Science.gov

Sample records for gravity-driven lyman-alpha blobs

  1. Lyman Alpha Blobs: Seeds of Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Hall, Agnar; Prescott, Moire

    2017-01-01

    Recently, evidence has been mounting that giant Lyman alpha (Lya) nebulae, or "blobs," at high redshift are coincident with regions of galaxy overdensity and likely the progenitors of galaxy groups. These Lya blobs are rare structures found at roughly 1 < z < 6 which have typical diameters of ~100 kpc and Lya luminosities of ~10^42 to 10^44 erg s^-1. Using Hubble Space Telescope (HST) imaging, we explore the environments of three systematically-selected blobs at 1.5 < z < 2.5. Comparing the total surface density of galaxies in a region centered on the blob to the average surface density of galaxies in the field, we find that all three blobs exhibit significant overdensity (up to a factor of 5-10). After narrowing down which galaxies are most likely to be associated with each Lya blob, we confirm that the raw overdensities are enhanced and find evidence of a luminosity gap in at least one of the three systems studied. These results suggest that Lya blobs offer new insight into the early phases of galaxy group and cluster formation.

  2. Where have all the Lyman-alpha blobs gone?

    NASA Astrophysics Data System (ADS)

    Keel, William

    Lyman alpha emission blobs, up to 100 kpc in size and 10^44 ergs/sec in line luminosity, populate cosmic structures at z>2. Their nature and relation to galaxies and active nuclei remain uncertain from existing data, as does their evolution with cosmic time. Cooling flows of pristine material entering galaxies for the first time, photoionization by (often hidden) AGN, and unusually powerful starburst winds have been suggested to account for these objects. Recent results seem to favor the wind picture, which requires extremely powerful and brief starbursts and perhaps unusually dense surrounding media as well. The GALEX slitless grism mode offers a uniquely powerful way to search for similar objects in windows near z=0.3 and z=0.9. We therefore propose observations of regions of known large-scale density enhancements at z=0.9, where available evidence shows that cluster environments are still very active. Given the sensitivity of the instrument and low background levels, the results would either measure or very strongly limit the evolution of these clouds, and improve our picture of how they relate to the other kinds of objects we can see in the early Universe.

  3. [OIII] Emission and Gas Kinematics in a Lyman-alpha Blob at z ~ 3.1

    NASA Astrophysics Data System (ADS)

    McLinden, Emily; Rhoads, J. E.; Malhotra, S.; Hibon, P.; Tilvi, V.

    2013-01-01

    We present spectroscopic measurements of the [OIII] emission line from two subregions of strong Lyman-alpha emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 at z ~ 3.1 first reported, by Steidel et al (2000). The [OIII] detections are from the two Lyman break galaxies embedded in the blob halo. We made our [OIII] measurements with LUCIFER on the 8.4m Large Binocular Telescope and NIRSPEC on 10m Keck Telescope. Comparing the redshift of the [OIII] to Lyman-alpha redshifts allows us to take a step towards understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we consistently find velocity offsets between the [OIII] and Lyman-alpha redshifts consistent with 0 km/s in both subregions studied (ranging from -43.88 ± 69.01 -- 36.58 ± 63.85 km/s). We discuss the possible implications of this result, as it could downplay the role of winds and outflows in powering the Lyman-alpha emission in this LAB, since a velocity offset between nebular emission lines and Lyman-alpha are often interpreted as evidence of large-scale outflows.

  4. Lyman Alpha Blobs in a Filament at z=2.38

    NASA Technical Reports Server (NTRS)

    Williger, G.; Francis, P.; Mushotzky, R.; Palunas, P.; Teplitz, H.; Weaver, K.; White, R.; Woodgate, B.

    2004-01-01

    Bright, extended Lyman-alpha nebulae (known as blobs) appear to be common in the densest environments at high redshift, and may be an important stage in galaxy evolution. Up to now, Chandra data have not distinguished between the possible excitation mechanisms, but suggest that we are seeing dense excitation mechanisms, but suggest that we are seeing dense intracluster gas either falling into forming galaxies (cooling flows) or being expelled into the intracluster medium, enriching it. Optical and X-ray evidence also suggests that some blobs harbor AGN. We took a 20 ksec exposure with Chandra of four Lyman-alpha blobs in a large filament at $z=2.38$, which completed the X-ray observations of all currently known blobs. We will present flux constraints for the blobs from the Chandra data and optical spectra of the field taken with the AAT+2dF (see accompanying poster by Woodgate et al.). Possible mechanisms for the extended emission of the Lyman-alpha blobs will be discussed.

  5. CTIO REU/PIA Observations: Lyman-Alpha Blob Candidates and RR Lyrae Variables

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine C.; Students, REU/PIA; van der Bliek, Nicole S.; Kunder, Andrea; Layden, Andrew C.; Hegel, Paul R.; Anderson, Tyler S.

    2012-02-01

    We request 8 nights on the CTIO 1.0-m as part of the upcoming 2012 CTIO REU/PIA program. The main focus of this proposal will be to provide direct, hands-on observational experience to 8 undergraduate students in observational techniques, astronomical data reduction, and multi-wavelength photometry. In order to expose the students to a variety of astronomical observations, we will observe RR Lyrae variable stars and Lyman Alpha Blob (LAB) candidates. The RR Lyrae variable star observations are in collaboration with the Bowling Green State University Variable Star Project (BGSUVSP). The variable stars will be observed in several colors to refine their calibration as distance indicators, determine extinction and place constraints on stellar models. LAB candidates were chosen from space-based UV data from Swift/UVOT of 50 fields of quasi-stellar objects (QSOs) in the redshift range 0.556Lyman-alpha emission. Additionally, a small fraction of the time will be allocated to observe scientifically interesting targets of the students own choosing.

  6. [O III] Emission and Gas Kinematics in a Lyman-alpha Blob at z ~ 3.1

    NASA Astrophysics Data System (ADS)

    McLinden, Emily M.; Malhotra, Sangeeta; Rhoads, James E.; Hibon, Pascale; Weijmans, Anne-Marie; Tilvi, Vithal

    2013-04-01

    We present spectroscopic measurements of the [O III] emission line from two subregions of strong Lyα emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 at z ~ 3.1, and the [O III] detections are from the two Lyman break galaxies (LBGs) embedded in the blob halo. The [O III] measurements were made with LUCIFER on the 8.4 m Large Binocular Telescope and NIRSPEC on 10 m Keck Telescope. Comparing the redshift of the [O III] measurements to Lyα redshifts from SAURON allows us to take a step toward understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [O III] and Lyα redshifts that are modestly negative or consistent with 0 km s-1 in both subregions studied (ranging from -72 ± 42- + 6 ± 33 km s-1). A negative offset means Lyα is blueshifted with respect to [O III] a positive offset then implies Lyα is redshifted with respect to [O III]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset. In addition, we present an [O III] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [O III] upper limit from the galaxy-unassociated region of the blob is at least 1.4-2.5 times fainter than the [O III] flux from one of the LBG-associated regions and has an [O III] to Lyα ratio measured at least 1.9-3.4 times smaller than the same ratio measured from one of the LBGs.

  7. [O III] EMISSION AND GAS KINEMATICS IN A LYMAN-ALPHA BLOB AT z {approx} 3.1

    SciTech Connect

    McLinden, Emily M.; Malhotra, Sangeeta; Rhoads, James E.; Hibon, Pascale; Weijmans, Anne-Marie; Tilvi, Vithal

    2013-04-10

    We present spectroscopic measurements of the [O III] emission line from two subregions of strong Ly{alpha} emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 at z {approx} 3.1, and the [O III] detections are from the two Lyman break galaxies (LBGs) embedded in the blob halo. The [O III] measurements were made with LUCIFER on the 8.4 m Large Binocular Telescope and NIRSPEC on 10 m Keck Telescope. Comparing the redshift of the [O III] measurements to Ly{alpha} redshifts from SAURON allows us to take a step toward understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [O III] and Ly{alpha} redshifts that are modestly negative or consistent with 0 km s{sup -1} in both subregions studied (ranging from -72 {+-} 42- + 6 {+-} 33 km s{sup -1}). A negative offset means Ly{alpha} is blueshifted with respect to [O III] a positive offset then implies Ly{alpha} is redshifted with respect to [O III]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset. In addition, we present an [O III] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [O III] upper limit from the galaxy-unassociated region of the blob is at least 1.4-2.5 times fainter than the [O III] flux from one of the LBG-associated regions and has an [O III] to Ly{alpha} ratio measured at least 1.9-3.4 times smaller than the same ratio measured from one of the LBGs.

  8. Modeling Solar Lyman Alpha Irradiance

    NASA Technical Reports Server (NTRS)

    Pap, J.; Hudson, H. S.; Rottman, G. J.; Willson, R. C.; Donnelly, R. F.; London, J.

    1990-01-01

    Solar Lyman alpha irradiance is estimated from various solar indices using linear regression analyses. Models developed with multiple linear regression analysis, including daily values and 81-day running means of solar indices, predict reasonably well both the short- and long-term variations observed in Lyman alpha. It is shown that the full disk equivalent width of the He line at 1083 nm offers the best proxy for Lyman alpha, and that the total irradiance corrected for sunspot effect also has a high correlation with Lyman alpha.

  9. A New Population of High-z, Dusty Lyman-alpha Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    NASA Technical Reports Server (NTRS)

    Bridge, Carrie R.; Blain, Andrew; Borys, Colin J. K.; Petty, Sara; Benford, Dominic; Eisenhardt, Peter; Farrah, Duncan; Griffith, Roger, L.; Jarrett, Tom; Lonsdale, Carol; Stanford. Spencer A.; Stern, Daniel; Tsai, Chao-Wei; Wright, Edward L.; Wu, Jingwen

    2013-01-01

    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 approx. < z approx. < 4.6 dusty Ly-alpha emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Ly-alpha "blobs" (LABs). The objects have a surface density of only approx.. 0.1 deg(exp -2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L(sub IR) approx. > 10(exp 13)-10(exp 14) Solar L) and have warm colors. They are typically more luminous and warmer than other dusty, z approx.. 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Ly-alpha, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy.

  10. Lyman Alpha Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Rhoads, J. E.; Malhotra, S.; Dawson, S.; Dey, A.; Jannuzi, B. T.; Spinrad, H.; Stern, D.; Wang, J. X.; Xu, C.; Brown, M. J. I.; Landes, E.

    2004-05-01

    Because strong Lyman alpha emission is expected from young star forming galaxies at high redshift, it offers an efficient tool for identifying these galaxies. The Large Area Lyman Alpha survey is one of the first and largest successful searches for Lyman alpha emitting galaxies at high redshift. In the LALA Bootes field (which lies within the NOAO Deep Wide-Field Survey's Bootes field) we have obtained deep narrowband images covering 1/3 square degree in each of eight filters, sampling redshifts z=4.5, 5.7, and 6.5. We focus here on the higher redshift windows, where we have confirmed a luminous Lyman alpha emitting galaxy at z=6.535 and several others in the z=5.7 window. We discuss the physical properties of these objects, including their contribution to star formation rates and metal production. We also discuss the implications of Lyman alpha galaxy observations at z=6.5 for reionization.

  11. The AGN Fraction in Lyman Alpha Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Junxian; Rhoads, J.; Malhotra, S.

    2007-05-01

    A large fraction of high redshift Lyman-alpha emitters selected through narrow band imaging technique show rest frame equivalent widths (EWs) above 200\\AA. This is beyond the maximum EW expected for normal stellar population. The high EWs can be produced by younger stellar populations, dust, or by type 2 AGNs. We review recent observational progresses on the AGN fraction in high redshift Lyman-alpha searches, including radio, X-ray, and optical spectroscopic observations. Specifically, we show that an upper limit of 5% of the AGN fraction has been obtained based on deep Chandra images. We also present deep IMACS multi-slit spectroscopic observations of 200 candidate z 4.5 Lyman-alpha emitting galaxies selected in the Large Area Lyman Alpha (LALA) narrow band imaging survey Cetus field. This consitutes the largest ever sample of high redshift Lyman-alpha emitters with spectroscopic follow-up.

  12. Lyman Alpha Emitters and Galaxy Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Malhotra, S.; Kovac, K.; Somerville, R.; Moustakas, L.; Rhoads, J. E.

    2002-12-01

    The Large Area Lyman Alpha (LALA) survey has successfully identified the population of young Lyman-alpha emitting galaxies predicted about 35 years ago. High equivalent widths of the Lyman-alpha line in these sources suggest that they are a very young (age < 107 years), metal poor, population of stars at redshifts 4.5 and 5.7, making them very interesting objects to study in the context of galaxy formation scenarios. We have begun to do exactly this using the correlation function of LALA galaxies. While the strong correlation function indicates massive halos, the volume density of Lyman-alpha sources and the faint continuum levels indicate low-mass stellar systems. This discrepancy can be resolved by postulating multiple emitters in a single halo.

  13. HETDEX: Evolution of Lyman Alpha Emitters

    NASA Astrophysics Data System (ADS)

    Blanc, Guillermo A.; Gebhardt, K.; Hill, G. J.; Gronwall, C.; Ciardullo, R.; Finkelstein, S.; Gawiser, E.; HETDEX Collaboration

    2012-01-01

    The Hobby Eberly Telescope Dark Energy Experiment (HETDEX) will produce a sample of 800,000 Lyman Alpha Emitters (LAEs) over the 1.9Lyman Alpha photon escape fraction. Our results show a strong evolution in the Lyman Alpha escape fraction with redshift, most likely associated with the buildup of dust in the ISM. Dust is shown to be the main parameter setting the escape of Lyman Alpha photons. The observed relation between E(B-V) and the escape fraction indicates that radiative transfer effects in LAEs promote the escape of Lyman Alpha photons, but only up to the point of them suffering similar amounts of extinction as continuum photons. Enhancement of the Lyman Alpha EW (e.g. due to the presence of a clumpy medium) seems not to be a common process in these objects. We also discuss the potential of the full HETDEX sample to study the evolution of LAE properties.

  14. Lyman Alpha Spicule Observatory (LASO)

    NASA Astrophysics Data System (ADS)

    Chamberlin, P. C.; Allred, J. C.; Airapetian, V.; Gong, Q.; Mcintosh, S. W.; De Pontieu, B.; Fontenla, J. M.

    2011-12-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  15. Lyman Alpha Spicule Observatory (LASO)

    NASA Astrophysics Data System (ADS)

    Chamberlin, Phillip C.; Allred, J.; Airapetian, V.; Gong, Q.; Fontenla, J.; McIntosh, S.; de Pontieu, B.

    2011-05-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe small-scale eruptive events called "Rapid Blue-shifted Events” (RBEs), the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1” pixels) over a 2'x2' field of view with high spectral resolution of 66mÅ (33mÅ pixels) across a broad 20Å spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-α emission at 1216Å. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  16. Lyman Alpha Spicule Observatory (LASO)

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.

    2011-01-01

    The Lyman Alpha Spicule Observatory (LASO) sounding rocket will observe smallscale eruptive events called "Rapid Blue-shifted Events" (RBEs) [Rouppe van der Voort et al., 2009], the on-disk equivalent of Type-II spicules, and extend observations that explore their role in the solar coronal heating problem [De Pontieu et al., 2011]. LASO utilizes a new and novel optical design to simultaneously observe two spatial dimensions at 4.2" spatial resolution (2.1" pixels) over a 2'x2' field of view with high spectral resolution of 66mAngstroms (33mAngstroms pixels) across a broad 20Angstrom spectral window. This spectral window contains three strong chromospheric and transition region emissions and is centered on the strong Hydrogen Lyman-a emission at 1216Angstroms. This instrument makes it possible to obtain new data crucial to the physical understanding of these phenomena and their role in the overall energy and momentum balance from the upper chromosphere to lower corona. LASO was submitted March 2011 in response to the ROSES SHP-LCAS call.

  17. Lyman-alpha imagery of Comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.; Page, T. L.; Meier, R. R.; Prinz, D. K.

    1974-01-01

    Electrographic imagery of Comet Kohoutek in the 1100-1500 A wavelength range was obtained from a sounding rocket on Jan. 8, 1974, and from the Skylab space station on 13 occasions between Nov. 26, 1973 and Feb. 2, 1974. These images are predominantly due to Lyman-alpha (1216 A) emission from the hydrogen coma of the comet. The rocket pictures have been calibrated for absolute sensitivity and a hydrogen production rate has been determined. However, the Skylab camera suffered degradation of its sensitivity during the mission, and its absolute sensitivity for each observation can only be estimated by comparison of the comet images with those taken by the rocket camera, with imagery of the geocoronal Lyman-alpha glow, of the moon in reflected Lyman-alpha, and of ultraviolet-bright stars. The rocket and geocoronal comparisons are used to derive a preliminary, qualitative history of the development of the cometary hydrogen coma and the associated hydrogen production rate.

  18. HETDEX: Diffuse Lyman-Alpha Emission

    NASA Astrophysics Data System (ADS)

    Tuttle, Sarah E.; Finkelstein, S.; Gebhardt, K.; HETDEX Collaboration

    2012-01-01

    The intermediate redshift universe probed by HETDEX, 1.8 < z < 3.0, holds a great deal of information about star formation and the evolution of galaxies. Although simulations reveal a regime active with gas accretion and feeding of galaxies via filaments, observational evidence for this accretion from the Intergalactic Medium (IGM) at any redshift has been very limited. Here we use data from VIRUS-P across several well-characterized fields to put limits on diffuse emission of Lyman-Alpha at the outskirts of galaxies. This work is done in preparation for a similar program with the full HETDEX sample of Lyman-Alpha Emitters (LAEs).

  19. Shedding Lyman Alpha Light on Cosmological Reionization

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Ammons, S. Mark; Dressler, Alan; Gonzalez, Alicia; Finkelstein, Steven; Hibon, Pascale; Jiang, Tianxing; Lee, Janice; Mobasher, Bahram; Monson, Andy; Persson, S. Eric; Probst, Ronald; Swaters, Rob; Tilvi, Vithal S.; Veilleux, Sylvain; Wang, Junxian; Zabludoff, Ann; Zheng, Zhenya

    2015-08-01

    Lyman alpha photons are a powerful tool for studying reionization. They interact strongly with neutral hydrogen, so that neutral intergalactic gas acts to hide Lyman alpha light from our instruments. I will discuss two ongoing narrowband surveys to study the Epoch of Reionization. The Deep And Wide Narrowband (DAWN) survey is a 40 night NOAO survey program to look for Lyman alpha emission at redshift 7.7, using the NEWFIRM camera on the 4m Mayall Telescope at Kitt Peak National Observatory. The First Light And Reionization Experiment (FLARE) is pursuing a corresponding survey at redshift 8.8, using the FourStar camera on the Magellan telescope. Both surveys are motivated by the application of Lyman alpha lines to the study of reionization. Reionization marked the first global impact that gravitationally bound objects (stars and/or black holes) had on the universe around them, and also the last time that most hydrogen atoms did anything noteworthy. I will present results from both the DAWN and FLARE surveys, which have identified candidate galaxies near redshifts 7.7 and 8.8 in multiple fields.

  20. Lyman Alpha Photochemistry in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of the project "Lyman Alpha Photochemistry in the Solar Nebula" was to model photochemistry in the primitive solar nebula and the early solar systems. As part of the modeling, it was necessary to model the composition of the gas and dust accreted by the solar nebula. This final report contains a list of publications where the results of this project have been published.

  1. Characterizing Lyman Alpha Scattering in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna; Hayes, Matthew; Melinder, Jens; Östlin, Göran; Gronwall, Caryl

    2017-01-01

    The hydrogen emission line of Lyman alpha (Lyα) has long been recognized as key to studying high redshift star-forming galaxies. However, due to the resonance of the emission line, the path that a Lyα photon takes from emission to eventual escape from the galaxy is essentially a mystery. This scattering poses a problem for using Lyα as a key emission feature of galaxies because it results in Lyα not being observed in all star-forming galaxies, and, in galaxies where it is observed, the place where the photon is originally emitted and where it is observed are two very different things. We discuss here how the Lyman-Alpha Reference Sample (LARS) provides a unique sample of 14 nearby (0.02 < z < 0.2) galaxies in which we investigate the role of scattering, both on the global scale of the galaxies and down to scales of ~ 50 parsecs using Hubble Space Telescope imaging. We compare the Lyα/Hα ratios with those expected from pure dust attenuation models, finding that in some cases significant positive departures are found on small scales, consistent with geometrical effects being important on sizes comparable to the HII regions. We then develop a simple scattering model in which we are able to estimate the average path length a Lyα photon travels with respect to non-resonant radiation, and quantifiy the excess dust optical depth to which Lyα radiation may be susceptible.

  2. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  3. Variations in solar Lyman alpha irradiance on short time scales

    NASA Technical Reports Server (NTRS)

    Pap, J. M.

    1992-01-01

    Variations in solar UV irradiance at Lyman alpha are studied on short time scales (from days to months) after removing the long-term changes over the solar cycle. The SME/Lyman alpha irradiance is estimated from various solar indices using linear regression analysis. In order to study the nonlinear effects, Lyman alpha irradiance is modeled with a 5th-degree polynomial as well. It is shown that the full-disk equivalent width of the He line at 1083 nm, which is used as a proxy for the plages and active network, can best reproduce the changes observed in Lyman alpha. Approximately 72 percent of the solar-activity-related changes in Lyman alpha irradiance arise from plages and the network. The network contribution is estimated by the correlation analysis to be about 19 percent. It is shown that significant variability remains in Lyman alpha irradiance, with periods around 300, 27, and 13.5d, which is not explained by the solar activity indices. It is shown that the nonlinear effects cannot account for a significant part of the unexplained variation in Lyman alpha irradiance. Therefore, additional events (e.g., large-scale motions and/or a systematic difference in the area and intensity of the plages and network observed in the lines of Ca-K, He 1083, and Lyman alpha) may explain the discrepancies found between the observed and estimated irradiance values.

  4. Lyman alpha emissions in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Quemerais, E.; Lallement, R.; Bertaux, J. L.; Sandel, B. R.

    1995-01-01

    Since 1993, the Ultraviolet Spectrometers aboard both Voyager 1 and 2, were used to study the Ly-alpha glow pattern backscattered by neutral hydrogen atoms at great distance from the sun. When compared to a radiative transfer calculation for an unperturbed interstellar hydrogen flow into the solar system, the data present an excess of intensity seen in the direction of the incoming interstellar wind. An absolute estimate of this Lyman alpha intensity yields 10 to 15 Rayleighs for each spacecraft. We discuss the possibility that this excess is caused by a gradient of hydrogen at large distance from the Sun due to the filtration of interstellar hydrogen when crossing the heliopause. Comparisons with results from the Baranov-Malama model of neutral-plasma coupling at the heliopause are presented. The data yield a range of possible values for the hydrogen gradient which may be used to infer the location of the heliopause.

  5. EUVL mask inspection at Hydrogen Lyman Alpha

    NASA Astrophysics Data System (ADS)

    Jota, Thiago S.; Milster, Tom D.

    2012-11-01

    Mask inspection is an outstanding challenge for Extreme Ultra-Violet Lithography (EUVL). The purpose of this investigation is to compare imaging characteristics of ArF and KrF inspection sources to imaging characteristics using a source at the Lyman-alpha line of Hydrogen at 121.6nm (HLA). HLA provides a raw resolution improvement of 37% to ArF and 51% to KrF, based on proportional wavelength scaling. The HLA wavelength is in an atmospheric transmission window, so a vacuum environment is not required. Our comparison uses rigorous vector imaging techniques to simulate partially coherent illumination schemes and reasonably accurate mask material properties and dimensions. Contrast is evaluated for representative spatial frequencies. Imaging and detection of defects are also considered with NILS and MEEF. The goal is high throughput inspection with maximum resolution, contrast, and sensitivity.

  6. Gravitational lensing and the Lyman-alpha forest

    NASA Technical Reports Server (NTRS)

    Ikeuchi, Satoru; Turner, Edwin L.

    1991-01-01

    Possible connections between the inhomogeneities responsible for the Lyman-alpha forest in quasar spectra and gravitational lensing effects are investigated. For most models of the Lyman-alpha forest, no significant lensing is expected. For some versions of the CDM model-based minihalo hypothesis, gravitational lensings on scales less than abour 0.1 arcsec would occur with a frequency approaching that with which ordinary galaxies cause arcsecond scale lensing.

  7. Physical Properties of Lyman-alpha Forest and Damped Lyman-alpha Systems

    NASA Astrophysics Data System (ADS)

    Kulkarni, V. P.; Fall, S. M.

    1995-12-01

    We present a review of our results regarding various physical properties of quasar absorption line systems, in particular, the Lyman-alpha forest and the damped Lyman-alpha systems. We made the first detection of the quasar proximity effect at low redshifts, using HST Key Project data on the Ly-alpha forest for z < 1. This allowed the first empirical estimate of the intensity of the ionizing UV background at < z > ~ 0.5 and showed evidence for evolution of the ionizing UV background with redshift. We have also studied the implications of non-thermal motions inside Ly-alpha forest clouds for the statistics of these clouds. We showed that the distributions in H I column densities f(N) for systems with saturated Ly-alpha lines and the extent (and sign) of N-sigma correlations could differ from previous estimates, if the clouds possessed non-Maxwellian velocity distributions. We also present results of a study of the chemical properties of several damped Lyman-alpha systems, based on published high-sensitivity observations. In particular, we examine the total (gas + solid phase) metallicity and the dust content of these systems. Results will also be presented of an analysis of an 18 km s(-1) resolution spectrum of the Ly-alpha forest of the z = 2.1 quasar Q1331+170, performed in collaboration with Dr. D. G. York, Dr. D. E. Welty (U. Chicago), Dr. R. F. Green, Dr. K. Huang (NOAO) and Dr. J. Bechtold (U. Arizona). One of the main results is some evidence for small-scale clustering among the Ly-alpha forest clouds.

  8. Variability of the Lyman alpha flux with solar activity

    SciTech Connect

    Lean, J.L.; Skumanich, A.

    1983-07-01

    A three-component model of the solar chromosphere, developed from ground based observations of the Ca II K chromospheric emission, is used to calculate the variability of the Lyman alpha flux between 1969 and 1980. The Lyman alpha flux at solar minimum is required in the model and is taken as 2.32 x 10/sup 11/ photons/cm/sup 2//s. This value occurred during 1975 as well as in 1976 near the commencement of solar cycle 21. The model predicts that the Lyman alpha flux increases to as much as 5 x 10/sup 11/ photons/cm/sup 2//s at the maximum of the solar cycle. The ratio of the average fluxes for December 1979 (cycle maximum) and July 1976 (cycle minimum) is 1.9. During solar maximum the 27-day solar rotation is shown to cause the Lyman alpha flux to vary by as much as 40% or as little as 5%. The model also shows that the Lyman alpha flux varies over intermediate time periods of 2 to 3 years, as well as over the 11-year sunspot cycle. We conclude that, unlike the sunspot number and the 10.7-cm radio flux, the Lyman alpha flux had a variability that was approximately the same during each of the past three cycles. Lyman alpha fluxes calculated by the model are consistent with measurements of the Lyman alpha flux made by 11 of a total of 14 rocket experiments conducted during the period 1969--1980. The model explains satisfactorily the absolute magnitude, long-term trends, and the cycle variability seen in the Lyman alpha irradiances by the OSO 5 satellite experiment. The 27-day variability observed by the AE-E satellite experiment is well reproduced. However, the magntidue of the AE-E 1 Lyman alpha irradiances are higher than the model calculations by between 40% and 80%. We suggest that the assumed calibration of the AE-E irradiances is in error.

  9. Lyman Alpha Galaxies and Galaxy Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta; Rhoads, James; Dey, Arjun; Jannuzi, Buell

    2003-02-01

    The Large Area Lyman Alpha survey has successfully identified the population of young Lyα emitting galaxies predicted over 30 years ago. High equivalent widths of Lyα line in these sources suggest that they are a very young (age < 10^7 years), metal poor, population of stars at redshifts 4.5, 5.7 and 6.6, making them very interesting objects to study in the context of galaxy formation scenarios. We have begun to do exactly this using the correlation function of LALA galaxies, with fairly puzzling results. Before this leads to more complications in theoretical galaxy formation scenarios, we would like to put the observational results on a firm footing. In order to do that we ask for one night of Keck/Deimos time for spectroscopic confirmation of 50 secure LALA sources at z=4.5, and a similar number of fainter sources, in order to (1) characterize the completeness of this survey, and (2) weed out foreground emission line galaxies which affect the small scale correlation function. The excellent match between wide-field capabilities of DEIMOS and the LALA survey will allow the most complete confirmation and characterization of the high redshift Lyα population yet in terms of photometric sample reliability, while our planned spectra of foreground emission line galaxies will lead to a characterization of emission line selected star-forming galaxies at 0.25 < z < 1.5. We will use our spectroscopic sample to obtain a clean measurement of the small scale correlations among Lyα galaxies (which are clearly seen in our photometric sample). This will let us understand the halo mass, occupancy number, and duty cycle of these objects, and hence better how Lyα sources fit into the bigger picture of galaxy formation.

  10. Lyman Alpha Galaxies and Galaxy Formation Scenarios

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta

    2005-08-01

    The Large Area Lyman Alpha survey has successfully identified the population of young Lyα emitting galaxies predicted over 35 years ago. High equivalent widths of Lyα in these sources suggest that they are a very young (age < 10^7 years), metal poor, population of stars, making them very interesting objects for understanding galaxy formation. With two nights of Magellan+IMACS time, we will obtain spectroscopic confirmation of 150-200 secure LALA sources at redshift z=4.5. Followup of a similar number of fainter Lyα candidates will characterize the completeness and weed out foreground emission line galaxies. The excellent match between wide-field capabilities of IMACS and the LALA survey makes this the most complete confirmation and characterization of the high redshift Lyα population yet. With our spectroscopic sample, we will: (1) Search for AGN among our sample- a few should be found if the AGN fraction is comparable to that in Lyman break galaxies. (2) Produce a high S/N coadded spectrum, where we will look for (a) HeII (1640Å) emission, which is an indicator of Pop III stars; and (b) ISM absorption lines, whose velocity offset relative to the Lyα emission is an indicator of galactic winds in these early starbursts. (3) Obtain a clean measurement of spatial correlations among Lyα galaxies, and thereby derive the halo mass, occupancy number, and duty cycle of Lyα galaxies, to see how they fit into the bigger picture of galaxy formation.

  11. THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT

    SciTech Connect

    Hayes, Matthew; Oestlin, Goeran; Duval, Florent; Guaita, Lucia; Melinder, Jens; Sandberg, Andreas; Schaerer, Daniel; Verhamme, Anne; Orlitova, Ivana; Mas-Hesse, J. Miguel; Oti-Floranes, Hector; Adamo, Angela; Atek, Hakim; Cannon, John M.; Herenz, E. Christian; Kunth, Daniel; Laursen, Peter

    2013-03-10

    We report on new imaging observations of the Lyman alpha emission line (Ly{alpha}), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028 < z < 0.18 in continuum-subtracted Ly{alpha}, H{alpha}, and the far ultraviolet continuum. We show that Ly{alpha} is emitted on scales that systematically exceed those of the massive stellar population and recombination nebulae: as measured by the Petrosian 20% radius, R{sub P20}, Ly{alpha} radii are larger than those of H{alpha} by factors ranging from 1 to 3.6, with an average of 2.4. The average ratio of Ly{alpha}-to-FUV radii is 2.9. This suggests that much of the Ly{alpha} light is pushed to large radii by resonance scattering. Defining the Relative Petrosian Extension of Ly{alpha} compared to H{alpha}, {xi}{sub Ly{alpha}} = R {sup Ly{alpha}}{sub P20}/R {sup H{alpha}}{sub P20}, we find {xi}{sub Ly{alpha}} to be uncorrelated with total Ly{alpha} luminosity. However, {xi}{sub Ly{alpha}} is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Ly{alpha} photons throughout the interstellar medium and drive a large extended Ly{alpha} halo.

  12. Stellar lyman alpha emission and the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    1992-01-01

    Under the auspices of this ADP program, a systematic study was made of IUE archival images in order to extract spectra of the Lyman alpha region and to measure the stellar Lyman alpha flux for as many late-type stars as possible. The Lyman alpha resonance line is a powerful cooling channel for the hot chromospheres of solar-type stars, but has not been studied before in any systematic fashion across the H-R diagram. A major deterrent which has limited the use of Lyman alpha in the study of stellar chromospheres is the contamination of this spectral feature caused by the scattering of solar Lyman alpha photons in the Earth's exosphere. This scattered light is monochromatically imaged through the entrance slot of the IUE telescope and is superposed onto the stellar spectrum. In all but the shortest exposures with IUE, this 'geocoronal emission' overwhelms the stellar flux and makes it impossible to directly measure the strength of the stellar chromospheric feature. The IUESIPS processing contains no provision for correcting standard G.O. output products for this contamination. The first task was to develop a scheme for removing the geocoronal flux, specifically from low-dispersion spectra taken with the Short-Wavelength Camera of IUE. The strategy adopted was to fit a 'sky model' to the spatially-resolved geocoronal emission observed through the large science aperture of the telescope, using the spectral orders on either side of the central ones where the stellar emission is concentrated. The model emission was then subtracted from the observed image, leaving behind the corrected stellar Lyman alpha emission. The details of this fitting procedure are described. Having devised a successful method for removing the unwanted geocoronal emission, the correction procedure was applied to 366 archival images which, from inspection of the photowrites in the IUE browse file, seemed especially promising. In this survey, Lyman alpha emission were eventually detected in the

  13. New interpretations of extraterrestrial Lyman-alpha observations.

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Fahr, H. J.

    1972-01-01

    The solar Lyman-alpha radiation pressure affects the orbits and the velocities of the interstellar particles entering the solar system. This leads to enhanced particle losses in the heliosphere, since particles spend a longer time crossing it. This causes a stronger decrease of the density with decreasing distances from the sun than had been calculated without accounting for the radiation pressure. Furthermore, the emission pattern of the solar Lyman-alpha radiation is anisotropic and rotates with the sun in a 27-day period. This causes a temporal change in the location of the intensity extrema. At the same time it produces hydrogen density anisotropies with extrema deviating in their directions from those which had been calculated without consideration of the radiation pressure.

  14. Lyman alpha initiated winds in late-type stars

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Vanderhucht, K. A.

    1979-01-01

    The IUE survey of late-type stars revealed a sharp division in the HR diagram between stars with solar type spectra (chromosphere and transition region lines) and those with non-solar type spectra (only chromosphere lines). Models of both hot coronae and cool wind flows were calculated using stellar model chromospheres as starting points for stellar wind calculations in order to investigate the possibility of having a supersonic transition locus in the HR diagram dividing hot coronae from cool winds. From these models, it is concluded that the Lyman alpha flux may play an important role in determining the location of a stellar wind critical point. The interaction of Lyman alpha radiation pressure with Alfven waves in producing strong, low temperature stellar winds in the star Arcturus is examined.

  15. Lyman-alpha observations of Comet West /1975n/

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Carruthers, G. R.

    1977-01-01

    The rate of hydrogen production of Comet West is studied through rocket observation of solar Lyman-alpha radiation resonantly scattered by the escaping hydrogen atoms. Two sets of Lyman-alpha exposure sequences are used to obtain computer-smoothed brightness contour (isophote) maps covering a density range of 100:1. A simple radial outflow model is applied to the contour maps to determine the rate of hydrogen production (3.2 by 10 to the 30th power atoms/sec.) Discrepancies between the observed shape of the outer isophotes and predicted models may be explained by optical depth effects, or by the presence of small pieces of the comet's nucleus distributed along the orbit. Hydrogen, carbon, and oxygen production for Comet West and Comet Kohoutek are compared; differences may be accounted for by variations in the composition or evolution of the two comets.

  16. Computer assisted performance tests of the Lyman Alpha Coronagraph

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.

    1979-01-01

    Preflight calibration and performance tests of the Lyman Alpha Coronagraph rocket instrument in the laboratory, with the experiment in its flight configuration and illumination levels near those expected during flight were successfully carried out using a pulse code modulation telemetry system simulator interfaced in real time to a PDP 11/10 computer system. Post acquisition data reduction programs developed and implemented on the same computer system aided in the interpretation of test and calibration data.

  17. Lyman alpha solar spectral irradiance line profile observations and models

    NASA Astrophysics Data System (ADS)

    Snow, Martin; Machol, Janet; Quemerais, Eric; Curdt, Werner; Kretschmar, Matthieu; Haberreiter, Margit

    2016-04-01

    Solar lyman alpha solar spectral irradiance measurements are available on a daily basis, but only the 1-nm integrated flux is typically published. The International Space Science Institute (ISSI) in Bern, Switzerland has sponsored a team to make higher spectral resolution data available to the community. Using a combination of SORCE/SOLSTICE and SOHO/SUMER observations plus empirical and semi-empirical modeling, we will produce a dataset of the line profile. Our poster will describe progress towards this goal.

  18. The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Ishikawa, Shin-nosuke; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N..; Ishikawa, R.; Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Hara, H.; hide

    2014-01-01

    To Understand energy release process in the Sun including solar flares, it is essentially important to measure the magnetic field of the atmosphere of the Sun. Magnetic field measurement of the upper layers (upper chromosphere and above) was technically difficult and not well investigated yet. Upper chromosphere and transition region magnetic field measurement by Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) sounding rocket to be launched in 2015. The proposal is already selected and developments of the flight components are going.

  19. Photoelectron Emission and Lyman Alpha Measurements by the CHAMPS Rockets

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; Robertson, S. H.; Dickson, S.; Gausa, M. A.; Friedrich, M.; Horanyi, M.

    2012-12-01

    The daytime CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) sounding rocket carried a suit of instruments for the monitoring of photoemission current and Lyman alpha flux as a function of altitude. The results show that photoemission is significant down to 60-75 km altitude, depending on the photo-emitting surface. Lyman alpha was detected to about 65 km altitude. The daytime CHAMPS rocket launched on 13 October 13:50 UT from the Andøya Rocket Range, Norway. The CHAMPS instruments detected layers of particles, probably of meteoric origin, charged both positive and negative in the 63-93 km altitude range. The CHAMPS payloads were also designed to characterize the plasma environment and thus also carried Faraday rotation antennas and electron and ion probes. Solar UV plays an important role in charge balance for both the rocket body and meteoric smoke particles. Photoelectron emission was monitored by a set of three detectors consisting of an emitting surface (Platinum, Aluminum and Zirconium) biased at -10 V and placed behind a fine grid. The Al and Zr surfaces produced similar signals with photoemission measureable above 75 km altitude. The Pt surface emitted photoelectrons even below 60 km altitude. The different behavior of Pt can possibly be due to exposure to atomic oxygen, though further analysis is necessary. The solar Lyman alpha radiation was measured by a UV photodiode placed behind a pair or filters to reduce the contribution to the signal from visible light. Lyman alpha was detected down to 65 km altitude, which confirms that photo-detachment and photoelectric charging needs to be considered for the charge balance of particle layers in the mesosphere region. All instruments were calibrated at the facilities of the Laboratory for Atmospheric and Space Physics at the University of Colorado.

  20. Observation of Lyman-alpha emission in interplanetary space

    NASA Technical Reports Server (NTRS)

    Bertaux, J. L.; Blamont, J. E.

    1972-01-01

    The extraterrestrial Lyman-alpha emission was mapped by the OGO 5 satellite, when it was outside the geocorona. Three maps, obtained at different periods of the year, are presented and analyzed. The results suggest that at least half of the emission takes place in the solar system, and give strong support to the theory that in its motion toward the apex, the sun crosses neutral atomic hydrogen of interstellar origin, giving rise to an apparent interstellar wind.

  1. Dynamical and Stellar Masses of Lyman-alpha Galaxies

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, S.; McLinden, E.; Richardson, M. L.; Finkelstein, S. L.; Tilvi, V. S.

    2012-01-01

    We have observed strong nebular lines of [OIII] and H alpha for Lyman-alpha galaxies at z=2-3.1 using Keck+NIRSPEC, LBT+LUCIFER, and Gemini+NIFS. [OIII] 5007 is strong enough to dominate the 2 micron K band fluxes of these galaxies, and leads to an overestimate of the stellar mass of the galaxy by an order of magnitude. After correcting for the observed [OIII] lines, we infer low masses and young ages for these galaxies. We also use the physical widths of the rest-optical lines, combined with spatial sizes from HST imaging, to obtain direct dynamical mass estimates of Lyman alpha galaxies (which cannot be done using the resonantly scattered Lyman alpha line). Finally, we combine our stellar mass estimates and line widths to place these galaxies on the baryonic Tully-Fisher relation. We find that the stellar masses required to reproduce the observed light are lower than one would expect based on the galaxies' line widths. The stellar mass densities of these galaxies are comparable to those of elliptical galaxies today. We gratefully acknowledge support from NSF grant NSF-AST-0808165.

  2. The Lyman-alpha Imager onboard Solar Polar Orbit Telescope

    NASA Astrophysics Data System (ADS)

    Li, Baoquan; Li, Haitao; Zhou, Sizhong; Jiang, Bo

    2013-12-01

    Solar Polar ORbit Telescope (SPORT) was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. SPORT will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. The Lyman-alpha Imager (LMI) is one of the key remotesensing instruments onboard SPORT with 45arcmin FOV, 2000mm effective focal length and 1.4arcsec/pixel spatial resolution . The size of LMI is φ150×1000mm, and the weight is less than10kg, including the 7kg telescope tube and 3kg electronic box. There are three 121.6nm filters used in the LMI optical path, so the 98% spectral purity image of 121.6nm can be achieved. The 121.6nm solar Lyman-alpha line is produced in the chromosphere and very sensitive to plasma temperature, plasma velocity and magnetism variation in the chromosphere. Solar Lyman-alpha disk image is an ideal tracker for corona magnetism variation.

  3. First Results from the Large Area Lyman Alpha Survey

    NASA Astrophysics Data System (ADS)

    Rhoads, J. E.; Malhotra, S.; Dey, A.; Stern, D.; Spinrad, H.; Jannuzi, B. T.

    1999-12-01

    Young galaxies undergoing their first burst of star formation are expected to have strong Lyman-α emission, due to low metallicity and dust content. However, studies to date have found comparatively small samples of such objects. We have embarked on a major project to obtain a statistically useful sample of several hundred Lyman-α emitters at z 4.5 (the Large Area Lyman Alpha, or LALA, survey). We are using the 8k x 8k CCD Mosaic camera at the Kitt Peak National Observatory 4m Mayall telescope. To date, we have surveyed a total volume of 1.3 x 106 comoving Mpc^3 (H_0 =70, \\Omega_m =0.2, \\Lambda=0) to 5 \\sigma flux limits of (1.8 to 2.6) \\times 10^{-17} erg/cm^2 /s. We are finding an emission line object density of 9 deg-2 Angstroms-1 with narrowband flux between 2.6 and 5.2 x 10-17 erg/cm2/ s at wavelength \\lambda \\simeq 6640 Angstroms. Our first spectroscopic followup with the Keck 10m telescope implies that \\sim 1/3 to 1/2 of these are z\\approx 4.5 Lyman-\\alpha emitters, and that the density of Lyman-\\alpha emitters in this restricted flux range is \\sim 4000 deg^{-2} (unit z)^{-1}, or \\sim 9\\times 10^{-4} Mpc^{-3}$ for our assumed cosmology.

  4. Analysis of solar Lyman alpha radiation in the heliosphere

    NASA Astrophysics Data System (ADS)

    Fayock, B.; Zank, G. P.; Heerikhuisen, J.

    2013-06-01

    Various NASA spacecraft have measured ultraviolet radiation in the heliosphere at different locations over time. Much of this data corresponds to back-scattered Lyman-alpha radiation from neutral hydrogen, particularly in the context of planetary atmospheric measurements and inferred solar activity. Less attention has been devoted to using this data in the context of large-scale heliospheric simulations with complex global models. A 3D Monte Carlo simulation has been developed for analysis of Lyman-alpha scattering using global heliospheric models developed within CSPAR as a background. The simulation tracks individual photons in a sun-centered spherical coordinate system with a radial limit of 1000 AU while retaining statistics for each cell within the grid space, which is defined by the global input data. Two of the statistics collected are the number of scatters and the total distance traveled by photons within a cell. Those photons directed towards the sun provide a measure of backscatter intensity that can be compared to antisolar observations of Lyman-alpha photons by spacecraft. Preliminary results reveal a similar trend of intensity between simulation in the upwind direction and reduced Voyager data, suggesting an accurate portrayal of neutral hydrogen in the heliosphere.

  5. Lyman-alpha forests cool warm dark matter

    NASA Astrophysics Data System (ADS)

    Baur, Julien; Palanque-Delabrouille, Nathalie; Yèche, Christophe; Magneville, Christophe; Viel, Matteo

    2016-08-01

    The free-streaming of keV-scale particles impacts structure growth on scales that are probed by the Lyman-alpha forest of distant quasars. Using an unprecedentedly large sample of medium-resolution QSO spectra from the ninth data release of SDSS, along with a state-of-the-art set of hydrodynamical simulations to model the Lyman-alpha forest in the non-linear regime, we issue one of the tightest bounds to date, from Ly-α data alone, on pure dark matter particles: mX>4.09 keV (95% CL) for early decoupled thermal relics such as a hypothetical gravitino, and correspondingly ms>24.4 keV (95% CL) for a non-resonantly produced right-handed neutrino. This limit depends on the value on ns, and Planck measures a higher value of ns than SDSS-III/BOSS. Our bounds thus change slightly when Ly-α data are combined with CMB data from Planck 2016. The limits shift to mX>2.96 keV (95% CL) and ms>16.0 keV (95% CL). Thanks to SDSS-III data featuring smaller uncertainties and covering a larger redshift range than SDSS-I data, our bounds confirm the most stringent results established by previous works and are further at odds with a purely non-resonantly produced sterile neutrino as dark matter.

  6. Weighing the Low-Redshift Lyman-alpha Forest

    NASA Technical Reports Server (NTRS)

    Shull, Mike

    2005-01-01

    In 2003-2004, our FUSE research group prepared several major surveys of the amount of baryonic matter in the intergalactic medium (IGM), using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. These surveys include measurements of the Lyman-alpha absorption line of neutral hydrogen (H I), the far-ultraviolet (1032,1038 Angstrom) doublet of highly ionized oxygen ( O VI), the higher Lyman-series lines (Ly-beta, Ly-gamma, etc) of H I, and the 977 Angstrom line of c III. As an overview, our FUSE spectroscopic studies, taken together with data from the Hubble Space Telescope, show that approximately 30% of the normal matter is contained in intergalactic hydrogen gas clouds (the Lyman-alpha forest). Another 5-10% resides in hotter gas at temperatures of 10(exp 5) to 10(exp 6) K, visible in 0 VI and C III absorption. Along with the matter attributed to galaxies, we have now accounted for approximately HALF of all the baryonic matter in the universe. Where is the other half? That matter my exist in even hotter gas, invisible through the ultraviolet absorption lines, but perhaps detectable through X-ray absorption lines of more highly ionized oxygen and neon.

  7. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  8. Lyman-alpha radiation hydrodynamics of galactic winds before cosmic reionization

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Bromm, Volker; Loeb, Abraham

    2017-01-01

    Radiation from the first stars and galaxies initiated the dramatic phase transition marking an end to the cosmic dark ages. The emission and absorption signatures from the Lyman-alpha transition of neutral hydrogen have been indispensable in extending the observational frontier for high-redshift galaxies into the epoch of reionization. Lyman-alpha radiative transfer provides clues about the processes leading to Lyman-alpha escape from individual galaxies and the subsequent transmission through the intergalactic medium. Cosmological simulations incorporating Lyman-alpha radiative transfer enhance our understanding of fundamental physics by supplying the inferred spectra and feedback on the gas. We discuss the dynamical impact of Lyman-alpha radiation pressure on galaxy formation throughout cosmic reionization with the first fully coupled Lyman-alpha radiation-hydrodynamics simulations. We self-consistently follow the chemistry, cooling, self-gravity, and ionizing radiation in protogalaxies and find that Lyman-alpha radiation pressure turns out to be dynamically important in several spherically symmetric simulations. As a case in point we apply our model to the COSMOS redshift 7 (CR7) galaxy at z = 6.6, which exhibits a +160 km/s velocity offset between the Lyman-alpha and HeII line peaks. We find that a massive black hole with a nonthermal Compton-thick spectrum is able to reproduce the observed Lyman-alpha signatures as a result of higher photon trapping and longer potential lifetime. We conclude with a general discussion of Lyman-alpha radiation in the first galaxies by considering simulations that cover the expected range of halo and source properties.

  9. Stellar Lyman-alpha emission and the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne; Simon, Theodore

    1991-01-01

    The UV spectra now available in the IUE archives have been systematically searched for the presence of Lyman-alpha emission in late-type stars. The results provide the first survey of the behavior of the Ly-alpha emission line across most of the cool half of the H-R diagram. The normalized Ly-alpha emission flux is strongest in the chromospherically active RS CVn stars and in the dMe stars. The range of normalized flux values is much smaller among F-type stars than in stars of later spectral type. A dropoff appears in the flux levels of stars at B-V less than 0.30 mag. The measurements are used to search for evidence of possible high column density clouds in the local ISM. The cloud previously identified toward Alpha Oph may be seen in the reduced flux observed toward Beta Oph.

  10. Spacelab Lyman Alpha-White Light Coronagraph Program

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.

    1986-06-01

    The Spacelab Lyman Alpha Coronagraph (SLAC) of the Smithsonian Astrophysical Observatory (SAO) and the White Light Coronagraph (WLC) to be provided by the High Altitude Observatory (HAO) are two separate coronagraphs which would be operated in a joint fashion during Spacelab missions to be flown by the Space Shuttle. The two instruments would be used to perform joint observations of solar coronal structures from 1.2 to 8.0 solar radii from sun-center in vacuum ultraviolet and visible radiations. Temperatures, densities, and flow velocities throughout the solar wing acceleration region of the inner solar corona were measured. The Phase I Definition activity resulted in the successful definition and preliminary design of the experiment/instrumentation subsystem and associated software, ground support equipment and interfaces to the extended required to accurately estimate the scope of the investigation and prepare an Investigational Development Plan; the performance of the necessary functional, operations, and safety analyses necessary to complete the Experiment Requirements document.

  11. Type II Quasars among Z>4 Strong Lyman Alpha Sources

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta

    2002-09-01

    Strong Lyman-alpha emission is expected both from primordial galaxies and from the type II quasars required to explain the hard x-ray background. We have identified ~300 Ly-alpha sources at redshifts 4.5 and 5.7. About 60% of these show rest equivalent widths >200 Angstrom, which requires active nuclei, or extreme populations of massive stars. Our Ly-alpha survey (LALA) is a unique resource for determining the space density of type II quasars at high z efficiently. The large fields of ACIS and LALA will allow us to observe 60 ly-alpha emitters, including the brightest narrow line Ly-alpha emitter with EW=660. This will have implications for composition of the X-ray background, background radiation at other wavelengths, and structure formation (stars vs black holes) in the early universe.

  12. Spacelab Lyman Alpha-White Light Coronagraph Program

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.

    1986-01-01

    The Spacelab Lyman Alpha Coronagraph (SLAC) of the Smithsonian Astrophysical Observatory (SAO) and the White Light Coronagraph (WLC) to be provided by the High Altitude Observatory (HAO) are two separate coronagraphs which would be operated in a joint fashion during Spacelab missions to be flown by the Space Shuttle. The two instruments would be used to perform joint observations of solar coronal structures from 1.2 to 8.0 solar radii from sun-center in vacuum ultraviolet and visible radiations. Temperatures, densities, and flow velocities throughout the solar wing acceleration region of the inner solar corona were measured. The Phase I Definition activity resulted in the successful definition and preliminary design of the experiment/instrumentation subsystem and associated software, ground support equipment and interfaces to the extended required to accurately estimate the scope of the investigation and prepare an Investigational Development Plan; the performance of the necessary functional, operations, and safety analyses necessary to complete the Experiment Requirements document.

  13. A model for the disc Lyman alpha emission of Uranus

    NASA Technical Reports Server (NTRS)

    Ben Jaffel, L.; Prange, R.; Emerich, C.; Vidal-Madjar, A.; Mcconnell, J. C.

    1991-01-01

    A new efficient radiative transfer algorithm for nonhomogeneous model atmospheres has been applied to the Uranian atmosphere. The contribution of the scatter solar Lyman-alpha to the Uranain emission is of the order of 300 R, and the Rayleigh contribution may reach 450 R for small values of the eddy diffusion coefficient (EDC). The total solar contribution may then reach about 750 R for a solar flux of 2.5 x 10 to the 11th photons/sq cm/s/A. A level of up to 400 R is confirmed in some directions for the interstellar wind contribution. The values of the atmospheric EDC necessary to mimic the observations are 50-100 sq cm/s. A small additional source located on the dayside Uranian atmosphere seems necessary correctly to fit the shape of the limb to limb intensity variation, especially near the limbs. Its contribution to the emergent intensity would range from 100 to 500 R.

  14. Lyman-Alpha Observations of High Radial Velocity Stars

    NASA Astrophysics Data System (ADS)

    Bookbinder, Jay

    1990-12-01

    H I LYMAN -ALPHA (LY-A) IS ONE OF THE MOST IMPORTANT LINES EMITTED BY PLASMA IN THE TEMPERATURE RANGE OF 7000 TO 10 TO THE FIFTH POWER K IN LATE-TYPE STARS. IT IS A MAJOR COMPONENT OF THE TOTAL RADIATIVE LOSS RATE, AND IT PLAYS A CRUCIAL ROLE IN DETERMINING THE ATMOSPHERIC STRUCTURE AND IN FLUORESCING OTHER UV LINES. YET IT IS ALSO THE LEAST STUDIED MAJOR LINE IN THE FAR UV, BECAUSE MOST OF THE LINE FLUX IS ABSORBED BY THE ISM ALONG THE LINE OF SIGHT AND BECAUSE IT IS STRONGLY COMTAMINATED BY THE GEOCORONAL BACKGROUND. A KNOWLEDGE OF THE Ly-A PROFILE IS ALSO IMPORTANT FOR STUDIES OF DEUTERIUM IN THE INTERSTELLAR MEDIUM. BY OBSERVING HIGH RADIAL VELOCITY STARS WE WILL OBTAIN FOR THE FIRST TIME HIGH RESOLUTION SPECTRA OF THE CORE OF A STELLAR H I LYMAN-A EMISSION LINE PROFILE.

  15. Stellar Populations and Radiative Transfer of Lyman Alpha Galaxies

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Rhoads, J. E.; Malhotra, S.; Pirzkal, N.; Wang, J.; Grogin, N.

    2007-05-01

    From stellar population modeling of z 4.5 Lyman alpha emitting galaxies (LAEs), we find that they are in general a young (t 10 Myr), low mass (M 108 MSun) subset of galaxies. We detected 22 LAE candidates in two or more broadband filters (g', r', i' and z') in the Large Area Lyman Alpha (LALA) survey Cetus Field with the MMT. These objects had calculated rest-frame equivalent widths (EWs) ranging from 5-800 Å. By comparing broad and narrow-band colors of these galaxies to stellar population models, we determined their ages and stellar masses. The highest EW objects were found to have an average age of 4 Myr, consistent with ongoing star formation. The lowest EW objects showed an age of 40 - 200 Myr, consistent with the expectation that larger numbers of old stars are causing low EWs. We found masses ranging from 2 x 107 MSun for the youngest objects in the sample to 2 x 109 MSun for the oldest. While young stellar populations are the generally accepted cause of the large Lyα EW in these objects, it is possible that dust effects could produce large EWs in older populations. This could occur if the ISM were sufficiently clumpy such that the continuum photons would suffer attenuation, while the Lyα photons would be resonantly scattered by the clumps, eventually escaping. We investigate this radiative transfer scenario with our second sample, which consists of six LAE candidates in the GOODS CDF-S, selected at z 4.5 with Hα narrow-band imaging obtained at CTIO. We will present results of stellar population studies of these objects, constraining their rest-frame UV with HST and their rest-frame optical with Spitzer.

  16. Io's Atmosphere Silhouetted in Transit by Jupiter Lyman-alpha

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt

    2014-10-01

    Io's active volcanos both directly establish local gas plumes and indirectly establish a more global sublimation atmosphere, through plume deposited sulfur dioxide frost patches. Despite decades of study and recent observational advances the very basic question about the relative role of each of these sources is unresolved. The correlation between volcanic activity variability and Io's dramatic influence on numerous time-variable phenomenon in the Jupiter system cannot be causally linked until this answer is in hand. Our experienced team has developed a novel approach to use STIS in a new way to obtain global radial profiles of SO2 scale height distributions above both plume and sublimation dominated regions. We exploit the bright Lyman-alpha dayglow of Jupiter as a background illumination source together with the strongly absorptive nature of SO2 at 121.6 nm to image Io's atmosphere in silhouette with unprecedented detail during transit events. Our program provides the following key information for SO2: 1) First high-altitude (>400 km) radial measurements of tangential column densities and scale heights; 2) First clear measurement of sublimation densities at polar locations; 3) Volcanic densities for large and mid-sized plumes (possibly new ones); 4) Globally distributed limb profiles allowing strong distinctions between plume and sublimation dominated locations; 5) Repeated imaging on a few day and a few week timescales for improved plume variability constraints; and 6) Lyman-alpha reflectance imaging at Io central lon. ~180 deg, filling a gap in previous coverage. These new information are critical to breaking through an impasse in our understanding of Io's atmosphere.

  17. Prospects for constraining neutrino mass using Planck and Lyman-{alpha} forest data

    SciTech Connect

    Gratton, Steven; Lewis, Antony; Efstathiou, George

    2008-04-15

    In this paper we investigate how well Planck and Lyman-{alpha} forest data will be able to constrain the sum of the neutrino masses, and thus, in conjunction with flavor oscillation experiments, be able to determine the absolute masses of the neutrinos. It seems possible that Planck, together with a Lyman-{alpha} survey, will be able to put pressure on an inverted hierarchial model for the neutrino masses. However, even for optimistic assumptions of the precision of future Lyman-{alpha} data sets, it will not be possible to confirm a minimal-mass normal hierarchy.

  18. Analytic Lyman-alpha wing diagnostics and the chromospheric excitation balance in cool dwarfs

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1994-01-01

    I show that the Lyman alpha wings of cool dwarfs can be understood in terms of a very simple model, based on a simplified representation of the chromospheric hydrogen excitation balance and approximate analytic wing diagnostics in partial redistribution. Much of the complexity of the radiation transfer in the partially coherent and steeply temperature-sensitive Lyman alpha line is circumvented by this technique. The result is an expedient scheme for inverting the Lyman alpha wing profile to determine the characteristic free electron density and its gradient in the middle chromosphere. This represents an important new diagnostic for constraining chromospheric models and their radiative losses. I apply this diagnostic to the Lyman alpha wing profiles of the Sun and AU Mic and show that current instrumentation, most notably the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope, is capable of providing the necessary data.

  19. Solid-state continuous Lyman-alpha source for laser-cooling of antihydrogen

    SciTech Connect

    Walz, Jochen; Beyer, Thomas; Kolbe, Daniel; Markert, Frank; Muellers, Andreas; Scheid, Martin

    2008-08-08

    Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high-resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser-cooling of antihydrogen can be done on the strong 1 S-2 P transition at the wavelength of Lyman-alpha (121.6 nm). Ongoing work to set up a solid-state continuous-wave laser source at Lyman-alpha is described.

  20. Mapping High-Velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter; Heng, Kevin; Lawrence, Stephen S.; Lundqvist, Peter; Smith, Nathan; Sonneborn, George

    2015-01-01

    We present new Hubble Space Telescope images of high-velocity H-alpha and Lyman-alpha emission in the outer debris of SN 1987A. The H-alpha images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H-alpha imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals (-7,500 < V(sub obs) < -2,800 km/s) and (1,000 < V(sub obs) < 7,500 km/s), ?M(sub H) = 1.2 × 10(exp -3) M/ y. We also present the first Lyman-alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyman-alpha and X-ray emission, we observe that the majority of the high-velocity Lyman-alpha emission originates interior to the equatorial ring. The observed Lyman-alpha/H-alpha photon ratio, R(L-alpha/H-alpha) approx. = 17, is significantly higher than the theoretically predicted ratio of approx. = 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-alpha production mechanism in SN 1987A at this phase in its evolution.

  1. Copernicus measurement of the Jovian Lyman-alpha emission and its aeronomical significance

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.; Kerr, R. B.; Upson, W. L., II; Festou, M. C.; Donahue, T. M.; Barker, E. S.; Cochran, W. D.; Bertaux, J. L.

    1982-01-01

    It is pointed out that the intensity of the Lyman-alpha emission is a good indicator of the principal aeronomical processes on the major planets. The high-resolution ultraviolet spectrometer aboard the Orbiting Astronomical Observatory Copernicus was used in 1980 April and May to detect the Jovian Lyman-alpha emission by spectroscopically discriminating it from other Doppler shifted Lyman-alpha emissions such as those of the geocorona, and the interplanetary medium. Taking into consideration the reported emission data, it appears that an unusually large energy input due to the particle precipitation in the auroral region must have been responsible for the large observed Lyman-alpha intensity during the Voyager encounter. At most other times, the observed Jovian Lyman-alpha intensity can be explained, within the range of statistical uncertainty, by a model that takes into consideration the solar EUV flux, the solar Lyman-alpha flux, the high exospheric temperature, and the eddy diffusion coefficient without energy input from the auroral sources.

  2. Rocket Measurements of the Direct Solar Lyman-alpha Radiation Penetrating in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Guineva, V. H.; Witt, G.; Gumbel, J.; Khaplanov, M.; Tashev, V. L.

    2006-03-01

    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric temperature profile can be calculated thereof. Rocket measurements of the direct Lyman-alpha radiation vertical profile in the summer mesosphere and thermosphere (up to 120 km), at high latitudes will be carried out in June 2006. The Lyman-alpha flux will be registered by a detector of solar Lyman-alpha radiation, manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL BAS). Its basic part is an ionization camera, filled in with NO. The scientific data analysis will include raw data reduction, radiative transfer simulations, temperature retrieval as well as co-analysis with other parameters, measured near the polar summer mesopause. This project is a scientific cooperation between STIL-BAS, Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project is part from the rocket experiment HotPay I, in the ALOMAR eARI Project, EU's 6th Framework Programme, Andoya Rocket Range, Andenes, Norway.

  3. Sub-Lyman-alpha observations of supernova remnants

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1993-01-01

    The first map of O VI lambda 1035 emission of the Cygnus Loop has now been obtained with Voyager. The first good spectra of the sub-Lyman-alpha region in the Cygnus Loop and in the Large Magellanic Cloud (LMC) remnant N49 have been obtained with the Hopkins Ultraviolet Telescope. The lines detected below 1200 A include S VI lambda lambda 933,945, C III lambda 977, N III lambda 991, and O VI lambda lambda 1032,1038. The O VI luminosities of the Cygnus Loop and of N49 exceed their soft X-ray luminosities. There is O VI emission at the primary shock front in the Cygnus Loop and from the bright optical filaments. The HUT spectra of the Cygnus Loop can be interpreted in terms of shocks with velocities of 170-190 km/s; the differences between the two spectra are due to the time since the beginning of the shock-cloud encounter.

  4. Sub-Lyman-alpha observations of supernova remnants

    NASA Technical Reports Server (NTRS)

    Long, K. S.

