Sample records for gravity-operated siege engine

  1. Forty-Sixth Indiana Regiment: A Tactical Analysis of Amphibious Operations and Major Combat Engagements during the American Civil War

    DTIC Science & Technology

    2013-06-14

    19 Battle of New Madrid and Island Number Ten ............................................................ 19 Fort Pillow... New Madrid , Battle of Island Number Ten, an operation against Fort Pillow, Battle of Port Gibson, Battle of Champion Hill, the siege of Vicksburg...In March 1862, the regiment participated in the siege of New Madrid , and the siege and capture of Island Number Ten along the Mississippi River in

  2. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  3. American Airborne Operations in the Pacific Theater: Extending Operational Reach and Creating Operational Shock

    DTIC Science & Technology

    2014-05-22

    reducing their ability to respond to the planned amphibious/airborne assault in September of 1943.41 Therefore, in early June, the Australian 15th...deliberately slowed the Allied siege in order to prolong the diversion’s effect.44 On 30 August 1943, the Australian 2/6 Field Company Royal Australian ...making it trafficable for the C-47 aircraft carrying the 7th Australian Division. In order to execute this mission, the Australian engineers had to

  4. Biological Warfare Plan in the 17th Century—the Siege of Candia, 1648–1669

    PubMed Central

    Thalassinou, Eleni; Poulakou-Rebelakou, Effie; Hatzakis, Angelos

    2015-01-01

    A little-known effort to conduct biological warfare occurred during the 17th century. The incident transpired during the Venetian–Ottoman War, when the city of Candia (now Heraklion, Greece) was under siege by the Ottomans (1648–1669). The data we describe, obtained from the Archives of the Venetian State, are related to an operation organized by the Venetian Intelligence Services, which aimed at lifting the siege by infecting the Ottoman soldiers with plague by attacking them with a liquid made from the spleens and buboes of plague victims. Although the plan was perfectly organized, and the deadly mixture was ready to use, the attack was ultimately never carried out. The conception and the detailed cynical planning of the attack on Candia illustrate a dangerous way of thinking about the use of biological weapons and the absence of reservations when potential users, within their religious framework, cast their enemies as undeserving of humanitarian consideration. PMID:26894254

  5. Emergency flight control system using one engine and fuel transfer

    NASA Technical Reports Server (NTRS)

    Burcham, Jr., Frank W. (Inventor); Burken, John J. (Inventor); Le, Jeanette (Inventor)

    2000-01-01

    A system for emergency aircraft control uses at least one engine and lateral fuel transfer that allows a pilot to regain control over an aircraft under emergency conditions. Where aircraft propulsion is available only through engines on one side of the aircraft, lateral fuel transfer provides means by which the center of gravity of the aircraft can be moved over to the wing associated with the operating engine, thus inducing a moment that balances the moment from the remaining engine, allowing the pilot to regain control over the aircraft. By implementing the present invention in flight control programming associated with a flight control computer (FCC), control of the aircraft under emergency conditions can be linked to the yoke or autopilot knob of the aircraft. Additionally, the center of gravity of the aircraft can be shifted in order to effect maneuvers and turns by spacing such center of gravity either closer to or farther away from the propelling engine or engines. In an alternative embodiment, aircraft having a third engine associated with the tail section or otherwise are accommodated and implemented by the present invention by appropriately shifting the center of gravity of the aircraft. Alternatively, where a four-engine aircraft has suffered loss of engine control on one side of the plane, the lateral fuel transfer may deliver the center of gravity closer to the two remaining engines. Differential thrust between the two can then control the pitch and roll of the aircraft in conjunction with lateral fuel transfer.

  6. The Mississippi River Campaign 1862-1863: The Impact of Climate and Pathogens on Operational Art at the Port Hudson Siege

    DTIC Science & Technology

    2017-04-13

    48 1 Introduction Sun Tzu , for one, advised commanders to, “camp on hard ground, the army...51 Bibliography ...Society Papers Volume XIII January to December 1885 (Richmond, VA: The Society, 1891), 329; Bell, 31. 248 Bell, 30. 52 Bibliography Army Doctrine

  7. Correlation on Noisy Images

    DTIC Science & Technology

    1980-06-01

    lass,,., tassel eageeteg, assesses, sets,,e as isles lasgeges eegtal ages,,,, 5 iS gel it, seisteis 5 5,5 essla see, Sieges 5,5,55 Ill SIas ...jujNT iAALL STORE Nzv 2 SCALL FILTERINEDGE)CALL OPER(N,TEDGEi ,ALL P UTO bI (04 CALL POsUUT(4) 3 O CONTINUE END 49 APPENDIX B -Continued SUBROUTINE

