Sample records for gravity wave drag

  1. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  2. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  3. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

  4. The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag

    NASA Technical Reports Server (NTRS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.

    1988-01-01

    The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.

  5. Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Vadas, Sharon L.

    2018-03-01

    This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.

  6. A note on specific variability of long surface gravity waves and drag coefficient in coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Krzyścin, Janusz

    1990-01-01

    In this paper we solve analytically wave kinematic equations and the wave energy transport equation, for basic long surface gravity wave in the coastal upwelling zone. Using Gent and Taylor's (1978) parameterization of drag coefficient (which includes interaction between long surface waves and the air flow) we find variability of this coefficient due to wave amplification and refraction caused by specific surface water current in the region. The drag coefficient grows towards the shore. The growth is faster for stronger current. When the angle between waves and the current is less than 90° the growth is mainly connected with the waves steepness, but when the angle is larger, it is caused by relative growth of the wave phase velocity.

  7. Vertical propagation of information in a middle atmosphere data assimilation system by gravity-wave drag feedbacks

    NASA Astrophysics Data System (ADS)

    Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.

    2008-03-01

    The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.

  8. A diagnostic model to estimate winds and small-scale drag from Mars Observer PMIRR data

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.

    1993-01-01

    Theoretical and modeling studies indicate that small-scale drag due to breaking gravity waves is likely to be of considerable importance for the circulation in the middle atmospheric region (approximately 40-100 km altitude) on Mars. Recent earth-based spectroscopic observations have provided evidence for the existence of circulation features, in particular, a warm winter polar region, associated with gravity wave drag. Since the Mars Observer PMIRR experiment will obtain temperature profiles extending from the surface up to about 80 km altitude, it will be extensively sampling middle atmospheric regions in which gravity wave drag may play a dominant role. Estimating the drag then becomes crucial to the estimation of the atmospheric winds from the PMIRR-observed temperatures. An interative diagnostic model based upon one previously developed and tested with earth satellite temperature data will be applied to the PMIRR measurements to produce estimates of the small-scale zonal drag and three-dimensional wind fields in the Mars middle atmosphere. This model is based on the primitive equations, and can allow for time dependence (the time tendencies used may be based upon those computed in a Fast Fourier Mapping procedure). The small-scale zonal drag is estimated as the residual in the zonal momentum equation; the horizontal winds having first been estimated from the meridional momentum equation and the continuity equation. The scheme estimates the vertical motions from the thermodynamic equation, and thus needs estimates of the diabatic heating based upon the observed temperatures. The latter will be generated using a radiative model. It is hoped that the diagnostic scheme will be able to produce good estimates of the zonal gravity wave drag in the Mars middle atmosphere, estimates that can then be used in other diagnostic or assimilation efforts, as well as more theoretical studies.

  9. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport.

    DTIC Science & Technology

    1995-11-13

    role of gravity wave drag in the extratropical QBO , destabilization of large-scale tropical waves by deep moist convection, and a general theory of equatorial inertial instability on a zonally nonuniform, nonparallel flow.

  10. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.

  11. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  12. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Beljaars, A.; Wang, Y.; Huang, B.; Lin, C.; Chen, Y.; Wu, H.

    2017-09-01

    Weather Research and Forecasting (WRF) simulations with different selections of subgrid orographic drag over the Tibetan Plateau have been evaluated with observation and ERA-Interim reanalysis. Results show that the subgrid orographic drag schemes, especially the turbulent orographic form drag (TOFD) scheme, efficiently reduce the 10 m wind speed bias and RMS error with respect to station measurements. With the combination of gravity wave, flow blocking and TOFD schemes, wind speed is simulated more realistically than with the individual schemes only. Improvements are also seen in the 2 m air temperature and surface pressure. The gravity wave drag, flow blocking drag, and TOFD schemes combined have the smallest station mean bias (-2.05°C in 2 m air temperature and 1.27 hPa in surface pressure) and RMS error (3.59°C in 2 m air temperature and 2.37 hPa in surface pressure). Meanwhile, the TOFD scheme contributes more to the improvements than the gravity wave drag and flow blocking schemes. The improvements are more pronounced at low levels of the atmosphere than at high levels due to the stronger drag enhancement on the low-level flow. The reduced near-surface cold bias and high-pressure bias over the Tibetan Plateau are the result of changes in the low-level wind components associated with the geostrophic balance. The enhanced drag directly leads to weakened westerlies but also enhances the a-geostrophic flow in this case reducing (enhancing) the northerlies (southerlies), which bring more warm air across the Himalaya Mountain ranges from South Asia (bring less cold air from the north) to the interior Tibetan Plateau.

  13. Temporal variability of gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr

    2017-04-01

    In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.

  14. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  15. Interannual variability in the gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr

    2018-05-01

    Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.

  16. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.

  17. Seasonal gravity wave drags on the upper stratosphere due to the northwestern pacific typhoons

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Lu, Daren

    In a recent study of the first author and his co-authors (Zeyu Chen, Peter Preusse, Michael Jarisch, Manfred Ern, and Dirk Offermann, 2003), it has been revealed that a northwestern Pacific typhoon can generate stratospheric gravity waves with the horizontal scales ranging from 500 km ˜ 1000 km, and carrying a magnitude of ˜ 0.001 Pascal of momentum flux into the upper stratosphere Statistics indicates that the annual mean number of typhoon in the northwestern Pacific is about 32, most of them happen in summer. In this presentation, we show that a parameterization scheme is developed to derive the magnitude of the momentum flux of the waves from operational satellite observations that can scale the intensity of a typhoon (e.g. the brightness temperature observations from the GMS-5 satellite), and operational meteorological data analysis. The seasonal effect of the Gravity Wave Drags due to the typhoons in the area is derived.

  18. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  19. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2010-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.

  20. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  1. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  2. Impacts of Horizontal Propagation of Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng

    2017-11-01

    The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.

  3. Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development. 2; Transport Between the Troposphere and Stratosphere

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lerner, Jean; Shah, Kathy; Suozzo, Robert

    1999-01-01

    A key component of climate/chemistry modeling is how to handle the influx into (and egress from) the troposphere. This is especially important when considering tropospheric ozone, and its precursors (e.g., NO(x) from aircraft). A study has been conducted with various GISS models to determine the minimum requirements necessary for producing realistic troposphere-stratosphere exchange. Four on-line tracers are employed: CFC-11 and SF6 for mixing from the troposphere into the stratosphere, Rn222 for vertical mixing within the troposphere, and 14C for mixing from the stratosphere into the troposphere. Four standard models are tested, with varying vertical resolution, gravity wave drag and location of the model top, and additional subsidiary models are employed to examine specific features. The results show that proper vertical transport between the troposphere and stratosphere in the GISS models requires lifting the top of the model considerably out of the stratosphere, and including gravity wave drag in the lower stratosphere. Increased vertical resolution without these aspects does not improve troposphere-stratosphere exchange. The transport appears to be driven largely by the residual circulation within the stratosphere; associated E-P flux convergences require both realistic upward propagating energy from the troposphere, and realistic pass-through possibilities. A 23 layer version with a top at the mesopause and incorporating gravity wave drag appears to have reasonable stratospheric-tropospheric exchange, in terms of both the resulting tracer distributions and atmospheric mass fluxes.

  4. Effects of Parameterized Orographic Drag on Weather Forecasting and Simulated Climatology Over East Asia During Boreal Summer

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Joo; Choi, Suk-Jin; Koo, Myung-Seo; Kim, Jung-Eun; Kwon, Young Cheol; Hong, Song-You

    2017-10-01

    The impact of subgrid orographic drag on weather forecasting and simulated climatology over East Asia in boreal summer is examined using two parameterization schemes in a global forecast model. The schemes consider gravity wave drag (GWD) with and without lower-level wave breaking drag (LLWD) and flow-blocking drag (FBD). Simulation results from sensitivity experiments verify that the scheme with LLWD and FBD improves the intensity of a summertime continental high over the northern part of the Korean Peninsula, which is exaggerated with GWD only. This is because the enhanced lower tropospheric drag due to the effects of lower-level wave breaking and flow blocking slows down the wind flowing out of the high-pressure system in the lower troposphere. It is found that the decreased lower-level divergence induces a compensating weakening of middle- to upper-level convergence aloft. Extended experiments for medium-range forecasts for July 2013 and seasonal simulations for June to August of 2013-2015 are also conducted. Statistical skill scores for medium-range forecasting are improved not only in low-level winds but also in surface pressure when both LLWD and FBD are considered. A simulated climatology of summertime monsoon circulation in East Asia is also realistically reproduced.

  5. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  6. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.

  7. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  8. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  9. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause

    NASA Astrophysics Data System (ADS)

    Limpasuvan, Varavut; Orsolini, Yvan J.; Chandran, Amal; Garcia, Rolando R.; Smith, Anne K.

    2016-05-01

    Based on a climate-chemistry model (constrained by reanalyses below ~50 km), the zonal-mean composite response of the mesosphere and lower thermosphere (MLT) to major sudden stratospheric warming events with elevated stratopauses demonstrates the role of planetary waves (PWs) in driving the mean circulation in the presence of gravity waves (GWs), helping the polar vortex recover and communicating the sudden stratospheric warming (SSW) impact across the equator. With the SSW onset, strong westward PW drag appears above 80 km primarily from the dissipation of wave number 1 perturbations with westward period of 5-12 days, generated from below by the unstable westward polar stratospheric jet that develops as a result of the SSW. The filtering effect of this jet also allows eastward propagating GWs to saturate in the winter MLT, providing eastward drag that promotes winter polar mesospheric cooling. The dominant PW forcing translates to a net westward drag above the eastward mesospheric jet, which initiates downwelling over the winter pole. As the eastward polar stratospheric jet returns, this westward PW drag persists above 80 km and acts synergistically with the return of westward GW drag to drive a stronger polar downwelling that warms the pole adiabatically and helps reform the stratopause at an elevated altitude. With the polar wind reversal during the SSW onset, the westward drag by the quasi-stationary PW in the winter stratosphere drives an anomalous equatorial upwelling and cooling that enhance tropical stratospheric ozone. Along with equatorial wind anomalies, this ozone enhancement subsequently amplifies the migrating semidiurnal tide amplitude in the winter midlatitudes.

  10. Analysis of gravity wave propagation and properties, comparison between WRF model simulations and LIDAR data in Southern France

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Heinrich, Philippe

    2014-05-01

    Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637

  11. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  12. New Approaches to the Parameterization of Gravity-Wave and Flow-Blocking Drag due to Unresolved Mesoscale Orography Guided by Mesoscale Model Predictability Research

    DTIC Science & Technology

    2012-09-30

    oscillation (SAO) and quasi-biennial oscillation ( QBO ) of stratospheric equatorial winds in long-term (10-year) nature runs. The ability of these new schemes...to generate and maintain tropical SAO and QBO circulations in Navy models for the first time is an important breakthrough, since these circulations

  13. 3D DNS and LES of Breaking Inertia-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.

    2012-04-01

    As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.

  14. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  15. Numerical simulation and analysis of impact of non-orographic gravity waves drag of middle atmosphere in framework of a general circulation model

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wang, S.

    2017-12-01

    Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation during SSW event demonstrates that the influence on the temperature of middle stratosphere is mainly positive and there were larger departure both for the wind and temperature fields considering the non-orographic GWD during the warming process.

  16. Interhemispheric Asymmetry in the Mesosphere and Lower Thermosphere Observed by SABER/TIMED

    NASA Astrophysics Data System (ADS)

    Yee, J. H.

    2017-12-01

    In this paper we analyze nearly 15 years of satellite observations of temperature, airglow, and composition in the Mesosphere and Lower Thermosphere (MLT) to quantify their interhemispheric asymmetries ao one can provide quantitative links between observed asymmetries and the spatial and temporal variations of the gravity wave activity. Two processes are believed to be responsible for observed interhemispheric differences in the MLT. The first is the direct radiation effect from the eccentricity of the Earth orbit amd the other is the difference in gravity wave source distribution and filtering due to asymmetries in mean winds of the lower atmosphere. Both processes have been theoretically investigated to explain the observed asymmetry in some of the atmospheric parameters, but not self-consistently in all observed parameters together. In this paper we will show the asymmetry in the time-varying zonal-mean latitudinal structures of temperature, airglow emission rate, and composition observed by TIMED/SABER. We will quantify their interhemispheric asymmetries for different seasons under different solar activity conditions. In addition, temperature measurements will also be used to obtain temporal and spatial morphology of gravity wave potential energies. We will interpret the asymmetry in the observed fields and examine qualitatively their consistency with the two responsible processes, especially the one due to gravity wave filtering process. Our goal is to introduce and to share the spatial and temporal morphologies of all the observed fields to the modeling community so, together self-consistently, they be can be used to gain physical insights into the relative importance of various drivers responsible for the observed asymmetry, especially the role of gravity wave induced eddy drag and mixing, a critical, but least quantitatively understood process.

  17. Impact of 3-D orographic gravity wave parameterisation on stratosphere dynamics

    NASA Astrophysics Data System (ADS)

    Eichinger, Roland; Garny, Hella; Cai, Duy; Jöckel, Patrick

    2017-04-01

    Stratosphere dynamics are strongly influenced by gravity waves (GWs) propagating upwards from the troposphere. Some of these GWs are generated through flow over small-scale orography and can not be resolved by common general circulation models (GCMs). Due to computational model designs, their parameterisation usually follows a one dimensional columnar approach that, among other simplifications, neglects the horizontal propagation of GWs on their way up into the Middle Atmosphere. This causes contradictions between models and observations in location and strength of GW drag force through their dissipation and as a consequence, also in stratospheric mean flow. In the EMAC (ECHAM MESSy Atmospheric Chemistry) model, we have found this deficiency to cause a too weak Antarctic polar vortex, which directly impacts stratospheric temperatures and thereby the chemical reactions that determine ozone depletion. For this reason, we adapt a three dimensional parameterisation for orographic GWs, that had been implemented and tested in the MIROC GCM, to the MESSy coding standard. This computationally light scheme can then be used in a modular and flexible way in a cascade of model setups from an idealised version for conceptional process analyses to full climate chemistry simulations for quantitative investigations. This model enhancement can help to reconcile models and observations in wave drag forcing itself, but in consequence, also in Brewer-Dobson Circulation trends across the recent decades. Furthermore, uncertainties in weather and climate predictions as well as in future ozone projections can be reduced.

  18. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. The post-processing needed to achieve the performance, in particular with regards to the temperature stability, will be explained.

  19. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014 and will be achieved on January 2015. The results of the Engineering Model tests and the status of the Flight Models will be presented.

  20. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.

  1. Curvilinear trajectory estimation of a supersonic bullet using ballistic shock wave arrivals at asynchronous acoustic sensor nodes.

    PubMed

    Lo, Kam W

    2017-06-01

    The trajectory of a supersonic bullet, which is subjected to drag and gravity, is curvilinear and the supersonic flight of the bullet generates a ballistic shock wave (SW). A model for the differential time of arrival (DTOA) of the SW at a pair of acoustic sensors is derived for a given bullet trajectory, which is fully described by seven parameters including the drag coefficient exponent and ballistic constant of the bullet. Assuming that the drag coefficient exponent is 0.5, the DTOA model is used to develop a nonlinear least-squares (NLS) method to estimate the other six trajectory parameters using DTOA of SW measurements from each node (which comprises a small acoustic sensor array) of an asynchronous sensor network. The position of the shooter and the muzzle speed of the bullet are then determined by tracing the estimated bullet trajectory back to topographic or man-made obstructions on a digital map. The effectiveness of the NLS method is verified using simulated data for different types of real bullets, and the error standard deviations in the parameter estimates are close to the Cramer-Rao lower bounds.

  2. The Confrontation between General Relativity and Experiment.

    PubMed

    Will, Clifford M

    2014-01-01

    The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eötvös experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

  3. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    NASA Astrophysics Data System (ADS)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  4. Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2016-12-01

    At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).

  5. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high Tc superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  6. dc Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality.

    PubMed

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-27

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  7. Skin friction drag reduction in turbulent flow using spanwise traveling surface waves

    NASA Astrophysics Data System (ADS)

    Musgrave, Patrick F.; Tarazaga, Pablo A.

    2017-04-01

    A major technological driver in current aircraft and other vehicles is the improvement of fuel efficiency. One way to increase the efficiency is to reduce the skin friction drag on these vehicles. This experimental study presents an active drag reduction technique which decreases the skin friction using spanwise traveling waves. A novel method is introduced for generating traveling waves which is low-profile, non-intrusive, and operates under various flow conditions. This wave generation method is discussed and the resulting traveling waves are presented. These waves are then tested in a low-speed wind tunnel to determine their drag reduction potential. To calculate the drag reduction, the momentum integral method is applied to turbulent boundary layer data collected using a pitot tube and traversing system. The skin friction coefficients are then calculated and the drag reduction determined. Preliminary results yielded a drag reduction of ≍ 5% for 244Hz traveling waves. Thus, this novel wave generation method possesses the potential to yield an easily implementable, non-invasive drag reduction technology.

  8. Kinetic energy spectra, vertical resolution and dissipation in high-resolution atmospheric simulations.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2017-12-01

    We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.

  9. Explicitly Stochastic Parameterization of Nonorographic Gravity-Wave Drag

    DTIC Science & Technology

    2010-01-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,Space Science Division,4555 Overlook Avenue SW,Washington,DC,20375 8. PERFORMING... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT...τb exp [ − (c− coff ) 2 c2w ] , (1) τb = τ ∗ b F (φ, t), (2) with a phase-speed width cw = 30 m s −1. τb is the “background” momentum flux and is

  10. Ubiquitous Instabilities of Dust Moving in Magnetized Gas

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Squire, Jonathan

    2018-06-01

    Squire & Hopkins (2017) showed that coupled dust-gas mixtures are generically subject to "resonant drag instabilities" (RDIs), which drive violently-growing fluctuations in both. But the role of magnetic fields and charged dust has not yet been studied. We therefore explore the RDI in gas which obeys ideal MHD and is coupled to dust via both Lorentz forces and drag, with an external acceleration (e.g., gravity, radiation) driving dust drift through gas. We show this is always unstable, at all wavelengths and non-zero values of dust-to-gas ratio, drift velocity, dust charge, "stopping time" or drag coefficient (for any drag law), or field strength; moreover growth rates depend only weakly (sub-linearly) on these parameters. Dust charge and magnetic fields do not suppress instabilities, but give rise to a large number of new instability "families," each with distinct behavior. The "MHD-wave" (magnetosonic or Alfvén) RDIs exhibit maximal growth along "resonant" angles where the modes have a phase velocity matching the corresponding MHD wave, and growth rates increase without limit with wavenumber. The "gyro" RDIs are driven by resonances between drift and Larmor frequencies, giving growth rates sharply peaked at specific wavelengths. Other instabilities include "acoustic" and "pressure-free" modes (previously studied), and a family akin to cosmic ray instabilities which appear when Lorentz forces are strong and dust streams super-Alfvénically along field lines. We discuss astrophysical applications in the warm ISM, CGM/IGM, HII regions, SNe ejecta/remnants, Solar corona, cool-star winds, GMCs, and AGN.

  11. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.

    PubMed

    Yekutieli, Yoram; Sagiv-Zohar, Roni; Aharonov, Ranit; Engel, Yaakov; Hochner, Binyamin; Flash, Tamar

    2005-08-01

    The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.

  12. Shock waves in strongly coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios

    2010-12-15

    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics withmore » no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.« less

  13. Stratospheric mountain wave attenuation in positive and negative ambient wind shear

    NASA Astrophysics Data System (ADS)

    Kruse, C. G.; Smith, R. B.

    2016-12-01

    Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.

  14. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-on Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.

    2014-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The Critical Design Review is scheduled at the end of September 2014, and the integration of the first Flight Model will begin on October 2014. The results of the Engineering Model tests and the status of the Flight Models will be presented.

  15. Wave drag as the objective function in transonic fighter wing optimization

    NASA Technical Reports Server (NTRS)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  16. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Thai; Preusse, Peter; Riese, Martin; Kalisch, Silvio

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  17. Observational filter for limb sounders applied to convective gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Thai; Kalisch, Silvio; Preusse, Peter; Riese, Martin

    2014-05-01

    Gravity waves (GWs) play a key role in the dynamics of the middle atmosphere. In the current work, simulated spectral distribution in term of horizontal and vertical wavenumber of GW momentum flux (GWMF) is analysed by applying an accurate observational filter, which consider sensitivity and sampling geometry of satellite instruments. For this purpose, GWs are simulated for January 2008 by coupling GROGRAT (gravity wave regional or global ray tracer) and ray-based spectral parameterization of convective gravity wave drag (CGWD). Atmospheric background is taken from MERRA (Modern-Era Retrospective Analysis For Research And Applications) data. GW spectra of different spatial and temporal scales from parameterization of CGWD (MF1, MF2, MF3) at 25 km altitude are considered. The observational filter contains the following elements: determination of the wavelength along the line of sight, application of the visibility filter from Preusse et al, JGR, 2002, determination of the along-track wavelength, and aliasing correction as well as correction of GWMF due to larger horizontal wavelength along-track. Sensitivity and sampling geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are simulated. Results show that all spectra are shifted to the direction of longer horizontal and vertical wavelength after applying the observational filter. Spectrum MF1 is most influenced and MF3 is least influenced by this filter. Part of the spectra, related to short horizontal wavelength, is cut off and flipped to the part of longer horizontal wavelength by aliasing. Sampling geometry of HIRDLS allows to see a larger part of the spectrum thanks to shorter sampling profile distance. A better vertical resolution of the HIRDLS instrument also helps to increase its sensitivity.

  18. Directional Absorption of Parameterized Mountain Waves and Its Influence on the Wave Momentum Transport in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Tang, Ying; Wang, Yuan; Xue, Ming

    2018-03-01

    The directional absorption of mountain waves in the Northern Hemisphere is assessed by examination of horizontal wind rotation using the 2.5° × 2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis between 2011 and 2016. In the deep layer of troposphere and stratosphere, the horizontal wind rotates by more than 120° all over the Northern Hemisphere primary mountainous areas, with the rotation mainly occurring in the troposphere (stratosphere) of lower (middle to high) latitudes. The rotation of tropospheric wind increases markedly in summer over the Tibetan Plateau and Iranian Plateau, due to the influence of Asian summer monsoonal circulation. The influence of directional absorption of mountain waves on the mountain wave momentum transport is also studied using a new parameterization scheme of orographic gravity wave drag (OGWD) which accounts for the effect of directional wind shear. Owing to the directional absorption, the wave momentum flux is attenuated by more than 50% in the troposphere of lower latitudes, producing considerable orographic gravity wave lift which is normal to the mean wind. Compared with the OGWD produced in traditional schemes assuming a unidirectional wind profile, the OGWD in the new scheme is suppressed in the lower stratosphere but enhanced in the upper stratosphere and lower mesosphere. This is because the directional absorption of mountain waves in the troposphere reduces the wave amplitude in the stratosphere. Consequently, mountain waves are prone to break at higher altitudes, which favors the production of stronger OGWD given the decrease of air density with height.

  19. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

    PubMed Central

    Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-01-01

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction. PMID:26099070

  20. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims.

    PubMed

    Laan, Nick; de Bruin, Karla G; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-06-22

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin's location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin's location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.

  1. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

    NASA Astrophysics Data System (ADS)

    Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-06-01

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.

  2. Orion Entry Performance-Based Center-of-Gravity Box

    NASA Technical Reports Server (NTRS)

    Rea, Jeremy R.

    2010-01-01

    The Orion capsule has many performance requirements for its atmospheric entry trajectory. Requirements on landing accuracy, maximum heating rate, total heat load, propellant usage, and sensed acceleration must all be satised. It is desired to define a methodology to translate the many performance requirements for an atmospheric entry trajectory into language easily understood by vehicle designers in terms of an allowable center-of-gravity box. This is possible by noting that most entry performance parameters for a capsule vehicle are mainly determined by the lift-to-drag ratio of the vehicle. However, the lift-to- drag ratio should be considered a probabilistic quantity rather than deterministic, where variations in the lift-to-drag are caused by both aerodynamic and center-of-gravity un- certainties. This paper discusses the technique used by the Orion program to define the allowable dispersions in center-of-gravity to achieve the desired entry performance while accounting for aerodynamic uncertainty.

  3. A nonlinear steady model for moist hydrostatic mountain waves

    NASA Technical Reports Server (NTRS)

    Barcilon, A.; Fitzjarrald, D.

