabadini & Vermeersen, 1997; Wang, 1999] have been proposed. It is indicated that the compressibility, curvature and the continuous variation of the radial structure of Earth should be simultaneously taken into account for modern high precision displacement-based observations like GPS. Therefore, Tanaka et al. [2006; 2007] computed global displacement and gravity variation by combining the reciprocity theorem (RPT) [Okubo, 1993] and numerical inverse Laplace integration (NIL) instead of the normal mode method [Peltier, 1974]. Without using RPT, we follow the straightforward numerical integration of co-seismic deformation given by Sun et al. [1996] to present a straightforward numerical inverse Laplace integration method (SNIL). This method is used to compute the co- and post-seismic displacement of point dislocations buried in a spherically symmetric, self-gravitating viscoelastic and multilayered earth model and is easy to extended to the application of geoid and gravity. Comparing with pre-existing method, this method is relatively more straightforward and time-saving, mainly because we sum associated Legendre polynomials and dislocation love numbers before using Riemann-Merlin formula to implement SNIL.
A model of Precambrian geology of Kansas derived from gravity and magnetic data
Xia, J.; Sprowl, D.R.; Steeples, D.W.
1996-01-01
The fabric of the Precambrian geology of Kansas is revealed through inversion of gravity and magnetic data to pseudo-lithology. There are five main steps in the inversion process: (1) reduction of potential-field data to a horizontal plane in the wavenumber domain; (2) separation of the residual anomaly of interest from the regional background, where an assumption is made that the regional anomaly could be represented by some order of polynomial; (3) subtraction of the signal due to the known topography on the Phanerozoic/Precambrian boundary from the residual anomaly (we assume what is left at this stage are the signals due to lateral variation in the Precambrian lithology); (4) inversion of the residual anomaly in the wavenumber domain to density and magnetization distribution in the top part of the Precambrian constrained by the known geologic information; (5) derivation of pseudo-lithology by characterization of density and magnetization. The boundary between the older Central Plains Province to the north and the Southern Granite-Rhyolite Province to the south is clearly delineated. The Midcontinent Rift System appears to widen in central Kansas and involve a considerable portion of southern Kansas. Lithologies in southwestern Kansas appear to change over fairly small areas and include mafic rocks which have not been encountered in drill holes. The texture of the potential field data from southwestern Kansas suggests a history of continental growth by broad extension. Copyright ?? 1996 Elsevier Science Ltd.
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Goebel, Kai
2013-01-01
This paper investigates the use of the inverse first-order reliability method (inverse- FORM) to quantify the uncertainty in the remaining useful life (RUL) of aerospace components. The prediction of remaining useful life is an integral part of system health prognosis, and directly helps in online health monitoring and decision-making. However, the prediction of remaining useful life is affected by several sources of uncertainty, and therefore it is necessary to quantify the uncertainty in the remaining useful life prediction. While system parameter uncertainty and physical variability can be easily included in inverse-FORM, this paper extends the methodology to include: (1) future loading uncertainty, (2) process noise; and (3) uncertainty in the state estimate. The inverse-FORM method has been used in this paper to (1) quickly obtain probability bounds on the remaining useful life prediction; and (2) calculate the entire probability distribution of remaining useful life prediction, and the results are verified against Monte Carlo sampling. The proposed methodology is illustrated using a numerical example.
Description of and preliminary tests results for the Joint Damping Experiment (JDX)
NASA Technical Reports Server (NTRS)
Bingham, Jeffrey G.; Folkman, Steven L.
1995-01-01
An effort is currently underway to develop an experiment titled joint Damping E_periment (JDX) to fly on the Space Shuttle as Get Away Special Payload G-726. This project is funded by NASA's IN-Space Technology Experiments Program and is scheduled to fly in July 1995 on STS-69. JDX will measure the influence of gravity on the structural damping of a three bay truss having clearance fit pinned joints. Structural damping is an important parameter in the dynamics of space structures. Future space structures will require more precise knowledge of structural damping than is currently available. The mission objectives are to develop a small-scale shuttle flight experiment that allows researchers to: (1) characterize the influence of gravity and joint gaps on structural damping and dynamic behavior of a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. Completing the above objectives will allow a better understanding and/or prediction of structural damping occurring in a pin jointed truss. Predicting damping in joints is quite difficult. One of the important variables influencing joint damping is gravity. Previous work has shown that gravity loads can influence damping in a pin jointed truss structure. Flying this experiment as a GAS payload will allow testing in a microgravity environment. The on-orbit data (in micro-gravity) will be compared with ground test results. These data will be used to help develop improved models to predict damping due to pinned joints. Ground and low-g aircraft testing of this experiment has been completed. This paper describes the experiment and presents results of both ground and low-g aircraft tests which demonstrate that damping of the truss is dramatically influenced by gravity.
Informativeness of Wind Data in Linear Madden-Julian Oscillation Prediction
2016-08-15
Linear inverse models (LIMs) are used to explore predictability and information content of the Madden–Julian Oscillation (MJO). Hindcast skill for...mostly at the largest scales, adds 1–2 days of skill. Keywords: linear inverse modeling; Madden–Julian Oscillation; sub-seasonal prediction 1...tion that may reflect on the MJO’s incompletely under- stood dynamics. Cavanaugh et al. (2014, hereafter C14) explored the skill of linear inverse
Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry
Ma, Baoshun
2012-01-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957
Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.
Ma, Baoshun; Darquenne, Chantal
2012-08-01
The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
NASA Astrophysics Data System (ADS)
Flinders, Ashton F.; Ito, Garrett; Garcia, Michael O.
2010-08-01
New land and marine gravity data reveal two positive residual gravity anomalies in the Northern Hawaiian Islands: one over Kaua'i, the other between the islands of Kaua'i and Ni'ihau. These gravitational highs are similar in size and magnitude to those of other Hawaiian volcanoes, indicating local zones of high-density crust, attributed to olivine cumulates in solidified magma reservoirs. The residual gravity high over Kaua'i is located in the Līhu'e Basin, offset 8-12 km east of Kaua'i's geologically mapped caldera. This offset suggests that the mapped caldera is a collapsed feature later filled in with lava and not the long-term center of Kaua'i shield volcanism. A second residual gravity high, in the submarine channel between Kaua'i and Ni'ihau, marks the volcanic center of the Ni'ihau shield volcano. This second residual gravity anomaly implies that Ni'ihau's eastern boundary extended ˜20 km east of its present location. Through inversion, the residual gravity anomalies were modeled as being produced by two solidified magma reservoirs with average densities of 3100 kg/m3 and volumes between 2470 and 2540 km3. Considering the locations and sizes of the residual gravity anomalies/magma reservoirs, the extent of the two islands' paleoshorelines and potassium-argon dating of shield-stage lavas, we conclude that the two islands were not connected subaerially during their respective shield stages and that Ni'ihau's topographic summit was removed by an eastern flank collapse between 4.3 and 5.6 Ma. Continued constructional volcanism on western Kaua'i likely covered much of the submerged remains of eastern Ni'ihau.
NASA Astrophysics Data System (ADS)
Zakaria, M. A.; Majeed, A. P. P. A.; Taha, Z.; Alim, M. M.; Baarath, K.
2018-03-01
The movement of a lower limb exoskeleton requires a reasonably accurate control method to allow for an effective gait therapy session to transpire. Trajectory tracking is a nontrivial means of passive rehabilitation technique to correct the motion of the patients’ impaired limb. This paper proposes an inverse predictive model that is coupled together with the forward kinematics of the exoskeleton to estimate the behaviour of the system. A conventional PID control system is used to converge the required joint angles based on the desired input from the inverse predictive model. It was demonstrated through the present study, that the inverse predictive model is capable of meeting the trajectory demand with acceptable error tolerance. The findings further suggest the ability of the predictive model of the exoskeleton to predict a correct joint angle command to the system.
NASA Astrophysics Data System (ADS)
Galanti, Eli; Durante, Daniele; Iess, Luciano; Kaspi, Yohai
2017-04-01
The ongoing Juno spacecraft measurements are improving our knowledge of Jupiter's gravity field. Similarly, the Cassini Grand Finale will improve the gravity estimate of Saturn. The analysis of the Juno and Cassini Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity fields of Jupiter and Saturn, additional information needs to be incorporated into the analysis, especially with regards to the planets' wind structures. In this work we propose a new iterative approach for the estimation of Jupiter and Saturn gravity fields, using simulated measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model is used to obtain the gravitational moments. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an optimization method, the likely penetration depth of the winds is computed, and its uncertainty is evaluated. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an estimate of their uncertainties, to be used as a priori for a new calculation of the gravity field. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that by using this method some of the gravitational moments are fitted better to the `observed' ones, mainly due to the added information from the dynamical model which includes the wind structure and its depth. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity moments estimated from the Juno and Cassini radio science experiments.
NASA Technical Reports Server (NTRS)
Kondrachuk, Alexander V.; Boyle, Richard D.
2005-01-01
The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation
Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, R. E.; Cheng, B.
1996-01-01
For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.
Application of Newtonian Physics to Predict the Speed of a Gravity Racer
ERIC Educational Resources Information Center
Driscoll, H. F.; Bullas, A. M.; King, C. E.; Senior, T.; Haake, S. J.; Hart, J.
2016-01-01
Gravity racing can be studied using numerical solutions to the equations of motion derived from Newton's second law. This allows students to explore the physics of gravity racing and to understand how design and course selection influences vehicle speed. Using Euler's method, we have developed a spreadsheet application that can be used to predict…
Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model
NASA Astrophysics Data System (ADS)
Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.
2015-12-01
The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.
NASA Technical Reports Server (NTRS)
Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.