  8. Air and Space Power Journal. Volume 25, Number 4, Winter 2011

    DTIC Science & Technology

    2011-01-01

    to the sustained pace in Operation Enduring Freedom. Fi- nally, the siege of An Loc in 1972 led to a sustained effort from 15 April until 31...An_Approach_to_Netcentric_Ops_Rich_Byrne.pdf; Elizabeth Harding, Leo Obrst, and Arnon Rosenthal, “Creating Standards for Multiway Data Sharing,” Edge: MITRE’s Advanced

  9. Air Base Ground Defense Wargame: Study of a Security Police Training Device.

    DTIC Science & Technology

    1987-09-01

    different locations of the air base under siege. Therefore, AFOSP supports the development of a board wargame training device to compensate for the...commercial wargames available on the market . Eight games were identified as having application to this study due to their use of modern weapons and the...operation under his operational control (9:23). Concentration of MIR Efforts. This principle is a restatement of the universally accepted principle of mass (9

  10. Cancer mortality in women and men who survived the siege of Leningrad (1941-1944).

    PubMed

    Koupil, Ilona; Plavinskaja, Svetlana; Parfenova, Nina; Shestov, Dmitri B; Danziger, Phoebe Day; Vågerö, Denny

    2009-03-15

    The population of Leningrad suffered from severe starvation, cold and psychological stress during the siege in World War II in 1941-1944. We investigated the long-term effects of the siege on cancer mortality in 3,901 men and 1,429 women, born between 1910 and 1940. All study subjects were residents of St. Petersburg, formerly Leningrad, between 1975 and 1982. One third of them had experienced the siege as children, adolescents or young adults (age range, 1-31 years at the peak of starvation in 1941-1942). Associations of siege exposure with risk of death from cancer were studied using a multivariable Cox regression, stratified by gender and period of birth, adjusted for age, smoking, alcohol and social characteristics, from 1975 to 1977 (men) and 1980 to 1982, respectively (women), until the end of 2005. Women who were 10-18 years old at the peak of starvation were taller as adults (age-adjusted difference, 1.7 cm; 95% CI, 0.5-3.0) and had a higher risk of dying from breast cancer compared with unexposed women born during the same period (age-adjusted HR, 9.9; 95% CI, 1.1-86.5). Mortality from prostate cancer was nonsignificantly higher in exposed men. The experience of severe starvation and stress during childhood and adolescence may have long-term effects on cancer in surviving men and women.

  11. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  12. ’For the Cause’ Cadiz and the Peninsular War: Military and Siege Operations from 1808 to 1812

    DTIC Science & Technology

    1992-01-01

    the commander, Areizaga, failed to personally command the troops and was some twenty miles south of the Despena Perros pass, billeted in a comfortable...castle. Soult took to the march on 7 January and by 20 January 1810, the Despena Perros pass was forced.22 With four separate columns piercing into

  13. Access under Siege: Are the Gains of Open Education Keeping Pace with the Growing Barriers to University Access?

    ERIC Educational Resources Information Center

    Olcott, Don, Jr.

    2013-01-01

    Traditional and affordable access to a university education is under siege from all sides. National realpolitiks and global economic downturns have driven open education into the mainstream to stand against educational elitism, the growing digital divide, and to support the core values that give education its fundamental credence as a human right.…

  14. The Siege of Port Hudson: "Forty Days and Nights in the Wilderness of Death." Revised. Teaching with Historic Places.

    ERIC Educational Resources Information Center

    Potts, Gregg; Bergeron, Arthur W., Jr.

    This lesson describes and discusses the U.S. Civil War Siege of Port Hudson (Louisiana). Based on the National Register of Historic Places registration file, "Port Hudson Battlefield," the lesson cites objectives and lists materials for students, and provides information for a site visit. It contains eight sections: (1) "About this…

  15. Of Madness and Empire: The Rhetor as "Fool" in the Khartoum Siege Journals of Charles Gordon, 1884

    ERIC Educational Resources Information Center

    Bass, Jeff D.