    1985-01-01

    The dynamics of hydrostatic gravity waves generated by the passage of a steady, stably stratified, moist flow over a two-dimensional topography is considered. Coriolis effects are neglected. The cloud region is determined by the dynamics, and within that region the Brunt-Vaisala frequency takes on a value smaller than the outside value. In both the dry and cloudy regions the Brunt-Vaisala frequency is constant with height. The moist layer is considered to be either next to the mountain or at midlevels and to be deep enough so that an entire cloud forms in that layer. The nonlinearity in the flow and lower boundary affects the dynamics of these waves and wave drag. The latter is found to depend upon: (1) the location of the moist layer with respect to the ground, (2) the amount of moisture, (3) the degree of nonlinearity and (4) the departure from symmetry in the bottom topography.

  4. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found.

  5. Investigate wave-mean flow interaction and transport in the extratropical winter stratosphere

    NASA Technical Reports Server (NTRS)

    Smith, Anne K.

    1993-01-01

    The grant supported studies using several models along with observations in order to investigate some questions of wave-mean flow interaction and transport in the extratropical winter stratosphere. A quasi-geostrophic wave model was used to investigate the possibility that resonant growth of planetary wave 2 may have played a role in the sudden stratospheric warming of February 1979. The results of the time-dependent integration support the interpretation of resonance during February, 1979. Because of the possibility that the model treatment of critical line interactions exerted a controlling influence on the atmospheric dynamics, a more accurate model was needed for wave-mean flow interaction studies. A new model was adapted from the 3-dimensional primitive equation model developed by K. Rose and G. Brasseur. In its present form the model is global, rather than hemispheric; it contains an infrared cooling algorithm and a parameterized solar heating; it has parameterized gravity wave drag; and the chemistry has been entirely revised.

  6. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.

  7. Some Examples of the Applications of the Transonic and Supersonic Area Rules to the Prediction of Wave Drag

    NASA Technical Reports Server (NTRS)

    Nelson, Robert L.; Welsh, Clement J.

    1960-01-01

    The experimental wave drags of bodies and wing-body combinations over a wide range of Mach numbers are compared with the computed drags utilizing a 24-term Fourier series application of the supersonic area rule and with the results of equivalent-body tests. The results indicate that the equivalent-body technique provides a good method for predicting the wave drag of certain wing-body combinations at and below a Mach number of 1. At Mach numbers greater than 1, the equivalent-body wave drags can be misleading. The wave drags computed using the supersonic area rule are shown to be in best agreement with the experimental results for configurations employing the thinnest wings. The wave drags for the bodies of revolution presented in this report are predicted to a greater degree of accuracy by using the frontal projections of oblique areas than by using normal areas. A rapid method of computing wing area distributions and area-distribution slopes is given in an appendix.

  8. Progress towards a space-borne quantum gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  9. Seagrass blade motion under waves and its impact on wave decay

    NASA Astrophysics Data System (ADS)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  10. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2016-04-01

    Introduction: Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment in water is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. Experiments: In this study the results of settling tube tests conducted under reduced gravity during three Mars Sedimentation Experiment (MarsSedEx I, II and III) flights, conducted between 2012 and 2015, are presented. Ten types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Results: The experiments conducted during the MarsSedEx reduced gravity experiments showed that the violation of fluid dynamics caused by using empirical models and parameter values developed for sediment transport on Earth lead to significant miscalculations for Mars, specifically an underetsimation of settling velcoity because of an overestimation of turbulant drag. The error is caused by the flawed representation of particle drag on Mars. Drag coefficients are not a property of a sediment particle, but a property of the flow around the particle, and thus strongly affected by gravity. Conlcusions: The observed errors in settling velocity when using terrestrial models and parameter values on Mars have implications for sediment movement and sorting, in particular for sandstones and conglomerates, and thus analogies drawn between Earth and Mars. Most significantly, sorting on Mars is less pronounced for given flow conditions than on Earth. References: [1] Kuhn N. J. (2014) Experiments in Reduced Gravity - Sediment Settling on Mars, Elsevier.

  11. On the Interaction Between Gravity Waves and Atmospheric Thermal Tides

    NASA Astrophysics Data System (ADS)

    Agner, Ryan Matthew

    Gravity waves and thermal tides are two of the most important dynamical features of the atmosphere. They are both generated in the lower atmosphere and propagate upward transporting energy and momentum to the upper atmosphere. This dissertation focuses on the interaction of these waves in the Mesosphere and Lower Thermosphere (MLT) region of the atmosphere using both observational data and Global Circulation Model (GCMs). The first part of this work focuses on observations of gravity wave interactions with the tides using both LIDAR data at the Star Fire Optical Range (SOR, 35?N, 106.5?W) and a meteor radar data at the Andes LIDAR Observatory (ALO, 30.3?S, 70.7?W). At SOR, the gravity waves are shown to enhance or damp the amplitude of the diurnal variations dependent on altitude while the phase is always delayed. The results compare well with previous mechanistic model results and with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high resolution global circulation model. The meteor radar observed the GWs to almost always enhance the tidal amplitudes and either delay or advance the phase depending on the altitude. When compared to previous radar results from the same meteor radar when it was located in Maui, Hawaii, the Chile results are very similar while the LIDAR results show significant differences. This is because of several instrument biases when calculating GW momentum fluxes that is not significant when determining the winds. The radar needs to perform large amounts of all-sky averaging across many weeks, while the LIDAR directly detects waves in a small section of sky. The second part of this work focuses on gravity wave parameterization scheme effects on the tides in GCMs. The Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) and the extended Canadian Middle Atmosphere Model (eCMAM) are used for this analysis. The gravity wave parameterization schemes in the eCMAM (Hines scheme) have been shown to enhance the tidal amplitudes compared to observations while the parameterization scheme in SD-WACCM (Lindzen scheme) overdamps the tides. It is shown here that the Hines scheme assumption that only small scale gravity waves force the atmosphere do not create enough drag to properly constrain the tidal amplitudes. The Lindzen scheme produces too much drag because all wave scales are assumed to be saturated thus continuing to provide forcing on the atmosphere above the breaking altitude. The final part of this work investigates GWs, tides and their interactions on a local time scale instead of a global scale in the two GCMs. The local time GWs in eCMAM are found to have a strong seasonal dependence, with the majority of the forcings at the winter pole at latitudes where the diurnal variations are weak limiting their interactions. In SD-WACCM, the largest local GW forcings are located at mid latitudes near where the diurnal variations peak causing them to dampen the diurnal amplitudes. On a local time level the diurnal variations may be a summation of many tidal modes. The analysis reveals that in eCMAM the DW1 tidal mode is by far the dominant mode accounting for the local time variations. The high amount of modulation of GWs by the DW1 tidal winds does not allow it to be properly constrained, causing it to dominate the local time diurnal variations. Similarly, the DW1 projection of GW forcing is dominant over all other other modes and contributes the most to the local time diurnal GW variations. The local time wind variations in SD-WACCM are in uenced by several tidal modes because the DW1 tide is of compatible amplitudes to other modes. This is because of the increased damping on the tide by the GWs. It is also found that the local GW diurnal variations have significant contributions from all tidal modes due to the time and location of the forcing being dependent only on the tropospheric source regions and not the at altitude tidal winds.

  12. Concentrated energy addition for active drag reduction in hypersonic flow regime

    NASA Astrophysics Data System (ADS)

    Ashwin Ganesh, M.; John, Bibin

    2018-01-01

    Numerical optimization of hypersonic drag reduction technique based on concentrated energy addition is presented in this study. A reduction in wave drag is realized through concentrated energy addition in the hypersonic flowfield upstream of the blunt body. For the exhaustive optimization presented in this study, an in-house high precision inviscid flow solver has been developed. Studies focused on the identification of "optimum energy addition location" have revealed the existence of multiple minimum drag points. The wave drag coefficient is observed to drop from 0.85 to 0.45 when 50 Watts of energy is added to an energy bubble of 1 mm radius located at 74.7 mm upstream of the stagnation point. A direct proportionality has been identified between energy bubble size and wave drag coefficient. Dependence of drag coefficient on the upstream added energy magnitude is also revealed. Of the observed multiple minimum drag points, the energy deposition point (EDP) that offers minimum wave drag just after a sharp drop in drag is proposed as the most optimum energy addition location.

  13. Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment?

    NASA Astrophysics Data System (ADS)

    Renzetti, G.

    2012-08-01

    The low-altitude effects of LARES are examined to determined how they can impact the outcome of the hoped 1% frame-dragging measurement in the LARES-LAGEOS experiment. This analysis, based on a different approach than other studies recently appearing in the literature, shows that the spherical harmonics of the Earth gravity field with degree ℓ > 60 may represent a threat because their errors map significantly into LARES orbital disturbances compared to frame-dragging. The GIF48 model was used. It is questionable whether future Earth gravity models by GRACE and GOCE will be of sufficient accuracy.

  14. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.

  15. A thermosphere-ionosphere-mesosphere-electrodynamic general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Ridley, E. C.

    1994-01-01

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.

  16. Annual variation of gravity-wave activity at middle and high latitudes in a high-resolution GCM

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2017-12-01

    A high-resolution version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM) with resolved gravity waves (GWs) is employed to analyze the annual variation of GW activity in both hemispheres at middle and high latitudes. The geographical distributions of GW hotspots in the winter stratosphere are consistent with existing satellite data. Vertical profiles up to the lower thermosphere agree with ground-based measurements for both season. The model confirms the semi-annual variation of GW energy in the upper mesosphere that was found previously in radar-measurements in the northern hemisphere Furthermore, the GW potential energy per unit mass during winter shows two maxima, one around 50-70 km and one around 80-100 km. We interpret the upper maximum as a result of secondary GWs that are generated in the stratopause region due to the intermittent body forces of primary GWs. In a recent study we showed that these secondary GWs produce a significant eastward drag in the mesopause region during austral winter. This mechanism is found to be important in the northern winter as well.

  17. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  18. Stationary drag photocurrent caused by strong effective running wave in quantum wires: Quantization of current

    NASA Astrophysics Data System (ADS)

    Entin, M. V.; Magarill, L. I.

    2010-02-01

    The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.

  19. On the Effect of Rigid Swept Surface Waves on Turbulent Drag

    NASA Technical Reports Server (NTRS)

    Denison, M.; Wilkinson, S. P.; Balakumar, P.

    2015-01-01

    Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.

  20. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  1. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10 -4">−4 m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  2. Experimental investigation of effect of surface gravity waves and spray on heat and momentum flux at strong wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum amplitude at the maximum depth of the net (33cm). To create a stable temperature stratification of the wind, the air entering the flume was heated to 30-40 oC. The water temperature was maintained about 15 degrees. The air flow velocity in the flume corresponded to the 10-m wind speed from 10 to 35 m/s. Turbulent fluxes of heat and momentum and roughness parameters were retrieved from the velocity and temperature profiles measured at the distance 6.5 m from the inlet of the flume and subsequent data processing exploiting the self-similarity of the temperature and velocity profiles. In a result surface drag and heat exchange coefficients and roughness parameters were obtained. Wind wave spectra and integral parameters (significant wave height, mean square slope) were retrieved from measurements by 3-channel array wave gauge by coherent spectral data processing. To estimate the amount of spray in the air flow, a spray marker was introduced using the effect of a sharp decline in film anemometer readings in contact with a droplet. Dependences of the exchange coefficients on the wind speed, wave parameters and the spray marker were obtained. It is shown that the exchange coefficients increase with the wind speed and wave height. It was found, that the sharp increase of the drag and heat exchange coefficients at wind speeds exceeded 25 m/s was accompanied by the emergence and increasing concentration of the spray in the air flow over water. The correlation coefficient between the drag coefficient and the spray marker was about 0.9. Using high-speed video revealed the dominant mechanism for the generation of spray at strong winds. It is shown that it is associated with the development of a special type of instability of the air-water interface, which is known as "bag-breakup instability" in the theory of fragmentation of liquids. The hypothesis is suggested, that the observed increase of surface drag and heat exchange can be attributed to the development of this type of instability. This work was supported by the Russian Foundation of Basic Research (13-05-00865, 14-05-91767, 13-05-12093, 15-05-) and Alexander Kandaurov, Maxim Vdovin and Olga Ermakova acknowledge partial support from Russian Science Foundation (Agreement No. 14-17-00667).

  3. Planetesimal formation in self-gravitating discs - the effects of particle self-gravity and back-reaction

    NASA Astrophysics Data System (ADS)

    Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.

    2014-07-01

    We study particle dynamics in self-gravitating gaseous discs with a simple cooling law prescription via two-dimensional simulations in the shearing sheet approximation. It is well known that structures arising in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results have shown that spiral density waves can be highly efficient at collecting dust particles, creating significant local overdensities of particles. The degree of such concentrations has been shown to be dependent on two parameters: the size of the dust particles and the rate of gas cooling. We expand on these findings, including the self-gravity of dust particles, to see how these particle overdensities evolve. We use the PENCIL code to solve the local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas through an aerodynamic drag force. We find that the enhancements in the surface density of particles in spiral density wave crests can reach levels high enough to allow the solid component of the disc to collapse under its own self-gravity. This produces many gravitationally bound collections of particles within the spiral structure. The total mass contained in bound structures appears nearly independent of the cooling time, suggesting that the formation of planetesimals through dust particle trapping by self-gravitating density waves may be possible at a larger range of radii within a disc than previously thought. So, density waves due to gravitational instabilities in the early stages of star formation may provide excellent sites for the rapid formation of many large, planetesimal-sized objects.

  4. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  7. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  8. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-10

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  9. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  10. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  11. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  12. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  13. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  14. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  15. VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-03

    VANDENBERG AFB, CALIF. - Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  16. A Numerical Method for Calculating the Wave Drag of a Configuration from the Second Derivative of the Area Distribution of a Series of Equivalent Bodies of Revolution

    NASA Technical Reports Server (NTRS)

    Levy, Lionel L., Jr.; Yoshikawa, Kenneth K.

    1959-01-01

    A method based on linearized and slender-body theories, which is easily adapted to electronic-machine computing equipment, is developed for calculating the zero-lift wave drag of single- and multiple-component configurations from a knowledge of the second derivative of the area distribution of a series of equivalent bodies of revolution. The accuracy and computational time required of the method to calculate zero-lift wave drag is evaluated relative to another numerical method which employs the Tchebichef form of harmonic analysis of the area distribution of a series of equivalent bodies of revolution. The results of the evaluation indicate that the total zero-lift wave drag of a multiple-component configuration can generally be calculated most accurately as the sum of the zero-lift wave drag of each component alone plus the zero-lift interference wave drag between all pairs of components. The accuracy and computational time required of both methods to calculate total zero-lift wave drag at supersonic Mach numbers is comparable for airplane-type configurations. For systems of bodies of revolution both methods yield similar results with comparable accuracy; however, the present method only requires up to 60 percent of the computing time required of the harmonic-analysis method for two bodies of revolution and less time for a larger number of bodies.

  17. Computational analysis of blunt, thin airfoil sections at supersonic and subsonic speeds

    NASA Astrophysics Data System (ADS)

    Goodsell, Aga Myung

    The past decade has brought renewed interest in commercial supersonic aircraft design. Recent wing designs have included regions of low sweep resulting in supersonic leading edges at cruise. Thin biconvex sections are used in those regions to minimize wave drag and skin-friction drag. However, airfoil sections with sharp leading edges exhibit poor aerodynamic behavior at subsonic flight conditions. Blunt leading edges may improve performance by delaying the onset of separation at subsonic and transonic speeds. Their disadvantage is that they increase both wave drag, due to the formation of a detached bow wave, and skin-friction drag, from a loss of laminar flow. The effect of adding bluntness to a 4%-thick biconvex section was investigated using computational analysis tools. The aerodynamic performance of biconvex sections with circular leading edges was computed at supersonic, transonic, and takeoff conditions. At supersonic cruise, the increase in wave drag due to bluntness is a function of Mach number and leading-edge diameter. Some of the drag penalty is offset by the suction created downstream of the circular leading edge. The possibility of further drag reduction was explored with the development of a semi-analytical method to design blunt airfoil shapes which minimize wave drag. The effect on the transition location was evaluated using linear stability analyses of laminar boundary-layer profiles and the eN method. The analysis showed that laminar boundary layers on blunt airfoil sections are considerably less stable to Tollmien-Schlichting waves than that on a sharp biconvex. At transonic speeds, the results suggest a possible improvement in the lift-to-drag ratio over a limited range of angles of attack. At the takeoff condition, slight blunting of the leading edge does improve the lift-to-drag ratio at low angles of attack, but has little effect on maximum lift. It is concluded that the benefit of a blunt leading edge at off-design conditions is not sufficient to warrant the resulting drag penalty at supersonic cruise. Furthermore, if maintaining laminar flow is critical to the design and some bluntness is necessary for manufacturing purposes, then the leading-edge diameter should be minimized to prevent transition and to reduce wave drag.

  18. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    At Vandenberg AFB, the canister enclosing the Gravity Probe B (GP-B) spacecraft is removed from the transporter. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  19. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment enters the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  20. Quasi-biennial variation of equatorial waves as seen in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The quasi-biennial oscillation (QBO) in zonal winds in the lower stratosphere at the Equator is the most prominent inter-annual variation signal in the middle atmosphere. Theoretically, it is driven by the drag from the damping of equatorial waves including the equatorially trapped planetary scale waves, such as Kelvin waves propagating eastward and Rossby-gravity waves propagating westward, inertio-gravity waves and gravity waves. In current research, the tem-perature data collected by the SABER/TIMED mission in 2002-2009 are used to investigate the equatorial waves activities. The Fast Fourier Synoptic Mapping (FFSM) method is applied to delineate planetary wave components with the zonal wavenumber spanning over -6 to +6, hereby, positive (negative) wavenumber is assigned to westward (eastward) propagating waves. Limited by the SABER/TIMED sampling scheme, only the waves with periods longer than one day can be resolved. Focusing on the height region 70-10 hPa where the QBO signal is most significant, it is clearly observed that the composite activity of all the eastward waves exhibit QBO like variation. Specifically, for each QBO cycle, the activity at 50 hPa level is characterized by the occurrence of a substantially clear minimum that coincides to the fast downward propagation of the westerly phase, the typical pattern of the QBO phenomenon. Phase speed spectra are derived by using the FFSM analysis results. And vertical shear of the zonal wind is derived by using the rawinsonde data at Singapore. Comparison of the phase speed spectra and the wind shear indicates that the minimum is due to the westerly shear below 30 hPa. Between the minimum, significant wave activities emerge, thus the property for the components are investigated. Results show that in height range 70-10 hPa, both wave 1 to wave 3 are prominent during the inter-minimum period for each QBO cycle. At 50 hPa level, wave 1 component exhibits amplitude spectral peak at three kinds of period, 8, 11 and 20 day. Meanwhile, shifting to shorter period is seen as wave number increases, for example, the 20-day period spectrum is attenuated substantially for wave 2 and wave 3 components. Moreover, results also show that although with small amplitude, wave 4 and wave 5 with shorter periods of 4-7 days are discernable in particular in the inter-minimum period. Further details will be presented in the talk.

  1. Drag of two-dimensional small-amplitude symmetric and asymmetric wavy walls in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Lin, J. C.; Walsh, M. J.; Balasubramanian, R.

    1984-01-01

    Included are results of an experimental investigation of low-speed turbulent flow over multiple two-dimensional transverse rigid wavy surfaces having a wavelength on the order of the boundary-layer thickness. Data include surface pressure and total drag measurements on symmetric and asymmetric wall waves under a low-speed turbulent boundary-layer flow. Several asymmetric wave configurations exhibited drag levels below the equivalent symmetric (sine) wave. The experimental results compare favorably with numerical predictions from a Reynolds-averaged Navier-Stokes spectral code. The reported results are of particular interest for the estimation of drag, the minimization of fabrication waviness effects, and the study of wind-wave interactions.

  2. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent

    2013-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.

  3. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  4. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment rests on an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  5. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lowered onto an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  6. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    The Gravity Probe B experiment is lifted from its transporter in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  7. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives on Vandenberg Air Force Base, headed for the spacecraft processing facility. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  8. Gravity Probe B

    NASA Image and Video Library

    2003-07-12

    A transporter carrying the Gravity Probe B experiment backs into the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  9. Nonlifting wing-body combinations with certain geometric restraints having minimum wave drag at low supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1957-01-01

    Several variational problems involving optimum wing and body combinations having minimum wave drag for different kinds of geometrical restraints are analyzed. Particular attention is paid to the effect on the wave drag of shortening the fuselage and, for slender axially symmetric bodies, the effect of fixing the fuselage diameter at several points or even of fixing whole portions of its shape.

  10. VANDENBERG AFB, CALIF. - Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  11. KENNEDY SPACE CENTER, FLA. - This seal illustrates the mission of the Gravity Probe B spacecraft and the organizations who developed the experiment: Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin. The Gravity Probe B mission will test the theory of curved spacetime and "frame-dragging," depicted graphically in the lower half, that was developed by Einstein and other scientists. Above the graphic is a drawing of GP-B circling the Earth.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - This seal illustrates the mission of the Gravity Probe B spacecraft and the organizations who developed the experiment: Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin. The Gravity Probe B mission will test the theory of curved spacetime and "frame-dragging," depicted graphically in the lower half, that was developed by Einstein and other scientists. Above the graphic is a drawing of GP-B circling the Earth.

  12. Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects

    NASA Astrophysics Data System (ADS)

    Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.

    2018-06-01

    The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.

  13. On the Decrease of the Oceanic Drag Coefficient in High Winds

    NASA Astrophysics Data System (ADS)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  14. VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

    NASA Image and Video Library

    2003-11-04

    VANDENBERG AFB, CALIF. - In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASA’s Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einstein’s general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  15. Effects of contrasting wave conditions on scour and drag on pioneer tidal marsh plants

    NASA Astrophysics Data System (ADS)

    Silinski, Alexandra; Heuner, Maike; Troch, Peter; Puijalon, Sara; Bouma, Tjeerd J.; Schoelynck, Jonas; Schröder, Uwe; Fuchs, Elmar; Meire, Patrick; Temmerman, Stijn

    2016-02-01

    Tidal marshes are increasingly valued for protecting shorelines against wave impact, but waves in turn may limit the initial establishment of tidal marsh pioneer plants. In estuaries, the shorelines typically experience a wide range of wave periods, varying from short period wind waves (usually of around 1-2 s in fair weather conditions) to long ship-generated waves, with secondary waves in the order of 2-7 s and primary waves with periods that can exceed 1 min. Waves are known to create sediment scour around, as well as to exert drag forces on obstacles such as seedlings and adults of establishing pioneer plant species. In intertidal systems, these two mechanisms have been identified as main causes for limiting potential colonization of bare tidal flats. In this paper, we want to assess to which extent common quantitative formulae for predicting local scour and drag forces on rigid cylindrical obstacles are valid for the estimation of scour and drag on slightly flexible plants with contrasting morphology, and hence applicable to predict plant establishment and survival under contrasting wave conditions. This has been tested in a full-scale wave flume experiment on two pioneer species (Scirpus maritimus and Scirpus tabernaemontani) and two life stages (seedlings and adults of S. maritimus) as well as on cylindrical reference sticks, which we have put under a range of wave periods (2-10 s), intended to mimic natural wind waves (short period waves) and ship-induced waves (artificial long period waves), at three water levels (5, 20, 35 cm). Our findings suggest that at very shallow water depths (5 cm) particular hydrodynamic conditions are created that lead to drag and scour that deviate from predictions. For higher water levels (20, 35 cm) scour can be well predicted for all wave conditions by an established formula for wave-induced scour around rigid cylinders. Drag forces can be relatively well predicted after introducing experimentally derived drag coefficients that are specific for the different plant morphologies. Best predictions were found for plants with a simple near-cylindrical morphology such as S. tabernaemontani, but are less accurate for plants of more complex structure such as S. maritimus, particularly for long period waves. In conclusion, our study offers valuable insights towards predicting/modelling the conditions under which seedlings and shoots of pioneer species can establish, and elucidates that long waves are more likely to counteract successful plant establishment than natural short waves.

  16. The Gravity-Probe-B relativity gyroscope experiment - Development of the prototype flight instrument

    NASA Technical Reports Server (NTRS)

    Turneaure, J. P.; Everitt, C. W. F.; Parkinson, B. W.; Bardas, D.; Breakwell, J. V.

    1989-01-01

    The Gravity-Probe-B relativity gyroscope experiment (GP-B) will measure the geodetic and frame-dragging precession rates of gyroscopes in a 650 km high polar orbit about the earth. The goal is to measure these two effects, which are predicted by Einstein's General Theory of Relativity, to 0.01 percent (geodetic) and 1 percent (frame-dragging). This paper presents the development progress for full-size prototype flight hardware including the gyroscopes, gyro readout and magnetic shielding system, and an integrated ground test instrument.