1991-01-01
Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral Sea, the Black Sea, and the Caspian Sea are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free air gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black Sea, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black Sea, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian Sea, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland seas, speculative tectonic structures are identified and geophysical processes are inferred.
Evidence for large inversion polymorphisms in the human genome from HapMap data
Bansal, Vikas; Bashir, Ali; Bafna, Vineet
2007-01-01
Knowledge about structural variation in the human genome has grown tremendously in the past few years. However, inversions represent a class of structural variation that remains difficult to detect. We present a statistical method to identify large inversion polymorphisms using unusual Linkage Disequilibrium (LD) patterns from high-density SNP data. The method is designed to detect chromosomal segments that are inverted (in a majority of the chromosomes) in a population with respect to the reference human genome sequence. We demonstrate the power of this method to detect such inversion polymorphisms through simulations done using the HapMap data. Application of this method to the data from the first phase of the International HapMap project resulted in 176 candidate inversions ranging from 200 kb to several megabases in length. Our predicted inversions include an 800-kb polymorphic inversion at 7p22, a 1.1-Mb inversion at 16p12, and a novel 1.2-Mb inversion on chromosome 10 that is supported by the presence of two discordant fosmids. Analysis of the genomic sequence around inversion breakpoints showed that 11 predicted inversions are flanked by pairs of highly homologous repeats in the inverted orientation. In addition, for three candidate inversions, the inverted orientation is represented in the Celera genome assembly. Although the power of our method to detect inversions is restricted because of inherently noisy LD patterns in population data, inversions predicted by our method represent strong candidates for experimental validation and analysis. PMID:17185644
Holographic description of a quantum black hole on a computer.
Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun
2014-05-23
Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.
Zhang, Pengjie; Liguori, Michele; Bean, Rachel; Dodelson, Scott
2007-10-05
The standard cosmology is based on general relativity (GR) and includes dark matter and dark energy and predicts a fixed relationship between the gravitational potentials responsible for gravitational lensing and the matter overdensity. Alternative theories of gravity often make different predictions. We propose a set of measurements which can test this relationship, thereby distinguishing between dark energy or matter models and models in which gravity differs from GR. Planned surveys will be able to measure E(G), an observational quantity whose expectation value is equal to the ratio of the Laplacian of the Newtonian potentials to the peculiar velocity divergence, to percent accuracy. This will easily separate alternatives such as the cold dark matter model with a cosmological constant, Dvali-Gabadadze-Porrati, TeVeS, and f(R) gravity.
Understanding the Yellowstone magmatic system using 3D geodynamic inverse models
NASA Astrophysics Data System (ADS)
Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.
2017-12-01
The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.
Testing gravity with E{sub G}: mapping theory onto observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, C. Danielle; Ferreira, Pedro G.; Heymans, Catherine, E-mail: danielle.leonard@physics.ox.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk, E-mail: heymans@roe.ac.uk
We present a complete derivation of the observationally motivated definition of the modified gravity statistic E{sub G}. Using this expression, we investigate how variations to theory and survey parameters may introduce uncertainty in the general relativistic prediction of E{sub G}. We forecast errors on E{sub G} for measurements using two combinations of upcoming surveys, and find that theoretical uncertainties may dominate for a futuristic measurement. Finally, we compute predictions of E{sub G} under modifications to general relativity in the quasistatic regime, and comment on the pros and cons of using E{sub G} to test gravity with future surveys.
VizieR Online Data Catalog: PCA-based inversion of stellar parameters (Gebran+, 2016)
NASA Astrophysics Data System (ADS)
Gebran, M.; Farah, W.; Paletou, F.; Monier, R.; Watson, V.
2016-03-01
Inverted effective temperatures, surface gravities, projected rotational velocities, metalicities, and radial velocities for the selected A stars. The "closest" are the values found in Vizier catalogues closest to our inverted parameters, while "median" are the median of the catalogue values. Outliers are marked as "1" in the "outliers" column (see sect. 6) (1 data file).
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
NASA Technical Reports Server (NTRS)
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the approximation of very small pressure gradients is reduced to the problem of the classical oscillator in the rotational frame of reference which was previously introduced and applied for the interpretation of kHZ QPO observation by Osherovich & Titarchuk.
Levandowski, William Brower; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.
2015-01-01
We test this algorithm on the Proterozoic Midcontinent Rift (MCR), north-central U.S. The MCR provides a challenge because it hosts a gravity high overlying low shear-wave velocity crust in a generally flat region. Our initial density estimates are derived from a seismic velocity/crustal thickness model based on joint inversion of surface-wave dispersion and receiver functions. By adjusting these estimates to reproduce gravity and topography, we generate a lithospheric-scale model that reveals dense middle crust and eclogitized lowermost crust within the rift. Mantle lithospheric density beneath the MCR is not anomalous, consistent with geochemical evidence that lithospheric mantle was not the primary source of rift-related magmas and suggesting that extension occurred in response to far-field stress rather than a hot mantle plume. Similarly, the subsequent inversion of normal faults resulted from changing far-field stress that exploited not only warm, recently faulted crust but also a gravitational potential energy low in the MCR. The success of this density modeling algorithm in the face of such apparently contradictory geophysical properties suggests that it may be applicable to a variety of tectonic and geodynamic problems.
Alternative theories of gravity and Lorentz violation
NASA Astrophysics Data System (ADS)
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
A multidimensional model of the effect of gravity on the spatial orientation of the monkey
NASA Technical Reports Server (NTRS)
Merfeld, D. M.; Young, L. R.; Oman, C. M.; Shelhamer, M. J.
1993-01-01
A "sensory conflict" model of spatial orientation was developed. This mathematical model was based on concepts derived from observer theory, optimal observer theory, and the mathematical properties of coordinate rotations. The primary hypothesis is that the central nervous system of the squirrel monkey incorporates information about body dynamics and sensory dynamics to develop an internal model. The output of this central model (expected sensory afference) is compared to the actual sensory afference, with the difference defined as "sensory conflict." The sensory conflict information is, in turn, used to drive central estimates of angular velocity ("velocity storage"), gravity ("gravity storage"), and linear acceleration ("acceleration storage") toward more accurate values. The model successfully predicts "velocity storage" during rotation about an earth-vertical axis. The model also successfully predicts that the time constant of the horizontal vestibulo-ocular reflex is reduced and that the axis of eye rotation shifts toward alignment with gravity following postrotatory tilt. Finally, the model predicts the bias, modulation, and decay components that have been observed during off-vertical axis rotations (OVAR).
NASA Astrophysics Data System (ADS)
Sainz-Maza, S.; Montesinos, F. G.; Martí, J.; Arnoso, J.; Calvo, M.; Borreguero, A.
2017-08-01
Recent volcanism in El Hierro Island is mostly concentrated along three elongated and narrow zones which converge at the center of the island. These zones with extensive volcanism have been identified as rift zones. The presence of similar structures is common in many volcanic oceanic islands, so understanding their origin, dynamics and structure is important to conduct hazard assessment in such environments. There is still not consensus on the origin of the El Hierro rift zones, having been associated with mantle uplift or interpreted as resulting from gravitational spreading and flank instability. To further understand the internal structure and origin of the El Hierro rift systems, starting from the previous gravity studies, we developed a new 3D gravity inversion model for its shallower layers, gathering a detailed picture of this part of the island, which has permitted a new interpretation about these rifts. Previous models already identified a main central magma accumulation zone and several shallower high density bodies. The new model allows a better resolution of the pathways that connect both levels and the surface. Our results do not point to any correspondence between the upper parts of these pathways and the rift identified at the surface. Non-clear evidence of progression toward deeper parts into the volcanic system is shown, so we interpret them as very shallow structures, probably originated by local extensional stresses derived from gravitational loading and flank instability, which are used to facilitate the lateral transport of magma when it arrives close to the surface.
Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela
The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less
Selecting an Informative/Discriminating Multivariate Response for Inverse Prediction
Thomas, Edward V.; Lewis, John. R.; Anderson-Cook, Christine Michaela; ...
2017-07-01
The inverse prediction is important in a variety of scientific and engineering applications, such as to predict properties/characteristics of an object by using multiple measurements obtained from it. Inverse prediction can be accomplished by inverting parameterized forward models that relate the measurements (responses) to the properties/characteristics of interest. Sometimes forward models are computational/science based; but often, forward models are empirically based response surface models, obtained by using the results of controlled experimentation. For empirical models, it is important that the experiments provide a sound basis to develop accurate forward models in terms of the properties/characteristics (factors). And while nature dictatesmore » the causal relationships between factors and responses, experimenters can control the complexity, accuracy, and precision of forward models constructed via selection of factors, factor levels, and the set of trials that are performed. Recognition of the uncertainty in the estimated forward models leads to an errors-in-variables approach for inverse prediction. The forward models (estimated by experiments or science based) can also be used to analyze how well candidate responses complement one another for inverse prediction over the range of the factor space of interest. Furthermore, one may find that some responses are complementary, redundant, or noninformative. Simple analysis and examples illustrate how an informative and discriminating subset of responses could be selected among candidates in cases where the number of responses that can be acquired during inverse prediction is limited by difficulty, expense, and/or availability of material.« less
Modeling Aspects Of Nature Of Science To Preservice Elementary Teachers
NASA Astrophysics Data System (ADS)
Ashcraft, Paul
2007-01-01
Nature of science was modeled using guided inquiry activities in the university classroom with elementary education majors. A physical science content course initially used an Aristotelian model where students discussed the relationship between distance from a constant radiation source and the amount of radiation received based on accepted ``truths'' or principles and concluded that there was an inverse relationship. The class became Galilean in nature, using the scientific method to test that hypothesis. Examining data, the class rejected their hypothesis and concluded that there is an inverse square relationship. Assignments, given before and after the hypothesis testing, show the student's misconceptions and their acceptance of scientifically acceptable conceptions. Answers on exam questions further support this conceptual change. Students spent less class time on the inverse square relationship later when examining electrostatic force, magnetic force, gravity, and planetary solar radiation because the students related this particular experience to other physical relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John R
R code that performs the analysis of a data set presented in the paper ‘Leveraging Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications’ by Lewis, J., Zhang, A., Anderson-Cook, C. It provides functions for doing inverse predictions in this setting using several different statistical methods. The data set is a publicly available data set from a historical Plutonium production experiment.