    1993-01-01

    The first map of O VI lambda 1035 emission of the Cygnus Loop has now been obtained with Voyager. The first good spectra of the sub-Lyman-alpha region in the Cygnus Loop and in the Large Magellanic Cloud (LMC) remnant N49 have been obtained with the Hopkins Ultraviolet Telescope. The lines detected below 1200 A include S VI lambda lambda 933,945, C III lambda 977, N III lambda 991, and O VI lambda lambda 1032,1038. The O VI luminosities of the Cygnus Loop and of N49 exceed their soft X-ray luminosities. There is O VI emission at the primary shock front in the Cygnus Loop and from the bright optical filaments. The HUT spectra of the Cygnus Loop can be interpreted in terms of shocks with velocities of 170-190 km/s; the differences between the two spectra are due to the time since the beginning of the shock-cloud encounter.

  5. Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kano, Ryohei; Bando, Takamasa; Narukage, Noriyuki; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shin-­nosuke; Hara, Hirohisa; Suematsu, Yoshinori; Giono, Gabriel; Shimizu, Toshifumi; Sakao, Taro; Ichimoto, Kiyoshi; Goto, Motoshi; Winebarger, amy; Kobayashi, Ken; Trujullo Bueno, Javier; Auchere, Frederic

    2015-01-01

    Chromosphere, the transition layer of the sun is a region to switch to the magnetic pressure dominated from plasma pressure dominated, simultaneous observation of the detailed magnetic field measurement and plasma of dynamic phenomenon here is what is the frontier of the next solar physics. As This is a challenge that has just mentioned, even the next solar observation satellite plan SOLAR-C, in the experiments we had used a NASA sounding rocket for the first time in the SOLAR-C plan, will address the chromosphere-transition layer magnetic field measurement there. It is, is a Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) plan, the linear polarization of Lyman ?? emission lines chromosphere-transition layer shoots (121.6nm) were detected in 0.1 percent of high accuracy, a new technique called Hanre effect I get the magnetic field information of chromosphere-transition layer. In Japan, the US and Europe joint observation in November 2012 as a rocket experiment is adopted to NASA this plan that full-scale start-up, start from assembly work is 2014 spring flight observation device, currently, it is where the alignment of the optical elements have been implemented. After this, it is planned to continue with the performance evaluation towards the observation implementation of summer 2015. In addition to once again explain the contents of the plan In this presentation, we report an overview of the entire development and preparation current status.

  6. O2 density and temperature profiles retrieving from direct solar Lyman-alpha radiation measurements

    NASA Astrophysics Data System (ADS)

    Guineva, V.; Witt, G.; Gumbel, J.; Khaplanov, M.; Werner, R.; Hedin, J.; Neichev, S.; Kirov, B.; Bankov, L.; Gramatikov, P.; Tashev, V.; Popov, M.; Hauglund, K.; Hansen, G.; Ilstad, J.; Wold, H.

    2009-12-01

    The resonance transition 2P-2S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric O2 density and temperature profiles can be calculated thereof. A detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization camera, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a two-channel amplifier, providing analog signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the so-designed instrument could be used in rocket experiments to measure the Lymanalpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. Programs are created to compute the O2 density, atmospheric power and temperature profiles based on Lymanalpha data. The detector design appertained to ASLAF project (Attenuation of the Solar Lyman-Alpha Flux), a scientific cooperation between STIL—Bul.Acad.Sci., Stara Zagora Department and the Atmospheric Physics Group at the Department of Meteorology (MISU), Stockholm University, Sweden. The joint project was part of the rocket experiment HotPay I, in the ALOMAR eARI Project, EU’s 6th Framework Programme, Andøya Rocket Range, Andenes, Norway. The project is partly financed by the Bulgarian Ministry of Science and Education.

  7. HETDEX: The Physical Properties of Lyman-alpha Emitters

    NASA Astrophysics Data System (ADS)

    Gronwall, Caryl; Blanc, G.; Ciardullo, R.; Finkelstein, S.; Gawiser, E.; Gebhardt, K.; HETDEX Collaboration

    2012-01-01

    Beginning in Fall 2012, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will map out 300 square degrees via a blind integral-field spectroscopic survey which will detect 800,000 Lyman-alpha emitters (LAEs) at 1.9 < z < 3.5. The goal of HETDEX is to explore the expansion history of the universe via the LAE power spectrum, but these emission-line sources are also important probes of galaxy evolution. LAEs are observed "in the act" of formation with low mass, little dust, very young ages, and a two-dimensional clustering scale-length that implies that they are the progenitors of today's Milky Way type galaxies. The unprecedented size of the HETDEX survey will allow us to explore the 3-D clustering of these objects and to measure their halo masses as a function of redshift. We will also be able to explore the physical properties of LAEs over a wide range of environments, and study how their luminosity functions, equivalent width distributions, and star formation rates change with galaxy density and redshift. In preparation for HETDEX, we undertook a 3 year pilot survey to test the feasibility of the experiment and design an optimal observing strategy. These observations were performed with a proto-type HETDEX spectrograph (VIRUS-P) on the McDonald 2.7-m telescope, and covered Ly-alpha in the redshift range 1.9 < z < 3.8. This survey discovered 104 Ly-alpha emitting galaxies in 169 sq. arcmin of sky, and reached objects with Ly-alpha line luminosities as faint as 3 x 1042 ergs/s. We will present the Ly-alpha luminosity function, equivalent width distributions, and star formation rates measured for this sample and discuss the implications of the pilot survey results for HETDEX.

  8. How Lyman alpha bites/beats the dust

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2014-10-01

    The bulk of high redshift star formation occurs in IR-bright objects. At similar epochs the de facto spectroscopic tracer of galaxies is the Lyman-alpha line, which is used almost ubiquitously with a diverse range of applications in galaxy evolution. Ly-alpha is also very sensitive to dust absorption, however, and a challenging emergent result of recent years is that an overwhelming fraction of IR-bright galaxies are also luminous Ly-alpha emitters. How is this possible given the mammoth dust contents? We will take advantage of the unique capabilities of HST and the Cycle 22 UV initiative to find out.Ly-alpha observations are infamously difficult to interpret because of the resonant nature of the transition. This has motivated detailed studies of nearby galaxies with space-based platforms, that have aided in unleashing the power of Ly-alpha for high-z studies. Only HST provides the UV access and resolution to do this, and hundreds of orbits have been devoted to studying UV-selected galaxies. Yet the UV reveals a small fraction of high-z star formation and no study has ever imaged the IR-bright systems in Ly-alpha. The proposed ACS observations will do this in five Ultraluminous Infrared Galaxies (ULIRGs), sampling spatial scales of just 50 pc. We will test sophisticated new models of Ly-alpha escape, study morphologies in comparison to the stars and nebular gas, measure global Ly-alpha quantities for the first time, and probe the relevant structures in the ISM in minute detail. We will finally push nearby Ly-alpha studies to the highest possible bolometric luminosities.

  9. First Results from the Large-Area Lyman Alpha Survey

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Malhotra, Sangeeta; Dey, Arjun; Stern, Daniel; Spinrad, Hyron; Jannuzi, Buell T.

    2000-12-01

    We report on a new survey for z~4.5 Lyα sources, the Large-Area Lyman Alpha (LALA) survey. Our survey achieves an unprecedented combination of volume and sensitivity by using narrowband filters on the new 81922 pixel CCD Mosaic camera at the 4 m Mayall telescope of Kitt Peak National Observatory. Well-detected sources with flux and equivalent width matching previously known high-redshift Lyα galaxies (i.e., observed equivalent width EW>80 Å 2.6×10-17 ergs cm-2 s-1

  10. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    NASA Technical Reports Server (NTRS)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the a-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned 'following four steps in order to reduce standing time alignment me. 1. is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm).2. The mirror structure CLASP before mounting unit standing, dummy slit and camera standing

  11. Development of Flight Slit-Jaw Optics for Chromospheric Lyman-Alpha SpectroPolarimeter

    NASA Technical Reports Server (NTRS)

    Kubo, Masahito; Suematsu, Yoshinori; Kano, Ryohei; Bando, Takamasa; Hara, Hirohisa; Narukage, Noriyuki; Katsukawa, Yukio; Ishikawa, Ryoko; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; hide

    2015-01-01

    In sounding rocket experiment CLASP, I have placed a slit a mirror-finished around the focal point of the telescope. The light reflected by the mirror surface surrounding the slit is then imaged in Slit-jaw optical system, to obtain the alpha-ray Lyman secondary image. This image, not only to use the real-time image in rocket flight rocket oriented direction selection, and also used as a scientific data showing the spatial structure of the Lyman alpha emission line intensity distribution and solar chromosphere around the observation area of the polarimetric spectroscope. Slit-jaw optical system is a two off-axis mirror unit part including a parabolic mirror and folding mirror, Lyman alpha transmission filter, the optical system magnification 1x consisting camera. The camera is supplied from the United States, and the other was carried out fabrication and testing in all the Japanese side. Slit-jaw optical system, it is difficult to access the structure, it is necessary to install the low place clearance. Therefore, influence the optical performance, the fine adjustment is necessary optical elements are collectively in the form of the mirror unit. On the other hand, due to the alignment of the solar sensor in the US launch site, must be removed once the Lyman alpha transmission filter holder including a filter has a different part from the mirror unit. In order to make the structure simple, stray light measures Aru to concentrate around Lyman alpha transmission filter. To overcome the difficulties of performing optical alignment in Lyman alpha wavelength absorbed by the atmosphere, it was planned following four steps in order to reduce standing time alignment me. 1: is measured in advance refractive index at Lyman alpha wavelength of Lyman alpha transmission filter (121.567nm), to prepare a visible light Firuwo having the same optical path length in the visible light (630nm). 2: The mirror structure CLASP before mounting unit standing, dummy slit and camera standing

  12. Design and Fabrication of the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Johnson, R. Barry; Fineschi, Silvano; Walker, Arthur B. C., Jr.; Baker, Phillip C.; Zukic , Muamer; Kim, Jongmin

    1993-01-01

    We have designed, analyzed, and are now fabricating an All-Reflecting H-Lyman alpha Coronagraph/Polarimeter for solar research. This new instrument operates in a narrow bandpass centered at lambda 1215.7 A-the neutral hydrogen Lyman alpha (Ly-alpha) line. It is shorter and faster than the telescope which produced solar Ly-alpha images as a part of the MSSTA payload that was launched on May 13, 1991. The Ly-alpha line is produced and linearly polarized in the solar corona by resonance scattering, and the presence of a magnetic field modifies this polarization according to the Hanle effect. The Lyman alpha Coronagraph/Polarimeter instrument has been designed to measure coronal magnetic fields by interpreting, via the Hanle effect, the measured linear polarization of the coronal Ly-alpha line. Ultrasmooth mirrors, polarizers, and filters are being flow-polished for this instrument from CVD silicon carbide substrates. These optical components will be coated using advanced induced transmission and absorption thin film multilayer coatings, to optimize the reflectivity and polarization properties at 1215.7 A. We describe some of the solar imaging results obtained with the MSSTA Lyman alpha coronagraph. We also discuss the optical design parameters and fabrication plans for the All-Reflecting H-Lyman alpha Coronagraph/Polarimeter.

  13. Lyman Alpha Emitting Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2015-07-01

    The Lyman alpha emission line (Lyα) of neutral hydrogen (Hi) is intrinsically the brightest emission feature in the spectrum of astrophysical nebulae, making it a very attractive observational feature with which to survey galaxies. Moreover as an ultraviolet resonance line, Lyα possesses several unique characteristics that make it useful to study the properties of the interstellar medium and ionising stellar population at all cosmic epochs. In this review, I present a summary of Lyα observations of galaxies in the nearby universe. By ultraviolet continuum selection, at the magnitudes reachable with current facilities, only ≈ 5% of the local galaxy population shows a Lyα equivalent width (W Lyα) that exceeds 20 Å. This fraction increases dramatically at higher redshifts, but only in the local universe can we study galaxies in detail and assemble unprecedented multi-wavelength datasets. I discuss many local Lyα observations, showing that when galaxies show net Lyα emission, they ubiquitously also produce large-scale halos of scattered Lyα, that dominate the integrated luminosity. Concerning global measurements, we discuss how W Lyα and the Lyα escape fraction (f Lyα esc) are higher (W Lyα ≳ 20 Å and f Lyα esc ≳ 10%) in galaxies that represent the less massive and younger end of the distribution for local objects. This is connected with various properties, such that Lyα-emitting galaxies have lower metal abundances (median value of 12 + log(O/H) ~ 8.1) and dust reddening. However, the presence of galactic outflows/winds is also vital to Doppler shift the Lyα line out of resonance with the atomic gas, and high W Lyα is found only among galaxies with winds faster than ~ 50 km s-1. The empirical evidence is then assembled into a coherent picture, and the requirement for star-formation-driven feedback is discussed in the context of an evolutionary sequence where the interstellar medium is accelerated and/or subject to hydrodynamical instabilities

  14. The Lyman alpha reference sample. VII. Spatially resolved Hα kinematics

    NASA Astrophysics Data System (ADS)

    Herenz, Edmund Christian; Gruyters, Pieter; Orlitova, Ivana; Hayes, Matthew; Östlin, Göran; Cannon, John M.; Roth, Martin M.; Bik, Arjan; Pardy, Stephen; Otí-Floranes, Héctor; Mas-Hesse, J. Miguel; Adamo, Angela; Atek, Hakim; Duval, Florent; Guaita, Lucia; Kunth, Daniel; Laursen, Peter; Melinder, Jens; Puschnig, Johannes; Rivera-Thorsen, Thøger E.; Schaerer, Daniel; Verhamme, Anne

    2016-03-01

    We present integral field spectroscopic observations with the Potsdam Multi-Aperture Spectrophotometer of all 14 galaxies in the z ~ 0.1 Lyman Alpha Reference Sample (LARS). We produce 2D line-of-sight velocity maps and velocity dispersion maps from the Balmer α (Hα) emission in our data cubes. These maps trace the spectral and spatial properties of the LARS galaxies' intrinsic Lyα radiation field. We show our kinematic maps that are spatially registered onto the Hubble Space Telescope Hα and Lyman α (Lyα) images. We can conjecture a causal connection between spatially resolved Hα kinematics and Lyα photometry for individual galaxies, however, no general trend can be established for the whole sample. Furthermore, we compute the intrinsic velocity dispersion σ0, the shearing velocity vshear, and the vshear/σ0 ratio from our kinematic maps. In general LARS galaxies are characterised by high intrinsic velocity dispersions (54 km s-1 median) and low shearing velocities (65 km s-1 median). The vshear/σ0 values range from 0.5 to 3.2 with an average of 1.5. It is noteworthy that five galaxies of the sample are dispersion-dominated systems with vshear/σ0< 1, and are thus kinematically similar to turbulent star-forming galaxies seen at high redshift. When linking our kinematical statistics to the global LARS Lyα properties, we find that dispersion-dominated systems show higher Lyα equivalent widths and higher Lyα escape fractions than systems with vshear/σ0> 1. Our result indicates that turbulence in actively star-forming systems is causally connected to interstellar medium conditions that favour an escape of Lyα radiation. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).The reduced data cubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  15. Dust biasing of damped Lyman alpha systems: a Bayesian analysis

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Pettini, Max

    2009-02-01

    If damped Lyman alpha systems (DLAs) contain even modest amounts of dust, the ultraviolet luminosity of the background quasar can be severely diminished. When the spectrum is redshifted, this leads to a bias in optical surveys for DLAs. Previous estimates of the magnitude of this effect are in some tension; in particular, the distribution of DLAs in the (NHI, Z) (i.e. column density-metallicity) plane has led to claims that we may be missing a considerable fraction of metal-rich, high column density DLAs, whereas radio surveys do not unveil a substantial population of otherwise hidden systems. Motivated by this tension, we perform a Bayesian parameter estimation analysis of a simple dust obscuration model. We include radio and optical observations of DLAs in our overall likelihood analysis and show that these do not, in fact, constitute conflicting constraints. Our model gives statistical limits on the biasing effects of dust, predicting that only 7 per cent of DLAs are missing from optical samples due to dust obscuration; at 2σ confidence, this figure takes a maximum value of 17 per cent. This contrasts with recent claims that DLA incidence rates are underestimated by 30-50 per cent. Optical measures of the mean metallicities of DLAs are found to underestimate the true value by just 0.1dex (or at most 0.4dex,2σ confidence limit), in agreement with the radio survey results of Akerman et al. As an independent test, we use our model to make a rough prediction for dust reddening of the background quasar. We find a mean reddening in the DLA rest frame of log10 ~= -2.4 +/- 0.6, consistent with direct analysis of the Sloan Digital Sky Survey (SDSS) quasar population by Vladilo et al., log10 = -2.2 +/- 0.1. The quantity most affected by dust biasing is the total cosmic density of metals in DLAs, ΩZ,DLA, which is underestimated in optical surveys by a factor of approximately 2.

  16. Doppler line profiles measurement of the Jovian Lyman Alpha emission with OAO-C

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Cochran, W. D.; Smith, H. J.

    1982-01-01

    Observation of Jupiter made with the high resolution ultraviolet spectrometer of the Orbiting Astronomical Observatory copernicus in April and May, 1980, yield a Jovian Lyman alpha emission intensity of 7 + or 2.5 RR. This indicates a decrease by about a factor of two since the Voyager ultraviolet spectrometer measurements, nearly a year earlier. An unusually high column abundance of hydrogen atoms above the methane homopause at the Voyager epoch is indicated. Since the auroral charged particle bombardment of molecular hydrogen is expected to contribute significantly to the global population of the hydrogen atoms, it is suggested that at the time of the Voyager Jupiter encounter unusually high auroral activity existed, perhaps d to the high concentration of the Io plasma torus. The temporal variation of the Saturn lyman alpha emission, when contrasted with the Jovian data, reveals that the auroral processes are not nearly as important in determining the Saturn Lyman alpha intensity in the nonauroral region.

  17. HST/STIS Spectroscopy of the Local Lyman-Alpha Forest

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Dave, R. A.; Weymann, R.; Williger, G.; Jenkins, E.; Tripp, T.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope has brought a new era in studying the low-redshift Lyman-alpha Forest. The advantages of STIS over previous HST spectrographs include:(l) a high spectral resolution (7 km/s) comparable to Keck/HIRES spectra of the high-redshift Lyman-alpha forest; (2) a high observing efficiency brought about by an imaging detector able to span the full fares wavelength range (1150-1700 A, or equivalently, z=0.0-0.4) in a single exposure. The STIS Investigation Definition Team is therefore conducting an observational program to determine the properties of the low-redshift intergalactic medium as manifested by the Lyman-alpha forest. The team has made observations of the quasars: 3C 273, 3C 351, and PKS 0405. We shall present results based on the sightline to 3C 273, the brightest of these sources.

  18. Self-regulating galaxy formation. I - H II disk and Lyman-alpha pressure

    NASA Technical Reports Server (NTRS)

    Cox, D. P.

    1985-01-01

    The nascent interstellar medium and star formation model are incorporated into a scenario for the formation epoch of spiral galaxies. The structure, star formation time scale, and luminosity of a self-gravitating isothermal disk are evaluated as functions of the disk surface density. The importance of radiation pressure, particularly that of Lyman-alpha, in maintaining an inflated disk and halting infall is discussed. The Lyman-alpha pressure also supports a considerable halo of material in the vicinity of the disk. A first-order infall scenario and the time-dependent properties of the system it constructs are presented. Disk properties are evaluated at the epoch at which further material is supportable against infall by Lyman-alpha pressure. The two-dimensional family of disk galaxies whose scales and surface density are expressible in terms of fundamental constants and which arise from the three parameter sets of perturbations in the Hubble flow are determined.

  19. Continuous-wave Lyman-alpha generation with solid-state lasers.

    PubMed

    Scheid, Martin; Kolbe, Daniel; Markert, Frank; Hänsch, Theodor W; Walz, Jochen

    2009-07-06

    A coherent continuous-wave Lyman-alpha source based on four-wave sum-frequency mixing in mercury vapor has been realized with solid-state lasers. The third-order nonlinear susceptibility is enhanced by the 6(1)S - 7(1)S two-photon resonance and the near 6(1)S-6(3)P one-photon resonance. The phase matching curve for this four-wave mixing scheme is observed for the first time. In addition we investigate the two-photon enhancement of the Lyman-alpha yield and observe that the maxima of Lyman-alpha generation are shifted compared to the two-photon resonances of the different isotopes.

  20. Large Equivalent Width Galaxies from Large Area Lyman-Alpha Survey

    NASA Astrophysics Data System (ADS)

    Malhotra, S.; Rhoads, J.; Dey, A.; Jannuzi, B.; Stern, D.; Spinrad, H.

    2001-05-01

    We find many candidate z=4.5 Lyman-alpha emitting galaxies in our LALA (Large Area Lyman Alpha) survey. More than half of these sources have rest frame equivalent widths greater than 200 Angstroms, which is the largest equivalent width expected for a standard stellar initial mass function (IMF). Either these sources are type II quasars or galaxies with an IMF dominated by massive stars. From Chandra Deep Field X-ray source counts, we estimate that only 10-20% of the LALA sources can be type II quasars. This then indicates that some galaxies at high redshifts had top heavy IMFs.

  1. Observation of a Lyman-alpha flare with PROBA2/LYRA

    NASA Astrophysics Data System (ADS)

    Wauters, Laurence; Dominique, Marie; Dammasch, Ingolf; Kretzschmar, Matthieu

    2017-08-01

    Lyman-alpha (121.6 nm) is an optical thick line mostly formed in the chromosphere. Although one of the strongest lines of the solar spectrum, there are very few reports of solar flare signatures in Lyman-alpha and the few observations available differ significantly in shape, time duration and amplitude. Consequently, the fraction of non-thermal energy deposited during solar flares in this wavelength is still subject to discussion. The LYRA experiment is a radiometer on board the PROBA2 spacecraft launched in 2009. LYRA is composed of three identical units (one nominal, two backups), which each includes four distinct broadband channels, among which one covering Lyman-alpha. Despite the fact that the LYRA Lyman-alpha signal has degraded quickly at the beginning of the mission in the nominal channel, it observed about ten flares. Additionally, one more flare was observed in one of the backup channels. In this talk, we will analyse this particular flare profile and compare it to other instruments including Goes-15, EVE/MEGS-P, LYRA Zirconium channel.

  2. A comment on the measurement of atmospheric density by absorption of Lyman-alpha.

    NASA Technical Reports Server (NTRS)

    Smith, L. G.; Miller, K. L.

    1973-01-01

    It is shown that the absorption cross section for molecular oxygen at Lyman alpha is about 0.8 times 10 to the minus twentieth power sq cm. It is pointed out that, for application of absorption spectroscopy to the measurement of molecular oxygen density in the atmosphere, no correction for the variation of cross section with wavelength is necessary.

  3. Baryon Acoustic Oscillations in Lyman Alpha Forest - Quasar Cross-Correlations

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Aubourg, E.; Bailey, S. J.; Bautista, J.; Beutler, F.; Bizyaev, D.; Blomqvist, M.; Bolton, A. S.; Brewington, H.; Brinkmann, J. V.; Brownstein, J.; Busca, N. G.; Carithers, W.; Croft, R. A.; Dawson, K. S.; Delubac, T.; Ebelke, G.; Eisenstein, D.; Feng, Y.; Font-Ribera, A.; Hogg, D. W.; Kinemuchi, K.; Kirkby, D.; Le Goff, J.; Lee, K.; Malanushenko, E.; Malanushenko, V.; Marchante, M.; Margela, D.; Miralda-Escudé, J.; Muna, D.; Myers, A. D.; Nichol, R.; Oravetz, D.; Palanque-Delabrouille, N.; Pan, K.; Noterdaeme, P.; O'Connel, R.; Paris, I.; Petitjean, P.; Pieri, M.; Rollinde, E.; Ross, N.; Rossi, G.; Schlegel, D. J.; Schneider, D. P.; Simmons, A.; Slosar, A.; Viel, M.; Weinberg, D. H.; Xu, X.; Yeche, C.; York, D. G.

    2014-01-01

    We investigate the signal of BAO in the cross-correlations between SDSS III-BOSS DR10 and DR11 quasars and Lyman Alpha Forest. We present two independent analyses that follow slightly different methodologies. In one, we fit the BAO using DR10 data only following multipole methods described in Xu et al. 2012 adapting to the fact that Lyman-Alpha forest is negatively biased, while in the other analyses, we analyze DR11 data following methodologies in Font-Ribera et al., 2012 and Kirkby et al. 2013. In the two analyses, we use different treatments of the Lyman Alpha Forest, different fitting methodologies and found consistent cosmological results. The expected signal-to-noise is weaker than the Lyman-Alpha Forest auto-correlations, however this will be a test of principle of finding BAO in cross-correlations, where systematics can be more easily mitigated. This method also applies to future surveys with medium/dense coverage of multiple tracers in similar redshift range, such as SDSS IV, DESI, WFIRST and EUCLID.

  4. Properties of nearby interstellar hydrogen deduced from Lyman-alpha sky background measurements

    NASA Technical Reports Server (NTRS)

    Thomas, G. E.

    1972-01-01

    For a sufficiently rapid relative motion of the solar system and the nearby interstellar gas, neutral atoms may be expected to penetrate the heliosphere before becoming ionized. Recent satellite measurements of the Lyman alpha emission above the geocorona indicate such an interstellar wind of neutral hydrogen emerging from the direction of Sagittarius and reaching to within a few astronomical units of the sun. A detailed model of the scattering of solar Lyman alpha from the spatial distribution of neutral hydrogen in interplanetary space is presented. This asymmetric distribution is established by solar wind and solar ultraviolet ionization processes along the trajectories of the incoming hydrogen atoms. The values of the interstellar density, the relative velocity, and the gas temperature are adjusted to agree with the Lyman alpha measurements. The results may be interpreted in terms of two models, the cold model and the hot model of the interstellar gas, depending on whether galactic Lyman alpha emission is present at its maximum allowable value or negligibly small.

  5. A Search for z>6.5 Lyman-alpha Emitting Galaxies with WISP

    NASA Astrophysics Data System (ADS)

    Bagley, Micaela B.; Scarlata, Claudia; Dai, Yu Sophia; Rafelski, Marc; Baronchelli, Ivano; Colbert, James W.; Dominguez, Alberto; Hathi, Nimish P.; Henry, Alaina L.; Malkan, Matthew Arnold; Martin, Crystal L.; Mehta, Vihang; Pahl, Anthony; Ross, Nathaniel; Rutkowski, Michael J.; Teplitz, Harry I.; WISP Team

    2016-01-01

    The observed number density of Lyman-alpha emitting galaxies at z>6 provides an important probe of the reionization history of the universe. Because Lyman-alpha photons are very sensitive to the presence of neutral hydrogen, the evolution of the galaxy number density above redshift 6 can be used as a measurement on the progress of reionization. However, the Lyman-alpha luminosity function is currently poorly constrained at high-z. We present the results of a systematic search for Lyman-alpha emitters (LAEs) at redshifts of ~6.5 to 7.5 using the HST WFC3 Infrared Spectroscopic Parallels (WISP) survey. WISP's uncorrelated fields are well-suited to the study of bright LAEs, minimizing the effects of clustering introduced by a patchy reionization. From the 30 deepest WISP fields, we compile a sample of single-line emitters, confirm redshifts with broadband colors, and identify LAE candidates that have "dropped out" (are undetected at the 1 sigma level) of the WFC3 UVIS filters. By combining our results with other z~7 studies, we determine whether the number density of LAEs evolves past z~6.5.

  6. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Kano, R.; Kobayashi, K.; Ishikawa, R.; Bando, T.; Narukage, N.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchere, F.; Trujillo, Bueno J.; Manso, Sainz R.; Ramos, Asensio A.; Stepan, J.; Belluzi, L.; Carlsson, M.

    2014-01-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles caused by scattering processes and the Hanle effect in the hydrogen Lyman-alpha line (121.567nm). Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect are essential to explore the strength and structures of weak magnetic fields. The primary target of future solar telescopes is to measure the weak magnetic field in outer solar atmospheres (from the chromosphere to the corona through the transition region). The hydrogen Lyman-alpha-line is one of the best lines for the diagnostics of magnetic fields in the outer solar atmospheres. CLASP is to be launched in 2015, and will provide, for the first time, the observations required for magnetic field measurements in the upper chromosphere and transition region. CLASP is designed to have a polarimetric sensitivity of 0.1% and a spectral resolution of 0.01nm for the Lyman-alpha line. CLASP will measure two orthogonal polarizations simultaneously for about 5-minute flight. Now the integration of flight mirrors and structures is in progress. In addition to our strategy to realize such a high-precision spectro-polarimetry in the UV, we will present a progress report on our pre-launch evaluation of optical and polarimetric performances of CLASP.

  7. Simultaneous measurements of the hydrogen airglow emissions of Lyman alpha, Lyman beta, and Balmer alpha.

    NASA Technical Reports Server (NTRS)

    Weller, C. S.; Meier, R. R.; Tinsley, B. A.

    1971-01-01

    Comparison of Lyman-alpha, 740- to 1050-A, and Balmer-alpha airglow measurements made at 134 deg solar-zenith angle on Oct. 13, 1969, with resonance-scattering models of solar radiation. Model comparison with Lyman-alpha data fixes the hydrogen column abundance over 215 km to 2 x 10 to the 13th per cu cm within a factor of 2. Differences between the Lyman-alpha model and data indicate a polar-equatorial departure from spherical symmetry in the hydrogen distribution. A Lyman-beta model based on the hydrogen distribution found to fit the Lyman-alpha data fits the spatial variation of the 740- to 1050-A data well from 100 to 130 km, but it does not fit the data well at higher altitudes; thus the presence of more rapidly absorbed shorter-wavelength radiation is indicated. This same resonance-scattering model yields Balmer-alpha intensities that result in good spatial agreement with the Balmer-alpha measurements, but a fivefold increase in the measured solar line center Lyman-beta flux is required (as required for the Lyman-beta measurement). The intensity ratio of Lyman-beta and Balmer-alpha at night is found to be a simple measure of the hydrogen optical depth if measurements with good accuracy can be made in the visible and ultraviolet spectrum.

  8. Transverse Structure in the Lyman Alpha Forest and a Program to Measure the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2001-07-01

    We propose to combine archival UV HST spectra of close QSO pairs with a large sample of similar optical spectra in order to determine the clustering strength of intergalactic H I absorption {the Lyman Alpha forest} with the intent of constraining hydrodynamic/gravitational models of structure formation in the early Universe. Furthermore, this dataset will allow a comparison of radial versus transverse clustering for weak overdensities in the Universe. Since radial versus transverse size for objects co-expanding with the Hubble flow is an excellent measure of the cosmological constant Lambda, and since the Lyman Alpha forest is relatively weakly clustered, the shape of its clustering function in radial versus transverse dimensions is an excellent prospect for uncovering the value of Lambda. We would like to fully analyze the close QSO pairs in the archive, including several that remain unpublished after many years, and combine these with high quality optical spectra extending blueward to atmospheric cutoff in order to provide study of Lyman Alpha forest structure that is as free as possible of systematic errors due to interloping metal lines. Such a study might not only determine Lambda, but lead to an independent, new measure of the density of normal matter Omega_baryon, the strength of ionizing radiation flux in the early Universe, and better constraints on other cosmological parameters open to study after testing numerical models of the Lyman Alpha forest can be trusted.

  9. A Lyman-alpha tunable acousto-optic filter for detecting superthermal flare protons

    NASA Technical Reports Server (NTRS)

    Mickey, Donald L.

    1994-01-01

    The goal of this project was to develop and characterize a narrow-band, tunable filter for use near the Lyman-alpha line of hydrogen at 121.6 nm. Such a filter could form the critical component of an instrument to observe asymmetries in the solar Lyman-alpha line, caused by energetic protons accelerated during the impulsive phase of solar flares. Characteristic charge-exchange nonthermal emission at Lyman alpha should be produced when sub-MeV protons are injected into the chromosphere, but no instrument suitable for their detection has been developed. Such an instrument would require a narrow-band (less than 0.01 nm) tunable filter with aperture and throughput consistent with imaging a solar active region at 0.1 second intervals. The development of acousto-optic tunable filters (AOTF) suitable for use as compact, simple tunable filters for astronomical work suggested an investigation into the use of an AOTF at Lyman-alpha.

  10. The Lyman alpha reference sample. VI. Lyman alpha escape from the edge-on disk galaxy Mrk 1486

    NASA Astrophysics Data System (ADS)

    Duval, Florent; Östlin, Göran; Hayes, Matthew; Zackrisson, Erik; Verhamme, Anne; Orlitova, Ivana; Adamo, Angela; Guaita, Lucia; Melinder, Jens; Cannon, John M.; Laursen, Peter; Rivera-Thorsen, Thoger; Herenz, E. Christian; Gruyters, Pieter; Mas-Hesse, J. Miguel; Kunth, Daniel; Sandberg, Andreas; Schaerer, Daniel; Månsson, Tore

    2016-03-01

    Context. Recent numerical simulations suggest that the strength of the Lyman alpha (Lyα) line of star-forming disk galaxies strongly depends on the inclination at which they are observed: from edge-on to face-on, we expect to see a change from a strongly attenuated Lyα line to a strong Lyα emission line. Aims: We aim to understand how a strong Lyα emission line is able to escape from the low-redshift highly inclined (edge-on) disk galaxy Mrk 1486 (z ~ 0.0338). To our knowledge, this work is the first observational study of Lyα transport inside an edge-on disk galaxy. Methods: Using a large set of HST imaging and spectroscopic data, we investigated the interstellar medium (ISM) structure and the dominant source of Lyα radiation inside Mrk 1486. Moreover, using a 3D Monte Carlo Lyα radiation transfer code, we studied the radiative transfer of Lyα and UV continuum photons inside a 3D geometry of neutral hydrogen (HI) and dust that models the ISM structure at the galaxy center. Our numerical simulations predicted the Lyα line profile that we then compared to the one observed in the HST/COS spectrum of Mrk 1486. Results: While a pronounced Lyα absorption line emerges from the disk of Mrk 1486, very extended Lyα structures are observed at large radii from the galaxy center: a large Lyα-halo and two very bright Lyα regions located slightly above and below the disk plane. The analysis of IFU Hα spectroscopic data of Mrk 1486 indicates the presence of two bipolar outflowing halos of HI gas at the same location as these two bright Lyα regions. Comparing different diagnostic diagrams (such as [OIII]5007/Hβ versus [OI]6300/Hα) to photo- and shock-ionization models, we find that the Lyα production of Mrk 1486 is dominated by photoionization inside the galaxy disk. From this perspective, our numerical simulations succeed in reproducing the strength and shape of the observed Lyα emission line of Mrk 1486 by assuming a scenario in which the Lyα photons are

  11. Seeing Galaxies Through the Forest: Spectral Stacking of Damped Lyman Alpha Systems

    NASA Astrophysics Data System (ADS)

    Yen, Steffi; Jorgenson, R.; Murphy, M.

    2013-01-01

    Damped Lyman alpha Systems (DLAs) are the highest column density (N(HI) >= 2x10^20 cm^-2) neutral gas absorbers detected in the sightlines to distant quasars. DLAs dominate the neutral gas mass content of the Universe from z=[0,5], suggesting that they are the reservoirs of neutral gas for star formation across cosmic time. However, the nature of DLAs is not fully understood because they are detected in absorption against the light of background quasars. The resulting spectra contain absorption from the Lyman alpha forest, a series of smaller neutral hydrogen lines, essentially filaments of neutral gas in the IGM. At high redshifts (z >= 2), the forest becomes quite thick, making it difficult to distinguish intervening forest lines from metal lines of the DLA. By employing the technique of spectral stacking, we essentially subtract the incoherent Lyman alpha forest lines, enabling us to measure metal lines that typically fall in the forest region, such as O VI, N V, and molecular hydrogen. In addition, the increased signal-to-noise ratio in the DLA stack allows us to search for the presence of weak metal lines and/or Lyman alpha emission not typically seen in a single DLA spectrum. We will present the results obtained from our stack of 97 high-resolution (FWHM ~ 8 km/s) VLT/UVES spectra. Initial analysis of the stack shows a possible detection of Lyman alpha emission in the DLA trough. We will combine this VLT/UVES stack with a previously created stack of ~110 Keck/HIRES spectra to create the highest signal-to-noise ratio, high-resolution DLA spectral stack. Analysis of this final stack will shed new light on our understanding of the role of DLAs in galaxy formation and evolution. This work was conducted by a Research Experience for Undergraduates (REU) position at the University of Hawai'i's Institute for Astronomy and funded by the NSF.

  12. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  13. A two-component model of variations of Lyman-alpha emission with solar-activity level

    NASA Astrophysics Data System (ADS)

    Katiushina, V. V.; Krasinets, M. V.; Nusinov, A. A.; Bart, Ch. A.; Rottman, G. J.

    1991-02-01

    The relationship between the intensity of solar UV radiation in the Lyman-alpha line and the 10.7-cm emission is analyzed on the basis of SME data for 1982-1988. It is shown that the closest correlation between these parameters corresponds to the hypothesis that the Lyman-alpha radiation is a superposition of two components: background and upwelling from active regions. It is pointed out that various characteristics of Lyman-alpha variations in an activity cycle can be explained with the two-component model.

  14. Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) Maps of the Permanently Shaded Regions (PSR) at the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Rojas, Paul; Retherford, Kurt; Gladstone, Randall; Stern, Alan; Egan, Anthony; Miles, Paul; Parker, Joel; Kaufmann, David; Horvath, David; Greathouse, Thomas; Versteeg, Maartem; Steffl, Andrew; Mukherjee, Joey; Davis, Michael; Slater, David; Bayless, Amanda; Feldmann, Paul; Hurley, Dana; Pryor, Wayne; Hendrix, Amanda

    2013-04-01

    The Lyman Alpha Mapping Project (LAMP) instrument on-board LRO is a UV spectrograph covering the spectral range of 57-196 nm. We present Lyman-alpha and far-UV albedo maps of the north and south poles. These maps indicate that the coldest, permanently shadowed regions (PSR) in deep polar craters have significantly lower Lyman-alpha albedo than the surrounding regions, which is best explained by a high surface porosity there - possibly related to the accumulation of volatile frosts.

  15. Estimation of the solar Lyman alpha flux from ground based measurements of the Ca II K line

    NASA Technical Reports Server (NTRS)

    Rottman, G. J.; Livingston, W. C.; White, O. R.

    1990-01-01

    Measurements of the solar Lyman alpha and Ca II K from October 1981 to April 1989 show a strong correlation (r = 0.95) that allows estimation of the Lyman alpha flux at 1 AU from 1975 to December 1989. The estimated Lyman alpha strength of 3.9 x 10 to the 11th + or - 0.15 x 10 to the 11th photons/s sq cm on December 7, 1989 is at the same maximum levels seen in Cycle 21. Relative to other UV surrogates (sunspot number, 10.7 cm radio flux, and He I 10830 line strength), Lyman alpha estimates computed from the K line track the SME measurements well from solar maximum, through solar minimum, and into Cycle 22.

  16. Variability of Lyman-alpha and the ultraviolet continuum of 3C 446

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1986-01-01

    IUE observations have been conducted over the 1230-3175 A range for the violently variable quasar 3C 446, beginning in June 1980, at intervals of 1.2, 2.2, 0.5, and 0.4 yr. Strong absorption of the continuum was found below 1830 A, probably corresponding to a Lyman edge at z of 1.00 + or - 0.01. The absence of Mg II 2798 A absorption implies that the column density is in the lower end of the range, unless the gas is metal-poor. The Lyman-alpha emission line was detected in five spectra; relative to the number of ionizing protons, the line strengths are the same as in normal quasars, and line equivalent widths are small due to the continuum's rise redward of 912 A, which is much steeper than in normal quasars. The Lyman-alpha line and the nearby continuum vary so as to maintain constant equivalent width.

  17. Competition between pressure and gravity confinement in Lyman Alpha forest observations

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Linder, Suzanne M.

    1994-01-01

    A break in the distribution function of Lyman Alpha clouds (at a typical redshift of 2.5) has been reported by Petit-jean et al. (1993). This feature is what would be expected from a transition between pressure confinement and gravity confinement (as predicted in Charlton, Salpeter & Hogan 1993). The column density at which the feature occurs has been used to determine the external confining pressure approximately 10 per cu cm K, which could be due to a hot, intergalactic medium. For models that provide a good fit to the data, the contribution of the gas in clouds to omega is small. The specific shape of the distribution function at the transition (predicted by models to have a nonmonotonic slope) can serve as a diagnostic of the distribution of dark matter around Lyman Alpha forest clouds, and the present data already eliminate certain models.

  18. A Sounding Rocket Experiment for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Kano, R.; Kobayashi, K.; Bando, T.; Narukage, N.; Ishikawa, R.; Tsuneta, S.; Katsukawa, Y.; Ishikawa, S.; Suematsu, Y.; Hara, H.; Shimizu, T.; Sakao, T.; Ichimoto, K.; Goto, M.; Holloway, T.; Winebarger, A.; Cirtain, J.; De Pontieu, B.; Casini, R.; Auchère, F.; Trujillo Bueno, J.; Manso Sainz, R.; Belluzzi, L.; Asensio Ramos, A.; Štěpán, J.; Carlsson, M.

    2014-10-01

    A sounding-rocket experiment called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is presently under development to measure the linear polarization profiles in the hydrogen Lyman-alpha (Lyα) line at 121.567 nm. CLASP is a vacuum-UV (VUV) spectropolarimeter to aim for first detection of the linear polarizations caused by scattering processes and the Hanle effect in the Lyα line with high accuracy (0.1%). This is a fist step for exploration of magnetic fields in the upper chromosphere and transition region of the Sun. Accurate measurements of the linear polarization signals caused by scattering processes and the Hanle effect in strong UV lines like Lyα are essential to explore with future solar telescopes the strength and structures of the magnetic field in the upper chromosphere and transition region of the Sun. The CLASP proposal has been accepted by NASA in 2012, and the flight is planned in 2015.

  19. Lyman-alpha clouds as a relic of primordial density fluctuations

    NASA Technical Reports Server (NTRS)

    Bond, J. R.; Szalay, A. S.; Silk, J.

    1988-01-01

    Primordial density fluctuations are studied using a CDM model and primordial clouds some of which are expanding, driven by pressure gradients created when the medium is photionized, and some of which are massive enough to continue collapsing in spite of the pressure. Normalization of CDM models to the clustering properties on large scales are used to predict the parameters of collapsing clouds of subgalactic mass at early epochs. It is shown that the abundance and dimensions of these clouds are comparable to those of the Lyman-alpha systems. The evolutionary history of the clouds is computed, utilizing a spherically symmetric hydrodynamics code with the dark matter treated as a collisionless fluid, and the H I column density distribution is evaluated as a function of N(H I) and redshift. The observed cloud parameters come out naturally in the CDM model and suggest that Lyman-alpha clouds are the missing link between primordial density fluctuations and the formation of galaxies.

  20. Response of the H-geocorona to geomagnetic disturbances studied by TWINS Lyman-alpha data

    NASA Astrophysics Data System (ADS)

    Zoennchen, Jochen; Nass, Uwe; Fahr, Hans

    2016-04-01

    We have studied the variation of the exospheric H-density distribution during two geomagnetic storms of different strength in terms of their Dst-index values. This analysis is based on continuously monitored Lyman-alpha data observed by the TWINS1/2-LAD instruments. Since solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H), the resulting resonance glow intensity in the optically thin regime is proportional to H-column density along the line of sight (LOS). We quantify the amplitude of the H-density's response to geomagnetic activity for different (observed) angular regions and radial Earth-distances. Interestingly the H-exosphere responded with a comparable density increase to both storms of different strength. Careful analysis of the geomagnetic H-density effect indicates that the temporal density response is well correlated with the Kp-index daily sum, but not with the Dst-index in case of the two analysed storms.

  1. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    NASA Technical Reports Server (NTRS)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with 10 e-/pixel/second dark current, 25 e- read noise, a gain of 2.0 +/- 0.5 and 1.0 percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  2. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtain, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1 percent in the line core. CLASP is a dual-beam spectro- polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1 percent polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30 percent) quantum efficiency at the Lyman-alpha line. The CLASP cameras were designed to operate with a gain of 2.0 +/- 0.5, less than or equal to 25 e- readout noise, less than or equal to 10 e-/second/pixel dark current, and less than 0.1percent residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; system gain, dark current, read noise, and residual non-linearity.

  3. HETDEX: Developing the HET's Second Generation Low Resolution Spectrograph for Probing Lyman-alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Hill, G. J.; Lee, H.; Tuttle, S. E.; Vattiat, B. L.; Gebhardt, K.; Finkelstein, S. L.; Adams, J. J.; HETDEX Collaboration

    2012-01-01

    HETDEX will map the power spectrum of 0.8 million blindly discovered Lyman-alpha Emitting Galaxies (LAE) using a revolutionary new array of massively replicated fiber-fed spectrographs dubbed the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). In the era of the Hobby-Eberly Telescope wide-field upgrade and VIRUS, the current Low Resolution Spectrograph (LRS) must be replaced with a fiber instrument. We discuss the development of the second generation LRS (LRS2), which is a multi-channel instrument based on the VIRUS design. In its current design phase, it is fed by a 287 fiber microlens coupled integral field unit that covers 7” x 12” with 0.62” resolution. The instrument covers 3720 Å to 4700 Å at R ≈ 1900 and 4600 Å to 7000 Å at R ≈1200. With the purpose of making the instrument ideal for follow-up observations of LAE in the HETDEX survey, we discuss the science drivers for selecting the instrument's spectral resolution. We test the utility of the instrument and pilot a future study with LRS2 by presenting R ≈ 2000 spectra taken with the VIRUS prototype spectrograph (VIRUS-P) in a high-resolution mode at the McDonald Observatory Harlan J. Smith 2.7 m telescope. These LAE were originally discovered in the HETDEX Pilot Survey and their Lyman-alpha line profiles are constrained by near-infrared observations of rest-frame optical emission lines that set the systemic redshift of the galaxies. We discuss the velocity offsets of the Lyman-alpha line from the systemic line center and compare the line profiles to theoretical predictions and to similar observations for Lyman-break galaxies. Our observations provide an example of how LRS2 can be used to probe Lyman-alpha emission in 2 < z < 3 star forming galaxies.

  4. Path integral formalism for the spectral line shape in plasmas: Lyman-{alpha} with fine structure

    SciTech Connect

    Bedida, N.; Meftah, M. T.; Boland, D.; Stamm, R.

    2008-10-22

    We examine in this work the expression of the dipolar autocorrelation function for an emitter in the plasma using the path integrals formalism. The results for Lyman alpha lines with fine structure are retrieved in a compact formula. The expression of the dipolar autocorrelation function takes into account the ions dynamics and the fine structure effects. The electron's effect is represented by the impact operator {phi}{sub e} in the final formula.

  5. Probing Cosmological Reionization with the High-redshift Lyman-alpha Forest

    NASA Astrophysics Data System (ADS)

    D'Aloisio, Anson; McQuinn, Matthew; Trac, Hy

    2017-06-01

    When the first galaxies emerged, ~100 - 500 million years after the Big Bang, their starlight likely reionized and heated the intergalactic hydrogen that had existed since cosmological recombination. Much is currently unknown about this process, including what spatial structure it had, when it started and completed, and even which sources drove it. In this talk, I will discuss what recent and upcoming observations of the high-redshift Lyman-alpha forest could tell us about the reionization process.

  6. Calculation of the quasi-energies and resonances behavior of the hydrogen Lyman-alpha problem

    NASA Astrophysics Data System (ADS)

    Ruyten, Wilhelmus M.

    1992-03-01

    Recently, Bakshi and Kalman presented numerical results for the quasi-energies of the n = 2 multiplet in the hydrogen Lyman-alpha transition for a plasma in which both strong static and oscillating electric fields are present. Recent work on related magnetic and optical resonance problems provides a simplified mathematical treatment, as well as greater insight into the complex resonance behavior of this interaction.

  7. Calculation of the quasi-energies and resonances behavior of the hydrogen Lyman-alpha problem

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.

    1992-01-01

    Recently, Bakshi and Kalman presented numerical results for the quasi-energies of the n = 2 multiplet in the hydrogen Lyman-alpha transition for a plasma in which both strong static and oscillating electric fields are present. Recent work on related magnetic and optical resonance problems provides a simplified mathematical treatment, as well as greater insight into the complex resonance behavior of this interaction.

  8. The impact of Lyman-alpha trapping on the massive black hole seed formation

    NASA Astrophysics Data System (ADS)

    Ge, Qi

    2015-01-01

    Supermassive black holes with masses up to a few billion solar masses have been observed when the universe was only one billion years old. One viable seeding mechanism for these black holes is the direct gaseous collapse into a massive black hole on the order of 104 - 106solar masses. This process can only occur when atomic hydrogen line cooling is efficient and fragmentation is suppressed during the collapse, thus requiring metal-line and molecular hydrogen cooling to be insignificant. As the cloud collapses to high densities, neutral hydrogen becomes optically thick to Lyman-alpha radiation, limiting the effectiveness of radiative cooling. We improve on previous methods of treating the optically thick regime, such as an effective equation of state, by formulating an approximate method to calculate the local trapping of Lyman-alpha radiation, which considers both non-coherence scattering and line cooling from the Lyman series. Here we explore its effect on massive black hole formation in cosmological simulations with the adaptive mesh refinement code Enzo. We show that Lyman-alpha trapping can further suppress fragmentation and affect the local thermodynamical state of the central collapsing gas cloud. By including this process at high densities, we expect that our results will provide more accurate conditions and accretion rates, leading to the formation of a supermassive star or quasistar.

  9. STIS Spectroscopy of the Lyman-Alpha Forest Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Williger, Gerard

    2002-01-01

    We present results on the low-redshift Lyman-alpha forest as based on high-resolution (7 km/s) STIS spectra of 3C 273. A total of 121 intergalactic Lyman-alpha-absorbing systems were detected, of which 60 are above the 3.5sigma completeness limit, logNu(sub HI) approximately equals 12.3. The median line-width parameter, b = 27 km/s, is similar to that seen at high redshift. However the distribution of HI column densities has a steeper slope, beta = 2.02+/-0.21, than is seen at high redshift. Overall, the observed Nu(sub HI)-b distribution is consistent with that derived from a ACDM hydrodynamic simulation. We have used NED to compile a list of 300 galaxies (91 from SDSS, 98 from APM) within 1 Mpc of the line of sight to 3C 273 and are working to find line-of-sight velocity correlations between the galaxies and detected Lyman-alpha absorbers.

  10. STIS Spectroscopy of the Lyman-Alpha Forest Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Williger, Gerard

    2002-01-01

    We present results on the low-redshift Lyman-alpha forest as based on high-resolution (7 km/s) STIS spectra of 3C 273. A total of 121 intergalactic Lyman-alpha-absorbing systems were detected, of which 60 are above the 3.5sigma completeness limit, logNu(sub HI) approximately equals 12.3. The median line-width parameter, b = 27 km/s, is similar to that seen at high redshift. However the distribution of HI column densities has a steeper slope, beta = 2.02+/-0.21, than is seen at high redshift. Overall, the observed Nu(sub HI)-b distribution is consistent with that derived from a ACDM hydrodynamic simulation. We have used NED to compile a list of 300 galaxies (91 from SDSS, 98 from APM) within 1 Mpc of the line of sight to 3C 273 and are working to find line-of-sight velocity correlations between the galaxies and detected Lyman-alpha absorbers.

  11. The Lyman-alpha Solar Telescope for the ASO-S

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-08-01

    The Lyman-alpha Solar Telescope (LST) is one of the payloads for the proposed Space-Borne Advanced Solar Observatory (ASO-S). LST consists of a Solar Disk Imager (SDI) with a field-of-view (FOV) of 1.2 Rsun, a Solar Corona Imager (SCI) with an FOV of 1.1 - 2.5 Rsun, and a full-disk White-light Solar Telescope (WST) with an FOV of 1.2 Rsun, which also serves as the guiding telescope. The SCI is designed to work at the Lyman-alpha waveband and white-light, while the SDI will work at the Lyman-alpha waveband only. The WST works both in visible (for guide) and ultraviolet (for science) white-light. The LST will observe the Sun from disk-center up to 2.5 solar radii for both solar flares and coronal mass ejections. In this presentation, I will give an introduction to LST, including scientific objectives, science requirement, instrument design and current status.

  12. Spatial correlation between submillimetre and Lyman-alpha galaxies in the SSA 22 protocluster.

    PubMed

    Tamura, Yoichi; Kohno, Kotaro; Nakanishi, Kouichiro; Hatsukade, Bunyo; Iono, Daisuke; Wilson, Grant W; Yun, Min S; Takata, Tadafumi; Matsuda, Yuichi; Tosaki, Tomoka; Ezawa, Hajime; Perera, Thushara A; Scott, Kimberly S; Austermann, Jason E; Hughes, David H; Aretxaga, Itziar; Chung, Aeree; Oshima, Tai; Yamaguchi, Nobuyuki; Tanaka, Kunihiko; Kawabe, Ryohei

    2009-05-07

    Lyman-alpha emitters are thought to be young, low-mass galaxies with ages of approximately 10(8) yr (refs 1, 2). An overdensity of them in one region of the sky (the SSA 22 field) traces out a filamentary structure in the early Universe at a redshift of z approximately 3.1 (equivalent to 15 per cent of the age of the Universe) and is believed to mark a forming protocluster. Galaxies that are bright at (sub)millimetre wavelengths are undergoing violent episodes of star formation, and there is evidence that they are preferentially associated with high-redshift radio galaxies, so the question of whether they are also associated with the most significant large-scale structure growing at high redshift (as outlined by Lyman-alpha emitters) naturally arises. Here we report an imaging survey of 1,100-microm emission in the SSA 22 region. We find an enhancement of submillimetre galaxies near the core of the protocluster, and a large-scale correlation between the submillimetre galaxies and the low-mass Lyman-alpha emitters, suggesting synchronous formation of the two very different types of star-forming galaxy within the same structure at high redshift. These results are in general agreement with our understanding of the formation of cosmic structure.

  13. The intrinsic H I Lyman-alpha line profiles of late-type stars

    NASA Technical Reports Server (NTRS)

    Neff, J. E.; Landsman, W. B.; Bookbinder, J. A.; Linsky, J. L.

    1990-01-01

    The Lyman-alpha line of neutral hydrogen is probably the most important cooling channel for chromospheric plasma in late-type stars, yet it is also the least studied major line in the far ultraviolet. The scattering of much of the stellar Lyman-alpha flux by interstellar hydrogen, coupled with the geocoronal emission foreground, seriously complicates the analysis of the Lyman-alpha spectra. The influence of the local interstellar medium on the observed profiles was circumvented by observing stars with radial velocities sufficiently high to Doppler shift the center of the stellar emission line out of the interstellar absorption core. There are several stars that have high radial velocities by virtue of their presence in close binary systems. High resolution IUE (International Ultraviolet Explorer) spectra of Ly alpha line of two such eclipsing binary stars, AR Lac and TY Pyx, are obtained, at each orbital quadrature phase, when the projected orbital velocity is a maximum. By combining the spectra from opposite quadratures it is possible to piece together the entire stellar emission profiles. The third star in this study, delta Lep, is a single star with a high space velocity.

  14. The Lyman Alpha Imaging-Monitor Experiment (LAIME) for TESIS/CORONAS-PHOTON

    NASA Astrophysics Data System (ADS)

    Damé, L.; Koutchmy, S.; Kuzin, S.; Lamy, P.; Malherbe, J.-M.; Noëns, J.-C.

    LAIME the Lyman Alpha Imaging-Monitor Experiment is a remarkably simple no mechanisms and compact 100x100x400 mm full Sun imager to be flown with TESIS on the CORONAS-PHOTON mission launch expected before mid-2008 As such it will be the only true chromospheric imager to be flown in the next years supporting TESIS EUV-XUV imaging SDO and the Belgian LYRA Lyman Alpha flux monitor on the ESA PROBA-2 microsatellite launch expected in September 2007 We will give a short description of this unique O60 mm aperture imaging telescope dedicated to the investigating of the magnetic sources of solar variability in the UV and chromospheric and coronal disruptive events rapid waves Moreton waves disparitions brusques of prominences filaments eruptions and CMEs onset The resolution pixel is 2 7 arcsec the field of view 1 4 solar radius and the acquisition cadence could be as high as 1 image minute The back thinned E2V CCD in the focal plane is using frame transfer to avoid shutter and mechanisms Further more the double Lyman Alpha filtering allows a 40 AA FWHM bandwidth and excellent rejection yet providing a vacuum seal design of the telescope MgF2 entrance window Structural stability of the telescope focal length 1 m is preserved by a 4-INVAR bars design with Aluminium compensation in a large pm 10 o around 20 o

  15. Characterization and application of a narrow band Lyman-alpha light source

    NASA Astrophysics Data System (ADS)

    McCarthy, Timothy J.

    The Lyman-alpha emission line shape of dissociated hydrogen atoms in a high pressure Ne environment is studied. Vacuum ultra-violet absorption spectroscopy using the emitted Lyman-alpha radiation allows for the measurement of trace concentrations of ground state deuterium atoms in a hydrogen environment. Near resonant energy transfer from Ne excimer molecules to dissociative excitation of hydrogen molecules is utilized to generate excited state, n = 2, hydrogen atoms. Plasmas are generated in systems containing 250 to 600 [Torr] Ne with an admixture of 0.10 [Torr] H2 using a 12 [keV] electron beam. Experimental data on the upper states of the Lyman-alpha transition is collected via a new application of the dc opto-galvanic effect in low temperature, high pressure plasmas. A model line shape containing a non-thermal equilibrium atomic velocity distribution and pressure effects is developed. Excess energy from second continuum Ne excimers is imparted primarily to the dissociated hydrogen atoms giving the excited atoms a large excess velocity component. The dominant pressure effect is van der Waals interactions between the excited hydrogen atoms and ground state Ne atoms. Adjustable model parameters are optimized to fit the experimental data. Pressure broadening is observed to be non-linear, with the largest deviations from the predicted widths occurring at the lowest Ne pressures, while pressure shifting is linear in Ne pressure. The higher pressure data approaches the theoretical ratio between pressure width and shift for van der Waals interactions. Smooth extrapolation of the fit parameters, toward the theoretical limit, allows for the calculation of a Lyman-alpha emission line shape at a Ne pressure of 760 [Torr]. Hydrogen is replaced with deuterium in the system to provide a light source for absorption spectroscopy of ground state deuterium atoms. A discharge tube is filled to 3.5 [Torr] with H2 after introduction of a small admixture of D2. A discharge is

  16. Blob Flowers.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  17. Blob Flowers.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2003-01-01

    Describes an art project called blob flowers in which fifth-grade students created pictures of flowers using watercolor and markers. Explains that the lesson incorporates ideas from art and science. Discusses in detail how the students created their flowers. (CMK)

  18. H Lyman alpha transport in the heliosphere based on an expansion into scattering hierarchies.

    NASA Astrophysics Data System (ADS)

    Scherer, H.; Fahr, H. J.

    1996-05-01

    The radiation transport equation for solar HI-Lyman Alpha line photons in the interplanetary medium is solved by an expansion of the luminosity function into scattering orders. The solution introduces the exact redistribution function which takes into account the local thermodynamical conditions of the scattering agent, like temperature, density and bulk velocity of the neutral interplanetary hydrogen. Also the actually observed solar HI-Lyman Alpha emission profile will be taken into account. With the simplifying assumption of a constant temperature and bulk velocity of the hydrogen it is then possible to numerically solve the radiation transport equation with an adaptive Gauss-Legendre integration for photons of the first and the second scattering order. The result of this calculation astonishingly enough gives a less satisfying fit of experimental Lyman-Alpha data (like those by Pioneer-10, Voyager 1/2) than that obtained with optically thin approximations which, however, also clearly fail to describe the data satisfactorily well at large solar distances. As we can show here results from multiscattering calculations are fairly sensitive to local variations of the temperature and the bulk velocity of the interstellar hydrogen. If the latter are properly taken into account, fits of the data can be much improved. Though a fully satisfying fit as we show, can only be achieved with improved hydrogen models. Our results also imply that photons of the second and of higher scattering orders only play a minor role and in most cases can even be neglected. According to these experiences in multiscattering calculations we have developed a first order multiscattering code that takes account of the spatial variations in the temperature and bulk velocity of interplanetary hydrogen given by the recent model by Osterbart & Fahr. With these calculations we can give satisfactorily good fits both of upwind and downwind heliospheric Lyman-α glow data as well.

  19. Probing the Physical Properties of High-Redshift Lyman-Alpha Emitters with Spitzer

    NASA Astrophysics Data System (ADS)

    Finkelstein, Keely; Finkelstein, Steven; Rhoads, James E.; Malhotra, Sangeeta

    2015-08-01

    Abstract: Studies of Lyman Alpha emitting galaxies (LAEs) offer insight into an understanding of early galaxies and the build-up of galaxies at early times. To better understand these objects and constrain their stellar properties, we have observed a sample of 162 z=4.5 and 14 z=5.7 LAEs with deep Spitzer IRAC 3.6 and 4.5 micron imaging from the Spitzer Lyman Alpha Survey. This is by far the largest sample of high-redshift LAEs imaged with Spitzer, which probes rest-frame optical wavelengths at these redshifts, dramatically improving constraints on the stellar masses and star-formation rates. By fitting the spectral energy distributions of individual LAEs using ground-based optical, HST near-IR, and Spitzer mid-IR imaging, we show that our sample of LAEs has a wide range of stellar properties. For individual LAEs detected with IRAC, stellar mass ranges from 5x10^8 - 10^11 solar masses. In addition, we find a correlation between stellar mass and star formation rate (SFR), similar to trends measured at lower redshift (e.g. Noeske et al. 2007; Daddi et al. 2007). However for this sample of higher redshift LAEs, the LAE sequence is elevated compared to continuum-selected galaxies at the same redshift, meaning that for a given stellar mass, the LAEs tend to have higher star formation rates. However, a subset of massive LAEs sits on the continuum-selected galaxy trend, tentatively implying that there may be two mechanisms for Lyman alpha escape.

  20. Evaluation of miniature vacuum ultraviolet lamps for stability and operating characteristics, Lyman-Alpha task

    NASA Technical Reports Server (NTRS)

    Hurd, W. A.

    1985-01-01

    Modifications required to change the near ultraviolet source in the Optical Contamination Monitor to a source with output at or near the Lyman-Alpha hydrogen line are discussed. The effort consisted of selecting, acquiring and testing candidate miniature ultraviolet lamps with significant output in or near 121.6 nm. The effort also included selection of a miniature dc high-voltage power supply capable of operating the lamp. The power supply was required to operate from available primary power supplied by the Optical Effect Module (DEM) and it should be flight qualified or have the ability to be qualified by the user.

  1. The Lyman-alpha line in various solar features. I - Observations

    NASA Technical Reports Server (NTRS)

    Fontenla, J.; Reichmann, E. J.; Tandberg-Hanssen, E.

    1988-01-01

    Lyman-alpha line observations of the solar atmosphere obtained by the SMM ultraviolet spectrometer and polarimeter are presented. High spectral and spatial resolution data and broadband spectroheliograms show that, on the disk, the central reversal of the line is highly variable in depth and is frequently shifted, leading to asymmetric profiles. It is suggested that a dynamic layer overlying the limb may be responsible for distorting the background profile of the line and producing the observed asymmetric profiles. Narrow and extended prominences reaching velocities of several hundred km/sec are also noted.

  2. Factors Affecting VUV Emission Spectrum near Lyman-{alpha} from a Hydrogen Plasma Source

    SciTech Connect

    Ogino, K.; Kasuya, T.; Shimamoto, S.; Wada, M.; Kimura, Y.; Nishiura, M.