  17. Gravity Probe B

    NASA Image and Video Library

    2003-07-18

    In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  18. Gravity Probe B

    NASA Image and Video Library

    2003-07-18

    In the spacecraft processing facility on North Vandenberg Air Force Base, battery charge/discharge cycles are underway as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  19. Response spectrum method for extreme wave loading with higher order components of drag force

    NASA Astrophysics Data System (ADS)

    Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad

    2017-03-01

    Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.

  20. Spacecraft drag-free technology development: On-board estimation and control synthesis

    NASA Technical Reports Server (NTRS)

    Key, R. W.; Mettler, E.; Milman, M. H.; Schaechter, D. B.

    1982-01-01

    Estimation and control methods for a Drag-Free spacecraft are discussed. The functional and analytical synthesis of on-board estimators and controllers for an integrated attitude and translation control system is represented. The framework for detail definition and design of the baseline drag-free system is created. The techniques for solution of self-gravity and electrostatic charging problems are applicable generally, as is the control system development.

  1. User's guide for a computer program for calculating the zero-lift wave drag of complex aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1983-01-01

    A computer program was developed to extend the geometry input capabilities of previous versions of a supersonic zero lift wave drag computer program. The arbitrary geometry input description is flexible enough to describe almost any complex aircraft concept, so that highly accurate wave drag analysis can now be performed because complex geometries can be represented accurately and do not have to be modified to meet the requirements of a restricted input format.

  2. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  3. VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  4. VANDENBERG AFB, CALIF. - The mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., rolls back from the Delta II rocket that will launch the Gravity Probe B experiment. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., rolls back from the Delta II rocket that will launch the Gravity Probe B experiment. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  5. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  6. System noise analysis of the dumbbell tethered satellite for gravity-gradient measurements

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1979-01-01

    An analysis of the dumbbell gravity gradiometer concept for measuring short wavelength variations in the earth's gravity gradient is presented. Variations in the gradient are recorded by measuring tension variations in a vertically stabilized satellite consisting of heavy masses connected by a long wire or rod. Tension noise arises from the excitation of various mechanical oscillations of the system. The principal noise sources that were identified are fluctuations in atmospheric drag heating and drag force resulting from density variations and winds. Approximate analytical expressions are presented for the tension noise as a function of the system design parameters for various possible configurations. Computer simulations using numerical integration were performed to study the tension noise for several sample cases. Three designs consistent with Shuttle launch capabilities are discussed.

  7. Gravity Probe B

    NASA Image and Video Library

    2003-07-11

    Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment, including setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  8. Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2014-12-01

    The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.

  9. On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases

    NASA Astrophysics Data System (ADS)

    Dezhin, V. V.

    2018-03-01

    The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.

  10. Progress towards a Drag-free SmallSat

    NASA Astrophysics Data System (ADS)

    Saraf, Shailendhar

    The net force acting on a drag-free satellite is purely gravitational as all other forces, mainly atmospheric drag and solar radiation pressure, are canceled out. In order to achieve this, a free floating reference (test mass) inside the satellite is shielded against all forces but gravity and a system of thrusters is commanded by a control algorithm such that the relative displacement between the reference and the satellite stays constant. The main input to that control algorithm is the output of a sensor which measures the relative displacement between the satellite and the test mass. Internal disturbance forces such as electrostatic or magnetic forces cannot be canceled out his way and have to be minimized by a careful design of the satellite. A drag-free technology package is under development at Stanford since 2004. It includes an optical displacement sensor to measure the relative position of the test mass inside the satellite, a caging mechanism to lock the test mass during launch, a UV LED based charge management system to minimize the effect of electrostatic forces, a thermal enclosure, and the drag-free control algorithms. Possible applications of drag-free satellites in fundamental physics (Gravity Probe B, LISA), geodesy (GOCE), and navigation (TRIAD I). In this presentation we will highlight the progress of the technology development towards a drag-free mission. The planned mission on a SaudiSat bus will demonstrate drag-free technology on a small spacecraft at a fraction of the cost of previous drag-free missions. The target acceleration noise is 10-12 m/sec2. With multiple such satellites a GRACE-like mission with improved sensitivity and potentially improved spatial and temporal resolution can be achieved.

  11. Theoretical Calculations of Supersonic Wave Drag at Zero Lift for a Particular Store Arrangement

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Malvestuto, Frank S , Jr; Maxie, Peter J , Jr

    1958-01-01

    An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.

  12. Prediction of drag at subsonic and transonic speeds using Euler methods

    NASA Technical Reports Server (NTRS)

    Nikfetrat, K.; Van Dam, C. P.; Vijgen, P. M. H. W.; Chang, I. C.

    1992-01-01

    A technique for the evaluation of aerodynamic drag from flowfield solutions based on the Euler equations is discussed. The technique is limited to steady attached flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. It allows the decomposition of the total drag into induced drag and wave drag and, consequently, it provides more information on the drag sources than the conventional surface-pressure integration technique. The induced drag is obtained from the integration of the kinetic energy (per unit distance) of the trailing vortex system on a wake plane and the wave drag is obtained from the integration of the entropy production on a plane just downstream of the shocks. The drag-evaluation technique is applied to three-dimensional flowfield solutions for the ONERA M6 wing as well as an aspect-ratio-7 wing with an elliptic spanwise chord distribution and an NACA-0012 section shape. Comparisons between the drag obtained with the present technique and the drag based on the integration of surface pressures are presented for two Euler codes.

  13. Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

    NASA Technical Reports Server (NTRS)

    Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven

    2016-01-01

    This study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved wave forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale waves contribute to the NRQBO driving in eastward shear zones and small-scale waves dominate the NR-QBO driving in westward shear zones. Waves with zonal wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved wave forcing in eastward shear zones and up to 70% of the small-scale resolved wave forcing in westward shear zones of the NR-QBO.

  14. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  15. Investigation of passive shock wave-boundary layer control for transonic airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Brower, W. B., Jr.; Bahi, L.; Ross, J.

    1982-01-01

    The passive drag control concept, consisting of a porous surface with a cavity beneath it, was investigated with a 12-percent-thick circular arc and a 14-percent-thick supercritical airfoil mounted on the test section bottom wall. The porous surface was positioned in the shock wave/boundary layer interaction region. The flow circulating through the porous surface, from the downstream to the upstream of the terminating shock wave location, produced a lambda shock wave system and a pressure decrease in the downstream region minimizing the flow separation. The wake impact pressure data show an appreciably drag reduction with the porous surface at transonic speeds. To determine the optimum size of porosity and cavity, tunnel tests were conducted with different airfoil porosities, cavities and flow Mach numbers. A higher drag reduction was obtained by the 2.5 percent porosity and the 1/4-inch deep cavity.

  16. Imaging across the interface of small-scale breaking waves

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra H.; Belden, Jesse L.

    2007-11-01

    Flow characteristics on both the air and water side of small scale spilling and plunging waves are investigated using fully time-resolved particle image velocimetry (PIV). PIV at 1000 frames per second (fps) is used to capture the flow field in both the air and water for waves generated by shoaling. Reynolds number of the waves is on the order of Re = 9x10^4 to 2x10^6, where Re = ρ√g 3̂μ, ρ is fluid density, μ is fluid dynamic viscosity, g is gravity, and λ is the characteristic wavelength of the breaking wave before breaking. Isopropyl alcohol is mixed with the distilled water in the tank to reduce surface tension and thus achieve plunging breakers on this scale. Flow in the water is seeded using conventional silver-coated hollow glass spheres, whereas the quiescent air side (i.e. no wind) is seeded using micro-air balloons with high stokes drag and thus long settling times. Imaging of both the air and water are performed simultaneously and advanced image processing is performed to determine the water surface location and to avoid surface tracking during PIV processing. Repeatable, coherent vortical structures are revealed on the air-side of the waves and are considered mechanisms for energy transfer across the interface.

  17. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  18. VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  19. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  20. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  1. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  2. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  3. VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  4. VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  5. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  6. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-15

    VANDENBERG AFB, CALIF. - The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  8. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-12

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  9. VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  10. VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-16

    VANDENBERG AFB, CALIF. - The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  11. VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

    NASA Image and Video Library

    2003-09-18

    VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  12. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  13. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    DTIC Science & Technology

    2015-09-30

    We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves

  14. Active skin for turbulent drag reduction

    NASA Astrophysics Data System (ADS)

    Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mani, Raghavendran; Karniadakis, George

    2002-07-01

    Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption with the associated economic and environmental consequences, larger flight range and endurance and higher achievable flight speeds. This work capitalizes on recent advances in active turbulent drag reduction and active material based actuation to develop an active or 'smart' skin for turbulent drag reduction in realistic flight conditions. The skin operation principle is based on computational evidence that spanwise traveling waves of the right amplitude, wavelength and frequency can result in significant turbulent drag reduction. Such traveling waves can be induced in the smart skin via active-material actuation. The flow control technique pursued is 'micro' in the sense that only micro-scale wave amplitudes (order of 30mm) and energy inputs are sufficient to produce significant benefits. Two actuation principles have been proposed and analyzed. Different skin designs based on these two actuation principles have been discussed. The feasibility of these different actuation possibilities (such as Shape Memory Alloys and Piezoelectric material based actuators) and relative merits of different skin designs are discussed. The realization of a mechanically actuated prototype skin capable of generating a traveling wave, using a rapid prototyping machine, for the purpose of validating the proposed drag reduction technique is also presented.

  15. A mechanism of wave drag reduction in the thermal energy deposition experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markhotok, A., E-mail: amarhotk@phys.washington.edu

    2015-06-15

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressuremore » and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.« less

  16. KENNEDY SPACE CENTER, FLA. - This logo for the Gravity Probe B mission portrays the theory of curved spacetime and "frame-dragging," developed by Einstein and other scientists, that the mission will test. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit. Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring the effects. The experiment was developed by Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - This logo for the Gravity Probe B mission portrays the theory of curved spacetime and "frame-dragging," developed by Einstein and other scientists, that the mission will test. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit. Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring the effects. The experiment was developed by Stanford University, NASA’s Marshall Space Flight Center and Lockheed Martin.

  17. Gravity Probe B

    NASA Image and Video Library

    2003-07-13

    In the spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to remove the soft shipping cover from the Gravity Probe B experiment. Immediate processing includes setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  18. Gravity Probe B

    NASA Image and Video Library

    2003-07-11

    Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment. Mechanical and electrical ground support equipment will be set up and necessary connections made with the spacecraft. Spacecraft battery conditioning will also begin. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  19. KSC-03PD-3277

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a worker checks the installation of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  20. KSC-03PD-3280

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with two solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  1. KSC-03PD-3270

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  2. KSC-03PD-3281

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B spacecraft is seen with all four solar array panels installed. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  3. KSC-03PD-3267

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base work on a solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  4. KSC-03PD-3271

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach a solar array panel on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. KSC-03PD-3266

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare for the installation of solar array panel 3 on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.

    2006-01-01

    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required.

  7. WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.

    1994-01-01

    WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.

  8. KSC-03PD-2746

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment enters the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  9. KSC-03PD-2744

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. At Vandenberg AFB, the canister enclosing the Gravity Probe B (GP-B) spacecraft is removed from the transporter. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  10. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  11. Simulation of sediment settling in reduced gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Gartmann, Andres

    2015-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, Stokes' Law or similar empirical models, the common way of estimating the terminal velocity of a particle settling in a gas or liquid, carry the notion of a drag as a property of a particle, rather than a force generated by the flow around the particle. For terrestrial applications, this simplifying assumption is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on other planetary bodies. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks, e.g. on Mars and the search for traces of life. Simulating sediment settling velocities on other planets based on a numeric simulation using Navier-Stokes equations and Computational Fluid Dynamics requires a prohibitive amount of time and lacks measurements to test the quality of the results. The aim of the experiments presented in this study was therefore to quantify the error incurred by using settling velocity models calibrated on Earth at reduced gravities, such as those on the Moon and Mars. In principle, the effect of lower gravity on settling velocity can be achieved by reducing the difference in density between particle and liquid. However, the use of such analogues creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under reduced gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling velocity measurements within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation, the results of the during the MarsSedEx I and II reduced gravity flights are reported, focusing both on the feasibility of experiments in reduced gravity as well as the error incurred when using terrestrial drag coefficients to calculate sediment settling on another planet.

  12. Drag-Free Control and Drag Force Recovery of Small Satellites

    NASA Technical Reports Server (NTRS)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.

  13. Reducing the wave drag of wing airfoils in transonic flow regimes by the force action of airfoil surface elements on the flow

    NASA Astrophysics Data System (ADS)

    Aul'chenko, S. M.; Zamuraev, V. P.

    2012-11-01

    Mathematical modeling of the influence of forced oscillations of surface elements of a wing airfoil on the shock-wave structure of transonic flow past it has been carried out. The qualitative and quantitative influence of the oscillation parameters on the wave drag of the airfoil has been investigated.

  14. Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Stephan, Claudia

    2015-04-01

    In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.

  15. Tidal waves within the thermosphere. [emphasizing wave dissipation and diffusion

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1974-01-01

    The eigenfunctions of the atmosphere (the Hough functions within the lower atmosphere below about 100 km) change their structure and their propagation characteristics within the thermosphere due to dissipation effects such as heat conduction, viscosity, and ion drag. Wave dissipation can be parameterized to a first-order approximation by a complex frequency, the imaginary term of which simulates an effective ion drag force. It is shown how the equivalent depth, the attenuation, and the vertical wavelength of the predominant symmetric diurnal tidal modes change with height as functions of effective ion drag. The boundary conditions of tidal waves are discussed, and asymptotic solutions for the wave parameters like pressure, density, temperature, and wind generated by a heat input proportional to the mean pressure are given. Finally, diffusion effects upon the minor constituents within the thermosphere are described.

  16. The Effects of Surface Waviness and of Rib Stitching on Wing Drag

    NASA Technical Reports Server (NTRS)

    Hood, Manley J

    1939-01-01

    Surface waviness and rib stitching have been investigated as part of a series of tests to determine the effects on wing drag of common surface irregularities. The tests were made in the N.A.C.A. 8-foot high-speed wind tunnel at Reynolds Numbers up to 17,000,000. The results of the tests showed that the waviness common to airplane wings will cause no serious increase in drag unless the waviness exists on the forward part of the wing, where it may cause premature transition or premature compressibility effects. Waves 3 inches wide and 0.048 inch high, for example, increased the drag 1 percent when they covered the rear 67 percent of both surfaces and 10 percent when they covered the rear 92 percent. A single wave 3 inches wide and only 0.020 inch high at the 10.5-percent-chord point on the upper surface caused transition to occur on the wave and increased the drag 6 percent. Rib stitching increased the drag 7 percent when the rib spacing was 6 inches; the drag increment was proportional to the number of ribs for wider spacings. About one-third of the increase was due to premature transition at the forward ends of the stitching.

  17. Direct Measurements of Mean Reynolds Stress and Ripple Roughness in the Presence of Energetic Forcing by Surface Waves

    NASA Astrophysics Data System (ADS)

    Scully, Malcolm E.; Trowbridge, John H.; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter

    2018-04-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave-exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave-current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two-dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub-orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub-orbital ripples. Paradoxically, the dominant along-shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave-exposed environments with heterogeneous roughness.

  18. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    NASA Astrophysics Data System (ADS)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend the results to the drag-free control system to be designed for future space-based gravity wave observatories like LISA.

  19. KSC-03PD-3279

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers stand by as the balloon at right is released to lift the solar array panel into position for installation on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  20. KSC-03PD-3275

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  1. KSC-03PD-3282

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, Dr. Francis Everitt, principal investigator, and Brad Parkinson, co-principal investigator, both from Stanford University, hold one of the small gyroscopes used in the Gravity Probe B spacecraft. The GP-B towers behind them. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  2. KSC-03PD-3268

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base attach supports to a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  3. KSC-03PD-3276

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to attach the top of a solar array panel onto the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  4. KSC-03PD-3265

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the NASA spacecraft processing facility on North Vandenberg Air Force Base prepare to rotate the framework containing one of four solar panels to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  5. KSC-03PD-3269

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. A worker in the NASA spacecraft processing facility on North Vandenberg Air Force Base adjust the supports on a solar array panel to be lifted and installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  6. KSC-03PD-3278

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the NASA spacecraft processing facility on North Vandenberg Air Force Base, a balloon gently lifts the solar array panel to be installed on the Gravity Probe B spacecraft. Installing each array is a 3-day process and includes a functional deployment test. The Gravity Probe B mission is a relativity experiment developed by NASAs Marshall Space Flight Center, Stanford University and Lockheed Martin. The spacecraft will test two extraordinary predictions of Albert Einsteins general theory of relativity that he advanced in 1916: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Gravity Probe B consists of four sophisticated gyroscopes that will provide an almost perfect space-time reference system. The mission will look in a precision manner for tiny changes in the direction of spin.

  7. Analysis and numerical study of inertia-gravity waves generated by convection in the tropics

    NASA Astrophysics Data System (ADS)

    Evan, Stephanie

    2011-12-01

    Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.

  8. A climatology of gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin

    2017-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.

  9. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  10. Minimum Wave Drag for Arbitrary Arrangements of Wings and Bodies

    NASA Technical Reports Server (NTRS)

    Jones, Robert T

    1957-01-01

    Studies of various arrangements of wings and bodies designed to provide favorable wave interference at supersonic speeds lead to the problem of determining the minimum possible valve of the wave resistance obtainable by any disposition of the elements of an aircraft within a definitely prescribed region. Under the assumptions that the total lift and the total volume of the aircraft are given, conditions that must be satisfied if the drag is to be a minimum are found. The report concludes with a discussion of recent developments of the theory which lead to an improved understanding of the drag associated with the production of lift.

  11. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  12. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  13. Patterning and manipulating microparticles into a three-dimensional matrix using standing surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.; Tran, V. T.; Fu, Y. Q.; Du, H.

    2018-05-01

    A method based on standing surface acoustic waves (SSAWs) is proposed to pattern and manipulate microparticles into a three-dimensional (3D) matrix inside a microchamber. An optical prism is used to observe the 3D alignment and patterning of the microparticles in the vertical and horizontal planes simultaneously. The acoustic radiation force effectively patterns the microparticles into lines of 3D space or crystal-lattice-like matrix patterns. A microparticle can be positioned precisely at a specified vertical location by balancing the forces of acoustic radiation, drag, buoyancy, and gravity acting on the microparticle. Experiments and finite-element numerical simulations both show that the acoustic radiation force increases gradually from the bottom of the chamber to the top, and microparticles can be moved up or down simply by adjusting the applied SSAW power. Our method has great potential for acoustofluidic applications, building the large-scale structures associated with biological objects and artificial neuron networks.

  14. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    USGS Publications Warehouse

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  15. Assessment of the importance of the current-wave coupling in the shelf ocean forecasts

    NASA Astrophysics Data System (ADS)

    Jordà, G.; Bolaños, R.; Espino, M.; Sánchez-Arcilla, A.

    2006-10-01

    The effects of wave-current interactions on shelf ocean forecasts is investigated in the framework of the MFSTEP (Mediterranean Forecasting System Project Towards Enviromental Predictions) project. A one way sequential coupling approach is adopted to link the wave model (WAM) to the circulation model (SYMPHONIE). The coupling of waves and currents has been done considering four main processes: wave refraction due to currents, surface wind drag and bo€ttom drag modifications due to waves, and the wave induced mass flux. The coupled modelling system is implemented in the southern Catalan shelf (NW Mediterranean), a region with characteristics similar to most of the Mediterranean shelves. The sensitivity experiments are run in a typical operational configuration. The wave refraction by currents seems to be not very relevant in a microtidal context such as the western Mediterranean. The main effect of waves on current forecasts is through the modification of the wind drag. The Stokes drift also plays a significant role due to its spatial and temporal characteristics. Finally, the enhanced bottom friction is just noticeable in the inner shelf.

  16. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.

    1998-01-01

    This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.

  17. Determination of Shapes of Boattail Bodies of Revolution for Minimum Wave Drag

    NASA Technical Reports Server (NTRS)

    Adams, Mac C.

    1951-01-01

    By use of an approximate equation for the wave drag of slender bodies of revolution in a supersonic flow field, the optimum shapes of certain boattail bodies are determined for minimum wave drag. The properties of three specific families of bodies are determined, the first family consisting of bodies having a given length and base area and a contour passing through a prescribed point between the nose and base, the second family having fixed length, base area, and maximum area, and the third family having given length, volume, and base area. The method presented is easily generalized to determine minimum-wave-drag profile shapes which have contours that must pass through any prescribed number of points. According to linearized theory, the optimum profiles are found to have infinite slope at the nose but zero radius of curvature so that the bodies appear to have pointed noses, a zero slope at the body base, and no variation of wave drag with Mach number. For those bodies having a specified intermediate.diameter (that is, location and magnitude given), the maximum body diameter is shown to be larger, in general, than the specified diameter. It is also shown that, for bodies having a specified maximum diameter, the location of the maximum diameter is not arbitrary but is determined from the ratio of base diameter to maximum diameter.

  18. On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016

    NASA Astrophysics Data System (ADS)

    Matthias, Vivien; Ern, Manfred

    2018-04-01

    The midwinter 2015/2016 was characterized by an unusually strong polar night jet (PNJ) and extraordinarily large stationary planetary wave (SPW) amplitudes in the subtropical mesosphere. The aim of this study is, therefore, to find the origin of these mesospheric SPWs in the midwinter 2015/2016 study period. The study duration is split into two periods: the first period runs from late December 2015 until early January 2016 (Period I), and the second period from early January until mid-January 2016 (Period II). While the SPW 1 dominates in the subtropical mesosphere in Period I, it is the SPW 2 that dominates in Period II. There are three possibilities explaining how SPWs can occur in the mesosphere: (1) they propagate upward from the stratosphere, (2) they are generated in situ by longitudinally variable gravity wave (GW) drag, or (3) they are generated in situ by barotropic and/or baroclinic instabilities. Using global satellite observations from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) the origin of the mesospheric SPWs is investigated for both time periods. We find that due to the strong PNJ the SPWs were not able to propagate upward into the mesosphere northward of 50° N but were deflected upward and equatorward into the subtropical mesosphere. We show that the SPWs observed in the subtropical mesosphere are the same SPWs as in the mid-latitudinal stratosphere. Simultaneously, we find evidence that the mesospheric SPWs in polar latitudes were generated in situ by longitudinally variable GW drag and that there is a mixture of in situ generation by longitudinally variable GW drag and by instabilities at mid-latitudes. Our results, based on observations, show that the abovementioned three mechanisms can act at the same time which confirms earlier model studies. Additionally, the possible contribution from, or impact of, unusually strong SPWs in the subtropical mesosphere to the disruption of the quasi-biennial oscillation (QBO) in the same winter is discussed.

  19. On the variability of the Charnock constant and the functional dependence of the drag coefficient on wind speed: Part II-Observations

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Wolff, Jörg-Olaf; Lettmann, Karsten A.

    2014-07-01

    An analytical expression for the 10 m drag law in terms of the 10 m wind speed at the maximum in the 10 m drag coefficient, and the Charnock constant is presented, which is based on the results obtained from a model of the air-sea interface derived in Bye et al. (2010). This drag law is almost independent of wave age and over the mid-range of wind speeds (5-17 ms-1) is very similar to the drag law based on observed data presented in Foreman and Emeis (2010). The linear fit of the observed data which incorporates a constant into the traditional definition of the drag coefficient is shown to arise to first-order as a consequence of the momentum exchange across the air-sea boundary layer brought about by wave generation and spray production which are explicitly represented in the theoretical model.

  20. KSC-03PD-2745

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. A transporter carrying the Gravity Probe B experiment backs into the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  1. KSC-03PD-2748

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment is lowered onto an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  2. KSC-03PD-2749

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment rests on an assembly and test stand in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  3. KSC-03PD-2747

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The Gravity Probe B experiment is lifted from its transporter in the spacecraft processing facility on North Vandenberg Air Force Base. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  4. KSC-03PD-2742

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives on Vandenberg Air Force Base, headed for the spacecraft processing facility. Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  5. KSC-03PD-2743

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives at the spacecraft processing facility on North Vandenberg Air Force Base . Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  6. Gradiometry and gravitomagnetic field detection

    NASA Technical Reports Server (NTRS)

    Mashhoon, Bahram

    1989-01-01

    Gravitomagnetism was apparently first introduced into physics about 120 years ago when major developments in electrodynamics and the strong similarity between Coulomb's law of electricity and Newton's law of gravity led to the hypothesis that mass current generates a fundamental force of gravitational origin analogous to the magnetic force caused by charge current. According to general relativity, the rotation of a body leads to the dragging of the local inertial frames. In the weak-field approximation, the dragging frequency can be interpreted, up to a constant proportionality factor, as a gravitational magnetic field. There is, as yet, no direct evidence regarding the existence of such a field. The possibility is examined of detecting the gravitomagnetic field of the Earth by gravity gradiometry.