NASA Astrophysics Data System (ADS)
Cheng, X.; Lambert, V.; Masuti, S.; Wang, R.; Barbot, S.; Moore, J. G.; Qiu, Q.; Yu, H.; Wu, S.; Dauwels, J.; Nanjundiah, P.; Bannerjee, P.; Peng, D.
2017-12-01
The April 2012 Mw 8.6 Indian Ocean earthquake is the largest strike-slip earthquake instrumentally recorded. The event ruptured multiple faults and reached great depths up to 60 km, which may have induced significant viscoelastic flow in the asthenosphere. Instead of performing the time-consuming iterative forward modeling, our previous studies used linear inversions for postseismic deformation including both afterslip on the coseismic fault and viscoelastic flow in the strain volumes, making use of three-dimensional analytical Green's functions for distributed strain in finite volumes. Constraints and smoothing were added to reduce the degree of freedom in order to obey certain physical laws. The advent of Gravity Recovery and Climate Experiment (GRACE) satellite gravity field data now allows us to measure the mass displacements associated with various Earth processes. In the case of postseismic deformation, viscoelastic flow can potentially lead to significant mass displacements in the asthenosphere, corresponding to the temporal and spatial gravity change. In this new joint model, we add GRACE gravity data to the GPS measurement of postseismic crustal displacement, so as to improve the constraint on the postseismic relaxation processes in the upper mantle.
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Zhang, H.; Maceira, M.
2017-10-01
We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.
Brans-Dicke inflation in light of the Planck 2015 data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahmasebzadeh, B.; Rezazadeh, K.; Karami, K., E-mail: b.tahmasebzadeh@iasbs.ac.ir, E-mail: rezazadeh86@gmail.com, E-mail: kkarami@uok.ac.ir
We study inflation in the Brans-Dicke gravity as a special model of the scalar-tensor gravity. We obtain the inflationary observables containing the scalar spectral index, the tensor-to-scalar ratio, the running of the scalar spectral index and the equilateral non-Gaussianity parameter in terms of the general form of the potential in the Jordan frame. Then, we compare the results for various inflationary potentials in light of the Planck 2015 data. Our study shows that in the Brans-Dicke gravity, the power-law, inverse power-law and exponential potentials are ruled out by the Planck 2015 data. But, the hilltop, Higgs, Coleman-Weinberg and natural potentialsmore » can be compatible with Planck 2015 TT,TE,EE+lowP data at 95% CL. Moreover, the D-brane, SB SUSY and displaced quadratic potentials can be in well agreement with the observational data since their results can lie inside the 68% CL region of Planck 2015 TT,TE,EE+lowP data.« less
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ebbing, Jörg
2018-04-01
We present a study on the depth to basement and magnetic crustal domains beneath the Iranian Plateau by modeling aeromagnetic and gravity data. First, field processing of the aeromagnetic data was undertaken to estimate the general characteristics of the magnetic basement. Afterwards, inverse modeling of aeromagnetic data was carried out to estimate the depth to basement. The obtained model of basement was refined using combined gravity and magnetic forward modeling. Hereby, we were able to distinguish different magnetic domains in the uppermost crust (10-20 km depths) influencing the medium to long wavelength trends of the magnetic anomalies. Magnetic basement mapping shows that prominent shallow magnetic features are furthermore located in the volcanic areas, e.g. the Urumieh Dokhtar Magmatic Assemblage. The presence of ophiolite outcrops in SE Iran implies that shallow oceanic crust (with high magnetization) is the main source of one of the biggest magnetic anomalies in entire Iran area located north of the Makran.
NASA Astrophysics Data System (ADS)
Chang, Liang Cheng; Tsai, Jui pin; Chen, Yu Wen; Way Hwang, Chein; Chung Cheng, Ching; Chiang, Chung Jung
2014-05-01
For sustainable management, accurate estimation of recharge can provide critical information. The accuracy of estimation is highly related to uncertainty of specific yield (Sy). Because Sy value is traditionally obtained by a multi-well pumping test, the available Sy values are usually limited due to high installation cost. Therefore, this information insufficiency of Sy may cause high uncertainty for recharge estimation. Because gravity is a function of a material mass and the inverse square of the distance, gravity measurement can assist to obtain the mass variation of a shallow groundwater system. Thus, the groundwater level observation data and gravity measurements are used for the calibration of Sy for a groundwater model. The calibration procedure includes four steps. First, gravity variations of three groundwater-monitoring wells, Si-jhou, Tu-ku and Ke-cuo, are observed in May, August and November 2012. To obtain the gravity caused by groundwater variation, this study filters the noises from other sources, such as ocean tide and land subsidence, in the collected data The refined data, which are data without noises, are named gravity residual. Second, this study develops a groundwater model using MODFLOW 2005 to simulate the water mass variation of the groundwater system. Third, we use Newton gravity integral to simulate the gravity variation caused by the simulated water mass variation during each of the observation periods. Fourth, comparing the ratio of the gravity variation between the two data sets, which are observed gravity residuals and simulated gravities. The values of Sy is continuously modified until the gravity variation ratios of the two data sets are the same. The Sy value of Si-jhou is 0.216, which is obtained by the multi-well pumping test. This Sy value is assigned to the simulation model. The simulation results show that the simulated gravity can well fit the observed gravity residual without parameter calibration. This result indicates that the proposed approach is correct and reasonable. In Tu-ku and Ke-cuo, the ratios of the gravity variation between observed gravity residuals and simulated gravities are approximate 1.8 and 50, respectively. The Sy values of these two stations are modified 1.8 and 50 times the original values. These modified Sy values are assigned to the groundwater morel. After the parameter re-assignment, the simulated gravities meet the gravity residuals in these two stations. In conclusion, the study results show that the proposed approach has the potential to identify Sy without installing wells. Therefore, the proposed approach can be used to increase the spatial density of Sy and can conduct the recharge estimation with low uncertainty.
NASA Technical Reports Server (NTRS)
Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile
2013-01-01
We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.
An Approach to the Crustal Thickness Inversion Problem
NASA Astrophysics Data System (ADS)
De Marchi, F.; Di Achille, G.
2017-12-01
We describe a method to estimate the crustal thickness of a planet and we apply it to Venus. As in the method of (Parker, 1972), modified by (Wieczorek & Phillips, 1998), the gravity field anomalies of a planet are assumed to be due to the combined effect of topography and relief on the crust-mantle interface. No assumptions on isostasy are necessary. In our case, rather than using the expansion of the powers of the relief in Taylor series, we model the gravitational field of topography/relief by means of a large number of prism-shaped masses covering the whole surface of the planet. Under the hypothesis that crustal and mantle densities are the same everywhere, we solve for the relief depths on the crust-mantle interface by imposing that observed and modeled gravity field at a certain reference spherical surface (external to the planet) must be equal. This method can be extended to the case of non-uniform densities. Finally, we calculate a map of the crustal thickness of Venus and compare our results with those predicted by previous work and with the global distribution of main geological features (e.g. rift zones, tesserae, coronae). We discuss the agremeent between our results and the main geodynamical and crustal models put forth to explain the origin of such features and the applicability of this method in the context of the mission VOX (Venus Origins Explore), proposed for NASA's NF4 call.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter
2016-04-01
The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.
Ishii; Tromp
1999-08-20
With the use of a large collection of free-oscillation data and additional constraints imposed by the free-air gravity anomaly, lateral variations in shear velocity, compressional velocity, and density within the mantle; dynamic topography on the free surface; and topography on the 660-km discontinuity and the core-mantle boundary were determined. The velocity models are consistent with existing models based on travel-time and waveform inversions. In the lowermost mantle, near the core-mantle boundary, denser than average material is found beneath regions of upwellings centered on the Pacific Ocean and Africa that are characterized by slow shear velocities. These anomalies suggest the existence of compositional heterogeneity near the core-mantle boundary.
Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.
Improved image of intrusive bodies at Newberry Volcano, Oregon, based on 3D gravity modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain H.; Cladouhos, Trenton; Rose, Kelly K.