    2007-01-01

    This essay examines the rhetorical persona of the "Fool" as employed by General Charles Gordon in six volumes of journals recorded during the siege of Khartoum by Mahdist forces from September to December, 1884. After identifying the particular rhetorical aspects of the "Fool" as social critic/site of ideological contestation,…

  16. Catalog of Apollo experiment operations

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1994-01-01

    This catalog reviews Apollo mission reports, preliminary science reports, technical crew debriefings, lunar surface operations plans, and various relevant lunar experiment documents, collecting engineering- and operation-specific information by experiment. It is organized by discrete experimental and equipment items emplaced or operated on the lunar surface or at zero gravity during the Apollo missions. It also attempts to summarize some of the general problems encountered on the surface and provides guidelines for the design of future lunar surface experiments with an eye toward operations. Many of the problems dealt with on the lunar surface originated from just a few novel conditions that manifested themselves in various nasty ways. Low gravity caused cables to stick up and get caught on feet, and also made it easy for instruments to tip over. Dust was a problem and caused abrasion, visibility, and thermal control difficulties. Operating in a pressure suit limited a person's activity, especially in the hands. I hope to capture with this document some of the lessons learned from the Apollo era to make the jobs of future astronauts, principle investigators, engineers, and operators of lunar experiments more productive.

  17. The Use of Rockets as Military Weapons at the Siege of Kai Fung Foo in 1232 A.D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    One of the earliest recorded instances of the use of rockets was as military weapons against the Mongols by the Chinese at the siege of Kai Fung Foo in 1232 A.D. An arrow with a tube of gunpowder produced an arrow of flying fire. The Mongol attackers fled in terror, even though the rockets were inaccurate and relatively harmless.

  18. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  19. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  20. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  1. 14 CFR 63.35 - Knowledge requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... aerodynamics. (3) Basic meteorology with respect to engine operations. (4) Center of gravity computations. (b... written test, is employed as a flight crewmember or mechanic by a U.S. air carrier or commercial operator... training; and (iii) Meets the recurrent training requirements of the applicable part or, for mechanics...

  2. The effects of the Israeli siege on health provision in the Gaza Strip: a qualitative and theoretical analysis.

    PubMed

    Smith, Ron J

    2018-02-21

    Siege, a process of political domination aimed at isolating an entire population, is a unique threat to health-care provision. The aim of this study was to qualitatively examine the effects of the Israeli siege on the practices and systems that underlie health in the Gaza Strip. Data were from participant observation between 2009 and 2017, including 20 interviews with doctors and health administrators in non-governmental organisations (NGO), government, and UN sectors. All participants were provided with a description of the study and provided written consent to participate. The study was approved through the Human Subjects Review process at Bucknell University and the University of Washington. The data were analysed using a critical political economic framework, based on the concepts of primitive accumulation, accumulation by dispossession, surplus populations, and de-development. These analytical frames are further developed to interpret neoliberal trends in health-care systems organising and financing as they apply in the distorted social and economic context of siege. The elimination of political sovereignty through the twin processes of occupation and siege are the primary impediments to the successful promotion of public health in the Gaza Strip. Findings indicate that siege impinges on effective health-care provision by withholding materials and resources and undermining the health care at a systems level. These strains pose considerable threats to health care, within the ministry of health and among other entities in the Gaza Strip that deliver care. Gazan society is divested of the underpinnings necessary for a well functioning sovereign health-care infrastructure. Instead of a self-governing, independent system, this analysis reveals a system that is comprised of captive clients who are entirely dependent on Israel, international bodies, and the aid industry for goods and services, with no means of independent development. The siege represents a totalising social determinant of public health in the Gaza Strip, and it has significant and deliberate deleterious effects on the provision of medical care and exacerbates problems in overstretched medical services. These findings point to the importance of foregrounding the geopolitical context for analysis of medical service delivery within conflict settings. The data indicate formative trends in health-care provision in the Gaza Strip. Although the siege creates a seemingly unique economic context for analysis of health-care provision, critical analyses that deconstruct the depredations of neoliberalism in the health-care setting provide a useful framework for analysis of the failings of the health-care sector. Indeed, health-care providers are in an impossible position of attempting to provide quality care without the ability to coordinate with their colleagues in other sectors, and without substantial support from the international community. The final analysis also highlights the importance of advocating for sovereignty and self-determination as related to health systems, and it suggests that successful health-care provision is impossible without a strong analysis of the political and economic context. Bucknell University. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Cultural Trauma and Christian Identity in the Late Medieval Heroic Epic, The Siege of Jerusalem.

    PubMed

    DeMarco, Patricia A

    2015-01-01

    This essay examines scenes of violence in the late medieval poem The Siege of Jerusalem in order to reveal the ways in which trauma is used as the grounds upon which Christian/Jewish difference is established. In particular, I argue that this poem serves as an example of a widespread element in Christian chivalric identity, namely the need to manage the repetitive invocation of Christ's crucifixion (ritually repeated through liturgical and poetic invocation) as a means of asserting both the bodily and psychic integrity of the Christian subject in contrast to the violently abjected figure of the Jewish body. The failure of The Siege protagonist, Wespasian, to navigate the cultural trauma of the crucifixion is contrasted to the successful management of trauma by the martial hero, Tancred, in Tasso's epic, Gerusalemme Liberata, illustrating the range of imaginative possibilities for understanding trauma in pre-modern war literature.