  7. Investigation of fuel savings for an aircraft due to optimization of the center of gravity

    NASA Astrophysics Data System (ADS)

    Liu, Yitao; Yang, Zhenbo; Deng, Junxiang; Zhu, Junjie

    2018-03-01

    The aircraft’s center of gravity (CG) has a significant influence on the safety and efficiency, which are determined to a large degree by keeping the CG position within the forward and aft limits. Improper loading reduces the aerodynamics efficiency of an aircraft, resulting in higher flight drag. This paper focuses on the theoretical analysis of the influence of variable CG parameter on the fuel consumption. A new model is developed to predict the fuel consumption rate for an aircraft with it’s CG at different position. The numerical result indicates that a more aft CG position produces less drag and, in turn, requires less fuel consumption.

  8. KSC-03PD-2881

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  9. KSC-03PD-2880

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Logos identify the mission of this Delta II rocket that will launch the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  10. Superconducting fluctuation current caused by gravitational drag

    NASA Astrophysics Data System (ADS)

    Tsuchida, Satoshi; Kuratsuji, Hiroshi

    2017-12-01

    We examine a possible effect of the Lense-Thirring field or gravitational drag by calculating the fluctuation current through a superconducting ring. The gravitational drag is induced by a rotating sphere, on top of which the superconducting ring is placed. The formulation is based on the Landau-Ginzburg free-energy functional of linear form. The resultant fluctuation current is shown to be greatly enhanced in the vicinity of the transition temperature, and the current also increases on increasing the winding number of the ring. These effects would provide a modest step towards magnification of tiny gravity.

  11. Field estimates of body drag coefficient on the basis of dives in passerine birds.

    PubMed

    Hedenström, A; Liechti, F

    2001-03-01

    During forward flight, a bird's body generates drag that tends to decelerate its speed. By flapping its wings, or by converting potential energy into work if gliding, the bird produces both lift and thrust to balance the pull of gravity and drag. In flight mechanics, a dimensionless number, the body drag coefficient (C(D,par)), describes the magnitude of the drag caused by the body. The drag coefficient depends on the shape (or streamlining), the surface texture of the body and the Reynolds number. It is an important variable when using flight mechanical models to estimate the potential migratory flight range and characteristic flight speeds of birds. Previous wind tunnel measurements on dead, frozen bird bodies indicated that C(D,par) is 0.4 for small birds, while large birds should have lower values of approximately 0.2. More recent studies of a few birds flying in a wind tunnel suggested that previous values probably overestimated C(D,par). We measured maximum dive speeds of passerine birds during the spring migration across the western Mediterranean. When the birds reach their top speed, the pull of gravity should balance the drag of the body (and wings), giving us an opportunity to estimate C(D,par). Our results indicate that C(D,par) decreases with increasing Reynolds number within the range 0.17-0.77, with a mean C(D,par) of 0.37 for small passerines. A somewhat lower mean value could not be excluded because diving birds may control their speed below the theoretical maximum. Our measurements therefore support the notion that 0.4 (the 'old' default value) is a realistic value of C(D,par) for small passerines.

  12. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Straussfogel, Dennis M.; Maughmer, Mark D.

    1991-01-01

    Improvements in the aerodynamic efficiency of commercial transport aircraft will reduce fuel usage with subsequent reduced cost, both monetary and environmental. To this end, the current research is aimed at reducing the overall drag of these aircraft with specific emphasis on reducing the drag generated by the lifting surfaces. The ultimate goal of this program is to create a wing design methodology which optimizes the geometry of the wing for lowest total drag within the constraints of a particular design specification. The components of drag which must be considered include profile drag, and wave drag. Profile drag is dependent upon, among other things, the airfoil section and the total wetted area. Induced drag, which is manifested as energy left in the wake by the trailing vortex system is mostly a function of wing span, but also depends on other geometric wing parameters. Wave drag of the wing, important in the transonic flight regime, is largely affected by the airfoil section, wing sweep, and so forth. The optimization problem is that of assessing the various parameters which contribute to the different components of wing drag, and determining the wing geometry which generates the best overall performance for a given aircraft mission. The primary thrust of the research effort to date was in the study of induced drag. Results from the study are presented.

  13. Proceedings of an ESA-NASA Workshop on a Joint Solid Earth Program

    NASA Technical Reports Server (NTRS)

    Guyenne, T. Duc (Editor); Hunt, James J. (Editor)

    1987-01-01

    The NASA geodynamics program; spaceborne magnetometry; spaceborne gravity gradiometry (characterizing the data type); terrestrial gravity data and comparisons with satellite data; GRADIO three-axis electrostatic accelerometers; gradiometer accommodation on board a drag-free satellite; gradiometer mission spectral analysis and simulation studies; and an opto-electronic accelerometer system were discussed.

  14. New post-Newtonian parameter to test Chern-Simons gravity.

    PubMed

    Alexander, Stephon; Yunes, Nicolas

    2007-12-14

    We study Chern-Simons (CS) gravity in the parametrized post-Newtonian (PPN) framework through a weak-field solution of the modified field equations. We find that CS gravity possesses the same PPN parameters as general relativity, except for the inclusion of a new term, proportional to the CS coupling and the curl of the PPN vector potential. This new term leads to a modification of frame dragging and gyroscopic precession and we provide an estimate of its size. This correction might be used in experiments, such as Gravity Probe B, to bound CS gravity and test string theory.

  15. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Foulon, B.; Christophe, B.

    2013-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.

  16. Influence of Internal Waves on Transport by a Gravity Current

    NASA Astrophysics Data System (ADS)

    Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart

    2017-11-01

    Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.

  17. Sediment movement along the U.S. east coast continental shelf-I. Estimates of bottom stress using the Grant-Madsen model and near-bottom wave and current measurements

    USGS Publications Warehouse

    Lyne, V.D.; Butman, B.; Grant, W.D.

    1990-01-01

    Bottom stress is calculated for several long-term time-series observations, made on the U.S. east coast continental shelf during winter, using the wave-current interaction and moveable bed models of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808; 1982, Journal of Geophysical Research, 87, 469-482). The wave and current measurements were obtained by means of a bottom tripod system which measured current using a Savonius rotor and vane and waves by means of a pressure sensor. The variables were burst sampled about 10% of the time. Wave energy was reasonably resolved, although aliased by wave groupiness, and wave period was accurate to 1-2 s during large storms. Errors in current speed and direction depend on the speed of the mean current relative to the wave current. In general, errors in bottom stress caused by uncertainties in measured current speed and wave characteristics were 10-20%. During storms, the bottom stress calculated using the Grant-Madsen models exceeded stress computed from conventional drag laws by a factor of about 1.5 on average and 3 or more during storm peaks. Thus, even in water as deep as 80 m, oscillatory near-bottom currents associated with surface gravity waves of period 12 s or longer will contribute substantially to bottom stress. Given that the Grant-Madsen model is correct, parameterizations of bottom stress that do not incorporate wave effects will substantially underestimate stress and sediment transport in this region of the continental shelf.

  18. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  19. Rayleigh lidar observations of gravity wave characteristics in the middle atmosphere at Gadanki, India (13.5 degrees N, 79.2 degreesE.)

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Rajeev, K.; Sasi, M. N.; Ramkumar, Geetha; Krishna Murthy, B. V.; Satheesan, K.; Jain, A. R.; Bhavanikumar, Y.; Raghunath, Kalavai J.; Krishnaiah, M.

    2002-01-01

    Rayleigh lidar observations of temperature in the stratosphere and mesosphere are carried out an Gadanki from February 29 to March 31, 2000, which provided a powerful means of studying the gravity wave characteristics over the tropical atmosphere during winter. The potential energy per unit mass associated with the gravity wave activity in the upper stratosphere and mesosphere is found to undergo periodic fluctuations, which are closely correlated with the zonal wind fluctuations in the stratosphere produced by the equatorial waves. This provides the first observational evidence for the modulation of the gravity wave activity by the long period equatorial waves over the tropical middle atmosphere. The vertical wave number spectra of gravity waves shows that power spectral density decease with increasing wave number with a slope less than that expected for the saturated gravity wave spectrum in the stratosphere and mesosphere. PSD decreases for vertical wavelengths smaller than about 10 km in the stratosphere while the decrease is observed for the complete range of observed gravity wave spectrum in the mesosphere. A monochromatic upward propagating gravity wave with periodicity of 6 hour, amplitude of about 1 K to 3 K and vertical wavelength of 11 km was observed on 22 March, 2000.

  20. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  1. Measuring the Effects of Lift and Drag on Projectile Motion

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…

  2. Drift mode accelerometry for spaceborne gravity measurements

    NASA Astrophysics Data System (ADS)

    Conklin, John W.

    2015-11-01

    A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.

  3. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere - Relationship to the QBO

    NASA Technical Reports Server (NTRS)

    Takahashi, Masaaki; Holton, James R.

    1991-01-01

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.

  4. Dense Gravity Currents with Breaking Internal Waves

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.

  5. A numerical model of gravity wave breaking and stress in the mesosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.

    1983-01-01

    The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.

  6. GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin

    2018-04-01

    Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.

  7. Seasonal and height variation of gravity wave activities observed by a meteor radar at King Sejong Station (62°S, 57°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.

    2010-12-01

    We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.

  8. Investigating gravity waves evidences in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  9. KSC-03PD-2754

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  10. KSC-03PD-2751

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  11. KSC-03PD-2752

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  12. KSC-03PD-2750

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, battery charge/discharge cycles are underway as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  13. KSC-03PD-2753

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers conduct battery charge/discharge cycles as part of the battery conditioning process on Gravity Probe B. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  14. KSC-03pd2743

    NASA Image and Video Library

    2003-07-11

    VANDENBERG AFB, CALIF. - Enclosed in a canister, the Gravity Probe B (GP-B) spacecraft arrives at the spacecraft processing facility on North Vandenberg Air Force Base . Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center.

  15. KSC-03PD-2868

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. A worker in the spacecraft processing facility on North Vandenberg Air Force Base checks the Gravity Probe B experiment during prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  16. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  17. Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.; Cheng, B.

    1996-01-01

    For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.

  18. Planet Formation in Binaries: Dynamics of Planetesimals Perturbed by the Eccentric Protoplanetary Disk and the Secondary

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman R.

    2015-01-01

    Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (gsim 10-2 M ⊙) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.

  19. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE PAGES

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...

    2015-07-30

    Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less

  20. Long-Period Oscillations of Hydraulic Fractures: Attenuation, Scaling Relationships, and Flow Stability

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2013-12-01

    Long-period seismicity due to the excitation of hydraulic fracture normal modes is thought to occur in many geological systems, including volcanoes, glaciers and ice sheets, and hydrocarbon reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluid within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis that accounts for quasi-dynamic elasticity of the fracture wall, as well as fluid drag, inertia, and compressibility. We consider symmetric perturbations and neglect the effects of stratification and gravity. In the long-wavelength or thin-fracture limit, dispersive guided waves known as crack waves propagate with phase velocity cw=√(G*|k|w/ρ), where G* = G/(1-υ) for shear modulus G and Poisson ratio υ, w is the crack half-width, k is the wavenumber, and ρ is the fluid density. Restoring forces from elastic wall deformation drive wave motions. In the opposite, short-wavelength limit, guided waves are simply sound waves within the fluid and little seismic excitation occurs due to minimal fluid-solid coupling. We focus on long-wavelength crack waves, which, in the form of standing wave modes in finite-length cracks, are thought to be a common mechanism for long-period seismicity. The dispersive nature of crack waves implies several basic scaling relations that might be useful when interpreting statistics of long-period events. Seismic observations may constrain a characteristic frequency f0 and seismic moment M0~GδwR2, where δw is the change in crack width and R is the crack dimension. Resonant modes of a fluid-filled crack have associated frequencies f~cw/R. Linear elasticity provides a link between pressure changes δp in the crack and the induced opening δw: δp~G δw/R. Combining these, and assuming that pressure changes have no variation with crack dimension, leads to the scaling law relating seismic moment and oscillation frequency, M0~(Gwδp/ρ)f0-2. This contrasts with the well-known self-similar earthquake scaling M0∝f0-3. Attenuation of long-period crack waves is due to both drag within the fluid and radiative energy losses from excitation of seismic waves. Fluid drag may be characterized by either a turbulent or laminar viscous law. We present a thorough characterization of viscous damping that is valid at both low frequencies, where the flow is always fully developed, and at high frequencies, where fluid inertia becomes important. We have derived simple formulas for the quality factor due to viscous attenuation. Waves may become unstable for sufficiently fast background fluid velocity u0. This instability, first proposed by Julian (1994), was further investigated by Dunham and Ogden (2012), who determined the instability condition, u0>cw/2. We establish a more general result: that the stability condition is not only independent of viscosity, but also uninfluenced by fluid inertia, although both do alter growth rates. We also show that radiation damping (excitation of plane P waves normal to the crack walls) has only a stabilizing effect. This work suggests that under geologically relevant conditions, crack wave propagation is most likely stable, and the occurrence of long-period oscillations thus requires some additional excitation process.

  1. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  2. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.

  3. Near Real-Time Closed-Loop Optimal Control Feedback for Spacecraft Attitude Maneuvers

    DTIC Science & Technology

    2009-03-01

    60 3.8 Positive ωi Static Thrust Fan Characterization Polynomial Coefficients . . 62 3.9 Negative ωi Static Thrust Fan...Characterization Polynomial Coefficients . 62 4.1 Coefficients for SimSAT II’s Air Drag Polynomial Function . . . . . . . . . . . 78 5.1 OLOC Simulation...maneuver. Researchers using OCT identified that naturally occurring aerodynamic drag and gravity forces could be exploited in such a way that the CMGs

  4. Investigation to optimize the passive shock wave-boundary layer control for supercritical airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Ficarra, R.; Orozco, R.

    1983-01-01

    The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.

  5. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere: Relationship to the QBO. [QBO (quasi-biennial oscillation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Holton, J.R.

    1991-09-15

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less

  6. Middle Atmosphere Program. Handbook for MAP, volume 20

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1986-01-01

    Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.

  7. Upper atmospheric planetary-wave and gravity-wave observations

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  8. Shear waves in inhomogeneous, compressible fluids in a gravity field.

    PubMed

    Godin, Oleg A

    2014-03-01

    While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.

  9. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    NASA Technical Reports Server (NTRS)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  10. Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling

    DTIC Science & Technology

    2013-09-30

    Even more problematic are the observed deviations from the constant-flux layer behavior, which the definition of sea drag relies on. Recently...Geophys. Res. Lett., 36, L06607, 4p Babanin, A.V. and V.K. Makin, 2008: Effects of wind trend and gustiness on the sea drag: Lake George study. J. Geophys

  11. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  12. Momentum and buoyancy transfer in atmospheric turbulent boundary layer over wavy water surface - Part 1: Harmonic wave

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu. I.; Ezhova, E. V.; Zilitinkevich, S. S.

    2013-10-01

    The surface-drag and mass-transfer coefficients are determined within a self-consistent problem of wave-induced perturbations and mean fields of velocity and density in the air, using a quasi-linear model based on the Reynolds equations with down-gradient turbulence closure. Investigation of a harmonic wave propagating along the wind has disclosed that the surface drag is generally larger for shorter waves. This effect is more pronounced in the unstable and neutral stratification. The stable stratification suppresses turbulence, which leads to weakening of the momentum and mass transfer.

  13. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  14. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  15. NASA's Next Solar Sail: Lessons Learned from NanoSail - D2

    NASA Technical Reports Server (NTRS)

    Katan, Chelsea

    2012-01-01

    NanoSail-D2 unfurled January 17th, 2011 and commenced a nine month Low Earth Orbit path to reentry to evaluate a sail's capacity to deploy in space and deorbit satellites. The orbit was strongly affected by variables including but not limited to: initial attitude, orbit lighting, solar radiation pressure, aerodynamic drag, gravity, and Center of Pressure offsets. The effects of these variables were evaluated through a 3-DOF rigid body simulation. The sail experienced stability in orbits which were continuously lit, i.e. did not orbit behind Earth. Probable drag area experienced by the sail for the mission is also estimated from orbital data and compared to the attitude simulation results. Analysis focuses on sail behavior in full lighting conditions to establish the limits of the sails stability in full lighting. Solar radiation pressure, aerodynamic drag, and gravity torque effects are described. Lastly, a reasonable upper bound on the variation of the Center of Pressure from the geometric center of the sail plane is established. Each of these results contributes to the design requirements for future solar sails.

  16. KSC-03PD-2741

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment, including setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  17. KSC-03PD-2740

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment, including setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  18. KSC-03PD-2867

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, the Gravity Probe B experiment sits on an assembly and test stand where it has been subject to various prelaunch testing. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  19. KSC-03PD-2739

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment, including setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  20. Gravity Probe B: final results of a space experiment to test general relativity.

    PubMed

    Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S

    2011-06-03

    Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3  mas/yr and a frame-dragging drift rate of -37.2±7.2  mas/yr, to be compared with the GR predictions of -6606.1  mas/yr and -39.2  mas/yr, respectively ("mas" is milliarcsecond; 1  mas=4.848×10(-9)  rad).

  1. KSC-03PD-2872

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  2. KSC-03PD-2870

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is raised to a vertical position at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  3. KSC-03PD-2883

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted off the transporter after its arrival on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  4. KSC-03PD-2879

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., rolls back from the Delta II rocket that will launch the Gravity Probe B experiment. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  5. KSC-03PD-2878

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  6. KSC-03PD-2869

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. KSC-03PD-2884

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  8. KSC-03PD-2882

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment arrives at the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  9. First tomographic observations of gravity waves by the infrared limb imager GLORIA

    NASA Astrophysics Data System (ADS)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin

    2017-12-01

    Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.

  10. The Role of Rough Topography in Mediating Impacts of Bottom Drag in Eddying Ocean Circulation Models.

    PubMed

    Trossman, David S; Arbic, Brian K; Straub, David N; Richman, James G; Chassignet, Eric P; Wallcraft, Alan J; Xu, Xiaobiao

    2017-08-01

    Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer β -plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

  11. Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios

    NASA Astrophysics Data System (ADS)

    Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.

    2017-12-01

    Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.

  12. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  13. Experimental investigation of gravity effects on sediment sorting on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2014-05-01

    Sorting of sedimentary rocks is a proxy for the environmental conditions at the time of deposition, in particular the runoff that moved and deposited the material forming the rocks. Settling of sediment is strongly influenced by the gravity of a planetary body. As a consequence, sorting of a sedimentary rock varies with gravity for a given depth and velocity of surface runoff. Theoretical considerations for spheres indicate that sorting is more uniform on Mars than on Earth for runoff of identical depth. In reality, such considerations have to be applied with great caution because the shape of a particle strongly influences drag. Drag itself can only be calculated directly for an irregularly shaped particle with great computational effort, if at all. Therefore, even for terrestrial applications, sediment settling velocities are often determined directly, e.g. by measurements using settling tubes. In this study the results of settling tube tests conducted under reduced gravity during three experimental flights conducted in November 2012 and 2013 are presented. Nine types of sediment, ranging in size, shape and density were tested in custom-designed settling tubes during parabolas of Martian gravity lasting 20 to 25 seconds. Based on the observed settling velocities, the applicability of empirical relationships developed on Earth to assess particle settling on Mars are discussed. In addition, the potential effects of reduced gravity on the sorting of sedimentary rocks and their use as a proxy for runoff and thus environmental conditions on Mars are examined.

  14. PLANET FORMATION IN BINARIES: DYNAMICS OF PLANETESIMALS PERTURBED BY THE ECCENTRIC PROTOPLANETARY DISK AND THE SECONDARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu

    2015-01-10

    Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additionalmore » planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.« less

  15. Momentum Flux Estimates for South Georgia Island Mountain Waves in the Stratosphere Observed via Satellite

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Eckermann, Stephen D.; Broutman, Dave; Ma, Jun

    2009-01-01

    We show high-resolution satellite observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern Atlantic Ocean and compute the wave momentum fluxes for these events. The fluxes are large, and they imply important drag forces on the circulation. Small island orography is generally neglected in mountain wave parameterizations used in global climate models because limited model resolution treats the grid cell containing the island as ocean rather than land. Our results show that satellite observations can be used to quantitatively constrain mountain wave momentum fluxes, and they suggest that mountain waves from island topography may be an important missing source of drag on the atmospheric circulation.

  16. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  17. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  18. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and identifying size distributions and morphologies of particles produced during the combustion of bulk metals. Materials produced via self-propagating high-temperature synthesis in microgravity are investigated to produce high electroluminescent materials and high efficient dye sensitized electrolyte materials. The rapid cooling and quenching of ZBLAN glass in a microgravity environment is studied to reduce crystallization in the glass. Convective pool boiling and nucleate bubble formation in nano-fluids is aimed at investigating heat transfer properties in these new materials which are masked by gravity. Novel carbon nanotubes are produced in low gravity via an arch discharge to investigate the formation mechanisms of these materials.

  19. Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.

    2017-12-01

    It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.

  20. Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2017-12-01

    Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.

  1. Tsunami-Generated Atmospheric Gravity Waves and Their Atmospheric and Ionospheric Effects: a Review and Some Recent Modeling Results

    NASA Astrophysics Data System (ADS)

    Hickey, M. P.

    2017-12-01

    Tsunamis propagate on the ocean surface at the shallow water phase speed which coincides with the phase speed of fast atmospheric gravity waves. The forcing frequency also corresponds with those of internal atmospheric gravity waves. Hence, the coupling and effective forcing of gravity waves due to tsunamis is particularly effective. The fast horizontal phase speeds of the resulting gravity waves allows them to propagate well into the thermosphere before viscous dissipation becomes strong, and the waves can achieve nonlinear amplitudes at these heights resulting in large amplitude traveling ionospheric disturbances (TIDs). Additionally, because the tsunami represents a moving source able to traverse large distances across the globe, the gravity waves and associated TIDs can be detected at large distances from the original tsunami (earthquake) source. Although it was during the mid 1970s when the tsunami source of gravity waves was first postulated, only relatively recently (over the last ten to fifteen years) has there has been a surge of interest in this research arena, driven largely by significant improvements in measurement technologies and computational capabilities. For example, the use of GPS measurements to derive total electron content has been a particularly powerful technique used to monitor the propagation and evolution of TIDs. Monitoring airglow variations driven by atmospheric gravity waves has also been a useful technique. The modeling of specific events and comparison with the observed gravity waves and/or TIDs has been quite revealing. In this talk I will review some of the most interesting aspects of this research and also discuss some interesting and outstanding issues that need to be addressed. New modeling results relevant to the Tohoku tsunami event will also be presented.

  2. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  3. Long-term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, C. (Technical Monitor)

    2000-01-01

    An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.

  4. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  5. Alfven waves associated with long cylindrical satellites

    NASA Technical Reports Server (NTRS)

    Venkataraman, N. S.; Gustafson, W. A.

    1973-01-01

    The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.

  6. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  7. Measurements of long-range enhanced collisional velocity drag through plasma wave damping

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2018-05-01

    We present damping measurements of axial plasma waves in magnetized, multispecies ion plasmas. At high temperatures T ≳ 10-2 eV, collisionless Landau damping dominates, whereas, at lower temperatures T ≲ 10-2 eV, the damping arises from interspecies collisional drag, which is dependent on the plasma composition and scales roughly as T-3 /2 . This drag damping is proportional to the rate of parallel collisional slowing, and is found to exceed classical predictions of collisional drag damping by as much as an order of magnitude, but agrees with a new collision theory that includes long-range collisions. Centrifugal mass separation and collisional locking of the species occur at ultra-low temperatures T ≲ 10-3 eV, which reduce the drag damping from the T-3 /2 collisional scaling. These mechanisms are investigated by measuring the damping of higher frequency axial modes, and by measuring the damping in plasmas with a non-equilibrium species profile.

  8. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.

    1998-01-01

    Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.

  9. Dynamics of severe storms through the study of thermospheric-tropospheric coupling

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1979-01-01

    Atmospheric acoustic-gravity waves associated with severe local thunderstorms, tornadoes, and hurricanes can be studied through the coupling between the thermosphere and the troposphere. Reverse group ray tracing computations of acoustic-gravity waves, observed by an ionospheric Doppler sounder array, show that the wave sources are in the neighborhood of storm systems and the waves are excited prior to the storms. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed. The results of this study also show that the study of wave-wave resonant interactions may be a potential tool for investigating the dynamical behavior of severe storm systems using ionospheric observations of atmospheric acoustic-gravity waves associated with severe storms.