    2011-09-26

    Vacuum ultra violet (VUV) emission spectra from plasmas near walls of different metallic materials were measured to estimate the effect upon the local production rate of vibrational excited hydrogen molecules due to plasma wall interaction. Among Cu, Mo, Ni, Ta and Ti, the intensity of band spectrum around Lyman-{alpha} had become the largest when Cu wall was used while it was the smallest for Ti. The role of particle reflection from the plasma electrode surface upon the H{sup -} production by a pure electron volume process is discussed.

  3. The measurement of O2 number density by absorption of Lyman alpha

    NASA Technical Reports Server (NTRS)

    Smith, L. G.; Miller, K. L.

    1974-01-01

    Measurements of O2 number density obtained from rocket observations of the absorption profile of solar Lyman alpha (1216 A) have been compared with values derived from nearly simultaneous measurements of atmospheric density from other rocket techniques: grenades, falling sphere, and Pitot tube. All launches were from Wallops Island, Virginia. The atmospheric density derived from the absorption spectroscopy data is found to be about 20% less than that from the other techniques when a constant value of the absorption cross section of 1.0 times 10 to the minus 20th sq cm is used. The agreement is worse when the cross section is allowed to vary across the width of the solar line. The data in the altitude range 70-90 km are interpreted as showing that the effective value of the absorption cross section at Lyman alpha for O2 at 200 K and negligible pressure is about 0.8 times 10 to the minus 20th sq cm.

  4. Optimization of microwave Hydrogen plasma discharges to mimic Lyman alpha (121.6 nm) solar irradiations

    NASA Astrophysics Data System (ADS)

    Benilan, Y.; Gazeau, M.-C.; Es-Sebbar, E.-T.; Jolly, A.; Arzoumanian, E.; Fray, N.; Cottin, H.

    2011-10-01

    We present the results obtained in low pressure microwave plasmas sustained in flowing mixtures of H2/He with the addition of Ar. We investigated experimentally their properties in terms of VUV emissions and photons fluxes using a VUV spectrometer. The spectra are dominated by Lyman alpha at 121.6 nm and H2 band emissions around 160 nm. The addition of Ar in the H2/He mixture largely affects the line emission. Lyman alpha emission increases by a factor of 2 in the presence of 20% Ar while the H2 bands decreases. This is a way to improve the monochromaticity of the lamp. Chemical actinometry method is used to determine the photons flux. We measured the temporal evolution of CO production issued from CO2 photolysis. A photon flux of 4.1015 s-1 is obtained for a power of 100 W. The photon flux varies linearly with the power at a rate of 6.1013 s1.W1. Those results are applied to studies on methane photolysis and help to explain mismatch between photochemical models and experiments.

  5. A Very Large Array search for emission from HI associated with nearby Lyman alpha absorbers

    NASA Technical Reports Server (NTRS)

    Van Gorkom, J. H.; Bahcall, J. N.; Jannuzi, B. T.; Schneider, D. P.

    1993-01-01

    We present a sensitive Very Large Array (VLA) search for H I emission from the vicinity of the Lyman alpha clouds in the Virgo Cluster, which were recently discovered with Hubble Space Telescope (HST) in absorption toward the nearest quasar 3C273. We searched an area of 40 by 40 arcmin centered on 3C273, covering a velocity range from 840 to 1840 km/s. The bandpass was self-calibrated on 3C273 leading to a spectral dynamic range of better than 10(exp 5) to 1. No H I was detected. The rms noise in the final images corresponds to a 3 sigma column density sensitivity of 2.8 x 10(exp 19) sq cm on scales of a few kpc. Small H I clouds could have been detected down to a few times 10(exp 6) solar mass. Our failure to detect H I emission at the higher column densities sets a lower limit to the radius of the Lyman alpha clouds of 3.9 kpc, assuming a spherical geometry.

  6. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Technical Reports Server (NTRS)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e(-)/DN, a noise level less than 25e(-), a dark current level which is less than 10e(-)/pixel/s, and a residual nonlinearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  7. Lenses in the forest: cross--correlation of the Lyman-alpha flux with CMB lensing

    SciTech Connect

    Vallinotto, Alberto; Das, Sudeep; Spergel, David N.; Viel, Matteo; /Trieste Observ. /INFN, Trieste

    2009-03-01

    We present a theoretical estimate for a new observable: the cross-correlation between the Lyman-{alpha}-flux fluctuations in quasar (QSO) spectra and the convergence of the cosmic microwave background (CMB) as measured along the same line-of-sight. As a first step toward the assessment of its detectability, we estimate the signal-to-noise ratio using linear theory. Although the signal-to-noise is small for a single line-of-sight and peaks at somewhat smaller redshifts than those probed by the Lyman-{alpha} forest, we estimate a total signal-to-noise of 9 for cross-correlating QSO spectra of SDSSIII with Planck and 20 for cross-correlating with a future polarization based CMB experiment. The detection of this effect would be a direct measure of the neutral hydrogen-matter cross-correlation and could provide important information on the growth of structures at large scales in a redshift range which is still poorly probed by observations.

  8. The hydrogen coma of Comet P/Halley observed in Lyman-alpha using sounding rockets

    NASA Technical Reports Server (NTRS)

    Mccoy, R. P.; Meier, R. R.; Keller, H. U.; Opal, C. B.; Carruthers, G. R.

    1992-01-01

    Hydrogen Lyman-alpha (121.6 nm) images of Comet P/Halley were obtained using sounding rockets launched from White Sands Missile Range on 24.5 February and 13.5 March 1986. The second rocket was launched 13 hours before the fly-by of the Giotto spacecraft. An electrographic camera on both flights provided Lyman-alpha images covering a 20 field of view with 3 arcmin resolution. The data from both flights have been compared with a time-dependent model of hydrogen kinetics. To match the measured isophote contours, hydrogen sources with velocity components of 8 km/s and 20 km/s (from OH and H2O respectively) as well as a low velocity component (about 2 km/s) are required. This low velocity component is thought to result from thermalization of fast hydrogen atoms within the collision zone, providing an important diagnostic of temperature and density near the nucleus. Hydrogen production rates of 3.8 x 10 exp 30/s and 1.7 x 10 exp 30/s have been obtained for the two observations.

  9. Performance Characterization of the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) CCD Cameras

    NASA Technical Reports Server (NTRS)

    Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick

    2014-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.

  10. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  11. Lyman-alpha observations of comets West 1976 VI and P d'Arrest 1976 XI with Copernicus

    NASA Astrophysics Data System (ADS)

    Festou, M. C.; Keller, H. U.; Bertaux, J. L.; Barker, E. S.

    1983-02-01

    Lyman-alpha observations by the Copernicus satellite have been used to determine the production rates of hydrogen atoms of comets West 1976 VI and P/d'Arrest 1976 XI at a time when they were dynamically active (splitting or outburst of the nucleus). The observed Lyman-alpha line widths are in agreement with those observed in comet Kobayashi-Berger-Milon 1975 IX and, consequently, do not contradict the assumption that the H atoms are produced by the photodissociation of water vapor, even in CO(plus) rich comets..

  12. Indications for axial asymmetries in the interplanetary hydrogen distribution derived from Pioneer-10 Lyman-alpha data

    NASA Technical Reports Server (NTRS)

    Scherer, K.; Judge, D. L.

    1992-01-01

    It is presently noted that Pioneer 10's highly spatially resolved Lyman-alpha data exhibit a backscattered resonance glow with a persistent spatially-resolved asymmetry. The first harmonic amplitude ranges from about 5-10 percent of the mean value, and is observed continuously throughout the two years of this analysis period.

  13. DA white dwarf effective temperatures determined from IUE Lyman-alpha profiles

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Basile, J.; Wesemael, F.

    1986-01-01

    The Lyman-alpha profiles of 12 DA white dwarfs have been obtained with the International Ultraviolet Explorer Satellite. Analysis of these profiles provides an improved, uniform, and relatively bias-free measure of effective temperature for these stars over the range 20,000-60,000 K. Simultaneous estimates of surface gravity yield a mean gravity of log g = 7.96 for the entire sample, with the hottest stars tending to have the lowest gravities. A significant exception to this trend occurs in the case of the gravitation of HZ 43. An important by-product of this work has been the determination of a correction to IUE fluxes over the 1150-1350 A range.

  14. Lyman-{alpha} radiation of a metastable hydrogen beam to measure electric fields

    SciTech Connect

    Lejeune, A.; Cherigier-Kovacic, L.; Doveil, F.

    2011-10-31

    The interaction between a metastable H(2s) atomic hydrogen beam and an external electric field leads to the emission of the Lyman-{alpha} line. It originates in the Stark mixing of the near-degenerate 2s{sub 1/2} and 2p{sub 1/2} levels separated by the Lamb shift. The quenched radiation proportional to the square of the electric field amplitude is recovered in vacuum by using such an atomic probe beam. We observe the strong enhancement of the signal when the field is oscillating at the Lamb shift frequency. This technique is applied in a plasma, offering an alternative way to measure weak electric fields by direct and non-intrusive means.

  15. Mariner 9 ultraviolet spectrometer experiment - Mars airglow spectroscopy and variations in Lyman alpha.

    NASA Technical Reports Server (NTRS)

    Barth, C. A.; Stewart, A. I.; Hord, C. W.; Lane, A. L.

    1972-01-01

    Mariner 9 ultraviolet spectrometer observations show the Mars airglow consists principally of emissions that arise from the interaction of solar ultraviolet radiation with carbon dioxide, the principal constituent of the Mars atmosphere. Two minor constituents, atomic hydrogen and atomic oxygen, also produce airglow emissions. The airglow measurements show that ionized carbon dioxide is only a minor constituent of the ionosphere. Using the airglow measurements of atomic oxygen, it is possible to infer that the major ion is ionized molecular oxygen. The escape rate of atomic hydrogen measured by Mariner 9 is approximately the same as that measured two years earlier by Mariner 6 and 7. If the current escape rate has been operating for 4.5 billion years and if water vapor is the ultimate source, an amount of oxygen has been generated that is far in excess of that observed at present. Mariner 9 observations of Mars Lyman alpha emission over a period of 120 days show variations of 20%.

  16. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  17. Studying Lyman-alpha escape and reionization in Green Pea galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Leitherer, Claus; Wofford, Aida; Dijkstra, Mark

    2017-01-01

    Green Pea galaxies are low-redshift galaxies with extreme [OIII]5007 emission line. We built the first statistical sample of Green Peas observed by HST/COS and used them as analogs of high-z Lyman-alpha emitters to study Ly-alpha escape and Ly-alpha sizes. Using the HST/COS 2D spectra, we found that Ly-alpha sizes of Green Peas are larger than the UV continuum sizes. We found many correlations between Ly-alpha escape fraction and galactic properties -- dust extinction, Ly-alpha kinematic features, [OIII]/[OII] ratio, and gas outflow velocities. We fit an empirical relation to predict Ly-alpha escape fraction from dust extinction and Ly-alpha red-peak velocity. In the JWST era, we can use this relation to derive the IGM HI column density along the line of sight of each high-z Ly-alpha emitter and probe the reionization process.

  18. Large Area Lyman Alpha Survey: Finding Young Galaxies at z=4.5

    NASA Astrophysics Data System (ADS)

    Malhotra, S.; Rhoads, J.; Dey, A.; Stern, D.; Spinrad, H.

    Strong Lyα emission is a signpost of young stars and the absence of dust and thus indicates young galaxies. To find such a population of young galaxies at z=4.5 we started the Large Area Lyman Alpha survey (LALA). This survey achieves an unprecedented combination of volume and sensitivity by using narrow-band filters on a large format (36' × 36') camera on the 4 meter telescope at KPNO. The volume density and star-formation contribution of the Lyα emitters at z=4.5 is comparable to that of Lyman break galaxies. With many candidates and a few spectroscopic confirmations in hand we discuss what the properties of Lyα emitters imply for galaxy and star formation in the early universe.

  19. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    PubMed

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  20. Theoretical profiles of Lyman-alpha satellites and application to synthetic spectra of DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Allard, N. F.; Koester, D.

    1992-01-01

    We present new theoretical calculations for the red wing of the Lyman-alpha profile. Close collisions with neutral and ionized hydrogen lead to the formation of the pseudomolecules H-H and H-H(+) with the appearance of satellite features near 1600 and 1400 A. The calculations include multiperturber effects, which are responsible for the formation of H3 and H3 with features near 1950 and 2600 A. The theoretical absorption profiles are included in stellar atmosphere codes and used to predict synthetic spectra for DA white dwarfs of intermediate temperatures (20,000 to 8000 K). These new calculations offer a unique opportunity to determine accurate effective temperatures and surface gravities for the variable ZZ Ceti stars.

  1. Effect of the Lyman-alpha forest on the ultraviolet continua of very high redshift quasars

    SciTech Connect

    Steidel, C.C.; Sargent, W.L.W.

    1987-02-01

    Moderate resolution spectra are reported for eight high-redshift quasars (z over 2.7) observed with the Hale 5.08 m telescope. Newly-determined redshifts and apparent continuum visual magnitudes are tabulated for the objects Q0014 + 8118, Q0308 + 1902, Q0731 + 6519, Q0805 + 0441, Q0903 + 1734, Q0941 + 2606, Q0956 + 1217 and Q1358 + 1134 over the observed wavelength range 3200-10,000 A. It is shown that low resolution spectra, such as obtained with the IUE, can yield continuum levels significantly below those detected at very high resolution due to line and continuum absorption by neutral hydrogen along the line of sight to the quasar being studied. Estimates are made of the fractional flux decrement below Lyman-alpha and above Lyman-beta emission due to the intervening material. 38 references.

  2. Evidence for a Cool Neutral Medium in Damped Lyman-alpha Systems

    NASA Astrophysics Data System (ADS)

    Howk, J. C.

    2003-12-01

    I discuss the use of the relative populations of the fine-structure excited states of Si II and C II as temperature diagnostics in high-redshift damped Lyman-alpha systems (DLAs). The upper 2P3/2 states of these ions are populated through collisions with electrons and hydrogen as well as through direct pumping by CMB photons. The ratio of Si II* to C II* is dependent on the temperature of the gas, given the difference in the excitation energies for each ion; it depends only weakly on the density (so long as the densities in the absorber are not near the critical density of either ion). I demonstrate the application of this diagnostic, showing that the ISM in high-redshift DLAs must contain a cold neutral phase, implying they may be capable of forming stars. This work is presented in Howk, Wolfe, and Prochaska (2004).

  3. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  4. LRO-Lyman Alpha Mapping Project (LAMP) Observations of the GRAIL Impact Plumes

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Greathouse, T. K.; Hurley, D. M.; Gladstone, G. R.; Hayne, P. O.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.; Zuber, M. T.; Smith, D. E.; Colaprete, A.; Kaufmann, D. E.; Miles, P. F.; Grava, C.; Throop, H.; Feldman, P. D.; Hendrix, A. R.; Pryor, W. R.; Stubbs, T. J.; Glenar, D. A.; Parker, J. W.; Stern, S. A.

    2013-10-01

    The Lyman Alpha Mapping Project (LAMP) UV spectrograph on the Lunar Reconnaissance Orbiter (LRO) was positioned to directly view the expanding gas plumes from the two GRAIL spacecraft impacts on 17 December 2012. LAMP detected resonantly scattered emissions from Hg and H atoms in the sunlit regions of these plumes. The spectral, spatial, and light-curve analyses used in these gas detections are consistent with previous LAMP observations of the LCROSS impact into the permanently shadowed region of Cabeus crater. LAMP's detection of atomic H by Lyman-α emission at the Moon (a first) was facilitated by pointing at the nightside surface to eliminate sky background noise. Volatile transport of Hg and H species is known to concentrate them near the poles, and in the context of LRO-Diviner temperature measurements of these high-latitude (75.6° N) impact sites the LAMP detections address this process.

  5. Spatially Resolved Emission of a z~3 Damped Lyman Alpha Galaxy with Keck/OSIRIS IFU

    NASA Astrophysics Data System (ADS)

    Christenson, Holly; Jorgenson, Regina

    2017-01-01

    The damped Lyman alpha (DLA) class of galaxies contains most of the neutral hydrogen gas over cosmic time. Few DLAs have been detected directly, which limits our knowledge of fundamental properties like size and mass. We present Keck/OSIRIS infrared integral field spectroscopy (IFU) observations of a DLA that was first detected in absorption toward a background quasar. Our observations use the Keck Laser Guide Star Adaptive Optics system to reduce the point-spread function of the quasar, making it possible to spatially resolve the DLA emission. We map this emission in O[III] 5007 Å. At redshift z~3, this DLA represents one of the highest redshift DLAs mapped with IFU spectroscopy. We present measurements of the star formation rate, metallicity, and gas mass of the galaxy.This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  6. The Lyman alpha forest of the high-z quasar 0000-263

    NASA Technical Reports Server (NTRS)

    Penprase, Bryan; Gilmozzi, Roberto; Bowen, David; Madau, Piero

    1993-01-01

    Medium-resolution (delta(v) = 45 km/s) optical spectra of the bright, high-redshift (z = 4.1) quasar 0000-263 taken at the ESO 3.5-m NTT telescope were analyzed to determine the distribution of column densities, velocities and line widths of the Lyman-alpha forest absorption components. The values of NH, b, and z were determined by fitting Voigt profiles to the lines, and convolving with a Gaussian instrumental response function. Over 350 components with log N(sub H) greater than 13.2 were identified. An analysis of the dependence of the number of components with z reveals that the number evolution of components obeys the power law dN/dz varies as (1+z)(sup gamma), where gamma = 0.5 +/- 0.4 for the sample of 182 lines with log N(sub H) greater than 14.0. The distribution of component strengths is found to obey f(N(sub H)) varies as N(sub h)(sup -beta), where beta = -1.55 for components with log(N(sub H)) is greater than 14.7, and beta = -0.68 for the components with log(N(sub H)) greater than 13.5. A distinct break in the f(N(sub H)) histogram is also observed, at log(N(sub H)) is approximately 14.7. The results are briefly considered in the context of theoretical models of quasar Lyman alpha clouds and their evolution.

  7. The Characteristic Dimension of Lyman-Alpha Forest Clouds Toward Q0957+561

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Michalitsianos, A. G.; Hill, R. J.; Nguyen, Q. T.; Fisher, Richard (Technical Monitor)

    2000-01-01

    Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph to investigate the characteristic dimension of Lyman-alpha forest clouds in the direction of the quasar. If one makes the usual assumption that the absorbing structures are spherical clouds with a single radius, that radius can be found analytically from the ratio of Lyman-alpha lines in only one line of sight to the number in both. A simple power series approximation to this solution, accurate everywhere to better than 1%, will be presented. Absorption lines in Q0957+561 having equivalent width greater than 0.3 A in the observer's frame not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approximately 1.5 times higher signal to noise than our spectra. Ly-alpha forest lines appear at 41 distinct wavelengths in the spectra of the two images. One absorption line in the spectrum of image A has no counterpart in the spectrum of image B, and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-alpha forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a radius R = 160 (+120, -70) h (sup -1) (sub 50) kpc (H (sub 0) 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2). The 95% confidence interval on R extends from (50 950) h (sup -1) (sub 50) kpc.

  8. Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions

    NASA Astrophysics Data System (ADS)

    Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2017-09-01

    The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2Δ&ln;Script L=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2Δ&ln;Script L=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ Nfluid, will be improved by an order of magnitude compared to current bounds.

  9. A Novel Suite of Hydrodynamical Simulations of the Lyman-Alpha Forest with Massive Neutrinos

    NASA Astrophysics Data System (ADS)

    Rossi, Graziano; Palanque-Delabrouille, N.; Yeche, C.; Viel, M.; Rich, J.; LeGoff, J.; Borde, A.

    2014-01-01

    We present a suite of state-of-the-art hydrodynamical simulations with cold dark matter, baryons and massive neutrinos, specifically targeted for modeling the low-density regions of the intergalactic medium (IGM) as probed by the Lyman-Alpha forest at high-redshift. The simulations span volumes ranging from (25 Mpc/h)^3 to (100 Mpc/h)^3, and are made using either 3×192^3 ~ 21 millions or 3×768^3 ~ 1.4 billion particles - with cosmological parameters compatible with the latest Planck (2013) results. While our realizations have been specifically designed to meet the requirements of the Baryon Acoustic Spectroscopic Survey (BOSS), they can also be utilized for upcoming or future experiments - such as eBOSS and MS-DESI - since the overall resolution can be further enhanced so that one could reach the equivalent of 3×3072^3 ~ 87 billion particles in a (100 Mpc/h)^3 box size. We improve on pre-exisiting modeling in several ways, in particular with new prescriptions for IGM radiative cooling and heating processes, a more updated re-ionization history, and initial conditions based on 2LPT rather than the Zeldovich approximation. Combining data from BOSS and the Planck satellite, and with a grid of corresponding LCDM simulations, our mocks will allow us to constrain cosmological parameters and neutrino masses directly from the Lyman-Alpha forest with unprecedented sensitivity. The simulations can also be useful for a broader variety of cosmological studies, and willl be made available to the scientific community upon request.

  10. Galaxies Coming of Age in Cosmic Blobs

    NASA Astrophysics Data System (ADS)

    2009-06-01

    is a crucial stage of the evolution of galaxies and black holes - known as "feedback" - and one that astronomers have long been trying to understand. "We're seeing signs that the galaxies and black holes inside these blobs are coming of age and are now pushing back on the infalling gas to prevent further growth," said coauthor Bret Lehmer, also of Durham. "Massive galaxies must go through a stage like this or they would form too many stars and so end up ridiculously large by the present day." Chandra and a collection of other telescopes including Spitzer have observed 29 blobs in one large field in the sky dubbed "SSA22." These blobs, which are several hundred thousand light years across, are seen when the Universe is only about two billion years old, or roughly 15% of its current age. X-ray Chandra X-ray Image of Lyman Alpha Blobs In five of these blobs, the Chandra data revealed the telltale signature of growing supermassive black holes - a point-like source with luminous X- ray emission. These giant black holes are thought to reside at the centers of most galaxies today, including our own. Another three of the blobs in this field show possible evidence for such black holes. Based on further observations, including Spitzer data, the research team was able to determine that several of these galaxies are also dominated by remarkable levels of star formation. The radiation and powerful outflows from these black holes and bursts of star formation are, according to calculations, powerful enough to light up the hydrogen gas in the blobs they inhabit. In the cases where the signatures of these black holes were not detected, the blobs are generally fainter. The authors show that black holes bright enough to power these blobs would be too dim to be detected given the length of the Chandra observations. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act NASA Announces 2009 Astronomy and Astrophysics Fellows Cosmic

  11. The 27-day versus 13.5-day variations in the solar Lyman-alpha radiation and the radio wave absorption in the lower ionosphere over Europe

    NASA Technical Reports Server (NTRS)

    Delamorena, B. A.; Lastovicka, Jan; Rapoport, Z. TS.; Alberca, L.

    1989-01-01

    In order to clarify the question of solar periods in absorption, the pattern was studied of the solar Lyman-alpha radiation (the principal ionizing agent of the lower ionosphere) and of the radio wave absorption at five widely spaced places in Europe. When the solar Lyman-alpha flux variability is very well developed, then it dominates in the lower ionospheric variability. The most pronounced Lyman-alpha variation on time scale day-month is the solar rotation variation (about 27 days). When the Lyman-alpha variability is developed rather poorly, as it is typical for periods dominated by the 13.5 day variability, then the lower ionospheric variability appears to be dominated by variations of meteorological origin. The conclusions hold for all five widely spaced placed in Europe.

  12. Detection of a hydrogen corona in HST Lyman-alpha images of Europa in transit of Jupiter

    NASA Astrophysics Data System (ADS)

    Roth, L.; Ivchenko, N.; Retherford, K. D.; Schlatter, N. M.; Strobel, D. F.; Becker, T. M.; Saur, J.; Feldman, P.; McGrath, M. A.; Spencer, J. R.; Grava, C.; Nimmo, F.; Blöcker, A.

    2016-12-01

    We report far-ultraviolet observations of Europa in transit of Jupiter obtained with the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) on six occasions between December 2014 and March 2015. Absorption of Jupiter's bright hydrogen Lyman-alpha dayglow is present in a region several moon radii above the limb in all observations. The observed extended absorption provides the first detection of an atomic hydrogen corona at Europa. Molecular constituents in Europa's global sputtered atmosphere are shown to be optically thin to Lyman-alpha. The observations suggest a fast escaping H corona with a surface density of 2 x 103 cm-3, which matches the expected abundances from atmosphere simulations. Additionally, we search for anomalies around the limb of Europa due to absorption by localized high H2O abundances from active plumes. No significant local absorption features are detected.

  13. Performance Characterization of UV Science Cameras Developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Kobayashi, Ken; Winebarger, Amy; Cirtin, Jonathan; Hyde, David; Robertson, Bryan; Beabout, Brent; Beabout, Dyana; Stewart, Mike

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-alpha and to detect the Hanle effect in the line core. Due to the nature of Lyman-alpha polarization in the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. Coating the e2v CCD57-10 512x512 detectors with Lumogen-E coating allows for a relatively high (30%) quantum efficiency at the Lyman-$\\alpha$ line. The CLASP cameras were designed to operate with =10 e- /pixel/second dark current, = 25 e- read noise, a gain of 2.0 and =0.1% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  14. COMPARISON OF PIONEER 10, VOYAGER 1, AND VOYAGER 2 ULTRAVIOLET OBSERVATIONS WITH ANTI-SOLAR LYMAN-ALPHA BACKSCATTER SIMULATIONS

    SciTech Connect

    Fayock, B.; Zank, G. P.; Heerikhuisen, J. E-mail: garyp.zank@gmail.com

    2013-09-20

    Observations made by ultraviolet (UV) detectors on board Pioneer 10, Voyager 1, and Voyager 2 can be used to analyze the distribution of neutral hydrogen throughout the heliosphere, including the interaction regions of the solar wind and local interstellar medium. Previous studies of the long-term trend of decreasing intensity with increasing heliocentric distance established the need for more sophisticated heliospheric models. Here we use state-of-the-art three-dimensional (3D) magnetohydrodynamic (MHD) neutral models to simulate Lyman-alpha backscatter as would be seen by the three spacecrafts, exploiting a new 3D Monte Carlo radiative transfer code under solar minimum conditions. Both observations and simulations of the UV backscatter intensity are normalized for each spacecraft flight path at {approx}15 AU, and we focus on the slope of decreasing intensity over an increasing heliocentric distance. Comparisons of simulations with Voyager 1 Lyman-alpha data results in a very close match, while the Pioneer 10 comparison is similar due to normalization, but not considered to be in agreement. The deviations may be influenced by a low resolution of photoionization in the 3D MHD-neutral model, a lack of solar cycle activity in our simulations, and possibly issues with instrumental sensitivity. Comparing the slope of Voyager 2 and the simulated intensities yields an almost identical match. Our results predict a large increase in the Lyman-alpha intensity as the hydrogen wall is approached, which would signal an imminent crossing of the heliopause.

  15. Characterizing the Lyman-alpha forest flux probability distribution function using Legendre polynomials

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka; Slosar, Anze

    2017-01-01

    The Lyman-alpha forest has become a powerful cosmological probe of the underlying matter distribution at high redshift. It is a highly non-linear field with much information present beyond the two-point statistics of the power spectrum. The flux probability distribution function (PDF) in particular has been used as a successful probe of small-scale physics. In addition to the cosmological evolution however, it is also sensitive to pixel noise, spectrum resolution, and continuum fitting, all of which lead to possible biased estimators. Here we argue that measuring coefficients of the Legendre polynomial expansion of the PDF offers several advantages over the binned PDF as is commonly done. Since the n-th coefficient can be expressed as a linear combination of the first n moments of the field, this allows for the coefficients to be measured in the presence of noise and allows for a clear route towards marginalization over the mean flux. In addition, we use hydrodynamic cosmological simulations to demonstrate that in the presence of noise, a finite number of these coefficients are well measured with a very sharp transition into noise dominance. This compresses the information into a finite small number of well-measured quantities.

  16. Faint Lyman Alpha Emitters And Lyman Break Galaxies In The A2744 Field.

    NASA Astrophysics Data System (ADS)

    de la Vieuville, Geoffroy

    2017-06-01

    We present in this work the results obtained on the characterization of the sources of reionization behind the lensing cluster A2744. Taking advantage of the combined very deep observations of the MUSE-IFU (GTO program) and Hubble (Frontiers Field program), we are able to blindly spectroscopically select a large sample of Lyman-Alpha Emitters (LAEs) ( 3 < z < 6.7 ) and apply photometric criteria to select a population of Lyman-Break Galaxies (LBGs)( z 3 - 8 )in the MUSE FOV. Thanks to the capabilities of MUSE and the lensing effect, our LAE sample is typically 10-100 times fainter (39 < Log(L) < 42.5 ) than in blank field surveys, allowing us to set reliable constraints on the faint end of the LAE luminosity functions. Our recent work on the LAE luminosity function shows that this population could possibly play a predominant role in the reionization of the universe. The relative contribution of the different star forming galaxies (LAE and LBG) remains highly uncertain. As the two populations are selected in the exact same volume of universe, this work allows us to discuss the intersection of those two populations as well as the evolution of their contribution to reionization with redshift.

  17. Do Lyman-alpha photons escape from star-forming galaxies through dust holes?

    NASA Astrophysics Data System (ADS)

    France, Kevin; Wofford, A.; Leitherer, C.; Fleming, B.; McCandliss, S. R.; Nell, N.

    2014-01-01

    H I Lyman-alpha (LyA) is commonly used as a signpost for the entire galaxy at redshifts z>2, and yet spatially and kinematically resolved views of the local conditions within galaxies that determine the integrated properties of this line are scarce. We obtained Hubble Space Telescope (HST) images in continuum-subtracted LyA, H-alpha, H-beta, and far-UV continuum of three low-inclination spiral star-forming galaxies located at redshifts z=0.02, 0.03, and 0.05. This was accomplished using the UVIS and SBC channels of the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), respectively. Previous HST spectroscopy obtained by our team with the Cosmic Origins Spectrograph (COS) showed that the galaxies display different integrated LyA profiles within their central few kiloparsecs, i.e., pure absorption, single emission, and double emission, which are representative of what is observed between redshifts 0-3. This data is useful for establishing the relative importance of starburst phase, dust content, and gas kinematics in determining the LyA escape. We present preliminary results that combine our spectroscopic and imaging observations.

  18. Study of performance loss of Lyman alpha filters due to chemical contamination

    NASA Astrophysics Data System (ADS)

    Faye, Delphine; Zhang, Xueyan; Etcheto, Pierre; Auchère, Frédéric

    2017-05-01

    Observations in the UV and EUV allow many diagnostics of the outer layers of the stars and the Sun so that more and more space telescopes are developed to operate in this fundamental spectral range. However, absorption by residual contaminants coming from polymers outgassing causes critical effects such as loss of signal, spectral shifts, stray light… Thus, a cleanliness and contamination control plan has to be defined to mitigate the risk of damage of sensitive surfaces. In order to specify acceptable cleanliness levels, it is paramount to improve our knowledge and understanding of contamination effects, especially in the UV/EUV range. Therefore, an experimental study has been carried out in collaboration between CNES and IAS, in the frame of the development of the Extreme UV Imager suite for the ESA Solar Orbiter mission; this instrument consists of two High Resolution Imagers and one Full Sun Imager designed for narrow pass-band EUV imaging of the solar corona, and thus very sensitive to contamination. Here, we describe recent results of performance loss measured on representative optical samples. Six narrow pass-band filters, with a multilayer coating designed to select the solar Lyman Alpha emission ray, were contaminated with different amounts of typical chemical species. The transmittance spectra were measured between 100 and 200 nm under high vacuum on the SOLEIL synchrotron beam line. They were compared before and after contamination, and also after a long exposure of the contaminated area to EUV-visible radiations.

  19. Non-parametric 3D map of the intergalactic medium using the Lyman-alpha forest

    NASA Astrophysics Data System (ADS)

    Cisewski, Jessi; Croft, Rupert A. C.; Freeman, Peter E.; Genovese, Christopher R.; Khandai, Nishikanta; Ozbek, Melih; Wasserman, Larry

    2014-05-01

    Visualizing the high-redshift Universe is difficult due to the dearth of available data; however, the Lyman-alpha forest provides a means to map the intergalactic medium at redshifts not accessible to large galaxy surveys. Large-scale structure surveys, such as the Baryon Oscillation Spectroscopic Survey (BOSS), have collected quasar (QSO) spectra that enable the reconstruction of H I density fluctuations. The data fall on a collection of lines defined by the lines of sight (LOS) of the QSO, and a major issue with producing a 3D reconstruction is determining how to model the regions between the LOS. We present a method that produces a 3D map of this relatively uncharted portion of the Universe by employing local polynomial smoothing, a non-parametric methodology. The performance of the method is analysed on simulated data that mimics the varying number of LOS expected in real data, and then is applied to a sample region selected from BOSS. Evaluation of the reconstruction is assessed by considering various features of the predicted 3D maps including visual comparison of slices, probability density functions (PDFs), counts of local minima and maxima, and standardized correlation functions. This 3D reconstruction allows for an initial investigation of the topology of this portion of the Universe using persistent homology.

  20. Water vapor content in the polar atmosphere measured by Lyman-alpha/OH fluorescence method

    NASA Technical Reports Server (NTRS)

    Iwasaka, Y.; Saitoh, S.; Ono, A.

    1985-01-01

    The water vapor of the polar stratosphere possibly plays an important role in various aeronomical processes; for example, OH radical formation through photodissociation of H2O, formation of water cluster ions, radiative energy transfer in the lower stratosphere, condensation onto particulate matter, and so on. In addition to these, it has been speculated, from the viewpoint of global transport and/or budget of water vapor, that the polar stratosphere functions as an active sink. STANFORD (1973) emphasized the existence of the stratospheric Cist cloud in the polar stratosphere which brought a large loss rate of stratospheric water vapor through a so-called freeze-out of cloud particles from the stratosphere into the troposphere. However, these geophysically interesting problems unfortunately remain to be solved, owing to the lack of measurements on water vapor distribution and its temporal variation in the polar stratosphere. The water vapor content measured at Syowa Station (69.00 deg S, 39.35 deg E), Antarctica using a balloon-borne hygrometer (Lyman - alpha/OH fluorescence type) is discussed.

  1. Discovery of Ubiquitous Fast-Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T.; Winebarger, A.; Kobayashi, K.; Cirtain, J.; Champey, P.; Auchère, F.; Trujillo Bueno, J.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2016-12-01

    High-cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha Spectropolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in either the chromosphere or the transition region or both at a speed much higher than the speed of sound. The CLASP/SJ instrument provides a time series of two-dimensional images taken with broadband filters centered on the Lyα line at a 0.6 s cadence. The multiple fast-propagating intensity disturbances appear in the quiet Sun and in an active region, and they are clearly detected in at least 20 areas in a field of view of 527″ × 527″ during the 5 minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km s-1, and they are comparable to the local Alfvén speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed fast-propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is about 10″, and the widths are a few arcseconds, which are almost determined by a pixel size of 1.″03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation for the fast-propagating intensity disturbances observed by CLASP is magnetohydrodynamic fast-mode waves.

  2. Morphologies and faint neighbors of z=4.5 Lyman Alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Malhotra, Sangeeta

    2002-07-01

    We propose to image one ACS field containing four spectroscopically confirmed Ly-alpha emitters at z=4.5 in restframe UV and a narrowband filter containing the Ly-alpha line. These observations will {A} Reveal the morphology of the four spectroscopically confirmed sources. The high equivalent widths of the Ly-alpha line in these four galaxies in particular and this population in general cannot be explained without invoking one or more of: extreme youth of the stellar population, zero metallicity, energetic winds or type II quasars. Comparison of morphologies in the line and continuum would help favor or rule out some of these possibilties. This would also tell us whether the star-formation is uniformly distributed or centrally concentrated or concentrated but in many clumps? Proximity of these galaxies {average projected physical separation of 200 kpc, with one pair 30 kpc apart} also makes interactions likely. {B} Extend the luminosity function of Ly-alpha sources by 2.5 magnitudes due to better spatial resolution of HST and sensitivity of ACS. We will be able to detect sources with line flux of eq 2 * 10^-18 ergcm2s over 11.5 sq-arcmins { 100 sources}. This complements the LALA {Large Area Lyman Alpha} survey which covers 1/3 square-degree to a line sensitivity of eq 2 * 10^- 17. Thus we get a picture of this patch of young universe in two ways: statistics of faint galaxies and morphologies of relatively bright ones.

  3. Squeezing the window on isocurvature modes with the Lyman-{alpha} forest

    SciTech Connect

    Beltran, Maria; Garcia-Bellido, Juan; Lesgourgues, Julien; Viel, Matteo

    2005-11-15

    Various recent studies proved that cosmological models with a significant contribution from cold dark matter isocurvature perturbations are still compatible with most recent data on cosmic microwave background anisotropies and on the shape of the galaxy power spectrum, provided that one allows for a very blue spectrum of primordial entropy fluctuations (n{sub iso}>2). However, such models predict an excess of matter fluctuations on small scales, typically below 40h{sup -1} Mpc. We show that the proper inclusion of high-resolution high signal-to-noise Lyman-{alpha} forest data excludes most of these models. The upper bound on the isocurvature fraction {alpha}=f{sub iso}{sup 2}/(1+f{sub iso}{sup 2}), defined at the pivot scale k{sub 0}=0.05 Mpc{sup -1}, is pushed down to {alpha}<0.4, while n{sub iso}=1.9{+-}1.0 (95% confidence limits). We also study the bounds on curvaton models characterized by maximal correlation between curvature and isocurvature modes, and a unique spectral tilt for both. We find that f{sub iso}<0.05 (95% C.L.) in that case. For double-inflation models with two massive inflatons coupled only gravitationally, the mass ratio should obey R<3 (95% C.L.)

  4. From Mirrors to Windows: Lyman-alpha Radiative Transfer in a Very Clumpy Medium

    NASA Astrophysics Data System (ADS)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Oh, S. Peng

    2016-12-01

    Lyman-alpha (Lyα) is the strongest emission line in the universe and is frequently used to detect and study the most distant galaxies. Because Lyα is a resonant line, photons typically scatter prior to escaping; this scattering process complicates the interpretation of Lyα spectra, but also encodes a wealth of information about the structure and kinematics of neutral gas in the Galaxy. Modeling the Lyα line therefore allows us to study tiny-scale features of the gas. Curiously, observed Lyα spectra can be modeled successfully with very simple, homogeneous geometries (such as an expanding, spherical shell), whereas more realistic, multiphase geometries often fail to reproduce the observed spectra. This seems paradoxical since the gas in galaxies is known to be multiphase. In this Letter, we show that spectra emerging from clumpy geometries with a large number (≳ 10 for a clump column density of {N}{{H}{{I}},{cl}}∼ {10}17 {{cm}}-2) of clouds along the line of sight converge to the predictions from simplified, homogeneous models. We suggest that this resolves the apparent discrepancy and may provide a way to study the gas structure in galaxies on scales far smaller than can be probed in either cosmological simulations or direct (i.e., spatially resolved) observations.

  5. Discovery of Ubiquitous Fast Propagating Intensity Disturbances by the Chromospheric Lyman Alpha Spectropolarimeter (CLASP)

    NASA Technical Reports Server (NTRS)

    Kubo, M.; Katsukawa, Y.; Suematsu, Y.; Kano, R.; Bando, T.; Narukage, N.; Ishikawa, R.; Hara, H.; Giono, G.; Tsuneta, S.; hide

    2016-01-01

    High cadence observations by the slit-jaw (SJ) optics system of the sounding rocket experiment known as the Chromospheric Lyman Alpha SpectroPolarimeter (CLASP) reveal ubiquitous intensity disturbances that recurrently propagate in one or both of the chromosphere or transition region at a speed much higher than the sound speed. The CLASP/SJ instrument provides a time series of 2D images taken with broadband filters centered on the Ly(alpha) line at a 0.6 s cadence. The fast propagating intensity disturbances are detected in the quiet Sun and in an active region, and at least 20 events are clearly detected in the field of view of 527'' x 527'' during the 5-minute observing time. The apparent speeds of the intensity disturbances range from 150 to 350 km/s, and they are comparable to the local Alfven speed in the transition region. The intensity disturbances tend to propagate along bright elongated structures away from areas with strong photospheric magnetic fields. This suggests that the observed propagating intensity disturbances are related to the magnetic canopy structures. The maximum distance traveled by the intensity disturbances is of about 10'', and the widths are a few arcseconds, which is almost determined by the pixel size of 1.''03. The timescale of each intensity pulse is shorter than 30 s. One possible explanation of the fast propagating intensity disturbances observed by CLASP is magneto-hydrodynamic fast mode waves.

  6. Measurements of gravity driven granular channel flows

    NASA Astrophysics Data System (ADS)

    Facto, Kevin

    This dissertation presents experiments that studied two gravity driven granular channel flows. The first experiment used magnetic resonance imaging to measure the density and displacement distributions of poppy seeds flowing in a rough walled channel. Time-averaged measurements of normalized velocity and density showed little flow speed dependence. Instantaneous measurements, however, showed marked velocity dependence in the displacement distributions. There was evidence of aperiodic starting and stopping at lower flow speeds and the onset of density waves on a continuous flow at higher speeds. The second experiment measured forces in all three spatial directions at the boundary of a flow of steel balls. The relationship between the normal and the tangential forces were examined statistically and compared to the Coulomb friction model. For both large and small forces, the tangential and normal forces are unrelated, as there appears to be a strong tendency for the tangential force to maintain a value that will bear the weight the weight of the particles in flow.

  7. Radiation Transport of Heliospheric Lyman-alpha from Combined Cassini and Voyager Data Sets

    NASA Technical Reports Server (NTRS)

    Pryor, W.; Gangopadhyay, P.; Sandel, B.; Forrester, T.; Quemerais, E.; Moebius, E.; Esposito, L.; Stewart, I.; McClintock, W.; Jouchoux, A.; Colwell, J.; Izmodenov, V.; Malama, Y.; Shemansky, D.; Ajello, J.; Hansen, C.; Bzowski, M.

    2008-01-01

    Heliospheric neutral hydrogen scatters solar Lyman-alpha radiation from the Sun with '27-day' intensity modulations observed near Earth due to the Sun's rotation combined with Earth's orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. This paper presents Cassini data from 2003-2004 obtained downwind near Saturn at approximately 10 AU that at times show undamped '27-day' waves in good agreement with the single-scattering models of Pryor et al., 1992. Simultaneous Voyager 1 data from 2003- 2004 obtained upwind at a distance of 88.8-92.6 AU from the Sun show waves damped by a factor of -0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al., 1981) applied to two heliospheric hydrogen two-shock density distributions (discussed in Gangopadhyay et al., 2006) calculated in the frame of the Baranov-Malama model of the solar wind interaction with the two-component (neutral hydrogen and plasma) interstellar wind (Baranov and Malama 1993, Izmodenov et al., 2001, Baranov and Izmodenov, 2006). We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm(exp -3) and 0.095 cm(exp -3). This work generally agrees with earlier discussions of Voyager data in Quemerais et al., 1996 showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.

  8. The Lyman alpha reference sample. III. Properties of the neutral ISM from GBT and VLA observations

    SciTech Connect

    Pardy, Stephen A.; Cannon, John M.; Melinder, Jens E-mail: jcannon@macalester.edu; and others

    2014-10-20

    We present new H I imaging and spectroscopy of the 14 UV-selected star-forming galaxies in the Lyman Alpha Reference Sample (LARS), aimed for a detailed study of the processes governing the production, propagation, and escape of Lyα photons. New H I spectroscopy, obtained with the 100 m Green Bank Telescope (GBT), robustly detects the H I spectral line in 11 of the 14 observed LARS galaxies (although the profiles of two of the galaxies are likely confused by other sources within the GBT beam); the three highest redshift galaxies are not detected at our current sensitivity limits. The GBT profiles are used to derive fundamental H I line properties of the LARS galaxies. We also present new pilot H I spectral line imaging of five of the LARS galaxies obtained with the Karl G. Jansky Very Large Array (VLA). This imaging localizes the H I gas and provides a measurement of the total H I mass in each galaxy. In one system, LARS 03 (UGC 8335 or Arp 238), VLA observations reveal an enormous tidal structure that extends over 160 kpc from the main interacting systems and that contains >10{sup 9} M {sub ☉} of H I. We compare various H I properties with global Lyα quantities derived from Hubble Space Telescope measurements. The measurements of the Lyα escape fraction are coupled with the new direct measurements of H I mass and significantly disturbed H I velocities. Our robustly detected sample reveals tentative correlations between the total H I mass and linewidth, and key Lyα tracers. Further, on global scales, these data support a complex coupling between Lyα propagation and the H I properties of the surrounding medium.

  9. The Earth's Geocorona and Geotail as Observed by LRO's Lyman Alpha Mapping Project (LAMP) Instrument

    NASA Astrophysics Data System (ADS)

    Gladstone, R.; Retherford, K. D.; Stern, S. A.; Egan, A. F.; Miles, P. F.; Versteeg, M.; Davis, M.; Parker, J.; Kaufmann, D.; Greathouse, T. K.; Steffl, A. J.; Mukherjee, J.; Karnes, P.; Feldman, P. D.; Hurley, D.; Pryor, W. R.; Hendrix, A. R.

    2012-12-01

    We present new observations of Earth's geocorona and geotail, as observed by the Lyman Alpha Mapping Project (LAMP) imaging ultraviolet spectrograph on the Lunar Reconnaissance Orbiter (LRO) spacecraft. These data were obtained serendipitously during campaigns to observe the lunar atmosphere during June 2011 and December 2011. In both cases, the Earth was approximately half full (last quarter in June 2011, first quarter in December 2011), so that the sub-solar and anti-solar regions were well observed. The observations were acquired over the course of several hours, with the Earth passing over the LAMP slit once per LRO-orbit (period ~113 minutes), with a shift along the length of the LAMP slit (6 degrees long) in the Earth-Sun direction of ~1 degree/orbit (periodic data downlinks interrupt some orbits). The spatial resolution is 0.3 degrees (~0.3 RE at Earth, as seen from the Moon). In addition to spectral data over LAMP's 57-196 nm bandpass (which includes Earth FUV dayglow emissions from, e.g., He 58.4 nm, O 130.4 nm, O 135.6 nm, and reflected sunlight), the total analog count rate monitored by LAMP is dominated by the geocoronal and interplanetary Lyα signal, and can thus be used to directly estimate geocoronal and geotail brightnesses out to ~10 RE. We will present comparisons with model calculations using the lyao_rt code of Bishop [J. Atmos. Sol. Terr. Phys., 63, 331, 2001]. These observations demonstrate the utility of heliophysics observations from the Moon.

  10. HETDEX and the Evolution of The Physical Properties of Lyman-Alpha Emitting Galaxies

    NASA Astrophysics Data System (ADS)

    Ciardullo, Robin; Gronwall, C.; Blanc, G.; Finkelstein, S.; Gawiser, E.; Gebhardt, K.; HETDEX Collaboration

    2012-05-01

    Beginning in Spring 2013, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will begin a three year survey of two large regions of sky using VIRUS, an array of blue-sensitive integral-field spectrographs set to cover the wavelength range between 3500 to 5500 Angstroms at R = 800 resolution. These data will cover roughly 300 square degrees in the north (centered near 13 hours, +53 deg) and 140 square degrees along the equator (centered around 1.5 hours), have a filling factor of 1 in 4.5, and detect over 800,000 Lyman-alpha emitting galaxies (LAEs) in the redshift range 1.9 < z < 3.5. While the main goal of HETDEX is to measure the expansion history of the universe via the LAE's power spectrum, these data will also revolutionize our knowledge of the emission-line universe. Using HETDEX, we will be able to explore the 3-D clustering of LAEs, measure their halo masses, and explore their physical properties over a wide range of galactic environments. In preparation for HETDEX, we have undertaken a 3 year pilot survey of the COSMOS, GOODS-N, MUNICS-S2, and XMM-LSS regions of sky using VIRUS-P, a proto-type integral-field spectrograph placed on the McDonald 2.7-m telescope. This survey covered 169 square arcmin and discovered 104 LAEs with a median line luminosity of log L = 43.03 ergs/s. We will present the physical properties of the LAEs found in the pilot survey, and discuss how their line-luminosities, equivalent widths, star-formation rates, dust content, and Ly-alpha escape fraction change with redshift. We will also discuss the implications of the these observations for the main HETDEX survey.

  11. Radiation Transport of Heliospheric Lyman-alpha from Combined Cassini and Voyager Data Sets

    NASA Technical Reports Server (NTRS)

    Pryor, W.; Gangopadhyay, P.; Sandel, B.; Forrester, T.; Quemerais, E.; Moebius, E.; Esposito, L.; Stewart, I.; McClintock, W.; Jouchoux, A.; hide

    2008-01-01

    Heliospheric neutral hydrogen scatters solar Lyman-alpha radiation from the Sun with '27-day' intensity modulations observed near Earth due to the Sun's rotation combined with Earth's orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. This paper presents Cassini data from 2003-2004 obtained downwind near Saturn at approximately 10 AU that at times show undamped '27-day' waves in good agreement with the single-scattering models of Pryor et al., 1992. Simultaneous Voyager 1 data from 2003- 2004 obtained upwind at a distance of 88.8-92.6 AU from the Sun show waves damped by a factor of -0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al., 1981) applied to two heliospheric hydrogen two-shock density distributions (discussed in Gangopadhyay et al., 2006) calculated in the frame of the Baranov-Malama model of the solar wind interaction with the two-component (neutral hydrogen and plasma) interstellar wind (Baranov and Malama 1993, Izmodenov et al., 2001, Baranov and Izmodenov, 2006). We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm(exp -3) and 0.095 cm(exp -3). This work generally agrees with earlier discussions of Voyager data in Quemerais et al., 1996 showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.

  12. Confirming and Characterizing Young Lyman-(alpha) Galaxies at z=4.5

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta

    2001-02-01

    Our knowledge of galaxies at z ⪆ 3 depends heavily on their rest- frame UV properties. This is especially true for Lyα emitting galaxies, which will preferentially include the youngest and most chemically primitive objects. Redshifts of these sources are based on a single line, which is identified as Lyα with circumstantial evidence (line asymmetry and a continuum break) (Stern & Spinrad 1999). Their other properties are inferred from 1500Acontinuum emission, which is insensitive to older stellar populations. We will remedy this situation with near-infrared (K band) spectroscopy and imaging of confirmed z~ 4.5 galaxies from our Large Area Lyman Alpha (LALA) survey. Our NIRI observations will allow us to confirm and characterize these early galaxies in four important ways: (1) The Lyα redshift will be confirmed by detection of the O II line. (2) The O II line will yield star formation rate (SFR) estimates. Comparing these to Lyα and UV continuum SFR measurements will cross-calibrate SFR indicators normally used at different redshifts, and will test for dust absorption in our Lyα sources. (3) K band photometry can be compared to existing R, I, and z' data to look for light from ``old'' (> 10^8 years) stellar populations. Our NIRI spectra will also observe the 4000Abreak, providing another test for old stars and lifting the degeneracy between dust and age in broadband colors. Old stars, if present, would have to have formed at z ⪆ 6. (4) Rest optical light morphologies can be compared to the expectations from monolithic collapse and hierarchical formation scenarios, and can also directly compare newly-formed galaxies with their present day counterparts.

  13. Do Lyman-alpha photons escape from star-forming galaxies through dust-holes?

    NASA Astrophysics Data System (ADS)

    Wofford, Aida

    2012-10-01

    The hydrogen Lyman-alpha line is arguably the most important signature of galaxies undergoing their first violent burst of star formation. Although Lya photons are easily destroyed by dust, candidate Lya emitters have been detected at z>5. Thus the line can potentially be used to probe galaxy formation and evolution, as long as the astrophysical processes that regulate the escape of Lya photons from star-forming galaxies are well understood.We request 15 orbits for imaging in Lya and the FUV continuum with ACS/SBC, and in the H-beta/H-alpha ratio {proxy for dust extinction} with WFC3/UVIS, a sample of isolated non-AGN face-on spirals for which our team previously obtained and analyzed COS FUV spectroscopy of the central regions. Each target shows a different Lya profile, i.e., pure absorption, P-Cygni like, and multiple-emission. From the COS data, we already know the starburst phase and H I gas velocity. The images would greatly increase the impact of our spectroscopic study by enabling us to 1} conclusively determine if Lya photons escape through dust-holes, 2} assess the relative importance of dust extinction, ISM kinematics, and starburst phase in regulating the Lya escape, 3} clarify what we can really learn from the Lya equivalent width, and 4} provide constraints on the dust extinction to Lya 3D radiative transfer models. Ultimately this program will inform our understanding of the Lya escape at high redshift by providing spatially resolved views of the local conditions within star-forming galaxies that favor escape.

  14. Abundances in Star-forming Galaxies and Damped Lyman Alpha Systems

    NASA Astrophysics Data System (ADS)

    Schulte-Ladbeck, R.; Rao, S. M.; Hopkins, A. M.; König, B.; Turnshek, D. A.; Miller, C. J.; Vanden Berk, D.

    2004-12-01

    Our knowledge about the chemical properties of galaxies is based on measurements of emission lines from photo-ionized gas. The abundances of galaxies at high-z are inferred using absorption lines arising in neutral gas in Damped Lyman Alpha (DLA) systems. Do the results of emission and absorption experiments agree in cases of nearby star-forming galaxies (SFGs) causing DLAs? Schulte-Ladbeck et al. (2004a) examined the z=0.009 DLA/SFG SBS 1543+593. We derived [O/H]II=-0.54. The bright QSO HS 1543+5921 intercepts the disk at small impact parameter. We found a lower limit, [O/H]I>-2.14, using HST archival spectra. New HST observations by Bowen et al. are analyzed to yield a S abundance of [S/H]I=-0.54. Using S as a proxy for O this suggests [O/H]I=[O/H]II (or 0.29xsolar) for one genuine DLA. To investigate additional SFG/QSO pairs, we used the CMU-Pitt Value Added Catalog to assemble from the SDSS DR1 a database of about 13,000 SFGs with 0< z <0.36 (Schulte-Ladbeck 2004b). We applied the strong-line indices of Pettini & Pagel (2004), derived O/HII for all objects, and a median O/HII ratio of 0.74xsolar with a SIQR of 0.19. An O/H vs. z diagram is constructed by augmenting these data to z≈5 with O/HI ratios for DLAs (Prochaska et al. 2003). We matched our SFG catalog against the SDSS QSO catalog, then used the HST archive to determine the HI column densities and limits on O/HI for these SFGs. The results are discussed using the O/H vs. redshift diagram. We acknowledge support of HST archival funding to program ID 10282.

  15. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    SciTech Connect

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  16. The non-linear power spectrum of the Lyman alpha forest

    NASA Astrophysics Data System (ADS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z~ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.

  17. The non-linear power spectrum of the Lyman alpha forest

    SciTech Connect

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue E-mail: miralda@icc.ub.edu E-mail: cen@astro.princeton.edu

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.

  18. On the Lack of Correlation Between Mg II 2796, 2803 Angstrom and Lyman alpha Emission in Lensed Star-Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Rigby, Jane Rebecca; Bayliss, M. B.; Gladders, M. D.; Sharon, K.; Wuyts, E.; Dahle, H.

    2014-01-01

    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66 less than z less than 1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km s(exp-1). When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km s(exp-1), implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.

  19. Observation on Stark-shifts of Lyman Alpha lines of low-Z ions in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Yamaguchi, N.

    1982-07-01

    The red shifts were observed for Lyman alpha lines of Be IV, B V, C VI, and N VII at an electron density of 5 x 10 to the 21st power cm(-3). The high density plasma ws produced by a 0.1 TW and 100 ps laser irradiation onto a plane target. The shift was measured by comparing the position of highly broadened line center with that of spatially resolved unperturbed one in a single shot photograph. The results are compared with simple theoretical estimations.

  20. Estimation of the Lyman-{alpha} line intensity in a lithium-based discharge-produced plasma source

    SciTech Connect

    Masnavi, Majid; Nakajima, Mitsuo; Hotta, Eiki; Horioka, Kazuhiko

    2008-01-01

    Extreme ultraviolet (EUV) discharge-based lamps for EUV lithography need to generate extremely high power in the narrow spectrum band of 13.5{+-}0.135 nm. A simplified time-dependent collisional-radiative model and radiative transfer solution were utilized to investigate the wavelength-integrated Lyman-{alpha} line light outputs in a hydrogen-like lithium ion. The study reveals in particular that a steady-state or magnetically confined lithium plasma radiates in the desired spectrum band not less than 1 kW in 2{pi} sr even at an ion density region as low as 10{sup 17} cm{sup -3}.

  1. An observational study of quasar host galaxies, radio galaxies, and lyman alpha emitters

    NASA Astrophysics Data System (ADS)

    Wold, Isak George Bayard

    In this thesis I provide observational constraints on quasar host galaxies, radio galaxies, and Lyman Alpha Emitters (LAEs). I develop and implement a method to provide stellar age constraints for the host galaxies of nearby (z<0.3) quasars. The observational strategy is to spectroscopically observe quasar host galaxies offset from the bright central point source to maximize the signal-to-noise of the stellar light. The central quasar is also spectroscopically observed, so that any nuclear light scattered into our off-axis spectrum can be efficiently modeled and subtracted. The reliability of my technique is tested via a Monte-Carlo routine in which the correspondence between synthetic spectra with known parameters and the model output is determined. Application of this model to a preliminary sample of 10 objects is presented and compared to previous studies. I present 1.4 GHz catalogs for the cluster fields A370 and A2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. I construct differential number counts for each field and find results consistent with previous studies. I emphasize the need to account for cosmic variance. These high resolution, ultra-deep radio catalogs will be vital to future multiwavelength studies. Finally, I apply a newly developed search method to all of the deep GALEX grism fields, which correspond to some of the most intensively studied regions in the sky. My work provides the first large sample of z=0.67-1.16 LAEs (N=60) that can be used to investigate the physical properties of these galaxies. I catalog the candidate z=1 LAE samples in each field and give optical redshifts from both archival and newly obtained observations. With X-ray, UV, and optical data, I determine the false detection rate (cases where the emission line is either not confirmed or is not Lya) and the AGN contamination rate of my sample. With the remaining LAEs, I compute the LAE galaxy luminosity function

  2. Photodiode radiation hardness, lyman-alpha emitting galaxies and photon detection in liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Baptista, Brian

    2013-12-01

    My dissertation is comprised of three projects: 1) studies of Lyman-alpha Emitting galaxies (LAEs), 2) radiation hardness studies of InGaAs photodiodes (PDs), and 3) scintillation photon detection in liquid argon (LAr) neutrino detectors. I began work on the project that has now become WFIRST, developing a science case that would use WFIRST after launch for the observation of LAEs. The radiation hardness of PDs was as an effort to support the WFIRST calibration team. When WFIRST was significantly delayed, I joined an R&D effort that applied my skills to work on photon detection in LAr neutrino detectors. I report results on a broadband selection method developed to detect high equivalent width (EW) LAEs. Using photometry from the CFHT-Legacy Survey Deep 2 and 3 fields, I have spectroscopically confirmed 63 z=2.5-3.5 LAEs using the WIYN/Hydra spectrograph. Using UV continuum-fitting techniques I computed properties such as EWs, internal reddening and star formation rates. 62 of my LAEs show evidence to be normal dust-free LAEs. Second, I present an investigation into the effects of ionizing proton radiation on commercial off-the-shelf InGaAs PDs. I developed a monochromator-based test apparatus that utilized NIST-calibrated reference PDs. I tested the PDs for changes to their dark current, relative responsivity as a function of wavelength, and absolute responsivity. I irradiated the test PDs using 30, 52, and 98 MeV protons at the IU Cyclotron Facility. I found the InGaAs PDs showed increased dark current as the fluence increased with no evidence of broadband response degradation at the fluences expected at an L2 orbit and a 10-year mission lifetime. Finally, I detail my efforts on technology development of both optical detector technologies and waveshifting light guide construction for LAr vacuum UV scintillation light. Cryogenic neutrino detectors use photon detection for both accelerator based science and for SNe neutrino detection and proton decay. I have

  3. THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES

    SciTech Connect

    Oestlin, Goeran; Hayes, Matthew; Kunth, Daniel; Atek, Hakim; Mas-Hesse, J. Miguel; Leitherer, Claus; Petrosian, Artashes E-mail: matthew.hayes@unige.ch

    2009-09-15

    We present reduced and calibrated high resolution Lyman-alpha (Ly{alpha}) images for a sample of six local star-forming galaxies. Targets were selected to represent a range in luminosity and metallicity and to include both known Ly{alpha} emitters and nonemitters. Far ultraviolet imaging was carried out with the Solar Blind Channel of the Advanced Camera for Surveys on the Hubble Space Telescope (HST) in the F122M (Ly{alpha} online) and F140LP (continuum) filters. The resulting Ly{alpha} images are the product of careful modeling of both the stellar and nebular continua, facilitated by supporting HST imaging at {lambda} {approx} 2200, 3300, 4400, 5500, H{alpha}, and 8000 A, combined with Starburst 99 evolutionary synthesis models, and prescriptions for dust extinction on the continuum. In all, the resulting morphologies in Ly{alpha}, H{alpha}, and UV continuum are qualitatively very different and we show that the bulk of Ly{alpha} emerges in a diffuse component resulting from resonant scattering events. Ly{alpha} escape fractions, computed from integrated H{alpha} luminosities and recombination theory, are found never to exceed 14%. Internal dust extinction is estimated in each pixel and used to correct Ly{alpha} fluxes. However, the extinction corrections are far too small (by factors from 2.6 to infinity) to reconcile the emerging global Ly{alpha} luminosities with standard recombination predictions. Surprisingly, when comparing the global equivalent widths of Ly{alpha} and H{alpha}, the two quantities appear to be anticorrelated, which may be due to the evolution of mechanical feedback from the starburst. This calls for caution in the interpretation of Ly{alpha} observations in terms of star formation rates. The images presented have a physical resolution 3 orders of magnitude better than attainable at high redshifts from the ground with current instrumentation and our images may therefore serve as useful templates for comparing with observations and modeling of

  4. Measurements of D_A and H at z=2.4 from the SDSS-III/DR11 BOSS Lyman-alpha sample

    NASA Astrophysics Data System (ADS)

    Schlegel, David J.; Delubac, T.; Busca, N. G.; Rich, J.; Bailey, S. J.; Bautista, J.; Front, A.; Kirkby, D.; Le Goff, J.; Pieri, M.; Slosar, A.; Aubourg, E.; Blomqvist, M.; Bolton, A. S.; Borde, A.; Carithers, W.; Croft, R. A.; Dawson, K. S.; Eisenstein, D.; Hamilton, J.; Ho, S.; Hogg, D. W.; Lee, K.; Lundgren, B.; Margala, D.; Miralda-Escudé, J.; Myers, A. D.; Noterdaeme, P.; Palanque-Delabrouille, N.; Paris, I.; Petitjean, P.; Ross, N.; Rossi, G.; Viel, M.; Weinberg, D. H.; White, M.; Yeche, C.; Sloan Digital Sky Survey (SDSS-III) Baryon Oscillation Spectroscopic Survey (BOSS)

    2014-01-01

    We present the most precise measures of the Baryon Acoustic Oscillation (BAO) scale at z=2.4 from the 3-dimensional clustering of the Lyman alpha forest. The Hubble parameter (BAO scale along the line of sight) is measured to 3% precision. The angular diameter distance (perpendicular to the line of sight) is measured to 5% precision. These results make use of the Sloan Digital Sky Survey III (SDSS-III) Data Release 11 (DR11), with 135 000 high-redshift quasar spectra covering 9000 square degrees. This study supersedes the previous measurements of Busca et al. (2013) and Slosar et al. (2013) with a gain of nearly a factor of three in the amount of Lyman alpha spectra data. We also perform a detailed study of the covariance matrix of the Lyman alpha correlation, which is validated with both simulations and subsampling (data-only) techniques.