  4. Cultural Trauma and Christian Identity in the Late Medieval Heroic Epic, The Siege of Jerusalem.

    PubMed

    DeMarco, Patricia A

    2015-01-01

    This essay examines scenes of violence in the late medieval poem The Siege of Jerusalem in order to reveal the ways in which trauma is used as the grounds upon which Christian/Jewish difference is established. In particular, I argue that this poem serves as an example of a widespread element in Christian chivalric identity, namely the need to manage the repetitive invocation of Christ's crucifixion (ritually repeated through liturgical and poetic invocation) as a means of asserting both the bodily and psychic integrity of the Christian subject in contrast to the violently abjected figure of the Jewish body. The failure of The Siege protagonist, Wespasian, to navigate the cultural trauma of the crucifixion is contrasted to the successful management of trauma by the martial hero, Tancred, in Tasso's epic, Gerusalemme Liberata, illustrating the range of imaginative possibilities for understanding trauma in pre-modern war literature.

  5. Space processing applications of ion beam technology. [surface finishing, welding, milling and film deposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1977-01-01

    Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.

  6. Garan conducts CsPINs Experiment Operations

    NASA Image and Video Library

    2011-04-28

    ISS027-E-017843 (28 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, supports the Dynamism of Auxin Efflux Facilitators responsible for Gravity-regulated Growth and Development in Cucumber (CsPINs) experiment in the Kibo laboratory of the International Space Station. CsPINs studies the phenomenon of tropism, i.e., the growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. Specifically focusing on gravity, the new JAXA life science experiment investigates how plants sense gravity as an environmental signal and use it for governing their morphology and growth orientation.

  7. Garan conducts CsPINs Experiment Operations

    NASA Image and Video Library

    2011-04-28

    ISS027-E-017840 (28 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, supports the Dynamism of Auxin Efflux Facilitators responsible for Gravity-regulated Growth and Development in Cucumber (CsPINs) experiment in the Kibo laboratory of the International Space Station. CsPINs studies the phenomenon of tropism, i.e., the growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. Specifically focusing on gravity, the new JAXA life science experiment investigates how plants sense gravity as an environmental signal and use it for governing their morphology and growth orientation.

  8. Garan conducts CsPINs Experiment Operations

    NASA Image and Video Library

    2011-04-28

    ISS027-E-017839 (28 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, supports the Dynamism of Auxin Efflux Facilitators responsible for Gravity-regulated Growth and Development in Cucumber (CsPINs) experiment in the Kibo laboratory of the International Space Station. CsPINs studies the phenomenon of tropism, i.e., the growth or turning movement of a biological organism, usually a plant, in response to an environmental stimulus. Specifically focusing on gravity, the new JAXA life science experiment investigates how plants sense gravity as an environmental signal and use it for governing their morphology and growth orientation.

  9. It’s Just Not Cricket - The Anglo-Afghan Wars and Their Relevance to Current Operations

    DTIC Science & Technology

    2010-03-30

    Khan wished to seize the initiative and on 28 May began an artillery bombardment on the city of Thai , which stood on the British-Afghan border... Thai was under siege for six days and although the resident garrison repelled the Afghans, the situation was perilous for those that survived the...onslaught. Consequently, the British ordered a relief-in-place. Having dealt with Afghan resistance en route, Brigadier General Dyer arrived at Thai on 1

  10. Military Operations in Built-Up Areas: Essays on Some Past, Present, and Future Aspects

    DTIC Science & Technology

    1976-06-01

    food, and left in the snow . In all, about a million people perished in Leningrad during the siege. There was a far-reaching breakdown of public safety...being replaced by Leopard II tankia in the Field Army. In place of the 200 to 300 security companies at fixed locations, the proposal puts twelve mobile...C. Two Additional Contextual Factors The Creation of Vulnerable Targets for Oneself. One element in the gene .-ally successful effort in Vietnam to

  11. Maritime Piracy: Examining the U.S. Response to a Global Threat

    DTIC Science & Technology

    2010-03-01

    Security Council in December 2008, as the Countering Piracy off the Horn of Africa Partnership & Action Plan ( CPAP ). In accordance with U.S. policy to...international efforts,‖43 the plan places significant importance on multilateral action to solve the problem of Somali piracy. CPAP seeks to involve a siege...an interest in maritime security.‖44 CPAP directs the U.S., in concert with a ―global partnership,‖ to address three lines of operation: 1

  12. Black holes in massive gravity as heat engines

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.