  10. Acoustic Model of the Remnant Bubble Cloud from Underwater Explosion

    DTIC Science & Technology

    2012-11-01

    fluid, bu g is the acceleration due to gravity, and C is the drag coefficient. Here we use the Grace Drag model (Clift et al., 1978; ANSYS CFX ...Dynaflow, Inc., Baltimore, MD for providing the bubble maker data. REFERENCES ANSYS CFX -Solver, Release 13.0: Theory 2010. ANSYS Inc. Brennen...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 21-23 November 2012, Fremantle, Australia Proceedings of Acoustics 2012

  11. Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2015-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.

  12. Gravity Waves in the Presence of Shear during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.

    2016-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.

  13. Direct measurement of the Einstein relation in a macroscopic, non-equilibrium system of chaotic surface waves

    NASA Astrophysics Data System (ADS)

    Welch, Kyle; Liebman-Pelaez, Alexander; Corwin, Eric

    Equilibrium statistical mechanics is traditionally limited to thermal systems. Can it be applied to athermal, non-equilibrium systems that nonetheless satisfy the basic criteria of steady-state chaos and isotropy? We answer this question using a macroscopic system of chaotic surface waves which is, by all measures, non-equilibrium. The waves are generated in a dish of water that is vertically oscillated above a critical amplitude. We have constructed a rheometer that actively measures the drag imparted by the waves on a buoyant particle, a quantity entirely divorced in origin from the drag imparted by the fluid in which the particle floats. We also perform a separate, passive measurement, extracting a diffusion constant and effective temperature. Having directly measured all three properties (temperature, diffusion constant, and drag coefficient) we go on to show that our macroscopic, non-equilibrium case is wholly consistent with the Einstein relation, a classic result for equilibrium thermal systems.

  14. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  15. Experimental observation of negative effective gravity in water waves.

    PubMed

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.

  16. Experimental Observation of Negative Effective Gravity in Water Waves

    PubMed Central

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  17. Comparisons of AEROX computer program predictions of lift and induced drag with flight test data

    NASA Technical Reports Server (NTRS)

    Axelson, J.; Hill, G. C.

    1981-01-01

    The AEROX aerodynamic computer program which provides accurate predictions of induced drag and trim drag for the full angle of attack range and for Mach numbers from 0.4 to 3.0 is described. This capability is demonstrated comparing flight test data and AEROX predictions for 17 different tactical aircraft. Values of minimum (skin friction, pressure, and zero lift wave) drag coefficients and lift coefficient offset due to camber (when required) were input from the flight test data to produce total lift and drag curves. The comparisons of trimmed lift drag polars show excellent agreement between the AEROX predictions and the in flight measurements.

  18. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits.

    PubMed

    Heuner, Maike; Silinski, Alexandra; Schoelynck, Jonas; Bouma, Tjeerd J; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species--known as ecosystem engineers--are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced.

  19. Ecosystem Engineering by Plants on Wave-Exposed Intertidal Flats Is Governed by Relationships between Effect and Response Traits

    PubMed Central

    Schoelynck, Jonas; Bouma, Tjeerd J.; Puijalon, Sara; Troch, Peter; Fuchs, Elmar; Schröder, Boris; Schröder, Uwe; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    In hydrodynamically stressful environments, some species—known as ecosystem engineers—are able to modify the environment for their own benefit. Little is known however, about the interaction between functional plant traits and ecosystem engineering. We studied the responses of Scirpus tabernaemontani and Scirpus maritimus to wave impact in full-scale flume experiments. Stem density and biomass were used to predict the ecosystem engineering effect of wave attenuation. Also the drag force on plants, their bending angle after wave impact and the stem biomechanical properties were quantified as both responses of stress experienced and effects on ecosystem engineering. We analyzed lignin, cellulose, and silica contents as traits likely effecting stress resistance (avoidance, tolerance). Stem density and biomass were strong predictors for wave attenuation, S. maritimus showing a higher effect than S. tabernaemontani. The drag force and drag force per wet frontal area both differed significantly between the species at shallow water depths (20 cm). At greater depths (35 cm), drag forces and bending angles were significantly higher for S. maritimus than for S. tabernaemontani. However, they do not differ in drag force per wet frontal area due to the larger plant surface of S. maritimus. Stem resistance to breaking and stem flexibility were significantly higher in S. tabernaemontani, having a higher cellulose concentration and a larger cross-section in its basal stem parts. S. maritimus had clearly more lignin and silica contents in the basal stem parts than S. tabernaemontani. We concluded that the effect of biomass seems more relevant for the engineering effect of emergent macrophytes with leaves than species morphology: S. tabernaemontani has avoiding traits with minor effects on wave attenuation; S. maritimus has tolerating traits with larger effects. This implies that ecosystem engineering effects are directly linked with traits affecting species stress resistance and responding to stress experienced. PMID:26367004

  20. KSC-03PD-2755

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. In the spacecraft processing facility on North Vandenberg Air Force Base, workers prepare to remove the soft shipping cover from the Gravity Probe B experiment. Immediate processing includes setting up mechanical and electrical ground support equipment, making necessary connections and conditioning the spacecraft battery. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  1. KSC-03PD-2738

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers in the spacecraft processing facility on North Vandenberg Air Force Base get ready to begin processing the Gravity Probe B experiment. Mechanical and electrical ground support equipment will be set up and necessary connections made with the spacecraft. Spacecraft battery conditioning will also begin. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center.

  2. KSC-03PD-2875

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  3. KSC-03PD-2874

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  4. KSC-03PD-2873

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is prepared for lifting up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. It will enclose the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  5. KSC-03PD-2871

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The first stage of the Delta II launch vehicle for the Gravity Probe B experiment is ready to be lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  6. KSC-03PD-2885

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. KSC-03PD-2889

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rockets second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.

  8. KSC-03PD-2876

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The interstage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif., where it will be mated with the second stage. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  9. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    NASA Astrophysics Data System (ADS)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  10. Future Drag Measurements from Venus Express

    NASA Astrophysics Data System (ADS)

    Keating, Gerald; Mueller-Wodarg, Ingo; Forbes, Jeffrey M.; Yelle, Roger; Bruinsma, Sean; Withers, Paul; Lopez-Valverde, Miguel Angel; Theriot, Res. Assoc. Michael; Bougher, Stephen

    Beginning in July 2008 during the Venus Express Extended Mission, the European Space Agency will dramatically drop orbital periapsis from near 250km to near 180km above the Venus North Polar Region. This will allow orbital decay measurements of atmospheric densities to be made near the Venus North Pole by the VExADE (Venus Express Atmospheric Drag Experiment) whose team leader is Ingo Mueller-Wodarg. VExADE consists of two parts VExADE-ODA (Orbital Drag Analysis from radio tracking data) and VExADE-ACC (Accelerometer in situ atmospheric density measurements). Previous orbital decay measurements of the Venus thermosphere were obtained by Pioneer Venus from the 1970's into the 1990's and from Magellan in the 1990's. The major difference is that the Venus Express will provide measurements in the North Polar Region on the day and night sides, while the earlier measurements were obtained primarily near the equator. The periapsis will drift upwards in altitude similar to the earlier spacecraft and then be commanded down to its lower original values. This cycle in altitude will allow estimates of vertical structure and thus thermospheric temperatures in addition to atmospheric densities. The periapsis may eventually be lowered even further so that accelerometers can more accurately obtain density measurements of the polar atmosphere as a function of altitude, latitude, longitude, local solar time, pressure, Ls, solar activity, and solar wind on each pass. Bias in accelerometer measurements will be determined and corrected for by accelerometer measurements obtained above the discernable atmosphere on each pass. The second experiment, VExADE-ACC, is similar to the accelerometer experiments aboard Mars Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter that carried similar accelerometers in orbit around Mars. The risk involved in the orbital decay and accelerometer measurements is minimal. We have not lost any spacecraft orbiting Venus or Mars due to unexpected thermospheric drag effects over the last 30 years. The Venus Express drag experiments will allow a global empirical model of the thermosphere to emerge. This new model will be a substantial improvement over the Venus International Reference Atmosphere, which was based principally on near equatorial measurements. General Circulation Models (GCM's) and other models will be generated that are in fair accord with the empirical models. The experiment may help us understand, on a global scale, tides, winds, gravity waves, planetary waves and the damping of waves. Comparisons will be made between low and high latitude results; between the middle and upper atmosphere; and with other instruments that provide information from current and previous measurements. The character of the sharp temperature gradient near the day/night terminator needs to be studied at all latitudes. The cryosphere we discovered on the nightside needs to be studied at high latitudes. The vortex dipole over the North Pole surrounded by a colder "collar" needs to be analyzed to identify how wave activity extends into the polar thermosphere. We have already discovered super-rotation in the equatorial thermosphere, but we need to study 4-day super-rotation at higher latitudes to obtain a global picture of the thermosphere. The observed global cooling from radiative effects of 15 micron excitation of CO2 by atomic oxygen should improve our understanding of global thermospheric cooling on Earth and Mars as well.

  11. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  12. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    NASA Astrophysics Data System (ADS)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  13. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Ran, Lingkun; Gao, Shouting

    2018-05-01

    A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.

  14. Characteristics of Quasi-Biennial Oscillation simulation in the Meteorological Research Institute earth system model

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Naoe, H.

    2016-12-01

    Whether climate models drive Quasi-Biennial Oscillation (QBO) appropriately is important to assess QBO impact on climate change such as global warming and solar related variation. However, there were few models generating QBO in the Coupled Model Intercomparison Project Phase 5 (CMIP5). This study focuses on dynamical structure of the QBO and its sensitivity to background wind pattern and model configuration. We present preliminary results of experiments designed by "Towards Improving the QBO in Global Climate Models (QBOi)", which is derived from the Stratosphere-troposphere processes and their role in climate (SPARC), in the Meteorological Research Institute earth system model, MRI-ESM2. The simulations were performed in present-day climate condition, repeated annual cycle condition with various CO2 level and sea surface temperatures, and QBO hindcast. In the present climate simulation, zonal wind in the equatorial stratosphere generally exhibits realistic behavior of the QBO. Equatorial zonal wind variability associated with QBO is overestimated in upper stratosphere and underestimated in lower stratosphere. In the MRI-ESM2, the QBO behavior is mainly driven by gravity wave drag parametrization (GWDP) introduced in Hines (1997). Comparing to reanalyses, shortage of resolved wave forcing is found especially in equatorial lower stratosphere. These discrepancies can be attributed to difference in wave forcing, background wind pattern and model configuration. We intend to show results of additional sensitivity experiments to examine how model configuration and background wind pattern affect resolved wave source, wave propagation characteristics, and QBO behavior.

  15. Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.

    2010-10-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.

  16. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  17. Relationship between Ripples and Gravity Waves Observed in OH Airglow over the Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, B.; Gelinas, L. J.; Liu, A. Z.; Hecht, J. H.

    2016-12-01

    Instabilities generated by large amplitude gravity waves are ubiquitous in the mesopause region, and contribute to the strong forcing on the background atmosphere. Gravity waves and ripples generated by instability are commonly detected by high resolution airglow imagers that measure the hydroxyl emissions near the mesopause ( 87 km). Recently, a method based on 2D wavelet is developed by Gelinas et al. to characterize the statistics of ripple parameters from the Aerospace Infrared Camera at Andes Lidar Observatory located at Cerro Pachón, Chile (70.74°W, 30.25°S). In the meantime, data from a collocated all-sky imager is used to derive gravity wave parameters and their statistics. In this study, the relationship between the ripples and gravity waves that appeared at the same time and location are investigated in terms of their orientations, magnitudes and scales, to examine the statistical properties of the gravity wave induced instabilities and the ripples they generate.

  18. Complexity-action duality of the shock wave geometry in a massive gravity theory

    NASA Astrophysics Data System (ADS)

    Miao, Yan-Gang; Zhao, Long

    2018-01-01

    On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.

  19. On the use of infrasound for constraining global climate models

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David

    2017-11-01

    Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.

  20. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    NASA Astrophysics Data System (ADS)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  1. Drag De-Orbit Device (D3): A Retractable Device for CubeSat Attitude and Orbit Control using Aerodynamic Forces

    NASA Technical Reports Server (NTRS)

    Guglielmo, David; Omar, Sanny R.; Bevilacqua, Riccardo

    2017-01-01

    The increasing number of CubeSats being launched has raised concerns about orbital debris since most of these satellites have no means of active orbit control. Some technologies exist to increase the surface area of a CubeSat and expedite de-orbit due to aerodynamic drag in low Earth orbit, but most of these devices cannot be retracted and hence cannot be used for orbital maneuvering. This paper discusses the De-Orbit Drag Device (D3) module that is capable of de-orbiting a 12U, 15kg CubeSat from a 700 km circular orbit in under 25 years and can be deployed and retracted to modulate the aerodynamic drag force experienced by the satellite. This facilitates orbital maneuvering using aerodynamic drag and the active targeting of a de-orbit location. In addition, the geometry of this drag device provides 3-axis attitude stabilization of the host CubeSat using aerodynamic and gravity gradient torques which is useful for many missions and provides a predictable aerodynamic profile for use in orbital maneuvering algorithms.

  2. Laboratory modeling of air-sea interaction under severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin

    2010-05-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10Ucr the dependencies of peak wave period, peak wavelength, significant wave height on the wind speed tend to saturation, in the same time the peak wave slope has the maximum at approximately Ucr and then decreases with the tendency to saturation. The surface drag also tends to saturation for U10>Ucr similarly to (Donelan et al, 2004). Video filming indicates onset of wave breaking with white-capping and spray generation at wind speeds approximately equal to Ucr. We compared the obtained experimental dependencies with the predictions of the quasi-linear model of the turbulent boundary layer over the waved water surface (Reutov&Troitskaya, 1995). Comparing shows that theoretical predictions give low estimates for the measured drag coefficient and wave fields. Taking into account momentum flux associated with the spray generation yields theoretical estimations in good agreement with the experimental data. Basing on the experimental data a possible physical mechanism of the drag is suggested. Tearing of the wave crests at severe wind conditions leads to the effective smoothing (decreasing wave slopes) of the water surface, which in turn reduces the aerodynamic roughness of the water surface. Quantitative agreement of the experimental data and theoretical estimations od the surface drag occurs if spray and drop momentum flux is taken into account. This study was supported by Russian Foundation for basic research (project code 07-05-00565, 10-05-00339). References Andreas E. L. Spray stress revised, J. Phys. Oceanogr., 2004, v.34, p.1429--1440. Black P.G., et al, Bulletin of the American Meteorological Society, 2007, v. 88, №3, p.357-374. Donelan M.A., et al, J. Phys. Oceanogr., 26, 1901-1914, 1996 Donelan M.A., et al, Geophys. Res. Lett., 2004, v.31, L18306. Emanuel, K.A. , J. Atmos. Sci/, 1995, v.52, p.3969-3976. Fairall C.W., et al, J. Climate, 2003, v.16, № 4, p.571-591. French, J. R., et al, J. Atmos. Sci., 2007, v.64, p.1089-1102. Garratt J.R., Mon. Weather Rev., 1977, v.105, p.915-929. Kudryavtsev V. N., J. Geophys. Res., 2006, v.111, C07020. Kudryavtsev V., Makin V. , Boundary-Layer Meteorol., 2007, v.125, p. 289--303. Kukulka, T., T. Hara, and S. E. Belcher., J. Phys. Oceanogr., 37, 1811-1828, 2007 Makin V. K. ,Boundary Layer Meteorol., 2005, v. 115, №1, p.169-176. Powell, M.D., Vickery P.J., Reinhold T.A., Nature, 2003, v.422, p.279-283. Reutov V.P., Troitskaya Yu.I. ,. Izvestiya RAN, FAO, 31, 825-834, 1995

  3. Some classes of gravitational shock waves from higher order theories of gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2017-02-01

    We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.

  4. A drag-free Lo-Lo satellite system for improved gravity field measurements

    NASA Technical Reports Server (NTRS)

    Fischell, R. E.; Pisacane, V. L.

    1978-01-01

    At very low altitudes, the effect of atmospheric drag results in drastically reduced orbit lifetimes and considerable uncertainty in satellite motions. The concept suggested herein employs a DISturbance COmpensation System (DISCOS) on each of a pair of satellites at very low altitudes to provide refined measurements of the earth's gravitational field. The DISCOS maintains the satellites in orbit and essentially eliminates motion uncertainties due mostly to drag and to a lesser extent from solar radiation pressure. By a closed-loop measurement of the relative rangerate between the two low satellites, one can determine the earth's gravitational field with a considerably greater accuracy than could be obtained by tracking a single satellite.

  5. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komacek, Thaddeus D.; Showman, Adam P., E-mail: tkomacek@lpl.arizona.edu

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperaturemore » differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.« less

  6. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less

  7. Occurrence characteristics of medium-scale gravity waves observed in OH and OI nightglow over Adelaide (34.5°S, 138.5°E)

    NASA Astrophysics Data System (ADS)

    Ding, F.; Yuan, H.; Wan, W.; Reid, I. M.; Woithe, J. M.

    2004-07-01

    This paper presents a 7 year climatology describing medium-scale gravity waves observed in the menopause region covering the years from 1995 to 2001. The data comes from the OI and OH airglow observations of the three-field photometer employed at the University of Adelaide's Buckland Park, Australia (34.5°S, 138.5°E). About 1300 gravity wave events (AGW) are identified during the years 1995-2001. These AGW events usually persist for between 40 min and 4 hours. The magnitudes range from 1% to 14% of the background intensities and peak at 2% for OI observations and at 3% for OH observations. The observed periods range from 10 to 30 min, and the horizontal phase speeds range from 20 to 250 m s-1, with dominant wave scales of 17 min, 70 m s-1 for OI observations and 20 min, 40 m s-1 for OH observations. The intrinsic parameters are obtained by using medium-frequency (MF) wind data observed at the same place. The occurrence frequency of AGW events peaks at 13 min, 40 m s-1 for both OI and OH observations. The occurrence rate of gravity waves has a major peak in summer and a minor peak in winter. There is an obvious dominating southeastward direction for gravity waves, with azimuths of 160° in summer and 130° in winter. Studies for gravity waves observed in various locations show a similar tendency of propagating meridionally toward the summer pole. This implies that the tendency of propagating toward the summer pole may be a global trend for medium-scale gravity waves observed in the mesopause region. During summer, gravity waves propagate against winds measured by MF radar in their dominating direction. Using the ray tracing method, we found that the seasonal variation of winds limits the access of gravity waves to the observation height through reflection and critical coupling, which is one of the causes leading to the seasonal behavior of gravity waves observed over Adelaide.

  8. Equatorial waves in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.

  9. Importance of Variable Density and Non-Boussinesq Effects on the Drag of Spherical Particles

    NASA Astrophysics Data System (ADS)

    Ganguli, Swetava; Lele, Sanjiva

    2017-11-01

    What are the forces that act on a particle as it moves in a fluid? How do they change in the presence of significant heat transfer from the particle, a variable density fluid or gravity? Last year, using particle-resolved simulations we quantified these effects on a single spherical particle and on particles in periodic lattices when O(10-3) 50%) in the absolute drag are observed as λ approaches unity. Oppenheimer, et al. (2016) [1] have proposed a theoretical formula for the drag of a heated sphere at extremely low Re. We show that when Re >O(10), inertial effects completely dominate the drag while when Re

  10. Wave drag reduction due to a self-aligning aerodisk

    NASA Astrophysics Data System (ADS)

    Schnepf, Ch.; Wysocki, O.; Schülein, E.

    2015-06-01

    The effect of a self-aligning aerodisk on the wave drag of a blunt slender body in a pitching maneuver has been numerically investigated. The self-alignment was realized by a coupling of the flow solver and a flight mechanics tool. The slender body was pitched with high repetition rate between α = 0° and 20° at M = 1.41. Even at high α, the concept could align the aerodisk to the oncoming flow. In comparison to the reference body without a self-aligning aerodisk, a distinct drag reduction is achieved. A comparison with existing experimental data shows a qualitatively good agreement considering the shock and separation structure and the kinematics of the aerodisk.

  11. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    PubMed

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  12. Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)

    NASA Technical Reports Server (NTRS)

    Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart

    2007-01-01

    In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.

  13. Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams

    NASA Technical Reports Server (NTRS)

    Chunchuzov, Y. P.; Torgashin, Y. M.

    1979-01-01

    A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.

  14. Gravity waves and instabilities in the lower and middle atmosphere

    NASA Technical Reports Server (NTRS)

    Klostermeyer, Juergen

    1989-01-01

    Some basic aspects of mesoscale and small-scale gravity waves and instability mechanisms are discussed. Internal gravity waves with wavelengths between ten and less than one kilometer and periods between several hours and several minutes appear to play a central role in atmospheric wavenumber and frequency spectra. Therefore, the author discusses the propagation of gravity waves in simplified atmospheric models. Their interaction with the wind as well as their mutual interaction and stability mechanisms based on these processes are discussed. Mesosphere stratosphere troposphere radar observations showing the relevant hydrodynamic processes are stressed.

  15. Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp

    Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves frommore » anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.« less

  16. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  17. Gravity Wave Breaking over the Central Alps: Role of Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2004-09-01

    The characteristics of gravity waves excited by the complex terrain of the central Alps during the intensive observational period (IOP) 8 of the Mesoscale Alpine Programme (MAP) is studied through the analysis of aircraft in situ measurements, GPS dropsondes, radiosondes, airborne lidar data, and numerical simulations.Mountain wave breaking occurred over the central Alps on 21 October 1999, associated with wind shear, wind turning, and a critical level with Richardson number less than unity just above the flight level (5.7 km) of the research aircraft NCAR Electra. The Electra flew two repeated transverses across the Ötztaler Alpen, during which localized turbulence was sampled. The observed maximum vertical motion was 9 m s-1, corresponding to a turbulent kinetic energy (TKE) maximum of 10.5 m2 s-2. Spectrum analysis indicates an inertia subrange up to 5-km wavelength and multiple energy-containing spikes corresponding to a wide range of wavelengths.Manual analysis of GPS dropsonde data indicates the presence of strong flow descent and a downslope windstorm over the lee slope of the Ötztaler Alpen. Farther downstream, a transition occurs across a deep hydraulic jump associated with the ascent of isentropes and local wind reversal. During the first transverse, the turbulent region is convectively unstable as indicated by a positive sensible heat flux within the turbulent portion of the segment. The TKE derived from the flight-level data indicates multiple narrow spikes, which match the patterns shown in the diagnosed buoyancy production rate of TKE. The turbulence is nonisotropic with the major TKE contribution from the -wind component. The convectively unstable zone is advected downstream during the second transverse and the turbulence becomes much stronger and more isotropic.The downslope windstorm, flow descent, and transition to turbulence through a hydraulic jump are captured by a real-data Coupled Ocean Atmosphere Mesoscale Predition System (COAMPS) simulation. Several idealized simulations are performed motivated by the observations of multiscale waves forced by the complex terrain underneath. The simulations indicate that multiscale terrain promotes wave breaking, increases mountain drag, and enhances the downslope winds and TKE generation.


  18. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  19. Ionospsheric observation of enhanced convection-initiated gravity waves during tornadic storms

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1981-01-01

    Atmospheric gravity waves associated with tornadoes, with locally severe storms occuring with tornadoes, and with hurricanes were studied through the coupling between the ionosphere and the troposphere. Reverse group ray tracing computations of gravity waves observed by an ionospheric Doppler sounder array were analyzed. The results of ray tracing computations and comparisons between the computed location of the wave sources and with conventional meteorological data indicate that the computed sources of the waves were near the touchdown of the tornadoes, near the eye of the hurricanes, and directly on the squall line of the severe thunderstorms. The signals excited occurred one hour in advance of the tornadoes and three hours in advance of the hurricanes. Satellite photographs show convective overshooting turrets occurring at the same locations and times the gravity waves were being excited. It is suggested that gravity wave observations, conventional meteorological data, and satellite photographs be combined to develop a remote sensing technique for detecting severe storms.

  20. The Role of Bed Roughness in Wave Transformation Across Sloping Rock Shore Platforms

    NASA Astrophysics Data System (ADS)

    Poate, Tim; Masselink, Gerd; Austin, Martin J.; Dickson, Mark; McCall, Robert

    2018-01-01

    We present for the first time observations and model simulations of wave transformation across sloping (Type A) rock shore platforms. Pressure measurements of the water surface elevation using up to 15 sensors across five rock platforms with contrasting roughness, gradient, and wave climate represent the most extensive collected, both in terms of the range of environmental conditions, and the temporal and spatial resolution. Platforms are shown to dissipate both incident and infragravity wave energy as skewness and asymmetry develop and, in line with previous studies, surf zone wave heights are saturated and strongly tidally modulated. Overall, the observed properties of the waves and formulations derived from sandy beaches do not highlight any systematic interplatform variation, in spite of significant differences in platform roughness, suggesting that friction can be neglected when studying short wave transformation. Optimization of a numerical wave transformation model shows that the wave breaker criterion falls between the range of values reported for flat sandy beaches and those of steep coral fore reefs. However, the optimized drag coefficient shows significant scatter for the roughest sites and an alternative empirical drag model, based on the platform roughness, does not improve model performance. Thus, model results indicate that the parameterization of frictional drag using the bottom roughness length-scale may be inappropriate for the roughest platforms. Based on these results, we examine the balance of wave breaking to frictional dissipation for rock platforms and find that friction is only significant for very rough, flat platforms during small wave conditions outside the surf zone.