  5. Probing the Rest-Frame Optical Continuum of z=4.5 Lyman Alpha Emitters with Spitzer

    NASA Astrophysics Data System (ADS)

    Finkelstein, Keely D.; Malhotra, S.; Rhoads, J. E.; Finkelstein, S. L.; Tilvi, V.; Grogin, N. A.; Pirzkal, N.; Dey, A.; Jannuzi, B. T.; Mobasher, B.; Pakzad, S.; Wang, J.

    2012-01-01

    We present the results from a deep Spitzer Space Telescope survey of more than 100 Lyman alpha emitters (LAEs) at z 4.5, first discovered in the Bootes field of the Large Area Lyman Alpha (LALA) survey. These Spitzer/IRAC observations probe the rest-frame optical continuum emission of these galaxies. We also have in hand NICMOS and WFC3 near-infrared (NIR) data from the Hubble Space Telescope (HST) of a sub-sample of these same galaxies. Of the more than 100 sources targeted with Spitzer, 15 sources are detected in at least two out of the four NICMOS/WFC3 and IRAC bands (1.1, 1.6, 3.6 and 4.5 microns), while another 40 sources are detected in one band. We will present the results from a SED-fitting analysis, using the suite of data in the observed NIR/mid-IR, coupled with deep ground based optical data. LAEs form the faint end of the galaxy luminosity function, thus most studies rely on stacking to constrain the rest-frame optical light, which can wash out variations in the physical properties in individual LAEs. This is the largest sample to date of high-redshift LAEs with measured NIR/IR fluxes, allowing us to place the most robust constraints yet on the spread of physical properties in the LAE population.

  6. Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

    NASA Technical Reports Server (NTRS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.

    2016-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

  7. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-α reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-α, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-α wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-α, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-α brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from

  8. Lyman alpha emitting galaxies at high redshift: Direct detection of young galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Dawson, Steven Arthur

    /DEIMOS follow-up observations to candidates selected in the Large Area Lyman Alpha (LALA) survey. We conclude that if there is evolution in the Lya luminosity function over these epochs, its significance is below the statistical uncertainty of these data. This result supports the conclusion from several smaller samples of high-redshift Lya---emitters that the intergalactic medium remains largely reionized from the local universe out to z [approximate] 6.5. However, it is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z ~ 3 and z ~ 6 in Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations. (Abstract shortened by UMI.)

  9. Mysterious Blob Galaxies Revealed

    NASA Image and Video Library

    2005-01-11

    This image composite shows a giant galactic blob (red) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together. Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile. http://photojournal.jpl.nasa.gov/catalog/PIA07220

  10. Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration

    NASA Astrophysics Data System (ADS)

    Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.

    2016-12-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman-{α} line (121.6 nm) and requires a 0.1 % polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuum UV (VUV) spectral range.

  11. Isotope effect in the photochemical decomposition of CO{sub 2} (ice) by Lyman-{alpha} radiation

    SciTech Connect

    Yuan Chunqing; Yates, John T. Jr.

    2013-04-21

    The photochemical decomposition of CO{sub 2}(ice) at 75 K by Lyman-{alpha} radiation (10.2 eV) has been studied using transmission infrared spectroscopy. An isotope effect in the decomposition of the CO{sub 2} molecule in the ice has been discovered, favoring {sup 12}CO{sub 2} photodecomposition over {sup 13}CO{sub 2} by about 10%. The effect is caused by electronic energy transfer from the excited CO{sub 2} molecule to the ice matrix, which favors quenching of the heavier electronically-excited {sup 13}CO{sub 2} molecule over {sup 12}CO{sub 2}. The effect is similar to the Menzel-Gomer-Redhead isotope effect in desorption from adsorbed molecules on surfaces when electronically excited. An enhancement of the rate of formation of lattice-trapped CO and CO{sub 3} species is observed for the photolysis of the {sup 12}CO{sub 2} molecule compared to the {sup 13}CO{sub 2} molecule in the ice. Only 0.5% of the primary photoexcitation results in O-CO bond dissociation to produce trapped-CO and trapped-CO{sub 3} product molecules and the majority of the electronically-excited CO{sub 2} molecules return to the ground state. Here either vibrational relaxation occurs (majority process) or desorption of CO{sub 2} occurs (minority process) from highly vibrationally-excited CO{sub 2} molecules in the ice. The observation of the {sup 12}C/{sup 13}C isotope effect in the Lyman-{alpha} induced photodecomposition of CO{sub 2} (ice) suggests that over astronomical time scales the isotope enrichment effect may distort historical information derived from isotope ratios in space wherever photochemistry can occur.

  12. Gravity-driven infiltration instability in initially dry nonhorizontal fractures

    SciTech Connect

    Nicholl, M.J.; Glass, R.J. ); Wheatcraft, S.W. )

    1994-09-01

    Experimental evidence demonstrating gravity-driven wetting front instability in an initially dry natural fracture is presented. An experimental approach is developed using a transparent analog rough-walled fracture to explore gravity-driven instability. Three different boundary conditions were observed to produce unstable fronts in the analog fracture: application of fluid at less than the imbibition capacity, inversion of a density-stratified system, and redistribution of flow at the cessation of stable infiltration. The redistribution boundary condition (analogous to the cessation of ponded infiltration) is considered in a series of systematic experiments. Gravitational gradient and magnitude of the fluid input were varied during experimentation. Qualitative observations imply that finger development is strongly correlated to the structure of the imbibition front at the onset of flow redistribution. Measurements of finger width is compared to theoretical predictions based on linear stability theory. 28 refs., 11 fig., 1 tab.

  13. Variability of Solar UV Irradiance Related to Bright Magnetic Features Observed in Call K-Line: Relationship between Lyman alpha and K-line Report for UARS funding agency

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Cameron, Robert

    1999-01-01

    In this report we comment on the relationship between the Lyman alpha and Calcium K-line emission from the Sun. We firstly examine resolved Lyman alpha images (from TRACE) and resolved K-line images. We find that the Lyman alpha emission is consistent with a linear dependence on the K-line emission. As this is in conflict with the analysis of Johannesson et al.(1995, 1998) we proceed by comparing the disk integrated Lyman alpha flux as a function of ratio between the disk integrated Mg II core and wing fluxes (Johannesson et al (1998) having previously found a linear dependence between this index and the BBSO K-line index). We find that a reasonably good fit can be obtained, however note the discrepancies which lead Johannesson et al to consider the square root relationship. We suggest an alternative interpretation of the discrepancy.

  14. Heating and ionization of stellar chromospheres by nonthermal proton beams: Implications for impulsive phase, redshifted Lyman-alpha radiation in stellar flares

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Robinson, Richard D.; Maran, Stephen P.

    1995-01-01

    We investigate the physical basis for the timescale of impulsive-phase, redshifted Lyman-alpha emission in stellar flares on the assumption that it is determined by energy losses in a nonthermal proton beam that is penetrating the chromosphere from above. The temporal evolution of ionization and heating in representative model chromospheres subjected to such beams is calculated. The treatment of 'stopping' of beam protons takes into account their interactions with (1) electrons bound in neutral hydrogen, (2) nuclei of neutral hydrogen, (3) free electrons, and (4) ambient thermal protons. We find that, for constant incident beam flux, the system attains an equilibrium with the beam energy input to the chromosphere balanced by radiative losses. In equilibrium, the beam penetration depth is constant, and erosion of the chromosphere ceases. If the redshifted, impulsive-phase stellar flare Lyman-alpha emission is produced by downstreaming hydrogen formed through charge exchange between beam protons and ambient hydrogen, then the emission should end when the beam no longer reaches neutral hydrogen. The durations of representative emission events calculated on this assumption range from 0.1 to 14 s. The stronger the beam, the shorter the timescale over which the redshifted Lyman-alpha emission can be observed.

  15. First Simultaneous Detection of Lyman-alpha Emission and Lyman Break from a Galaxy at Redshift 7.51 from Faint Infrared Grism Survey (FIGS)

    NASA Astrophysics Data System (ADS)

    Tilvi, Vithal; Pirzkal, Norbert; Malhotra, Sangeeta; Finkelstein, Steven L.; Rhoads, James E.; Windhorst, Rogier A.; Grogin, Norman A.; Koekemoer, Anton M.; Zakamska, Nadia L.; Ryan, Russell E.; Christensen, Lise; Hathi, Nimish P.; Pharo, John; Joshi, Bhavin; Yang, Huan; Gronwall, Caryl; Cimatti, Andrea; Walsh, J.; O'Connell, Robert W.; Straughn, Amber; Östlin, Göran; Rothberg, Barry; Livermore, Rachael C.; Hibon, Pascale; Gardner, Jonathan P.; FIGS Team

    2017-01-01

    Galaxies at high-redshifts provide a powerful tool to probe cosmic dawn, and therefore it is crucial to reliably identify these galaxies. Here, we present an unambiguous and first simultaneous detection of a Lyman-alpha line and a Lyman break from a galaxy (FIGS_GN1_1292) at z=7.51, observed in the Faint Infrared Grism Survey (FIGS: PI Mlahotra). FIGS is currently the most sensitive G102 grism survey, with 160-orbit depth equally distributed in four different fields in GOODS-N and GOODS-S. FIGS_GN1_1292 is detected independently in multiple position angles, and has a Lyman-alpha line flux of 1.06e-17 erg/s/cm^2, nearly a factor of four higher than in the archival MOSFIRE spectroscopic observations. This higher flux in the grism data is consistent with other recent observations implying that ground-based near-infrared spectroscopy may underestimate the total emission line fluxes, and if confirmed, can have strong implications for reionization studies that are based on ground-based Lyman-alpha measurements. The successful detection of continuum in such a high-redshift galaxy demonstrates the sensitivity of the FIGS survey, and the capability of grism spectroscopy to study the epoch of reionization using upcoming missions like the Wide Field Infrared Survey Telescope (WFIRST).

  16. Heating and ionization of stellar chromospheres by nonthermal proton beams: Implications for impulsive phase, redshifted Lyman-alpha radiation in stellar flares

    NASA Technical Reports Server (NTRS)

    Brosius, Jeffrey W.; Robinson, Richard D.; Maran, Stephen P.

    1995-01-01

    We investigate the physical basis for the timescale of impulsive-phase, redshifted Lyman-alpha emission in stellar flares on the assumption that it is determined by energy losses in a nonthermal proton beam that is penetrating the chromosphere from above. The temporal evolution of ionization and heating in representative model chromospheres subjected to such beams is calculated. The treatment of 'stopping' of beam protons takes into account their interactions with (1) electrons bound in neutral hydrogen, (2) nuclei of neutral hydrogen, (3) free electrons, and (4) ambient thermal protons. We find that, for constant incident beam flux, the system attains an equilibrium with the beam energy input to the chromosphere balanced by radiative losses. In equilibrium, the beam penetration depth is constant, and erosion of the chromosphere ceases. If the redshifted, impulsive-phase stellar flare Lyman-alpha emission is produced by downstreaming hydrogen formed through charge exchange between beam protons and ambient hydrogen, then the emission should end when the beam no longer reaches neutral hydrogen. The durations of representative emission events calculated on this assumption range from 0.1 to 14 s. The stronger the beam, the shorter the timescale over which the redshifted Lyman-alpha emission can be observed.

  17. The Blob Revisited.

    ERIC Educational Resources Information Center

    Protheroe, Nancy

    1998-01-01

    The cost of school administration and its effect on available instructional resources has been a highly debated topic since then-Secretary of Education William Bennett popularized the "blob" designation 10 years ago. A recent Educational Research Service study challenges six misperceptions about school administration's cost, size, and…

  18. Optical alignment of the Chromospheric Lyman-Alpha Spectro-Polarimeter using sophisticated methods to minimize activities under vacuum

    NASA Astrophysics Data System (ADS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.

    2016-07-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The instrument main scientific goal is to achieve polarization measurement of the Lyman-α line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. The optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly-α profiles. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-α is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

  19. Identifying a Damped Lyman Alpha Source in the Spectrum of Quasar SDSS J233544.18+150118.3

    NASA Astrophysics Data System (ADS)

    Browning, Benjamin; Takamiya, Marianne Y.; Chun, Mark Richard; Kulkarni, Varsha P.; Gharanfoli, Soheila

    2014-06-01

    We present the nebular properties of a DLA along the line-of-sight of the quasar SDSS J233544.18+150118.3. We obtained two IFU spectra with UH 2.2m/SNIFS approximately 4 arcseconds south of the quasar. A careful analysis of the sky spectra surrounding the DLA then allowed us to generate a high SNR sky spectrum. Through a close examination of our reduced images, we have successfully identified a faint but distinct source of [OII] emission at the same redshift reported elsewhere for the damped Lyman-Alpha absorption lines in the quasar's spectrum. Further investigation also revealed the presence of lower intensity H-beta emission lines at the same redshift. Based on the relative intensities of the [OII] and H-beta lines in the spectrum of this relatively dim intervening galaxy, we present some initial conclusions regarding nebular abundance and star formation rate in this newly identified galaxy, and how its properties compare with a representative sample of galaxies at similar redshifts and luminosities.

  20. Decaying neutrinos and the abundance of He I in Lyman limit systems and Lyman-Alpha clouds

    NASA Astrophysics Data System (ADS)

    Sciama, D. W.

    1994-02-01

    In this Letter we show that photons from decaying intergalactic neutrinos could explain an anomaly recently found by Reimers & Vogel in the abundance of He I in three high-redshift Lyman limit systems of the Quasi Stellar Object (QSO) HS 1700+6416. Their data and analysis yield He I column densities approximately 5 times greater than given by their model calculations. They conclude that the effective hydrogen ionizing flux is about eight times greater than the helium ionizing flux. Such a steep spectrum is not expected for the integrated radiation from QSOs but would arise naturally in the decaying neutrino theory, whose decay photons can ionize hydrogen but not helium. Similar considerations show that the decaying neutrino theory is compatible with the upper limits found by Reimers & Vogel for the column density of He I in three Lyman alpha clouds along the line of sight to HS 1700+6416. Both these conclusions depend on the absence of significant intergalactic absorption of photons capable of ionizing He II. This assumption can be tested by searching for a He II Gunn-Peterson absorption trough in the spectra of suitable QSOs.

  1. Analysis of hydrogen Lyman-alpha observations of the coma of Comet P/Halley near the perihelion

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, M. L.; Combi, Michael R.

    1995-01-01

    The pioneer Venus Orbiter Ultraviolet Spectrometer measurements of the Lyman-alpha intensity of atomic hydrogen excited by solar resonance scattering in the coma of Comet P/Halley acquired from December 28, 1985, to January 6, 1986, and from January 31, 1986, to March 6, 1986, are simulated with the Monte Carlo Particle Trajectory Model corrected for optical depth effects. Spatially detailed comparisons between data and model show excellent agreement and are used to infer that the highest cometary activity may not be at perihelion, but about 2 1/2 weeks before. An improved set of H2O production rates is presented for the period of time that the spectrometer was observing and is found to be consistent with the rates from other types of measurements. The apparent discrepancy between Stewart (1987) in early March and International Ultraviolet Explorer OH derived rates is resolved. The problem with the conversion of 18-cm OH radio brightness to H2O production rates is also discussed.

  2. Far-UV Spectral Mapping of Lunar Composition, Porosity, and Space Weathering: LRO Lyman Alpha Mapping Project (LAMP)

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Greathouse, T. K.; Mandt, K.; Gladstone, R.; Liu, Y.; Hendrix, A. R.; Hurley, D.; Cahill, J. T.; Stickle, A. M.; Egan, A.; Kaufmann, D. E.; Grava, C.; Pryor, W. R.

    2016-12-01

    Far ultraviolet reflectance measurements of the Moon, icy satellites, comets, and asteroids obtained within the last decade have ushered in a new era of scientific advancement for UV surface investigations. The Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) has demonstrated an innovative nightside observing technique, putting a new light on permanently shadowed regions (PSRs) and other features on the Moon. Dayside far-UV albedo maps complement the nightside data, and LRO's polar orbit and high data downlink capabilities enable searches for diurnal variations in spectral signals. We'll discuss the strengths of the far-UV reflectance imaging spectroscopy technique with respect to several new LAMP results. Detections of water frost and hydration signatures near 165 nm, for example, provide constraints on composition that complement infrared spectroscopy, visible imaging, neutron spectroscopy, radar, and other techniques. At far-UV wavelengths a relatively blue spectral slope is diagnostic of space weathering, which is opposite of the spectral reddening indicator of maturity at wavelengths longward of 180 nm. By utilizing natural diffuse illumination sources on the nightside the far-UV technique is able to identify relative increases in porosity within the PSRs, and provides an additional tool for determining relative surface ages. Prospects for future studies are further enabled by a new, more sensitive dayside operating mode enacted during the present LRO mission extension.

  3. No Overdensity of Lyman-Alpha Emitting Galaxies around a Quasar at z ∼ 5.7

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, C.; Bañados, E.; Decarli, R.; Farina, E. P.; Venemans, B. P.; Walter, F.; Overzier, R.

    2017-01-01

    Bright quasars, observed when the universe was less than one billion years old (z > 5.5), are known to host massive black holes (∼109 M⊙) and are thought to reside in the center of massive dark matter overdensities. In this picture, overdensities of galaxies are expected around high-redshift quasars. However, observations based on the detection of Lyman-break galaxies (LBGs) around these quasars do not offer a clear picture: this may be due to the uncertain redshift constraints of LBGs, which are solely selected through broadband filters. To circumvent such uncertainties, we here perform a search for Lyman-alpha emitting galaxies (LAEs) in the field of the quasar PSO J215.1512–16.0417 at z ∼ 5.73, through narrowband deep imaging with FORS2 at the Very Large Telescope. We study an area of 37 arcmin2, i.e., ∼206 comoving Mpc2 at the redshift of the quasar. We find no evidence of an overdensity of LAEs in the quasar field with respect to blank-field studies. Possible explanations for these findings may be that our survey volume is too small, or that the strong ionizing radiation from the quasar hinders galaxy formation in its immediate proximity. Another possibility is that these quasars are not situated in the dense environments predicted by some simulations.

  4. In situ measurement of water vapor in the stratosphere with a cryogenically cooled Lyman-alpha hygrometer

    NASA Technical Reports Server (NTRS)

    Schwab, J. J.; Weinstock, E. M.; Nee, J. B.; Anderson, J. G.

    1990-01-01

    In situ measurements of water vapor in the stratosphere with a new instrument are reported. The instrument has been designed to observe daytime water vapor from a multiinstrument balloon gondola that simultaneously measures free radicals such as OH, HO2, and O3 in the stratosphere up to 40 km. Lyman-alpha photofragment fluorescence is used to measure water molecules in a flowing sample of ambient air. A brief description of the instrument is given, followed by the results of the first four balloon flights. The measured mixing ratio for this flight varies from 3.0-5.5 ppmv over the altitude range of 17-34 km. Adjustments in the cooling protocol for the flights of July 6, 1988, July 28, and August 25, 1989, result in a much higher signal-to-noise ratio. Profiles from these three flights are similar to, but somewhat higher, than the 1987 profile. Implications of measurements are discussed, as are the issues of short- and long-term variability of stratospheric water vapor.

  5. The Lyman-alpha glow of gas falling into the dark matter halo of a z = 3 galaxy.

    PubMed

    Weidinger, Michael; Møller, Palle; Fynbo, Johan Peter Uldall

    2004-08-26

    Quasars are the visible signatures of gas falling into the deep potential well of super-massive black holes in the centres of distant galaxies. It has been suggested that quasars are formed when two massive galaxies collide and merge, leading to the prediction that quasars should be found in the centres of regions of largest overdensity in the early Universe. In dark matter (DM)-dominated models of the early Universe, massive DM halos are predicted to attract the surrounding gas, which falls towards their centres. The neutral gas is not detectable in emission by itself, but gas falling into the ionizing cone of such a quasar will glow in the Lyman-alpha line of hydrogen, effectively imaging the DM halo. Here we present a Lyalpha image of a DM halo at redshift z = 3, along with a two-dimensional spectrum of the gaseous halo. Our observations are best understood in the context of the standard model for DM haloes; we infer a mass of (2 - 7) x 10(12) solar masses (M(\\circ)) for the halo.

  6. Clasp/SJ Observation of Time Variations of Lyman-Alpha Emissions in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Ishikawa, S.; Kubo, M.; Katsukawa, Y.; Kano, R.; Narukage, N.; Ishikawa, R.; Bando, T.; Winebarger, A.; Kobayashi, K.; Trujillo Bueno, J.; hide

    2016-01-01

    The Chromospheric Lyman-alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment launched on September 3, 2015 to investigate the solar chromosphere, and the slit-jaw (SJ) optical system took Lya images with the high time cadence of 0.6 s. By the CLASP/SJ observation, many time variations in the solar chromosphere with the time scale of <1 minute were discovered (see the poster by Kubo et al., Pa-13). We focused on an active region and investigated the short (<30 s) time variations and relation to the coronal structure observed by SDO/AIA. We compared the Ly(alpha) time variations at footpoints of coronal magnetic fields observed by AIA 211 Å (approx.2 MK) and AIA 171 Å (0.6 MK), and non-loop regions. As the result, we found the <30 s Ly(alpha) time variations had more in the footpoint regions. On the other hand, the <30 s time variations had no dependency on the temperature of the loop.

  7. Analysis of hydrogen Lyman-alpha observations of the coma of Comet P/Halley near the perihelion

    NASA Technical Reports Server (NTRS)

    Smyth, William H.; Marconi, M. L.; Combi, Michael R.

    1995-01-01

    The pioneer Venus Orbiter Ultraviolet Spectrometer measurements of the Lyman-alpha intensity of atomic hydrogen excited by solar resonance scattering in the coma of Comet P/Halley acquired from December 28, 1985, to January 6, 1986, and from January 31, 1986, to March 6, 1986, are simulated with the Monte Carlo Particle Trajectory Model corrected for optical depth effects. Spatially detailed comparisons between data and model show excellent agreement and are used to infer that the highest cometary activity may not be at perihelion, but about 2 1/2 weeks before. An improved set of H2O production rates is presented for the period of time that the spectrometer was observing and is found to be consistent with the rates from other types of measurements. The apparent discrepancy between Stewart (1987) in early March and International Ultraviolet Explorer OH derived rates is resolved. The problem with the conversion of 18-cm OH radio brightness to H2O production rates is also discussed.

  8. Escape of about five per cent of Lyman-alpha photons from high-redshift star-forming galaxies.

    PubMed

    Hayes, Matthew; Ostlin, Göran; Schaerer, Daniel; Mas-Hesse, J Miguel; Leitherer, Claus; Atek, Hakim; Kunth, Daniel; Verhamme, Anne; de Barros, Stéphane; Melinder, Jens

    2010-03-25

    The Lyman-alpha (Lyalpha) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of the line, however, means that Lyalpha photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be greatly enhanced. This implies that the Lyalpha luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f(esc)) of Lyalpha photons has been performed at high redshifts. Here we report that the average f(esc) from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lyalpha and Halpha. This implies that numerous conclusions based on Lyalpha-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lyalpha to be detected by standard selection criteria. Both samples show an anti-correlation of f(esc) with dust content, and we show that Lyalpha- and Halpha-selection recovers populations that differ substantially in dust content and f(esc).

  9. Interplanetary Lyman-alpha observations with UVS on Voyager - Data, first analysis, implications for the ionization lifetime

    NASA Technical Reports Server (NTRS)

    Lallement, R.; Bertaux, J. L.; Chassefiere, E.; Sandel, B.

    1991-01-01

    A fraction of the measurements of the interplanetary Lyman-alpha background collected by the Ultraviolet Spectrometer during the cruise of Voyager 1 and 2 between 1977 and 1983 is presented and compared with results from current models of the interaction between the sun and the neutral interstellar gas. An analysis of two sets of data indicates that the same H atom lifetime cannot fit all the data. The actual ionization rate is inferred from the intensity gradient in the maximum emissivity region observed from a sidewind Voyager position at 6 AU, yielding a lifetime of about 1 exp 6 s at 1 AU, whereas the upwind/downwind intensity ratio in the inner solar system favors 2 x 10 exp 6 s, as measured by Voyager, Prognoz, and Pioneer Venus instruments. It is proposed that there is an excess of Ly-alpha emission in the downwind region which forces the model toward excessively high values of the lifetime. Possible explanations are discussed, like incorrect modeling or an additional source of H atoms.

  10. Condensation during gravity driven ECC: Experiments with PACTEL

    SciTech Connect

    Munther, R.; Kalli, H.; Kouhia, J.

    1995-09-01

    This paper provides the results of the second series of gravity driven emergency core cooling (ECC) experiments with PACTEL (Parallel Channel Test Loop). The simulated accident was a small break loss-of-coolant accident (SBLOCA) with a break in a cold leg. The ECC flow was provided from a core makeup tank (CMT) located at a higher elevation than the main part of the primary system. The CMT was pressurized with pipings from the pressurizer and a cold leg. The tests indicated that steam condensation in the CMT can prevent ECC and lead to core uncovery.

  11. A gravity-driven low-rate particle feeder

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Yin; Gowan, George; Shi, Guang; Wan, Shaolong

    2008-08-01

    A gravity-driven particle feeder has been designed, fabricated, and tested to feed particles at low rates. A solenoid and a digital timer regulate the feed rate. This design avoids moving parts at the system periphery and thus avoids possible air leakages. It does not use pressurized gas to blow the particles into the desired location and thus pressure disturbance is avoided. The feeder can be operated at either a batch or a near continuous mode. Moreover, feeding a single large particle at a desired time is also feasible in such gaseous environments.

  12. UV Spectral Variability and the Lyman-Alpha Forest in the Lensed Quasar Q0957+561

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Michalitsianos, A. G.; Nguyen, Q. T.; Hill, R. J.

    1999-01-01

    Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and B were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and O VI lambda 1037 emission lines reported in IUE (International Ultraviolet Explorer) spectra. The fluxes in these lines vary on a time scale of weeks in the local rest frame (LRF), independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W (sub lambda) greater than or equal to 0.3 Angstroms in the LRF not previously identified as interstellar lines, metal lines, or higher order Lyman lines were taken to be LY-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with approx. 1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W (sub lambda) greater than or equal to 0.3 Angstroms appear at 42 distinct wavelengths in the spectra of the two images. Two absorption lines in the spectrum of image A have no counterpart at that wavelength in the spectrum of image B, and two lines in image B have no counterpart in image A. Based on the separation of the lines of sight at the redshift of the absorption lines appearing in only one spectrum, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance of 79 (+34, -26) h (sub 50) (sup -1) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension is the radius. (We adopt H (sub 0)= 50 h (sub 50) km s (sup -1) kpc (sup -1), q (sub 0) = 1/2, and LAMBDA = 0 throughout the paper.) The two limits define the 68% confidence interval on the

  13. Basal entrainment by Newtonian gravity-driven flows

    NASA Astrophysics Data System (ADS)

    Bates, Belinda M.; Andreini, Nicolas; Ancey, Christophe

    2016-05-01

    Gravity-driven flows can erode the bed along which they descend and increase their mass by a factor of 10 or more. This process is called "basal entrainment." Although documented by field observations and laboratory experiments, it remains poorly understood. This paper examines what happens when a viscous gravity-driven flow generated by releasing a fixed volume of incompressible Newtonian fluid encounters a stationary layer (composed of fluid with the same density and viscosity). Models based on depth-averaged mass and momentum balance equations deal with bed-flow interfaces as shock waves. In contrast, we use an approach involving the long-wave approximation of the Navier-Stokes equations (lubrication theory), and in this context, bed-flow interfaces are acceleration waves that move quickly across thin stationary layers. The incoming flow digs down into the bed, pushing up downstream material, thus advancing the flow front. Extending the method used by Huppert ["The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface," J. Fluid Mech. 121, 43-58 (1982)] for modeling viscous dam-break waves, we end up with a nonlinear diffusion equation for the flow depth, which is solved numerically. Theory is compared with experimental results. Excellent agreement is found in the limit of low Reynolds numbers (i.e., for flow Reynolds numbers lower than 20) for the front position over time and flow depth profile.

  14. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  15. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    NASA Technical Reports Server (NTRS)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  16. Water Production Rates from SOHO/SWAN H Lyman-alpha Observations of Active and Moderately Active Comets

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Makinen, J. T.; Henry, N. J.; Bertaux, J. L.; Quemerais, E.

    2006-09-01

    SWAN, the all-sky hydrogen Lyman-alpha camera on the SOHO spacecraft makes routine all-sky images of the interplanetary neutral hydrogen around the sun and thus monitors the effect of the variable solar wind on its distribution. SWAN has an ongoing campaign to make special observations of comets, both short and long period ones, in addition to making serendipitous observations of comets as part of the all-sky monitoring program. We report here on a study of the moderately active comets observed by SWAN during the period of 1999-2004: 1999 H1 Lee, 1999 T1 McNaught Hartley, 2000 WM1 LINEAR, 2001 A2 LINEAR, 2002 C1 Ikeya Zhang, and 2004 Q4 NEAT. SWAN is able to observe comets almost continuously over their whole visible apparition and provide excellent temporal coverage of the gas production. In addition to calculating production rates from each image, we also present some preliminary results using our time-resolved model (TRM) that analyzes an entire sequence of images over many days to several weeks, and from which 1-day or 2-day average water production rates can be extracted over continuous periods of several days to weeks. We also present single image results for comet 1995 O1 Hale-Bopp extending our previous work from 5 months around perihelion to over a year, as well as preliminary results from the TRM. This work was partially supported by grant NNG05GF06G from the NASA Planetary Astronomy Program. SOHO is a mission of international cooperation between ESA and NASA. SWAN was financed in France by CNES with support from CNRS for staff salaries and in Finland by TEKES and the Finnish Meteorological Institute.

  17. First Results from the Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) Survey: Cosmological Reionization at z ˜ 7

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Ya; Wang, Junxian; Rhoads, James; Infante, Leopoldo; Malhotra, Sangeeta; Hu, Weida; Walker, Alistair R.; Jiang, Linhua; Jiang, Chunyan; Hibon, Pascale; Gonzalez, Alicia; Kong, Xu; Zheng, XianZhong; Galaz, Gaspar; Barrientos, L. Felipe

    2017-06-01

    We present the first results from the ongoing Lyman Alpha Galaxies in the Epoch of Reionization (LAGER) project, which is the largest narrowband survey for z ˜ 7 galaxies to date. Using a specially built narrowband filter NB964 for the superb large-area Dark Energy Camera (DECam) on the NOAO/CTIO 4 m Blanco telescope, LAGER has collected 34 hr NB964 narrowband imaging data in the 3 deg2 COSMOS field. We have identified 23 Lyα Emitter candidates at z = 6.9 in the central 2-deg2 region, where DECam and public COSMOS multi-band images exist. The resulting luminosity function (LF) can be described as a Schechter function modified by a significant excess at the bright end (four galaxies with L Lyα ˜ 1043.4±0.2 erg s-1). The number density at L Lyα ˜ 1043.4±0.2 erg s-1 is little changed from z = 6.6, while at fainter L Lyα it is substantially reduced. Overall, we see a fourfold reduction in Lyα luminosity density from z = 5.7 to z = 6.9. Combined with a more modest evolution of the continuum UV luminosity density, this suggests a factor of ˜3 suppression of Lyα by radiative transfer through the z ˜ 7 intergalactic medium (IGM). It indicates an IGM neutral fraction of x H i ˜ 0.4-0.6 (assuming Lyα velocity offsets of 100-200 km s-1). The changing shape of the Lyα LF between z ≲ 6.6 and z = 6.9 supports the hypothesis of ionized bubbles in a patchy reionization at z ˜ 7.

  18. Performance characterization of UV science cameras developed for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP)

    NASA Astrophysics Data System (ADS)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, D.; Beabout, B.; Stewart, M.

    2014-07-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras will be built and tested for flight with the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The goal of the CLASP mission is to observe the scattering polarization in Lyman-α and to detect the Hanle effect in the line core. Due to the nature of Lyman-α polarizationin the chromosphere, strict measurement sensitivity requirements are imposed on the CLASP polarimeter and spectrograph systems; science requirements for polarization measurements of Q/I and U/I are 0.1% in the line core. CLASP is a dual-beam spectro-polarimeter, which uses a continuously rotating waveplate as a polarization modulator, while the waveplate motor driver outputs trigger pulses to synchronize the exposures. The CCDs are operated in frame-transfer mode; the trigger pulse initiates the frame transfer, effectively ending the ongoing exposure and starting the next. The strict requirement of 0.1% polarization accuracy is met by using frame-transfer cameras to maximize the duty cycle in order to minimize photon noise. The CLASP cameras were designed to operate with ≤ 10 e-/pixel/second dark current, ≤ 25 e- read noise, a gain of 2.0 +- 0.5 and ≤ 1.0% residual non-linearity. We present the results of the performance characterization study performed on the CLASP prototype camera; dark current, read noise, camera gain and residual non-linearity.

  19. SED Fitting with Markov Chain Monte Carlo: The Case of z=2.1 Lyman Alpha Emitters

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana; Guaita, L.; Gawiser, E.; Padilla, N.

    2011-01-01

    The analysis of Spectral Energy Distributions (SEDs) of faraway galaxies provides us with valuable information on how the structures in the Universe evolved into what we see today. This requires a correct interpretation of data which are constantly improving in volume and precision, which can only be done by developing adequately sophisticated instruments of statistical analysis. We present our Markov Chain Monte Carlo (MCMC) algorithm, which is able to sample large parameter spaces and complicated star formation histories efficiently and can handle multiple stellar populations. This instrument is key for obtaining reliable estimates of SED parameters (e.g. age, stellar mass, dust content) and their uncertainties. It also reveals degeneracies between parameters and illustrates which physical quantities are best suited to describe certain samples of galaxies. We apply this method to the sample of 250 z = 2.1 Lyman Alpha Emitters (LAEs) from Guaita et al (2010a). High-redshift LAEs are of great interest because they probe the faint end of the galaxy luminosity function, where the bulk of galaxies reside, and have been shown to be building blocks of Milky-Way type galaxies today. This analysis complements the ones presented for z=3.1 LAEs in Gawiser et al (2007) and for a number of subsamples of the same z=2.1 LAE sample in Guaita et al (2010b), which were carried out using a grid-based maximum likelihood method. Our results confirm and strengthen the findings that LAEs at z = 2.1 have similar stellar masses to, but are dustier than, z=3.1 LAEs; typical values are respectively M* 5*108 MSun and Av 0.9. The current data don't allow us to discriminate among different star formation histories. We gratefully acknowledge support from NSF, DOE and NASA.

  20. In situ measurement of water vapor in the stratosphere with a cryogenically cooled Lyman-Alpha hygrometer

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Weinstock, E. M.; Nee, J. B.; Anderson, J. G.

    1990-08-01

    In situ measurements of water vapor in the stratosphere with a new instrument are reported. The instrument has been designed to observe daytime water vapor from a multi-instrument balloon gondola that simultaneously measures free radicals such as OH, HO2, and O3 in the stratosphere up to 40 km. Lyman-alpha photofragment fluorescence is used to measure water molecules in a flowing sample of ambient air. Outgassing from the interior walls of the instrument is avoided by cooling the walls with liquid nitrogen to a temperature near or below the dewpoint of the environment and by drawing air through the instrument with a fan. A brief description of the instrument is given, followed by the results of the first our balloon flights. Because frost formation in the scattering chamber resulted in a large and variable background, the data from July 15, 1987, have a relatively modest signal-to-noise ratio. The measured mixing ratio for this flight varies from 3.0-5.5 ppmv over the altitude range of 17-34 km. Adjustments in the cooling protocol for the flights of July 6, 1988, July 28, and August 25, 1989, result in a much higher signal-to-noise ratio. Profiles from these three flights are similar to, but somewhat higher, than the 1987 profile. The July 1988 and August 1989 profiles exhibit the highest mixing ratios, reaching peak values of about 6.5 ppmv near 35 km. Implications of these four measurements are discussed, as are the issues of short- and long-term variability of stratospheric water vapor.

  1. Photonic crystal beads from gravity-driven microfluidics.

    PubMed

    Gu, Hongcheng; Rong, Fei; Tang, Baocheng; Zhao, Yuanjin; Fu, Degang; Gu, Zhongze

    2013-06-25

    This Letter reports a simple method for the mass production of 3D colloidal photonic crystal beads (PCBs) by using a gravity-driven microfluidic device and online droplet drying method. Compared to traditional methods, the droplet templates of the PCBs are generated by using the ultrastable gravity as the driving force for the microfluidics, thus the PCBs are formed with minimal polydispersity. Moreover, drying of the droplet templates is integrated into the production process, and the nanoparticles in the droplets self-assemble online. Overall, this process results in PCBs with good morphology, low polydispersity, brilliant structural colors, and narrow stop bands. PCBs could be bulk generated by this process for many practical applications, such as multiplex-encoded assays and the construction of novel optical materials.

  2. CONTINUUM SUBTRACTING LYMAN-ALPHA IMAGES: LOW-REDSHIFT STUDIES USING THE SOLAR BLIND CHANNEL OF HST/ACS

    SciTech Connect

    Hayes, Matthew; Oestlin, Goeran; Mas-Hesse, J. Miguel; Kunth, Daniel E-mail: ostlin@astro.su.se E-mail: kunth@iap.fr

    2009-09-15

    We are undertaking an imaging study of local star-forming galaxies in the Lyman-alpha (Ly{alpha}) emission line using the Solar Blind Channel (SBC) of the Advanced Camera for Surveys onboard the Hubble Space Telescope. Observations have been obtained in Ly{alpha} and H-alpha (H{alpha}) and six line-free continuum filters between {approx}1500 A and the I band. In a previous article, we demonstrated that the production of Ly{alpha} line-only images (i.e., continuum subtraction) in the SBC-only data set is nontrivial and that supporting data is a requirement. We here develop various methods of continuum subtraction and assess their relative performance using a variety of spectral energy distributions (SEDs) as input. We conclude that simple assumptions about the behavior of the ultraviolet continuum consistently lead to results that are wildly erroneous, and determine that a spectral fitting approach is essential. Moreover, fitting of a single component stellar or stellar+nebular spectrum is not always sufficient for realistic template SEDs and, in order to successfully recover the input observables, care must be taken to control the contribution of nebular gas and any underlying stellar population. Independent measurements of the metallicity must first be obtained, while details of the initial mass function play only a small role. We identify the need to bin together pixels in our data to obtain signal-to-noise ratios (S/Ns) of around 10 in each band before processing. At S/N = 10, we are able to recover Ly{alpha} fluxes accurate to within around 30% for Ly{alpha} lines with intrinsic equivalent width (W {sub Ly{alpha}}) of 10 A. This accuracy improves to {approx}<10% for W {sub Ly{alpha}} = 100 A. We describe the method of image processing applied to the observations presented in Oestlin et al. and the associated data release. We also present simulations for an observing strategy for an alternative low-redshift Ly{alpha} imaging campaign using ACS/SBC using adjacent

  3. Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is

  4. Trident: A three-pronged galaxy survey. I. Lyman alpha emitting galaxies at z ~ 2 in GOODS North

    NASA Astrophysics Data System (ADS)

    Sandberg, A.; Guaita, L.; Östlin, G.; Hayes, M.; Kiaeerad, F.

    2015-08-01

    Context. Lyman alpha (Lyα) emitting galaxies (LAEs) are used to probe the distant universe and are therefore important for galaxy evolution studies and for providing clues to the nature of the epoch of reionization. However, the exact circumstances under which Lyα escapes a galaxy are still not fully understood. Aims: The Trident project is designed to simultaneously examine Lyα, Hα, and Lyman continuum emission from galaxies at redshift z ~ 2, thus linking these three aspects of ionizing radiation in galaxies. In this paper, we outline the strategy of this project and examine the properties of LAEs in the GOODS North field. Methods: We performed a narrowband LAE survey in GOODS North using existing filters and two custom made filters at the Nordic Optical Telescope with MOSCA. We use complementary broadband archival data in the field to make a careful candidate selection and perform optical to near-IR SED fitting. We also estimate far-IR luminosities by matching our candidates to detections in Spitzer/MIPS 24 μm and Herschel/PACS catalogues. Results: We find a total of 25 LAE candidates, probing mainly the bright end of the LAE luminosity function with LLyα ~ 1-15 × 1042 erg s-1. They display a range of masses of ~ 0.5-50 × 109M⊙, and average ages from a few tens of Myr to 1 Gyr when assuming a constant star formation history. The majority of our candidates also show signs of recent elevated star formation. Three candidates have counterparts in the GOODS-Herschel far-IR catalogue, with luminosities consistent with ultra-luminous infrared galaxies (ULIRGs). Conclusions: The wide range of parameters derived from our SED fitting, as well as part of our sample being detected as ULIRGs, seems to indicate that at these Lyα luminosities, LAEs do not necessarily have to be young dwarfs, and that a lack of dust is not required for Lyα to escape. Based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific

  5. At the Heart of Blobs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's concept illustrates one possible answer to the puzzle of the 'giant galactic blobs.' These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other.

    Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs.

    If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept.

  6. Lyman-Alpha aurora

    SciTech Connect

    Durrance, S.T.; Clarke, J.T.

    1984-10-01

    The existence of intense and variable H Ly a emission from Uranus is demonstrated utilizing the monochromatic imaging capabilities of the International Ultraviolet Explorer satellite. A series of 14 observations, using the IUE short wavelength spectrograph in low dispersion and covering the period from 3 March 1982 through 2 September 1983, shows the disk averaged Ly a brightness of Uranus to vary between 690 and 2230 Rayleighs. Model calculations indicates that 400 R of this emission can be attributed to resonant scattering of solar Ly a radiation. An upper limit of 100 R is obtained for the Raman scattering of solar Ly a by H2 (1280 A). This implies that 300 R is contributed to the planetary Ly a emission by Rayleigh scattering. In addition to being unexpectedly strong, the Uranian Ly a emission has been observed to vary by a factor of two in one 24 hr period and by about 50% in one 5 hr period.

  7. The Physical Properties of z ~ 2 Lyman-alpha Emitters and their Use as Tracers of the Star Forming Galaxy Population

    NASA Astrophysics Data System (ADS)

    Hagen, Alex; Ciardullo, Robin; Gronwall, Caryl; Bridge, Joanna; Gebhardt, Henry; Zeimann, Gregory; HETDEX Team

    2017-01-01

    Lyman-alpha emitting galaxies (LAEs) provide a unique way to sample low-mass galaxies at high redshift, and are complementary to various photometric selection techniques that generally identify massive high-redshift galaxies. We discuss the physical and morphological properties of z~2 LAEs found photometrically in narrow-band studies and spectroscopically via the HETDEX Pilot Survey. We use spectral energy distribution (SED) fitting of broad-band photometry and morphological analyses of HST rest-frame UV and optical imaging to show that LAEs exhibit a wide range of physical properties. We find that z~2 LAEs extend over a range of 2.5 dex in stellar mass, that Lyman-alpha luminosity is not correlated with stellar mass, and that not all LAEs are dust-poor objects. Furthermore, when we compare the properties of our LAEs to those of z~2 galaxies selected via their their rest-frame optical emission lines, we find no significant differences between the two samples. This suggests that LAEs are simply pulled from the epoch’s general star forming galaxy population. Finally, we comment on the potential of HETDEX for transformative studies of LAEs and the general z~2 population

  8. On the Accuracy of In Situ Water Vapor Measurements in the Troposphere and Lower Stratosphere with the Harvard Lyman-Alpha Hygrometer

    NASA Technical Reports Server (NTRS)

    Hintsa, Eric J.; Weinstock, Elliot M.; Anderson, James G.; May, Randy D.; Hurst, Dale F.

    1999-01-01

    In an effort to better constrain atmospheric water vapor mixing ratios and to understand the discrepancies between different measurements of water vapor in the stratosphere and troposphere, we have carefully examined data from the Harvard Lyman-alpha photofragment fluorescence hygrometer, which has flown on the NASA ER-2 aircraft from 1992 through 1998. The instrument is calibrated in the laboratory before and after each deployment, and the calibration is checked by direct absorption measurements in the troposphere. On certain flights, the ER-2 flew level tracks during which water vapor varied by up to 80 ppmv, under nearly constant atmospheric conditions. These flights provide a stringent test of our calibration via direct absorption and indicate agreement to within 3%. During the 1997 Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) mission, our Lyman-alpha instrument was compared with a new diode laser hygrometer from the Jet Propulsion Laboratory. Overall agreement was 5% during the June/July deployment and 1% for potential temperatures of 490 to 540 K. The accuracy of our instrument is shown to be +/-5 %, with an additional offset of at most 0.1 ppmv. Data from this instrument, combined with simultaneous measurements of CH4, and H2, are therefore ideal for studies of the hydrogen budget of the lower stratosphere.

  9. On the Accuracy of In Situ Water Vapor Measurements in the Troposphere and Lower Stratosphere with the Harvard Lyman-Alpha Hygrometer

    NASA Technical Reports Server (NTRS)

    Hintsa, Eric J.; Weinstock, Elliot M.; Anderson, James G.; May, Randy D.; Hurst, Dale F.

    1999-01-01

    In an effort to better constrain atmospheric water vapor mixing ratios and to understand the discrepancies between different measurements of water vapor in the stratosphere and troposphere, we have carefully examined data from the Harvard Lyman-alpha photofragment fluorescence hygrometer, which has flown on the NASA ER-2 aircraft from 1992 through 1998. The instrument is calibrated in the laboratory before and after each deployment, and the calibration is checked by direct absorption measurements in the troposphere. On certain flights, the ER-2 flew level tracks during which water vapor varied by up to 80 ppmv, under nearly constant atmospheric conditions. These flights provide a stringent test of our calibration via direct absorption and indicate agreement to within 3%. During the 1997 Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) mission, our Lyman-alpha instrument was compared with a new diode laser hygrometer from the Jet Propulsion Laboratory. Overall agreement was 5% during the June/July deployment and 1% for potential temperatures of 490 to 540 K. The accuracy of our instrument is shown to be +/-5 %, with an additional offset of at most 0.1 ppmv. Data from this instrument, combined with simultaneous measurements of CH4, and H2, are therefore ideal for studies of the hydrogen budget of the lower stratosphere.

  10. Basal entrainment by Newtonian gravity-driven flows

    NASA Astrophysics Data System (ADS)

    Bates, Belinda; Andreini, Nicolas; Ancey, Christophe

    2016-04-01

    Gravity-driven flows can erode the bed along which they descend and increase their mass by a factor of 10 or more. This process is called basal entrainment. Although documented by field observations and laboratory experiments, it remains poorly understood. We look into this issue by studying eroding dam-break waves. More specifically we would like to determine what happens when a viscous gravity-driven flow generated by releasing a fixed volume of incompressible Newtonian fluid encounters a stationary erodible layer (composed of fluid with the same density and viscosity). Models based on depth-averaged mass and momentum balance equations deal with bed-flow interfaces as shock waves. In contrast, we use an approach involving the long-wave approximation of the Navier-Stokes equations (lubrication theory), and in this context, bed-flow interfaces are acceleration waves that move quickly across thin stationary layers. The incoming flow digs down into the bed, pushing up downstream material, thus advancing the flow front. Extending the method used by Huppert [J. Fluid Mech. 121, 43--58 (1982)] for modelling viscous dam-break waves, we end up with a nonlinear diffusion equation for the flow depth, which is solved numerically. Theory is compared with experimental results. Excellent agreement is found in the limit of low Reynolds numbers (i.e., for flow Reynolds numbers lower than 20) for the front position over time and flow depth profile. The Newtonian model has sometimes been used to describe the flow behaviour of natural materials such as snow and debris suspensions, but the majority of existing approaches rely on more elaborate constitutive equations. So there is no direct application of the results presented here to real flow conditions. Yet, our study sheds light on the mechanisms involved in basal entrainment. We provide evidence that the whole layer of loose material is entrained quickly once the flow makes contact with the erodible layer. As this process occurs

  11. Biodegradation of Microcystins during Gravity-Driven Membrane (GDM) Ultrafiltration

    PubMed Central

    Kohler, Esther; Villiger, Jörg; Posch, Thomas; Derlon, Nicolas; Shabarova, Tanja; Morgenroth, Eberhard; Pernthaler, Jakob; Blom, Judith F.

    2014-01-01

    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L−1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified. PMID:25369266

  12. Noncommutative minisuperspace, gravity-driven acceleration, and kinetic inflation

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Moniz, Paulo Vargas

    2014-10-01

    In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the Hamiltonian equations of motion for a spatially flat Friedmann-Lemaître-Robertson-Walker universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on the noncommutative parameter as well as the momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the noncommutative parameter. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.

  13. Biodegradation of microcystins during gravity-driven membrane (GDM) ultrafiltration.

    PubMed

    Kohler, Esther; Villiger, Jörg; Posch, Thomas; Derlon, Nicolas; Shabarova, Tanja; Morgenroth, Eberhard; Pernthaler, Jakob; Blom, Judith F

    2014-01-01

    Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L(-1) MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified.

  14. Gravity-Driven Thin Film Flow of an Ellis Fluid.

    PubMed

    Kheyfets, Vitaly O; Kieweg, Sarah L

    2013-12-01

    The thin film lubrication approximation has been studied extensively for moving contact lines of Newtonian fluids. However, many industrial and biological applications of the thin film equation involve shear-thinning fluids, which often also exhibit a Newtonian plateau at low shear. This study presents new numerical simulations of the three-dimensional (i.e. two-dimensional spreading), constant-volume, gravity-driven, free surface flow of an Ellis fluid. The numerical solution was validated with a new similarity solution, compared to previous experiments, and then used in a parametric study. The parametric study centered around rheological data for an example biological application of thin film flow: topical drug delivery of anti-HIV microbicide formulations, e.g. hydroxyethylcellulose (HEC) polymer solutions. The parametric study evaluated how spreading length and front velocity saturation depend on Ellis parameters. A lower concentration polymer solution with smaller zero shear viscosity (η0), τ1/2, and λ values spread further. However, when comparing any two fluids with any possible combinations of Ellis parameters, the impact of changing one parameter on spreading length depends on the direction and magnitude of changes in the other two parameters. In addition, the isolated effect of the shear-thinning parameter, λ, on the front velocity saturation depended on τ1/2. This study highlighted the relative effects of the individual Ellis parameters, and showed that the shear rates in this flow were in both the shear-thinning and plateau regions of rheological behavior, emphasizing the importance of characterizing the full range of shear-rates in rheological measurements. The validated numerical model and parametric study provides a useful tool for future steps to optimize flow of a fluid with rheological behavior well-described by the Ellis constitutive model, in a range of industrial and biological applications.

  15. Large scale opacity fluctuations in the Lyman alpha forest: Do QSOs dominate the UVB at z˜5.5-6?

    NASA Astrophysics Data System (ADS)

    Chardin, J.; Puchwein, E.; Haehnelt, M. G.

    2016-12-01

    The Lyman-alpha forest in the post-reionization Universe shows surprisingly large opacity fluctuations over large (50 cMpc/h) spatial scales at 5.4≤ z≤5.8. These fluctuations are modelled using a hybrid approach utilizing the large volume Millennium simulation to predict the spatial distribution of QSOs combined with smaller scale post-processed radiative transfer simulations that account for the galaxy contribution. Realictic absorption spectra that account for the contribution of galaxies and QSOs to the ionising UV background are then produced. This improved model confirm our earlier findings that a significant (≥50%) contribution of ionising photons from QSOs can explain the large reported opacity fluctuations on large scales. The inferred QSO luminosity function is thereby consistent with recent estimates of the space density of QSOs at those redshifts.

  16. Physical properties and small-scale structure of the Lyman-alpha forest: Inversion of the HE 1122-1628 UVES spectrum

    NASA Astrophysics Data System (ADS)

    Rollinde, E.; Petitjean, P.; Pichon, C.

    2001-09-01

    We study the physical properties of the Lyman-alpha forest by applying the inversion method described by Pichon et al. (\\cite{Pichon01}) to the high resolution and high S/N ratio spectrum of the zem=2.40 quasar HE 1122-1628 obtained during Science Verification of UVES at the VLT. We compare the column densities obtained with the new fitting procedure with those derived using standard Voigt profile methods. The agreement is good and gives confidence in the new description of the Lyman-alpha forest as a continuous field as derived from our method. We show that the observed number density of lines with log N > 13 and 14 is, respectively, 50 and 250 per unit redshift at z ~ 2. We study the physical state of the gas, neglecting peculiar velocities, assuming a relation between the overdensity and the temperature, T={/line T}(rho (x)/{bar rho })2beta . There is an intrinsic degeneracy between the parameters beta and {/line T}. We demonstrate that, at a fixed beta , the temperature at mean density, {/line T}, can be uniquely extracted, however. While applying the method to HE 1122-1628, we conclude that for 0.2 < beta < 0.3, 6000 < {/line T} < 15 000 K at z ~ 2. We investigate the small-scale structure of strong absorption lines using the information derived from the Lyman-beta , Lyman-gamma and C iv profiles. Introducing the Lyman-beta line in the fit allows us to reconstruct the density field up to rho /{bar rho } ~ 10 instead of 5 for the Lyman-alpha line only. The neutral hydrogen density is of the order of ~ 2x 10-9 cm-3 and the C IV/H I ratio varies from about 0.001 to 0.01 within the complexes of total column density N(H I) ~ 1015 cm-2. Such numbers are expected for photo-ionized gas of density nH ~ 10-4 cm-3 and [C/H] ~ -2.5. There may be small velocity shifts ( ~ 10 km s-1) between the peaks in the C iv and H I density profiles. Although the statistics is small, it seems that C IV/H I and nHI are anti-correlated. This could be a consequence of the high

  17. Probing the Properties of Distant Galaxies and their Circumgalactic Medium with Damped, Sub-damped, and Super-damped Lyman-alpha Quasar Absorbers

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Peroux, Celine; York, Donald G.; Quiret, Samuel; Lauroesch, James Thomas; Khare, Pushpa; Aller, Monique C.

    2016-01-01

    Excellent tools to measure the chemical and physical properties of distant galaxies and their circumgalactic medium are provided by the high H I column density absorbers in quasar spectra. The damped Lyman-alpha absorbers [DLAs; log N(H I) >= 20.3] and the sub-DLA absorbers [19.0 <= log N(H I) < 20.3] dominate the neutral gas reservoir available for star formation. The super-DLAs [DLAs with log N(H I) >= 21.7] provide ideal laboratories to study the most gas-rich and potentially vigorously star-forming galaxies. We report a study of the DLAs (including super-DLAs) and sub-DLAs, based on observations from Keck, VLT, Magellan, and HST. We combine our results with the literature to examine trends between N(H I), metallicity, dust depletion, and gas velocity dispersion. We find that sub-DLAs have higher metallicities than DLAs at all redshifts studied, even after making ionization corrections. We find the super-DLAs have a relatively narrow range of metallicities. A much larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 - log N(H I) in the metallicity versus N(H I) plot, compared to less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Relative abundances of Si, S, Mn, Fe, Ni, and Zn suggest a mixture of dust depletion and alpha-enhancement. We confirm a strong correlation between metallicity and Fe depletion for DLAs, and also find a correlation between metallicity and Si depletion. For sub-DLAs at z < 0.5, we find [N/S] below the level for secondary N production. For some super-DLAs, we estimate star formation rates from potential detections of Lyman-alpha emission. We discuss constraints on electron densities from C II*/C II and Si II*/Si II. The DLAs and sub-DLAs appear to have different metallicity vs. velocity dispersion relations. We also find that the super-DLAs may have somewhat narrower velocity dispersions than the less gas-rich DLAs, and may arise in cooler/ less turbulent gas. We gratefully

  18. Origin and turbulence spreading of plasma blobs

    SciTech Connect

    Manz, P.; Birkenmeier, G.; Stroth, U.; Ribeiro, T. T.; Scott, B. D.; Carralero, D.; Müller, S. H.; Müller, H. W.; Wolfrum, E.; Fuchert, G.

    2015-02-15

    The formation of plasma blobs is studied by analyzing their trajectories in a gyrofluid simulation in the vicinity of the separatrix. Most blobs arise at the maximum radial electric field outside the separatrix. In general, blob generation is not bound to one particular radial position or instability. A simple model of turbulence spreading for the scrape-off layer is derived. The simulations show that the blob dynamics can be represented by turbulence spreading, which constitutes a substantial energy drive for far scrape-off layer turbulence and is a more suitable quantity to study blob generation compared to the skewness.

  19. Infrared Blobs : Time-dependent Flags

    NASA Astrophysics Data System (ADS)

    McCullough, P. R.; Mack, J.; Dulude, M.; Hilbert, B.

    2014-10-01

    We describe the creation of time-dependent flags for pixels associated with "blobs" on the WFC3 IR detector. We detect the blobs on flat fields obtained by repeated observations of the night side of the Earth. We provide the most complete census of IR blobs' positions, radii, and times of first appearance. In aggregate, a set of 46 blobs, 27 "strong" and 19 "medium" in their effective scattering cross section, affect slightly less than 1% of the pixels of the detector. A second set of 81 "weak" (and typically smaller) blobs affect another 1% of the pixels. In the past, the "blob" flag, bit 9 (i.e. value = 512) in the data quality (DQ) array described in Table 2.5 of the WFC3 Data Handbook (Rajan et al. 2010) has been a static 2-D array; henceforth a set of such arrays, each associated with a "use after" date corresponding to the appearance of one or more new blobs, can be used. We prepared such DQ arrays using the 46 "strong" and "medium" blobs and discuss why we did not include the fainter blobs therein. As an added data product, we create and test a blob flat field that corrects the effects of blobs on extended emission; however, it should not be applied if stellar photometry is the goal.

  20. The WFC3 IR "Blobs" Monitoring

    NASA Astrophysics Data System (ADS)

    Pirzkal, N.; Hilbert, B.

    2012-11-01

    We present new results on the WFC3 IR "Blobs" based on analysis of data acquired using the WFC3 IR channel from 2010 to 2012. In particular, we trace the date of appearance of each of the Blobs we identified in our deep IR sky flats. The number of Blobs identified in the WFC3 IR channel is now 40, and increase of a factor of 2 from our earlier 2010 ISR. We also discuss the color of the blobs, as measured using the F105W, F125W and F160W filters. We find Blobs to be more opaque to bluer light and their effect is therefore slightly stronger in the F105W and F125W filters when comparing these to the F160W filter. We find that the IR Blobs have appeared during somewhat discrete events and that there was a period a little over one year long when no new Blobs appeared.

  1. Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas

    SciTech Connect

    Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi; Bakule, Pavel; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko

    2011-09-15

    We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

  2. Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1% Polarization Sensitivity in the VUV Range. Part II: In-Flight Calibration

    NASA Astrophysics Data System (ADS)

    Giono, G.; Ishikawa, R.; Narukage, N.; Kano, R.; Katsukawa, Y.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchère, F.; Trujillo Bueno, J.; Tsuneta, S.; Shimizu, T.; Sakao, T.; Cirtain, J.; Champey, P.; Asensio Ramos, A.; Štěpán, J.; Belluzzi, L.; Manso Sainz, R.; De Pontieu, B.; Ichimoto, K.; Carlsson, M.; Casini, R.; Goto, M.

    2017-04-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket instrument designed to measure for the first time the linear polarization of the hydrogen Lyman-{α} line (121.6 nm). The instrument was successfully launched on 3 September 2015 and observations were conducted at the solar disc center and close to the limb during the five-minutes flight. In this article, the disc center observations are used to provide an in-flight calibration of the instrument spurious polarization. The derived in-flight spurious polarization is consistent with the spurious polarization levels determined during the pre-flight calibration and a statistical analysis of the polarization fluctuations from solar origin is conducted to ensure a 0.014% precision on the spurious polarization. The combination of the pre-flight and the in-flight polarization calibrations provides a complete picture of the instrument response matrix, and a proper error transfer method is used to confirm the achieved polarization accuracy. As a result, the unprecedented 0.1% polarization accuracy of the instrument in the vacuum ultraviolet is ensured by the polarization calibration.

  3. Progress in Research of Damped Lyman Alpha Systems (DLAs) (II): Methods of Measuring the Metal Column Densities in Absorption Clouds1,2

    NASA Astrophysics Data System (ADS)

    Hou, Jin-Liang; Yin, Jun; Fu, Cheng-Qi

    2015-04-01

    For the studies of intergalactic medium and galactic chemical evolution, it is a foundation to measure the abundances of metallic elements in the interstellar or intergalactic medium by using the absorption lines of damped Lyman alpha systems (DLAs) on the celestial spectra. Three methods exist for measuring the metal column density of gas clouds: the curve of growth (COG) method, the line profile fitting method (LPTM), and the apparent optical depth method (AODM). The COG method was developed in about half a century ago, so far it has been mainly applied in observations with a low spectral resolution. But the COG method is unaffected by the instrumental profile, and it is widely used in the case of optically-thin gas clouds. In recent years, most observations are done with high-resolution spectrographs, and in the case of the rapid development of computer technology, the LPTM and AODM, especially the LPTM, are more frequently adopted by most of astronomers. However, the LPTM has more free parameters to determine, so, it will consume more computing time, and sometimes will result in several convergent solutions. It will also introduce more deviations when one spectral line is blended seriously with other lines. The AODM is intermediate between the COG method and the LPTM, it shows favoritism to some people owing to its simplicity and reliability; but because of the possible existence of unresolved saturation structure in spectral lines, its application is restricted to some extent.

  4. Blobs and drift wave dynamics

    DOE PAGES

    Zhang, Yanzeng; Krasheninnikov, S. I.