    2018-06-01

    The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.

  13. Band-limited Bouguer gravity identifies new basins on the Moon

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; Hirt, C.; Kuhn, M.

    2013-06-01

    Spectral domain forward modeling is used to generate topography-implied gravity for the Moon using data from the Lunar Orbiter Laser Altimeter instrument operated on board the Lunar Reconnaissance Orbiter mission. This is subtracted from Selenological and Engineering Explorer (SELENE)-derived gravity to generate band-limited Bouguer gravity maps of the Moon so as to enhance the gravitational signatures of anomalous mass densities nearer the surface. This procedure adds evidence that two previously postulated basins on the lunar farside, Fitzgerald-Jackson (25°N, 191°E) and to the east of Debye (50°N, 180°E), are indeed real. When applied over the entire lunar surface, band-limited Bouguer gravity reveals the locations of 280 candidate basins that have not been identified when using full-spectrum gravity or topography alone, showing the approach to be of utility. Of the 280 basins, 66 are classified as distinct from their band-limited Bouguer gravity and topographic signatures, making them worthy of further investigation.

  14. Precursor SSF utilization: The MODE experiments

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1992-01-01

    The MIT Space Engineering Research Center is the principal investigator for a series of experiments which utilize the Shuttle Middeck as an engineering dynamics laboratory. The first, which flew on STS-48 in Sep. 1991, was the Middeck O-gravity Dynamics Experiment (MODE). This experiment focused on the dynamics of a scaled deployable truss, similar to that of SSF, and contained liquids in tanks. MODE will be reflown in the fall of 1993. In mid-1994, the Middeck Active Control Experiment (MACE) will examine the issues associated with predicting and verifying the closed loop behavior of a controlled structure in zero gravity. The paper will present experiment background, planning, operational experience, results, and lessons learned from these experiments which are pertinent to SSF utilization.

  15. Holographic heat engine within the framework of massive gravity

    NASA Astrophysics Data System (ADS)

    Mo, Jie-Xiong; Li, Gu-Qiang

    2018-05-01

    Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.

  16. Zero Gravity Research Facility User's Guide

    NASA Technical Reports Server (NTRS)

    Thompson, Dennis M.

    1999-01-01

    The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.

  17. Healthcare under siege: Geopolitics of medical service provision in the Gaza Strip.

    PubMed

    Smith, Ron J

    2015-12-01

    Siege, a process of political domination aimed at isolating an entire population, represents a unique threat to healthcare provision. This study is a qualitative examination of the impacts of siege on the practices and systems that underlie health in Gaza. Data are from participant observation conducted over a period of six years (2009-2014), along over 20 interviews with doctors and health administrators in the Non-Governmental Organisation (NGO), Governmental, and United Nations sectors. Analyses were informed by two connected theories. First, the theory of surplus population was used, an idea that builds on Marx's conception of primitive accumulation and Harvey's accumulation by dispossession. Second, Roy's theory of de-development was used, particularly as it is connected to neoliberal trends in healthcare systems organizing and financing. Findings indicate that siege impinges on effective healthcare provision through two central, intertwined processes: withholding materials and resources and undermining healthcare at a systems level. These strains pose considerable threats to healthcare, particularly within the Ministry of Health but also within and among other entities in Gaza that deliver care. The strategies of de-development described by participants reflect the ways the population that is codified as a surplus population. Gazan society is continually divested of any of the underpinnings necessary for a well-functioning sovereign health care infrastructure. Instead of a self-governing, independent system, this analysis of health care structures in Gaza reveals a system that is continually at risk of being comprised entirely of captive consumers who are entirely dependent on Israel, international bodies, and the aid industry for goods and services. This study points to the importance of foregrounding the geopolitical context for analysis of medical service delivery within conflict settings. Findings also highlight the importance of advocating for sovereignty and self-determination as related to health systems.

  18. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  19. Troy: A simple nonlinear mathematical perspective

    NASA Astrophysics Data System (ADS)

    Flores, J. C.; Bologna, Mauro

    2013-10-01

    In this paper, we propose a mathematical model for the Trojan war that, supposedly, took place around 1180 BC. Supported by archaeological findings and by Homer’s Iliad, we estimate the numbers of warriors, the struggle rate parameters, the number of individuals per hectare, and other related quantities. We show that the long siege of the city, described in the Iliad, is compatible with a power-law behaviour for the time evolution of the number of individuals. We are able to evaluate the parameters of our model during the phase of the siege and the fall. The proposed model is general, and it can be applied to other historical conflicts.

  20. Design strategies for the International Space University's variable gravity research facility

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  1. Siege.