Beneath Newberry Volcano is one of the largest geothermal heat reservoirs in the western United States and it has been extensively studied for the last 40 years. Several magmatic intrusions have been recognized at depths between 2.5 and 8 km and some of them identified as suitable targets for enhanced geothermal energy and tested during two previous EGS campaigns. These subsurface structures have been intersected by three deep wells and imaged by various geophysical methods including seismic tomography and magnetotellurics. Although three high quality gravity surveys were completed between 2006 and 2010 as part of various projects, a complete synthesismore » and interpretation of the gravity data has not yet been performed. Regional gravity data also exist in the vicinity of the Newberry volcano and have been added to these surveys to constitute a dataset with a total of 1418 gravity measurements. When coupled with existing geologic and geophysical data and models, this new gravity dataset provides important constraints on the depth and contours of the magmatic bodies previously identified by other methods and thus greatly contributing to facilitate any future drilling and stimulation works. Using the initial structures discovered by seismic tomography, inversion of gravity data has been performed. Shape, density values and depths of various bodies were allowed to vary and three main bodies have been identified. Densities of the middle and lower intrusive bodies (~2.6-2.7 g/cm3) are consistent with rhyolite, basalt or granites. Modeled density of the near-surface caldera body match that of a low density tephra material and the density of the shallow ring structures contained in the upper kilometer correspond to that of welded tuff or low-density rhyolites. Modeled bodies are in reality a composite of thin layers; however, average densities of the modeled gravity bodies are in good agreement with the density log obtained in one well located on the western flank (well 55-29). Final gravity data residuals show that most of the observed gravity anomalies at the surface can be explained by the modeled gravity bodies and are consistent with other site characterization information.« less
NASA Astrophysics Data System (ADS)
Worster, Grae; Huppert, Herbert; Robison, Rosalyn; Nandkishore, Rahul; Rajah, Luke
2008-11-01
We have used simple laboratory experiments with viscous fluids to explore the dynamics of grounding lines between Antarctic marine ice sheets and the freely floating ice shelves into which they develop. Ice sheets are shear-dominated gravity currents, while ice shelves are extensional gravity currents with zero shear to leading order. Though ice sheets have non-Newtonian rheology, fundamental aspects of their flow can be explored using Newtonian fluid mechanics. We have derived a mathematical model of this flow that incorporates a new dynamic boundary condition for the position of the grounding line, where the gravity current loses contact with the solid base. Good agreement between our theoretical predictions and our experimental measurements, made using gravity currents of syrup flowing down a rigid slope into a deep, dense salt solution, gives confidence in the fundamental assumptions of our model, which can be incorporated into shallow-ice models to make important predictions regarding the dynamical stability of marine ice sheets.
NASA Astrophysics Data System (ADS)
Gerrard, Andrew John
Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.
Experimental investigations on airborne gravimetry based on compressed sensing.
Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun
2014-03-18
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements.
Experimental Investigations on Airborne Gravimetry Based on Compressed Sensing
Yang, Yapeng; Wu, Meiping; Wang, Jinling; Zhang, Kaidong; Cao, Juliang; Cai, Shaokun
2014-01-01
Gravity surveys are an important research topic in geophysics and geodynamics. This paper investigates a method for high accuracy large scale gravity anomaly data reconstruction. Based on the airborne gravimetry technology, a flight test was carried out in China with the strap-down airborne gravimeter (SGA-WZ) developed by the Laboratory of Inertial Technology of the National University of Defense Technology. Taking into account the sparsity of airborne gravimetry by the discrete Fourier transform (DFT), this paper proposes a method for gravity anomaly data reconstruction using the theory of compressed sensing (CS). The gravity anomaly data reconstruction is an ill-posed inverse problem, which can be transformed into a sparse optimization problem. This paper uses the zero-norm as the objective function and presents a greedy algorithm called Orthogonal Matching Pursuit (OMP) to solve the corresponding minimization problem. The test results have revealed that the compressed sampling rate is approximately 14%, the standard deviation of the reconstruction error by OMP is 0.03 mGal and the signal-to-noise ratio (SNR) is 56.48 dB. In contrast, the standard deviation of the reconstruction error by the existing nearest-interpolation method (NIPM) is 0.15 mGal and the SNR is 42.29 dB. These results have shown that the OMP algorithm can reconstruct the gravity anomaly data with higher accuracy and fewer measurements. PMID:24647125
Hildenbrand, T.G.; Griscom, A.; Van Schmus, W. R.; Stuart, W.D.
1996-01-01
Analysis of gravity and magnetic anomaly data helps characterize the geometry and physical properties of the source of the Missouri gravity low, an important cratonic feature of substantial width (about 125 km) and length (> 600 km). Filtered anomaly maps show that this prominent feature extends NW from the Reelfoot rift to the Midcontinent Rift System. Geologic reasoning and the simultaneous inversion of the gravity and magnetic data lead to an interpretation that the gravity anomaly reflects an upper crustal, 11-km-thick batholith with either near vertical or outward dipping boundaries. Considering the modeled characteristics of the batholith, structural fabric of Missouri, and relations of the batholith with plutons and regions of alteration, a tectonic model for the formation of the batholith is proposed. The model includes a mantle plume that heated the crust during Late Precambrian and melted portions of lower and middle crust, from which the low-density granitic rocks forming the batholith were partly derived. The batholith, called the Missouri batholith, may be currently related to the release of seismic energy in the New Madrid seismic zone (earthquake concentrations occur at the intersection of the Missouri batholith and the New Madrid seismic zone). Three qualitative mechanical models are suggested to explain this relationship with seismicity. Copyright 1996 by the American Geophysical Union.
Photon and graviton mass limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieto, Michael; Goldhaber Scharff, Alfred
2008-01-01
We review past and current studies of possible long-distance, low-frequency deviations from Maxwell electrodynamics and Einstein gravity. Both have passed through three phases: (1) Testing the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, and (3) Considering more degrees of freedom, allowing mass while preserving gauge or general-coordinate invariance. For electrodynamics there continues to be no sign of any deviation. Since our previous review the lower limit on the photon Compton wavelength (associated with weakening of electromagnetic fields in vacuum over large distance scale) has improved by four ordersmore » of magnitude, to about one astronomical unit. Rapid current progress in astronomical observations makes it likely that there will be further advances. These ultimately could yield a bound exceeding galactic dimensions, as has long been contemplated. Meanwhile, for gravity there have been strong arguments about even the concept of a graviton rest mass. At the same time there are striking observations, commonly labeled 'dark matter' and 'dark energy' that some argue imply modified gravity. This makes the questions for gravity much more interesting. For dark matter, which involves increased attraction at large distances, any explanation by modified gravity would be qualitatively different from graviton mass. Because dark energy is associated with reduced attraction at large distances, it might be explained by a graviton-mass-like effect.« less
Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.
2016-03-02
We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.
2010-09-01
ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound
Experimental constraints on metric and non-metric theories of gravity
NASA Technical Reports Server (NTRS)
Will, Clifford M.
1989-01-01
Experimental constraints on metric and non-metric theories of gravitation are reviewed. Tests of the Einstein Equivalence Principle indicate that only metric theories of gravity are likely to be viable. Solar system experiments constrain the parameters of the weak field, post-Newtonian limit to be close to the values predicted by general relativity. Future space experiments will provide further constraints on post-Newtonian gravity.
Gravity-induced stresses near a vertical cliff
Savage, W.Z.
1993-01-01
The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin
NASA Astrophysics Data System (ADS)
Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.
2015-12-01
Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity/permeability and electrical conductivity. The formulae are based on generalized Archie's law for multiple phases. The conductive layers are interpreted as water bearing or geothermal fluids and estimated porosity and permeability indicates potential to act as geothermal aquifer.
NASA Astrophysics Data System (ADS)
King, Thomas Steven
A hybrid gravity modeling method is developed to investigate the structure of sedimentary mass bodies. The method incorporates as constraints surficial basement/sediment contacts and topography of a mass target with a quadratically varying density distribution. The inverse modeling utilizes a genetic algorithm (GA) to scan a wide range of the solution space to determine initial models and the Marquardt-Levenberg (ML) nonlinear inversion to determine final models that meet pre-assigned misfit criteria, thus providing an estimate of model variability and uncertainty. The surface modeling technique modifies Delaunay triangulation by allowing individual facets to be manually constructed and non-convex boundaries to be incorporated into the triangulation scheme. The sedimentary body is represented by a set of uneven prisms and edge elements, comprised of tetrahedrons, capped by polyhedrons. Each underlying prism and edge element's top surface is located by determining its point of tangency with the overlying terrain. The remaining overlying mass is gravitationally evaluated and subtracted from the observation points. Inversion then proceeds in the usual sense, but on an irregular tiered surface with each element's density defined relative to their top surface. Efficiency is particularly important due to the large number of facets evaluated for surface representations and the many repeated element evaluations of the stochastic GA. The gravitation of prisms, triangular faceted polygons, and tetrahedrons can be formulated in different ways, either mathematically or by physical approximations, each having distinct characteristics, such as evaluation time, accuracy over various spatial ranges, and computational singularities. A decision tree or switching routine is constructed for each element by combining these characteristics into a single cohesive package that optimizes the computation for accuracy and speed while avoiding singularities. The GA incorporates a subspace technique and parameter dependency to maintain model smoothness during development, thus minimizing creating nonphysical models. The stochastic GA explores the solution space, producing a broad range of unbiased initial models, while the ML inversion is deterministic and thus quickly converges to the final model. The combination allows many solution models to be determined from the same observed data.
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Martín-Español, Alba; Horvath, Alexander; Klemann, Volker; Petrie, Elizabeth J.; Wouters, Bert; Horwath, Martin; Pail, Roland; Bamber, Jonathan L.; Clarke, Peter J.; Konrad, Hannes; Wilson, Terry; Drinkwater, Mark R.
2018-03-01
The poorly known correction for the ongoing deformation of the solid Earth caused by glacial isostatic adjustment (GIA) is a major uncertainty in determining the mass balance of the Antarctic ice sheet from measurements of satellite gravimetry and to a lesser extent satellite altimetry. In the past decade, much progress has been made in consistently modeling ice sheet and solid Earth interactions; however, forward-modeling solutions of GIA in Antarctica remain uncertain due to the sparsity of constraints on the ice sheet evolution, as well as the Earth's rheological properties. An alternative approach towards estimating GIA is the joint inversion of multiple satellite data - namely, satellite gravimetry, satellite altimetry and GPS, which reflect, with different sensitivities, trends in recent glacial changes and GIA. Crucial to the success of this approach is the accuracy of the space-geodetic data sets. Here, we present reprocessed rates of surface-ice elevation change (Envisat/Ice, Cloud,and land Elevation Satellite, ICESat; 2003-2009), gravity field change (Gravity Recovery and Climate Experiment, GRACE; 2003-2009) and bedrock uplift (GPS; 1995-2013). The data analysis is complemented by the forward modeling of viscoelastic response functions to disc load forcing, allowing us to relate GIA-induced surface displacements with gravity changes for different rheological parameters of the solid Earth. The data and modeling results presented here are available in the PANGAEA database (https://doi.org/10.1594/PANGAEA.875745). The data sets are the input streams for the joint inversion estimate of present-day ice-mass change and GIA, focusing on Antarctica. However, the methods, code and data provided in this paper can be used to solve other problems, such as volume balances of the Antarctic ice sheet, or can be applied to other geographical regions in the case of the viscoelastic response functions. This paper presents the first of two contributions summarizing the work carried out within a European Space Agency funded study: Regional glacial isostatic adjustment and CryoSat elevation rate corrections in Antarctica (REGINA).