    2017-09-29

    The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less

  5. The Lyman-Alpha Forest in the Lensed Quasar Q0957+561 and the Characteristic Dimension of the Absorbing Clouds

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and 9 were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and 0 VI emission lines reported by Dolan et al. (1995) in IUE spectra. The fluxes in these lines vary on a time scale of weeks in the observer's rest frame, independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W > 0.3 A in the observer's frame not previously identified by Michalitsianos et al. (1997) as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with -1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W > 0.3 A appear at 41 distinct wavelengths in the spectra of the two images. one absorption line in the spectrum of image A has no counterpart in the spectrum of image B and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance R = 160 (+120, -70)/ h(sub 50) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension, R, is the radius. (We adopt H(sub 0) = 50 h(sub 50) km/s/ kpc, q(sub 0) = 1/2, and lambda = 0 throughout the paper.) The 95% confidence interval on R extends from (50 - 950)/h(sub 50) kpc We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly

  6. The Lyman-Alpha Forest in the Lensed Quasar Q0957+561 and the Characteristic Dimension of the Absorbing Clouds

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Far-ultraviolet spectra of the gravitational lens components Q0957+561 A and 9 were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) at five equally spaced epochs, one every two weeks. We confirm the flux variability of the quasar's Lyman-alpha and 0 VI emission lines reported by Dolan et al. (1995) in IUE spectra. The fluxes in these lines vary on a time scale of weeks in the observer's rest frame, independently of each other and of the surrounding continuum. The individual spectra of each image were co-added to investigate the properties of the Lyman-alpha forest along the two lines of sight to the quasar. Absorption lines having equivalent width W > 0.3 A in the observer's frame not previously identified by Michalitsianos et al. (1997) as interstellar lines, metal lines, or higher order Lyman lines were taken to be Ly-alpha forest lines. The existence of each line in this consistently selected set was then verified by its presence in two archival FOS spectra with -1.5 times higher signal to noise than our co-added spectra. Ly-alpha forest lines with W > 0.3 A appear at 41 distinct wavelengths in the spectra of the two images. one absorption line in the spectrum of image A has no counterpart in the spectrum of image B and one line in image B has no counterpart in image A. Based on the separation of the lines of sight over the redshift range searched for Ly-forest lines, the density of the absorbing clouds in the direction of Q0957+561 must change significantly over a distance R = 160 (+120, -70)/ h(sub 50) kpc in the simplified model where the absorbers are treated as spherical clouds and the characteristic dimension, R, is the radius. (We adopt H(sub 0) = 50 h(sub 50) km/s/ kpc, q(sub 0) = 1/2, and lambda = 0 throughout the paper.) The 95% confidence interval on R extends from (50 - 950)/h(sub 50) kpc We show in the Appendix that the fraction of Ly-alpha forest lines that appear in only one spectrum can be expressed as a rapidly

  7. Water Production Activity of Nine Long-Period Comets from SOHO/SWAN Observations of Hydrogen Lyman-alpha: 2013-2016.

    PubMed

    Combi, M R; Mäkinen, T T; Bertaux, J-L; Quémerais, E; Ferron, S; Avery, M; Wright, C

    2018-01-15

    Nine recently discovered long-period comets were observed by the Solar Wind Anisotropies (SWAN) Lyman-alpha all-sky camera on board the Solar and Heliosphere Observatory (SOHO) satellite during the period of 2013 to 2016. These were C/2012 K1 (PanSTARRS), C/2013 US10 (Catalina), C/2013 V5 (Oukaimeden), C/2013 R1 (Lovejoy), C/2014 E2 (Jacques), C/2014 Q2 (Lovejoy), C/2015 G2 (MASTER), C/2014 Q1 (PanSTARRS) and C/2013 X1 (PanSTARRS). Of these 9 comets 6 were long-period comets and 3 were possibly dynamically new. Water production rates were calculated from each of the 885 images using our standard time-resolved model that accounts for the whole water photodissociation chain, exothermic velocities and collisional escape of H atoms. For most of these comets there were enough observations over a broad enough range of heliocentric distances to calculate power-law fits to the variation of production rate with heliocentric distances for pre- and post-perihelion portions of the orbits. Comet C/2014 Q1 (PanSTARRS), with a perihelion distance of only ~0.3 AU, showed the most unusual variation of water production rate with heliocentric distance and the resulting active area variation, indicating that when the comet was within 0.7 AU its activity was dominated by the continuous release of icy grains and chunks, greatly increasing the active sublimation area by more than a factor of 10 beyond what it had at larger heliocentric distances. A possible interpretation suggests that a large fraction of the comet's mass was lost during the apparition.

  8. Spectroscopic Confirmation of Three Redshift z~5.7 Lyα Emitters from the Large-Area Lyman Alpha Survey

    NASA Astrophysics Data System (ADS)

    Rhoads, James E.; Dey, Arjun; Malhotra, Sangeeta; Stern, Daniel; Spinrad, Hyron; Jannuzi, Buell T.; Dawson, Steve; Brown, Michael J. I.; Landes, Emily

    2003-03-01

    Narrowband searches for Lyα emission are an efficient way of identifying star-forming galaxies at high redshifts. We present Keck Telescope spectra confirming redshifts z~5.7 for three objects discovered in the Large-Area Lyman Alpha (LALA) survey at Kitt Peak National Observatory. All three spectra show strong, narrow emission lines with the asymmetric profile that is characteristically produced in high-redshift Lyα emitters by preferential H I absorption in the blue wing of the line. These objects are undetected in deep BW, V, R, and λ~6600 Å narrowband images from the NOAO Deep Wide-Field Survey and from LALA, as expected from Lyman break and Lyα forest absorption at redshift z~5.7. All three objects show large equivalent widths (>~150 Å in the rest frame), suggesting at least one of the following: a top-heavy initial mass function, very low stellar metallicity, or the presence of an active nucleus. We consider the case for an active nucleus to be weak in all three objects due to the limited width of the Lyα emission line (less than 500 km s-1) and the absence of any other indicator of quasar activity. The three confirmed high-redshift objects were among four spectroscopically observed targets drawn from the sample of 18 candidates presented by Rhoads & Malhotra. Thus, these spectra support the Lyα emitter population statistics from our earlier photometric study, which imply little evolution in number density from z=5.7 to 4.5 and provide strong evidence that the reionization redshift is zr>5.7.

  9. A MINI X-RAY SURVEY OF SUB-DAMPED LYMAN-ALPHA ABSORPTION SYSTEMS: SEARCHING FOR ACTIVE GALACTIC NUCLEI FORMED IN PROTOGALAXIES

    SciTech Connect

    Chartas, G.; Asper, A.; Kulkarni, V. P. E-mail: kulkarni@sc.edu

    2013-10-01

    A significant fraction of the sub-damped Lyman-alpha (sub-DLA) absorption systems in quasar spectra appear to be metal-rich, including many with even super-solar element abundances. This raises the question whether some sub-DLAs may harbor active galactic nuclei (AGNs), since supersolar metallicities are observed in AGNs. Here, we investigate this question based on a mini-survey of 21 quasars known to contain sub-DLAs in their spectra. The X-ray observations were performed with the Chandra X-ray Observatory. In cases of no detection, we estimated upper limits for the X-ray luminosities of possible AGNs at the redshifts of the sub-DLAs. In six cases, we find possible X-ray emission within ∼1'' of the background quasar, which is consistent with the presence of a nearby X-ray source. If these nearby X-ray sources are at the redshifts of the sub-DLAs, then their estimated 0.2-10 keV luminosities range between 0.8 × 10{sup 44} h {sup –2} and 4.2 × 10{sup 44} h {sup –2} erg s{sup –1}, thus ruling out a normal late-type galaxy origin, and suggesting that the emission originates in a galactic nucleus near the center of a protogalaxy. The projected distances of these possible nearby X-ray sources from the background quasars lie in the range of 3-7 h {sup –1} kpc, which is consistent with our hypothesis that they represent AGNs centered on the sub-DLAs. Deeper follow-up X-ray and optical observations are required to confirm the marginal detections of X-rays from these sub-DLA galaxies.

  10. At the Heart of Blobs Artist Concept

    NASA Image and Video Library

    2005-01-11

    This artist's concept illustrates one possible answer to the puzzle of the "giant galactic blobs." These blobs (red), first identified about five years ago, are mammoth clouds of intensely glowing material that surround distant galaxies (white). Astronomers using visible-light telescopes can see the glow of the blobs, but they didn't know what provides the energy to light them up. NASA's Spitzer Space Telescope set its infrared eyes on one well-known blob located 11 billion light-years away, and discovered three tremendously bright galaxies, each shining with the light of more than one trillion Suns, headed toward each other. Spitzer also observed three other blobs in the same galactic neighborhood and found equally bright galaxies within them. One of these blobs is also known to contain galaxies merging together. The findings suggest that galactic mergers might be the mysterious source of blobs. If so, then one explanation for how mergers produce such large clouds of material is that they trigger intense bursts of star formation. This star formation would lead to exploding massive stars, or supernovae, which would then shoot gases outward in a phenomenon known as superwinds. Blobs produced in this fashion are illustrated in this artist's concept. http://photojournal.jpl.nasa.gov/catalog/PIA07221

  11. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    NASA Astrophysics Data System (ADS)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  12. The moving-boundary approach for modeling gravity-driven stable and unstable flow in soils

    NASA Astrophysics Data System (ADS)

    Brindt, Naaran; Wallach, Rony

    2017-01-01

    The Richards equation is unsuccessful at describing gravity-driven unstable flow with nonmonotonic water content distribution. This shortcoming is resolved in the current study by introducing the moving-boundary approach. Following this approach, the flow domain is divided into two subdomains with a sharp change in fluid saturation between them (moving boundary). The upper subdomain consists of water and air, whose relationship varies with space and time following the imposed boundary condition at the soil surface calculated by the Richards equation. The lower subdomain consists of an initially dry soil that remains constant. The location of the boundary between the two subdomains is part of the solution, rendering the problem nonlinear. The moving boundary solution was used after verification to demonstrate the effect of contact angle, soil characteristic curves and incoming flux on the dynamic water-entry pressure of the soil, which depends on the soil's wettability, incoming flux at the soil surface and the wetting front's propagation rate. Lower soil wettability hinders spontaneous invasion of the dry pores and, together with a higher input flux, induces water accumulation behind the wetting front (saturation overshoot). The wetting front starts to propagate once the pressure building up behind it exceeds the dynamic water-entry pressure. To conclude, the physically based novel moving-boundary approach for solving stable and gravity-driven unstable flow in soils was developed and verified. It supports the conjecture that saturation overshoot is a prerequisite for gravity-driven fingering.

  13. Design and Engineering Aspects of a Compact Lyman Alpha Photometer (LAP) for In-situ Measurements of D/H Ratio in Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Sridhar Raja, V. L. N.; Kalyani, K.; Mohan, Aparna; Chandran, Anand; Durga Pushpavalli, J. T.; Laxmiprasad, S. A.; Kamalakar, A. J.; Viswanathan, M.; Rao, M. V. H.

    2012-07-01

    One of the most challenging multidisciplinary problems in geophysics and atmospheric science is the study of the evolution and escape of planetary atmospheres. Owing to no or little intrinsic magnetic field, the upper atmosphere of the planet Mars is always exposed to the solar wind that triggers the photo-dissociation of water by producing H and D, which are subsequently lost to space over time. Measurements of the atmospheric deuterium to hydrogen abundance ratio (D/H ratio) are significantly vital not only to examine the escape process of the current atmosphere but also to infer the loss process of water in the evolutionary history of Martian atmosphere. Till date, observations of D/H ratio measurements of Mars revealed only local values at certain time or average values over the planetary atmosphere. The exact value of the pristine Martian D/H ratio is still considered to be an open question. This paper primarily focuses on the development of a compact ultraviolet photometer capable of providing present D/H ratio of Mars from spacecraft observations. An ultraviolet photometer named `Lyman Alpha Photometer-LAP' that is currently under development at our laboratory is compact, light weight with low-power consumption and supports the spacecraft operational altitude range of 200 km to 20000 km. LAP operates on the principle of resonant scattering and absorption at Lyman-a wavelengths of H and D i.e., 121.56 nm, 121.53 nm respectively and comprises of 25 mm (Φ) x 60 mm (l) cylindrical metal/glass based gas cells filled with pure H2 and D2 gases at 3 mbar pressure. Thermally dissociated H2 and D2 molecules (due to the heating of a filament inserted in the cell) in the cells absorb the incoming H2/D2 Lyman-a incident on the cell. A 15 nm bandwidth Lyman-a filter cuts-off the undesirable radiation and a solar-blind side-on type photo multiplier tube (PMT) is selected for photon detection. Proto-LAP that is currently under development is a compact instrument that

  14. The Analysis of Data from Voyager's Ultraviolet Spectrometers: The Trend of Observed Interplanetary Lyman-alpha Intensity with Increasing Heliocentric Distance for Multiple Viewing Directions

    NASA Astrophysics Data System (ADS)

    Gilbert, C. R.; Fayock, B.; Heerikhuisen, J.; Zank, G. P.

    2014-12-01

    The motivation for this project was simple: to reduce raw data from the Ultraviolet Spectrometers on both Voyager Spacecraft to verify the results of a simulation of Lyman-alpha radiative transfer within a 3D MHD kinetic-neutral model of the heliosphere created at the University of Alabama in Huntsville. The heliospheric model, which self-consistently includes the interaction between ionized and neutral hydrogen, outputs a density map of neutral hydrogen. The Monte Carlo radiative transfer model then simulates the propagation and scattering of millions of photons through this density map and outputs the relative number of photons that should be seen by spacecraft at any point within 1000 AU of the sun. My project was to learn how to analyze the raw Voyager data and compare it to these simulations. There were several stages of analysis necessary to reduce to useful data. Records containing signals from sources other than the interplanetary medium, such as stars and planets, were discarded. The remaining records were averaged along regional lines of sight to achieve better signal to noise. The spectra were then corrected for inherent device flaws, such as channel-to-channel variations in sensitivity (fixed-pattern noise), dark counts due to the radioisotope thermal electric generator, and imperfections in the scattering of the diffraction grating. Records were then sorted and averaged to create a full-sky map consisting of 18 regions for each specified radial bin to match the cell spacing of the radiative transfer model. The results were then normalized to solar minimum to reduce variations in the data due to solar cycle oscillations. Initial results indicate an unexpected deviation from the models, but more analysis must be performed to determine if the discrepancy comes from the normalization of the data, insufficient angular resolution of the radiative transfer model, or the physics of the models themselves. Future work involves increasing the resolution of the

  15. Anisotropic Lyman-alpha emission

    SciTech Connect

    Zheng, Zheng; Wallace, Joshua

    2014-10-20

    As a result of resonant scatterings off hydrogen atoms, Lyα emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the observed Lyα emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lyα flux and spectral properties and induces correlations among them. The Lyα flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lyα optical depth in the viewing direction relative to those in all other directions. The distribution of Lyα flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lyα equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lyα line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half-maximum and asymmetry), pointing to a possibility of using Lyα line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lyα emission from star-forming galaxies. We discuss the implications of using Lyα emission to probe the circumgalactic and intergalactic environments of galaxies.

  16. Final Scientific/Technical Report, DE-FG02-08ER41561: "Lyman-alpha Emitting Galaxies at 2

    SciTech Connect

    Eric Gawiser

    2010-03-19

    Lyman Alpha Emitting (LAE) galaxies are a powerful tracer of large scale structure, making them an excellent probe of baryonic acoustic oscillations, which constrain the expansion history of the universe and hence the nature of the dark energy. The HETDEX Stage III dark energy experiment will utilize LAEs for this purpose, and they are under consideration as a tracer of structure for Stage IV ground- and space-based dark energy missions. Our successful investigation of LAEs at z=2.1 and z=3.1 now provides the best information on the number density and clustering bias of these galaxies over the redshift range that HETDEX will study. Connecting these star-forming galaxies to their host dark matter halos represents a major increase in scientific understanding, as we can now proceed with confidence in studying the spatial distribution of significantly larger samples. Our data also provided an empirical test of the Lyman Alpha Tomography technique, which has proven effective and can now be used to design future experiments to probe dark energy and dark matter properties.

  17. The Blob Connection: Searching for Low Coronal Signatures of Solar Post-CME Blobs

    NASA Astrophysics Data System (ADS)

    Schanche, Nicole E.; Reeves, Katharine K.; Webb, David F.

    2016-11-01

    Bright linear structures, thought to be indicators of a current sheet (CS), are often seen in Large Angle and Spectrometric Coronagraph (LASCO) on the Solar and Heliospheric Observatory (SOHO) white-light data in the wake of coronal mass ejections (CMEs). In a subset of these post-CME structures, relatively bright blobs are seen moving outward along the rays. These blobs have been interpreted as consequences of the plasmoid instability in the CS, and can help us to understand the dynamics of the reconnection. We examine several instances, taken largely from the SOHO/LASCO CME-rays Catalog, where these blobs are clearly visible in white-light data. Using radially filtered, difference, wavelet enhanced, and multiscale Gaussian normalized images to visually inspect Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) data in multiple wavelengths, we look for signatures of material that correspond both temporally and spatially to the later appearance of the blobs in LASCO/C2. Constraints from measurements of the blobs allow us to predict the expected count rates in DN pixel-1 s-1 for each AIA channel. The resulting values would make the blobs bright enough to be detectable at 1.2 R ⊙. However, we do not see conclusive evidence for corresponding blobs in the AIA data in any of the events. We do the same calculation for the “cartwheel CME,” an event in which blobs were seen in X-rays, and find that our estimated count rates are close to those observed. We suggest several possibilities for the absence of the EUV blobs including the formation of the blob higher than the AIA field of view, blob coalescence, and overestimation of blob densities.

  18. The moving boundary approach to modeling gravity-driven stable and unstable flow in soils

    NASA Astrophysics Data System (ADS)

    Brindt, Naaran; Wallach, Rony

    2016-04-01

    Many field and laboratory studies in the last 40 years have found that water flow in homogeneous soil profiles may occur in preferential flow pathways rather than in a laterally uniform wetting front, as expected from classical soil physics theory and expressed by the Richards equation. The water-content distribution within such gravity-driven fingers was found to be nonmonotonic due to water accumulation behind a sharp wetting front (denoted as saturation overshoot). The unstable flow was first related to soil coarseness. However, its appearance in water-repellent soils led the authors to hypothesize that gravity-driven unstable flow formation is triggered by a non-zero contact angle between water and soil particles. Despite its widespread occurrence, a macroscopic-type model describing the nonmonotonic water distribution and sharp wetting front is still lacking. The moving boundary approach, which divides the flow domain into two well-defined subdomains with a sharp change in fluid saturation between them, is suggested to replace the classical approach of solving the Richards equation for the entire flow domain. The upper subdomain consists of water and air, whose relationship varies with space and time following the imposed boundary condition at the soil surface as calculated by the Richards equation. The lower subdomain also consists of water and air, but their relationship remains constant following the predetermined initial condition. The moving boundary between the two subdomains is the sharp wetting front, whose location is part of the solution. As such, the problem is inherently nonlinear. The wetting front's movement is controlled by the dynamic water-entry pressure of the soil, which depends on soil wettability and the front's propagation rate. A lower soil wettability, which hinders the spontaneous invasion of dry pores and increases the water-entry pressure, induces a sharp wetting front and water accumulation behind it. The wetting front starts to

  19. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 < z < 3:5. HETDEX will precisely measure the evolution of dark energy at that epoch, and will simultaneously amass an LAE sample that will be unprecedented for extragalactic astrophysics at the redshifts of interest. Large-scale replication has clear advantages to increasing the total information grasp of a spectrograph, but there are also challenges. In this dissertation, two of these challenges with respect to VIRUS are detailed. First, the VIRUS cryogenic system is discussed, specifically the design and tests of a novel thermal connector and internal camera croygenic components that link the 150 charge-coupled device detectors to the instrument's liquid nitrogen distribution system. Second, the design, testing, and mass production of the suite of

  20. Gravity-driven structures and rift basin evolution: Rio Muni Basin, offshore equatorial West Africa

    SciTech Connect

    Turner, J.P.

    1995-08-01

    Offshore Equatorial Guinea, west Africa, gravity-driven nappes, more than 1 km thick and 15 km from head to toe, provide key evidence in reconstructing the late synrift: evolution of this part of the South Atlantic margin basin system. Furthermore, Aptian-Cenomanian carbonate and clastic rocks in the nappes` allochthonous hanging walls are attracting interest as a new exploration play in west Africa. The nappes exhibit a range of geometries that suggest they share many of the same deformation processes as thin-skin thrust and linked extensional fault systems. Not only are these structures significant in their own right, representing a rare example of gravity tectonics in the virtual absence of major halokinesis, but their presence may record an other-wise undetectable process active during the transition from a rift basin to a passive continental margin. A review of Equatorial Guinea in its pre-Atlantic configuration, alongside neighboring basins in Brazil (the Sergipe-Alagoas basin) and Gabon, suggests that gravity gliding was sustained by a relatively steep, westward paleoslope promoted by east-ward offset of the locus of thermal uplift from the rift basin (i.e., a simple shear model of basin formation). In contrast to gravity-driven structures in most postrift settings, the Equatorial Guinea nappes developed at the close of the Aptian-Albian synrift episode in response to a growing bathymetric deep caused by rapid subsidence outpacing restricted sedimentation.

  1. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation.

    PubMed

    Tang, Xiaomin; Si, Yang; Ge, Jianlong; Ding, Bin; Liu, Lifang; Zheng, Gang; Luo, Wenjing; Yu, Jianyong

    2013-12-07

    Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161° and superoleophilicity with an oil contact angle of 0°. This new membrane shows high thermal stability (350 °C) and good repellency to hot water (80 °C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification.

  2. On the continuum-scale simulation of gravity-driven fingers with hysteretic Richards equation: Trucation error induced numerical artifacts

    SciTech Connect

    ELIASSI,MEHDI; GLASS JR.,ROBERT J.

    2000-03-08

    The authors consider the ability of the numerical solution of Richards equation to model gravity-driven fingers. Although gravity-driven fingers can be easily simulated using a partial downwind averaging method, they find the fingers are purely artificial, generated by the combined effects of truncation error induced oscillations and capillary hysteresis. Since Richards equation can only yield a monotonic solution for standard constitutive relations and constant flux boundary conditions, it is not the valid governing equation to model gravity-driven fingers, and therefore is also suspect for unsaturated flow in initially dry, highly nonlinear, and hysteretic media where these fingers occur. However, analysis of truncation error at the wetting front for the partial downwind method suggests the required mathematical behavior of a more comprehensive and physically based modeling approach for this region of parameter space.

  3. Lyman-alpha, Far Infrared and , X-ray and Gamma-ray Observations Around the Maximum of Cycle 24 by the French-Chinese SMall Explorer for Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Trottet, Gerard

    The SMall Explorer for Solar Eruptions (SMESE) is a French-Chinese project developed in the frame of the microsatellite program of Centre National d'Etudes Spatiales (CNES) which should be launched around the maximum of solar cylcle 24 (2012-2013). We describe the SMESE payload which includes a coronagraph and disk imager in Lyman-alpha (LYOT), a far infrared telescope (DESIR) and a hard X-ray and gamma-ray spectrometer (HEBS). We emphasize that these three instruments will provide unprecedented observations bringing unique information on: (a) the origin of coronal mass ejections (CME's); (b) the relationship between flares and CME's; (c) the characteristics of the most energetic particles accelerated at the Sun and (d) the energy transport in the solar atmosphere. SMESE will also provide the first measurements of the magnetic field in the solar corona. We finally describe the mission profile and context.

  4. Experimental and Numerical Investigation of Gravity-Driven Pipe Flow With Cavitation

    SciTech Connect

    Giese, Tobias; Laurien, Eckart; Schwarz, Wolfgang

    2002-07-01

    Gravity driven pipe flows contain no risk of pump failure and are considered to be reliable even under accident conditions. However, accurate prediction methods are only available for single phase flow. In case of the occurrence of two-phase flow (caused e.g. by boiling or cavitation), a considerable reduction in mass flux can be observed. In this study, an experimental and numerical investigation of gravity driven two-phase pipe flow was performed in order to understand and model such flows. An experiment was conducted to analyse gravity driven flow of water near saturation temperature in a complex pipe consisting of several vertical and horizontal sections. The diameter was 100 mm with a driving height of 13 m between an elevated tank and the pipe outlet. The experiment shows that cavitation leads to formation of steam. The two-phase character of the flow causes a significant reduction of mass flux in comparison to a single phase flow case. The experimental flow rate was reproduced by one dimensional single and two phase flow analysis based on standard one dimensional methods including models for steam formation. The main part of this study consists of a three dimensional CFD analysis of the two phase flow. A three dimensional model for cavitation and recondensation phenomena based on thermal transport processes was developed, implemented and validated against our experimental data. Due to the fact that beside bubbly flow, also the stratified and droplet flow regimes occur, a new approach to model phase interaction terms of the Two-Fluid Model for mass, momentum and energy is presented. Thereby, the transition from one flow regime to another is taken into account. The experimental mass flow rate can be predicted with an accuracy of 10%. The three dimensional analysis of the flow situation demonstrates the influence of pipe elements such as horizontal and vertical sections, bends and valves of the pipe on the mass flux and the steam distribution. The analysis of

  5. A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media

    SciTech Connect

    Scovazzi, G.; Gerstenberger, A.; Collis, S. S.

    2013-01-01

    We present a new approach to the simulation of gravity-driven viscous fingering instabilities in porous media flow. These instabilities play a very important role during carbon sequestration processes in brine aquifers. Our approach is based on a nonlinear implementation of the discontinuous Galerkin method, and possesses a number of key features. First, the method developed is inherently high order, and is therefore well suited to study unstable flow mechanisms. Secondly, it maintains high-order accuracy on completely unstructured meshes. The combination of these two features makes it a very appealing strategy in simulating the challenging flow patterns and very complex geometries of actual reservoirs and aquifers. This article includes an extensive set of verification studies on the stability and accuracy of the method, and also features a number of computations with unstructured grids and non-standard geometries.

  6. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation

    NASA Astrophysics Data System (ADS)

    Tang, Xiaomin; Si, Yang; Ge, Jianlong; Ding, Bin; Liu, Lifang; Zheng, Gang; Luo, Wenjing; Yu, Jianyong

    2013-11-01

    Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161° and superoleophilicity with an oil contact angle of 0°. This new membrane shows high thermal stability (350 °C) and good repellency to hot water (80 °C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification.Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP

  7. Model for density waves in gravity-driven granular flow in narrow pipes.

    PubMed

    Ellingsen, Simen A; Gjerden, Knut S; Grøva, Morten; Hansen, Alex

    2010-06-01

    A gravity-driven flow of grains through a narrow pipe in vacuum is studied by means of a one-dimensional model with two coefficients of restitution. Numerical simulations show clearly how density waves form when a strikingly simple criterion is fulfilled: that dissipation due to collisions between the grains and the walls of the pipe is greater per collision than that which stems from collisions between particles. Counterintuitively, the highest flow rate is observed when the number of grains per density wave grows large. We find strong indication that the number of grains per density wave always approaches a constant as the particle number tends to infinity, and that collapse to a single wave, which was often observed also in previous simulations, occurs because the number of grains is insufficient for multiple wave formation.

  8. Gravity-driven granular flow in a silo: Characterizing local forces and rearrangements

    NASA Astrophysics Data System (ADS)

    Thackray, Emma; Nordstrom, Kerstin

    2017-06-01

    While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not wellunderstood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. In this paper, we present our results thus far.

  9. A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media

    NASA Astrophysics Data System (ADS)

    Scovazzi, G.; Gerstenberger, A.; Collis, S. S.

    2013-01-01

    We present a new approach to the simulation of gravity-driven viscous fingering instabilities in porous media flow. These instabilities play a very important role during carbon sequestration processes in brine aquifers. Our approach is based on a nonlinear implementation of the discontinuous Galerkin method, and possesses a number of key features. First, the method developed is inherently high order, and is therefore well suited to study unstable flow mechanisms. Secondly, it maintains high-order accuracy on completely unstructured meshes. The combination of these two features makes it a very appealing strategy in simulating the challenging flow patterns and very complex geometries of actual reservoirs and aquifers. This article includes an extensive set of verification studies on the stability and accuracy of the method, and also features a number of computations with unstructured grids and non-standard geometries.

  10. Gravity driven high throughput phase detecting cytometer based on quantitative interferometric microscopy

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Wang, Shouyu; Yan, Keding; Sun, Nan; Ferraro, Pietro; Li, Zhenhua; Liu, Fei

    2014-04-01

    Phase distribution detection of cells and tissues is concerned since it is an important auxiliary method for observing biological samples. High speed and large amount cell detection is needed for its high detecting efficiency. In this paper, we have proposed a simple large scale biological sample phase detection device called gravity driven high throughput phase detecting cytometer based on quantitative interferometric microscopy to obtain flowing red blood cells phase. The system could realize high throughput phase detecting and statistical analysis with high detecting speed and in real time. The statistical characteristics of red blood cells could be obtained which might be helpful for biological analysis and disease detection. We believe this method is a powerful tool to quantitatively measure the phase distribution of biological samples.

  11. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    NASA Astrophysics Data System (ADS)

    Poppe, L. J.; McMullen, K. Y.; Williams, S. J.; Crocker, J. M.; Doran, E. F.

    2008-08-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary.

  12. Estuarine sediment transport by gravity-driven movement of the nepheloid layer, Long Island Sound

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Williams, S.J.; Crocker, J.M.; Doran, E.F.

    2008-01-01

    Interpretation of sidescan-sonar imagery provides evidence that down-slope gravity-driven movement of the nepheloid layer constitutes an important mode of transporting sediment into the basins of north-central Long Island Sound, a major US East Coast estuary. In the Western Basin, this transport mechanism has formed dendritic drainage systems characterized by branching patterns of low backscatter on the seafloor that exceed 7.4 km in length and progressively widen down-slope, reaching widths of over 0.6 km at their southern distal ends. Although much smaller, dendritic patterns of similar morphology are also present in the northwestern part of the Central Basin. Because many contaminants display affinities for adsorption onto fine-grained sediments, and because the Sound is affected by seasonal hypoxia, mechanisms and dispersal pathways by which inorganic and organic sediments are remobilized and transported impact the eventual fate of the contaminants and environmental health of the estuary. ?? Springer-Verlag 2008.

  13. Effects of parallel electron dynamics on plasma blob transport

    SciTech Connect

    Angus, Justin R.; Krasheninnikov, Sergei I.; Umansky, Maxim V.

    2012-08-15

    The 3D effects on sheath connected plasma blobs that result from parallel electron dynamics are studied by allowing for the variation of blob density and potential along the magnetic field line and using collisional Ohm's law to model the parallel current density. The parallel current density from linear sheath theory, typically used in the 2D model, is implemented as parallel boundary conditions. This model includes electrostatic 3D effects, such as resistive drift waves and blob spinning, while retaining all of the fundamental 2D physics of sheath connected plasma blobs. If the growth time of unstable drift waves is comparable to the 2D advection time scale of the blob, then the blob's density gradient will be depleted resulting in a much more diffusive blob with little radial motion. Furthermore, blob profiles that are initially varying along the field line drive the potential to a Boltzmann relation that spins the blob and thereby acts as an addition sink of the 2D potential. Basic dimensionless parameters are presented to estimate the relative importance of these two 3D effects. The deviation of blob dynamics from that predicted by 2D theory in the appropriate limits of these parameters is demonstrated by a direct comparison of 2D and 3D seeded blob simulations.

  14. Dynamics of plasma blobs in a shear flow.

    PubMed

    Diallo, A; Fasoli, A; Furno, I; Labit, B; Podestà, M; Theiler, C

    2008-09-12

    The global dynamic of plasma blobs in a shear flow is investigated in a simple magnetized torus using the spatial Fourier harmonics (k-space) framework. Direct experimental evidence of a linear drift in k space of the density fluctuation energy synchronized with blob events is presented. During this drift, an increase of the fluctuation energy and a production of the kinetic energy associated with blobs are observed. The energy source of the blob is analyzed using an advection-dissipation-type equation that includes blob-flow exchange energy, linear drift in k space, nonlinear processes, and viscous dissipations. We show that blobs tap their energy from the dominant ExB vertical background flow during the linear drift stage. The exchange of energy is unidirectional as there is no evidence that blobs return energy to the flow.

  15. Dynamics of Plasma Blobs in a Shear Flow

    SciTech Connect

    Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podesta, M.; Theiler, C.

    2008-09-12

    The global dynamic of plasma blobs in a shear flow is investigated in a simple magnetized torus using the spatial Fourier harmonics (k-space) framework. Direct experimental evidence of a linear drift in k space of the density fluctuation energy synchronized with blob events is presented. During this drift, an increase of the fluctuation energy and a production of the kinetic energy associated with blobs are observed. The energy source of the blob is analyzed using an advection-dissipation-type equation that includes blob-flow exchange energy, linear drift in k space, nonlinear processes, and viscous dissipations. We show that blobs tap their energy from the dominant ExB vertical background flow during the linear drift stage. The exchange of energy is unidirectional as there is no evidence that blobs return energy to the flow.

  16. Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory

    SciTech Connect

    Glass, R.J.

    1992-12-31

    Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.

  17. Salt tectonics and gravity driven deformation: Structural guidelines for exploration in passive margin

    SciTech Connect

    Mauduit, T.; Gwenael G.; Brun, J.P.

    1995-08-01

    The West African Margin, (Gulf of Guinea) presents spectacular examples of gravity driven deformation above a salt decollement (i.e. growth faulting, rafts, diapirs and contractional structures) which have been documented by numerous Oil and Gas investigations. Seismic data demonstrate that the variation of deformation styles in space and time appear to be function of: regional geometry of the margin (i.e. value of basal slope and presence/absence of residual reliefs below the salt layers) and, mode, rate and repartition of sedimentation. The role and effects of the above parameters were analyzed using laboratory modeling investigation based on basic structural patterns identified through seismic data. Models are built with sand and silicone putty, that respectively represent the frictional behavior of upper Cretaceous-Cenozoic cover and the viscous behavior of the upper Aptian salt. They are scaled to fit observed natural configurations. Results are compared with examples from the Gulf of Guinea on the basis of seismic data. This approach allowed to better understand the evolution of the margin and therefore the reservoir distributions and traps geometries.

  18. Gravity-Driven Acceleration and Kinetic Inflation in Noncommutative Brans-Dicke Setting

    NASA Astrophysics Data System (ADS)

    Rasouli, S. M. M.; Vargas Moniz, Paulo

    By assuming the spatially flat FLRW line-element and employing the Hamiltonian formalism, a noncommutative (NC) setting of the Brans-Dicke (BD) theory is introduced. We investigate gravity-driven acceleration and kinetic inflation in this NC BD cosmology. Despite to the commutative case, in which both the scale factor and BD scalar field are obtained in power-law forms (in terms of the cosmic time), in our herein NC model, we see that the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on not only the noncommutative parameter but also the momentum conjugate associated to the BD scalar field. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within standard BD cosmology in a more efficient manner. Moreover, we see that a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the NC parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.

  19. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    PubMed

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Gravity driven instabilities in miscible non-Newtonian fluid displacements in porous media

    NASA Astrophysics Data System (ADS)

    Freytes, V. M.; D'Onofrio, A.; Rosen, M.; Allain, C.; Hulin, J. P.

    2001-02-01

    Gravity driven instabilities in model porous packings of 1 mm diameter spheres are studied by comparing the broadening of the displacement front between fluids of slightly different densities in stable and unstable configurations. Water, water-glycerol and water-polymer solutions are used to vary independently viscosity and molecular diffusion and study the influence of shear-thinning properties. Both injected and displaced solutions are identical but for a different concentration of NaNO 3 salt used as an ionic tracer and to introduce the density contrast. Dispersivity in stable configuration increases with polymer concentration - as already reported for double porosity packings of porous grains. Gravity-induced instabilities are shown to develop below a same threshold Péclet number Pe for water and water-glycerol solutions of different viscosities and result in considerable increases of the dispersivity. Measured threshold Pe values decrease markedly on the contrary with polymer concentration. The quantitative analysis demonstrates that the development of the instabilities is controlled by viscosity through a characteristic gravity number G (ratio between hydrostatic and viscous pressure gradients). A single threshold value of G accounts for results obtained on Newtonian and non-Newtonian solutions.

  1. Gravity-driven instability of a thin liquid film underneath a soft solid.

    PubMed

    Lee, S H; Maki, K L; Flath, D; Weinstein, S J; Kealey, C; Li, W; Talbot, C; Kumar, S

    2014-11-01

    The gravity-driven instability of a thin liquid film located underneath a soft solid material is considered. The equations and boundary conditions governing the solid deformation are systematically converted from a Lagrangian representation to an Eulerian representation, which is the natural framework for describing the liquid motion. This systematic conversion reveals that the continuity-of-velocity boundary condition at the liquid-solid interface is more complicated than has previously been assumed, even in the small-strain limit. We then make clear the conditions under which the commonly used simplified version of this boundary condition is valid. The small-strain approximation, lubrication theory, and linear stability analysis are applied to derive an expression for the growth rate of small-amplitude perturbations. Asymptotic analysis reveals that the coupling between the liquid and solid manifests itself as a lower effective liquid-air interfacial tension that leads to larger instability growth rates. Although this suggests that it is more difficult to maintain a stable liquid coating underneath a soft solid, the effect is expected to be weak for cases of practical interest.

  2. Gravity-driven convection studies in compound semiconductor crystal growth by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Akutagawa, W. M.

    1982-01-01

    Experimental results are summarized, and it is pointed out that gravity-driven convection can alter the diffusive-advective mass transport behavior in the growth of crystals by physical vapor transport. Specially designed and constructed transparent furnaces are described which are being used to study the effects of gravity in the crystal growth of the compound semiconductors PbTe and CdTe. The theory underlying vapor transport behavior is reviewed, with attention given to the vapor-solid behavior of compound materials, to one-dimensional mass transport, and to gravity-induced (natural) convection. In the transparent furnaces, the quartz capillary tube mounted along the axis of the main quartz ampoule is used to measure the temperature at the growth surface (vapor-solid crystal interface) and the source, as well as the complete temperature profile along the axis of the tube. The light-pipe works to remove heat from the growth end of the ampoule by radiative heat transfer. The ampoules are sealed after being evacuated to the low 10 to the -8th torr range with a cryogenic vacuum pump.

  3. Comparative study of disinfectants for use in low-cost gravity driven household water purifiers.

    PubMed

    Patil, Rajshree A; Kausley, Shankar B; Balkunde, Pradeep L; Malhotra, Chetan P

    2013-09-01

    Point-of-use (POU) gravity-driven household water purifiers have been proven to be a simple, low-cost and effective intervention for reducing the impact of waterborne diseases in developing countries. The goal of this study was to compare commonly used water disinfectants for their feasibility of adoption in low-cost POU water purifiers. The potency of each candidate disinfectant was evaluated by conducting a batch disinfection study for estimating the concentration of disinfectant needed to inactivate a given concentration of the bacterial strain Escherichia coli ATCC 11229. Based on the concentration of disinfectant required, the size, weight and cost of a model purifier employing that disinfectant were estimated. Model purifiers based on different disinfectants were compared and disinfectants which resulted in the most safe, compact and inexpensive purifiers were identified. Purifiers based on bromine, tincture iodine, calcium hypochlorite and sodium dichloroisocyanurate were found to be most efficient, cost effective and compact with replacement parts costing US$3.60-6.00 for every 3,000 L of water purified and are thus expected to present the most attractive value proposition to end users.

  4. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-01

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  5. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    PubMed

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  6. Fingering instability and mixing of a blob in porous media.

    PubMed

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-10-01

    The curvature of the unstable part of the miscible interface between a circular blob and the ambient fluid in two-dimensional homogeneous porous media depends on the viscosity of the fluids. The influence of the interface curvature on the fingering instability and mixing of a miscible blob within a rectilinear displacement is investigated numerically. The fluid velocity in porous media is governed by Darcy's law, coupled with a convection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity of the fluids. Numerical simulations are performed using a Fourier pseudospectral method to determine the dynamics of a miscible blob (circular or square). It is shown that for a less viscous circular blob, there exist three different instability regions without any finite R-window for viscous fingering, unlike the case of a more viscous circular blob. Critical blob radius for the onset of instability is smaller for a less viscous blob as compared to its more viscous counterpart. Fingering enhances spreading and mixing of miscible fluids. Hence a less viscous blob mixes with the ambient fluid quicker than the more viscous one. Furthermore, we show that mixing increases with the viscosity contrast for a less viscous blob, while for a more viscous one mixing depends nonmonotonically on the viscosity contrast. For a more viscous blob mixing depends nonmonotonically on the dispersion anisotropy, while it decreases monotonically with the anisotropic dispersion coefficient for a less viscous blob. We also show that the dynamics of a more viscous square blob is qualitatively similar to that of a circular one, except the existence of the lump-shaped instability region in the R-Pe plane. We have shown that the Rayleigh-Taylor instability in a circular blob (heavier or lighter than the ambient fluid) is independent of the interface curvature.

  7. Fingering instability and mixing of a blob in porous media

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-10-01

    The curvature of the unstable part of the miscible interface between a circular blob and the ambient fluid in two-dimensional homogeneous porous media depends on the viscosity of the fluids. The influence of the interface curvature on the fingering instability and mixing of a miscible blob within a rectilinear displacement is investigated numerically. The fluid velocity in porous media is governed by Darcy's law, coupled with a convection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity of the fluids. Numerical simulations are performed using a Fourier pseudospectral method to determine the dynamics of a miscible blob (circular or square). It is shown that for a less viscous circular blob, there exist three different instability regions without any finite R -window for viscous fingering, unlike the case of a more viscous circular blob. Critical blob radius for the onset of instability is smaller for a less viscous blob as compared to its more viscous counterpart. Fingering enhances spreading and mixing of miscible fluids. Hence a less viscous blob mixes with the ambient fluid quicker than the more viscous one. Furthermore, we show that mixing increases with the viscosity contrast for a less viscous blob, while for a more viscous one mixing depends nonmonotonically on the viscosity contrast. For a more viscous blob mixing depends nonmonotonically on the dispersion anisotropy, while it decreases monotonically with the anisotropic dispersion coefficient for a less viscous blob. We also show that the dynamics of a more viscous square blob is qualitatively similar to that of a circular one, except the existence of the lump-shaped instability region in the R -Pe plane. We have shown that the Rayleigh-Taylor instability in a circular blob (heavier or lighter than the ambient fluid) is independent of the interface curvature.

  8. [Kinetic theory and boundary conditions for flows of highly inelastic spheres: Application to gravity driven granular flows down bumpy inclines

    SciTech Connect

    Richman, M.W.

    1992-01-01

    In this quarter, we extended our study of the effects of isotropic boundary vibrations to steady, gravity driven, inclined granular flows. These flows are more complex than those considered last quarter because of the presence of slip and mean velocity gradients at the boundary. Consequently, it was first necessary to modify the boundary conditions derived by Richman (1992) to account for corrections to the flow particle velocity distribution function from velocity gradients. In what follows we only summarize the results obtained.

  9. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.

    PubMed

    Wu, Bing; Hochstrasser, Florian; Akhondi, Ebrahim; Ambauen, Noëmi; Tschirren, Lukas; Burkhardt, Michael; Fane, Anthony G; Pronk, Wouter

    2016-04-15

    Seawater pretreatment by gravity-driven membrane (GDM) filtration at 40 mbar has been investigated. In this system, a beneficial biofilm develops on the membrane that helps to stabilize flux. The effects of membrane type, prefiltration and system configuration on stable flux, biofilm layer properties and dissolved carbon removal were studied. The results show that the use of flat sheet PVDF membranes with pore sizes of 0.22 and 0.45 μm in GDM filtration achieved higher stabilized permeate fluxes (7.3-8.4 L/m(2)h) than that of flat sheet PES 100 kD membranes and hollow fibre PVDF 0.1 μm membranes. Pore constriction and cake filtration were identified as major membrane fouling mechanisms, but their relative contributions varied with filtration time for the various membranes. Compared to raw seawater, prefiltering of seawater with meshes at sizes of 10, 100 and 1000 μm decreased the permeate flux, which was attributed to removal of beneficial eukaryotic populations. Optical coherence tomography (OCT) showed that the porosity of the biofouling layer was more significantly related with permeate flux development rather than its thickness and roughness. To increase the contact time between the biofilm and the dissolved organics, a hybrid biofilm-submerged GDM reactor was evaluated, which displayed significantly higher permeate fluxes than the submerged GDM reactor. Although integrating the biofilm reactor with the membrane system displayed better permeate quality than the GDM filtration cells, it could not effectively reduce dissolved organic substances in the seawater. This may be attributed to the decomposition/degradation of solid organic substances in the feed and carbon fixation by the biofilm. Further studies of the dynamic carbon balance are required.

  10. New early warning system for gravity-driven ruptures based on codetection of acoustic signal

    NASA Astrophysics Data System (ADS)

    Faillettaz, J.

    2016-12-01

    Gravity-driven rupture phenomena in natural media - e.g. landslide, rockfalls, snow or ice avalanches - represent an important class of natural hazards in mountainous regions. To protect the population against such events, a timely evacuation often constitutes the only effective way to secure the potentially endangered area. However, reliable prediction of imminence of such failure events remains challenging due to the nonlinear and complex nature of geological material failure hampered by inherent heterogeneity, unknown initial mechanical state, and complex load application (rainfall, temperature, etc.). Here, a simple method for real-time early warning that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. This new method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event-codetection is considered as surrogate for large event size with more frequent codetected events (i.e., detected concurrently on more than one sensor) marking imminence of catastrophic failure. Simple numerical model based on a Fiber Bundle Model considering signal attenuation and hypothetical arrays of sensors confirms the early warning potential of codetection principles. Results suggest that although statistical properties of attenuated signal amplitude could lead to misleading results, monitoring the emergence of large events announcing impeding failure is possible even with attenuated signals depending on sensor network geometry and detection threshold. Preliminary application of the proposed method to acoustic emissions during failure of snow samples has confirmed the potential use of codetection as indicator for imminent failure at lab scale. The applicability of such simple and cheap early warning system is now investigated at a larger scale (hillslope). First results of such a pilot field experiment are presented and analysed.

  11. Tracking Streamer Blobs Into the Heliosphere

    DTIC Science & Technology

    2010-05-20

    in the HI2-B field where it disrupted the tail of comet Boattini before sweeping past Earth . Because we are able to track this impressive feature...STEREO-B elongation/time map with the corresponding map obtained for STEREO-A. Because comet Boattini was located just south of the Sun– Earth line...not visible in COR2-A or HI1-A, and it was hardly visible in HI2-A until the comet arrived on June 24. This is typical of streamer blobs 306 SHEELEY

  12. Improved performance of gravity-driven membrane filtration for seawater pretreatment: Implications of membrane module configuration.

    PubMed

    Wu, Bing; Christen, Tino; Tan, Hwee Sin; Hochstrasser, Florian; Suwarno, Stanislaus Raditya; Liu, Xin; Chong, Tzyy Haur; Burkhardt, Michael; Pronk, Wouter; Fane, Anthony G

    2017-05-01

    As a low energy and chemical free process, gravity-driven membrane (GDM) filtration has shown a potential for seawater pretreatment in our previous studies. In this study, a pilot submerged GDM reactor (effective volume of 720 L) was operated over 250 days and the permeate flux stabilized at 18.6 ± 1.4 L/m(2)h at a hydrostatic pressure of 40 mbar. This flux was higher than those in the lab-scale GDM reactor (16.3 ± 0.2 L/m(2)h; effective volume of 8.4 L) and in the filtration cell system (2.7 ± 0.6 L/m(2)h; feed side volume of 0.0046 L) when the same flat sheet membrane was used. Interestingly, when the filtration cell was submerged into the GDM reactor, the flux (17.2 L/m(2)h) was comparable to the submerged membrane module. Analysis of cake layer morphology and foulant properties indicated that a thicker but more porous cake layer with less accumulation of organic substances (biopolymers and humics) contributed to the improved permeate flux. This phenomenon was possibly associated with longer residence time of organic substances and sufficient space for the growth, predation, and movement of the eukaryotes in the GDM reactor. In addition, the permeate flux of the submerged hollow fibre membrane increased with decreasing packing density. It is thought that the movement of large-sized eukaryotes could be limited when the space between hollow fibres was reduced. In terms of pretreatment, the GDM systems effectively removed turbidity, viable cells, and transparent exopolymer particles from the feed seawater. Importantly, extending the reactor operation time produced a permeate with less assimilable organic carbon and biopolymers. Thus, the superior quality of the GDM permeate has the potential to alleviate subsequent reverse osmosis membrane fouling for seawater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope

    NASA Astrophysics Data System (ADS)

    Alsop, G. Ian; Marco, Shmuel

    2013-10-01

    The Late Pleistocene Lisan Formation contains superb examples of soft-sediment deformation generated during gravity-driven slumping and failure down extremely gentle (< 1°) slopes towards the palaeo-Dead Sea Basin. Following a previously established framework, portions of individual slumps are broadly categorised into coherent, semi-coherent, and incoherent domains, reflecting increasing deformation and disarticulation of sediment. We present new structural data collected from each of these (overlapping) domains that demonstrate how the orientation of fold hinges and axial planes becomes more dispersed as slumps become increasingly incoherent. Such patterns are the reverse to that typically encountered in lithified rocks where increasing deformation results in clustering of linear elements towards the flow direction, and may reflect greater heterogeneity and disarticulation within slumps. Use of folds to determine palaeoslopes should therefore be limited to those from coherent slumps, where the opportunity for hinge dislocation and rotation is more limited. Within coherent and semi-coherent slumps, folds are reworked to create classic Type 1, 2 and 3 refold patterns during a single progressive deformation perhaps lasting just a matter of minutes. It is noteworthy that slump folds are typically lacking in smaller parasitic folds, implying that instantaneous development and/or limited viscosity contrasts have hindered the formation of second order folds. As deformation intensifies within semi-coherent to incoherent slumps, some fold hinges rotate towards the flow direction to create sheath folds. However, many fold hinges do not rotate into the flow direction, but rather roll downslope to form a new category of spiral folds. Extreme deformation may also generate semi-detached fold trains in which the short limbs of verging fold pairs are relatively thickened resulting in en-echelon X folds. The hinges of the sheared fold pair are reduced to apophyses, although these

  14. Contact Line Instability of Gravity-Driven Flow of Power-Law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2015-11-01

    The moving contact line of a thin fluid film can often corrugate into fingers, which is also known as a fingering instability. Although the fingering instability of Newtonian fluids has been studied extensively, there are few studies published on contact line fingering instability of non-Newtonian fluids. In particular, it is still unknown how shear-thinning rheological properties can affect the formation, growth, and shape of a contact line instability. Our previous study (Hu and Kieweg, 2012) showed a decreased capillary ridge formation for more shear-thinning fluids in a 2D model (i.e. 1D thin film spreading within the scope of lubrication theory). Those results motivated this study's hypothesis: more shear-thinning fluids should have suppressed finger growth and longer finger wavelength, and this should be evident in linear stability analysis (LSA) and 3D (i.e. 2D spreading) numerical simulations. In this study, we developed a LSA model for the gravity-driven flow of shear-thinning films, and carried out a parametric study to investigate the impact of shear-thinning on the growth rate of the emerging fingering pattern. A fully 3D model was also developed to compare and verify the LSA results using single perturbations, and to explore the result of multiple-mode, randomly imposed perturbations. Both the LSA and 3D numerical results confirmed that the contact line fingers grow faster for Newtonian fluids than the shear-thinning fluids on both vertical and inclined planes. In addition, both the LSA and 3D model indicated that the Newtonian fluids form fingers with shorter wavelengths than the shear-thinning fluids when the plane is inclined; no difference in the most unstable (i.e. emerging) wavelength was observed at vertical. This study also showed that the distance between emerging fingers was smaller on a vertical plane than on a less-inclined plane for shear-thinning fluids, as previously shown for Newtonian fluids. For the first time for shear

  15. "Streamer Blob" Outflow from Interchange Reconnection

    NASA Astrophysics Data System (ADS)

    Lynch, Benjamin J.; Edmondson, J. K.; Li, Y.

    2011-05-01

    Given the recent observational results of interchange reconnection processes in the solar corona and theoretical development of the S-Web model for the slow solar wind, we present further analysis of the 3D MHD simulation of interchange reconnection by Edmondson et al. (2009). Specifically, we will analyze the observable properties of the dynamic streamer belt jump that corresponds to previously closed streamer belt flux opening up via interchange reconnection. We quantify the system's kinetic energy and open flux evolution in time and show that the material released from the reconnection region outflow is qualitatively similar to the transient slow solar wind features known as "streamer blobs". Our simulation results imply that the commonly accepted interpretation of streamer blobs as small-scale magnetic flux-ropes may not be universally applicable. Additionally, we examine the synthetic emission from the density evolution above the surface and show the correspondence between coronal "dimming" and the opening up of previously closed flux. We will discuss future improvements to the MHD simulations that include a solar wind outflow and more rigorous comparisons to observations. BJL and YL acknowledge support from NASA HGI NNX08AJ04G and JKE acknowledges support from the NASA Postdoctoral Program.

  16. Numerical simulations of blobs with ion dynamics

    NASA Astrophysics Data System (ADS)

    Nielsen, A. H.; Rasmussen, J. Juul; Madsen, J.; Xu, G. S.; Naulin, V.; Olsen, J. M. B.; Løiten, M.; Hansen, S. K.; Yan, N.; Tophøj, L.; Wan, B. N.

    2017-02-01

    The transport of particles and energy into the scrape-off layer (SOL) region at the outboard midplane of medium-sized tokamaks, operating in low confinement mode, is investigated by applying the first-principle HESEL (hot edge-sol-electrostatic) model. HESEL is a four-field drift-fluid model including finite electron and ion temperature effects, drift wave dynamics on closed field lines, and sheath dynamics on open field lines. Particles and energy are mainly transported by intermittent blobs. Therefore, blobs have a significant influence on the corresponding profiles. The formation of a ‘shoulder’ in the SOL density profile can be obtained by increasing the collisionality or connection length, thus decreasing the efficiency of the SOL’s ability to remove plasma. As the ion pressure has a larger perpendicular but smaller parallel dissipation rate compared to the electron pressure, ion energy is transported far into the SOL. This implies that the ion temperature in the SOL exceeds the electron temperature by a factor of 2-4 and significantly broadens the power deposition profile.

  17. Unified transport scaling laws for plasma blobs and depletions

    NASA Astrophysics Data System (ADS)

    Wiesenberger, M.; Held, M.; Kube, R.; Garcia, O. E.

    2017-06-01

    We study the dynamics of seeded plasma blobs and depletions in an (effective) gravitational field. For incompressible flows, the radial center of mass velocity of blobs and depletions is proportional to the square root of their initial cross-field size and amplitude. If the flows are compressible, this scaling holds only for ratios of amplitude to size larger than a critical value. Otherwise, the maximum blob and depletion velocity depends linearly on the initial amplitude and is independent of size. In both cases, the acceleration of blobs and depletions depends on their initial amplitude relative to the background plasma density and is proportional to gravity and independent of their cross-field size. Due to their reduced inertia plasma, depletions accelerate more quickly than the corresponding blobs. These scaling laws are derived from the invariants of the governing drift-fluid equations for blobs and agree excellently with numerical simulations over five orders of magnitude for both blobs and depletions. We suggest an empirical model that unifies and correctly captures the radial acceleration and maximum velocities of both blobs and depletions.

  18. Mechanism for blob generation in the TORPEX toroidal plasma

    SciTech Connect

    Furno, I.; Labit, B.; Fasoli, A.; Poli, F. M.; Ricci, P.; Theiler, C.; Brunner, S.; Diallo, A.; Graves, J. P.; Podesta, M.; Mueller, S. H.

    2008-05-15

    The mechanism for blob generation is detailed in the toroidal magnetized plasma of the TORPEX device [Fasoli et al., Phys. Plasmas 13, 055902 (2006)] using an experimental configuration, which features a plasma region dominated by a coherent wave and a region on the low field side characterized by the propagation of blobs. Predictions from linearized 2D drift-reduced Braginskii equations are compared with experimental data, revealing the interchange nature of the coherent wave. The dynamics of blob formation is investigated using time-resolved measurements of two-dimensional profiles of electron density, temperature, plasma potential and ExB velocity. Blobs form from radially elongated structures associated with the interchange wave. When a blob is generated, the following sequence of events is observed: 1) A decrease of local pressure gradient length provides an increase of the interchange mode drive; 2) in response, the interchange mode increases in amplitude and expands in the radial direction forming a radially elongated structure from the wave crest; 3) the elongated structure is convected by the ExB flow and is eventually sheared off, forming a blob on the low field side. The dependence of the blob amplitude upon the minimum pressure radial scale length before the blob ejection is also investigated.

  19. The formation of blobs from a pure interchange process

    SciTech Connect

    Zhu, P.; Sovinec, C. R.; Hegna, C. C.

    2015-02-15

    In this work, we focus on examining a pure interchange process in a shear-less slab configuration as a prototype mechanism for blob formation. We employ full magnetohydrodynamic simulations to demonstrate that the blob-like structures can emerge through the nonlinear development of a pure interchange instability originating from a pedestal-like transition region. In the early nonlinear stage, filamentary structures develop and extend in the direction of the effective gravity. The blob-like structures appear when the radially extending filaments break off and disconnect from the core plasma. The morphology and the dynamics of these filaments and blobs vary dramatically with a sensitive dependence on the dissipation mechanisms in the system and the initial perturbation. Despite the complexity in morphology and dynamics, the nature of the entire blob formation process in the shear-less slab configuration remains strictly interchange without involving any change in magnetic topology.

  20. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    PubMed

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven

  1. Blob dynamics in TORPEX poloidal null configurations

    NASA Astrophysics Data System (ADS)

    Shanahan, B. W.; Dudson, B. D.

    2016-12-01

    3D blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. A comparison with a previously developed analytical model (Avino 2016 Phys. Rev. Lett. 116 105001) is performed and an agreement is found with minimal modification. Experimental comparison determines that the null region can cause an acceleration of filaments due to increasing connection length, but this acceleration is small relative to other effects, which we quantify. Experimental measurements (Avino 2016 Phys. Rev. Lett. 116 105001) are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background. Contributions from increasing connection length close to the null point are a small correction.

  2. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    PubMed Central

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  3. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  4. Re-endothelialization of rat lung scaffolds through passive, gravity-driven seeding of segment-specific pulmonary endothelial cells.

    PubMed

    Scarritt, Michelle E; Pashos, Nicholas C; Motherwell, Jessica M; Eagle, Zachary R; Burkett, Brian J; Gregory, Ashley N; Mostany, Ricardo; Weiss, Daniel J; Alvarez, Diego F; Bunnell, Bruce A

    2016-12-12

    Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that hemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells (HUVECs) were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells (PAECs) and rat pulmonary vein endothelial cells (PVECs) attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells (MVECs) deposited mostly in microvessels. Combination seeding of PAECs, PVECs, and MVECs led to positive VE-cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. This article is protected by copyright. All rights reserved.

  5. Blob structure and motion in the edge and SOL of NSTX

    SciTech Connect

    Zweben, S. J.; Myra, J. R.; Davis, W. M.; D’Ippolito, D. A.; Gray, T. K.; Kaye, S. M.; LeBlanc, B. P.; Maqueda, R. J.; Russell, D. A.; Stotler, D. P.

    2016-01-28

    Here, the structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrape-off layer of NSTX is studied for representative Ohmic and H-mode discharges. Individual blobs were tracked in the 2D radial versus poloidal plane using data from the gas puff imaging diagnostic taken at 400 000 frames s-1. A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for ~45 000 individual blobs. Empirical relationships between various properties are described, e.g. blob speed versus amplitude and blob tilt versus ellipticity. The blob velocities are also compared with analytic models.

  6. Blob structure and motion in the edge and SOL of NSTX

    DOE PAGES

    Zweben, S. J.; Myra, J. R.; Davis, W. M.; ...

    2016-01-28

    Here, the structure and motion of discrete plasma blobs (a.k.a. filaments) in the edge and scrape-off layer of NSTX is studied for representative Ohmic and H-mode discharges. Individual blobs were tracked in the 2D radial versus poloidal plane using data from the gas puff imaging diagnostic taken at 400 000 frames s-1. A database of blob amplitude, size, ellipticity, tilt, and velocity was obtained for ~45 000 individual blobs. Empirical relationships between various properties are described, e.g. blob speed versus amplitude and blob tilt versus ellipticity. The blob velocities are also compared with analytic models.

  7. Blobs in the framework of drift wave dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzeng; Krasheninnikov, S. I.

    2016-12-01

    Analytic solutions for blob-like structures obtained in S. I. Krasheninnikov [Phys. Lett. A 380, 3905 (2016)], are examined in detail. Numerical solutions for the cases where analytic consideration is not possible are provided.

  8. BARCHAN: Blob Alignment for Robust CHromatographic ANalysis.

    PubMed

    Couprie, Camille; Duval, Laurent; Moreaud, Maxime; Hénon, Sophie; Tebib, Mélinda; Souchon, Vincent

    2017-02-10

    Two-dimensional gas chromatography (GC×GC) plays a central role into the elucidation of complex samples. The automation of the identification of peak areas is of prime interest to obtain a fast and repeatable analysis of chromatograms. To determine the concentration of compounds or pseudo-compounds, templates of blobs are defined and superimposed on a reference chromatogram. The templates then need to be modified when different chromatograms are recorded. In this study, we present a chromatogram and template alignment method based on peak registration called BARCHAN. Peaks are identified using a robust mathematical morphology tool. The alignment is performed by a probabilistic estimation of a rigid transformation along the first dimension, and a non-rigid transformation in the second dimension, taking into account noise, outliers and missing peaks in a fully automated way. Resulting aligned chromatograms and masks are presented on two datasets. The proposed algorithm proves to be fast and reliable. It significantly reduces the time to results for GC×GC analysis.

  9. Lyman alpha coronagraph research sounding rocket program

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.

    1985-01-01

    The ultraviolet light coronagraph was developed and successfully flown on three rocket flights on 13 April 1979, 16 February 1980 and 20 July 1982. During each of these flights, the Ultraviolet Light Coronagraph was flown jointly with the White Light Coronagraph provided by the High Altitude Observatory. Ultraviolet diagnostic techniques and instrumentation for determining the basic plasma parameters of solar wind acceleration regions in the extended corona were developed and verified and the understanding of the physics of the corona through the performance, analysis and interpretation of solar observations advanced. Valuable UV diagnostics can be performed in the absence of a natural solar eclipse.

  10. The Lyman Alpha Forest in hierarchical cosmologies

    SciTech Connect

    Anninos, P; Bryan, G L; Machacek, M; Moiksin, A; Norman, M L; Zhang, Y

    1999-07-02

    The comparison of quasar absorption spectra with numerically simulated spectra from hierarchical cosmological models of structure formation promises to be a valuable tool to discriminate among these models. We present simulation results for the column density, Doppler b parameter, and optical depth probability distributions for five popular cosmological models.

  11. Pressure-confined Lyman-alpha clouds

    NASA Technical Reports Server (NTRS)

    Baron, E.; Carswell, R. F.; Hogan, C. J.; Weymann, R. J.

    1989-01-01

    Results are presented of numerical models of pressure-confined spherical gas clouds which produce absorption resembling the low to intermediate atomic column density lines found in high-redshift QSO spectra. One-dimensional hydrodynamical models including electron conduction are described, and the rate equations are solved to find ionization and excitation states. Results are presented for both static and adiabatically expanding confining media covering a range of initial pressures. It is found that Ly-alpha lines are very similar over a wide range of conditions and that the most promising diagnostic of pressure is to compare the column density in H I to that in He I and He II. No single-pressure model can explain the wide range of observed H I column densities.

  12. Pressure-confined Lyman-alpha clouds

    SciTech Connect

    Baron, E.; Carswell, R.F.; Hogan, C.J.; Weymann, R.J.

    1989-02-01

    Results are presented of numerical models of pressure-confined spherical gas clouds which produce absorption resembling the low to intermediate atomic column density lines found in high-redshift QSO spectra. One-dimensional hydrodynamical models including electron conduction are described, and the rate equations are solved to find ionization and excitation states. Results are presented for both static and adiabatically expanding confining media covering a range of initial pressures. It is found that Ly-alpha lines are very similar over a wide range of conditions and that the most promising diagnostic of pressure is to compare the column density in H I to that in He I and He II. No single-pressure model can explain the wide range of observed H I column densities. 18 references.

  13. Lyman alpha radiation in external galaxies

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Mckee, Christopher F.

    1990-01-01

    The Ly alpha line of atomic hydrogen is often a luminous component of the radiation emitted by distant galaxies. Except for those galaxies which have a substantial central source of non-stellar ionizing radiation, most of the Ly alpha radiation emitted by galaxies is generated within regions of the interstellar medium which are photoionized by starlight. Conversely, much of the energy radiated by photoionized regions is carried by the Ly alpha line. Only hot, massive stars are capable of ionizing hydrogen in the interstellar medium which surrounds them, and because such stars are necessarily short-lived, Ly alpha emission traces regions of active star formation. Researchers argue that the strength of the Ly alpha emission observed from external galaxies may be used to estimate quantitatively the dust content of the emitting region, while the Ly alpha line profile is sensitive to the presence of shock waves. Interstellar dust particles and shock waves are intimately associated with the process of star formation in two senses. First, both dust particles and shock waves owe their existence to stellar activity; second, they may both serve as agents which facilitate the formation of stars, shocks by triggering gravitational instabilities in the interstellar gas that they compress, and dust by shielding star-forming molecular clouds from the ionizing and dissociative effects of external UV radiation. By using Ly alpha observations as a probe of the dust content in diffuse gas at high redshift, we might hope to learn about the earliest epochs of star formation.