  1. Effects of the bottom boundary condition in numerical investigations of dense water cascading on a slope

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind

    2018-05-01

    The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.

  2. Simulation Study of a Follow-on Gravity Mission to GRACE

    NASA Technical Reports Server (NTRS)

    Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.

    2012-01-01

    The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.

  3. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  4. Gravity Probe B: Testing Einstein with Gyroscopes

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.; May, Todd

    2003-01-01

    Some 40 years in the making, NASA' s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta II in 2003. GP-B will test two extraordinary predictions from Einstein's General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.

  5. Gravity Probe B: Testing Einstein with Gyroscopes

    NASA Technical Reports Server (NTRS)

    Geveden, Rex D.; May, Todd

    2003-01-01

    Some 40 years in the making, NASA s historic Gravity Probe B (GP-B) mission is scheduled to launch aboard a Delta I1 in 2003. GP-B will test two extraordinary predictions from Einstein s General Relativity: geodetic precession and the Lense-Thirring effect (frame-dragging). Employing tiny, ultra-precise gyroscopes, GP-B features a measurement accuracy of 0.5 milli-arc-seconds per year. The extraordinary measurement precision is made possible by a host of breakthrough technologies, including electro-statically suspended, super-conducting quartz gyroscopes; virtual elimination of magnetic flux; a solid quartz star- tracking telescope; helium microthrusters for drag-free control of the spacecraft; and a 2400 liter superfluid helium dewar. This paper will provide an overview of the science, key technologies, flight hardware, integration and test, and flight operations of the GP-B space vehicle. It will also examine some of the technical management challenges of a large-scale, technology-driven, Principal Investigator-led mission.

  6. KSC-03PD-2886

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  7. KSC-03PD-2887

    NASA Technical Reports Server (NTRS)

    2003-01-01

    VANDENBERG AFB, CALIF. The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einsteins general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earths rotation drags space and time around with it). Once in orbit, for 18 months each gyroscopes spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASAs Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.

  8. Spaceborne gravity gradiometry characterizing the data type

    NASA Technical Reports Server (NTRS)

    Sonnabend, D.

    1987-01-01

    Satellite gravity gradiometers, particularly the two stage drag free carrier vehicle are discussed. An inner stage, carrying the tracking antenna(s), measures the relative position of the internal free proof mass, and feeds this to a set of magnetic forcers, acting against the outer or main vehicle. As the external forces on the inner stage are low, and as the position relative to the proof mass is tightly controlled, carrier phase disturbances are greatly reduced. The arrangement lowers instantaneous accelerations. It is stressed that gravity gradiometers do not measure gradients, they measure components of an intrinsic tensor.

  9. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water.

    PubMed

    Blake, R W

    2009-03-01

    The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ( approximately 0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive hydrodynamic resistance, thereby increasing their operational life.

  10. Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides

    DTIC Science & Technology

    2015-01-23

    Center 875 North Randolph Street, Suite 1425 Arlington, VA 22203-1995 ONR Approved for public release, distribution is unlimited. A global tuning...factor with a larger value in the Atlantic. Our best global mean RMS error of 4.4 cm for areas deeper than 1000 m and equatorward of 66_ is among the...lowest obtained in a forward barotropic tide model. Barotropic tides; Global modeling; Linear wave drag Unclassified Unclassified Unclassified UU

  11. Lift, drag and thrust measurement in a hypersonic impulse facility

    NASA Technical Reports Server (NTRS)

    Tuttle, S. L.; Mee, D. J.; Simmons, J. M.

    1995-01-01

    This paper reports the extension of the stress wave force balance to the measurement of forces on models which are non-axisymmetric or which have non-axisymmetric load distributions. Recent results are presented which demonstrate the performance of the stress wave force balance for drag measurement, for three-component force measurement and preliminary results for thrust measurement on a two-dimensional scramjet nozzle. In all cases, the balances respond within a few hundred microseconds.

  12. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lay, Erin Hoffmann

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. Themore » coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.« less

  13. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse

    PubMed Central

    2016-01-01

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763

  14. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.

    PubMed

    Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  15. Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.

    PubMed

    Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil

    2017-06-02

    We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.

  16. Over-the-wing propeller

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr. (Inventor); White, E. Richard (Inventor)

    1986-01-01

    This invention is an aircraft with a system for increasing the lift drag ratio over a broad range of operating conditions. The system positions the engines and nacelles over the wing in such a position that gains in propeller efficiency is achieved simultaneously with increases in wing lift and a reduction in wing drag. Adverse structural and torsional effects on the wings are avoided by fuselage mounted pylons which attach to the upper portion of the fuselage aft of the wings. Similarly, pylon-wing interference is eliminated by moving the pylons to the fuselage. Further gains are achieved by locating the pylon surface area aft of the aircraft center of gravity, thereby augmenting both directional and longitudinal stability. This augmentation has the further effect of reducing the size, weight and drag of empennage components. The combination of design changes results in improved cruise performance and increased climb performance while reducing fuel consumption and drag and weight penalties.

  17. Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Conklin, J. W.

    2016-12-01

    The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at University of Florida used to test the performance of precision inertial sensors. We also plan to evaluate the importance of acceleration noise when a second inclined pair of satellites is included in the analysis, following the work of Weise in 2012, which showed that two satellite pairs decreased aliasing errors.

  18. Density response of the mesospheric sodium layer to gravity wave perturbations

    NASA Technical Reports Server (NTRS)

    Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.

    1980-01-01

    Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.

  19. A Simple Theory of Capillary-Gravity Wave Turbulence

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1995-01-01

    Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.

  20. Gravitational mass attraction measurement for drag-free references

    NASA Astrophysics Data System (ADS)

    Swank, Aaron J.

    Exciting new experiments in gravitational physics are among the proposed future space science missions around the world. Such future space science experiments include gravitational wave observatories, which require extraordinarily precise instruments for gravitational wave detection. In fact, future space-based gravitational wave observatories require the use of a drag free reference sensor, which is several orders of magnitude more precise than any drag free satellite launched to date. With the analysis methods and measurement techniques described in this work, there is one less challenge associated with achieving the high-precision drag-free satellite performance levels required by gravitational wave observatories. One disturbance critical to the drag-free performance is an acceleration from the mass attraction between the spacecraft and drag-free reference mass. A direct measurement of the gravitational mass attraction force is not easily performed. Historically for drag-free satellite design, the gravitational attraction properties were estimated by using idealized equations between a point mass and objects of regular geometric shape with homogeneous density. Stringent requirements are then placed on the density distribution and fabrication tolerances for the drag-free reference mass and satellite components in order to ensure that the allocated gravitational mass attraction disturbance budget is not exceeded due to the associated uncertainty in geometry and mass properties. Yet, the uncertainty associated with mass properties and geometry generate an unacceptable uncertainty in the mass attraction calculation, which make it difficult to meet the demanding drag-free performance requirements of future gravitational wave observatories. The density homogeneity and geometrical tolerances required to meet the overall drag-free performance can easily force the use of special materials or manufacturing processes, which are impractical or not feasible. The focus of this research is therefore to develop the necessary equations for the gravitational mass attraction force and gradients between two general distributed bodies. Assuming the drag-free reference mass to be a single point mass object is no longer necessary for the gravitational attraction calculations. Furthermore, the developed equations are coupled with physical measurements in order to eliminate the mass attraction uncertainty associated with mass properties. The mass attraction formula through a second order expansion consists of the measurable quantifies of mass, mass center, and moment of inertia about the mass center. Thus, the gravitational self-attraction force on the drag free reference due to the satellite can be indirectly measured. By incorporating physical measurements into the mass attraction calculation, the uncertainty in the density distribution as well as geometrical variations due to the manufacturing process are included in the analysis. For indirect gravitational mass attraction measurements, the corresponding properties of mass, mass center, and moment of inertia must be precisely determined for the proof mass and satellite components. This work focuses on the precision measurement of the moment of inertia for the drag-free test mass. Presented here is the design of a new moment of inertia measurement apparatus utilizing a five-wire torsion pendulum design. The torsion pendulum is utilized to measure the moment of inertia tensor for a prospective drag-free test mass geometry. The measurement results presented indicate the prototype five-wire torsion has matched current state of the art precision. With only minimal work to reduce laboratory environmental disturbances, the apparatus has the prospect of exceeding state of the art precision by almost an order of magnitude. In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center to a level better than typical measurement devices. Although the pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.

  1. Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions

    NASA Astrophysics Data System (ADS)

    Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele

    2016-04-01

    The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.

  2. Investigating middle-atmospheric gravity waves associated with a sprite-producing mesoscale convective event

    NASA Astrophysics Data System (ADS)

    Vollmer, D. R.; McHarg, M. G.; Harley, J.; Haaland, R. K.; Stenbaek-Nielsen, H.

    2016-12-01

    On 23 July 2014, a mesoscale convective event over western Nebraska produced a large number of sprites. One frame per second images obtained from a low-noise Andor Scientific CMOS camera showed regularly-spaced horizontal striations in the airglow both before and during several of the sprite events, suggesting the presence of vertically-propagating gravity waves in the middle atmosphere. Previous work hypothesized that the gravity waves were produced by the thunderstorm itself. We compare our observations with previous work, and present numerical simulations conducted to determine source, structure, and propagation of atmospheric gravity waves.

  3. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    NASA Astrophysics Data System (ADS)

    Gallice, A.; Wienhold, F. G.; Hoyle, C. R.; Immler, F.; Peter, T.

    2011-06-01

    A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ~30-35 km altitude) is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI) campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s-1 in the troposphere and 0.2 m s-1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects Special Study) in the orographically unperturbed mid-latitude middle troposphere.

  4. Mechanism of travelling-wave transport of particles

    NASA Astrophysics Data System (ADS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-03-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.

  5. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  6. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  7. Gravity waves

    NASA Technical Reports Server (NTRS)

    Fritts, David

    1987-01-01

    Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.

  8. Tsunami and infragravity waves impacting Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.

    2017-07-01

    The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.

  9. Weak wind-wave/tide interaction over fixed and moveable bottoms: a formulation and some preliminary results

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Alvarez, O.; Izquierdo, A.

    2005-05-01

    The formulation of weak wind-wave/low-frequency current interaction is discussed comprehensively as applied to fixed- and moveable-bottom cases. It involves (1) a dependence of the drag coefficient on the ratio between wave and current bottom friction velocity amplitudes, (2) the resistance law for the oscillatory, rough, turbulent bottom boundary layer (BBL) which accounts for the usually neglected effects of rotation and the phase difference between the bottom stress and the friction-free current velocity, (3) the expression for the BBL depth in terms of the bottom Rossby number and (4) the bottom roughness predictor of Grant and Madsen (J. Geophys. Res., 87 (1982) 469) in the version of Tolman (J. Phys. Oceanogr., 24 (1994) 994). The formulation is implemented in the UCA (University of Cadiz) 2D nonlinear, high-resolution, hydrodynamic model and used to study the influence of wind-wave/tide interaction, bottom mobility and the improved flow-resistance description on the M 2 tidal dynamics of Cadiz Bay. The inclusion of either of the first two factors can cause the drag coefficient to increase significantly over its reference value. If the third factor is included, changes in the drag coefficient are quite moderate. This is because the effect of rotation is opposite in sign to the effect of phase difference, so that these effects taken together very nearly balance. The reason why bottom mobility has such an important influence on shallow-water tidal dynamics as wind-wave/tide interaction has, is the occurrence of the large irregular variations in the drag coefficient that accompany sediment motion.

  10. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  11. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.

    2007-12-01

    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  12. Recent Developments in Gravity-Wave Effects in Climate Models and the Global Distribution of Gravity-Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2010-07-01

    by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic

  13. Longitudinal aerodynamic performance of a series of power-law and minimum wave drag bodies at Mach 6 and several Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1974-01-01

    Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.

  14. Cratonic roots under North America are shifted by basal drag: new evidence from gravity and geodynamic modeling

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Petrunin, A.; Mooney, W. D.

    2013-12-01

    The impact of basal drag on the long-lived cratonic roots has been debated since the discovering of plate tectonics. Previously, evidence for a shifted mantle structure under North America was postulated from a comparison of the surface expression of the Great Meteor hotspot track versus its location at 200 km depth as inferred from seismic tomography (Eaton and Frederiksen, 2007). We present new results that are based on the integrative modeling of gravity and seismic data. The starting point is the residual gravity anomaly and residual topography, which are computed by removing of the crustal effect and of the effect of temperature variations in the upper mantle from the observed fields (Mooney and Kaban, 2010). After the temperature correction both residual fields chiefly reflect compositional density heterogeneity of the upper mantle. The residual gravity and topography are jointly inverted to determine the 3D density structure of the upper mantle. The inversion technique accounts for the fact that although these parameters are controlled by the same factors, the effect depends on depth and wavelength. Therefore, we can resolve the vertical distribution of density more reliable than by interpreting only one parameter. We found a strong negative anomaly under the North American craton, as expected for a depleted mantle. However, starting from a depth of about 200 km the depleted root is shifted west-southwest. The maximal shift reaches about 1000 km at a depth of 300 km. The direction agrees with the North American plate movement and with the anisotropy pattern in the upper mantle (e.g. Bokelmann, 2002). The results of the gravity modeling are confirmed by geodynamic modeling. The mantle flow is estimated from the density and temperature distribution derived from seismic tomography models. A 3D viscosity model is supplemented with weak boundaries based on an integrated model of plate boundary deformations. The calculated plate velocities are in a good agreement with the GPS-based models. We found a vertical gradient of the horizontal mantle flow velocity under the North American craton that relates to shear stresses deforming the cratonic root. The lateral velocity within the lowermost part of the lithosphere is about 2 mm/y faster than the overlying plate velocity. If we extrapolate this value to the past, the observed shift of the cratonic root could be achieved in about 500 Ma. Bokelmann GHR, (2002) Convection-driven motion of the North American craton: Evidence from P-wave anisotropy, Geoph. J. Int., 148, 278-287. Eaton DW and Frederiksen A, (2007) Seismic evidence for convection-driven motion of the North American plate, Nature 446, 428-431. Mooney WD, Kaban, MK., (2010). The North American Upper Mantle: Density, Composition, and Evolution, J. Geophys. Res., 115, B12424.

  15. Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model

    DTIC Science & Technology

    2013-08-26

    Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds

  16. Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.

    2016-12-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.

  17. The gravity probe B relativity gyroscope program

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. Francis; Parkinson, B. W.; Turneaure, J. P.

    1989-01-01

    The idea of testing general relativity through observations on Earth orbiting gyroscopes was suggested in 1959 to 1960. The direction, it was noted, of spin of a suitably oriented gyroscope should change with respect to the line of sight to a guide star for two reasons: a geodetic effect from the motion of the gyroscope through the curved space-time around the Earth, and a frame-dragging effect from the Earth's rotation. NASA began supporting laboratory research on the experiment, now called Gravity Probe B, in 1964. Technologies for it were progressively established, and an error analysis demonstrated the potential of measuring frame-dragging to 1 to 2 percent and the geodetic effect to 1 part in 10(exp 4). Later analyses, discussed herein, suggest possibilities for further improving those precisions each by a further factor of 10. In 1984, after technical and scientific reviews by the Space Science Board and other bodies, and completion by NASA Marshall Center of a Phase B Study, the NASA Administrator approved the start of a program known as STORE (Shuttle Test Of the Relativity Experiment). The purpose of STORE is to verify the final Gravity Probe B science payload, perform on the Shuttle a 7-day experiment rehearsal (including sophisticated gyro tests in low gravity), and then return the payload to Earth for refurbishment and integration into the Science Mission spacecraft. The payload comprises four gyroscopes, a telescope, and a drag-free proof mass, all mounted in a quartz block assembly within an evacuated magnetically shielded probe, which in turn is inserted into a 10-ft long, 6-ft diameter liquid helium dewar, operating at 1.8 K and maintaining low temperature for 2 years. STORE is manifested on Shuttle OV-105, for launch MSSN 69 in February 1993. The Science Mission is set tentatively for June 1995.

  18. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less

  19. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  20. No further gravitational wave modes in F(T) gravity

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Nojiri, Shin'ichi; Sáez-Gómez, Diego

    2013-11-01

    We explore the possibility of further gravitational wave modes in F(T) gravity, where T is the torsion scalar in teleparallelism. It is explicitly demonstrated that gravitational wave modes in F(T) gravity are equivalent to those in General Relativity. This result is achieved by calculating the Minkowskian limit for a class of analytic function of F(T). This consequence is also confirmed by the preservative analysis around the flat background in the weak field limit with the scalar-tensor representation of F(T) gravity.

  1. Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit

    PubMed Central

    Stone, William C.; Witzgall, Christoph

    2006-01-01

    A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the “LO2” and “LH2” tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered. PMID:27274926

  2. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  3. Stratospheric gravity waves at southern hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2017-04-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation. Reference: Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381-9397, doi:10.5194/acp-16-9381-2016, 2016.

  4. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    NASA Astrophysics Data System (ADS)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  5. Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    USGS Publications Warehouse

    Scully, Malcolm; Trowbridge, John; Sherwood, Christopher R.; Jones, Katie R.; Traykovski, Peter A.

    2018-01-01

    Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.

  6. The ANGWIN Antarctic Research Program: First Results on Coordinated Trans-Antarctic Gravity Wave Measurements

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.

    2014-12-01

    ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.

  7. Influence of internal waves on the dispersion and transport of inclined gravity currents

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.

    2016-02-01

    Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.

  8. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.

    PubMed

    Yunqing, Gu; Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected.

  9. Analysis of Drag Reduction Methods and Mechanisms of Turbulent

    PubMed Central

    Tao, Liu; Jiegang, Mu; Zhengzan, Shi; Peijian, Zhou

    2017-01-01

    Turbulent flow is a difficult issue in fluid dynamics, the rules of which have not been totally revealed up to now. Fluid in turbulent state will result in a greater frictional force, which must consume great energy. Therefore, it is not only an important influence in saving energy and improving energy utilization rate but also an extensive application prospect in many fields, such as ship domain and aerospace. Firstly, bionic drag reduction technology is reviewed and is a hot research issue now, the drag reduction mechanism of body surface structure is analyzed, such as sharks, earthworms, and dolphins. Besides, we make a thorough study of drag reduction characteristics and mechanisms of microgrooved surface and compliant wall. Then, the relevant drag reduction technologies and mechanisms are discussed, focusing on the microbubbles, the vibrant flexible wall, the coating, the polymer drag reduction additives, superhydrophobic surface, jet surface, traveling wave surface drag reduction, and the composite drag reduction methods. Finally, applications and advancements of the drag reduction technology in turbulence are prospected. PMID:29104425

  10. The Amateur Scientist.

    ERIC Educational Resources Information Center

    Walker, Jearl

    1985-01-01

    Discusses forces that shape the behavior of water as a drop meanders down a windowpane. A homemade apparatus for studying meanders is described along with several experiments. Contact angles, molecule attraction, surface area, air tension, and gravity drag forces are some of the topics addressed. (DH)

  11. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  12. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  13. A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application

    NASA Astrophysics Data System (ADS)

    Schoon, Lena; Zülicke, Christoph

    2018-05-01

    For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.

  14. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  15. The GRACE Mission: Meeting the Technical Challenges

    NASA Technical Reports Server (NTRS)

    Davis, E. S.; Dunn, C. E.; Stanton, R. H.; Thomas, J. B.

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) Mission is scheduled for launch in June 2001. Within the first year of the GRACE Mission, the project has a minimum science requirement to deliver a new model of the Earth's static geoid with an error of less than 1 cm to spherical harmonic degree seventy (70). However, the performance of the GRACE Mission is designed to exceed this minimum requirement by a factor of 25 or more. For spherical harmonic degrees of up to 40, we expect to improve the current knowledge of the gravity field by one thousand (1000x). The GRACE Mission uses the satellite-to-satellite tracking (SST) technique. The twin GRACE satellites are the instruments that measure the nonuniformities in the Earth's gravity field. Nonuniformities in the gravity field cause the relative distance between the centers-of-mass of the two satellites to vary as they fly over the Earth. Atmospheric drag is the largest non-gravitational disturbing force. Drag is measured and will be used to correct changes in the satellite-to-satellite range measured by an SST microwave link. The microwave link will measure changes in the range between the two GRACE satellites with an error approaching 1 micron. We will discuss how these instrumentation requirements affect the configuration, the mass balance, the thermal control and the aerodynamic design of the satellites, and the design of the microwave SST link and the accelerometer. Finally, the question of how noise in these components limits the overall accuracy of the gravity models will be addressed.

  16. Design of a cusped field thruster for drag-free flight

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  17. Supersonic Cruise/Transonic Maneuver Wing Section Development Study.

    DTIC Science & Technology

    1980-06-01

    duct. The inlet is contoured to fit the blended forebody and results in a high-aspect-ratio, minimum height duct which facilitates clearance of the...following. Most of the changes were directed toward reducing the supersonic wave drag. The winglet was removed to reduce supersonic volume and camber...drag and skin friction drag. The primary function of the winglet was to provide directional stability at high angles of attack. Analysis of the HiMAT

  18. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  19. Intra-seasonal Oscillations Inferred from SABER (TIMED) and MLS (UARS) Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Huang, F. T.; Mayr, H. G.; Russell, J.; Mlynczak, M.; Reber, C. A.; Mengel, J. G.

    2006-01-01

    In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better agreement with the observations.

  20. Projectile channeling in chain bundle dusty plasma liquids: Wave excitation and projectile-wave interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Mei-Chu; Tseng, Yu-Ping; I, Lin

    2011-03-15

    The microscopic channeling dynamics of projectiles in subexcitable chain bundle dusty plasma liquids consisting of long chains of negatively charged dusts suspended in low pressure glow discharges is investigated experimentally using fast video-microscopy. The long distance channeling of the projectile in the channel formed by the surrounding dust chain bundles and the excitation of a narrow wake associated with the elliptical motions of the background dusts are demonstrated. In the high projectile speed regime, the drag force due to wake wave excitation increases with the decreasing projectile speed. The excited wave then leads the slowed down projectile after the projectilemore » speed is decreased below the resonant speed of wave excitation. The wave-projectile interaction causes the increasing projectile drag below the resonant speed and the subsequent oscillation around a descending average level, until the projectile settles down to the equilibrium point. Long distance projectile surfing through the resonant crest trapping by the externally excited large amplitude solitary wave is also demonstrated.« less

  1. Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View

    NASA Astrophysics Data System (ADS)

    Bouchette, F.; Mohammadi, B.

    2016-12-01

    It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given promising results for the generation of near-shore sand bar from scratch and their growth when forced by fair-weather waves. Here, we use it to explore the coupling between a very simple infra-gravity content and the nucleation of near-shore sand-bars. It is shown that even a very poor infra-gravity content strongly improves the generation of sand bars.

  2. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  3. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV

    DOE PAGES

    DeMauro, Edward Paisley; Wagner, Justin L.; Beresh, Steven J.; ...

    2017-06-08

    High-speed, time-resolved particle image velocimetry with a pulse-burst laser was used to measure the gas-phase velocity upstream and downstream of a shock wave–particle curtain interaction at three shock Mach numbers (1.22, 1.40, and 1.45) at a repetition rate of 37.5 kHz. The particle curtain was formed from free-falling soda-lime particles resulting in volume fractions of 9% or 23% at mid-height, depending on particle diameter (106–125 and 300–355 μm, respectively). Following impingement by a shock wave, a pressure difference was created between the upstream and downstream sides of the curtain, which accelerated flow through the curtain. Jetting of flow through themore » curtain was observed downstream once deformation of the curtain began, demonstrating a long-term unsteady effect. Using a control volume approach, the unsteady drag on the curtain was estimated from velocity and pressure data. The drag imposed on the curtain has a strong volume fraction dependence with a prolonged unsteadiness following initial shock impingement. Additionally, the data suggest that the resulting pressure difference following the propagation of the reflected and transmitted shock waves is the primary component to curtain drag.« less

  4. Wave drag reduction with a self-aligning aerodisk on a missile configuration

    NASA Astrophysics Data System (ADS)

    Schnepf, C.; Wysocki, O.; Schülein, E.