NASA Technical Reports Server (NTRS)
Davis, John H.
1993-01-01
Lunar spherical harmonic gravity coefficients are estimated from simulated observations of a near-circular low altitude polar orbiter disturbed by lunar mascons. Lunar gravity sensing missions using earth-based nearside observations with and without satellite-based far-side observations are simulated and least squares maximum likelihood estimates are developed for spherical harmonic expansion fit models. Simulations and parameter estimations are performed by a modified version of the Smithsonian Astrophysical Observatory's Planetary Ephemeris Program. Two different lunar spacecraft mission phases are simulated to evaluate the estimated fit models. Results for predicting state covariances one orbit ahead are presented along with the state errors resulting from the mismodeled gravity field. The position errors from planning a lunar landing maneuver with a mismodeled gravity field are also presented. These simulations clearly demonstrate the need to include observations of satellite motion over the far side in estimating the lunar gravity field. The simulations also illustrate that the eighth degree and order expansions used in the simulated fits were unable to adequately model lunar mascons.
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Mandelbaum, R.; Seljak, U.; Gunn, J.; Lombriser, L.
2009-01-01
We perform a test of gravity on large scales (5-50 Mpc/h) using 70,000 luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) DR7 with redshifts 0.16
NASA Astrophysics Data System (ADS)
Yu, H.; Gu, H.
2017-12-01
A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.
On global gravity anomalies and two-scale mantle convection
NASA Technical Reports Server (NTRS)
Marsh, B. D.; Marsh, J. G.
1976-01-01
The two-scale model of mantle convection developed by Richter and Parsons (1975) predicts that if the depth of the convective layer is about 600 km, then for a plate moving at 10 cm/yr, longitudinal convective rolls will be produced in about 50 million years, and the strike of these rolls indicates the direction of motion of the plate relative to the upper mantle. The paper tests these predictions by examining a new global free air gravity model complete to the 30th degree and order. The free air gravity map developed shows a series of linear positive and negative anomalies (with transverse wavelengths of about 2000 km) spanning the Pacific Ocean, crossing the Pacific rise and striking parallel to the Hawaiian seamounts. It is suggested that the pattern of these anomalies may indicate the presence of longitudinal convective rolls beneath the Pacific plates, a result which tends to support the predictions of Richter and Parsons.
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
NASA Astrophysics Data System (ADS)
Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.
2017-12-01
Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.
NASA Astrophysics Data System (ADS)
Duff, P.; Kellogg, J. N.
2017-12-01
To better constrain the structure of the Laurentian - Peri-Gondwana suture zone, maps and a 2-dimensional regional cross-section model constrained by seismic data and surface geology have been developed by forward and inverse modeling the aeromagnetic and gravity fields. The Central Piedmont Suture (CPS), the boundary between the Laurentian Inner Piedmont and the Peri-Gondwanan Carolina terrane is a low-angle thrust fault ( 30°) ramping up from an Alleghanian mid-crustal detachment at depths of about 12 km. ADCOH and COCORP seismic data image anticlinal structures in the footwalls of the Hayesville thrust and the CPS, above the Alleghanian decollement. The footwall rocks have previously been interpreted as Paleozoic shelf strata on the basis of sub-horizontal seismic reflectors; however, the high densities required to fit the observed gravity anomaly suggest that the folded footwall reflectors may need to be reinterpreted as horse blocks or duplex structures of Grenvillian basement. The Appalachian paired gravity anomaly can be explained by an increase in crustal thickness and a decrease in upper crustal density moving northwestward from the Carolina Terrane toward the Appalachian core. A change in lower crustal density is not required, so that Grenville basement rocks may extend farther to the southeast than previously thought. The 5 to 10 km of Alleghanian uplift and exhumation predicted by P-T crystallization data compiled in this paper can be easily accommodated by thrusting on four major low-angle thrust systems: Great Smoky Mountain Thrust (GSMT), Hayesville, Brevard, and CPS. Unroofing of metamorphic core complexes by normal faulting may therefore not be required to explain the observed exhumation. Alleghanian collision along the southeastern Appalachian margin was predominately orthogonal to strike consistent with the previous reconstructions that call for the counter-clockwise rotation of Gondwanan West Africa, creating head-on collision in the southern Appalachians and at least 370 km of shortening.
Steady State Model for Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Sugiyama, L.; Asgari-Targhi, M.
2017-12-01
Solar coronal loops on the surface of the sun provide background magnetic and plasma structures for the release of a significant amount of the sun's energy, through energetic solar flares and coronal mass ejections and more gradual processes. Understanding their steady states is the first step in understanding loop dynamics. A consistent MHD steady state model, for a curved magnetic flux rope that contains plasma, has been developed[1] for simple coronal loops with both ends anchored in the photosphere. Plasma pressure or current makes the loop unstable to expansion in major radius and must be balanced by external forces, such as the solar gravity. The MHD momentum equation has a well defined small parameter ordering in the loop inverse aspect ratio ɛ=a/Ro (minor/major radius). Different types of common coronal loops fall in different parameter regimes, determined by the relative values of the plasma beta β=po/(Bo2/2μo), the MHD gravity parameter Ĝ≡ga/vA2 (the gravitational acceleration g normalized to the minor radius a and shear Alfvén velocity vA), and ɛ. The largest possible gravity, Ĝ ɛ1β, corresponds to the largest loops because it reduces the plasma density at the top of the loop exponentially compared to its lower ends, reducing the downward gravitational force -ρĜ there. The thin loops that are ubiquitous in solar active regions have ``high'' beta, β ɛ1, for ɛ≃0.02, and fit the predicted model scalings. The thicker loops that can give rise to flares and CMEs have ``low'' beta, β ɛ2. Cool loops, such as solar filaments outside active regions, that have a central pressure lower than that of the surrounding corona would have the strongest stability against radial expansion. The model raises a number of questions about the connection of loops to the photosphere and the force-free nature of the magnetic field there. [1] L. Sugiyama, M. Asgari-Targhi, Phys. Plasmas 24, 022904 (2017).
Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity.
Rovelli, Carlo; Vidotto, Francesca
2013-08-30
A simple argument indicates that covariant loop gravity (spin foam theory) predicts a maximal acceleration and hence forbids the development of curvature singularities. This supports the results obtained for cosmology and black holes using canonical methods.
Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames
NASA Astrophysics Data System (ADS)
Demarco, R.; Nmira, F.; Consalvi, J. L.
2013-05-01
The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK) model can be then substituted for the SNBCK with a reduction in CPU time by a factor of about 20 in the latter case.
Geodynamics and temporal variations in the gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, D. C.; Wagner, C. A.
1989-01-01
Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.
Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan
2014-02-01
The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on average. (vi) The computations were performed on an ordinary PC up to maximum degree and order 120. We applied the presented method to orbits of CHAMP and GRACE spanning seven years (2003-2009) and to two months of GOCE (Nov/Dec 2009). The obtained long-term static gravity field models are of similar or better quality compared to other published solutions. We also tried to extract the time-variable gravity signal from CHAMP and GRACE orbits. The acquired average annual signal shows clearly the continental areas with important and known hydrological variations.
NASA Astrophysics Data System (ADS)
Chen, Shi; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou; Zhuang, Jiancang
2017-04-01
The relative gravimeter, which generally uses zero-length springs as the gravity senor, is still as the first choice in the field of terrestrial gravity measurement because of its efficiency and low-cost. Because the drift rate of instrument can be changed with the time and meter, it is necessary for estimating the drift rate to back to the base or known gravity value stations for repeated measurement at regular hour's interval during the practical survey. However, the campaigned gravity survey for the large-scale region, which the distance of stations is far away from serval or tens kilometers, the frequent back to close measurement will highly reduce the gravity survey efficiency and extremely time-consuming. In this paper, we proposed a new gravity data adjustment method for estimating the meter drift by means of Bayesian statistical interference. In our approach, we assumed the change of drift rate is a smooth function depend on the time-lapse. The trade-off parameters were be used to control the fitting residuals. We employed the Akaike's Bayesian Information Criterion (ABIC) for the estimated these trade-off parameters. The comparison and analysis of simulated data between the classical and Bayesian adjustment show that our method is robust and has self-adaptive ability for facing to the unregularly non-linear meter drift. At last, we used this novel approach to process the realistic campaigned gravity data at the North China. Our adjustment method is suitable to recover the time-varied drift rate function of each meter, and also to detect the meter abnormal drift during the gravity survey. We also defined an alternative error estimation for the inversed gravity value at the each station on the basis of the marginal distribution theory. Acknowledgment: This research is supported by Science Foundation Institute of Geophysics, CEA from the Ministry of Science and Technology of China (Nos. DQJB16A05; DQJB16B07), China National Special Fund for Earthquake Scientific Research in Public Interest (Nos. 201508006; 201508009).