  14. An extension of the Savage-Hutter gravity driven granular flow model on arbitrary topography in 1D

    NASA Astrophysics Data System (ADS)

    Fellin, Wolfgang; Ostermann, Alexander; Staggl, Gregor

    2015-04-01

    In an implementation of the Savage-Hutter model in a GIS (geographic information system, e.g. GRASS GIS) curvature terms must be accounted for. We extend the work of Bouchut et al. (2003) to include friction between flowing mass and bed, as well as the active/passive earth pressure coefficient to model the behavior of the granular flow according to the original Savage-Hutter idea. Conservation of mass and momentum in curvilinear coordinates are integrated over the flow height yielding a shallow water model. This work is part of the project avaflow: http://www.avaflow.org/ References: F. Bouchut, A. Mangeney-Castelnau, B. Perthame, J.-P. Vilotte, A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows, C.R. Acad. Sci. Paris, série I 336 (2003), 531-536.

  15. Travelling-wave similarity solution for gravity-driven rivulet of a Newtonian fluid with strong surface-tension effect

    NASA Astrophysics Data System (ADS)

    Abas, Siti Sabariah; Yatim, Yazariah Mohd

    2017-08-01

    Rivulet flows occur in a wide range of practical situations ranging from industrial situation such as coating processes to geophysical situation such as lava flow, and extensive efforts have been made to investigate it. In this study, a lubrication approximation is used to investigate the gravity-driven draining of unsteady, slender, symmetric rivulet of Newtonian fluid down an inclined plane, with strong surface-tension effect. A travelling-wave similarity solution is obtained representing a quartic transverse profile rivulet and that it has a uniform thickness at any position x and time t which widen or narrow according to (x - ct)1/4, where c is a velocity of a rivulet and thicken or thin according to a free parameter F0.

  16. Capillarity-induced resonance of blobs in porous media: analytical solutions, Lattice-Boltzmann modeling, and blob mobilization.

    PubMed

    Hilpert, Markus

    2007-05-15

    Theoretical considerations and experiments in capillary tubes suggest that blobs exhibit resonance in porous media when they are trapped because of interfacial tension. Here, we investigate the hypothesis that such blobs can be mobilized by exploiting a phenomenon entitled capillarity-induced resonance, that is, by exciting the blobs at their resonant frequency. We used Lattice-Boltzmann (LB) modeling to perform numerical experiments, and we validated the LB model using analytical solutions that approximate the linear response of blobs with pinned menisci in straight and polygonal pore channels to an oscillatory body force. The LB simulations agree well with the quasistatic response, which the analytical solutions describe correctly. Furthermore, the frequency response, particularly the resonant frequency, agrees well, even though the analytical solutions do not accurately estimate viscous pressure drops. Numerical experiments in polygonal and sinusoidal pore channels, as well as disc packings, show that blobs, which are trapped even though a constant body force is applied, can indeed be mobilized by exploiting capillarity-induced resonance. Moreover, the resonant frequency can be estimated in numerical experiments by determining the dominant frequency in the blob amplitude in response to a force pulse. This is of great practical relevance for complex geometries, for which the resonant frequency cannot be easily predicted theoretically.

  17. Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities

    SciTech Connect

    Furno, I.; Chabloz, V.; Fasoli, A.; Loizu, J.; Theiler, C.

    2014-01-15

    The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density n{sub se} at a poloidal limiter, where blobs are connected, and the upstream density n{sub 0} at a location half way to the other end of the blobs. The pre-sheath density drop n{sub se}/n{sub 0} is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheath density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].

  18. Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities

    NASA Astrophysics Data System (ADS)

    Furno, I.; Theiler, C.; Chabloz, V.; Fasoli, A.; Loizu, J.

    2014-01-01

    The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density nse at a poloidal limiter, where blobs are connected, and the upstream density n0 at a location half way to the other end of the blobs. The pre-sheath density drop nse/n0 is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheath density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].

  19. Tear Film Dynamics Around a Rigid Model Blob

    NASA Astrophysics Data System (ADS)

    Ketelaar, Christiaan; Zhong, Lan; Braun, Rj; Driscoll, Ta; King-Smith, Pe; Begley, Cg

    2015-11-01

    Tear film break up (TBU) can occur after imperfections in the lipid layer arise. The imperfections may cause elevated evaporation, which causes TBU for large enough spots and grooves and for fast enough evaporation. TBU also occurs near smaller features in the lipid layer. These are apparently blobs of lipids that do not spread and which are too small for the evaporative mechanism to account for the dynamics. We investigate the tear film dynamics near a model rigid blob with a fixed constant surfactant concentration. We develop the lubrication-type equations that govern the tear film thickness, surfactant concentration, and osmolarity in the tear film beneath and near the blob. We perform numerical simulations for the evolution of the tear film thickness and analyze how the size of the blob, as well as the surfactant properties and transport, affect tear film dynamics. The thinning induced by the blob is of the correct time scale to compare with in vivo observations, and close comparison with the experiments will be made.

  20. Possible Overlaps Between Blobs, Grism Apertures, and Dithers

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McCullough, P. R.

    2017-06-01

    We present a investigation into possible overlaps between the known IR blobs with the grism aperture reference positions and the IR dither patterns. Each aperture was designed to place the science target (e.g. a specific star) on a cosmetically clean area of the IR detector. Similarly, the dither patterns were designed to mitigate cosmetic defects by rarely (or ideally never) placing such targets on known defects. Because blobs accumulate with time, the originally defined apertures and dither patterns may no longer accomplish their goals, it is important to reverify these combinations. We find two potential overlaps between the blob, aperture, and dither combinations, but do not recommend any changes to the current suite of aperture references positions and/or dither patterns for two reasons. First, one of the overlaps occurs with a dither/aperture combination that is seldom used for high-value science operations, but rather more common for wide-field surveys/mosaics. Second, the other overlap is 8.7 pix from a blob that has a fiducial radius of 10 pix, which already represents a very conservative distance. We conclude that a similar analysis should be repeated as new blobs occur, to continue to ensure ideal operations for high-value science targets. The purpose of this report is to document the analysis in order to facilitate its repetition in the future.

  1. Experimental and theoretical study of fluid-structure interactions in plunging hydrofoils and gravity-driven falling plates

    NASA Astrophysics Data System (ADS)

    Tian, Ruijun

    Two typical unsteady fluid-structure interaction problems have been investigated in the present study. One of them was about actively plunged flexible hydrofoil; the other was about gravity-driven falling plates in water. Real-time velocity field and dynamic response on the moving objects were measured to study these unsteady and highly nonlinear problems. For a long time, scientists have believed that bird and insect flight benefits greatly from the flexibility and morphing facility of their wings via flapping motion. A significant advantage flexible wing models have over quasi-steady rigid wing models is a much higher lift generation capability. Both experimental and computational studies have shown that the leading and trailing edge vortexes (LEV and TEV) play a major role in the efficient generation of such unconventionally high lift force. In this study, two NACA0012 miniature hydrofoils, one flexible and the other rigid, were actively plunged at various frequencies in a viscous glycerol-water solution to study the influence of flexibility. Two-dimensional, phase-locked particle image velocimetry (PIV) measurements were conducted to investigate the temporal and spacial development of LEVs and TEVs. Simultaneous measurements of lift and thrust forces were recorded to reveal the relationship between hydrodynamic force and the evolution of the surrounding flow field. Results from the flexible hydrofoil were compared to those from the rigid one in order to quantitatively analyze the effects of flexibility. The second problem focused on fluid-structure interaction of gravity driven falling plates. Falling leaves and paper cards in air has drawn plenty of research interest in the past decades to investigate the interaction between the fluid flow and the falling object. In this research, time-resolved PIV were employed to experimentally visualize the flow field evolution around the gravity-driven falling plates. The plates were made of different materials with

  2. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.

    PubMed

    Holm, Darryl D; Jacobs, Henry O

    2017-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  3. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Jacobs, Henry O.

    2017-03-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  4. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics

    NASA Astrophysics Data System (ADS)

    Holm, Darryl D.; Jacobs, Henry O.

    2017-06-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  5. Three dimensional mechanical analysis of a gravity driven salt system using InSAR and numerical modeling

    NASA Astrophysics Data System (ADS)

    Kravitz, Katherine; Mueller, Karl; Upton, Phaedra

    2017-04-01

    The Grabens of Canyonlands National Park is a well-exposed gravity driven system of salt structures driven by the incision of the Colorado River canyon toward a 300 m thick evaporite layer. The region contains an array of normal faults with displacement accommodated by a combination of salt flow and overburden gliding toward the canyon and provides the opportunity to explore salt deformation mechanics in three dimensions. Maybe describe other structures besides faults? Meander anticline, diapirs. Using a combination of interferometric synthetic aperture radar (InSAR) and three-dimensional numerical modeling, we: 1) quantify displacement rates and kinematics of the region, 2) explore how various parameters driving deformation interact and control deformation, and 3) use these results to understand the mechanics of a gravity driven salt system. Initial InSAR results show average line-of-sight (LOS) displacement of 1-3 mm/yr throughout the deforming region. The data set can additionally provide a time series from 1992-2011 and multiple components of deformation using both ascending and descending scenes. Three-dimensional numerical models were created to explore the roles of overburden rheology, salt geometry, and topography on salt deformation. We converted the model displacement into LOS displacement rates for direct comparison to InSAR rates. Within the Grabens, overburden rheology plays an important role on deformation patterns. Not only do preexisting weaknesses allow propagation of deformation away from the river canyon and an increase in overburden displacement rates, the mechanics in the region are spatially complex. The models indicate a transition from gravity spreading to gliding dependent on topography, where spreading is dominant below horsts and transitions to gliding toward the grabens. Additionally, salt flow is more sensitive to smaller scale topographic features and is diverted toward individual side tributaries and grabens on spatial scales of

  6. Scattering of radio frequency waves by blobs in tokamak plasmas

    SciTech Connect

    Ram, Abhay K.; Hizanidis, Kyriakos; Kominis, Yannis

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  7. Gravity-driven hybrid membrane for oleophobic-superhydrophilic oil-water separation and water purification by graphene.

    PubMed

    Yoon, Hyun; Na, Seung-Heon; Choi, Jae-Young; Latthe, Sanjay S; Swihart, Mark T; Al-Deyab, Salem S; Yoon, Sam S

    2014-10-07

    We prepared a simple, low-cost membrane suitable for gravity-driven oil-water separation and water purification. Composite membranes with selective wettability were fabricated from a mixture of aqueous poly(diallyldimethylammonium chloride) solution, sodium perfluorooctanoate, and silica nanoparticles. Simply dip-coating a stainless steel mesh using this mixture produced the oil-water separator. The contact angles (CAs) of hexadecane and water on the prepared composite membranes were 95 ± 2° and 0°, respectively, showing the oleophobicity and superhydrophilicity of the membrane. In addition, a graphene plug was stacked below the membrane to remove water-soluble organics by adsorption. As a result, this multifunctional device not only separates hexadecane from water, but also purifies water by the permeation of the separated water through the graphene plug. Here, methylene blue (MB) was removed as a demonstration. Membranes were characterized by high-resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) spectroscopy to elucidate the origin of their selective wettability.

  8. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    PubMed

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  9. Paper spray mass spectrometry-based method for analysis of droplets in a gravity-driven microfluidic chip.

    PubMed

    Zhang, Yandong; Li, Haifang; Ma, Yuan; Lin, Jin-Ming

    2014-03-07

    This work presents a paper spray mass spectrometry-based method, to analyze microdroplets produced in a gravity-driven microchip. Droplets at ambient pressure were passively transferred from the chip to a paper substrate by the capillary wicking effect. Paper spray ionization was then performed for mass spectrometry (MS) analysis of droplet contents. The qualitative and quantitative analytical performances of this technique for single droplets were demonstrated. This manually controlled interface is straightforward, low-cost and simple to implement. Moreover, paper spray ionization MS holds promise in the direct analysis of real biological/chemical microreaction samples because of its tolerance with complex matrices. As a proof-of-concept example, the droplet-based acetylcholine hydrolysis was carried out to demonstrate the validation of our method for the direct analysis of micro-chemical/biological reactions. We also introduced a flow injection analysis (FIA) system combined with our droplet system to generate a concentration gradient. As a result, the microreaction can be performed at different concentrations and kinetic information can be obtained in one sample injection. In conclusion, the combination of a microdroplet chip with paper spray ionization and the introduction of the FIA system and make our droplet-MS scheme a useful platform for monitoring and analyzing organic-phase chemical/biological reactions.

  10. A new gravity-driven microfluidic-based electrochemical assay coupled to magnetic beads for nucleic acid detection.

    PubMed

    Laschi, Serena; Miranda-Castro, Rebeca; González-Fernández, Eva; Palchetti, Ilaria; Reymond, Frédéric; Rossier, Joël S; Marrazza, Giovanna

    2010-11-01

    In this work, the characterisation and the optimisation of hybridisation assays based on a novel, rapid and sensitive micro-analytical, gravity-driven, flow device is reported. This device combines a special chip containing eight polymer microchannels, with a portable, computer-controlled instrument. The device is used as a platform for affinity experiments using oligonucleotide-modified paramagnetic particles. In our approach, both hybridisation and labelling events are performed on streptavidin-coated paramagnetic microparticles functionalized with a biotinylated capture probe. Modified particles, introduced in the microchannel inlet of the chip, accumulate near the electrode surface by virtue of a magnetic holder. After hybridisation with the complementary sequence, the hybrid is labelled with an alkaline phosphatase conjugate. The electrochemical substrate for alkaline phosphatase revelation is p-aminophenyl phosphate. Solutions and reagents are sequentially passed through the microchannels, until enzyme substrate is added for in situ signal detection. Upon readout, the magnet array is flipped away, beads are removed by addition of regeneration buffer, and the so-regenerated chip is ready for further analysis. This protocol has been applied to the analytical detection of specific DNA sequences of Legionella pneumophila, with an RSD=8.5% and a detection limit of 0.33 nM.

  11. Dynamics of an Isolated Blob in the Presence of the X-Point

    SciTech Connect

    Cohen, R H; Ryutov, D D

    2005-10-10

    The interplay of X-point shearing and axial plasma redistribution along a moving flux tube is discussed. Blobs limited to the main scrape-off-layer and the blobs entirely confined in the divertor region are identified. A strong effect of the radial tilt of the divertor plate on ''divertor'' blobs is found.

  12. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia

    NASA Astrophysics Data System (ADS)

    Robson, A. G.; King, R. C.; Holford, S. P.

    2016-08-01

    We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128-308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw. Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault

  13. Presence of an adsorbent cake layer improves the performance of gravity-driven membrane (GDM) filtration system.

    PubMed

    Shao, Senlin; Feng, Yijing; Yu, Huarong; Li, Jiangyun; Li, Guibai; Liang, Heng

    2017-01-01

    Gravity-driven membrane (GDM) filtration is a promising decentralized drinking water treatment process. To improve the performance of GDM system, a thin layer of adsorbent was pre-deposited on the membrane surface prior to filtration (adsorbent-laden GDM system). The tested adsorbents include powdered activated carbon (PAC) and anion exchange resin (AER), and an unmodified GDM system and a SiO2-laden GDM system were used as controls. In the adsorbent-laden GDM systems, the adsorption of the PAC and AER increased the removal efficiency of natural organic matter by 7.2-43.5% and microcystin-LR, atrazine, and bisphenol A by 7.9-81.2%. The presence of adsorbent particles increased the amount of microorganisms in the cake layer and therefore increased the removal efficiency of assimilable organic matter (AOC) by 20.1-34.4%. In the adsorbent-laden GDM systems, the physically irrecoverable fouling decreased because of the reduction in membrane foulants by the adsorbent layer. However, the presence of adsorbent particles in the cake layer counteracted this effect and increased the physically recoverable fouling. Consequently, the pre-deposited adsorbent layers had only a limited effect on the stabilized flux (2.26-2.65 L/m(2) h). A bilayer structure was found in the cake layer of the adsorbent-laden GDM systems via scanning electron microscopy (SEM), and the cake layer was looser in the presence of adsorbent particles. These results demonstrate that pre-depositing a thin layer of adsorbents on the membrane surface of the GDM system can significantly improve the quality of the permeate without decreasing the stabilized flux. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration.

    PubMed

    Derlon, Nicolas; Koch, Nicolas; Eugster, Bettina; Posch, Thomas; Pernthaler, Jakob; Pronk, Wouter; Morgenroth, Eberhard

    2013-04-15

    The impact of different feed waters in terms of eukaryotic populations and organic carbon content on the biofilm structure formation and permeate flux during Gravity-Driven Membrane (GDM) filtration was investigated in this study. GDM filtration was performed at ultra-low pressure (65 mbar) in dead-end mode without control of the biofilm formation. Different feed waters were tested (River water, pre-treated river water, lake water, and tap water) and varied with regard to their organic substrate content and their predator community. River water was manipulated either by chemically inhibiting all eukaryotes or by filtering out macrozoobenthos (metazoan organisms). The structure of the biofilm was characterized at the meso- and micro-scale using Optical Coherence Tomography (OCT) and Confocal Laser Scanning Microscopy (CLSM), respectively. Based on Total Organic Carbon (TOC) measurements, the river waters provided the highest potential for bacterial growth whereas tap water had the lowest. An increasing content in soluble and particulate organic substrate resulted in increasing biofilm accumulation on membrane surface. However, enhanced biofilm accumulation did not result in lower flux values and permeate flux was mainly influenced by the structure of the biofilm. Metazoan organisms (in particular nematodes and oligochaetes) built-up protective habitats, which resulted in the formation of open and spatially heterogeneous biofilms composed of biomass patches. In the absence of predation by metazoan organisms, a flat and compact biofilm developed. It is concluded that the activity of metazoan organisms in natural river water and its impact on biofilm structure balances the detrimental effect of a high biofilm accumulation, thus allowing for a broader application of GDM filtration. Finally, our results suggest that for surface waters with high particulate organic carbon (POC) content, the use of worms is suitable to enhance POC removal before ultrafiltration units

  15. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows.

    PubMed

    Du, Wen-Bin; Fang, Qun; He, Qiao-Hong; Fang, Zhao-Lun

    2005-03-01

    In this work, a simple, robust, and automated microfluidic chip-based FIA system with gravity-driven flows and liquid-core waveguide (LCW) spectrometric detection was developed. The high-throughput sample introduction system was composed of a capillary sampling probe and an array of horizontally positioned microsample vials with a slot fabricated on the bottom of each vial. FI sample loading and injection were performed by linearly moving the array of vials filled alternately with 50-microL samples and carrier, allowing the probe inlet to enter the solutions in the vials through the slots sequentially and the sample and carrier solution to be introduced into the chip driven by gravity. The performance of the system was demonstrated using the complexation of o-phenanthroline with Fe(II) as a model reaction. A 20-mm-long Teflon AF 2400 capillary (50-microm i.d., 375-microm o.d.) was connected to the chip to function as a LCW detection flow cell with a cell volume of 40 nL and effective path length of 1.7 cm. Linear absorbance response was obtained in the range of 1.0-100 microM Fe(II) (r2=0.9967), and a good reproducibility of 0.6% RSD (n=18) was achieved. The sensitivity was comparable with that obtained using conventional FIA systems, which typically consume 10,000-fold more sample. The highest sampling throughput of 1000 h-1 was obtained by using injection times of 0.08 and 3.4 s for sample and carrier solution, respectively, with a sample consumption of only 0.6 nL for each cycle.

  16. Statistical study of the GNSS phase scintillation associated with two types of auroral blobs

    NASA Astrophysics Data System (ADS)

    Jin, Yaqi; Moen, Jøran I.; Miloch, Wojciech J.; Clausen, Lasse B. N.; Oksavik, Kjellmar

    2016-05-01

    This study surveys space weather effects on GNSS (Global Navigation Satellite System) signals in the nighttime auroral and polar cap ionosphere using scintillation receivers, all-sky imagers, and the European Incoherent Scatter Svalbard radar. We differentiate between two types of auroral blobs: blob type 1 (BT 1) which is formed when islands of high-density F region plasma (polar cap patches) enter the nightside auroral oval, and blob type 2 (BT 2) which are generated locally in the auroral oval by intense particle precipitation. For BT 1 blobs we have studied 41.4 h of data between November 2010 and February 2014. We find that BT 1 blobs have significantly higher scintillation levels than their corresponding polar cap patch; however, there is no clear relationship between the scintillation levels of the preexisting polar cap patch and the resulting BT 1 blob. For BT 2 blobs we find that they are associated with much weaker scintillations than BT 1 blobs, based on 20 h of data. Compared to patches and BT 2 blobs, the significantly higher scintillation level for BT 1 blobs implies that auroral dynamics plays an important role in structuring of BT 1 blobs.

  17. He I absorption by Lyman-alpha clouds and low-redshift Lyman-alpha clouds

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi; Ostriker, Jeremiah P.

    1992-01-01

    Sources and sinks of radiation are used to model the evolution of the metagalactic ionizing background radiation field. It is shown that, if the comoving number density of quasars approached constancy at high redshift, as suggested by some recent observations, the observed ionizing background might possibly have been produced by the observed quasars alone. Consideration is also given to the UV radiation from decaying neutrons proposed by Sciama (1990), as an extra possible source. If is found that, if the background spectrum were as soft as in the Sciama scenario, the observed Ly-alpha clouds would contain detectable amounts of neutral helium, producing an 'He I forest' almost as dense as the hydrogen forest, due to the 584-A transition 1s-squared-1s2p. It is argued that observations of the Ly-alpha forest contradict the Sciama hypothesis.

  18. Lyman-alpha emission from the damped Lyman-alpha system toward H0836 + 113

    NASA Technical Reports Server (NTRS)

    Wolfe, A. M.; Lanzetta, K. M.; Turnshek, D. A.; Oke, J. B.

    1992-01-01

    This study presents results of a comprehensive search for Ly-alpha emission from the 2.466-redshift damped Ly-alpha system toward the QSO H0836 + 113. Deep CCD images of the field surrounding the QSO were acquired with a narrow-band filter tuned to the wavelength centroid of the 2.466-redshift damped Ly-alpha line. Two superposed objects, one extended and the other compact, were detected within 4 arcsec of the QSO. Evidence is presented indicating that the extended object, seen only in the narrow-band frames, was detected in the light of Ly-alpha line radiation emitted by the damped system, while the compact object, seen with the broadband filters and in the narrow-band frames acquired with superior seeing, was detected in the light of the continuum radiation emitted by a foreground Mg II galaxy with a redshift of 0.79. Accurate spectra of the QSO were also obtained in order to observe the spatially unresolved Ly-alpha emission feature reported to exist at the bottom of the damped Ly-alpha absorption trough.

  19. Gravity Driven Universe

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2010-03-01

    Flowing global gravitation initially produced space without time or mass. Space-time and mass are properties of flowing global gravitation. From its fabric, primal mass spins spontaneously giving rise to local gravitational space-time curvatures. Global gravity is the unifying background field. Gravity began flowing from its singularity with a big whoosh. It curves with angular rotational precession, creating a spatial geometry similar to the windings of a ball of string. Three-dimensional global gravity swirls locally into massive densities. Concurrently with these densities, local gravity curvatures of space-time arise. The expanse between celestial objects is not completely empty, void space as generally believed; it is antecedent gravity, a prerequisite associated field necessary for originating the first quantum particles. Gravity is dark energy; gravity's spin, as the second fundamental force, is electromagnetic dark matter. Electromagnetic masses attract then gravity compresses hot, dense and small---then bang, the first hydrogen star of which there are many. There may have been many big bangs, but no Big Bang that ultimately created the universe.

  20. Two vortex-blob regularization models for vortex sheet motion

    NASA Astrophysics Data System (ADS)

    Sohn, Sung-Ik

    2014-04-01

    Evolving vortex sheets generally form singularities in finite time. The vortex blob model is an approach to regularize the vortex sheet motion and evolve past singularity formation. In this paper, we thoroughly compare two such regularizations: the Krasny-type model and the Beale-Majda model. It is found from a linear stability analysis that both models have exponentially decaying growth rates for high wavenumbers, but the Beale-Majda model has a faster decaying rate than the Krasny model. The Beale-Majda model thus gives a stronger regularization to the solution. We apply the blob models to the two example problems: a periodic vortex sheet and an elliptically loaded wing. The numerical results show that the solutions of the two models are similar in large and small scales, but are fairly different in intermediate scales. The sheet of the Beale-Majda model has more spiral turns than the Krasny-type model for the same value of the regularization parameter δ. We give numerical evidences that the solutions of the two models agree for an increasing amount of spiral turns and tend to converge to the same limit as δ is decreased. The inner spiral turns of the blob models behave differently with the outer turns and satisfy a self-similar form. We also examine irregular motions of the sheet at late times and find that the irregular motions shrink as δ is decreased. This fact suggests a convergence of the blob solution to the weak solution of infinite regular spiral turns.

  1. Examining the Release Mechanism of Intermittent Streamer Blobs

    NASA Astrophysics Data System (ADS)

    Ozturk, D. S.; van der Holst, B.; Sokolov, I.; Gombosi, T. I.

    2015-12-01

    The white light images from the Large-Angle and Spectrometric Coronagraph (LASCO) C2 and C3 have shown small-scale periodic plasmoid releases from the tip of the Helmet Streamers. The density and velocity of these blobs show similarities with the slow solar wind. There are various scenarios proposed to comprehend the release mechanism for these plasmoids. Most widely accepted explanations include interchange reconnection and significant proton coronal heating at the streamer tip. A three-dimensional global coronal model will be used to examine this intermittent blob release over a several day period. We use the new real time version of Alfven Wave Solar Model (AWSoM-R) to decrease the computational costs. In AWSoM-R, the global magnetohydrodynamic (MHD) equations for the lower corona are solved along one-dimensional magnetic field line threads. The Alfven wave dissipation is partitioned into coronal heating of protons and electrons. We study how this heat partitioning affects plasmoid formation. We investigate the size and periodicity of the streamer blobs for Carrington Rotation 2109 (12 April 2011-09 May 2011) by constructing synthetic white light images from the time-dependent model and comparing our results with observations.

  2. BLOBS IN SPACE: THE LEGACY OF A NOVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe prolific number of eruptions by the recurrent nova T Pyxidis has attracted the attention of many telescopes. The image on the left, taken by a ground-based telescope, shows shells of gas around the star that were blown off during several eruptions. Closer inspection by the Hubble Space Telescope (right-hand image), however, reveals that the shells are not smooth at all. In fact, this high-resolution image shows that the shells are actually more than 2,000 gaseous blobs packed into an area that is 1 light-year across. Resembling shrapnel from a shotgun blast, the blobs may have been produced by the nova explosion, the subsequent expansion of gaseous debris, or collisions between fast-moving and slow- moving gas from several eruptions. False color has been applied to this image to enhance details in the blobs. The ground-based image was taken Jan. 19, 1995 by the European Southern Observatory's New Technology Telescope in La Silla, Chile. The Hubble telescope picture is a compilation of data taken on Feb. 26, 1994, and June 16, Oct. 7, and Nov. 10, 1995, by the Wide Field and Planetary Camera 2. T Pyxidis is 6,000 light-years away in the dim southern constellation Pyxis, the Mariner's Compass. Credits: Mike Shara, Bob Williams, and David Zurek (Space Telescope Science Institute); Roberto Gilmozzi (European Southern Observatory); Dina Prialnik (Tel Aviv University); and NASA.

  3. BLOBS IN SPACE: THE LEGACY OF A NOVA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TThe prolific number of eruptions by the recurrent nova T Pyxidis has attracted the attention of many telescopes. The image on the left, taken by a ground-based telescope, shows shells of gas around the star that were blown off during several eruptions. Closer inspection by the Hubble Space Telescope (right-hand image), however, reveals that the shells are not smooth at all. In fact, this high-resolution image shows that the shells are actually more than 2,000 gaseous blobs packed into an area that is 1 light-year across. Resembling shrapnel from a shotgun blast, the blobs may have been produced by the nova explosion, the subsequent expansion of gaseous debris, or collisions between fast-moving and slow- moving gas from several eruptions. False color has been applied to this image to enhance details in the blobs. The ground-based image was taken Jan. 19, 1995 by the European Southern Observatory's New Technology Telescope in La Silla, Chile. The Hubble telescope picture is a compilation of data taken on Feb. 26, 1994, and June 16, Oct. 7, and Nov. 10, 1995, by the Wide Field and Planetary Camera 2. T Pyxidis is 6,000 light-years away in the dim southern constellation Pyxis, the Mariner's Compass. Credits: Mike Shara, Bob Williams, and David Zurek (Space Telescope Science Institute); Roberto Gilmozzi (European Southern Observatory); Dina Prialnik (Tel Aviv University); and NASA.

  4. SOL Thermal Instability due to Radial Blob Convection

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.

    2005-10-01

    C-Mod datafootnotetextM. Greenwald, Plasma Phys. Contr. Fusion 44, R27 (2002). suggests a density limit when rapid perpendicular convection dominates SOL heat transport. This is supported by a recent analysisfootnotetextD.A. Russell et al., Phys. Rev. Lett. 93, 265001 (2004). of BOUT code turbulence simulations, which shows that rapid outwards convection of plasma by turbulent blobs is enhanced when the X-point collisionality is large, resulting in a synergistic effect between blob convection and X-point cooling. This work motivates the present analysis of SOL thermal equilibrium and instability including an RX-regime modelfootnotetextJ.R. Myra and D.A. D'Ippolito, Lodestar Report LRC-05-105 (2005). of blob particle and heat transport. Two-point (midplane, X-point) SOL thermal equilibrium and stability models are considered including both two-field (T) and four-field (n,T) treatments. The conditions under which loss of thermal equilibrium or thermal instabilities occur are established, and relations to the C-Mod data are described.

  5. Kinetic Effects on Plasma Blob Dynamics with Plasma Sheath

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroki; Ishiguro, Seiji

    2015-11-01

    Kinetic effects on plasma blob dynamics with plasma sheath have been studied with a three dimensional electrostatic plasma particle simulation code. In the particle simulation, an external magnetic field B is pointing into the z direction (corresponding to the toroidal direction). The strength of ambient magnetic field increases in the positive x direction (corresponding to the counter radial direction), i.e., ∂B / ∂x > 0 . A coherent structure is initially set as a column along the external magnetic field. In our previous study, we investigated kinetic effects on plasma blob dynamics in the system where the periodic boundary condition is applied in the z direction and found that the symmetry breaking in a blob profile occurs by the kinetic effect. In this study, we have applied the particle absorbing boundaries to the ends in the z direction and studied such kinetic effects with the plasma sheath. In the simulation, not only the symmetry breaking shown in the previous study but also other properties which were not found in the periodic boundary case have been observed. Supported by NIFS Collaboration Research programs (NIFS13KNSS038, NIFS15KNSS058, and NIFS14KNXN279) and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (KAKENHI 23740411).

  6. Slow viscous gravity-driven interaction between a bubble and a free surface with unequal surface tensions

    NASA Astrophysics Data System (ADS)

    Guémas, Marine; Sellier, Antoine; Pigeonneau, Franck

    2015-04-01

    The axisymmetric gravity-driven dynamics of a bubble rising toward a free surface is addressed for gas-liquid interfaces having unequal surface tensions. The liquid flow is governed by the Stokes equations which are here solved using a boundary element method in axisymmetric configuration. Within this framework, two dimensionless numbers arise: the Bond number Bo1 based on the surface tension of the bubble interface and the surface tension ratio γ ˆ comparing the free surface and bubble surface tensions. Under a careful and discussed selection of the code key settings (number of boundary elements, initial bubble location, and distance beyond which the free surface is truncated), it has been possible to numerically and accurately track in time the bubble and free surface shapes for several values of ( Bo 1 , γ ˆ ) . The long-time shapes are found to deeply depend upon both Bo1 and γ ˆ and also to compare well with the shapes predicted in Princen and Mason ["Shape of a fluid drop at a fluid-liquid interface. II. Theory for three-phase systems," J. Colloid. Sci. 20, 246-266 (1965)] using a hydrostatic model in which both surfaces are touching. Similarly, the drainage dynamics of the liquid film thickness between the bubble and the free surface depends on ( Bo 1 , γ ˆ ) . The long-time film thickness exponentially decays in time and a so-called thinning rate α for which the numerical behaviors and a simple model reveal two basic behaviors: (i) at small Bond number, α behaves as 1/Bo1 and (ii) at large Bond number, α is nearly constant. In addition, it is found that in the entire range of the quantity χ = ( 1 + γ ˆ ) Bo 1 / ( 2 γ ˆ ) , the thinning rate α is well approximated by the function 1/(18χ) + α∞ with α∞ ≈ 0.158. Such a result also permits one to estimate the typical drainage time versus the initial bubble radius a, the liquid density ρ and viscosity μ, the gravity and the free surface, and bubble surface tensions.

  7. The Transition from Stable Creep to Stick-slip Instability in Gravity-driven Landslide Motion (Invited)

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; Schaeffer, D. G.

    2009-12-01

    Landslides provide accessible sites for studying diverse styles of displacement that may serve as analogs for fault slip in Earth's crust. Field observations and large-scale experiments demonstrate that landslides can exhibit slow, stable creep, episodic stick-slip, or runaway acceleration - similar to the diverse styles of motion inferred for faults and subduction zones. A mechanical model that explains all of these styles of landsliding considers gravity-driven motion of a water-saturated, poroelastic slide block regulated by pore-pressure change in a dilating or contracting basal shear zone that exchanges water with the block. If the shear zone exhibits rate-independent Coulomb friction, the stability of slide-block motion depends only on the sign of the Coulomb dilatancy angle, ψ (ψ > 0 implies dilation and stable creep; ψ < 0 implies contraction and runaway acceleration) and on evolution of ψ with displacement. If the shear zone exhibits nonlinearly rate-weakening friction together with ψ > 0, however, the model predicts that a transition (i.e., a Hopf bifurcation) occurs from stable, creeping motion to periodic stick-slip. The bifurcation is sharply demarcated by a line that transects a parameter space defined by the logarithms of two dimensionless parameters, one proportional to the ratio of the intrinsic timescales for downslope motion and pore-pressure diffusion in the slide block, and one proportional to the ratio of the intrinsic velocity scales for pore-fluid flow and rate-weakening of friction in the basal shear zone. In the unstable (upper) part of this parameter space, the amplitude and period of stick-slip oscillations increase with distance from the bifurcation line. Significantly, stick-slip behavior predicted by the model occurs in the absence of an elastic driving force; the elastic spring in classic spring-slider earthquake models is effectively replaced by pore-pressure diffusion, and the energy necessary to drive this dissipative but

  8. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization.

    PubMed

    Akhondi, Ebrahim; Wu, Bing; Sun, Shuyang; Marxer, Brigit; Lim, Weikang; Gu, Jun; Liu, Linbo; Burkhardt, Michael; McDougald, Diane; Pronk, Wouter; Fane, Anthony G

    2015-03-01

    In this study gravity-driven membrane (GDM) ultrafiltration is investigated for the pretreatment of seawater before reverse osmosis (RO). The impacts of temperature (21 ± 1 and 29 ± 1 °C) and hydrostatic pressure (40 and 100 mbar) on dynamic flux development and biofouling layer structure were studied. The data suggested pore constriction fouling was predominant at the early stage of filtration, during which the hydrostatic pressure and temperature had negligible effects on permeate flux. With extended filtration time, cake layer fouling played a major role, during which higher hydrostatic pressure and temperature improved permeate flux. The permeate flux stabilized in a range of 3.6 L/m(2) h (21 ± 1 °C, 40 mbar) to 7.3 L/m(2) h (29 ± 1 °C, 100 mbar) after slight fluctuations and remained constant for the duration of the experiments (almost 3 months). An increase in biofouling layer thickness and a variable biofouling layer structure were observed over time by optical coherence tomography and confocal laser scanning microscopy. The presence of eukaryotic organisms in the biofouling layer was observed by light microscopy and the microbial community structure of the biofouling layer was analyzed by sequences of 16S rRNA genes. The magnitude of permeate flux was associated with the combined effect of the biofouling layer thickness and structure. Changes in the biofouling layer structure were attributed to (1) the movement and predation behaviour of the eukaryotic organisms which increased the heterogeneous nature of the biofouling layer; (2) the bacterial debris generated by eukaryotic predation activity which reduced porosity; (3) significant shifts of the dominant bacterial species over time that may have influenced the biofouling layer structure. As expected, most of the particles and colloids in the feed seawater were removed by the GDM process, which led to a lower RO fouling potential. However, the dissolved organic carbon in the

  9. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel

  10. The influence of plasma edge dynamics on blob properties in the stellarator TJ-K

    NASA Astrophysics Data System (ADS)

    Fuchert, G.; Birkenmeier, G.; Nold, B.; Ramisch, M.; Stroth, U.

    2013-12-01

    Blob properties are studied in the scrape-off layer of the stellarator TJ-K. Langmuir probes and a fast camera are used to investigate the generation rate as well as the blob size and velocity scaling. Discharges with different ion species and magnetic field strengths provide access to a large range of plasma parameters. It was found that almost every large amplitude drift wave in the edge of the confined plasma triggers blob generation in the scrape-off layer, which implies that the birth rate of blobs is determined by the turbulence in the edge. Furthermore, the cross-field size of the blobs seems to correlate with the size of the generating drift waves. Since the observed radial propagation velocity of the blobs is well described by a size dependent blob velocity model, the size coupling between the drift waves and the blobs also has an impact on the blob velocities. Thus, the presented results imply that the dynamics in the edge have a large influence on the blob properties in the scrape-off layer.

  11. Kinematic evolution of a regional-scale gravity-driven deepwater fold-and-thrust belt: The Lamu Basin case-history (East Africa)

    NASA Astrophysics Data System (ADS)

    Cruciani, F.; Barchi, M. R.; Koyi, H. A.; Porreca, M.

    2017-08-01

    The deepwater fold-and-thrust belts (DWFTBs) are geological structures recently explored thanks to advances in offshore seismic imaging by oil industry. In this study we present a kinematic analysis based on three balanced cross-sections of depth-converted, 2-D seismic profiles along the offshore Lamu Basin (East African passive margin). This margin is characterized by a regional-scale DWFTB (> 450 km long), which is the product of gravity-driven contraction on the shelf that exhibits complex structural styles and differing amount of shortening along strike. Net shortening is up to 48 km in the northern wider part of the fold-and-thrust belt (≈ 180 km), diminishing to < 15 km toward the south, where the belt is markedly narrower (≈ 50 km). The three balanced profiles show a shortening percentage around 20% (comparable with the maximum values documented in other gravity-driven DWFTBs), with a significant variability along dip: higher values are achieved in the outer (i.e. down-dip) portion of the system, dominated by basinward-verging, imbricate thrust sheets. Fold wavelength increases landward, where doubly-verging structures and symmetric detachment folds accommodate a lower amount of shortening. Similar to other cases, a linear and systematic relationship between sedimentary thickness and fold wavelength is observed. Reconstruction of the rate of shortening through time within a fold-and-thrust belt shows that after an early phase of slow activation (Late Cretaceous), > 95% of net shortening was produced in < 10 Myr (during Paleocene). During this acme phase, which followed a period of high sedimentation rate, thrusts were largely synchronous and the shortening rate reached a maximum value of 5 mm/yr. The kinematic evolution reconstructed in this study suggests that the structural evolution of gravity-driven fold-and-thrust belts differs from the accretionary wedges and the collisional fold-and-thrust belts, where thrusts propagate in-sequence and shortening

  12. Justification of the Nonlinear Schrödinger Equation for the Evolution of Gravity Driven 2D Surface Water Waves in a Canal of Finite Depth

    NASA Astrophysics Data System (ADS)

    Düll, Wolf-Patrick; Schneider, Guido; Wayne, C. Eugene

    2016-05-01

    In 1968 V.E. Zakharov derived the Nonlinear Schrödinger equation for the two-dimensional water wave problem in the absence of surface tension, that is, for the evolution of gravity driven surface water waves, in order to describe slow temporal and spatial modulations of a spatially and temporarily oscillating wave packet. In this paper we give a rigorous proof that the wave packets in the two-dimensional water wave problem in a canal of finite depth can be approximated over a physically relevant timespan by solutions of the Nonlinear Schrödinger equation.

  13. Controls of sedimentary supply and gravity driven deformation on the eastern Niger delta (Plio-Pleistocene) from the shoreline to the deep sea plain

    NASA Astrophysics Data System (ADS)

    Robin, Cécile; Guillocheau, François; Rouby, Delphine; Nalpas, Thierry; Jermannaud, Paul; Raillard, Stéphane

    2013-04-01

    We studied the evolution of the gravity flow sedimentary within a large shelf-edge delta (Eastern Niger delta) over the last 2,5Myr taking into account the influence of the contemporaneous gravity driven deformation and sedimentary supply. To do this, we mapped (i) the shoreline geometry and (ii) the associated turbiditic systems for 9 intervals using a classification based on three morphological end-members: erosive, constructive and depositional modes. We characterized the depositional profile of the passive margin delta from the littoral domain to the abyssal plain and its spatial and temporal variability. We showed that, at the scale of the delta, the depositional profile varied from (i) a shelf edge delta profile with a slope break at the location of the shoreline during progradation to (ii) a ramp profile characteristic of a mid-shelf delta during retrogradation. Thus, during a stratigraphic cycle, the delta front evolved from a prograding slope break during the development of the HST, to steepening clinoforms during the development of the LST that progressively flattened out during the TST to reach a ramp profile at the MFS. The turbiditic systems (including MTC) initiate near the shoreline, at the toe of the delta front. Also, they form preferentially down slope synthetic faults or within antithetic fault relays. They are initially erosive, becoming constructive further down slope and eventually depositional. They may become erosive again as they cut through the compressional structures. We showed that the stratigraphic state (progradation/retrogradation) controls the amount of sediment reaching the platform and strongly impacts the density of gravity flow sedimentary systems (low density during progradation and high density during progradation). On the other hand, the gravity driven deformation controls the slope of the sea-floor and, in doing so, their morphology (erosive/constructive/depositional). Within this framework, lateral migrations of the delta

  14. Plasma blobs in a basic toroidal experiment: Origin, dynamics, and induced transport

    SciTech Connect

    Mueller, S. H.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podesta, M.

    2007-11-15

    Detaching plasma blobs with very similar properties to tokamaks are observed in the basic toroidal plasma experiment TORPEX [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)]. The blobs originate from the breaking of wave crests of a drift-interchange wave, which span over regions characterized by strongly inhomogeneous background parameters. Once decoupled from the wave, the blobs follow a predominantly radial trajectory pattern. The blob-induced cross-field transport can instantaneously exceed the steady-state parallel fluxes by one order of magnitude, while accounting for only 10% of the time-average device losses. If the particles were confined in the parallel direction, as is the case in tokamaks, blobs would constitute the dominant loss mechanism in TORPEX. The presented results show that the presence of grad B is sufficient and neither a magnetic-topology change nor the presence of limiters, both absent in TORPEX, are necessary for the generation of blobs.

  15. Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States

    NASA Astrophysics Data System (ADS)

    Gossona, Maurice A. De

    We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".

  16. The structure and poloidal dynamics of blob filaments in TJ-K

    NASA Astrophysics Data System (ADS)

    Garland, S.; Fuchert, G.; Ramisch, M.; Hirth, T.

    2016-04-01

    Relatively dense, field-aligned, filament-like structures (blobs) have been observed to propagate radially and poloidally through the scrape-off layer (SOL) in magnetically confined fusion plasmas, and contribute significantly to SOL transport. A detailed understanding of blob structure and dynamics, and their dependence on magnetic field geometry, is important in magnetic confinement physics for the prediction of heat loads on reactor wall facing components, as well as for understanding plasma confinement and neutral particle recycling. Experimentally deduced centre of mass poloidal blob velocity components, obtained using the conditional averaging technique, have been compared to an analytical blob model which has been simplified to express blob velocity in terms of the magnetic field curvature vector. Background flows are not incorporated into the analytical model, and must be added in to obtain good agreement with the experimental data. In addition, the 3D structure of blobs in TJ-K has been investigated using the conditional average of density fluctuations in two toroidally separated poloidal planes. Blobs are observed to be aligned to a flux tube near to the last closed flux surface, in the blob birth region. However at positions further along the blob trajectory, the structures do not deform according to the magnetic shear, rather they remain rigid, and retain their original form.

  17. Real-Time Multi-Resolution Blob Tracking

    DTIC Science & Technology

    2004-04-01

    tennis and racquetball videos. 1 Introduction A large number of works in the vision community have focused on video analysis, especially for video...challenging. Small blobs might be noise, but might also be important features of the scene (e.g. in a tennis match, it is imperative not to discard the...few frames. IRIS-04-422 c©2004 ARJF 8 Figure 5: Segmentation and tracking of the players and the ball in professional tennis broadcast video. Since the

  18. Blob birth and transport in the tokamak edge plasma: Analysis of imaging data

    SciTech Connect

    Myra, J. R.; D'Ippolito, D. A.; Stotler, D. P.; Zweben, S. J.; LeBlanc, B. P.; Menard, J. E.; Maqueda, R. J.; Boedo, J.

    2006-09-15

    High-speed high-spatial-resolution data obtained by the gas puff imaging (GPI) diagnostic on the National Spherical Torus Experiment [M. Ono, M.G. Bell, R.E. Bell et al. Plasma Phys. Control. Fusion 45, A335 (2003).] is analyzed and interpreted in light of recent theoretical models for electrostatic edge turbulence and blob propagation. The experiment is described in terms of theoretical regimes that predict different dependencies for the radial velocity of blob convection. Using the GPI data, atomic physics analysis, and blob tracking on a restricted dataset, it is shown that the observed blob velocities in the scrape-off layer are bounded by a theory-based minimum velocity associated with the sheath-connected regime. A similar maximum velocity bound associated with the resistive-ballooning regime is also observed. Turning to the question of blob creation, it is shown that blobs are born with a density and temperature characteristic of the plasma conditions where underlying linear edge drift-curvature instabilities are localized. Finally, statistical variations in blob properties and in the radial blob velocity for given edge conditions are significant, and tend to mask any systematic changes among discharges with different conditions.

  19. Dynamics of coronal rain and descending plasma blobs in solar prominences. I. Fully ionized case

    SciTech Connect

    Oliver, R.; Soler, R.; Terradas, J.; Zaqarashvili, T. V.; Khodachenko, M. L.

    2014-03-20

    Observations of active regions and limb prominences often show cold, dense blobs descending with an acceleration smaller than that of free fall. The dynamics of these condensations falling in the solar corona is investigated in this paper using a simple fully ionized plasma model. We find that the presence of a heavy condensation gives rise to a dynamical rearrangement of the coronal pressure that results in the formation of a large pressure gradient that opposes gravity. Eventually this pressure gradient becomes so large that the blob acceleration vanishes or even points upward. Then, the blob descent is characterized by an initial acceleration phase followed by an essentially constant velocity phase. These two stages can be identified in published time-distance diagrams of coronal rain events. Both the duration of the first stage and the velocity attained by the blob increase for larger values of the ratio of blob to coronal density, for larger blob mass, and for smaller coronal temperature. Dense blobs are characterized by a detectable density growth (up to 60% in our calculations) and by a steepening of the density in their lower part, that could lead to the formation of a shock. They also emit sound waves that could be detected as small intensity changes with periods of the order of 100 s and lasting between a few and about 10 periods. Finally, the curvature of falling paths with large radii is only relevant when a very dense blob falls along inclined magnetic field lines.

  20. Blob properties in full-turbulence simulations of the TCV scrape-off layer

    NASA Astrophysics Data System (ADS)

    Nespoli, F.; Furno, I.; Labit, B.; Ricci, P.; Avino, F.; Halpern, F. D.; Musil, F.; Riva, F.

    2017-05-01

    To investigate blob properties in the tokamak scrape-off layer (SOL), we perform dedicated numerical nonlinear simulations of plasma turbulence in the SOL of a TCV discharge using the Global Braginskii Solver code. A blob detection technique is used for the first time in a three-dimensional (3D) full-turbulence simulation to track the motion of the filaments in the SOL. The specific size, density amplitude and radial velocity of the blobs are computed, with the typical values being 7.4 {ρ }s, 0.33 {n}e and 0.016 {c}s, respectively. The analysis of blob structure in the parallel direction shows that the blobs are partially detached from the limiter. The cross correlation analysis shows how the blobs are born all along the entire field line, not being generated primarily on the low field side SOL and expanding towards the limiter. The blob radial velocity agrees well with the inertial branch of the existing scaling law. The radial particle and heat fluxes given by blobs are shown to be responsible of up to 100% and 70% of the turbulent particle and heat flux in the far SOL, respectively. The results of a second simulation with a 40 times higher resistivity are also discussed.

  1. Rapid change of blob structure in the outer scrape-off layer (SOL)

    NASA Astrophysics Data System (ADS)

    Cohen, R. H.

    2005-10-01

    Nonlinear structures (``blobs'') driven by the magnetic field curvature and highly elongated along the field lines may exist in the tokamak SOL.footnotetextS.I. Krasheninnikov. Phys. Lett. A 283, 368 (2001) The contact of the blob end with the divertor plate significantly affects the blob structure and velocity. However, the strong shearing of the flux-tube near the X-point makes impossible direct electrical contact of the blob in the upper SOL and the divertor, so that the sheath boundary condition (BC) has to be replaced by a BC imposed near the X point.footnotetextD. Ryutov, R.H. Cohen. Contr. Pl. Phys 44, 168 (2004) We show that, at larger distances from the separatrix, in the far SOL, the connection between the upper SOL and the divertor plate is re-established, and the sheath BC becomes again relevant. During the blob's outward radial motion, this event is reflected in a sudden change of its length, from the blob extending only to the X point to the blob extending down to the plate. Likewise, a blob initially existing only in the divertor leg becomes suddenly longer, and extends to the whole SOL.

  2. Blob-like Feature Extraction and Matching for Brain MR Images

    PubMed Central

    Razlighi, Qolamreza R.; Stern, Yaakov

    2014-01-01

    The cerebral cortex of the human brain is highly folded. It is useful for neuroscientists and clinical researchers to identify and/or quantify cortical folding patterns across individuals. The top (gyri) and bottom (sulci) of these folds resemble the “blob-like” features used in computer vision. In this article, we evaluate different blob detectors and descriptors on brain MR images, and introduce our own, the “brain blob detector and descriptor (BBDD).” For the first time blob detectors are considered as spatial filters under the scale-space framework and their impulse responses are manipulated for detecting the structures in our interest. The BBDD detector is tailored to the scale and structure of blob-like features that coincide with cortical folds, and its descriptors performed well at discriminating these features in our evaluation. PMID:22256147

  3. Blob-like feature extraction and matching for brain MR images.

    PubMed

    Razlighi, Qolamreza R; Stern, Yaakov

    2011-01-01

    The cerebral cortex of the human brain is highly folded. It is useful for neuroscientists and clinical researchers to identify and/or quantify cortical folding patterns across individuals. The top (gyri) and bottom (sulci) of these folds resemble the "blob-like" features used in computer vision. In this article, we evaluate different blob detectors and descriptors on brain MR images, and introduce our own, the "brain blob detector and descriptor (BBDD)." For the first time blob detectors are considered as spatial filters under the scale-space framework and their impulse responses are manipulated for detecting the structures in our interest. The BBDD detector is tailored to the scale and structure of blob-like features that coincide with cortical folds, and its descriptors performed well at discriminating these features in our evaluation.

  4. Self-disproportionation of enantiomers via achiral gravity-driven column chromatography: A case study of N-acyl-α-phenylethylamines.

    PubMed

    Wzorek, Alicja; Sato, Azusa; Drabowicz, Józef; Soloshonok, Vadim A

    2016-10-07

    Herein we report a study of the self-disproportionation of enantiomers (SDE) via gravity-driven achiral column chromatography of a series of amides derived from 1-phenylethylamine. We demonstrated that structural and electronic factors of the substituents play an important role in the observed magnitude of the SDE. For the first time, the SDE phenomenon of amides with that of thioamides was compared. We demonstrate that, in sharp contrast to amides, the substitution of the sulphur atom for the oxygen in the acyl group, strongly reduced the observed magnitude of the SDE. These results clearly indicate the importance of the hydrogen bonding for the formation of homo/hetero-chiral association responsible for manifestation of the SDE phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Submarine allochthonous salt sheets: Gravity-driven deformation of North African Cretaceous passive margin in Tunisia - Bled Dogra case study and nearby salt structures

    NASA Astrophysics Data System (ADS)

    Masrouhi, Amara; Bellier, Olivier; Ben Youssef, Mohamed; Koyi, Hemin

    2014-09-01

    We used structural, stratigraphic and sedimentologic data, together with a comparison of nearby structures and a Bouguer gravity map, to evaluate the evolution of the Bled Dogra salt structure (northern Tunisia) during the Cretaceous. Triassic salt sheets are recognized in the northwestern region of the Tunisian Atlas. These salt sheets are the result of Cretaceous thick and/or thin-skinned extension along the south Tethyan margin. The Bled Dogra salt structure is one of these submarine allochthonous salt sheets, which was emplaced during the Early Cretaceous. The geologic framework, during this period, produces conditions for a predominantly gravity-driven deformation: extension has produced space for the salt to rise; vigorous differential sedimentation created differential loading that resulted in the emplacement and extrusion of a large volume of Triassic salt and formation of large submarine salt sheets. Geologic field data suggest an interlayered Triassic salt sheet within Albian sequences. Salt was extruded at the sea floor during the Early-Middle Albian and was initially buried by Middle-Late Albian strata. The Coniacian corresponds to a second transgressive cover onto the salt sheet after the gliding of the first salt cover (Late Albian-Turonian). In addition, this northwest Tunisian area exposes evidences for salt flow and abundant slump features at the base of a northward facing submarine slope, which was probably dominant from the Early Cretaceous to Santonian. Two gravity deformation processes are recognized: gravity gliding and gravity spreading. Acting concurrently, these two processes appear indistinguishable in this geologic context. Like the present-day salt-involved passive margins - such as the northern Gulf of Mexico, the Atlantic margin of Morocco, the Brazilian Santos basin, the Angola margin, Cadiz in western Iberia, and the Red Sea - the North African Cretaceous passive margin in Tunisia provides evidences that deformation in a passive

  6. Plasma blobs associated with plasma bubbles observed in the Brazilian sector

    NASA Astrophysics Data System (ADS)

    Tardelli-Coelho, F.; Pimenta, A. A.; Tardelli, A.; Abalde, J. R.; Venkatesh, K.

    2017-10-01

    In this paper we present a case of plasma blobs associated with plasma bubbles which were observed by emission of OI 630.0 nm airglow, using ground-based (all-sky images) and DMSP-F15 satellite data on 23 February 2007, over a low latitude station São José dos Campos (SJC) (23.21°S, 45.86°W; dip latitude 18.3°S) in the Brazilian sector. We calculated the zonal drift velocities of the plasma bubble and plasma blobs, and the longitudinal drift of the blobs that occurred that night using the linearization method presented by Pimenta et al. (2001). The north/south and east/west extensions of plasma blobs have also been estimated. The mean velocity of the plasma bubble is found to be 74 ± 8 m/s and the plasma blob zonal drift is 61 ± 6 m/s. The average velocity of the longitudinal drift of the plasma blob was 85 ± 13 m/s and the analyzed blobs had the mean north/south extension of 591 km and east/west extension of 328 and 263 km.

  7. Experimental Observation of the Blob-Generation Mechanism from Interchange Waves in a Plasma

    SciTech Connect

    Furno, I.; Labit, B.; Podesta, M.; Fasoli, A.; Poli, F. M.; Ricci, P.; Theiler, C.; Brunner, S.; Diallo, A.; Graves, J.; Mueller, S. H.

    2008-02-08

    The mechanism for blob generation in a toroidal magnetized plasma is investigated using time-resolved measurements of two-dimensional structures of electron density, temperature, and plasma potential. The blobs are observed to form from a radially elongated structure that is sheared off by the ExB flow. The structure is generated by an interchange wave that increases in amplitude and extends radially in response to a decrease of the radial pressure scale length. The dependence of the blob amplitude upon the pressure radial scale length is discussed.

  8. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  9. Experiments on the impact and turbulent coalescence of a blob at a liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Landeau, Maylis; Olson, Peter; Deguen, Renaud; Hirsh, Ben; Earth; Planetary Sciences Team

    2015-11-01

    We present experiments on finite liquid volumes, hereafter referred to as blobs, of variable densities impacting an interface between two immiscible liquids at high Reynolds and Weber numbers. Such processes occurred on a massive scale during the giant impacts that formed terrestrial planets and satellites, including the Earth and the Moon. We find that the fall distance of the blob controls an abrupt transition in coalescence regime and in the amount of mixing with the lower liquid. This transition coincides with a brief and global breakup of the impacting blob into drops. For small fall distances, the large-scale flow following impact behaves as a turbulent fountain: a mixture of immiscible liquids penetrates in the lower liquid, collapses and spreads along the immiscible interface. We derive an experimental scaling relation for turbulent mixing of the impacting blob with the lower liquid as a function of a Richardson number.

  10. Probing the spacetime around supermassive black holes with ejected plasma blobs

    NASA Astrophysics Data System (ADS)

    Christian, Pierre; Loeb, Abraham

    2015-05-01

    Millimeter-wavelength very-long-baseline-interferometry observations of the supermassive black holes in Sgr A* and M87 by the Event Horizon Telescope could potentially trace the dynamics of ejected plasma blobs in real time. We demonstrate that the trajectory and tidal stretching of these blobs can be used to test general relativity and set new constraints on the mass and spin of these black holes.

  11. Galaxy Formation in Action: A Multi-Wavelength Study of Ly-alpha Nebulae in the Distant Universe

    NASA Astrophysics Data System (ADS)

    Zabludoff, Ann I.

    2012-01-01

    Lyman-alpha blobs are mysterious objects in the distant Universe extending over 50-100 kpc. Because these gigantic gas clouds have been detected only in optically thick and highly resonant Lyman-alpha emission, their power source remains a puzzle. Due to the rarity of blobs, the form of their evolution to the present day is also unknown. We are conducting multi-wavelength, deep, and large area surveys to identify tens of blobs at redshifts 2-5. These surveys have now produced the first constraints on blob clustering, showing that blobs occupy massive halos likely to evolve into rich clusters today. Blobs are not only tracers of the most overdense environments at early times, but also may mark the sites of brightest cluster galaxy formation. By targeting the optically-thin lines such as Halpha, we have obtained the first measurements of gas kinematics in blobs, excluding strong outflows as the source of Lyman-alpha emission.

  12. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    SciTech Connect

    R.J. Maqueda, D.P. Stotler and the NSTX Team.

    2010-05-19

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in Dα; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of ‘magnetic shear disconnection’ due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  13. Macroscopic motion of sheath-connected blobs in magnetic fields with arbitrary topology

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. A.; Lee, W.; Krasheninnikov, S. I.

    2017-01-01

    In this study, macroscopic motion of sheath-connected blobs in magnetic fields, having arbitrary topology of the field lines and unfrozen in plasma, is analyzed within the electrostatic limit. Two distinct cases of magnetic configurations, with small and large curvature of the field lines, are considered and the criterion to discern them is deduced. For magnetic configurations with small curvature of the field lines, it is demonstrated that asymmetry of plasma distribution at the blob ends can drive macroscopic motion of a filament due to formation of unequal sheath potentials and establishing the effective Boltzmann potential. For a specific case of magnetic fields with small curvature of the field lines and identical metrics at the sheaths, we show that macroscopic motion of a plasma filament is determined by an effective electrostatic potential, which remains constant in time. For magnetic configurations with large curvature of the field lines, it is shown that motion of sufficiently large blobs is governed by integral distribution of plasma and magnetic field parameters along the field lines leading to blob adjusting its shape and position to the lead of the magnetic field lines in the course of its motion, whereas propagation of small and medium sized blobs can be represented as mutually independent motion of filament transverse cross-sections across the magnetic field lines. The qualitative conclusions on regularities of filament motion are supplied with numerical simulations of blob dynamics in two cases of tokamak-like magnetic fields with sheared and non-sheared field lines.

  14. Automated detection of microaneurysms using robust blob descriptors

    NASA Astrophysics Data System (ADS)

    Adal, K.; Ali, S.; Sidibé, D.; Karnowski, T.; Chaum, E.; Mériaudeau, F.

    2013-03-01

    Microaneurysms (MAs) are among the first signs of diabetic retinopathy (DR) that can be seen as round dark-red structures in digital color fundus photographs of retina. In recent years, automated computer-aided detection and diagnosis (CAD) of MAs has attracted many researchers due to its low-cost and versatile nature. In this paper, the MA detection problem is modeled as finding interest points from a given image and several interest point descriptors are introduced and integrated with machine learning techniques to detect MAs. The proposed approach starts by applying a novel fundus image contrast enhancement technique using Singular Value Decomposition (SVD) of fundus images. Then, Hessian-based candidate selection algorithm is applied to extract image regions which are more likely to be MAs. For each candidate region, robust low-level blob descriptors such as Speeded Up Robust Features (SURF) and Intensity Normalized Radon Transform are extracted to characterize candidate MA regions. The combined features are then classified using SVM which has been trained using ten manually annotated training images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. Preliminary results show the competitiveness of the proposed candidate selection techniques against state-of-the art methods as well as the promising future for the proposed descriptors to be used in the localization of MAs from fundus images.

  15. Lyman-α blobs: polarization arising from cold accretion

    NASA Astrophysics Data System (ADS)

    Trebitsch, Maxime; Verhamme, Anne; Blaizot, Jérémy; Rosdahl, Joakim

    2016-10-01

    Lyman-α nebulae are typically found in massive environments at high redshift (z ≳ 2). The origin of their Lyman-α (Lyα) emission remains debated. Recent polarimetric observations showed that at least some Lyα sources are polarized. This is often interpreted as proof that the photons are centrally produced and contradicts the scenario in which the Lyα emission is the cooling radiation emitted by gas that is heated during the accretion onto the halo. We suggest that this cooling radiation scenario is compatible with the polarimetric observations. To test this idea, we post-processed a radiative hydrodynamics simulation of a blob with the MCLya Monte Carlo transfer code. We computed radial profiles for the surface brightness and the degree of polarization and compared them to existing observations. We found that computed and observed profiles both are consistent with a significant contribution of the extragalactic gas to the Lyα emission. Most of the photons are centrally emitted and are subsequently scattered inside the filament, which produces the observed high level of polarization. We argue that the contribution of the extragalactic gas to the Lyα emission does not prevent polarization. On the contrary, we find that pure galactic emission causes the polarization profile to be too steep to be consistent with observations.

  16. Numerical Analysis of Gravity-driven Spreading of Viscoelastic Fluids: Investigation of the Effect of Shear-thinning and Elastic Behavior

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Kieweg, Sarah

    2011-11-01

    Many complex fluids of interest exhibit viscoelastic hehavior. Polymeric drug delivery vehicles, such as anti-HIV topical microbicides, are among these fluids. For the optimal design of microbicides, the combined effect of shear-thinning and elastic behavior on the gravity-driven spreading of viscoelastic fluids is studied. We develop a 2D model to simulate the fluids spreading down an incline using ANSYS POLYFLOW software package. Arbitrary Lagrangian-Eulerian (ALE) method combined with Lagrangian remeshing is applied to track the moving free surface of fluids during spreading. Adaptive meshing method is used to generate high quality mesh for the remeshing process. Based on an elastic viscous split stress (EVSS) approach, several differential viscoelastic constitutive models are studied to investigate the combined effect of shear-thinning and elastic behavior. Mesh convergence test and constant volume check are studied to verify the new model. Moreover, the new model with zero elasticity is compared with previous studies of Newtonian and power-law fluids.

  17. A novel gravity-driven nanofibrous membrane for point-of-use water disinfection: polydopamine-induced in situ silver incorporation.