    2017-06-01

    A self-aligning aerodisk to reduce the wave drag on a pitching missile is numerically investigated. The motion and the Mach number were chosen to match a maneuver flight of an actual missile: pitching frequency f = 7.5 Hz, Mach number M = 2.2, and range of angle of attack 0° < < 21° . The self-alignment was realized with a coupling of the §ow solver with a 6DoF (6 degrees of freedom) tool. In the entire range of angle of attack, the drag could be reduced with the self-aligning aerodisk. A comparison with experimental data showed in parts a quite good agreement in the aerodynamic coe©cients, in the shock structure, and in the alignment of the aerodisk.

  5. Constraints on Covariant Horava-Lifshitz Gravity from frame-dragging experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radicella, Ninfa; Lambiase, Gaetano; Parisi, Luca

    The effects of Horava-Lifshitz corrections to the gravito-magnetic field are analyzed. Solutions in the weak field, slow motion limit, referring to the motion of a satellite around the Earth are considered. The post-newtonian paradigm is used to evaluate constraints on the Horava-Lifshitz parameter space from current satellite and terrestrial experiments data. In particular, we focus on GRAVITY PROBE B, LAGEOS and the more recent LARES mission, as well as a forthcoming terrestrial project, GINGER.

  6. Constraints on Covariant Horava-Lifshitz Gravity from frame-dragging experiment

    NASA Astrophysics Data System (ADS)

    Radicella, Ninfa; Lambiase, Gaetano; Parisi, Luca; Vilasi, Gaetano

    2014-12-01

    The effects of Horava-Lifshitz corrections to the gravito-magnetic field are analyzed. Solutions in the weak field, slow motion limit, referring to the motion of a satellite around the Earth are considered. The post-newtonian paradigm is used to evaluate constraints on the Horava-Lifshitz parameter space from current satellite and terrestrial experiments data. In particular, we focus on GRAVITY PROBE B, LAGEOS and the more recent LARES mission, as well as a forthcoming terrestrial project, GINGER.

  7. On the role of high frequency waves in ocean altimetry

    NASA Astrophysics Data System (ADS)

    Vandemark, Douglas C.

    This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.

  8. Preferred negative geotactic orientation in mobile cells: Tetrahymena results.

    PubMed Central

    Noever, D A; Cronise, R; Matsos, H C

    1994-01-01

    For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved alternating periods of low (0.01 g) and high (1.8 g; g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectories as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (if it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research. Images FIGURE 1 PMID:7858146

  9. Preferred Negative Geotactic Orientation in Mobile Cells: Tetrahymena Results

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond; Matsos, Helen C.

    1994-01-01

    For the protozoan species Tetrahymena a series of airplane experiments are reported, which varied gravity as an active laboratory parameter and tested for corresponding changes in geotaxic orientation of single cells. The airplane achieved altemating periods of low (0.01 g) and high (1.8 g, g = 980 cm/s) gravity by flying repeated Keplerian parabolas. The experimental design was undertaken to clearly distinguish gravity from competing aerodynamic and chemical gradients. In this way, each culture served as its own control, with gravity level alone determining the orientational changes. On average, 6.3% of the Tetrahymena oriented vertically in low gravity, while 27% oriented vertically in high-gravity phases. Simplified physical models are explored for describing these cell trajectores as a function of gravity, aerodynamic drag, and lift. The notable effect of gravity on turning behavior is emphasized as the biophysical cause of the observed negative geotaxis in Tetrahymena. A fundamental investigation of the biological gravity receptor (it it exists) and improved modeling for vertical migration in important types of ocean plankton motivate the present research.

  10. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  11. The effects on cruise drag of installing long-duct refan-engine nacelles on the McDonnell Douglas DC-8-50 and -61

    NASA Technical Reports Server (NTRS)

    Callaghan, J. T.; Donelson, J. E.; Morelli, J. P.

    1973-01-01

    A high-speed wind tunnel test was conducted to determine the effect on cruise performance of installing long-duct refan-engine nacelles on the DC-8-50 and -61 models. Drag data and wing/pylon/nacelle channel pressure data are presented. At a typical cruise condition there exists a very small interference drag penalty of less than one-percent of total cruise data for the Refan installation. Pressure data indicate that some supersonic flow is present in the inboard channel of the inboard refan nacelle installation, but it is not sufficient to cause any wave drag on boundary layer separation. One pylon modification, which takes the form of pylon bumps, was tested. It resulted in a drag penalty, because its design goal of eliminating shock-related interference drag was not required and the bump thus became a source of additional parasite drag.

  12. Effects of wind waves versus ship waves on tidal marsh plants: a flume study on different life stages of Scirpus maritimus.

    PubMed

    Silinski, Alexandra; Heuner, Maike; Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival.

  13. Effects of Wind Waves versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus

    PubMed Central

    Schoelynck, Jonas; Puijalon, Sara; Schröder, Uwe; Fuchs, Elmar; Troch, Peter; Bouma, Tjeerd J.; Meire, Patrick; Temmerman, Stijn

    2015-01-01

    Recent research indicates that many ecosystems, including intertidal marshes, follow the alternative stable states theory. This theory implies that thresholds of environmental factors can mark a limit between two opposing stable ecosystem states, e.g. vegetated marshes and bare mudflats. While elevation relative to mean sea level is considered as the overall threshold condition for colonization of mudflats by vegetation, little is known about the individual driving mechanisms, in particular the impact of waves, and more specifically of wave period. We studied the impact of different wave regimes on plants in a full scale flume experiment. Seedlings and adult shoots of the pioneer Scirpus maritimus were subjected to two wave periods at two water levels. Drag forces acting on, and sediment scouring occurring around the plants were quantified, as these are the two main mechanisms determining plant establishment and survival. Depending on life stage, two distinct survival strategies emerge: seedlings present a stress avoidance strategy by being extremely flexible, thus limiting the drag forces and thereby the risk of breaking. Adult shoots present a stress tolerance strategy by having stiffer stems, which gives them a higher resistance to breaking. These strategies work well under natural, short period wind wave conditions. For long period waves, however, caused e.g. by ships, these survival strategies have a high chance to fail as the flexibility of seedlings and stiffness of adults lead to plant tissue failure and extreme drag forces respectively. This results in both cases in strongly bent plant stems, potentially limiting their survival. PMID:25799017

  14. Surfing surface gravity waves

    NASA Astrophysics Data System (ADS)

    Pizzo, Nick

    2017-11-01

    A simple criterion for water particles to surf an underlying surface gravity wave is presented. It is found that particles travelling near the phase speed of the wave, in a geometrically confined region on the forward face of the crest, increase in speed. The criterion is derived using the equation of John (Commun. Pure Appl. Maths, vol. 6, 1953, pp. 497-503) for the motion of a zero-stress free surface under the action of gravity. As an example, a breaking water wave is theoretically and numerically examined. Implications for upper-ocean processes, for both shallow- and deep-water waves, are discussed.

  15. Relationship between ionospheric plasma bubble occurrence and lightning strikes over the Amazon region

    NASA Astrophysics Data System (ADS)

    Sousasantos, Jonas; Sobral, José Humberto Andrade; Alam Kherani, Esfhan; Magalhães Fares Saba, Marcelo; Rodolfo de Campos, Diovane

    2018-03-01

    The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and lightning strikes. In this work an investigation covering an equinox period (September-October) during the deep solar minimum (2009) presents the relation between lightning strike activity and spread F (equatorial plasma bubble) detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and lightning strikes share the same source (intense tropospheric convection) and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the lightning strike activity seems to offer some information about the subsequent development of spread F over the equatorial region.

  16. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  17. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    NASA Astrophysics Data System (ADS)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  18. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Jackman, Charles H. (Technical Monitor)

    2000-01-01

    This report provides a broad outline of the total body of research conducted during the past three years. We report on detailed model studies of the precise way in which infrared limb scanning satellites explicitly detect gravity waves, and use these insights to resolve earlier discrepant zonal mean estimates of gravity wave variances from satellite limb scanners. Detailed analysis of CRISTA temperature fluctuations are outlined, which provide new global information on long-wavelength stratospheric gravity waves generated by mountains, tropical convection and the mid-latitude jet stream- vortex system, as well as interactions higher in the mesosphere with the diurnal tide. The detailed insights gained from analyzing CRISTA data are applied to provide a multi- year analysis of stratospheric mountain waves over the Andes evident in MLS limb-track data. We also demonstrate for the first time that stratospheric temperature data from the CLAES instrument on UARS resolved gravity waves, and we highlight mountain wave information in a subset of these data. Final conclusions and recommendations are set forth, and the present findings are directly related to the original goals of the research contract. A full list of publications that resulted from this research is provided.

  19. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.

    2000-01-01

    This report provides a broad outline of the total body of research conducted during the past three years. We report on detailed model studies of the precise way in which infrared limb scanning satellites explicitly detect gravity waves, and use these insights to resolve earlier discrepant zonal mean estimates of gravity wave variances from satellite limb scanners. Detailed analysis of CRISTA temperature fluctuations are outlined, which provide new global information on long-wavelength stratospheric gravity waves generated by mountains, tropical convection and the mid-latitude jet stream-vortex system, as well as interactions higher in the mesosphere with the diurnal tide. The detailed insights gained from analyzing CRISTA data are applied to provide a multiyear analysis of stratospheric mountain waves over the Andes evident in MLS limb-track data. We also demonstrate for the first time that stratospheric temperature data from the CLAES instrument on UARS resolved gravity waves, and we highlight mountain wave information in a subset of these data. Final conclusions and recommendations are set forth, and the present findings are directly related to the original goals of the research contract. A full list of publications that resulted from this research is provided.

  20. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    PubMed

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  1. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  2. Seasonal Variation of Wave Activities near the Mesopause Region Observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.

    2012-12-01

    We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.

  3. Using the IMS infrasound network for the identification of mountain-associated waves and gravity waves hotspots

    NASA Astrophysics Data System (ADS)

    Hupe, Patrick; Ceranna, Lars; Pilger, Christoph; Le Pichon, Alexis

    2017-04-01

    The infrasound network of the International Monitoring System (IMS) has been established for monitoring the atmosphere to detect violations of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The IMS comprises 49 certified infrasound stations which are globally distributed. Each station provides data for up to 16 years. Due to the uniform distribution of the stations, the IMS infrasound network can be used to derive global information on atmospheric dynamics' features. This study focuses on mountain-associated waves (MAWs), i.e. acoustic waves in the frequency range between approximately 0.01 Hz and 0.05 Hz. MAWs can be detected in infrasound data by applying the Progressive Multi-Channel Correlation (PMCC) algorithm. As a result of triangulation, global hotspots of MAWs can be identified. Previous studies on gravity waves indicate that global hotspots of gravity waves are similar to those found for MAWs by using the PMCC algorithm. The objective of our study is an enhanced understanding of the excitation sources and of possible interactions between MAWs and gravity waves. Therefore, spatial and temporal correlation analyses will be performed. As a preceding step, we will present (seasonal) hotspots of MAWs as well as hotspots of gravity waves derived by the IMS infrasound network.

  4. Impact location of objects hitting the water surface

    NASA Astrophysics Data System (ADS)

    Kadri, Usama

    2017-04-01

    Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742

  5. Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications

    NASA Astrophysics Data System (ADS)

    Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico

    2018-03-01

    Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.

  6. Instabilities of Internal Gravity Wave Beams

    NASA Astrophysics Data System (ADS)

    Dauxois, Thierry; Joubaud, Sylvain; Odier, Philippe; Venaille, Antoine

    2018-01-01

    Internal gravity waves play a primary role in geophysical fluids: They contribute significantly to mixing in the ocean, and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We discuss the reason for the ubiquity of wave beams in stratified fluids, which is related to the fact that they are solutions of the nonlinear governing equations. We focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams: (a) the triadic resonant instability generating two secondary wave beams and (b) the streaming instability corresponding to the spontaneous generation of a mean flow.

  7. Gravity Wave Detection through All-sky Imaging of Airglow

    NASA Astrophysics Data System (ADS)

    Nguyen, T. V.; Martinez, A.; Porat, I.; Hampton, D. L.; Bering, E., III; Wood, L.

    2017-12-01

    Airglow, the faint glow of the atmosphere, is caused by the interaction of air molecules with radiation from the sun. Similarly, the aurora is created by interactions of air molecules with the solar wind. It has been shown that airglow emissions are altered by gravity waves passing through airglow source region (100-110km), making it possible to study gravity waves and their sources through airglow imaging. University of Houston's USIP - Airglow team designed a compact, inexpensive all-sky imager capable of detecting airglow and auroral emissions using a fisheye lens, a simple optical train, a filter wheel with 4 specific filters, and a CMOS camera. This instrument has been used in USIP's scientific campaign in Alaska throughout March 2017. During this period, the imager captured auroral activity in the Fairbanks region. Due to lunar conditions and auroral activity images from the campaign did not yield visible signs of airglow. Currently, the team is trying to detect gravity wave patterns present in the images through numerical analysis. Detected gravity wave patterns will be compared to local weather data, and may be used to make correlations between gravity waves and weather events. Such correlations could provide more data on the relationship between the mesosphere and lower layers of the atmosphere. Practical applications of this research include weather prediction and detection of air turbulence.

  8. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  9. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    NASA Astrophysics Data System (ADS)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.

    2018-01-01

    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  10. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khajenabi, Fazeleh, E-mail: f.khajenabi@gu.ac.ir

    We investigate the orbital motion of cold clouds in the broad-line region of active galactic nuclei subject to the gravity of a black hole, a force due to a non-isotropic central source, and a drag force proportional to the velocity square. The intercloud is described using the standard solutions for the advection-dominated accretion flows. The orbit of a cloud decays because of the drag force, but the typical timescale of clouds falling onto the central black hole is shorter compared to the linear drag case. This timescale is calculated when a cloud moves through a static or rotating intercloud. Wemore » show that when the drag force is a quadratic function of the velocity, irrespective of the initial conditions and other input parameters, clouds will generally fall onto the central region much faster than the age of whole system, and since cold clouds present in most of the broad-line regions, we suggest that mechanisms for the continuous creation of the clouds must operate in these systems.« less

  12. Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Kumar, Renjith R.; Qu, Min; Seywald, Hans

    2000-01-01

    The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.

  13. An entropy and viscosity corrected potential method for rotor performance prediction

    NASA Technical Reports Server (NTRS)

    Bridgeman, John O.; Strawn, Roger C.; Caradonna, Francis X.

    1988-01-01

    An unsteady Full-Potential Rotor code (FPR) has been enhanced with modifications directed at improving its drag prediction capability. The shock generated entropy has been included to provide solutions comparable to the Euler equations. A weakly interacted integral boundary layer has also been coupled to FPR in order to estimate skin-friction drag. Pressure distributions, shock positions, and drag comparisons are made with various data sets derived from two-dimensional airfoil, hovering, and advancing high speed rotor tests. In all these comparisons, the effect of the nonisentropic modification improves (i.e., weakens) the shock strength and wave drag. In addition, the boundary layer method yields reasonable estimates of skin-friction drag. Airfoil drag and hover torque data comparisons are excellent, as are predicted shock strength and positions for a high speed advancing rotor.

  14. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Zhang, H.; Maceira, M.

    2017-10-01

    We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.

  15. Auroral origin of medium scale gravity waves in neutral composition and temperature

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.

    1979-01-01

    The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.

  16. In Situ Observations of PSCs Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, Paul; Mahoney, M. J.; Gandrud, Bruce; Hipskind, K. Stephen (Technical Monitor)

    2000-01-01

    During SOLVE, the bulk of the in-situ observations of PSCs are of large scale extended structures associated with synoptic scale cooling. The nature of these structures is also determined by layers of high relative NOy that have been stretched into thin layers by advective processes. Some of the in situ observations, however, are clearly correlated with gravity wave signatures. The first goal of this work is to examine these cases and evaluate gravity wave parameters. In particular, we are interested in the intrinsic periods of the waves and their temperature amplitude, which are key ingredients in the nucleation process. Secondly, we will examine some rudimentary properties of the particle size distributions and composition, comparing these with in situ observations of the more extended PSC features. Finally, we will attempt to ascertain the mechanism which generates the gravity waves.

  17. Astrodynamical Space Test of Relativity using Optical Devices I (ASTROD I)—a class-M fundamental physics mission proposal for cosmic vision 2015-2025: 2010 Update

    NASA Astrophysics Data System (ADS)

    Braxmaier, Claus; Dittus, Hansjörg; Foulon, Bernard; Göklü, Ertan; Grimani, Catia; Guo, Jian; Herrmann, Sven; Lämmerzahl, Claus; Ni, Wei-Tou; Peters, Achim; Rievers, Benny; Samain, Étienne; Selig, Hanns; Shaul, Diana; Svehla, Drazen; Touboul, Pierre; Wang, Gang; Wu, An-Ming; Zakharov, Alexander F.

    2012-10-01

    ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals.For this mission, accurate pulse timing with an ultra-stable clock, and a drag-free spacecraft with reliable inertial sensor are required. T2L2 has demonstrated the required accurate pulse timing; rubidium clock on board Galileo has mostly demonstrated the required clock stability; the accelerometer on board GOCE has paved the way for achieving the reliable inertial sensor; the demonstration of LISA Pathfinder will provide an excellent platform for the implementation of the ASTROD I drag-free spacecraft. These European activities comprise the pillars for building up the mission and make the technologies needed ready. A second mission, ASTROD or ASTROD-GW (depending on the results of ASTROD I), is envisaged as a three-spacecraft mission which, in the case of ASTROD, would test General Relativity to one part per billion, enable detection of solar g-modes, measure the solar Lense-Thirring effect to 10 parts per million, and probe gravitational waves at frequencies below the LISA bandwidth, or in the case of ASTROD-GW, would be dedicated to probe gravitational waves at frequencies below the LISA bandwidth to 100 nHz and to detect solar g-mode oscillations. In the third phase (Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD bandwidth. This paper on ASTROD I is based on our 2010 proposal submitted for the ESA call for class-M mission proposals, and is a sequel and an update to our previous paper (Appouchaux et al., Exp Astron 23:491-527, 2009; designated as Paper I) which was based on our last proposal submitted for the 2007 ESA call. In this paper, we present our orbit selection with one Venus swing-by together with orbit simulation. In Paper I, our orbit choice is with two Venus swing-bys. The present choice takes shorter time (about 250 days) to reach the opposite side of the Sun. We also present a preliminary design of the optical bench, and elaborate on the solar physics goals with the radiation monitor payload. We discuss telescope size, trade-offs of drag-free sensitivities, thermal issues and present an outlook.

  18. Short and long periodic atmospheric variations between 25 and 200 km

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.

  19. Aircraft drag prediction and reduction. Addendum 1: Computational drag analyses and minimization; mission impossible?

    NASA Technical Reports Server (NTRS)

    Slooff, J. W.

    1986-01-01

    The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).

  20. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  1. Wave-Current Conditions and Navigation Safety at an Inlet Entrance

    DTIC Science & Technology

    2015-06-26

    effects of physical processes. Wave simulations with refraction, shoaling, and breaking provide estimates of wave-related parameters of interest to...summer and winter months and to better understand the cause- effect relationship between navigability conditions at Tillamook Inlet and characteristics of...the Coriolis force, wind stress, wave stress, bottom stress, vegetation flow drag, bottom friction, wave roller, and turbulent diffusion. Governing

  2. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations

    NASA Astrophysics Data System (ADS)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.

    2017-12-01

    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a potential support for future earthquake and tsunami warning systems. Acknowledgement: This work is supported by NSFC (41604135), China Postdoctoral Science Foundation funded project (1231703), State Key Laboratory of Earthquake Dynamics (LED2015B04), Key Laboratory of Earth and Planetary Physics, Hubei Subsurface Multi-scale Imaging Key Laboratory.

  3. Mechanics of a gaseous film barrier to lubricant wetting of elastohydrodynamically lubricated conjunctions

    NASA Technical Reports Server (NTRS)

    Prahl, J. M.; Hamrock, B. J.

    1985-01-01

    Two analytical models, one based on simple hydrodynamic lubrication and the other on soft elastohydrodynamic lubrication, are presented and compared to delineate the dominant physical parameters that govern the mechanics of a gaseous film between a small droplet of lubricant and the outer race of a ball bearing. Both models are based on the balance of gravity forces, air drag forces, and air film lubrication forces and incorporate a drag coefficient C sub D and a lubrication coefficient C sub L to be determined from experiment. The soft elastohydrodynamic lubrication (EHL) model considers the effects of droplet deformation and solid-surface geometry; the simpler hydrodynamic lubrication (HL) model assumes that the droplet remains essentially spherical. The droplet's angular position depended primarily on the ratio of gas inertia to droplet gravity forces and on the gas Reynolds number and weakly on the ratio of droplet gravity forces to surface tension forces (Bond number) and geometric ratios for the soft EHL. An experimental configuration in which an oil droplet is supported by an air film on the rotating outer race of a ball bearing within a pressure-controlled chamber produced measurements of droplet angular position as a function of outer-race velocity droplet size and type, and chamber pressure.

  4. Self-gravity and dissipation in polar rings

    NASA Technical Reports Server (NTRS)

    Dubinski, John; Christodoulou, Dimitris M.

    1994-01-01

    Studies of inclined rings inside galaxy potentials have mostly considered the influence of self-gravity and viscous dissipation separately. In this study, we construct models of highly inclined ('polar') rings in an external potential including both self-gravity and dissipation due to a drag force. We do not include pressure forces and thus ignore shock heating that dominates the evolution of gaseous rings inside strongly nonspherical potentials. We adopt an oblate spheroidal scale-free logarithmic potential with axis ratio q = 0.85 and an initial inclination of 80 deg for the self-gravitating rings. We find that stellar (dissipationless) rings suffer from mass loss during their evolution. Mass loss also drives a secular change of the mean inclination toward the poles of the potential. As much as half of the ring mass escapes in the process and forms an inner and an outer shell of precessing orbits. If the remaining mass is more than approximately 0.02 of the enclosed galaxy mass, rings remain bound and do not fall apart from differential precession. The rings precess at a constant rate for more than a precession period tau(sub p) finding the configuration predicted by Sparke in 1986 which warps at larger radii toward the poles of the potential. We model shear viscosity with a velocity-dependent drag force and find that nuclear inflow dominates over self-gravity if the characteristic viscous inflow time scale tau(sub vi) is shorter than approximately 25(tau(sub p)). Rings with (tau(sub vi))/(tau(sub p)) less than or approximately equal to 25 collapse toward the nucleus of the potential within one precession period independent of the amount of self-gravity. Our results imply that stars and gas in real polar rings exhibit markedly different dynamical evolutions.

  5. Evidence for a continuous spectrum of equatorial waves in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Eriksen, Charles C.

    1980-06-01

    Seven-month records of current and temperature measurements from a moored array centered at 53°E on the equator in the Indian Ocean are consistent with a continuous spectrum of equatorially trapped internal inertial-gravity, mixed Rossby-gravity, and Kelvin waves. A model spectrum of free linear waves analogous to those for mid-latitude internal gravity waves is used to compute spectra of observed quantities at depths greater than about 2000 m. Model parameters are adjusted to fit general patterns in the observed spectra over periods from roughly 2 days to 1 month. Measurements at shallower depths presumably include forced motions which we have not attempted to model. This `straw-person' spectrum is consistent with the limited data available. The model spectru Ē (n, m, ω) = K · B(m) · C(n, ω), where Ē is an average local energy density in the equatorial wave guide which has amplitude K, wave number shape B(m) ∝ (1 + m/m*)-3, where m is vertical mode number and the bandwidth parameter m* is between 4 and 8, and frequency shape C(n, ω) ∝ [(2n + 1 + s2)½ · σ3]-1 where n is meridional mode number, and s and σ are dimensionless zonal wave number and frequency related by the usual dispersion relation. The scales are (β/cm)½ and (β · cm)½ for horizontal wave number and frequency, where cm is the Kelvin wave speed of the vertical mode m. At each frequency and vertical wave number, energy is partitioned equally among the available inertial gravity modes so that the field tends toward horizontal isotropy at high frequency. The transition between Kelvin and mixed Rossby-gravity motion at low frequency and inertial-gravity motion at high frequency occurs at a period of roughly 1 week. At periods in the range 1-3 weeks, the model spectrum which fits the observations suggests that mixed Rossby-gravity motion dominates; at shorter periods gravity motion dominates. The model results are consistent with the low vertical coherence lengths observed (roughly 80 m). Horizontal coherence over 2 km is consistent with isotropic energy flux. Evidence for net zontal energy flux is not found in this data, and the presence of a red wave number shape suggests that net flux will be difficult to observe from modest moored arrays. The equatorial wave spectrum does not match across the diurnal and semidiurnal tides to the high-frequency internal wave spectrum (the latter is roughly 1 decade higher).

  6. Velocity Structure of the Iran Region Using Seismic and Gravity Observations

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.

    2015-12-01

    We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.