Direction-dependent arm kinematics reveal optimal integration of gravity cues.
Gaveau, Jeremie; Berret, Bastien; Angelaki, Dora E; Papaxanthis, Charalambos
2016-11-02
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.
Multiscale estimation of excess mass from gravity data
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Fedi, Maurizio; Florio, Giovanni
2014-06-01
We describe a multiscale method to estimate the excess mass of gravity anomaly sources, based on the theory of source moments. Using a multipole expansion of the potential field and considering only the data along the vertical direction, a system of linear equations is obtained. The choice of inverting data along a vertical profile can help us to reduce the interference effects due to nearby anomalies and will allow a local estimate of the source parameters. A criterion is established allowing the selection of the optimal highest altitude of the vertical profile data and truncation order of the series expansion. The inversion provides an estimate of the total anomalous mass and of the depth to the centre of mass. The method has several advantages with respect to classical methods, such as the Gauss' method: (i) we need just a 1-D inversion to obtain our estimates, being the inverted data sampled along a single vertical profile; (ii) the resolution may be straightforward enhanced by using vertical derivatives; (iii) the centre of mass is also estimated, besides the excess mass; (iv) the method is very robust versus noise; (v) the profile may be chosen in such a way to minimize the effects from interfering anomalies or from side effects due to the a limited area extension. The multiscale estimation of excess mass method can be successfully used in various fields of application. Here, we analyse the gravity anomaly generated by a sulphide body in the Skelleftea ore district, North Sweden, obtaining source mass and volume estimates in agreement with the known information. We show also that these estimates are substantially improved with respect to those obtained with the classical approach.
NASA Technical Reports Server (NTRS)
Ross, Graham O.
1994-01-01
This paper describes the status and plans for the work being performed under NASA NRA contract NASW-4803 so that members of the Microgravity Fluid Dynamics Discipline Working Group are aware of this program. The contract is a cross-disciplinary research program and is administered under the Low Temperature Microgravity Research Program at the Jet Propulsion Laboratory. The purpose of the project is to perform low-gravity verification experiments on the slosh behavior of He II to use in the development of a CFD model that incorporates the two-fluid physics of He II. The two-fluid code predicts a different fluid motion response in low-gravity environment from that predicted by a single-fluid model, while the 1g response is identical for the both types of model.
New perspectives on an old problem: The bending of light in Yang-Mills gravity
NASA Astrophysics Data System (ADS)
Cottrell, Kazuo Ota; Hsu, Jong-Ping
Yang-Mills gravity with electromagnetism predicts, in the geometric optics limit, a value for the deflection of light by the sun which agrees closely with the reanalysis of Eddington's 1919 optical measurements done in 1979. Einstein's General Theory of Relativity, on the other hand, agrees very closely with measurements of the deflection of electromagnetic waves made in the range of radio frequencies. Since both General Relativity and Yang-Mills gravity with electromagnetism in the geometric optics limit make predictions for the optical region which fall within experimental uncertainty, it becomes important to consider the possibility of the existence of a frequency dependence in the measurement results for the deflection of light, in order to determine which theory more closely describes nature...
NASA Astrophysics Data System (ADS)
Langenheim, V. E.; Jachens, R. C.; Morin, R. L.; McCabe, C. M.; Page, W. D.
2007-12-01
We use new gravity and magnetic data in the Lake Pillsbury region to help understand the geometry and character of the Bartlett Springs fault zone, one of the three main strands of the San Andreas system north of the San Francisco Bay area. We collected 153 new gravity stations in the Lake Pillsbury region that complement the sparse regional dataset and are used to estimate the thickness of Quaternary deposits in the inferred Gravelly Valley (Lake Pillsbury) pull-apart basin. We also collected 38 line-km of ground magnetic data on roads and 65 line-km by boat on the lake to supplement regional aeromagnetic surveys and to map concealed fault strands beneath the lake. The new gravity data show a significant northwest-striking gravity gradient at the base of which lies the Bartlett Springs fault zone. Superposed on this major east-facing gravity gradient is a 5 mGal low centered on Lake Pillsbury and Gravelly Valley. Inversion of the gravity field for basin thickness assuming a density contrast of 400 kg/m3 indicates the deepest part of the basin is about 400 m and located in the northern part of the valley, although the inversion lacks gravity stations within the lake. The basin is about 3 km wide and 5 km long and basin edges coincide with strands of the Bartlett Springs fault zone. Our gravity data suggest that Potter Valley, which lies between the Maacama and Bartlett Springs faults, is also as much as 400 m deep in the southern part of the valley, although additional data west of the valley would better isolate the gravity low. Geomorphologic characteristics of the valley suggest that this structure has been quiescent during the late Quaternary. Ground magnetic data are very noisy but the data in conjunction with 9.6 km-spaced NURE aeromagnetic lines suggest that regional analog aeromagnetic data flown in 1962 may suffer from location errors. The regional and NURE data show a northwest-striking magnetic high that extends across Lake Pillsbury. The northeast edge of this anomaly, caused by ultramafic rocks, coincides with the Bartlett Springs fault zone for nearly 15 km. Lake magnetic data indicate as many as three right-stepping strands of the Bartlett Springs fault zone within the gravity- defined pull-apart basin. Two pairs of magnetic anomalies appear to be dextrally offset along the fault, arguing for about 8-9 km of cumulative offset on the fault since the passage of the triple junction at about 3.5 Ma. This estimate is similar to proposed offsets of the Eel River (8.6-10.9 km) at Lake Pillsbury. The minimum long-term slip rate is thus 2.3-3.1 mm/yr, considerably slower than geodetic rates of 5-8 mm/yr. Seismicity forms a 5-km-wide diffuse zone along the Bartlett Springs fault zone in the Lake Pillsbury area, with fewer earthquakes about 5 km northwest of the lake and its associated magnetic anomaly. The McCreary Glade seismicity lineament, located between Potter Valley and Lake Pillsbury, has been attributed to a dike intrusion at depth or reactivation of an older structure. These earthquakes coincide with the northeast edge of a 100-km-long belt of aeromagnetic anomalies and thus appear to have reactivated an older basement feature. The coincidence of the Bartlett Springs fault zone and significant gravity gradients also argues that the much younger fault zone has reactivated older basement features. Our analysis shows that a modern, high-resolution aeromagnetic survey is needed to confirm these preliminary interpretations.
Magma Intrusion at Mount St. Helens, Washington, from Temporal Gravity Variations
NASA Astrophysics Data System (ADS)
Battaglia, Maurizio; Lisowski, Mike; Dzursin, Dan; Poland, Mike; Schilling, Steve; Diefenbach, Angie; Wynn, Jeff
2017-04-01
Mount St. Helens is a stratovolcano in the Pacific Northwest region of the United States, best known for its explosive eruption in May 1980 - deadliest and most economically destructive volcanic event in US history. Volcanic activity renewed in September 2004 with a dome forming eruption that lasted until 2008. This eruption was surprising because the preceding four years had seen the fewest earthquakes and no significant deformation since the 1980-86 eruption ended. After the dome forming eruption ended in July 2008, the volcano seismic activity and deformation went back to background values. Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. A high-precision gravity monitoring network (referenced to a base station 36 km NW of the volcano) was set up at Mount St Helens in 2010. Measurements were made at 12 sites on the volcano (at altitudes between 1200 and 2350 m a.s.l.) and 4 sites far afield during the summers of 2010, 2012, and 2014. The repeated gravity measurements revealed an increase in gravity between 2010 and 2014. Positive residual gravity anomalies remained after accounting for changes in surface height, in the Crater Glacier, and in the shallow hydrothermal aquifer. The pattern of residual gravity changes, with a maximum of 57±12 μGal from 2010 to 2014, is radially symmetric and centered on the 2004-08 lava dome. Inversion of the residual gravity signal points to a source 2.5-4 km beneath the crater floor (i.e., in the magma conduit that fed eruptions in 1980-86 and 2004-08). We attribute the gravity increase to re-inflation of the magma plumbing system following the 2004-8 eruption. Recent seismic activity (e.g., the seismic swarm of March 2016) has been interpreted as a response to the slow recharging of the volcano magma chamber.
Distributed RF Tomography for Tunnel Detection: Suitable Inversion Schemes
2009-01-01
methods, ranging from seismic to electromagnetic waves, or from gravity to optics, from impedance tomography to magnetotellurics, no technique...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Borehole GPR, which may...one manner to different targets (when targets are well-resolved). In particular, the wavefront generated by the array , when excited by one of these
Cosmological perturbations in teleparallel Loop Quantum Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro, Jaime, E-mail: jaime.haro@upc.edu
2013-11-01
Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce providedmore » by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.« less
Modelling airborne gravity data by means of adapted Space-Wise approach
NASA Astrophysics Data System (ADS)
Sampietro, Daniele; Capponi, Martina; Hamdi Mansi, Ahmed; Gatti, Andrea
2017-04-01
Regional gravity field modelling by means of remove - restore procedure is nowadays widely applied to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.) in gravimetric geoid determination as well as in exploration geophysics. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are generally adopted. However due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc. airborne data are contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations both in the low and high frequency should be applied to recover valuable information. In this work, a procedure to predict a grid or a set of filtered along track gravity anomalies, by merging GGM and airborne dataset, is presented. The proposed algorithm, like the Space-Wise approach developed by Politecnico di Milano in the framework of GOCE data analysis, is based on a combination of along track Wiener filter and Least Squares Collocation adjustment and properly considers the different altitudes of the gravity observations. Among the main differences with respect to the satellite application of the Space-Wise approach there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too. In the end, the goodness of the procedure is evaluated by means of a test on real data recovering the gravitational signal with a predicted accuracy of about 0.25 mGal.