    ERIC Educational Resources Information Center

    Williams, Don

    1980-01-01

    A journalism faculty member at Baylor University (Waco, Texas), who later resigned in protest of the administration's actions against the student newspaper editors, tells how the controversy started. (RL)

  2. Gravity-assist engine for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  3. Development of a Gravity-Insensitive Heat Pump for Lunar Applications

    NASA Technical Reports Server (NTRS)

    Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.

    2006-01-01

    Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.

  4. Parabolic Flights with Single-Engine Aerobatic Aircraft: Flight Profile and a Computer Simulator for its Optimization

    NASA Astrophysics Data System (ADS)

    Brigos, Miguel; Perez-Poch, Antoni; Alpiste, Francesc; Torner, Jordi; González Alonso, Daniel Ventura

    2014-11-01

    We report the results of residual acceleration obtained from initial tests of parabolic flights (more than 100 hours) performed with a small single-engine aerobatic aircraft (CAP10B), and propose a method that improves these figures. Such aircraft have proved capable of providing researchers with periods of up to 8 seconds of reduced gravity in the cockpit, with a gravity quality in the range of 0.1 g 0, where g 0 is the gravitational acceleration of the Earth. Such parabolas may be of interest to experimenters in the reduced gravity field, when this range of reduced gravity is acceptable for the experiment undertaken. They have also proven to be useful for motivational and educational campaigns. Furthermore, these flights may be of interest to researchers as a test-bed for obtaining a proof-of-concept for subsequent access to parabolic flights with larger aircraft or other microgravity platforms. The limited cost of the operations with these small aircraft allows us to perform them as part of a non-commercial joint venture between the Universitat Politècnica de Catalunya - BarcelonaTech (UPC), the Barcelona cluster BAIE and the Aeroclub Barcelona-Sabadell. Any improvements in the length and quality of reduced gravity would increase the capabilities of these small aircraft. To that end, we have developed a method based on a simulator for training aerobatic pilots. The simulation is performed with the CAD software for mechanical design Solidworks Motion{circledR }, which is widely distributed in industry and in universities. It specifically simulates the parabolic flight manoeuvre for our small aircraft and enables us to improve different aspects of the manoeuvre. The simulator is first validated with experimental data from the test flights. We have conducted an initial intensive period of specific pilot training with the aid of the simulator output. After such initial simulation-aided training, results show that the reduced gravity quality has significantly improved from 0.1 g 0 to 0.05 g 0. We conclude that single-engine aerobatic aircraft are capable of conducting small hypogravity experiments with the limitations described in the paper.

  5. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport Malaysia. Based on recorded zero gravity flights of the fighter jet, an F-5E will be able to produce 45 seconds of zero gravity time, long enough for effective zero gravity experiments. An A300 in operation in Europe is also being considered to be operated bySpaceport Malaysia. Even though this airplane can only produce less than half the zero gravity time produced by F-5E, the A300 has the advantage off passengers to experience zero gravity. Both zero gravity platforms have been promoting Spaceport Malaysia project and suborbital flights to be operational at the spaceport as both zero gravity flights and suborbital flights attract the interest from similar and preferred operators and markets. Therefore based on Spaceport Malaysia as a case study, zero gravity flights are the most effective embryonic operation for a planned commercial spaceport.

  6. Space processing applications rocket project SPAR 4, engineering report

    NASA Technical Reports Server (NTRS)

    Reeves, F. (Compiler)

    1980-01-01

    The materials processing experiments in space, conducted on the SPAR 4 Black Brant VC rocket, are described and discussed. The SPAR 4 payload configuration, the rocket performance, and the flight sequence are reported. The results, analyses, and anomalies of the four experiments are discussed. The experiments conducted were the uniform dispersions of crystallization processing, the contained polycrstalline solidification in low gravity, the containerless processing of ferromagnetic materials, and the containerless processing technology. The instrumentation operations, payload power relay anomaly, relay postflight operational test, and relay postflight shock test are reported.

  7. Cruise status of Hayabusa2: Round trip mission to asteroid 162173 Ryugu

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuichi; Watanabe, Sei-ichiro; Saiki, Takanao; Yoshikawa, Makoto; Nakazawa, Satoru

    2017-07-01

    The Japan Aerospace Exploration Agency launched an asteroid sample return spacecraft "Hayabusa2" on December 3, 2014 by the Japanese H2A launch vehicle. Hayabusa2 aims at the round trip mission to the asteroid 162173 Ryugu. Hayabusa2 successfully conducted the Earth gravity assist on December 3, 2015, and now the spacecraft is flying toward Ryugu with the microwave discharge ion engine as the means of propulsion. As of September 2016, 1346 h of the ion engine operation has been achieved as planned. Three touch downs/sample collections, one kinetic impact/crater generation, four surface rovers deployment and many other in-situ observations are planned in the asteroid proximity phase. The operation team will perform extensive operation practice/rehearsal using a hardware-in-the-loop simulator in the year 2017 to be ready for the asteroid arrival in the summer 2018.