    PubMed

    Wang, Jianqiang; Wu, Yichao; Yang, Zhe; Guo, Hao; Cao, Bin; Tang, Chuyang Y

    2017-05-24

    We report a facile method for preparing silver-loaded membranes for point-of-use disinfection and disaster relief applications. A bio-inspired material, polydopamine, was coated onto a highly porous nanofibrous polyacrylonitrile substrate. We then take advantage of the redox properties of polydopamine to form silver nanoparticles in situ. These nanoparticles were uniformly distributed on the surface of nanofibers with no apparent agglomeration at a silver loading up to 4.36 wt.% (cPAN-Ag1.5). The silver-incorporated membrane cPAN-Ag1.5 achieved a high pure water flux of 130 Lm(-2) h(-1) at 10-cm water head, demonstrating the feasibility of energy-efficient gravity-driven filtration and eliminating the need for electrical power. The strong anti-bacterial activity and high physical rejection of the membrane led to an excellent disinfection power, with no viable bacterial cells detected in its permeate water. The membrane exhibited >7 log reduction for E. coli and >6 log reduction for B. subtilis. The strategy reported here provides an efficient and green route to synthesize point-of-use membranes. Combining their excellent permeability and disinfection effectiveness, these membranes offer an ideal solution to water supply in disaster-affected areas.

  18. Gravity-driven transport of three engineered nanomaterials in unsaturated soils and their effects on soil pH and nutrient release.

    PubMed

    Conway, Jon R; Keller, Arturo A

    2016-07-01

    The gravity-driven transport of TiO2, CeO2, and Cu(OH)2 engineered nanomaterials (ENMs) and their effects on soil pH and nutrient release were measured in three unsaturated soils. ENM transport was found to be highly limited in natural soils collected from farmland and grasslands, with the majority of particles being retained in the upper 0-3 cm of the soil profile, while greater transport depth was seen in a commercial potting soil. Physical straining appeared to be the primary mechanism of retention in natural soils as ENMs immediately formed micron-scale aggregates, which was exacerbated by coating particles with Suwannee River natural organic matter (NOM) which promote steric hindrance. Small changes in soil pH were observed in natural soils contaminated with ENMs that were largely independent of ENM type and concentration, but differed from controls. These changes may have been due to enhanced release of naturally present pH-altering ions (Mg(2+), H(+)) in the soil via substitution processes. These results suggest ENMs introduced into soil will likely be highly retained near the source zone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Kinetic theory and boundary conditions for flows of highly inelastic spheres: Application to gravity driven granular flows down bumpy inclines]. Quarterly progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Richman, M.W.

    1992-12-01

    In this quarter, we extended our study of the effects of isotropic boundary vibrations to steady, gravity driven, inclined granular flows. These flows are more complex than those considered last quarter because of the presence of slip and mean velocity gradients at the boundary. Consequently, it was first necessary to modify the boundary conditions derived by Richman (1992) to account for corrections to the flow particle velocity distribution function from velocity gradients. In what follows we only summarize the results obtained.

  20. Statistical description of low-latitude plasma blobs as observed by DMSP F15 and KOMPSAT-1

    NASA Astrophysics Data System (ADS)

    Park, J.; Min, K. W.; Kim, V. P.; Kil, H.; Kim, H. J.; Lee, J. J.; Lee, E.; Kim, S. J.; Lee, D. Y.; Hairston, M.

    The global distribution of low-latitude plasma blobs was investigated by in-situ plasma density measurements from the Korea Multi-Purpose Satellite-1 (KOMPSAT-1) and Defense Meteorological Satellite Program (DMSP) F15. In the observations, blobs occurred in the longitude sector where the activity of the equatorial plasma bubble (EPB) was appreciable, and additional blobs were found at the lower (KOMPSAT-1) altitude as in the EPBs. However, several notable differences exist between the distributions of EPBs and blobs. First, KOMPSAT-1 found few blobs around 0°E in March and June, as did DMSP F15 from 30°W to 120°E for every season. Second, the overall occurrences in December and March at the DMSP F15 (840 km) altitude were somewhat lower than expected from those of the EBPs. Third, at the DMSP F15 altitude, the occurrence probability of plasma blobs was less controlled by yearly variations in the solar activity. These results imply that topside ionospheric conditions as well as the existence of EPBs control further development of blobs. Additionally, it was found that the blob latitudes became higher as the yearly solar activity increased. Moreover, most of the blobs were encountered in the winter hemisphere, possibly due to the low ambient density.

  1. The HI Environment of Nearby Lyman-alpha Absorbers

    NASA Technical Reports Server (NTRS)

    VanGorkom, J. H.; Carilli, C. L.; Stocke, John T.; Perlman, Eric S.; Shull, J. Michael

    1996-01-01

    We present the results of a VLA and WSRT search for H I emission from the vicinity of seven nearby clouds, which were observed in Ly-alpha absorption with HST toward Mrk 335, Mrk 501, and PKS 2155-304. Around the absorbers, we searched a volume of 4O' x 40' x 1000 km/s; for one of the absorbers we probed a velocity range of only 600 km/s. The H I mass sensitivity (5 sigma) very close to the lines of sight varies from 5 x 10(exp 6) solar mass at best to 5 x 10(exp 8) solar mass at worst. We detected H I emission in the vicinity of four out of seven absorbers. The closest galaxy we find to the absorbers is a small dwarf galaxy at a projected distance of 68 h(exp -1) kpc from the sight line toward Mrk 335. This optically uncataloged galaxy has the same velocity (V = 1970 km/s) as one of the absorbers, is fainter than the SMC, and has an H I mass of only 4 x 10(exp 7) solar mass. We found a somewhat more luminous galaxy at exactly the velocity (V = 5100 km/s) of one of the absorbers toward PKS 2155-304 at a projected distance of 230 h(exp -1) kpc from the sight line. Two other, stronger absorbers toward PKS 2155-304 at V approx. 17,000 km/s appear to be associated with a loose group of three bright spiral galaxies, at projected distances of 300 to 600 h(exp -1) kpc. These results support the conclusions emerging from optical searches that most nearby Ly-alpha forest clouds trace the large-scale structures outlined by the optically luminous galaxies, although this is still based on small-number statistics. We do not find any evidence from the H I distribution or kinematics that there is a physical association between an absorber and its closest galaxy. While the absorbing clouds are at the systemic velocity of the galaxies, the H I extent of the galaxies is fairly typical, and at least an order of magnitude smaller than the projected distance to the sight line at which the absorbers are seen. On the other hand, we also do not find evidence against such a connection. In total, we detected H I emission from five galaxies, of which two were previously uncataloged and one did not have a known redshift. No H I emission was detected from the vicinity of the two absorbers, which are located in a void and a region of very low galaxy density; but the limits are somewhat less stringent than for the other sight lines. These results are similar to what has been found in optically unbiased H I surveys. Thus, presence of Ly-alpha absorbers does not significantly alter the H I detection rate in their environment.

  2. Detection of auroral hydrogen Lyman-Alpha emission from Uranus

    SciTech Connect

    Clarke, J.T.

    1982-12-15

    A series of observations of Uranus obtained with the short-wavelength spectrographs of the International Ultraviolet Explorer Observatory in 1982 April and June have revealed unexpectedly strong H Ly..cap alpha.. emission which varied between 430 and 850 Rayleighs in observed disk-averaged brightness over the course of these observations. The variability of the emission alone indicates that much of the emission must be produced by charged particle excitation of H in Uranus's upper atmosphere. In addition, comparison of these data with a model for resonant scattering of solar H Ly..cap alpha.. emission indicates that, over a wide range of model conditions, an emission brightness of even 430 Rayleighs (which was the lowest observed value) corresponds to an H column density on the order of 10/sup 17/ cm/sup -2/ in Uranus's upper atmosphere. At 20 AU from the Sun, solar EUV photodissociation of H/sub 2/ is insufficient to produce such a high column abundance of H, further supporting the identification of charged particle precipitation in Uranus's upper atmosphere. These data thus offer the first strong evidence for the presence of aurorae and therefore a magnetic field on Uranus.

  3. Equilibrium slab models of Lyman-alpha clouds

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.

    1993-01-01

    Solutions for the equilibrium configuration of a slab with ionizing radiation incident equally from both sides are explored. Radiation effects (photoionization, Ly-alpha photon trapping, and mock gravity) as well as external pressure and self gravity (with and without dark matter) are included. The general formalism is applied to structure growth on small scales at very high z due to mock gravity on dust. Emphasis is placed on the application of slab models at z of less than 5, particularly those that may correspond to Ly-alpha forest, Lyman limit, and damped Ly-alpha systems. The regime with a dominant outward force contributed by trapping of Ly-alpha photons is discussed. General expressions are given for the equilibrium, including dark matter, assuming various relationships between the density of the dark matter halo and the total gas column density.

  4. Equilibrium Slab Models of Lyman-Alpha Clouds

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.

    1993-01-01

    We model the L(sub y(alpha)) clouds as slabs of hydrogen with an ionizing extragalactic radiation field incident from both sides. In general, the equilibrium configuration of a slab at redshift z approx. less than 5 is determined by a balance of the gas pressure, gravity (including the effects of a dark matter halo), and the pressure exerted by the inter-galactic medium, P(sub ext). These models have been used to make predictions of the number of slabs as a function of the neutral hydrogen column density, N(sub H). A break in the curve is predicted at the transition between regimes where gravity and pressure are the dominant confining forces, with a less rapid decrease at larger N(sub H). The transition from optically thin to optically thick slabs leads to a gap in the distribution, whose location is governed largely by the spectrum of ionizing radiation. There are certain parallels between lines of sight through the outer HI disk of spiral galaxy with increasing radius, and the progression from damped, to Lyman limit, to forest clouds. We discuss briefly the possibility that at least some of the observed low z forest clouds may be a separate population, associated with galaxies, as suggested by the observations of Bahcall et al. This population could dominate the forest at present if the dark matter attached to galaxies should lead to gravity confinement for this disk population, while the isolated clouds remain pressure confined. The formalism developed in this paper will allow a more detailed study. We also discuss a more general parameter study of the equilibrium configuration of slabs, including mock gravity and L(sub y(alpha)) photon trapping.

  5. Exploring 21cm-Lyman Alpha Emitter Synergies for SKA

    NASA Astrophysics Data System (ADS)

    Hutter, Anne; Dayal, Pratika; Müller, Volker; Trott, Cathryn M.

    2017-02-01

    We study the signatures of reionization and ionizing properties of early galaxies in the cross-correlations between the 21 cm emission from the spin-flip transition of neutral hydrogen (H i) and the underlying galaxy population. In particular, we focus on a sub-population of galaxies visible as Lyα Emitters (LAEs). With both observables simultaneously derived from a z≃ 6.6 hydrodynamical simulation (GADGET-2) snapshot post-processed with a radiative transfer code (pCRASH) and a dust model, we perform a parameter study and aim to constrain both the average intergalactic medium (IGM) ionization state (1-< {χ }{{H}{{I}}}> ) and the reionization topology (outside-in versus inside-out). We find that, in our model, LAEs occupy the densest and most-ionized regions resulting in a very strong anti-correlation between the LAEs and the 21 cm emission. A 1000 hr Square Kilometer Array (SKA)-LOW1—Subaru Hyper Suprime-Cam experiment can provide constraints on < {χ }{{H}{{I}}}> , allowing us to distinguish between IGM ionization levels of 50%, 25%, 10%, and fully ionized at scales r≲ 10 comoving Mpc (assuming foreground avoidance for SKA). Our results support the inside-out reionization scenario where the densest knots (under-dense voids) are ionized first (last) for < {χ }{{H}{{I}}}> ≳ 0.1. Further, 1000 hr SKA-LOW1 observations should be able to confirm the inside-out scenario by detecting a lower 21 cm brightness temperature (by about 2–10 mK) in the densest regions (≳2 arcmin scales) hosting LAEs, compared to lower-density regions devoid of them.

  6. Venus Lyman-Alpha a Morphological and Radiative Transfer Analysis

    NASA Astrophysics Data System (ADS)

    Colwell, William Bradford

    The Venus Lyman-α corona is caused by resonance scattering of the solar 1215.67A Lyman-α line by hydrogen atoms in the Venus upper atmosphere. The atmospheric atomic hydrogen content is probed remotely via Lyman-α observations. On 10 February 1990 the Galileo spacecraft flew by Venus, obtaining a series of Venus scans with the Ultraviolet Spectrometer Experiment. The Pioneer Venus Orbiter Ultraviolet Spectrometer obtained Venus Lyman-α images approximately weekly throughout its 14-year mission (1978-1992), spanning the 11-year solar cycle. I analyze the data using a two-dimensional non-isothermal complete-frequency-redistribution multiple scattering code modified from the LYAB code provided by James Bishop for the Earth corona. I employ the VTS3 neutral thermosphere model (Hedin et al., J. Geophys. Res., 88, 73, 1983), and calculate diffusive profiles for the vertical distribution of atomic hydrogen, characterized by hydrogen number density n0 and vertical flux φ0 at the exobase (Paxton et al., J. Geophys. Res., 193, 1766, 1988). The flux parameter controls the hydrogen amount in the lower thermosphere and the exobase density controls the amount in the upper thermosphere and exosphere. I determine the parameter values which best fit the data for selected segments of the sunlit disk, taking advantage of the almost linear relationship between the PV Langmuir probe photoelectron current and measured solar Lyman-α output. I find an equatorial minimum of hydrogen and evidence for a polar hood of enhanced hydrogen abundance. The pre-dawn bulge enhancement near the dawn terminator extends to high latitudes (>60o). All features examined persist throughout solar cycle and increase in hydrogen abundance with solar activity. The parameters I determine agree with the work of Paxton et al. and with densities derived from in situ measurement by Brinton et al. (Geophys. Res. Ler., 7, 865, 1980). Both parameters increase with solar activity and there is evidence suggesting solar cycle phase dependence. Dayside hydrogen density increases with latitude and decreases with local solar time. A search for small scale (1000 km) features produced a null result.

  7. Jovian Equatorial H Lyman-alpha and the Ionosphere

    NASA Astrophysics Data System (ADS)

    Ballester, Gilda E.

    An excess of H Ly alpha emission has been a persistent feature in Jupiter's equatorial upper atmosphere since its discovery in 1978. This Ly alpha 'bulge' was found by high-resolution IUE observations to be due to broadening of the Jovian line increasing the resonant scattering of the solar Ly alpha, rather than from a local enhancement in the H density. The line broadening implies that the H column at the bulge is disturbed by a localized, non-thermal process, and two mechanisms have been proposed to explain this: one by the generation of turbulence from strong thermospheric winds or jets meeting at the bulge region and originating in the active Jovian auroral zones, the other involving a superthermal population of H atoms produced by a process analogous to the equatorial anomaly and tropical arcs on the Earth. Some line broadening was also observed in the off-bulge region while modelling of the usual bulge profile does not predict this behavior, but these observations may have been performed at a time of an unusually large extension of the bulge. We propose to make a series of high-dispersion observations (of improved S/N) for a detailed longitudinal study of the line profile which would be of benefit independently of the particular bulge conditions (to be determined with low-dispersion exposures). In addition, new insight will be gained with simultaneous ground-based observations of the newly discovered global ionospheric H3+ emissions. These emissions are diagnostic of the ionospheric temperature and ion density, and have already shown very particular characteristics in the H Ly alpha bulge region. Coordinated observations of the whole longitudinal range should therefore set new constraints on the mechanisms operating in the Jovian equatorial upper atmosphere.

  8. Properties Of Lyman Alpha Emitters At Z~1

    NASA Astrophysics Data System (ADS)

    Barger, Amy

    Ly-alpha emission-line searches have been widely used to find high-redshift galaxies. For the z>6 galaxies, this line is the only spectroscopic signature that can be used to confirm the redshift of a galaxy selected on the basis of its color properties. Even in the era of JWST and extremely large ground-based facilities, it is likely that Ly-alpha will continue to be an important tracer of the faintest sources at high redshifts. However, Ly-alpha is a difficult line to interpret. Because the line is resonantly scattered by neutral hydrogen, determining its escape path and therefore its dust destruction is an extremely complex problem, both theoretically and observationally. Thus, while we have empirical measurements that a significant fraction of UV-continuum selected samples have Ly- alpha lines with rest-frame equivalent widths greater than 20 Angstrom, our understanding of what determines this fraction is still weak. In particular, we would like to know whether the presence of Ly-alpha emission is related to other properties of the galaxy, such as its extinction, age, metallicity, or morphology. GALEX grism spectra have revolutionized the field by making it possible to find low- redshift Ly-alpha emission line galaxies where the properties can be studied in exquisite detail. From these data, we have found that z~0.3 Ly-alpha emitters are heavily drawn from small, low metallicity galaxies with intense ongoing star formation. We have also found that the Ly-alpha luminosity function evolves rapidly over z=0-1, with the characteristic luminosity being much higher at z=1 than at z=0. However, the latter result is based on a very small number of galaxies at z~1 where we only probe the high luminosity tip of the luminosity function because of the continuum limits used in the GALEX pipeline extraction. We propose to obtain a large sample of Ly-alpha emitters in the sweet spot at z=0.7-1.3 where the intrinsic galaxy structure can be separated from the effects of the intergalactic medium and where the Ly-alpha emitters are, for the first time, comparable in luminosity to the high-redshift galaxies. Using deep NUV grism spectra from GALEX of heavily studied fields and a novel code that we have developed to make three-dimensional data cubes from these data, we will search for objects with detectable Ly-alpha emission lines but weak continuum. This will give us a complete flux-selected Ly-alpha sample. We will also search for Ly-alpha emission in the data cubes using known z~1 galaxies in the fields. Our primary science goals are to (1) construct a robust z~1 Ly-alpha emitter galaxy luminosity function well below L_star to study the evolution of the population with cosmic time, (2) compare the z~1 Ly-alpha emitters with the z~1 UV-continuum selected population with the same luminosities but without detected Ly-alpha to determine the types of galaxies that are selected in Ly-alpha samples, and (3) measure the Ly-alpha to Balmer line flux ratios in optically selected galaxies at z~1 to determine the Ly-alpha escape fraction and its dependence on galaxy properties. In particular, we aim to examine whether the paradigm that we developed from studying z~0.3 Ly-alpha emitters---namely, that Ly-alpha emitters are in the early stages of galaxy formation---is consistent with the much more luminous z~1 sample. The proposed work will also be invaluable for finding z~1 galaxies where high-resolution spectroscopy can be obtained with HST to study the shape and wavelength offsets of the emerging Ly-alpha lines.

  9. Dusty Lyman-alpha Emitters As Seen By Spitzer

    NASA Astrophysics Data System (ADS)

    Dolan, Kyle Arthur

    We present an analysis of Spitzer data for a large sample of low-redshift Lyalpha-emitting galaxies discovered by GALEX. Using the Donley et al. (2012) AGN selection region in color-color space IRAC photometry, we determined from our sample that the LAEs at z ˜ 0.3 have an AGN fraction of ˜24%. The total bolometric LIR for the sample was found using chi2 fitting along with template SEDs, and we found that the galaxies ranged from 108.05LSun to 10 11.57LSun, with a median LIR value of 10 10.39LSun. LIR and LLyalpha for our sample do not appear to be correlated, unlike the high-LIIRLyalpha-emitting objects examined by Colbert et al. (2006) and Nilsson & Mller (2009), which may mean that their samples of LAEs, with LIR/LSun > 1012, are qualitatively different from our own. The SFR values for the sample have a median value of 5.63 MSun yr -1, in agreement with the value of 6MSun yr-1 found in Cowie et al. (2011). Also, we find that most of the sample has a contribution of SFRIR to SFRTotal that is greater than 60%, indicating that these LAEs have a significant amount of dust extinction, and SFRUV alone is also not a good indicator for SFRTotal . From comparing dust extinction to UV continuum slope , it was found that LAEs do not follow the same curves predicted for SF or SB galaxies, indicating that LAEs at low redshift may experience more variation in their native UV spectra, making it impossible to recover their dust attenuation from their UV slope. This would suggest that LAEs may consist of stellar populations of varying ages, leading to more intrinsic variation in their UV slope.

  10. A catalog of stellar Lyman-alpha fluxes

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne; Simon, Theodore

    1993-01-01

    We present a catalog of stellar Ly-alpha emission fluxes, based on new and archival images obtained with the IUE spacecraft. The catalog includes 227 stars with detectable Ly-alpha emission fluxes, and upper limits on the Ly-alpha emission flux for another 48 stars. Multiple flux measurements are given for 52 stars. We present a model for correcting the observed Ly-alpha flux for attenuation by the local interstellar medium, and we apply this model to derive intrinsic Ly-alpha fluxes for 149 catalog stars which are located in low H I column density directions of the local interstellar medium. In our catalog, there are 14 late-A and early-F stars at B-V = 0.29 or less that show detectable emission at Ly-alpha. We find a linear correlation between the intrinsic Ly-alpha flux and C II 1335 A flux for stars with B-V greater than 0.60, but the A and F stars deviate from this relation in the sense that their Ly-alpha flux is too low. We also find a good correlation between Ly-alpha strength and coronal X-ray emission. This correlation holds over most of the H-R diagram, even for the F stars, where an X-ray deficit has previously been found relative to the transition region lines of C II and C IV.

  11. ACS Pure Parallel Lyman-Alpha Emission Survey {APPLES}

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    2002-07-01

    Ly-alpha line emission is an efficient tool for identifying young galaxies at high redshift, because it is strong in galaxies with young stars and little or no dust -- properties expected in galaxies undergoing their first burst of star- formation. Slitless spectroscopy with the ACS Wide-Field Camera and G800L grism allows an unmatched search efficiency for such objects over the uninterrupted range 4 < z < 7. We propose the ACS Pure Parallel Ly-alpha Emission Survey {``APPLES''}, to exploit this unique HST capability and so obtain the largest and most uniform sample of high redshift Ly-alpha emitters yet. Parallel observations will allow this survey to be conducted with minimal impact on HST resources, and we will place reduced images and extracted spectra in the public domain within three months of observation. We aim to find 1000 Ly-alpha emitters, 5 times the biggest current sample of Ly-alpha emitters. This unprecedented sample will provide robust statistics on the populations and evolution of Ly-alpha emitters between redshifts 4-7; a robust measurement of the reionization redshift completely independent of the Gunn-Peterson trough; spatial clustering information for Ly-alpha emitters which would let us probe their bias function and hence halo mass as a function of redshift; many galaxies at redshift exceeding 6; and lower redshift serendipitous discoveries.

  12. The hydrogen Lyman-alpha emission of Capella

    NASA Technical Reports Server (NTRS)

    Ayres, Thomas R.; Brown, A.; Gayley, K. G.; Linsky, Jeffrey L.

    1993-01-01

    We describe the hydrogen Ly-alpha emission of the spectroscopic binary Capella (G8 III + GO III) recorded at 0.1 A resolution by the International Ultraviolet Explorer. The overt changes in the composite line shape with orbital phase are controlled by the active GO III star and permit a dissection of the stellar components despite the obliteration of the central portion of the profile by atomic hydrogen and deuterium absorption along the 12.5 pc sightline. The Ly-alpha line shape of the active GO III star is surprisingly asymmetric and possibly is variable. Both characteristics suggest a stellar wind of moderate excitation (20,000-100,000 K), a key component of the coronal evolution scenario of Simon and Drake (1989) for the Hertzsprung-gap giants.

  13. Spatial imaging of hydrogen Lyman-alpha emission from Jupiter

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Weaver, H. A.; Feldman, P. D.; Moos, H. W.; Fastie, W. G.; Opal, C. B.

    1980-01-01

    A sounding rocket measurement of the H I L-alpha emission from Jupiter made on Dec. 1, 1978 shows limb darkening and an average disk brightness of 13 kR. This brightness is significantly higher than in previous measurements, and was confirmed by an IUE observation on Dec. 10, 1978. Comparison with a plane-parallel hydrogen layer model indicates that there is enhanced emission from the equatorial regions, reaching a peak near 80 deg longitude.

  14. Lyman-{alpha} transfer in primordial hydrogen recombination

    SciTech Connect

    Hirata, Christopher M.; Forbes, John

    2009-07-15

    Cosmological constraints from the cosmic microwave background (CMB) anisotropies rely on accurate theoretical calculations of the cosmic recombination history. Recent work has emphasized the importance of radiative transfer calculations due to the high optical depth in the H i Lyman lines. Transfer in the Ly{alpha} line is dominated by true emission and absorption, Hubble expansion, and resonant scattering. Resonant scattering causes photons to diffuse in frequency due to random kicks from the thermal velocities of hydrogen atoms, and also to drift toward lower frequencies due to energy loss via atomic recoil. Past analyses of Ly{alpha} transfer during the recombination era have either considered a subset of these processes, ignored time dependence, or incorrectly assumed identical emission and absorption profiles. We present here a fully time-dependent radiative transfer calculation of the Ly{alpha} line including all of these processes, and compare it to previous results that ignored the resonant scattering. We find a faster recombination due to recoil enhancement of the Ly{alpha} escape rate, leading to a reduction in the free electron density of 0.45% at z=900. This results in an increase in the small-scale CMB power spectrum that is negligible for the current data but will be a 0.9{sigma} correction for Planck. We discuss the reasons why we find a smaller correction than some other recent computations.

  15. High-resolution Lyman-alpha filtergrams of the sun

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Decaudin, M.; Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.

    1980-01-01

    The results of an experiment, conducted jointly by the Lockheed Palo Alto Research Laboratory and the Laboratoire de Physique Stellaire et Planetaire du CNRS, which investigated the transition-region plasma and the geometry of coronal active regions, in relation to models of the high-temperature layers, are presented. A Black Brant rocket was used to obtain 1-arc sec resolution L-alpha pictures of the sun, which revealed small scale features not seen previously at this wavelength, that delineate the geometry of the magnetic field in the chromosphere and in the corona. It is concluded that these observations might provide a new way of observing the upper chromosphere and corona, and that they provide direct evidence of the inhomogeneous character of the chromosphere and of the dominant role of the magnetic field

  16. How Lyman Alpha Emission Depends on Galaxy Stellar Mass

    NASA Astrophysics Data System (ADS)

    Oyarzún, Grecco A.; Blanc, Guillermo A.; González, Valentino; Mateo, Mario; Bailey, John I., III; Finkelstein, Steven L.; Lira, Paulina; Crane, Jeffrey D.; Olszewski, Edward W.

    2016-04-01

    In this work, we show how the stellar mass (M *) of galaxies affects the 3 < z < 4.6 Lyα equivalent width (EW) distribution. To this end, we design a sample of 629 galaxies in the M * range 7.6\\lt {log}{M}*/{M}⊙ \\lt 10.6 from the 3D-HST/CANDELS survey. We perform spectroscopic observations of this sample using the Michigan/Magellan Fiber System, allowing us to measure Lyα fluxes and use 3D-HST/CANDELS ancillary data. In order to study the Lyα EW distribution dependence on M *, we split the whole sample in three stellar mass bins. We find that, in all bins, the distribution is best represented by an exponential profile of the form {dN}({M}*)/d{EW}={W}0{({M}*)}-1A({M}*){e}-{EW/{W}0({M}*)}. Through a Bayesian analysis, we confirm that lower M * galaxies have higher Lyα EWs. We also find that the fraction A of galaxies featuring emission and the e-folding scale W 0 of the distribution anti-correlate with M *, recovering expressions of the forms A({M}*)=-0.26(.13){log}{M}*/{M}⊙ +3.01(1.2) and {W}0({M}*)=-15.6(3.5){log}{M}*/{M}⊙ +166(34). These results are crucial for proper interpretation of Lyα emission trends reported in the literature that may be affected by strong M * selection biases.

  17. The Spacelab Lyman alpha and white light coronagraphs program

    NASA Technical Reports Server (NTRS)

    Kohl, J. L.; Withbroe, G. L.; Weiser, H.; Macqueen, R. M.; Munro, R. H.

    1981-01-01

    The Harvard-Smithsonian Center for Astrophysics and the High Altitude Observatory have defined a joint coronagraphs experiment for a future Spacelab mission. The instrumentation package would include an ultraviolet light coronagraph to measure the intensity and profiles of spectral lines formed between 1.2 and 8 solar radii from sun center and a white light coronagraph to measure the intensity and polarization of visible light. The overall goals of the joint program are to use new coronal plasma diagnostic techniques to understand the physical processes and mechanisms operating in the solar corona, to understand the acceleration of high-speed and low-speed solar wind streams and to extrapolate this knowledge to other stars in order to help understand the physics of stellar coronae and stellar mass loss.

  18. Giant Lyman-alpha Nebulae in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Gronke, Max; Bird, Simeon

    2017-02-01

    Several “giant” Lyα nebulae with an extent ≳300 kpc and observed Lyα luminosity of ≳1044 erg s‑1 cm‑2 arcsec‑2 have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Lyα emission emerging from large halos (M > 1011.5 M⊙) at z ∼ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare the simulated surface brightness maps, profiles, and Lyα spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Lyα nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.

  19. Coupling the emission of ionizing radiation and Lyman alpha

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2013-10-01

    The class of objects that reionized intergalactic hydrogen remains an observational and theoretical problem that is in contention for being the most prominent puzzle piece in contemporary astrophysics. The current consensus - determined almost entirely by ruling out bright active galaxies - is that the process was possibly begun and almost certainly finished by faint, lower-mass galaxies forming their early generations of stars. Recent observations of z 3 galaxies may even have identified the analog populations.However understanding how the emitted ionizing power of galaxies is causally related to their {robustly determined} physical properties is not a study that can be performed at high-z: neither the spatial information nor the standard multi-wavelength diagnostics are available. Moreover, on a case-by-case basis, the intervening IGM absorption is impossible to determine. These considerations have spawned a number of detailed studies with UV space telescopes, the synthesis of which however is that a characteristic population of Lyman continuum {LyC} emitting objects has not yet been identified. We show in this proposal that we have identified a characteristic trait in galaxy spectra that is highly indicative of LyC emission, by combining {a} high-z phenomenological studies, {b} new high-resolution UV spectra of local galaxies, and {c} sophisticated models of radiation transport. Believing that we have determined the signature, we propose to test the new hypothesis with deep spectroscopic observations with HST/COS under the Cycle 21 UV initiative.

  20. Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field

    SciTech Connect

    Davidson, P. A.; Sreenivasan, Binod; Aspden, A. J.

    2007-02-15

    We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant

  1. Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field

    NASA Astrophysics Data System (ADS)

    Davidson, P. A.; Sreenivasan, Binod; Aspden, A. J.

    2007-02-01

    We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant

  2. Observations of Plasma Blobs by OI 630 nm Using ASI and Photometer over Kolhapur, India

    NASA Astrophysics Data System (ADS)

    Nade, D. P.; Sharma, A. K.; Nikte, S. S.; Chavan, G. A.; Ghodpage, R. N.; Patil, P. T.; Gurubaran, S.

    2014-08-01

    This paper presents observations of plasma blobs by nightglow OI 630.0 nm emissions using ground-based techniques, all sky imager and photometer from Kolhapur. The nightglow observations have been made at low latitude station, Kolhapur (16.42°N, 74.2°E, and 10.6°N dip lat.) during clear moonless nights for period of October 2011-April 2012. Generally, these occur 3 h after sunset (18:00 IST). Herein we have calculated velocities of plasma blobs using scanning method, introduced by Pimenta et al. (Adv Space Res 27:1219-1224, 2001). The average zonal drift velocity (eastward) of the plasma blobs were found to be 133 ms-1 and vary between 100 and 200 ms-1. The width (east-west expansion) and length (north-south expansion) of plasma blobs is calculated by recently developed method of Sharma et al. (Curr Sci 106(08):1085-1093, 2014b). Their mean width and length were in the range of 70-180 and 500-950 km respectively. The study shows that localized eastward polarization electric field plays an important role in the generation of plasma blobs.

  3. Investigating the dynamics and density evolution of returning plasma blobs from the 2011 June 7 eruption

    SciTech Connect

    Carlyle, Jack; Williams, David R.; Van Driel-Gesztelyi, Lidia; Matthews, Sarah; Innes, Davina; Hillier, Andrew

    2014-02-20

    This work examines in-falling matter following an enormous coronal mass ejection on 2011 June 7. The material formed discrete concentrations, or blobs, in the corona and fell back to the surface, appearing as dark clouds against the bright corona. In this work we examined the density and dynamic evolution of these blobs in order to formally assess the intriguing morphology displayed throughout their descent. The blobs were studied in five wavelengths (94, 131, 171, 193, and 211 Å) using the Solar Dynamics Observatory Atmospheric Imaging Assembly, comparing background emission to attenuated emission as a function of wavelength to calculate column densities across the descent of four separate blobs. We found the material to have a column density of hydrogen of approximately 2 × 10{sup 19} cm{sup –2}, which is comparable with typical pre-eruption filament column densities. Repeated splitting of the returning material is seen in a manner consistent with the Rayleigh-Taylor instability. Furthermore, the observed distribution of density and its evolution is also a signature of this instability. By approximating the three-dimensional geometry (with data from STEREO-A), volumetric densities were found to be approximately 2 × 10{sup –14} g cm{sup –3}, and this, along with observed dominant length scales of the instability, was used to infer a magnetic field of the order 1 G associated with the descending blobs.

  4. Blob birth and transport in NSTX: GPI data analysis and theory

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Stotler, D. P.; Maqueda, R.; Boedo, J.; Munsat, T.

    2005-10-01

    Movies of blobs (i.e. convecting filamentary structures in the scrape-off-layer) taken with the gas-puff-imaging (GPI) diagnostic are used to extract blob parameters: birth zone, scale size, radial velocity vx and (with DEGAS-2 modeling to infer plasma density and temperature from the He 5876 emission), density and temperature. These measured properties are compared with theory. It is shown that the birth zone and blob parameters are related to the local maximum of the edge ∇ln

    suggesting blob generation by an underlying edge instability. The observed blobs are plotted on a theoretical regime diagram,ootnotetextJ.R. Myra, D.A. D'Ippolito, Lodestar Report #LRC-05-105, May, 2005. and mostly lie in the sheath-connected regime. The observed vx are equal to, or exceed, a minimum velocity scaling predicted by theory. The excess depends on position and is qualitatively consistent with separatrix effects. However, some additional physics not in the present model also influences vx.

  5. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Jian; Kang, Ruimei; Tang, Xiaohua; She, Houde; Yang, Yaoxia; Zha, Fei

    2016-03-01

    Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as they can be used for the filtration of heavy oil or the absorption of floating oil from water/oil mixtures. However, most of the superhydrophobic materials used for oil/water separation lose their superhydrophobicity when exposed to hot (e.g. >50 °C) water and strong corrosive liquids. Herein, we demonstrate superhydrophobic overlapped candle soot (CS) and silica coated meshes that can repel hot water (about 92 °C) and strong corrosive liquids, and were used for the gravity driven separation of oil-water mixtures in hot water and strong acidic, alkaline, and salty environments. To the best of our knowledge, we are unaware of any previously reported studies on the use of superhydrophobic materials for the separation of oil from hot water and corrosive aqueous media. In addition, the as-prepared robust superhydrophobic CS and silica coated meshes can separate a series of oils and organic solvents like kerosene, toluene, petroleum ether, heptane and chloroform from water with a separation efficiency larger than 99.0%. Moreover, the as-prepared coated mesh still maintained a separation efficiency above 98.5% and stable recyclability after 55 cycles of separation. The robust superhydrophobic meshes developed in this work can therefore be practically used as a highly efficient filtration membrane for the separation of oil from harsh water conditions, benefiting the environment and human health.Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as

  6. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation.

    PubMed

    Li, Jian; Kang, Ruimei; Tang, Xiaohua; She, Houde; Yang, Yaoxia; Zha, Fei

    2016-04-14

    Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as they can be used for the filtration of heavy oil or the absorption of floating oil from water/oil mixtures. However, most of the superhydrophobic materials used for oil/water separation lose their superhydrophobicity when exposed to hot (e.g. >50 °C) water and strong corrosive liquids. Herein, we demonstrate superhydrophobic overlapped candle soot (CS) and silica coated meshes that can repel hot water (about 92 °C) and strong corrosive liquids, and were used for the gravity driven separation of oil-water mixtures in hot water and strong acidic, alkaline, and salty environments. To the best of our knowledge, we are unaware of any previously reported studies on the use of superhydrophobic materials for the separation of oil from hot water and corrosive aqueous media. In addition, the as-prepared robust superhydrophobic CS and silica coated meshes can separate a series of oils and organic solvents like kerosene, toluene, petroleum ether, heptane and chloroform from water with a separation efficiency larger than 99.0%. Moreover, the as-prepared coated mesh still maintained a separation efficiency above 98.5% and stable recyclability after 55 cycles of separation. The robust superhydrophobic meshes developed in this work can therefore be practically used as a highly efficient filtration membrane for the separation of oil from harsh water conditions, benefiting the environment and human health.

  7. Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity-driven membrane filtration.

    PubMed

    Derlon, Nicolas; Mimoso, Joao; Klein, Theresa; Koetzsch, Stefan; Morgenroth, Eberhard

    2014-09-01

    This study evaluates the effect of the presence of biofilms on membrane surfaces on the quality of permeate produced during Gravity-driven membrane ultrafiltration. GDM ultrafiltration is applied to the decentralized production of drinking water. A second objective was to evaluate to what extent permeate quality is enhanced by pre-treating feed-water (using a packed bed biofilm reactor or a slow sand filter). The influence of the ageing of the biofilm on the permeate quality was evaluated and compared to the effect of virgin membranes. Permeate quality was evaluated in terms of Assimilable Organic Carbon (AOC) content and dissolved organic carbon fractions (e.g. biopolymers). Our results indicate that virgin ultrafiltration membrane remove a small fraction of the AOC and biopolymers (rejection <10%). The presence of a young and thin biofilm on the surface of the ultrafiltration membranes increases the permeate quality due to the degradation of AOC (>80%). However, over long-term the hydrolysis of the organic matter that accumulated on membrane surfaces increases the AOC content of the permeate, thus deteriorating the permeate quality. Pre-treatment of the feed-water help to control the biofilm accumulation and thus to limit the deterioration of the permeate quality. Permeate flux stabilised at average values of 7.5-8.9 L m(-2) h(-1). But the presence of pre-treatment helped to increase permeate flux (+12 and 19%, with the packed bed biofilm reactor and with the slow sand filter, respectively). Overall our study demonstrates that tolerating the presence of biofilm on membrane surface has a beneficial effect on the quality of permeate even if its quantity is decreased.

  8. Superficial and deep-seated gravity-driven deformation horizons within basinal succession: the case study of Maiolica Formation, Gargano Promontory, Southern Italy

    NASA Astrophysics Data System (ADS)

    Jablonská, Danica; Di Celma, Claudio; Tondi, Emanuele

    2016-04-01

    Gravitational phenomena on the paleoslope of continental margins play a significant role both in redistribution of sediment and formation of new structural features within sedimentary basins worldwide. Mass-transport deposits (MTDs) represent important heterogeneities within the succession and occur on various scales (tens of centimetres to hundreds of metres). Small- to medium-scale MTDs (up to tens of meters) act as layers of different petrophysical properties, whereas large-scale MTDs (tens to hundreds of meters) form both stratigraphic and structural discontinuities (faults, thrusts, erosional surfaces, dykes or injections) within the succession. The Maiolica Formation, Early Cretaceous deep basinal succession cropping out in Gargano Promontory of Southeast Italy is represented by undisturbed intervals of flat-lying thin-bedded, cherty micritic limestone interstratified with intervals of lithologically similar, but structurally distorted beds. For this reason, the studied outcrops provide a good opportunity to characterize the geometry and the internal deformation of small- and medium-scale carbonate MTDs. At the outcrop scale, small- to medium-sized MTDs can be simply identified as sheets of deformed strata alternated with packages of undeformed beds. However, several observed features such as folded stylolites with radially oriented peaks within some of these deformed packages and the presence of large vertical clastic-dyke-like bodies in the succession suggest that some of these deformed packages represent deep-seated basal gliding horizons of large-scale MTDs. In this study, we present MTDs on two different scales that have a crucial influence on the evolution of slope to basinal successions. Moreover, we define the features that distinguish superficial MTDs from the deep-seated gravity-driven deformation horizons within basinal carbonates.

  9. The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study.

    PubMed

    Wzorek, Alicja; Klika, Karel D; Drabowicz, Józef; Sato, Azusa; Aceña, José Luis; Soloshonok, Vadim A

    2014-07-14

    This work explores the self-disproportionation of enantiomers (SDE) of chiral sulfoxides via achiral, gravity-driven column chromatography using methyl n-pentyl sulfoxide as a case study. A major finding of this work is the remarkable persistence and high magnitude of the SDE for the analyte. Thus, it is the first case where SDE is observed even in the presence of MeOH in the mobile phase. The study demonstrated the practical preparation, in line with theory, of enantiomerically pure (>99.9% ee) samples of methyl n-pentyl sulfoxide starting from a sample of only modest ee (<35%). Remarkably, it was found that the order of elution was inverted, i.e. enantiomerically depleted fractions preceded later eluting enantiomerically enriched ones, when the stationary phase was changed from silica gel to aluminum oxide. To the best of our knowledge, this is the first occurrence of inverted SDE behavior due solely to a change in the stationary phase. Aberrant SDE behavior was observed in that the ee did not always fall continuously during the progression of the chromatography, and this was attributed to the complexity of the system at hand which cannot be described in simple terms such as the formation only of homo- and heterochiral dimers based on a single interaction. The results nevertheless suggest that all compounds with a chiral sulfoxide moiety in their structure are likely to exhibit the SDE phenomenon and thus this work constitutes the first example of SDE predictability. Moreover, it could well be that optical purification based on the SDE phenomenon is a simple, convenient, and inexpensive method for the optical purification of this class of compounds with a high degree of proficiency.

  10. Lyman-alpha emission from the Lyman-alpha forest. [in high red shift quasar spectra due to molecular clouds

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Weymann, Ray J.

    1987-01-01

    It is suggested that high-dispersion long-slit spectra or very narrow-band etalon images of 'blank' sky could reveal patches of Ly-alpha line emission from the population of clouds whose absorption produces the 'Ly-alpha forest' in QSO spectra. A nonobservation can put limits on the ionizing background at high redshift which are better than those obtainable by direct measurements of background light.

  11. "Hairy blobs:" microbial suspects preserved in modern and ancient extremely acid lake evaporites.

    PubMed

    Benison, Kathleen C; Jagniecki, Elliot A; Edwards, Tina B; Mormile, Melanie R; Storrie-Lombardi, Michael C

    2008-08-01

    "Hairy blobs" are unusual clumps of organic bodies and sulfate crystals that have been found in evaporite minerals grown in acid saline lakes. Here, we document modern hairy blobs in halite and gypsum from 5 modern acid saline lakes in southern Western Australia, and Permian hairy blobs trapped in halite from the mid-Permian Opeche Shale in the subsurface of North Dakota. These are among the first microbial remains described from acid saline lake environments. They give clues about the role of microorganisms in the acidity, geochemistry, and mineralogy of these extreme environments. This study also may add to the inventory of life in extreme environments and help predict possible martian life-forms and the method of preservation.

  12. ``Hairy Blobs:'' Microbial Suspects Preserved in Modern and Ancient Extremely Acid Lake Evaporites

    NASA Astrophysics Data System (ADS)

    Benison, Kathleen C.; Jagniecki, Elliot A.; Edwards, Tina B.; Mormile, Melanie R.; Storrie-Lombardi, Michael C.

    2008-08-01

    "Hairy blobs" are unusual clumps of organic bodies and sulfate crystals that have been found in evaporite minerals grown in acid saline lakes. Here, we document modern hairy blobs in halite and gypsum from 5 modern acid saline lakes in southern Western Australia, and Permian hairy blobs trapped in halite from the mid-Permian Opeche Shale in the subsurface of North Dakota. These are among the first microbial remains described from acid saline lake environments. They give clues about the role of microorganisms in the acidity, geochemistry, and mineralogy of these extreme environments. This study also may add to the inventory of life in extreme environments and help predict possible martian life-forms and the method of preservation.

  13. Partitioning dynamics of gravity-driven preferential flow in unsaturated fractures: Laboratory study and three-dimensional smoothed particle hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Tartakovsky, Alexandre

    2017-04-01

    Fractures and fracture networks have a high potential to contribute to the formation of preferential flow paths, and thus control important catchment-scale parameters, such as aquifer vulnerability, mass arrival times and dispersion dynamics. Particularly, the unsaturated zone of fractured porous aquifers exhibits highly space- and time-variant coupling of phase saturation and flow (transport) dynamics and remains an extremely challenging aspect of vadose zone research. Non-Darcian and highly non-linear unsaturated flow modes, strongly deviate from the classical laminar and low Capillary number flow regimes and therefore most volume-effective approaches fails to capture important flow and transport characteristics. Here we study unsaturated gravity-driven free-surface flows on a synthetic surface intersected by a horizontal fracture and demonstrate the importance of flow modes (droplet; rivulet) on the partitioning behavior at the fracture intersection. We present (1) laboratory experiments, (2) three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and (3) an analytical solution. The flow-rate-dependent mode switching from droplets to rivulets is reproduced by the SPH model, and the transition ranges agree with the laboratory experiments. We show that flow modes heavily influence the bypass behavior. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. This behavior is demonstrated for a multi-inlet laboratory setup where the inlet-specific flow rate is chosen so that either a droplet or rivulet flow persists. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a

  14. New approach in two-dimensional fluid modeling of edge plasma transport with high intermittency due to blobs and edge localized modes

    SciTech Connect

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.

    2011-09-15

    A new approach is proposed to simulate intermittent, non-diffusive plasma transport (via blobs and filaments of edge localized modes (ELMs)) observed in the tokamak edge region within the framework of two-dimensional transport codes. This approach combines the inherently three-dimensional filamentary structures associated with an ensemble of blobs into a macro-blob in the two-dimensional poloidal cross-section and advects the macro-blob ballistically across the magnetic field, B. Intermittent transport is represented as a sequence of macro-blobs appropriately seeded in the edge plasma according to experimental statistics. In this case, the code is capable of reproducing both the long-scale temporal evolution of the background plasma and the fast spatiotemporal dynamics of blobs. We report the results from a two-dimensional edge plasma code modeling of a single macro-blob dynamics, and its interaction with initially stationary background plasma as well as with material surfaces. The mechanisms of edge plasma particle and energy losses from macro-blobs are analyzed. The effects of macro-blob sizes and advection velocity on edge plasma profiles are studied. The macro-blob impact on power loading and sputtering rates on the chamber wall and on inner and outer divertor plates is discussed. Temporal evolution of particle inventory of the edge plasma perturbed by macro-blobs is analyzed. Application of macro-blobs to ELM modeling is highlighted.

  15. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Sanchez-Diaz, E.; Rouillard, A. P.; Davies, J. A.; Lavraud, B.; Sheeley, N. R.; Pinto, R. F.; Kilpua, E.; Plotnikov, I.; Genot, V.

    2017-01-01

    The origin of the slow solar wind is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute one of the main sources of the slow wind. Determining the height at which these transients are released is an important factor in determining the conditions under which the slow solar wind forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of transient structures collapsing back toward the Sun; the latter have been referred to by previous authors as “raining inflows.” This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection.

  16. Observational Evidence for the Associated Formation of Blobs and Raining Inflows in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Sanchez-Diaz, Eduardo; Rouillard, Alexis P.; Davies, Jackie A.; Lavraud, Benoit; Sheeley, Neil R.; Pinto, Rui F.; Kilpua, Emilia; Plotnikov, Illya; Genot, Vincent

    2017-04-01

    The origin of the Slow Solar Wind (SSW) is still a topic of much debate. The continual emergence of small transient structures from helmet streamers is thought to constitute an important sources of the SSW. Determining the height at which these transients are released is an important factor in determining the conditions under which the SSW forms. To this end, we have carried out a multipoint analysis of small transient structures released from a north-south tilted helmet streamer into the slow solar wind over a broad range of position angles during Carrington Rotation 2137. During this period of time, the catalogue in Sheeley & Wang (2014) reported a big number of transient structures collapsing back toward the Sun, referred to as "raining inflows". Combining the remote-sensing observations taken by the Solar-TErrestrial RElations Observatory (STEREO) mission with coronagraphic observations from the SOlar and Heliospheric Observatory (SOHO) spacecraft, we show that the release of such small transient structures (often called blobs), which subsequently move away from the Sun, is associated with the concomitant formation of raining inflows. This is the first direct association between outflowing blobs and raining inflows, which locates the formation of blobs above the helmet streamers and gives strong support that the blobs are released by magnetic reconnection. This work was made with the funding from the HELCATS project under the FP7 EU contract number 606692

  17. SYNCHROTRON BLOB MODEL OF INFRARED AND X-RAY FLARES FROM SAGITTARIUS A*

    SciTech Connect

    Kusunose, Masaaki; Takahara, Fumio E-mail: takahara@vega.ess.sci.osaka-u.ac.jp

    2011-01-01

    Sagittarius A* in the Galactic center harbors a supermassive black hole and exhibits various active phenomena. Besides quiescent emission in radio and submillimeter radiation, flares in the near-infrared (NIR) and X-ray bands are observed to occur frequently. We study a time-dependent model of the flares, assuming that the emission is from a blob ejected from the central object. Electrons obeying a power law with the exponential cutoff are assumed to be injected in the blob for a limited time interval. The flare data of 2007 April 4 were used to determine the values of model parameters. The spectral energy distribution of flare emission is explained by nonthermal synchrotron radiation in the NIR and X-ray bands. The model light curves suggest that electron acceleration is still underway during the rising phase of the flares. GeV {gamma}-rays are also emitted by synchrotron self-Compton scattering, although their luminosity is not strictly constrained by the current model. If the GeV emission is faint, the plasma blob is dominated by the magnetic energy density over the electron kinetic energy density. Observations in the GeV band will clarify the origin of the blob.

  18. Lyα blobs as an observational signature of cold accretion streams into galaxies

    NASA Astrophysics Data System (ADS)

    Dijkstra, Mark; Loeb, Abraham

    2009-12-01

    Recent hydrodynamic simulations of galaxy formation reveal streams of cold (T ~ 104 K) gas flowing into the centres of dark matter haloes as massive as 1012-13.5Msolar at redshifts z ~ 1-3. In this paper, we show that if >~20 per cent of the gravitational binding energy of the gas is radiated away then the simulated cold flows are spatially extended Lyα sources with luminosities, Lyα linewidths and number densities that are comparable to those of observed Lyα blobs. Furthermore, the filamentary structure of the cold flows can explain the wide range of observed Lyα blob morphologies. Since the most massive haloes form in dense environments, the association of Lyα blobs with overdense regions arise naturally. We argue that Lyα blobs - even those which are clearly associated with starburst galaxies or quasars - provide direct observational support for the cold accretion mode of galaxies. We discuss various testable predictions of this association.

  19. Two-dimensional time resolved measurements of toroidal velocity correlated with density blobs in magnetized plasmas

    SciTech Connect

    Labit, B.; Furno, I.; Fasoli, A.; Podesta, M.

    2008-08-15

    A new method for toroidal velocity measurements with Mach probes is presented. This technique is based on the conditional sampling technique, the triggering events being density blobs. A reconstruction of the time resolved two-dimensional profile of electron density, electron temperature, plasma potential, and toroidal velocity is possible with a single point measurement on a shot-to-shot basis.

  20. Blob-Filament characteristics in XGC1 simulations and implications for the SOL width

    NASA Astrophysics Data System (ADS)

    Keramidas Charidakos, Ioannis; Myra, James; Parker, Scott; Ku, Seung-Hoe; Chowdhury, Jugal; Churchill, Randy; Hager, Robert; Chang, Choong-Seock

    2016-10-01

    Blob-filament structures, formed due to plasma stratification, caused by strong turbulence near the separatrix, have been believed to be responsible for the convective transport at the SOL. Detachment of those coherent structures from the bulk can account for the intermittent nature of edge transport and their dynamics impact the heat flux width. The SOL width is a parameter of paramount importance in modern tokamaks as it controls the amount of power deposited at the divertor plates, directly affecting thus the viability of fusion. So far, studies of blobs have been confined to reduced fluid models and simplified geometries, leaving out important pieces of physics. Here, we analyze the results of simulations performed with the full-f, gyrokinetic code XGC1 which includes both turbulence and kinetic neoclassical effects in realistic divertor geometry. The blob contribution to the SOL width is estimated from examining the radial blob velocity and the parallel confinement time. We acknowledge computing resources on Titan at OLCF through the 2015 INCITE and the 2016 ALCC Awards. Work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-97ER54392.

  1. Particle Simulation of the Blob Propagation in Non-Uniform Plasmas

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hiroki; Ishiguro, Seiji

    2014-10-01

    The kinetic dynamics on blob propagation in non-uniform plasmas have been studied with a three dimensional electrostatic plasma particle simulation code. In our previous studies, we assumed that grad-B is uniform in the toroidal and poloidal directions. In scrape-off layer (SOL) plasmas of real magnetic confinement devices, however, the direction of grad-B is different between the inside and the outside of torus. In this study, we have investigated the blob kinetic dynamics in the system where grad-B is spatially non-uniform. We observe different potential and particle flow structures from those shown in our previous studies. Thus, it is found that propagation properties of blobs in non-uniform grad-B plasmas are also distinct. These properties depend on the initial blob location in the toroidal directions. We will also discuss the application of this study to pellet dynamics. Supported by NIFS Collaboration Research programs (NIFS13KNSS038 and NIFS14KNXN279) and a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (KAKENHI 23740411).

  2. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    PubMed Central

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-01-01

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382

  3. Gyrokinetic simulation of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Ku, S.; Hager, R.; Churchill, M.; D'Azevedo, E.; Worley, P.

    2015-11-01

    Gyrokinetic study of divertor heat-load width Lq has been performed using the edge gyrokinetic code XGC1. Both neoclassical and electrostatic turbulence physics are self-consistently included in the simulation with fully nonlinear Fokker-Planck collision operation and neutral recycling. Gyrokinetic ions and drift kinetic electrons constitute the plasma in realistic magnetic separatrix geometry. The electron density fluctuations from nonlinear turbulence form blobs, as similarly seen in the experiments. DIII-D and NSTX geometries have been used to represent today's conventional and tight aspect ratio tokamaks. XGC1 shows that the ion neoclassical orbit dynamics dominates over the blob physics in setting Lq in the sample DIII-D and NSTX plasmas, re-discovering the experimentally observed 1/Ip type scaling. Magnitude of Lq is in the right ballpark, too, in comparison with experimental data. However, in an ITER standard plasma, XGC1 shows that the negligible neoclassical orbit excursion effect makes the blob dynamics to dominate Lq. Differently from Lq 1mm (when mapped back to outboard midplane) as was predicted by simple-minded extrapolation from the present-day data, XGC1 shows that Lq in ITER is about 1 cm that is somewhat smaller than the average blob size. Supported by US DOE and the INCITE program.

  4. Observations of Multiple Blobs in Homologous Solar Coronal Jets in Closed Loop

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Ji, H. S.; Su, Y. N.

    2016-03-01

    Coronal bright points (CBPs) and jets are ubiquitous small-scale brightenings that are often associated with each other. We here report our multiwavelength observations of two groups of homologous jets. The first group was observed by the Extreme-Ultraviolet Imager (EUVI) onboard the Solar TErrestrial RElations Observatory (STEREO) Behind spacecraft in 171 Å and 304 Å on 2014 September 10, from a location where no data from the Solar Dynamic Observatory (SDO) could be obtained. The jets (J1 - J6) recurred for six times with intervals of 5 - 15 minutes. They originated from the same primary CBP (BP1) and propagated in the northeast direction along large-scale, closed coronal loops. Two of the jets (J3 and J6) produced sympathetic CBPs (BP2 and BP3) after reaching the remote footpoints of the loops. The time delays between the peak times of BP1 and BP2 (BP3) are 240±75 s (300±75 s). The jets were not coherent. Instead, they were composed of bright and compact blobs. The sizes and apparent velocities of the blobs are 4.5 - 9 Mm and 140 - 380 km s-1. The arrival times of the multiple blobs in the jets at the far end of the loops indicate that the sympathetic CBPs are caused by jet flows and not by thermal conduction fronts. The second group was observed by the Atmospheric Imaging Assembly onboard SDO in various wavelengths on 2010 August 3. Similar to the first group, the jets originated from a short-lived BP at the boundary of Active Region 11092 and propagated along a small-scale, closed loop before flowing into the active region. Several tiny blobs with sizes of ˜1.7 Mm and an apparent velocity of ˜238 km s^{-1} were identified in the jets. We carried out differential emission measure (DEM) inversions to investigate the temperatures of the blobs, finding that the blobs were multithermal with an average temperature of 1.8 - 3.1 MK. The estimated number densities of the blobs were (1.7 - 2.8)×109 cm^{-3}.

  5. Blob Formation and Ejection in Coronal Jets due to the Plasmoid and Kelvin-Helmholtz Instabilities

    NASA Astrophysics Data System (ADS)

    Ni, Lei; Zhang, Qing-Min; Murphy, Nicholas A.; Lin, Jun

    2017-05-01

    We perform 2D resistive magnetohydrodynamic simulations of coronal jets driven by flux emergence along the lower boundary. The reconnection layers are susceptible to the formation of blobs that are ejected in the jet. Our simulation with low plasma β (Case I) shows that magnetic islands form easily and propagate upward in the jet. These islands are multithermal and thus are predicted to show up in hot channels (335 Å and 211 Å) and the cool channel (304 Å) in observations by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. The islands have maximum temperatures of 8 MK, lifetimes of 120 s, diameters of 6 Mm, and velocities of 200 km s-1. These parameters are similar to the properties of blobs observed in extreme-ultraviolet (EUV) jets by AIA. The Kelvin-Helmholtz instability develops in our simulation with moderately high plasma β (Case II) and leads to the formation of bright vortex-like blobs above the multiple high magnetosonic Mach number regions that appear along the jet. These vortex-like blobs can also be identified in the AIA channels. However, they eventually move downward and disappear after the high magnetosonic Mach number regions disappear. In the lower plasma β case, the lifetime for the jet is shorter, the jet and magnetic islands are formed with higher velocities and temperatures, the current-sheet fragments are more chaotic, and more magnetic islands are generated. Our results show that the plasmoid instability and Kelvin-Helmholtz instability along the jet are both possible causes of the formation of blobs observed at EUV wavelengths.

  6. Small blob identification in medical images using regional features from optimum scale.

    PubMed

    Zhang, Min; Wu, Teresa; Bennett, Kevin M

    2015-04-01

    Recent advances in medical imaging technology have greatly enhanced imaging-based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this research, we are interested in one type of imaging objects: small blobs. Examples of small blob objects are cells in histopathology images, glomeruli in MR images, etc. This problem is particularly challenging because the small blobs often have in homogeneous intensity distribution and an indistinct boundary against the background. Yet, in general, these blobs have similar sizes. Motivated by this finding, we propose a novel detector termed Hessian-based Laplacian of Gaussian (HLoG) using scale space theory as the foundation. Like most imaging detectors, an image is first smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale on which a presegmentation is conducted. The advantage of the Hessian process is that it is capable of delineating the blobs. As a result, regional features can be retrieved. These features enable an unsupervised clustering algorithm for postpruning which should be more robust and sensitive than the traditional threshold-based postpruning commonly used in most imaging detectors. To test the performance of the proposed HLoG, two sets of 2-D grey medical images are studied. HLoG is compared against three state-of-the-art detectors: generalized LoG, Radial-Symmetry and LoG using precision, recall, and F-score metrics.We observe that HLoG statistically outperforms the compared detectors.

  7. Self-organization model of cytochrome oxidase blobs and ocular dominance columns in the primary visual cortex.

    PubMed

    Nakagama, Hayato; Tanaka, Shigeru

    2004-04-01

    There are regularly arranged blobs that contain neurons labeled by cytochrome oxidase (CO) in the supragranular layer of the primary visual cortex (V1) of monkeys and cats. This theoretical study demonstrates that CO-blob-like patterns can be reproduced based on the thermodynamic model for the activity-dependent self-organization of afferent inputs from two different groups of neurons to the supragranular layer of the visual cortex. Computer simulation based on the model shows that within a particular parameter range each blob is centered in the ocular dominance (OD) band, as observed in macaque monkeys and galagos. Furthermore, by increasing the strength of correlation in activity between inputs from the two eyes, nearby blobs merge across OD borders, as seen in the cat visual cortex. Finally, for monocular deprivation, blobs in the deprived eyes shrink as observed in monkeys and cats. For binocular deprivation, less intensely labeled blobs were reproduced, while the blob density did not change as observed in monkeys.

  8. Statistical description of low-latitude plasma blobs as observed by DMSP F15 and KOMPSAT-1

    NASA Astrophysics Data System (ADS)

    Park, J.; Min, K. W.; Kim, V. P.; Kil, H.; Kim, H. J.; Lee, J. J.; Lee, E.; Kim, S. J.; Lee, D. Y.; Hairston, M.

    We investigated the global distribution of low-latitude plasma blobs using in-situ plasma density measurements from Korea Multi-Purpose Satellite-1 KOMPSAT-1 and Defense Meteorological Satellite Program DMSP F15 The seasonal-longitudinal S L distribution of blobs is generally consistent with that of equatorial plasma bubbles EPBs but between them exist two notable differences First during equinoxes the blob activity is inhibited around the Atlantic region Second during the June solstice the African peak is rather suppressed in the distribution KOMPSAT-1 at the lower altitude encountered blobs more frequently than DMSP F15 The occurrence probability of plasma blobs is less subjected to the yearly variation of solar activity And the latitudinal distribution of the blobs shows strong asymmetry during solstices Most of them are concentrated on the winter hemisphere where the background density is low and the inter-hemispheric plasma transport is poleward along the geomagnetic field line And the asymmetry becomes weak as the solar activity decreases suggesting that the blob generation bears connection with the fountain effect inside EPBs and the poleward plasma transport

  9. BLOB: An unsupervised clustering approach to spatial preprocessing of MSS imagery

    NASA Technical Reports Server (NTRS)

    Kauth, R. J.; Pentland, A. P.; Thomas, G. S.

    1977-01-01

    A basic concept of Multispectral Scanner data processing was developed for use in agricultural inventories; namely, to introduce spatial coordinates of each pixel into the vector description of the pixel and to use this information along with the spectral channel values in a conventional unsupervised clustering of the scene. The result is to isolate spectrally homogeneous field-like patches (called blobs). The spectral mean vector of a blob can be regarded as a defined feature and used in a conventional pattern recognition procedure. The benefits of use are: ease in locating training units in imagery; data compression of from 10 to 30 depending on the application; reduction of scanner noise and consequently potential improvements in classification/proportion estimation performances.

  10. Blob - An unsupervised clustering approach to spatial preprocessing of MSS imagery

    NASA Technical Reports Server (NTRS)

    Kauth, R. J.; Pentland, A. P.; Thomas, G. S.

    1977-01-01

    A basic concept of MSS data processing has been developed for use in agricultural inventories; namely, to introduce spatial coordinates of each pixel into the vector description of the pixel and to use this information along with the spectral channel values in a conventional unsupervised clustering of the scene. The result is to isolate spectrally homogeneous field-like patches (called 'blobs'). The spectral mean vector of a blob can be regarded as a defined feature and used in a conventional pattern recognition procedure. The benefits of use are: ease in locating training units in imagery; data compression of from 10 to 30 depending on the application; reduction of scanner noise and consequently potential improvements in classification/proportion estimation performances.

  11. A Model Problem for Blob-Driven Tear Film Breakup (TBU)

    NASA Astrophysics Data System (ADS)

    Zhong, Lan; Ketelaar, C. F.; Braun, R. J.; Driscoll, T. A.; King-Smith, P. E.; Begley, Carolyn G.