Clinostat exposure and symmetrization of frog eggs
NASA Technical Reports Server (NTRS)
Nace, G. W.; Tremor, J. W.
1982-01-01
Since the orientation of unfertilized eggs and the righting of eggs after grey crescent formation do not affect the axes, attention here is directed toward a comparative study of the initial rotation of the fertilized egg, the so-called rotation of orientation (R-of-O). The goal of the investigation is to determine the timing and dynamics of the R-of-O (as distinct from inversion rotations), to confirm prior observations, and to examine the influence of gravity compensation at periods that might be crucial. Gravity compensation for 1 hr during the R-of-O is found to yield fewer abnormalities. It is hypothesized that it changes the axes and that return to normal conditions permits regulation. Longer exposure is found to yield more abnormalities, perhaps by perturbing both the action of the aster and regulation.
Gravity fields of the solar system
NASA Technical Reports Server (NTRS)
Zendell, A.; Brown, R. D.; Vincent, S.
1975-01-01
The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.
Raichlen, David A
2008-09-01
The dynamic similarity hypothesis (DSH) suggests that differences in animal locomotor biomechanics are due mostly to differences in size. According to the DSH, when the ratios of inertial to gravitational forces are equal between two animals that differ in size [e.g. at equal Froude numbers, where Froude = velocity2/(gravity x hip height)], their movements can be made similar by multiplying all time durations by one constant, all forces by a second constant and all linear distances by a third constant. The DSH has been generally supported by numerous comparative studies showing that as inertial forces differ (i.e. differences in the centripetal force acting on the animal due to variation in hip heights), animals walk with dynamic similarity. However, humans walking in simulated reduced gravity do not walk with dynamically similar kinematics. The simulated gravity experiments did not completely account for the effects of gravity on all body segments, and the importance of gravity in the DSH requires further examination. This study uses a kinematic model to predict the effects of gravity on human locomotion, taking into account both the effects of gravitational forces on the upper body and on the limbs. Results show that dynamic similarity is maintained in altered gravitational environments. Thus, the DSH does account for differences in the inertial forces governing locomotion (e.g. differences in hip height) as well as differences in the gravitational forces governing locomotion.
Mars - Crustal structure inferred from Bouguer gravity anomalies.
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Saunders, R. S.; Conel, J. E.
1973-01-01
Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.
Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro
2001-01-01
This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.
Circulation-based Modeling of Gravity Currents
NASA Astrophysics Data System (ADS)
Meiburg, E. H.; Borden, Z.
2013-05-01
Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.
Was Newton right? A search for non-Newtonian behavior of weak-field gravity
NASA Astrophysics Data System (ADS)
Boynton, Paul; Moore, Michael; Newman, Riley; Berg, Eric; Bonicalzi, Ricco; McKenney, Keven
2014-06-01
Empirical tests of Einstein's metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton's theory by assuring that the linearized equations of GTR matched the Newtonian formalism under "classical" conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.
Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica
2017-07-11
Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica
Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less
Observations of high manganese layers by the Curiosity rover at the Kimberley, Gale crater, Mars
NASA Astrophysics Data System (ADS)
Lanza, N.; Wiens, R. C.; Fischer, W. W.; Grotzinger, J. P.; Cousin, A.; Rice, M. S.; Clark, B. C.; Arvidson, R. E.; Hurowitz, J.; Gellert, R.; McLennan, S. M.; Maurice, S.; Mangold, N.; Le Mouelic, S.; Anderson, R. B.; Nachon, M.; Ollila, A.; Schmidt, M. E.; Berger, J. A.; Blank, J. G.; Clegg, S. M.; Forni, O.; Hardgrove, C. J.; Hardy, K.; Johnson, J. R.; Melikechi, N.; Newsom, H. E.; Sautter, V.; Martín-Torres, J.; Zorzano, M. P.
2014-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
Inverse cascades and resonant triads in rotating and stratified turbulence
NASA Astrophysics Data System (ADS)
Oks, D.; Mininni, P. D.; Marino, R.; Pouquet, A.
2017-11-01
Kraichnan's seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very large scales but which requires considering three-dimensional effects to fully describe turbulent transport processes and non-linear phenomena. Motions can thus be classified into two classes: fast modes consisting of inertia-gravity waves and slow quasi-geostrophic modes for which the Coriolis force and horizontal pressure gradients are close to balance. In this paper, we review previous results on the strength of the inverse cascade in rotating and stratified flows and then present new results on the effect of varying the strength of rotation and stratification (measured by the inverse Prandtl ratio N/f, of the Coriolis frequency to the Brunt-Väisäla frequency) on the amplitude of the waves and on the flow quasi-geostrophic behavior. We show that the inverse cascade is more efficient in the range of N/f for which resonant triads do not exist, 1 /2 ≤N /f ≤2 . We then use the spatio-temporal spectrum to show that in this range slow modes dominate the dynamics, while the strength of the waves (and their relevance in the flow dynamics) is weaker.
Entanglement of purification through holographic duality
NASA Astrophysics Data System (ADS)
Umemoto, Koji; Takayanagi, Tadashi
2018-06-01
The gauge/gravity correspondence discovered two decades ago has had a profound influence on how the basic laws in physics should be formulated. In spite of the predictive power of holographic approaches (for example, when they are applied to strongly coupled condensed-matter physics problems), the fundamental reasons behind their success remain unclear. Recently, the role of quantum entanglement has come to the fore. Here we explore a quantity that connects gravity and quantum information in the light of the gauge/gravity correspondence. This is given by the minimal cross-section of the entanglement wedge that connects two disjoint subsystems in a gravity dual. In particular, we focus on various inequalities that are satisfied by this quantity. They suggest that it is a holographic counterpart of the quantity called entanglement of purification, which measures a bipartite correlation in a given mixed state. We give a heuristic argument that supports this identification based on a tensor network interpretation of holography. This predicts that the entanglement of purification satisfies the strong superadditivity for holographic conformal field theories.
NASA Astrophysics Data System (ADS)
Wang, Jun; Wang, Yang; Zeng, Hui
2016-01-01
A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.
NASA Astrophysics Data System (ADS)
Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua
2018-01-01
Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.
Moho depth model for the Central Asian Orogenic Belt from satellite gravity gradients
NASA Astrophysics Data System (ADS)
Guy, Alexandra; Holzrichter, Nils; Ebbing, Jörg
2017-09-01
The main purpose of this study is to construct a new 3-D model of the Central Asian Orogenic Belt (CAOB) crust, which can be used as a starting point for future lithospheric studies. The CAOB is a Paleozoic accretionary orogen surrounded by the Siberian Craton to the north and the North China and Tarim Cratons to the south. This area is of great interest due to its enigmatic and still not completely understood geodynamic evolution. First, we estimate an initial crustal thickness by inversion of the vertical gravity component of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) and DTU10 models. Second, 3-D forward modeling of the GOCE gravity gradients is performed, which determines the topography of the Moho, the geometry, and the density distribution of the deeper parts of the CAOB and its surroundings, taking into account the lateral and vertical density variations of the crust. The model is constrained by seismic refraction, reflection, and receiver function studies and geological studies. In addition, we discuss the isostatic implications of the differences between the seismic Moho and the resulting 3-D gravity Moho, complemented by the analysis of the lithostatic load distribution at the upper mantle level. Finally, the correlation between the contrasting tectonic domains and the thickness of the crust reveals the inheritance of Paleozoic and Mesozoic geodynamics, particularly the magmatic provinces and the orocline which preserve their crustal features.
Bojados, Mickael; Jamon, Marc
2014-05-01
Adult male mice C57Bl6/J were exposed to gravity levels between 1G and 4G during three weeks, and the long-term consequences on muscular, vestibular, emotional, and cognitive abilities were evaluated at the functional level to test the hypothesis of a continuum in the response to the increasing gravitational force. In agreement with the hypothesis, the growth of body mass slowed down in relation with the gravity level during the centrifugation, and weight recovery was inversely proportional. On the other hand, the long-term consequences on muscular, vestibular, emotional, and cognitive abilities did not fit the hypothesis of a continuum in the response to the gravity level. The hypergravity acted as endurance training on muscle force until 3G, then became deleterious at 4G. The vestibular reactions were not affected until 4G. Persistent emotional reactions appeared at 3G, and particularly 4G. The mice centrifuged at 3G and 4G showed an impaired spatial learning, probably in relation with the increased level of anxiety, but a greater difficulty was also observed in mice exposed at 2G, suggesting another cause for the impairment of spatial memory. The long-term response to the hypergravity was shown to depend on both the level of gravity and the duration of exposition, with different importance depending on the function considered. Copyright © 2014 Elsevier B.V. All rights reserved.
Recombination rate predicts inversion size in Diptera.
Cáceres, M; Barbadilla, A; Ruiz, A
1999-01-01
Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan
2017-04-01
Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation. Reference: Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381-9397, doi:10.5194/acp-16-9381-2016, 2016.
Wake Vortex Inverse Model User's Guide
NASA Technical Reports Server (NTRS)
Lai, David; Delisi, Donald
2008-01-01
NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input file, with preferred parameters values, is given in Appendix A. An example of the plot generated at a normal completion of the inversion is shown in Appendix B.
Visual gravity cues in the interpretation of biological movements: neural correlates in humans.
Maffei, Vincenzo; Indovina, Iole; Macaluso, Emiliano; Ivanenko, Yuri P; A Orban, Guy; Lacquaniti, Francesco
2015-01-01
Our visual system takes into account the effects of Earth gravity to interpret biological motion (BM), but the neural substrates of this process remain unclear. Here we measured functional magnetic resonance (fMRI) signals while participants viewed intact or scrambled stick-figure animations of walking, running, hopping, and skipping recorded at normal or reduced gravity. We found that regions sensitive to BM configuration in the occipito-temporal cortex (OTC) were more active for reduced than normal gravity but with intact stimuli only. Effective connectivity analysis suggests that predictive coding of gravity effects underlies BM interpretation. This process might be implemented by a family of snapshot neurons involved in action monitoring. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Schredder, J. M.