  8. Spacelab Operations Support Room Space Engineering Support Team in the SL POCC During the IML-1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Spacelab Operations Support Room Space Engineering Support team in the SL POCC during STS-42, IML-1 mission.

  9. Physics for First-Graders.

    ERIC Educational Resources Information Center

    Hagerott, Steven G.

    1997-01-01

    A Lockheed flight controls engineer describes how, as an undergraduate, he taught first graders basic lessons in physics and engineering by using slides, monkey bars, and other playground equipment to demonstrate principles like gravity, friction, force, and inertia. The children learned more about lift and gravity by constructing and flying paper…

  10. Twelve years in offshore for Doris C. G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-12

    The offshore engineering operations of Doris have included the design of concrete and steel offshore structures, the design and construction of diving and underwater equipment, offshore equipment, vessels, and heavy mooring systems, and the design and installation of pipelines and risers. The company has also engaged in pipelaying, marine operations, diving, and inspection and maintenance work. Some achievements in 1978 were the completion, tow-out, and installation of the Ninian central platform and the design of an additional riser for the Frigg field manifold compression platform to connect the Piper field to the Frigg gas pipeline. The articulated gravity tower formore » concrete platforms was certified by Norsk Veritas in 1978, but fatigue tests on the articulating ball joint are continuing. New designs include the fixed gravity structure with removable floats, which makes the substructure much smaller, so that concrete platforms become economically feasible in water depths previously considered prohibitive, and the steel-and-concrete hybrid platform, which has been fully developed and certified as safe and economical.« less

  11. Inland waterborne transportation : an industry under siege

    DOT National Transportation Integrated Search

    2000-11-01

    The first section of this report contains a brief history of the development of and role played by the inland waterway transportation system. The role of this mode in international trade is examined, along with the competitive and complementary roles...

  12. Battlefield Integration: Wellington’s use of Portuguese and Spanish Forces during the 1812 Salamanca Campaign

    DTIC Science & Technology

    2009-06-12

    1 CHAPTER 2 THE SIEGES OF CIUDAD RODRIGO AND BADAJOZ ..........................9 CHAPTER 3 THE SALAMANCA CAMPAIGN...62 vii ILLUSTRATIONS Page Figure 1. Ciudad Rodrigo...16 Figure 3. Ciudad Rodrigo to Tordesillas

  13. Orbiter/payload proximity operations SES Postsim report. Lateral approach and other techniques

    NASA Technical Reports Server (NTRS)

    Olszewski, O.

    1978-01-01

    Various approach and stationkeeping simulations (proximity operations) were conducted in the Shuttle engineering simulator (SES). This simulator is the first to dynamically include the Orbiter reaction control system (RCS) plume effects on a payload being recovered after rendezvous operations. A procedure for braking, using the simultaneous firing of both jets, was evaluated and found very useful for proximity operations. However this procedure is very inefficient in the RCS usage and requires modifications to the digital autopilot (DAP) software. A new final approach, the lateral approach technique (LAT), or the momentum vector proximity approach, was also evaluated in the simulations. The LAT, which included a tailfirst approach for braking, was evaluated successfully with both inertial and gravity stabilized payloads.