    2015-11-01

    A model problem is developed to simulate tear film break up by assuming the existence of a flexible non-spreading blob with constant surfactant surface concentration. These assumptions model in vivo observations of an excess of tear film lipid that does not spread, with the surfactant concentration approximating the lipid layer. The model includes the effects of evaporation, osmolarity, surface tension, viscosity, the Marangoni effect and insoluble surfactant transport. The evaporative fluxes are input as representative functions based on data from experiments. A strong flow driven by surface tension gradient is observed from the numerical results, which may drive TBU at times compatible with in vivo observations. The TBU dynamics are studied as functions of blob size, surfactant properties and other parameters to establish regimes were TBU may be driven primarily by Marangoni effects. NSF grant 1412085 and NIH grant 1R01EY021794.

  12. Visualising the electron density structure of blobs and studying its possible effect on neutral turbulence

    NASA Astrophysics Data System (ADS)

    de la Cal, E.; The TJ-II Team

    2016-10-01

    The electron density n e of turbulent coherent structures (blobs) has been measured at the edge plasma of the TJ-II stellarator using the helium line ratio technique. A spectroscopic high-speed camera set-up allowed 2D imaging of n e with spatial resolutions of a few millimetres and exposure times down to 15 µs. The turbulent plasma density structures have been compared with the raw helium emission structures, which in principle should be similar due to the expected relation between both, and although generally positive (negative) emission structures correspond to n e blobs (holes), we see that the shape is different and that in some cases there is even no correspondence at all. A possible explanation could be that the neutral distribution, which relates the intensity emission with the n e, varies on the same spatio-temporal scale as the plasma turbulence. This would be the case if the local n e variations of blobs and holes regulated the neutral density through ionisation, making it also turbulent within our experimental frequency (<100 kHz) and spatial scale (>1 cm). To study this point we simulate the neutrals with a simple transport model to reconstruct the corresponding measured emission profiles using the experimentally obtained n e and T e radial profiles. We do this for two cases: one where the neutral distribution is stationary and another where the atoms respond to the measured n e blob and get locally depleted through ionisation. Comparing the simulated and experimental emission profiles and looking at the characteristic ionisation times we find clear indications that point to the fact that slow thermal neutrals could react to the plasma fluctuations in the 10-100 kHz frequency range, also becoming turbulent.

  13. Pore-scale Analysis of the effects of Contact Angle Hysteresis on Blob Mobilization in a Pore Doublet

    NASA Astrophysics Data System (ADS)

    Hsu, Shao-Yiu; Glantz, Roland; Hilpert, Markus

    2011-11-01

    The mobilization of residual oil blobs in porous media is of major interest to the petroleum industry. We studied the Jamin effect, which hampers the blob mobilization, experimentally in a pore doublet model and explain the Jamin effect through contact angle hysteresis. A liquid blob was trapped in one of the tubes of the pore doublet model and then subjected to different pressure gradients. We measured the contact angles (in 2D and 3D) as well as the mean curvatures of the blob. Due to gravity effects and hysteresis, the contact angles of the blob were initially (zero pressure gradient) non-uniform and exhibited a pronounced altitude dependence. As the pressure gradient was increased, the contact angles became more uniform and the altitude dependence of the contact angle decreased. At the same time, the mean curvature of the drainage interface increased, and the mean curvature of the imbibition interface decreased. The pressure drops across the pore model, which we inferred with our theory from the measured contact angles and mean curvatures, were in line with the directly measured pressure data. We not only show that a trapped blob can sustain a finite pressure gradient but also develop methods to measure the contact angles and mean curvatures in 3D.

  14. DYNAMICS OF CORONAL RAIN AND DESCENDING PLASMA BLOBS IN SOLAR PROMINENCES. II. PARTIALLY IONIZED CASE

    SciTech Connect

    Oliver, R.; Soler, R.; Terradas, J.; Zaqarashvili, T. V.

    2016-02-20

    Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presented here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.

  15. Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations

    SciTech Connect

    Hasegawa, Hiroki Ishiguro, Seiji

    2015-10-15

    The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.

  16. Constraining Dust and Molecular Gas Properties in Lyα Blobs at z ~ 3

    NASA Astrophysics Data System (ADS)

    Yang, Yujin; Decarli, Roberto; Dannerbauer, Helmut; Walter, Fabian; Weiss, Axel; Leipski, Christian; Dey, Arjun; Chapman, Scott C.; Le Floc'h, Emeric; Prescott, Moire K. M.; Neri, Roberto; Borys, Colin; Matsuda, Yuichi; Yamada, Toru; Hayashino, Tomoki; Tapken, Christian; Menten, Karl M.

    2012-01-01

    In order to constrain the bolometric luminosities, dust properties, and molecular gas content of giant Lyα nebulae, the so-called Lyα blobs, we have carried out a study of dust continuum and CO line emission in two well-studied representatives of this population at z ~ 3: an Lyα blob discovered by its strong Spitzer Multiband Infrared Photometer 24 μm detection (LABd05) and the Steidel blob 1 (SSA22-LAB01). We find that the spectral energy distribution of LABd05 is well described by an active-galactic-nucleus-starburst composite template with L FIR = (4.0 ± 0.5) × 1012 L ⊙, comparable to high-z submillimeter galaxies and ultraluminous infrared galaxies. New Large APEX Bolometer Camera 870 μm measurements rule out the reported Submillimeter Common-User Bolometer Array detection of the SSA22-LAB01 (S 850 μm = 16.8 mJy) at the >4σ level. Consistent with this, ultradeep Plateau de Bure Interferometer observations with ~2'' spatial resolution also fail to detect any 1.2 mm continuum source down to ≈0.45 mJy beam-1 (3σ). Combined with the existing (sub)millimeter observations in the literature, we conclude that the FIR luminosity of SSA22-LAB01 remains uncertain. No CO line is detected in either case down to integrated flux limits of S νΔV <~ 0.25-1.0 Jy km s-1, indicating a modest molecular gas reservoir, M(H2) < (1-3) × 1010 M ⊙. The non-detections exclude, with high significance (12σ), the previous tentative detection of a CO J = 4-3 line in the SSA22-LAB01. The increased sensitivity afforded by the Atacama Large Millimeter/submillimeter Array will be critical in studying molecular gas and dust in these interesting systems.

  17. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  18. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    SciTech Connect

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; Churchill, Michael; Choi, Jong Youl; Stathopoulos, Andreas; Chang, Choong -Seock; Klasky, Scott A.

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.

  19. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    SciTech Connect

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; Churchill, Michael; Choi, Jong Youl; Stathopoulos, Andreas; Chang, Choong -Seock; Klasky, Scott A.

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.

  20. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    DOE PAGES

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; ...

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes tomore » detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.« less

  1. Automated Detection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Learning

    SciTech Connect

    Adal, Kedir M.; Sidebe, Desire; Ali, Sharib; Chaum, Edward; Karnowski, Thomas Paul; Meriaudeau, Fabrice

    2014-01-07

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are then introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier to detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images.

  2. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs

    NASA Astrophysics Data System (ADS)

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results indicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (<0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively.

  3. Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning.

    PubMed

    Adal, Kedir M; Sidibé, Désiré; Ali, Sharib; Chaum, Edward; Karnowski, Thomas P; Mériaudeau, Fabrice

    2014-04-01

    Despite several attempts, automated detection of microaneurysm (MA) from digital fundus images still remains to be an open issue. This is due to the subtle nature of MAs against the surrounding tissues. In this paper, the microaneurysm detection problem is modeled as finding interest regions or blobs from an image and an automatic local-scale selection technique is presented. Several scale-adapted region descriptors are introduced to characterize these blob regions. A semi-supervised based learning approach, which requires few manually annotated learning examples, is also proposed to train a classifier which can detect true MAs. The developed system is built using only few manually labeled and a large number of unlabeled retinal color fundus images. The performance of the overall system is evaluated on Retinopathy Online Challenge (ROC) competition database. A competition performance measure (CPM) of 0.364 shows the competitiveness of the proposed system against state-of-the art techniques as well as the applicability of the proposed features to analyze fundus images. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Altered Phytoplankton Dynamics Associated with the North Pacific Blob Provides a Glimpse of Future Warming Oceans

    NASA Astrophysics Data System (ADS)

    Marchetti, A.; Robert, M.; Cohen, N.; Twining, B. S.; Harrison, P. J.

    2016-02-01

    The Northeast Pacific is recognized as a critical region for carbon sequestration despite chronic iron limitation of phytoplankton. Although chlorophyll concentrations are relatively constant in this region, contributions of large cells (≥ 5 μm) such as diatoms versus small cells (< 5 µm) such as cyanobacteria and small flagellates can vary substantially, significantly influencing carbon export potential. Much of the export is believed to be associated with ephemeral iron inputs resulting in diatom blooms. Through a synthesis of microcosm experiments conducted over the last decade and a half, we show that the dynamics of the phytoplankton response to iron enrichment in the Northeast Pacific is primarily a function of the ambient community composition. At times when large cells initially dominate, the response to iron enrichment is large and rapid. Conversely, when small cells initially dominate, there is a delayed and curtailed response to iron enrichment. This phenomenon was most pronounced in association with the North Pacific Blob, a large feature of unusually warm water first appearing in the Fall of 2013. As perceived through RNA sequencing, the diatom community response to iron enrichment was also very different during the Blob event compared to previous years. Our findings suggest that in future warmer oceans, proportions of large cells will likely decline, substantially influencing food web dynamics and the iron-induced carbon export potential in this region.

  5. Blob identification algorithms applied to laser speckle to characterize optical turbulence

    NASA Astrophysics Data System (ADS)

    Cauble, Galen D.; Wayne, David T.

    2015-09-01

    Laser beam speckle resulting from atmospheric turbulence contains information about the propagation channel. The number and size of the speckle cells can be used to infer the spatial coherence and thus the Cn2 along a path. The challenge with this technique is the rapidly evolving speckle pattern and non-uniformity of the speckle cells. In this paper we investigate modern blob counting techniques used in biology, microscopy, and medical imaging. These methods are then applied to turbulent speckle images to estimate the number and size of the speckle cells. Speckle theory is reviewed for different beam types and different regimes of turbulence. Algorithms are generated to calculate path Cn2 from speckle information and path geometry. The algorithms are tested on speckle images from experimental data collected over a turbulent 1km path and compared to Cn2 measurements collected in parallel.

  6. Real-time marker-free motion capture system using blob feature analysis

    NASA Astrophysics Data System (ADS)

    Park, Chang-Joon; Kim, Sung-Eun; Kim, Hong-Seok; Lee, In-Ho

    2005-02-01

    This paper presents a real-time marker-free motion capture system which can reconstruct 3-dimensional human motions. The virtual character of the proposed system mimics the motion of an actor in real-time. The proposed system captures human motions by using three synchronized CCD cameras and detects the root and end-effectors of an actor such as a head, hands, and feet by exploiting the blob feature analysis. And then, the 3-dimensional positions of end-effectors are restored and tracked by using Kalman filter. At last, the positions of the intermediate joint are reconstructed by using anatomically constrained inverse kinematics algorithm. The proposed system was implemented under general lighting conditions and we confirmed that the proposed system could reconstruct motions of a lot of people wearing various clothes in real-time stably.

  7. Statistical multiscale blob features for classifying and retrieving image texture from large-scale databases

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Wu, Haishan; Chen, Yan Qiu

    2010-10-01

    The extraction of texture features from images faces two new challenges: large-scale databases with diversified textures, and varying imaging conditions. We propose a novel method termed multiscale blob features (MBF) to overcome these two difficulties. MBF analyzes textures in both resolution scale and gray level. Proposed statistical descriptors effectively extract structural information from the decomposed binary images. Experimental results show that MBF outperforms other methods on combined large-scale databases (VisTex+Brodatz+CUReT+OuTex). Moreover, experimental results on the University of Illinois at Urbana-Champaign database and the entire Brodatz's atlas show that MBF is invariant to gray-level scaling and image rotation, and is robust across a substantial range of spatial scaling.

  8. Edge Zonal Flows and Blob Propagation in Alcator C-Mod

    SciTech Connect

    Zweben, S; Agostini, M; Davis, B; Grulke, O; Hager, R; Hughes, J; LaBombard, B; D'Ippolito, D A; Myra, J R; Russell, D A

    2011-07-25

    Here we describe recent measurements of the 2-D motion of turbulence in the edge and scrape-off layer (SOL) of the Alcator C-Mod tokamak. This data was taken using the outer midplane gas puff imaging (GPI) camera, which views a 6 cm radial by 6 cm poloidal region near the separatrix just below the outer midplane [1]. The data were taken in Ohmic or RF heated L-mode plasmas at 400,000 frames/sec for {approx}50 msec/shot using a Phantom 710 camera in a 64 x 64 pixel format. The resulting 2-D vs. time movies [2] can resolve the structure and motion of the turbulence on a spatial scale covering 0.3-6 cm. The images were analyzed using either a 2-D cross-correlation code (Sec. 2) or a 2-D blob tracking code (Sec. 3).

  9. Modelling the evolution of Ly α blobs and Ly α emitters

    NASA Astrophysics Data System (ADS)

    Smailagić, M.; Micic, M.; Martinović, N.

    2016-06-01

    In this work, we model the observed evolution in comoving number density of Lyman α blobs (LABs) as a function of redshift. Our model calculates LAB emission both from cooling radiation from the intergalactic gas accreting on to galaxies and from star formation (SF). We have used a dark matter (DM) cosmological simulation to which we applied empirical recipes for Ly α emission produced by cooling radiation and SF in every halo. Unlike previous work, the simulated volume in the DM simulation is large enough to produce an average LAB number density. For a range of redshifts, z ˜ 1-7, we compare our results with the observed luminosity functions of LABs and Lyman α emitters. Our cooling radiation luminosities appear to be too small to explain LAB luminosities at all redshifts. In contrast, for SF we obtained a good agreement with observed luminosity functions at all redshifts studied. We also discuss uncertainties that could influence the results obtained.

  10. Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex.

    PubMed

    Rockoff, Emily C; Balaram, Pooja; Kaas, Jon H

    2014-09-01

    Blobs are a modular component of the primary visual cortex (area 17) of all primates, but not of other mammals closely related to primates. They are characterized as an even distribution of patches, puffs, or blobs of dense cytochrome oxidase (CO) expression in layer III of area 17, and are now known to differ from surrounding, nonblob cortex in thalamic, intrinsic, and extrastriate connections. Previous studies have also recognized a blob-like pattern of myelin-dense patches in layer III of area 17 of primates, and more recently the vesicular glutamate transporter (VGLUT)-2 isoform of the VGLUT family has been found to selectively distribute to layer III patches in a similar blob-like pattern. Here, we sought to determine if the blob-like patterns all identify the same modular structures in area 17 of primates by staining alternate brain sections cut parallel to the surface of area 17 of a prosimian primate (Otolemur garnettii) for CO, myelin, and VGLUT2. By aligning the sections from the three preparations, we provide clear evidence that the three preparations all identify the same modular blob structures. The results provide a further understanding of the functional nature of the blobs by demonstrating that their higher level of CO activity is related to thalamic inputs from the lateral geniculate nucleus that use VGLUT2 as their main glutamate transporter, and via myelinated axons.

  11. Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex

    PubMed Central

    Rockoff, Emily C; Balaram, Pooja; Kaas, Jon H

    2014-01-01

    Blobs are a modular component of the primary visual cortex (area 17) of all primates, but not of other mammals closely related to primates. They are characterized as an even distribution of patches, puffs, or blobs of dense cytochrome oxidase (CO) expression in layer III of area 17, and are now known to differ from surrounding, nonblob cortex in thalamic, intrinsic, and extrastriate connections. Previous studies have also recognized a blob-like pattern of myelin-dense patches in layer III of area 17 of primates, and more recently the vesicular glutamate transporter (VGLUT)-2 isoform of the VGLUT family has been found to selectively distribute to layer III patches in a similar blob-like pattern. Here, we sought to determine if the blob-like patterns all identify the same modular structures in area 17 of primates by staining alternate brain sections cut parallel to the surface of area 17 of a prosimian primate (Otolemur garnettii) for CO, myelin, and VGLUT2. By aligning the sections from the three preparations, we provide clear evidence that the three preparations all identify the same modular blob structures. The results provide a further understanding of the functional nature of the blobs by demonstrating that their higher level of CO activity is related to thalamic inputs from the lateral geniculate nucleus that use VGLUT2 as their main glutamate transporter, and via myelinated axons. PMID:26097384

  12. Retention of pediatric bag-mask ventilation efficacy skill by inexperienced medical student resuscitators using standard bag-mask ventilation masks, pocket masks, and blob masks.

    PubMed

    Kitagawa, Kory H; Nakamura, Nina M; Yamamoto, Loren

    2006-03-01

    To measure the ventilation efficacy with three single-sized mask types on infant and child manikin models. Medical students were recruited as study subjects inasmuch as they are inexperienced resuscitators. They were taught proper bag-mask ventilation (BMV) according to the American Heart Association guidelines on an infant and a child manikin. Subjects completed a BMV attempt successfully using the adult standard mask (to simulate the uncertainty of mask selection), pocket mask, and blob mask. Each attempt consisted of 5 ventilations assessed by chest rise of the manikin. Study subjects were asked which mask was easiest to use. Four to six weeks later, subjects repeated the procedure with no instructions (to simulate an emergency BMV encounter without immediate pre-encounter teaching). Forty-six volunteer subjects were studied. During the first attempt, subjects preferred the standard and blob masks over the pocket mask. For the second attempt, the blob mask was preferred over the standard mask, and few liked the pocket mask. Using the standard, blob, and pocket masks on the child manikin, 39, 42, and 20 subjects, respectively, were able to achieve adequate ventilation. Using the standard, blob, and pocket masks on the infant manikin, 45, 45, and 11 subjects, respectively, were able to achieve adequate ventilation. Both the standard and blob masks are more effective than the pocket mask at achieving adequate ventilation on infant and child manikins in this group of inexperienced medical student resuscitators, who most often preferred the blob mask.

  13. On the relation between Kaiser-Bessel blob and tube of response based modelling of the system matrix in iterative PET image reconstruction.

    PubMed

    Lougovski, Alexandr; Hofheinz, Frank; Maus, Jens; Schramm, Georg; van den Hoff, Jörg

    2015-05-21

    We investigate the question of how the blob approach is related to tube of response based modelling of the system matrix. In our model, the tube of response (TOR) is approximated as a cylinder with constant density (TOR-CD) and the cubic voxels are replaced by spheres. Here we investigate a modification of the TOR model that makes it effectively equivalent to the blob model, which models the intersection of lines of response (LORs) with radially variant basis functions ('blobs') replacing the cubic voxels. Implications of the achieved equivalence regarding the necessity of final resampling in blob-based reconstructions are considered. We extended TOR-CD to a variable density tube model (TOR-VD) that yields a weighting function (defining all system matrix elements) which is essentially identical to that of the blob model. The variable density of TOR-VD was modelled by a Gaussian and a Kaiser-Bessel function, respectively. The free parameters of both model functions were determined by fitting the corresponding weighting function to the weighting function of the blob model. TOR-CD and the best-fitting TOR-VD were compared to the blob model with a final resampling step (BLOB-RS) and without resampling (BLOB-NRS) in phantom studies. For three different contrast ratios and two different voxel sizes, resolution noise curves were generated. TOR-VD and BLOB-NRS lead to nearly identical images for all investigated contrast ratios and voxel sizes. Both models showed strong Gibbs artefacts at 4 mm voxel size, while at 2 mm voxel size there were no Gibbs artefacts visible. The spatial resolution was similar to the resolution with TOR-CD in all cases. The resampling step removed most of the Gibbs artefacts and reduced the noise level but also degraded the spatial resolution substantially. We conclude that the blob model can be considered just as a special case of a TOR-based reconstruction. The latter approach provides a more natural description of the detection process and

  14. Eruption of a plasma blob, associated M-class flare, and large-scale extreme-ultraviolet wave observed by SDO

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Manoharan, P. K.

    2013-05-01

    We present a multiwavelength study of the formation and ejection of a plasma blob and associated extreme ultraviolet (EUV) waves in active region (AR) NOAA 11176, observed by SDO/AIA and STEREO on 25 March 2011. The EUV images observed with the AIA instrument clearly show the formation and ejection of a plasma blob from the lower atmosphere of the Sun at ~9 min prior to the onset of the M1.0 flare. This onset of the M-class flare happened at the site of the blob formation, while the blob was rising in a parabolic path with an average speed of ~300 km s. The blob also showed twisting and de-twisting motion in the lower corona, and the blob speed varied from ~10-540 km s. The faster and slower EUV wavefronts were observed in front of the plasma blob during its impulsive acceleration phase. The faster EUV wave propagated with a speed of ~785 to 1020 km s, whereas the slower wavefront speed varied in between ~245 and 465 km s. The timing and speed of the faster wave match the shock speed estimated from the drift rate of the associated type II radio burst. The faster wave experiences a reflection by the nearby AR NOAA 11177. In addition, secondary waves were observed (only in the 171 Å channel), when the primary fast wave and plasma blob impacted the funnel-shaped coronal loops. The Helioseismic Magnetic Imager (HMI) magnetograms revealed the continuous emergence of new magnetic flux along with shear flows at the site of the blob formation. It is inferred that the emergence of twisted magnetic fields in the form of arch-filaments/"anemone-type" loops is the likely cause for the plasma blob formation and associated eruption along with the triggering of M-class flare. Furthermore, the faster EUV wave formed ahead of the blob shows the signature of fast-mode MHD wave, whereas the slower wave seems to be generated by the field line compression by the plasma blob. The secondary wave trains originated from the funnel-shaped loops are probably the fast magnetoacoustic waves

  15. The Lamu Basin deepwater fold-and-thrust belt: An example of a margin-scale, gravity-driven thrust belt along the continental passive margin of East Africa

    NASA Astrophysics Data System (ADS)

    Cruciani, Francesco; Barchi, Massimiliano R.

    2016-03-01

    In recent decades, advances in seismic processing and acquisition of new data sets have revealed the presence of many deepwater fold-and-thrust belts (DW-FTBs), often developing along continental passive margins. These kinds of tectonic features have been intensively studied, due to their substantial interest. This work presents a regional-scale study of the poorly explored Lamu Basin DW-FTB, a margin-scale, gravity-driven system extending for more than 450 km along the continental passive margin of Kenya and southern Somalia (East Africa). A 2-D seismic data set was analyzed, consisting of both recently acquired high-quality data and old reprocessed seismic profiles, for the first detailed structural and stratigraphic interpretation of this DW-FTB. The system originated over an Early to mid-Cretaceous shale detachment due to a mainly gravity-spreading mechanism. Analysis of synkinematic strata indicates that the DW-FTB was active from the Late Cretaceous to the Early Miocene, but almost all of the deformation occurred before the Late Paleocene. The fold-and-thrust system displays a marked N-S variation in width, the northern portion being more than 150 km wide and the southern portion only a few dozen kilometers wide; this along-strike variation is thought to be related to the complex tectonosedimentary evolution of the continental margin at the Somalia-Kenya boundary, also reflected in the present-day bathymetry. Locally, a series of volcanic edifices stopped the basinward propagation of the DW-FTB. A landward change in the dominant structural style, from asymmetric imbricate thrust sheets to pseudo-symmetric detachment folds, is generally observed, related to the landward thickening of the detached shales.

  16. Practical considerations for image-based PSF and blobs reconstruction in PET.

    PubMed

    Stute, Simon; Comtat, Claude

    2013-06-07

    Iterative reconstructions in positron emission tomography (PET) need a model relating the recorded data to the object/patient being imaged, called the system matrix (SM). The more realistic this model, the better the spatial resolution in the reconstructed images. However, a serious concern when using a SM that accurately models the resolution properties of the PET system is the undesirable edge artefact, visible through oscillations near sharp discontinuities in the reconstructed images. This artefact is a natural consequence of solving an ill-conditioned inverse problem, where the recorded data are band-limited. In this paper, we focus on practical aspects when considering image-based point-spread function (PSF) reconstructions. To remove the edge artefact, we propose to use a particular case of the method of sieves (Grenander 1981 Abstract Inference New York: Wiley), which simply consists in performing a standard PSF reconstruction, followed by a post-smoothing using the PSF as the convolution kernel. Using analytical simulations, we investigate the impact of different reconstruction and PSF modelling parameters on the edge artefact and its suppression, in the case of noise-free data and an exactly known PSF. Using Monte-Carlo simulations, we assess the proposed method of sieves with respect to the choice of the geometric projector and the PSF model used in the reconstruction. When the PSF model is accurately known, we show that the proposed method of sieves succeeds in completely suppressing the edge artefact, though after a number of iterations higher than typically used in practice. When applying the method to realistic data (i.e. unknown true SM and noisy data), we show that the choice of the geometric projector and the PSF model does not impact the results in terms of noise and contrast recovery, as long as the PSF has a width close to the true PSF one. Equivalent results were obtained using either blobs or voxels in the same conditions (i.e. the blob

  17. On the relation between Kaiser-Bessel blob and tube of response based modelling of the system matrix in iterative PET image reconstruction

    NASA Astrophysics Data System (ADS)

    Lougovski, Alexandr; Hofheinz, Frank; Maus, Jens; Schramm, Georg; van den Hoff, Jörg

    2015-05-01

    We investigate the question of how the blob approach is related to tube of response based modelling of the system matrix. In our model, the tube of response (TOR) is approximated as a cylinder with constant density (TOR-CD) and the cubic voxels are replaced by spheres. Here we investigate a modification of the TOR model that makes it effectively equivalent to the blob model, which models the intersection of lines of response (LORs) with radially variant basis functions (‘blobs’) replacing the cubic voxels. Implications of the achieved equivalence regarding the necessity of final resampling in blob-based reconstructions are considered. We extended TOR-CD to a variable density tube model (TOR-VD) that yields a weighting function (defining all system matrix elements) which is essentially identical to that of the blob model. The variable density of TOR-VD was modelled by a Gaussian and a Kaiser-Bessel function, respectively. The free parameters of both model functions were determined by fitting the corresponding weighting function to the weighting function of the blob model. TOR-CD and the best-fitting TOR-VD were compared to the blob model with a final resampling step (BLOB-RS) and without resampling (BLOB-NRS) in phantom studies. For three different contrast ratios and two different voxel sizes, resolution noise curves were generated. TOR-VD and BLOB-NRS lead to nearly identical images for all investigated contrast ratios and voxel sizes. Both models showed strong Gibbs artefacts at 4 mm voxel size, while at 2 mm voxel size there were no Gibbs artefacts visible. The spatial resolution was similar to the resolution with TOR-CD in all cases. The resampling step removed most of the Gibbs artefacts and reduced the noise level but also degraded the spatial resolution substantially. We conclude that the blob model can be considered just as a special case of a TOR-based reconstruction. The latter approach provides a more natural description of the detection process and

  18. The large-scale cross-correlation of Damped Lyman alpha systems with the Lyman alpha forest: first measurements from BOSS

    SciTech Connect

    Font-Ribera, Andreu; Miralda-Escudé, Jordi; Arnau, Eduard; Carithers, Bill; Ross, Nicholas P.; White, Martin; Lee, Khee-Gan; Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Rollinde, Emmanuel; Rich, James; Schneider, Donald P.; York, Donald G. E-mail: miralda@icc.ub.edu

    2012-11-01

    We present the first measurement of the large-scale cross-correlation of Lyα forest absorption and Damped Lyman α systems (DLA), using the 9th Data Release of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is clearly detected on scales up to 40h{sup −1}Mpc and is well fitted by the linear theory prediction of the standard Cold Dark Matter model of structure formation with the expected redshift distortions, confirming its origin in the gravitational evolution of structure. The amplitude of the DLA-Lyα cross-correlation depends on only one free parameter, the bias factor of the DLA systems, once the Lyα forest bias factors are known from independent Lyα forest correlation measurements. We measure the DLA bias factor to be b{sub D} = (2.17±0.20)β{sub F}{sup 0.22}, where the Lyα forest redshift distortion parameter β{sub F} is expected to be above unity. This bias factor implies a typical host halo mass for DLAs that is much larger than expected in present DLA models, and is reproduced if the DLA cross section scales with halo mass as M{sub h}{sup α}, with α = 1.1±0.1 for β{sub F} = 1. Matching the observed DLA bias factor and rate of incidence requires that atomic gas remains extended in massive halos over larger areas than predicted in present simulations of galaxy formation, with typical DLA proper sizes larger than 20 kpc in host halos of masses ∼ 10{sup 12}M{sub ☉}. We infer that typical galaxies at z ≅ 2 to 3 are surrounded by systems of atomic clouds that are much more extended than the luminous parts of galaxies and contain ∼ 10% of the baryons in the host halo.

  19. The Galileo and Pioneer Venus ultraviolet spectrometer experiments - Solar Lyman-alpha latitude variation at solar maximum from interplanetary Lyman-alpha observations

    NASA Technical Reports Server (NTRS)

    Pryor, W. R.; Ajello, J. M.; Barth, C. A.; Hord, C. W.; Stewart, A. I. F.; Simmons, K. E.; Mcclintock, W. E.; Sandel, B. R.; Shemansky, D. E.

    1992-01-01

    Solar Ly-alpha latitude variation at solar maximum is examined on the basis of interplanetary Ly-alpha observations made during the Galileo and Pioneer Venus UV spectrometer experiments. A comparison is made of the latitude variation of the interplanetary (IP) Ly-alpha signal in 1986 at solar minimum from Pioneer Venus and in 1990 at solar maximum from Galileo. The Galileo EUV spectrometer shows that a large enhancement of the IP Ly-alpha emission occurred over the intervening four years near the solar equator. An IP Ly-alpha model is developed which considers the latitude variation of the solar Ly-alpha flux. The model fit to the data shows a 25-percent decrease of the full disk solar Ly-alpha flux from solar equator to solar pole in 1990. A detailed study of the Galileo IP Ly-alpha observations on day-of-year 190, 193, 197, and 200 in 1990 reveals that large variations occur in response to the 27-d solar variation. Analysis of these data shows that a maximum variation of 20 percent can be expected in the IP Ly-alpha upwind intensity over this 27-d period.

  20. Fusion of KLMS and blob based pre-screener for buried landmine detection using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Baydar, Bora; Akar, Gözde Bozdaǧi.; Yüksel, Seniha E.; Öztürk, Serhat

    2016-05-01

    In this paper, a decision level fusion using multiple pre-screener algorithms is proposed for the detection of buried landmines from Ground Penetrating Radar (GPR) data. The Kernel Least Mean Square (KLMS) and the Blob Filter pre-screeners are fused together to work in real time with less false alarms and higher true detection rates. The effect of the kernel variance is investigated for the KLMS algorithm. Also, the results of the KLMS and KLMS+Blob filter algorithms are compared to the LMS method in terms of processing time and false alarm rates. Proposed algorithm is tested on both simulated data and real data collected at the field of IPA Defence at METU, Ankara, Turkey.

  1. Enabling High Data Throughput in Desktop Grids through Decentralized Data and Metadata Management: The BlobSeer Approach

    NASA Astrophysics Data System (ADS)

    Nicolae, Bogdan; Antoniu, Gabriel; Bougé, Luc

    Whereas traditional Desktop Grids rely on centralized servers for data management, some recent progress has been made to enable distributed, large input data, using to peer-to-peer (P2P) protocols and Content Distribution Networks (CDN). We make a step further and propose a generic, yet efficient data storage which enables the use of Desktop Grids for applications with high output data requirements, where the access grain and the access patterns may be random. Our solution builds on a blob management service enabling a large number of concurrent clients to efficiently read/write and append huge data that are fragmented and distributed at a large scale. Scalability under heavy concurrency is achieved thanks to an original metadata scheme using a distributed segment tree built on top of a Distributed Hash Table (DHT). The proposed approach has been implemented and its benefits have successfully been demonstrated within our BlobSeer prototype on the Grid’5000 testbed.

  2. Systematic Survey for [O ii], [O iii], and Hα Blobs at z = 0.1-1.5: The Implication for Evolution of Galactic-scale Outflow

    NASA Astrophysics Data System (ADS)

    Yuma, Suraphong; Ouchi, Masami; Drake, Alyssa B.; Fujimoto, Seiji; Kojima, Takashi; Sugahara, Yuma

    2017-06-01

    We conduct a systematic search for galaxies at z=0.1{--}1.5 with [O ii]λ 3727, [O iii]λ 5007, or Hα λ 6563 emission lines extended over at least 30 kpc by using deep narrowband and broadband imaging in the Subaru-XMM Deep Survey field. These extended emission-line galaxies are dubbed [O ii], [O iii], or Hα blobs. Based on a new selection method that securely selects extended emission-line galaxies, we find 77 blobs at z=0.40{--}1.46 with the isophotal area of emission lines down to 1.2× {10}-18 erg s-1 cm-2 kpc-2. Four of them are spectroscopically confirmed to be [O iii] blobs at z = 0.83. We identify AGN activities in eight blobs with X-ray and radio data, and find that the fraction of AGN contribution increases with increasing isophotal area of the extended emission. With the Kolmogorov-Smirnov (KS) and Anderson-Darling tests, we confirm that the stellar-mass distributions of Hα and [O ii] blobs are not drawn from those of the emitters at the > 90% confidence level in that Hα and [O ii] blobs are located at the massive end of the distributions, but cannot reject a null hypothesis of being the same distributions in terms of the specific star formation rates. It is suggested that galactic-scale outflows tend to be more prominent in more massive star-forming galaxies. Exploiting our sample homogeneously selected over the large area, we derive the number densities of blobs at each epoch. The number densities of blobs decrease drastically with redshifts at a rate that is larger than that of the decrease of cosmic star formation densities.

  3. The average submillimetre properties of Lyman α blobs at z = 3

    NASA Astrophysics Data System (ADS)

    Hine, N. K.; Geach, J. E.; Matsuda, Y.; Lehmer, B. D.; Michałowski, M. J.; Farrah, D.; Spaans, M.; Oliver, S. J.; Smith, D. J. B.; Chapman, S. C.; Jenness, T.; Alexander, D. M.; Robson, I.; van der Werf, P.

    2016-08-01

    Ly α blobs (LABs) offer insight into the complex interface between galaxies and their circumgalactic medium. Whilst some LABs have been found to contain luminous star-forming galaxies and active galactic nuclei that could potentially power the Ly α emission, others appear not to be associated with obvious luminous galaxy counterparts. It has been speculated that LABs may be powered by cold gas streaming on to a central galaxy, providing an opportunity to directly observe the `cold accretion' mode of galaxy growth. Star-forming galaxies in LABs could be dust obscured and therefore detectable only at longer wavelengths. We stack deep Submillimetre Common User Bolometer Array 2 (SCUBA-2) observations of the Small Selected Area 22h field to determine the average 850 μm flux density of 34 LABs. We measure S850 = 0.6 ± 0.2 mJy for all LABs, but stacking the LABs by size indicates that only the largest third (area ≥1794 kpc2) have a mean detection, at 4.5σ, with S850 = 1.4 ± 0.3 mJy. Only two LABs (1 and 18) have individual SCUBA-2 >3.5σ detections at a depth of 1.1 mJy beam-1. We consider two possible mechanisms for powering the LABs and find that central star formation is likely to dominate the emission of Ly α, with cold accretion playing a secondary role.

  4. Discovery of a faint, star-forming, multiply lensed, Lyman-α blob

    NASA Astrophysics Data System (ADS)

    Caminha, G. B.; Karman, W.; Rosati, P.; Caputi, K. I.; Arrigoni Battaia, F.; Balestra, I.; Grillo, C.; Mercurio, A.; Nonino, M.; Vanzella, E.

    2016-11-01

    We report the discovery of a multiply lensed Lyman-α blob (LAB) behind the galaxy cluster AS1063 using the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT). The background source is at z = 3.117 and is intrinsically faint compared to almost all previously reported LABs. We used our highly precise strong lensing model to reconstruct the source properties, and we find an intrinsic luminosity of LLyα = 1.9 × 1042 erg s-1, extending to 33 kpc. We find that the LAB is associated with a group of galaxies, and possibly a protocluster, in agreement with previous studies that find LABs in overdensities. In addition to Lyman-α (Lyα) emission, we find C iv, He ii, and O iii] ultraviolet (UV) emission lines arising from the centre of the nebula. We used the compactness of these lines in combination with the line ratios to conclude that the Lyα nebula is likely powered by embedded star formation. Resonant scattering of the Lyα photons then produces the extended shape of the emission. Thanks to the combined power of MUSE and strong gravitational lensing, we are now able to probe the circumgalatic medium of sub-L∗ galaxies at z ≈ 3.

  5. Accretion Theory of the Spontaneous Rotation Phenomenon, Consistency with Recent Experiments and Edge Blobs Transport Model

    NASA Astrophysics Data System (ADS)

    Lontano, M.; Coppi, B.

    2005-10-01

    The accretion theoryootnotetextB. Coppi, Nucl. Fusion 42, 1 (2002) of the ``spontaneous'' rotation of toroidal plasmas, the first to be based on attributing the source of angular momentum near the edge of the plasma column, has found further support in recent experiments carried out by the Alcator C-ModootnotetextB. LaBombard, 2005 Sherwood Meeting Paper 03-OTR and the D-IIIDootnotetextJ.S. de Grassie et al., Paper IAEA-CN-116/EX/6-4Rb machines. The second basis of the theory involves the intrinsic coupling between spontaneous rotation and thermal energy transport and is consistent with the observation that the variation in the rotation velocity from the L-regime to the H-regime is related to the scaling^2 for the threshold to attain the H-regime. Theoretically, the analysis of non-symmetric spectra, relative to the sign change of the ratio of the poloidal to the toroidal wave number has been pursued considering travelling modes driven by the ion temperature gradient in the presence of an inhomogeonous toroidal velocity. The idea that blobs formed at the edge of the plasma are responsible for the ejection of the angular momentum toward the surrounding material wall is being pursued in collaboration with Myra et al. (paper at this meeting)^*Supported in part by CNR (Italy) and the US DOE.

  6. Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment

    NASA Astrophysics Data System (ADS)

    Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.

    2008-07-01

    The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.

  7. Gravity driven instability in elastic solid layers.

    PubMed

    Mora, Serge; Phou, Ty; Fromental, Jean-Marc; Pomeau, Yves

    2014-10-24

    We demonstrate the instability of the free surface of a soft elastic solid facing downwards. Experiments are carried out using a gel of constant density ρ, shear modulus μ, put in a rigid cylindrical dish of depth h. When turned upside down, the free surface of the gel undergoes a normal outgoing acceleration g. It remains perfectly flat for ρgh/μ<α* with α*≃6, whereas a steady pattern spontaneously appears in the opposite case. This phenomenon results from the interplay between the gravitational energy and the elastic energy of deformation, which reduces the Rayleigh waves celerity and vanishes it at the threshold.

  8. Gravity-driven dense granular flows

    SciTech Connect

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  9. Tornadolike gravity-driven vortex model

    NASA Technical Reports Server (NTRS)

    Deissler, R. G.; Boldman, D. R.

    1974-01-01

    The buoyancy-induced vorticity concentration produced as the fluid in a vortex accelerates vertically was studied. The boiloff from liquid nitrogen, to which a small amount of initial vorticity was added, provided a source of cool, heavy gas in which a concentration of vorticity took place. Condensation streamers made the flow visible. It is shown that the presence of a surface boundary layer is not necessary for the effective concentration of vorticity. A simple theoretical analysis of the phenomenon was also made. A radial contraction of the flow with vertical position and a characteristic hook shape in the top view of the streamlines were observed in both theory and experiment. The vorticity concentration observed may be similar to that which occurs in tornadoes.

  10. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  11. The mechanics of gravity-driven faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.; Barrows, V.

    2010-04-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone). In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic rebound the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. Mechanical analysis has shown the intensity of the gravitational tectonic stress that is associated with the regional topography and lateral density variations that actually exist is comparable with the stress drops that are commonly associated with tectonic earthquakes; both are in the range of tens of bar to several hundred bar. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the stress-causing topography and lateral density variations is equally split between the earthquake and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are more subtle. If gravity is not deliberately and explicitly included in an earthquake model, then gravity is locked out of the energetics of the model. The earthquake model (but not necessarily the physical reality) is then elastic rebound.

  12. The Energetics of Gravity Driven Faulting

    NASA Astrophysics Data System (ADS)

    Barrows, L.

    2007-12-01

    Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In displacement-bounded faulting, locked-in elastic strain energy is transformed into seismic waves plus work done in the fault zone. Elastic rebound is an example of displacement-bounded faulting. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into seismic waves plus work done in the fault zone and half goes into an increase in locked-in elastic strain. In displacement-bounded faulting the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the topography and internal stress-causing density variations is equally split between the seismic waves plus work done in the fault zone and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are a little more subtle. If gravity is not deliberately and explicitly included in an earthquake model, then gravity is locked out of the energetics of the model. The earthquake model (but not necessarily the physical reality) is then elastic rebound.

  13. The Blob, the Very Rare Massive Star and the Two Populations

    NASA Astrophysics Data System (ADS)

    2005-04-01

    young one, containing very massive stars, and an older one. Star numbered 17 is the main component of the Sk -71 51 cluster. From the unique images obtained and reproduced as ESO PR Photo 12b/05, the astronomers could study in great depth the properties of the 2341 stars lying towards the N214C region. This was done by putting them in a so-called colour-magnitude diagram, where the abscissa is the colour (representative of the temperature of the object) and the ordinate the magnitude (related to the intrinsic brightness). Plotting the temperature of stars against their intrinsic brightness reveals a typical distribution that reflects their different evolutionary stages. Two main stellar populations show up in this particular diagram (ESO PR Photo 12d/05): a main sequence, that is, stars that like the Sun are still centrally burning their hydrogen, and an evolved population. The main sequence is made up of stars with initial masses from roughly 2-4 to about 80 solar masses. The stars that follow the red line on ESO PR Photo 12d/05 are main sequence stars still very young, with an estimated age of about 1 million years only. The evolved population is mainly composed of much older and lower mass stars, having an age of 1,000 million years. From their work, the astronomers classified several massive O and B stars, which are associated with the H II region and therefore contribute to its ionisation. A Blob of Ionised Gas ESO PR Photo 12e/05 ESO PR Photo 12e/05 The Nebular Blob in N214C [Preview - JPEG: 400 x 455 pix - 182k] [Normal - JPEG: 800 x 909 pix - 682k] [Full Res - JPEG: 1228 x 1395 pix - 1.7M] Caption: ESO PR Photo 12e/05 zooms-in on the nebular blob lying ~ 60" (50 light-years) north of the Sk-71 51 cluster. The image is based on individual exposures taken through narrow-band filters around H-alpha (red), [O III] (green) and H-beta (blue). The field size is 104" x 101" on the sky, corresponding to roughly 85 by 82 light years. North is up and east to the left. A

  14. SDSS IV MaNGA: Discovery of an Hα Blob Associated with a Dry Galaxy Pair—Ejected Gas or a “Dark” Galaxy Candidate?

    NASA Astrophysics Data System (ADS)

    Lin, Lihwai; Lin, Jing-Hua; Hsu, Chin-Hao; Fu, Hai; Huang, Song; Sánchez, Sebastián F.; Gwyn, Stephen; Gelfand, Joseph D.; Cheung, Edmond; Masters, Karen; Peirani, Sébastien; Rujopakarn, Wiphu; Stark, David V.; Belfiore, Francesco; Bothwell, M. S.; Bundy, Kevin; Hagen, Alex; Hao, Lei; Huang, Shan; Law, David; Li, Cheng; Lintott, Chris; Maiolino, Roberto; Roman-Lopes, Alexandre; Wang, Wei-Hao; Xiao, Ting; Yuan, Fangting; Bizyaev, Dmitry; Malanushenko, Elena; Drory, Niv; Fernández-Trincado, J. G.; Pace, Zach; Pan, Kaike; Thomas, Daniel

    2017-03-01

    We report the discovery of a mysterious giant Hα blob that is ˜8 kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, and has been identified in the first-year SDSS-IV MaNGA data. The size of the Hα blob is ˜3-4 kpc in radius, and the Hα distribution is centrally concentrated. However, there is no optical continuum counterpart in the deep broadband images reaching ˜26.9 mag arcsec-2 in surface brightness. We estimate that the masses of the ionized and cold gases are 3.3× {10}5 {M}⊙ and < 1.3× {10}9 {M}⊙ , respectively. The emission-line ratios indicate that the Hα blob is photoionized by a combination of massive young stars and AGNs. Furthermore, the ionization line ratio decreases from MaNGA 1-24145 to the Hα blob, suggesting that the primary ionizing source may come from MaNGA 1-24145, likely a low-activity AGN. Possible explanations for this Hα blob include the AGN outflow, the gas remnant being tidally or ram-pressure stripped from MaNGA 1-24145, or an extremely low surface brightness galaxy. However, the stripping scenario is less favored according to galaxy merger simulations and the morphology of the Hα blob. With the current data, we cannot distinguish whether this Hα blob is ejected gas due to a past AGN outburst, or a special category of “ultra-diffuse galaxy” interacting with MaNGA 1-24145 that further induces the gas inflow to fuel the AGN in MaNGA 1-24145.

  15. Kinematics of and Emission from Helically Orbiting Blobs in a Relativistic Magnetized Jet

    NASA Astrophysics Data System (ADS)

    Mohan, P.; Mangalam, A.

    2015-06-01

    We present a general relativistic (GR) model of jet variability in active galactic nuclei due to orbiting blobs in helical motion along a funnel or cone-shaped magnetic surface anchored to the accretion disk near the black hole. Considering a radiation pressure driven flow in the inner region, we find that it stabilizes the flow, yielding Lorentz factors ranging between 1.1 and 7 at small radii for reasonable initial conditions. Assuming these as inputs, simulated light curves (LCs) for the funnel model include Doppler and gravitational shifts, aberration, light bending, and time delay. These LCs are studied for quasi-periodic oscillations (QPOs) and the power spectral density (PSD) shape, and yield an increased amplitude (˜12%), a beamed portion and a systematic phase shift with respect to that from a previous special relativistic model. The results strongly justify implementing a realistic magnetic surface geometry in Schwarzschild geometry to describe effects on emission from orbital features in the jet close to the horizon radius. A power-law-shaped PSD with a typical slope of -2 and QPOs with timescales in the range of (1.37-130.7) days consistent with optical variability in blazars, emerges from the simulations for black hole masses {{M}\\bullet }=(0.5-5)× {{10}8} {{M}⊙ } and initial Lorentz factors {{γ }jet,i}=2-10. The models presented here can be applied to explain radio, optical, and X-ray variability from a range of jetted sources including active galactic nuclei, X-ray binaries, and neutron stars.

  16. ALMA Observations of Lyα Blob 1: Halo Substructure Illuminated from Within

    NASA Astrophysics Data System (ADS)

    Geach, J. E.; Narayanan, D.; Matsuda, Y.; Hayes, M.; Mas-Ribas, Ll.; Dijkstra, M.; Steidel, C. C.; Chapman, S. C.; Feldmann, R.; Avison, A.; Agertz, O.; Ao, Y.; Birkinshaw, M.; Bremer, M. N.; Clements, D. L.; Dannerbauer, H.; Farrah, D.; Harrison, C. M.; Kubo, M.; Michałowski, M. J.; Scott, Douglas; Smith, D. J. B.; Spaans, M.; Simpson, J. M.; Swinbank, A. M.; Taniguchi, Y.; van der Werf, P.; Verma, A.; Yamada, T.

    2016-11-01

    We present new Atacama Large Millimeter/Submillimeter Array (ALMA) 850 μm continuum observations of the original Lyα Blob (LAB) in the SSA22 field at z = 3.1 (SSA22-LAB01). The ALMA map resolves the previously identified submillimeter source into three components with a total flux density of S 850 = 1.68 ± 0.06 mJy, corresponding to a star-formation rate of ˜150 M ⊙ yr-1. The submillimeter sources are associated with several faint (m ≈ 27 mag) rest-frame ultraviolet sources identified in Hubble Space Telescope Imaging Spectrograph (STIS) clear filter imaging (λ ≈ 5850 Å). One of these companions is spectroscopically confirmed with the Keck Multi-Object Spectrometer For Infra-Red Exploration to lie within 20 projected kpc and 250 km s-1 of one of the ALMA components. We postulate that some of these STIS sources represent a population of low-mass star-forming satellites surrounding the central submillimeter sources, potentially contributing to their growth and activity through accretion. Using a high-resolution cosmological zoom simulation of a 1013 M ⊙ halo at z = 3, including stellar, dust, and Lyα radiative transfer, we can model the ALMA+STIS observations and demonstrate that Lyα photons escaping from the central submillimeter sources are expected to resonantly scatter in neutral hydrogen, the majority of which is predicted to be associated with halo substructure. We show how this process gives rise to extended Lyα emission with similar surface brightness and morphology to observed giant LABs.

  17. Microscopic, biochemical, and molecular characteristics of the Chilean Blob and a comparison with the remains of other sea monsters: nothing but whales.

    PubMed

    Pierce, Sidney K; Massey, Steven E; Curtis, Nicholas E; Smith, Gerald N; Olavarría, Carlos; Maugel, Timothy K

    2004-06-01

    We have employed electron microscopic, biochemical, and molecular techniques to clarify the species of origin of the "Chilean Blob," the remains of a large sea creature that beached on the Chilean coast in July 2003. Electron microscopy revealed that the remains are largely composed of an acellular, fibrous network reminiscent of the collagen fiber network in whale blubber. Amino acid analyses of an acid hydrolysate indicated that the fibers are composed of 31% glycine residues and also contain hydroxyproline and hydroxylysine, all diagnostic of collagen. Using primers designed to the mitochondrial gene nad2, an 800-bp product of the polymerase chain reaction (PCR) was amplified from DNA that had been purified from the carcass. The DNA sequence of the PCR product was 100% identical to nad2 of sperm whale (Physeter catadon). These results unequivocally demonstrate that the Chilean Blob is the almost completely decomposed remains of the blubber layer of a sperm whale. This identification is the same as those we have obtained before from other relics such as the so-called giant octopus of St. Augustine (Florida), the Tasmanian West Coast Monster, two Bermuda Blobs, and the Nantucket Blob. It is clear now that all of these blobs of popular and cryptozoological interest are, in fact, the decomposed remains of large cetaceans.

  18. Pinpointing the Molecular Gas within an Lyα Blob at z ~ 2.7

    NASA Astrophysics Data System (ADS)

    Yang, Yujin; Walter, Fabian; Decarli, Roberto; Bertoldi, Frank; Weiss, Axel; Dey, Arjun; Prescott, Moire K. M.; Bădescu, Toma

    2014-04-01

    We present IRAM Plateau de Bure Interferometer observations of the CO(3-2) and CO(5-4) line transitions from an Lyα blob at z ~ 2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the molecular gas. CO line and dust continuum emissions are detected at the location of a strong MIPS source that is offset by ~1.''5 from the Lyα peak. Neither of these emission components is resolved with the 1.''7 beam, showing that the gas and dust are confined to within ~7 kpc from this galaxy. No millimeter source is found at the location of the Lyα peak, ruling out a central compact source of star formation as the power source for the Lyα emission. Combined with a spatially resolved spectrum of Lyα and He II, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Lyα profile is symmetric, and its line center agrees with that of the CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Lyα emission. In the region near the Lyα peak, the gas is slowly receding (~100 km s-1) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I CO(5-4)/I CO(3-2) = 0.97 ± 0.21. This line ratio is lower than the average values found in high-z submillimeter galaxies and QSOs but is consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.

  19. Pinpointing the molecular gas within an Lyα blob at z ∼ 2.7

    SciTech Connect

    Yang, Yujin; Bertoldi, Frank; Bădescu, Toma; Walter, Fabian; Decarli, Roberto; Weiss, Axel; Dey, Arjun; Prescott, Moire K. M.

    2014-04-01

    We present IRAM Plateau de Bure Interferometer observations of the CO(3-2) and CO(5-4) line transitions from an Lyα blob at z ∼ 2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the molecular gas. CO line and dust continuum emissions are detected at the location of a strong MIPS source that is offset by ∼1.''5 from the Lyα peak. Neither of these emission components is resolved with the 1.''7 beam, showing that the gas and dust are confined to within ∼7 kpc from this galaxy. No millimeter source is found at the location of the Lyα peak, ruling out a central compact source of star formation as the power source for the Lyα emission. Combined with a spatially resolved spectrum of Lyα and He II, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Lyα profile is symmetric, and its line center agrees with that of the CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Lyα emission. In the region near the Lyα peak, the gas is slowly receding (∼100 km s{sup –1}) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I {sub CO(5-4)}/I {sub CO(3-2)} = 0.97 ± 0.21. This line ratio is lower than the average values found in high-z submillimeter galaxies and QSOs but is consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.

  20. Eta Carinae: Linelist for the Emission Spectrum of the Weigelt Blobs in the 1700-10400Angstrom Wavelength Region

    NASA Technical Reports Server (NTRS)

    Zethson, T.; Johansson, S.; Hartman, H.; Gull, T. R.

    2011-01-01

    Aims. We present line identifications in the 1700 to 10400A region for the Weigelt Blobs B and D, located 0.1 to 0.3" NNW of Eta Carinae. The aim of this work is to characterize the behavior of these luminous, dense gas condensations in response to the broad maximum and short minimum states of Eta Carinae during its 5.54-year spectroscopic period. Methods. The observations were carried out during March 1998, the minimum spectrum, and in February 1999, early maximum spectrum, with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) from 1640 to 10400A using the 52"x0.1" aperture centered on Eta Carinae at position angle -28 degrees. Extractions of the reduced spectrum centered on Weigelt B and D, 0.28: in length along the slit, were used to identify the narrow, nebular emission lines, measure their wavelengths and estimate their fluxes. Results. A linelist of 1500 lines is presented for the maximum and minimum states of combined Weigelt blobs B and D. The spectra are dominated by emission lines from the iron-group elements, but include lines from lighter elements. They include parity permitted and forbidden lines. A number of lines are fluorescent lines pumped by H Ly alpha. Other lines show anomalous excitation.

  1. Direct W-like geniculate projections to the cytochrome oxidase (CO) blobs in primate visual cortex: axon morphology.

    PubMed

    Lachica, E A; Casagrande, V A

    1992-05-01

    The primate lateral geniculate nucleus (LGN) is composed of large, medium, and small cells located, respectively, in magnocellular (M), parvocellular (P), and specialized layers (intercalated and S-layers in simians, koniocellular (K) layers in prosimians). Several studies have examined the physiology and connections of M and P LGN cells and have concluded that they provide separate contributions to visual perception via separate pathways. Less is known about the structure and contributions of the small LGN cells. This study examined the distribution and structure of K LGN cell axons in the cortex of the prosimian, Galago crassicaudatus. Wheat germ agglutinin conjugated to horseradish peroxidase, or Phaseonlus vulgaris leucoaglutinin, was injected into the LGN K layers to demonstrate the overall axon projection pattern and the details of individual axons, respectively. Location of axons within striate cortex was specified relative to boundaries determined by Nissl or cytochrome oxidase (CO) stains on the same or adjacent sections. Our results show that K LGN axons end as single complex arbors within one CO blob zone in layer III; they never terminate in interblob zones. These axons also emit a collateral in layer I that arborizes more broadly and spans both CO blob and interblob zones. These data, together with data on K cell physiology and intralaminar cortical connections, suggest that the LGN small cell pathway could modulate the activity of the other two pathways in striate cortex and contribute directly to visual perception.

  2. Eta Carinae: Linelist for the Emission Spectrum of the Weigelt Blobs in the 1700-10400Angstrom Wavelength Region

    NASA Technical Reports Server (NTRS)

    Zethson, T.; Johansson, S.; Hartman, H.; Gull, T. R.

    2011-01-01

    Aims. We present line identifications in the 1700 to 10400A region for the Weigelt Blobs B and D, located 0.1 to 0.3" NNW of Eta Carinae. The aim of this work is to characterize the behavior of these luminous, dense gas condensations in response to the broad maximum and short minimum states of Eta Carinae during its 5.54-year spectroscopic period. Methods. The observations were carried out during March 1998, the minimum spectrum, and in February 1999, early maximum spectrum, with the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) from 1640 to 10400A using the 52"x0.1" aperture centered on Eta Carinae at position angle -28 degrees. Extractions of the reduced spectrum centered on Weigelt B and D, 0.28: in length along the slit, were used to identify the narrow, nebular emission lines, measure their wavelengths and estimate their fluxes. Results. A linelist of 1500 lines is presented for the maximum and minimum states of combined Weigelt blobs B and D. The spectra are dominated by emission lines from the iron-group elements, but include lines from lighter elements. They include parity permitted and forbidden lines. A number of lines are fluorescent lines pumped by H Ly alpha. Other lines show anomalous excitation.

  3. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    PubMed Central

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical

  4. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    NASA Astrophysics Data System (ADS)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien; du Mas des Bourboux, Hélion

    2017-06-01

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k-modes of 0.070 s km-1. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k-modes of 0.057 s km-1. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ mν < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ mν < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: mX gtrsim 2.08 : keV (95% C.L.) for early decoupled thermal relics, and ms gtrsim 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to mX gtrsim 4.17 : keV and ms gtrsim 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from mX gtrsim 2.74 : keV for BOSS alone to mX gtrsim 3.10 : keV for the combined BOSS+XQ-100 data set. Finally, we include in our analysis the first two redshift bins (z = 4.2 and z = 4.6) of the power spectrum measured by Viel et al. 2013 [4] with the high-resolution HIRES/MIKE spectrographs. The addition of HIRES/MIKE power spectrum allows us to further improve the two limits to mX gtrsim 4.65 : keV and ms gtrsim 28.8 : keV (95% C.L.).

  5. Studying low-redshift universe through observation of Damped Lyman-alpha quasar absorbers

    NASA Astrophysics Data System (ADS)

    Gharanfoli, Soheila

    2009-06-01

    In recent years, an extremely successful method to study galaxy formation and evolution, has been provided by observation of quasar absorbers. Quasar absorbers are systems intercepting our line-of-sight to a given quasar and thus produce a feature in the quasar spectrum, the so-called absorption lines. The Damped Lyman-a (DLA) and sub-Damped Lyman-a (sub-DLA) absorption features in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. DLAs and sub-DLAs were originally thought to be the precursors of present day disk galaxies, but there is evidence that they may be dominated by gas-rich, proto-dwarf galaxies representing the basic building blocks of hierarchical growth of structure. While most DLAs appear to be metal-poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent spectroscopic studies. It is of great interest to image these metal-rich absorbers, especially with high spatial resolution, to understand the connection between the stellar and interstellar content of the underlying galaxies. This dissertation consists of several projects designed to further our understanding of galaxies and galactic structures associated with intervening quasar absorption lines. Two projects were completed that involved the imaging of 13 DLA/sub-DLA galaxies at z < 1. High angular resolution near-infrared images were obtained, using the Hokupa'a Adaptive Optics system with the QUIRC near-infrared camera on the 8-m Gemini-North telescope, and the Laser Guide Star Adaptive Optics system on the 10-m Keck telescope. Detailed properties of the identified absorber galaxies are described. They are shown to be drawn from a variety of morphological types with a range of luminosities, sizes, and impact parameters. In the other set of projects, follow-up spectroscopy was performed to confirm the spectroscopic redshifts of the candidate absorbers. In addition, optical and near-infrared spectroscopy provide necessary information to understand the luminosities, dust extinction, and star formation rates and thus the nature of these galaxies. Spectroscopy of 5 DLA/sub-DLA galaxies was performed using the 10-m Keck telescope with LRIS spectrograph, and 8-m Gemini- North telescope with the GMOS spectrograph. Several emission lines (e.g., Ha, Hb, [N II], [O II], [O III]) were detected and analyzed, which revealed the redshift, metallicity, dust extinction, and star formation rate of the candidate galaxies.

  6. SWAN: A Study of Solar Wind Anisotropies on SOHO with Lyman Alpha Sky Mapping

    NASA Astrophysics Data System (ADS)

    Bertaux, J. L.; Kyrölä, E.; Quémerais, E.; Pellinen, R.; Lallement, R.; Schmidt, W.; Berthé, M.; Dimarellis, E.; Goutail, J. P.; Taulemesse, C.; Bernard, C.; Leppelmeier, G.; Summanen, T.; Hannula, H.; Huomo, H.; Kehlä, V.; Korpela, S.; Leppälä, K.; Strömmer, E.; Torsti, J.; Viherkanto, K.; Hochedez, J. F.; Chretiennot, G.; Peyroux, R.; Holzer, T.

    1995-12-01

    On board the SOHO spacecraft poised at L1 Lagrange point, the SWAN instrument is mainly devoted to the measurement of large scale structures of the solar wind, and in particular the distribution with heliographic latitude of the solar wind mass flux. This is obtained from an intensity map of the sky Lymanα emission, which reflects the shape of the ionization cavity carved in the flow of interstellar H atoms by the solar wind. The methodology, inversion procedure and related complications are described. The subject of latitude variation of the solar wind is shortly reviewed: earlier Lymanα results from Prognoz in 1976 are confirmed by Ulysses. The importance of the actual value of the solar wind mass flux for the equation of dynamics in a polar coronal hole is stressed. The instrument is composed of one electronic unit commanding two identical Sensor Units, each of them allowing to map a full hemisphere with a resolution of 1°, thanks to a two-mirrors periscope system. The design is described in some details, and the rationale for choice between several variants are discussed. A hydrogen absorption cell is used to measure the shape of the interplanetary Lymanα line and other Lyman α emissions. Other types of observations are also discussed : the geocorona, comets (old and new), the solar corona, and a possible signature of the heliopause. The connexion with some other SOHO instruments, in particular LASCO, UVCS, SUMER, is briefly discussed.

  7. The Lyman alpha bulge of Jupiter - Effects of non-thermal velocity field

    NASA Technical Reports Server (NTRS)

    Ben Jaffel, Lotfi; Clarke, John T.; Prange, Renee; Gladstone, G. R.; Vidal-Madjar, Alfred

    1993-01-01

    We outline for the first time the effect of such nonthermal line broadening processes as turbulence, random waves, convection, etc., on the shape and intensity of the H Ly-alpha line resonance scattered from the atmosphere of Jupiter. We show how a nonthermal velocity field confined to the bulge region, in the upper atmosphere of Jupiter, may account for most of the H Ly-alpha bulge features. Both the shape and the brightness of the Ly-alpha line from the bulge region as reported by the IUE instrument and the Voyager UV Spectrometer can be recovered assuming resonant scattering with a total atomic hydrogen of about 4 x 10 exp 17/sq cm, and a nonthermal component H of about 2 x 10 exp 15/sq cm above the thermopause.

  8. Statistical properties of damped Lyman-alpha systems from Sloan Digital Sky Survey DR12

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Garnett, Roman; Ho, Shirley

    2017-04-01

    We present new estimates for the statistical properties of damped Lyman-α absorbers (DLAs). We compute the column density distribution function at z > 2, the line density, dN/dX, and the neutral hydrogen density, ΩDLA. Our estimates are derived from the DLA catalogue of Garnett et al. (2016), which uses the Sloan Digital Sky Survey III Data Release 12 (SDSS-III DR12) quasar spectroscopic survey. This catalogue provides a probability that a given spectrum contains a DLA. It allows us to use even the noisiest data without biasing our results and thus substantially increases our sample size. We measure a non-zero column density distribution function at 95 per cent confidence for all column densities N_H I< 5× 10^{22} cm-2. We make the first measurements from SDSS of dN/dX and ΩDLA at z > 4. We show that our results are insensitive to the signal-to-noise ratio of the spectra, but that there is a residual dependence on quasar redshift for z < 2.5, which may be due to remaining systematics in our analysis.