1988-01-01
A comparative analysis was performed, using both the Geometrical Theory of Diffraction (GTD) and traditional pathlength error analysis techniques, for predicting RF antenna gain performance and pointing corrections. The NASA/JPL 70 meter antenna with its shaped surface was analyzed for gravity loading over the range of elevation angles. Also analyzed were the effects of lateral and axial displacements of the subreflector. Significant differences were noted between the predictions of the two methods, in the effect of subreflector displacements, and in the optimal subreflector positions to focus a gravity-deformed main reflector. The results are of relevance to future design procedure.
Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.
1980-01-01
The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng
2017-11-18
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.
A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments
Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang
2017-01-01
A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587
An integrated approach to evaluate the Aji-Chai potash resources in Iran using potential field data
NASA Astrophysics Data System (ADS)
Abedi, Maysam
2018-03-01
This work presents an integrated application of potential field data to discover potash-bearing evaporite sources in Aji-Chai salt deposit, located in east Azerbaijan province, northwest of Iran. Low density and diamagnetic effect of salt minerals, i.e. potash, give rise to promising potential field anomalies that assist to localize sought blind targets. The halokinetic-type potash-bearing salts in the prospect zone have flowed upward and intruded into surrounded sedimentary sequences dominated frequently by marl, gypsum and alluvium terraces. Processed gravity and magnetic data delineated a main potash source with negative gravity and magnetic amplitude responses. To better visualize these evaporite deposits, 3D model of density contrast and magnetic susceptibility was constructed through constrained inversion of potential field data. A mixed-norm regularization technique was taken into account to generate sharp and compact geophysical models. Since tectonic pressure causes vertical movement of the potash in the studied region, a simple vertical cylindrical shape is an appropriate geometry to simulate these geological targets. Therefore, structural index (i.e. decay rate of potential field amplitude with distance) of such assumed source was embedded in the inversion program as a geometrical constraint to image these geologically plausible sources. In addition, the top depth of the main and the adjacent sources were estimated 39 m and 22 m, respectively, via the combination of the analytic signal and the Euler deconvolution techniques. Drilling result also indicated that the main source of potash starts at a depth of 38 m. The 3D models of the density contrast and the magnetic susceptibility (assuming a superficial sedimentary cover as a hard constraint in the inversion algorithm) demonstrated that potash source has an extension in depth less than 150 m.
Galaxy-galaxy weak gravitational lensing in f(R) gravity
NASA Astrophysics Data System (ADS)
Li, Baojiu; Shirasaki, Masato
2018-03-01
We present an analysis of galaxy-galaxy weak gravitational lensing (GGL) in chameleon f(R) gravity - a leading candidate of non-standard gravity models. For the analysis, we have created mock galaxy catalogues based on dark matter haloes from two sets of numerical simulations, using a halo occupation distribution (HOD) prescription which allows a redshift dependence of galaxy number density. To make a fairer comparison between the f(R) and Λ cold dark matter (ΛCDM) models, their HOD parameters are tuned so that the galaxy two-point correlation functions in real space (and therefore the projected two-point correlation functions) match. While the f(R) model predicts an enhancement of the convergence power spectrum by up to ˜ 30 per cent compared to the standard ΛCDM model with the same parameters, the maximum enhancement of GGL is only half as large and less than 5 per cent on separations above ˜1-2 h-1 Mpc, because the latter is a cross-correlation of shear (or matter, which is more strongly affected by modified gravity) and galaxy (which is weakly affected given the good match between galaxy autocorrelations in the two models) fields. We also study the possibility of reconstructing the matter power spectrum by combination of GGL and galaxy clustering in f(R) gravity. We find that the galaxy-matter cross-correlation coefficient remains at unity down to ˜2-3 h-1 Mpc at relevant redshifts even in f(R) gravity, indicating joint analysis of GGL and galaxy clustering can be a powerful probe of matter density fluctuations in chameleon gravity. The scale dependence of the model differences in their predictions of GGL can potentially allows us to break the degeneracy between f(R) gravity and other cosmological parameters such as Ωm and σ8.
First tomographic observations of gravity waves by the infrared limb imager GLORIA
NASA Astrophysics Data System (ADS)
Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin
2017-12-01
Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.
NASA Technical Reports Server (NTRS)
Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.
2004-01-01
We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.
Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer
NASA Astrophysics Data System (ADS)
Wei, Tao; Duan, Fei
2018-03-01
We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.
Quantum gravity boundary terms from the spectral action of noncommutative space.
Chamseddine, Ali H; Connes, Alain
2007-08-17
We study the boundary terms of the spectral action of the noncommutative space, defined by the spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary term required for consistency of quantum gravity with the correct sign and coefficient. This is a remarkable result given the lack of freedom in the spectral action to tune this term.
Impact cratering in reduced-gravity environments: Early experiments on the NASA KC-135 aircraft
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Hoerz, F.; See, T. H.
1987-01-01
Impact experimentation on the NASA KC-135 Reduced-Gravity Aircraft was shown to be possible, practical, and of considerable potential use in examining the role of gravity on various impact phenomena. With a minimal facility, crater dimensional and growth-times were measured, and have demonstrated both agreement and disagreement with predictions. A larger facility with vacuum capability and a high-velocity gun would permit a much wider range of experimentation.
Preliminary magnetotelluric results across Dalma Volcanics, Eastern India: Inferences on metallogeny
NASA Astrophysics Data System (ADS)
Maurya, Ved P.; Shalivahan; Bhattacharya, B. B.; Adhikari, P. K.; Das, L. K.
2015-04-01
The regional magnetotelluric (MT) survey across Dalma Volcanics (DVs) in North Singhbhum Mobile Belt (NSMB) was carried out to obtain the conductivity model and to understand the metallogeny. The structure in general is 2-D and the average strike is N60°W. 2-D inversions using TE + TM and TE + TM + Tzy were carried out. Both inversions derived models with similar features but with modified shape. The TE + TM + Tzy inversion brings up two conducting zones enveloping three anomalous conducting bodies. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of the samples collected from 8 to 10 m pit from different stratigraphic units of Dalma volcano-sedimentary belt indicates the presence of gold, silver, uranium and copper. The study area is a felsic dominated rifted margin and shows high conductivity contrast along with high gravity, magnetic and significant radiometric anomaly. Thus, the conducting zones indicate the presence of volcanogenic massive sulfide (VMS) or volcano hosted gold deposit (Au-VMS) in NSMB.
Application of neural models as controllers in mobile robot velocity control loop
NASA Astrophysics Data System (ADS)
Cerkala, Jakub; Jadlovska, Anna
2017-01-01
This paper presents the application of an inverse neural models used as controllers in comparison to classical PI controllers for velocity tracking control task used in two-wheel, differentially driven mobile robot. The PI controller synthesis is based on linear approximation of actuators with equivalent load. In order to obtain relevant datasets for training of feed-forward multi-layer perceptron based neural network used as neural model, the mathematical model of mobile robot, that combines its kinematic and dynamic properties such as chassis dimensions, center of gravity offset, friction and actuator parameters is used. Neural models are trained off-line to act as an inverse dynamics of DC motors with particular load using data collected in simulation experiment for motor input voltage step changes within bounded operating area. The performances of PI controllers versus inverse neural models in mobile robot internal velocity control loops are demonstrated and compared in simulation experiment of navigation control task for line segment motion in plane.
Geophysical signatures and modeling results from a buried impact structure in Decorah, Iowa, USA
NASA Astrophysics Data System (ADS)
Kass, A.; Bedrosian, P.; Drenth, B.; Bloss, B. R.; McKay, R.; Liu, H. P.; French, B.; Witzke, B.
2013-12-01
The Decorah Impact Structure is a probable buried impact crater of Middle Ordovician age located in Northeast Iowa, USA. Originally hypothesized by the Iowa Geological and Water Survey though identification of a unique shale layer and shocked quartz from borehole samples, the 5.5 km diameter structure is nearly completely concealed beneath the town of Decorah, Iowa and the surrounding area. In late 2012 and early 2013, the US Geological Survey conducted airborne geophysical studies in the area to investigate structures and potential mineral resources associated with the 1.1 Ga Midcontinent Rift system. Full-tensor gravity gradiometry and airborne transient electromagnetic surveys were flown to investigate basement geometry and composition, as well as to map out the thick package of Phanerozoic sediments blanketing the region. Multiple survey lines intersected the impact structure, which was clearly visible in both the electromagnetic and gravity datasets. The electromagnetic data, acquired with a VTEM system from Geotech, Ltd., identified and mapped the post-impact Winneshiek Shale, which is present only in the crater (having been eroded everywhere else within the survey area). The resulting 5.5 km diameter circular conductor aligned nearly perfectly with the structure inferred by the Iowa Geological and Water Survey. The airborne full-tensor gravity gradient data, collected by Bell Geospace, clearly demarcates a density low in each component consistent with the center of the impact structure. The conductivity and density of some of the stratigraphic units both within as well as outside the impact structure were measured from core samples, and used to inform the modeling and inversion approaches. Both the electromagnetic data and the gravity gradiometry data underwent an extensive modeling and inversion procedure to investigate the geometry of the impact structure in three dimensions. From these results, we present a three dimensional model of the proposed Decorah Impact Structure and surrounding area. Not only will this model improve an understanding of the geology and hydrology of the region, but also will allow for more precise estimations of the energy and size of the impacting body. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government.