  7. Investigation of Ionospheric Turbulence and Whistler Wave Interactions with Space Plasmas

    DTIC Science & Technology

    2012-11-21

    an oscillating LOS velocity with the same periodicity as the heating modulation pattern. A set of Fourier periodogram from the MUIR LOS velocity...scale ionospheric turbulence are discussed separately, viz., (a) anomalous heat source-induced acoustic gravity waves (AGW), and (b) HF radio wave...ionospheric ducts, acoustic gravity waves (AGWs), anomalous heat sources, inner and outer radiation belts, L parameter, whistler wave interactions

  8. Gravitational wave production by Hawking radiation from rotating primordial black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan, E-mail: ruifengd@buffalo.edu, E-mail: whkinney@buffalo.edu, E-mail: ds77@buffalo.edu

    In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the totalmore » energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10{sup −7.5}. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10{sup −6.5}. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.« less

  9. The effect of breaking gravity waves on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)

    NASA Technical Reports Server (NTRS)

    Garcia, R. R.

    1986-01-01

    The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.

  10. Experimental and numerical investigation of low-drag intervals in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Ryu, Sangjin; Lee, Jin

    2017-11-01

    It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.

  11. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  12. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  13. Effect of flow oscillations on cavity drag and a technique for their control

    NASA Technical Reports Server (NTRS)

    Gharib, M.; Roshko, A.; Sarohia, V.

    1985-01-01

    Experiments to relate the state of the shear layer to cavity drag have been performed in a water channel using a 4" axisymmetric cavity model. Detailed flow measurements in various cavity flow oscillation phases, amplitude amplification along the flow direction, distribution of shear stress, and other momentum flux obtained by laser Doppler velocimeter are presented. Measurements show exponential dependence of cavity drag on the length of the cavity. A jump in the cavity drag coefficient is observed as the cavity flow shows a bluff body wake type behavior. Natural and forced oscillations are introduced by a sinusoidally heated thin-film strip which excites the Tollmein-Schlichting waves in the boundary layer upstream of the gap. For a large gap, self-sustained periodic oscillations are observed, while for smaller gaps, which do not oscillate naturally, periodical oscillations can be obtained by external forcing through the strip heater. The drag of the cavity can be increased by one order of magnitude in the non-oscillating case through external forcing. Also, it is possible to completely eliminate mode switching by external forcing. For the first time, it is demonstrated that amplitude of cavity flow Kelvin-Helmholtz wave is dampened or cancelled by introduction of external perturbation of natural flow frequency but different phase.

  14. Investigation of fog structure affected by gravity waves and turbulence in the mountainous region of Pyeongchang, Korea, the place for the 2018 Winter Olympics and Paralympics

    NASA Astrophysics Data System (ADS)

    La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.

    2017-12-01

    Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.

  15. GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand

    NASA Astrophysics Data System (ADS)

    Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.

    2014-12-01

    Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.

  16. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    NASA Astrophysics Data System (ADS)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  17. Convectively-generated gravity waves and clear-air turbulence (CAT)

    NASA Astrophysics Data System (ADS)

    Sharman, Robert; Lane, Todd; Trier, Stanley

    2013-04-01

    Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).

  18. Turbulence and stress owing to gravity wave and tidal breakdown

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.

    1981-01-01

    For some years it has been accepted that tides and gravity waves propagating into the upper mesosphere from below are the major source of turbulence in the upper mesosphere. The considered investigation has the objective to examine the implications of such a situation in some detail. The main propagating diurnal mode seems to be the primary contributor at tropical latitudes. Because of the high phase speed of this mode, it is only slightly affected by the mean zonal flow of the atmosphere. Wavebreaking appears to occur around 85 km, leading to a layer of enhanced eddy diffusion and wave induced acceleration extending between 85 km and about 108 km. Above 108 km molecular transport dominates. Gravity waves appear to be dominant at middle and high latitudes. The flow distribution will effectively determine which gravity waves (depending on phase speed) can reach the mesosphere.

  19. Inhomogeneous distribution of water droplets in cloud turbulence

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Park, Yongnam; Harduf, Roei; Lee, Changhoon

    2015-09-01

    We consider sedimentation of small particles in the turbulent flow where fluid accelerations are much smaller than acceleration of gravity g . The particles are dragged by the flow by linear friction force. We demonstrate that the pair-correlation function of particles' concentration diverges with decreasing separation as a power law with negative exponent. This manifests fractal distribution of particles in space. We find that the exponent is proportional to ratio of integral of energy spectrum of turbulence times the wave number over g . The proportionality coefficient is a universal number independent of particle size. We derive the spectrum of Lyapunov exponents that describes the evolution of small patches of particles. It is demonstrated that particles separate dominantly in the horizontal plane. This provides a theory for the recently observed vertical columns formed by the particles. We confirm the predictions by direct numerical simulations of Navier-Stokes turbulence. The predictions include conditions that hold for water droplets in warm clouds thus providing a tool for the prediction of rain formation.

  20. Challenges in Understanding and Forecasting Winds in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Mann, J.; Fernando, J.; Wilczak, J. M.

    2017-12-01

    An overview will be given of some of the challenges in understanding and forecasting winds in complex terrain. These challenges can occur for several different reasons including 1) gaps in our understanding of fundamental physical boundary layer processes occurring in complex terrain; 2) a lack of adequate parameterizations and/or numerical schemes in NWP models; and 3) inadequate observations for initialization of NWP model forecasts. Specific phenomena that will be covered include topographic wakes/vortices, cold pools, gap flows, and mountain-valley winds, with examples taken from several air quality and wind energy related field programs in California as well as from the recent Second Wind Forecast Improvement Program (WFIP2) field campaign in the Columbia River Gorge/Basin area of Washington and Oregon States. Recent parameterization improvements discussed will include those for boundary layer turbulence, including 3D turbulence schemes, and gravity wave drag. Observational requirements for improving wind forecasting in complex terrain will be discussed, especially in the context of forecasting pressure gradient driven gap flow events.

  1. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  2. The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric

    2016-08-01

    Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.

  3. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  4. Convectively Generated Gravity Waves In The Tropical Stratosphere: Case Studies And Importance For The Circulation Of The Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)

    1995-01-01

    The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.

  5. A Plant's Response to Gravity as a Wave Guide Phenomenon

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    1997-11-01

    Plant experimental data provides a unifying wave theory (W-wave theory) for the growth and development of plants. A plant's response to gravity is an important aspect of this theory. It appears that a plant part is tuned to the angle with which it initially grew with respect to the gravitational field and changes produce correction responses. This is true because the velocity of W-waves (whose standing waves determine plant structure) within plant tissue is found to be different in different directions (angle a) with respect to the gravitational field. I found that there are preferred values of a, namely integral multiples of near 5 degrees for some plants. Conifers apparently are more sensitive to the gravitational field than deciduous trees, in the cases studied, so their structure is determined in more detail by the gravitational field. A plant's response to gravity appears to be a fundamental phenomenon and may provide a new model for gravity that can be experimentally verified in the laboratory. Along these same lines accelerometers placed in plant tissue indicate that plants produce gravity related forces that facilitate sap flow. See the

  6. Wave transport in the South Australian Basin

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; James, Charles

    2018-02-01

    The specification of the dynamics of the air-sea boundary layer is of fundamental importance to oceanography. There is a voluminous literature on the subject, however a strong link between the velocity profile due to waves and that due to turbulent processes in the wave boundary layer does not appear to have been established. Here we specify the velocity profile due to the wave field using the Toba spectrum, and the velocity profile due to turbulence at the sea surface by the net effect of slip and wave breaking in which slip is the dominant process. Under this specification, the inertial coupling of the two fluids for a constant viscosity Ekman layer yields two independent estimates for the frictional parameter (which is a function of the 10 m drag coefficient and the peak wave period) of the coupled system, one of which is due to the surface Ekman current and the other to the peak wave period. We show that the median values of these two estimates, evaluated from a ROMS simulation over the period 2011-2012 at a station on the Southern Shelf in the South Australian Basin, are similar in strong support of the air-sea boundary layer model. On integrating over the planetary boundary layer we obtain the Ekman transport (w*2/f) and the wave transport due to a truncated Toba spectrum (w*zB/κ) where w* is the friction velocity in water, f is the Coriolis parameter, κ is von Karman's constant and zB = g T2/8 π2 is the depth of wave influence in which g is the acceleration of gravity and T is the peak wave period. A comparison of daily estimates shows that the wave transports from the truncated Toba spectrum and from the SWAN spectral model are highly correlated (r = 0.82) and that on average the Toba estimates are about 86% of the SWAN estimates due to the omission of low frequency tails of the spectra, although for wave transports less than about 0.5 m2 s-1 the estimates are almost equal. In the South Australian Basin the Toba wave transport is on average about 42% of the Ekman transport.

  7. Blocking, descent and gravity waves: Observations and modelling of a MAP northerly föhn event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.; Smith, Ronald B.

    2005-01-01

    A northerly föhn event observed during the special observational period of the Mesoscale Alpine Programme is investigated based on observational analysis and numerical modelling. The focus of this study includes three dynamical processes associated with mountain perturbations and their interactions, namely, windward flow blocking, descent and warming on the lee side, and mountain waves. Observations indicate the presence of a deep weak-flow layer underneath a stable layer, associated with Alpine-scale blocking. Satellite imagery reveals a föhninduced cloud-free area to the south of the Alps, which is consistent with flow descent diagnosed from radiosondes and constant-volume balloons. Moderate-amplitude stationary waves were observed by research aircraft over the major Alpine peaks. Satellite images and balloon data indicate the presence of stationary trapped-wave patterns located to the north of the Alpine massif.Satisfactory agreement is found between observations and a real-data COAMPS simulation nested to 1 km resolution. COAMPS indicates the presence of trapped waves associated with a sharp decrease of Scorer parameter above a stable layer in the mid-troposphere. Underneath the stable layer, moist low-level flow is blocked to the north of the Alps. The warm air in the stable layer descends in the lee and recovers its altitude over a relatively short horizontal distance through a hydraulic jump.Blocking reduces the effective mountain and hence significantly reduces mountain drag. A simple empirical formula for estimation of the effective mountain height, he, is derived based on numerical simulations. The formula states he/hc = (h/hc), where h is the real mountain height and hc is the critical mountain height to have flow stagnation.

  8. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-04-01

    Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50-70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40-60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.

  9. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  10. Radar studies of gravity waves and tides in the middle atmosphere - A review

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1981-01-01

    A review is presented of recent radar studies of gravity waves and tides in the middle atmosphere (over regions of approximately 10-30 and 60-90 km). The techniques used for monitoring the motions are outlined and their limitations are pointed out. The radars provide observations of short-period (1 min-1 h) gravity waves and tides at selected height intervals, depending on the radar frequency and the observation technique. The following contributions to the study of the midatmosphere are included in the discussion: (1) buoyancy oscillations and short-period (less than 10 min) acoustic-gravity waves have been observed in the troposphere and stratosphere and, in several cases, their generation and propagation near critical levels has been reconciled with theoretical models; (2) excitation of stratospheric waves by penetrative convection associated with thunderstorms has been established; (3) stratospheric and mesospheric tides at diurnal and semidiurnal periods have been observed; and (4) long-period (approximately 2 to 5 days) waves have been observed in the mesosphere. It is noted that more comprehensive data bases need to be obtained for further tidal and wave studies.

  11. Testing Einstein in Space: The Gravity Probe B Relativity Mission

    NASA Astrophysics Data System (ADS)

    Mester, John

    The Gravity Probe B Relativity Mission was successfully launched on April 20, 2004 from Vandenberg Air Force Base in California, a culmination of 40 years of collaborative development at Stanford University and NASA. The goal of the GP-B experiment is to perform precision tests of two independent predictions of general relativity, the geodetic effect and frame dragging. On-orbit cryogenic operations lasted 17.3 months, exceeding requirements. Analysis of the science data is now in progress with a planned announcement of results scheduled for December 2007.

  12. Picture of the global field of quasi-monochromatic gravity waves observed by stratospheric balloons and MST radars

    NASA Technical Reports Server (NTRS)

    Yamanaka, M. D.

    1989-01-01

    In MAP observations, it was found that: (1) gravity waves in selected or filtered portions of data are fit for monochromatic structures, whereas (2) those in fully continuous and resolved observations take universal continuous spectra. It is possible to explain (2) by dispersion of quasi-monochromatic (or slowly varying) wave packets observed locally as (1), since the medium atmosphere is unsteady and nonuniform. Complete verification of the wave-mean flow interactions by tracking individual wave packets seems hopeless, because the wave induced flow cannot be distinguished from the basic flow independent of the waves. Instead, the primitive picture is looked at before MAP, that is, the atmosphere is just like an entertainment stage illuminated by cocktail lights of quasi-monochromatic gravity waves. The wave parameters are regarded as functions of time and spatial coordinates. The observational evidences (1) and (2) suggest that the wave parameter field is rather homogeneous, which can be explained by interference of quasi-monochromatic wave packets.

  13. Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Voight, Barry

    2010-04-01

    The sudden ejection of material during an explosive eruption generates a broad spectrum of pressure oscillations, from infrasonic to gravity waves. An infrasonic array, installed at 3.5 km from the Soufriere Hills Volcano has successfully detected and located, in real-time, the infrasound generated by several pyroclastic flows (PF) estimating mean flow speeds of 30-75 m/s. On July 29 and December 3, 2008, two differential pressure transducers, co-located with the array, recorded ultra long-period (ULP) oscillations at frequencies of 0.97 and 3.5 mHz, typical of atmospheric gravity waves, associated with explosive eruptions. The observation of gravity waves in the near-field (<6 km) at frequencies as low as about 1 mHz is unprecedented during volcanic eruptions.

  14. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE PAGES

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    2017-07-11

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  15. Joint inversion of seismic and gravity data for imaging seismic velocity structure of the crust and upper mantle beneath Utah, United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica

    Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less

  16. Ocean Wave-to-Ice Energy Transfer Determined from Seafloor Pressure and Ice Shelf Seismic Observations

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2017-12-01

    Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.

  17. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  18. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  19. Tether fundamentals

    NASA Technical Reports Server (NTRS)

    Carroll, J. A.

    1986-01-01

    Some fundamental aspects of tethers are presented and briefly discussed. The effects of gravity gradients, dumbbell libration in circular orbits, tether control strategies and impact hazards for tethers are among those fundamentals. Also considered are aerodynamic drag, constraints in momentum transfer applications and constraints with permanently deployed tethers. The theoretical feasibility of these concepts are reviewed.

  20. Planet formation in binary systems: simulating coagulation using analytically determined collision velocities.

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman

    2017-06-01

    The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by moderately damaging collisions can also prevent growth from occurring.

  1. Tropical waves and the quasi-biennial oscillation in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Angell, J. K.; Korshover, J.

    1976-01-01

    By means of spectrum analysis of 11 years of lower stratospheric daily winds and temperatures at Balboa, Ascension and Canton-Singapore, evidence is presented supporting the existence of two principal wave modes with periods of about 11-17 days (Kelvin waves) and about 4-5 days (mixed Rossby-gravity waves). The structure of the two wave modes, as well as the vertical eddy momentum flux by the waves, is shown to be related to the quasi-biennial cycle, although for the mixed Rossby-gravity waves this is obvious only at Ascension. In addition, the Coriolis term, suggested as a source of vertical easterly momentum flux for the mixed Rossby-gravity waves, is investigated and found to be of the same magnitude as the vertical eddy flux term. Finally, we have examined the mean meridional motion and the meridional eddy momentum flux for its possible association with the quasi- biennial variation.

  2. Three-wave and four-wave interactions in gravity wave turbulence

    NASA Astrophysics Data System (ADS)

    Aubourg, Quentin; Campagne, Antoine; Peureux, Charles; Ardhuin, Fabrice; Sommeria, Joel; Viboud, Samuel; Mordant, Nicolas

    2017-11-01

    Weak-turbulence theory is a statistical framework to describe a large ensemble of nonlinearly interacting waves. The archetypal example of such system is the ocean surface that is made of interacting surface gravity waves. Here we describe a laboratory experiment dedicated to probe the statistical properties of turbulent gravity waves. We set up an isotropic state of interacting gravity waves in the Coriolis facility (13-m-diam circular wave tank) by exciting waves at 1 Hz by wedge wave makers. We implement a stereoscopic technique to obtain a measurement of the surface elevation that is resolved in both space and time. Fourier analysis shows that the laboratory spectra are systematically steeper than the theoretical predictions and the field observations in the Black Sea by Leckler et al. [F. Leckler et al., J. Phys. Oceanogr. 45, 2484 (2015), 10.1175/JPO-D-14-0237.1]. We identify a strong impact of surface dissipation on the scaling of the Fourier spectrum at the scales that are accessible in the experiments. We use bicoherence and tricoherence statistical tools in frequency and/or wave-vector space to identify the active nonlinear coupling. These analyses are also performed on the field data by Leckler et al. for comparison with the laboratory data. Three-wave coupling is characterized by and shown to involve mostly quasiresonances of waves with second- or higher-order harmonics. Four-wave coupling is not observed in the laboratory but is evidenced in the field data. We discuss temporal scale separation to explain our observations.

  3. Resonant Drag Instability of Grains Streaming in Fluids

    NASA Astrophysics Data System (ADS)

    Squire, J.; Hopkins, P. F.

    2018-03-01

    We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.

  4. Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields.

    PubMed

    Gandikota, G; Chatain, D; Amiroudine, S; Lyubimova, T; Beysens, D

    2014-01-01

    The frozen-wave instability which appears at a liquid-vapor interface when a harmonic vibration is applied in a direction tangential to it has been less studied until now. The present paper reports experiments on hydrogen (H2) in order to study this instability when the temperature is varied near its critical point for various gravity levels. Close to the critical point, a liquid-vapor density difference and surface tension can be continuously varied with temperature in a scaled, universal way. The effect of gravity on the height of the frozen waves at the interface is studied by performing the experiments in a magnetic facility where effective gravity that results from the coupling of the Earth's gravity and magnetic forces can be varied. The stability diagram of the instability is obtained. The experiments show a good agreement with an inviscid model [Fluid Dyn. 21 849 (1987)], irrespective of the gravity level. It is observed in the experiments that the height of the frozen waves varies weakly with temperature and increases with a decrease in the gravity level, according to a power law with an exponent of 0.7. It is concluded that the wave height becomes of the order of the cell size as the gravity level is asymptotically decreased to zero. The interface pattern thus appears as a bandlike pattern of alternate liquid and vapor phases, a puzzling phenomenon that was observed with CO2 and H2 near their critical point in weightlessness [Acta Astron. 61 1002 (2007); Europhys. Lett. 86 16003 (2009)].

  5. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  6. Numerical studies of laminar and turbulent drag reduction, part 2

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Orszag, S. A.

    1983-01-01

    The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.

  7. Performance evaluation of low-cost airglow cameras for mesospheric gravity wave measurements

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Shiokawa, K.

    2016-12-01

    Atmospheric gravity waves significantly contribute to the wind/thermal balances in the mesosphere and lower thermosphere (MLT) through their vertical transport of horizontal momentum. It has been reported that the gravity wave momentum flux preferentially associated with the scale of the waves; the momentum fluxes of the waves with a horizontal scale of 10-100 km are particularly significant. Airglow imaging is a useful technique to observe two-dimensional structure of small-scale (<100 km) gravity waves in the MLT region and has been used to investigate global behaviour of the waves. Recent studies with simultaneous/multiple airglow cameras have derived spatial extent of the MLT waves. Such network imaging observations are advantageous to ever better understanding of coupling between the lower and upper atmosphere via gravity waves. In this study, we newly developed low-cost airglow cameras to enlarge the airglow imaging network. Each of the cameras has a fish-eye lens with a 185-deg field-of-view and equipped with a CCD video camera (WATEC WAT-910HX) ; the camera is small (W35.5 x H36.0 x D63.5 mm) and inexpensive, much more than the airglow camera used for the existing ground-based network (Optical Mesosphere Thermosphere Imagers (OMTI) operated by Solar-Terrestrial Environmental Laboratory, Nagoya University), and has a CCD sensor with 768 x 494 pixels that is highly sensitive enough to detect the mesospheric OH airglow emission perturbations. In this presentation, we will report some results of performance evaluation of this camera made at Shigaraki (35-deg N, 136-deg E), Japan, where is one of the OMTI station. By summing 15-images (i.e., 1-min composition of the images) we recognised clear gravity wave patterns in the images with comparable quality to the OMTI's image. Outreach and educational activities based on this research will be also reported.

  8. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation.

    PubMed

    Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S

    2017-07-01

    In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

  9. On the presence of equatorial waves in the lower stratosphere of a general circulation model

    NASA Astrophysics Data System (ADS)

    Maury, P.; Lott, F.

    2014-02-01

    To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi-biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby gravity waves are also very similar but significantly weaker than in observations. We demonstrate that this bias on the Rossby gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward. During a westward phase of the QBO, the ERA-Interim Rossby gravity waves compare well with those in the model. These results suggest that (i) in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering, and (ii) the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions, whereas in the ERA-Interim reanalysis the sources are more equatorial. We show that non-equatorial sources are also significant in reanalysis data sets as they explain the presence of the Rossby gravity waves in the stratosphere. To illustrate this point, we identify situations with large Rossby gravity waves in the reanalysis middle stratosphere for dates selected when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a stratospheric reloading.

  10. On the presence of equatorial waves in the lower stratosphere of a general circulation model

    NASA Astrophysics Data System (ADS)

    Maury, P.; Lott, F.

    2013-08-01

    To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby-gravity waves are also very close but significantly weaker than in observations. We demonstrate that this bias on the Rossby-gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward: during a westward phase of the QBO, the Rossby-gravity waves in ERA-Interim compare well with those in the model. These results suggest that in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering and the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions whereas in the ERA-Interim reanalysis the sources are more equatorial. We also show that non-equatorial sources are significant in reanalysis data, and we consider the case of the Rossby-gravity waves. We identify situations in the reanalysis where here are large Rossby-gravity waves in the middle stratosphere, and for dates when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a "stratospheric reloading".

  11. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  12. Locomotion of bluefish.

    PubMed

    DuBois, A B; Cavagna, G A; Fox, R S

    1976-02-01

    1. Pressure previously measured on the body surface of swimming bluefish were resolved into their backward vectorial components to allow calculation of profile drag. It was 0.18 kg at a speed of 1.8 m/sec. Tangential drag was calculated as if for a thin plate of an area equal to that of the fish. It was 0.08 kg at 1.8 m/sec. Net drag, 0.26 kg, was the sum of profile and tangential drag. 2. Thrust and drag also were calculated from the changes of acceleration measured during steady swimming, assuming that thrust took place only during the acceleration phase, whereas drag occurred during both acceleration and deceleration. This drag was 0.08 kg at a speed of 1.1 m/sec. It is compatible with the drag of 0.26 at 1.8 m/sec calculated from profile and tangential drag provided drag varies as the square of velocity. 3. The force required to produced maximal acceleration was measured during a scare. It was calculated to be 6.9 kg at a peak acceleration of 3 g. 4. The compression strength of th vertebrae was found to be approximately 20 kg per cm2, or roughly three times the force encountered during maximal acceleration. This safety factor of 3 would be reduced when the back was curved, or if opposing groups of muscles were under tension. 5. The finding that a bluefish can accelerate at 3 g and that the vertebral column is strongg enough to withstand this force indicates that the muscles and body structure of a bluefish would be able to withstand the force of gravity if the fish were otherwise equipped for terrestrial life. This fish may have evolved these strengths simultaneously with land animals. It is speculated that other fish may have evolved some degree of strength to overcome inertia and drag during aquatic locomotion, and this evolution may have been a prelude to terrestrial locomotion.

  13. A drag measurement technique for free piston shock tunnels

    NASA Technical Reports Server (NTRS)

    Sanderson, S. R.; Simmons, J. M.; Tuttle, S. L.

    1991-01-01

    A new technique is described for measuring drag with 100-microsecond rise time on a nonlifting model in a free piston shock tunnel. The technique involves interpretation of the stress waves propagating within the model and its support. A finite element representation and spectral methods are used to obtain a mean square optimal estimate of the time history of the aerodynamic loading. Thus, drag is measured instantaneously and the previous restriction caused by the mechanical time constant of balances is overcome. The effectiveness of the balance is demonstrated by measuring the drag on cones with 5 and 15 deg semi-vertex angles in nominally Mach 5.6 flow with stagnation enthalpies from 2.6 to 33 MJ/kg.

  14. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  15. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.

    2003-11-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  17. Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.

    2004-08-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.

    In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.

  18. A case study of A mesoscale gravity wave in the MLT region using simultaneous multi-instruments in Beijing

    NASA Astrophysics Data System (ADS)

    Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars

    2016-03-01

    In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.

  19. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  20. Causal properties of nonlinear gravitational waves in modified gravity

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

Top