  14. The scientific conferences organized during war time (1992-1995) in sarajevo.

    PubMed

    Masic, Izet

    2011-01-01

    Author of this paper spent 1479 days in the siege of Sarajevo, during the period of war time in Bosnia and Herzegovina (B&H). This siege, lasting from 1992 to 1995 (e.g. Dayton Piece agreement was signed in November, 1995) represents the longest siege in the history of the world. Besides usual daily work, as the associate professor of Health education, Medical deontology and Medical informatics for the students of the Faculty of medicine, Faculty of dental medicine, Faculty of Pharmacy and Nursing college of University of Sarajevo, the author organized by himself and contributors, 10 scientific conferences in a sieged Sarajevo. All presented papers at those conferences are published in Proceedings abstract books, as the proof of continuing scientific work, in Sarajevo and other cities in B&H. Additionally, the author continued to publish, in that time, unique PubMed/MedLine indexed journal, - Medical Archives, (i.e. established in 1947) and, in 1993 formed a new journal named - "Acta Informatica Medica" (AIM) , as the Journal of the Bosnian Society of Medical informatics. Bosnian Society of Medical Informatics, thus became the first scientific association from Bosnia and Herzegovina, included in 1994, in the European Federation of Medical Informatics (EFMI) and the International Medical Informatics Assiciation (IMIA) , which was "miracle" from the besieged Sarajevo and war time result of aggression on Bosnia and Herzegovina. It should be noted that the importance of maintaining these academic gatherings, in the circumstances of war, was multifaceted. First of all, thanks to these meetings, the continuity of scientific meetings and activities in the besieged city of Sarajevo was not broken, as well as the continuity of scientific publication, which was crucial for the maintenance of the teaching staff at the university and, finally, in the expansion of the "scientific truth" about what happened in Sarajevo and B&H in these difficult times. All of this was critical to the "survival" of B&H and its people. Some of the published articles, especially in the Medical Archives journal, which even in difficult war conditions did not break the continuity of its publication, and then it was the only scientific journal indexed in B&H, having been consequently cited in the major biomedical data bases in the world. Many scientists abroad have had the opportunity to learn about some of the wonders of Sarajevo "war medicine", thanks to this journal. Finally, despite the fact that it is another way of expressing its resistance to the aggression on B&H, the organized symposia in the war represented the continuity of the scientific research activities. Bosnia and Herzegovina and Sarajevo under siege, in this way, kept in touch with the civilized world and modern achievements, despite the fact that they were victims of medieval barbarism. In addition, these meetings sent a powerful message to the world about the willingness to register and systematize all the war experiences, especially those related to medicine and medical practice, in terms of what Europe has not known, since the Second World War. Partially, we succeeded in that. The total number of 286 presentations were presented in seven war Conferences, as quantitative and qualitative contribution to the scientific activities, despite the inhuman conditions, in which these articles emerged. These presentations and Conferences testify to the enthusiasm of B&H community and academic institutions that have collaborated with it. Authors and co-authors presented the "war" articles that deserve to be mentioned in the monograph "1479 days of the siege of Sarajevo". Unfortunately, many of these brave authors are not alive and cannot read this. The task for us remains to remember them by their own good. Old Persian proverb says; "The event which is not recorded is as like it had never happened". Sapienti sat.

  15. The Scientific Conferences Organized During War Time (1992-1995) in Sarajevo

    PubMed Central

    Masic, Izet

    2011-01-01

    Author of this paper spent 1479 days in the siege of Sarajevo, during the period of war time in Bosnia and Herzegovina (B&H). This siege, lasting from 1992 to 1995 (e.g. Dayton Piece agreement was signed in November, 1995) represents the longest siege in the history of the world. Besides usual daily work, as the associate professor of Health education, Medical deontology and Medical informatics for the students of the Faculty of medicine, Faculty of dental medicine, Faculty of Pharmacy and Nursing college of University of Sarajevo, the author organized by himself and contributors, 10 scientific conferences in a sieged Sarajevo. All presented papers at those conferences are published in Proceedings abstract books, as the proof of continuing scientific work, in Sarajevo and other cities in B&H. Additionally, the author continued to publish, in that time, unique PubMed/MedLine indexed journal, - Medical Archives, (i.e. established in 1947) and, in 1993 formed a new journal named - “Acta Informatica Medica” (AIM) , as the Journal of the Bosnian Society of Medical informatics. Bosnian Society of Medical Informatics, thus became the first scientific association from Bosnia and Herzegovina, included in 1994, in the European Federation of Medical Informatics (EFMI) and the International Medical Informatics Assiciation (IMIA) , which was “miracle” from the besieged Sarajevo and war time result of aggression on Bosnia and Herzegovina. It should be noted that the importance of maintaining these academic gatherings, in the circumstances of war, was multifaceted. First of all, thanks to these meetings, the continuity of scientific meetings and activities in the besieged city of Sarajevo was not broken, as well as the continuity of scientific publication, which was crucial for the maintenance of the teaching staff at the university and, finally, in the expansion of the “scientific truth” about what happened in Sarajevo and B&H in these difficult times. All of this was critical to the “survival” of B&H and its people. Some of the published articles, especially in the Medical Archives journal, which even in difficult war conditions did not break the continuity of its publication, and then it was the only scientific journal indexed in B&H, having been consequently cited in the major biomedical data bases in the world. Many scientists abroad have had the opportunity to learn about some of the wonders of Sarajevo “war medicine”, thanks to this journal. Finally, despite the fact that it is another way of expressing its resistance to the aggression on B&H, the organized symposia in the war represented the continuity of the scientific research activities. Bosnia and Herzegovina and Sarajevo under siege, in this way, kept in touch with the civilized world and modern achievements, despite the fact that they were victims of medieval barbarism. In addition, these meetings sent a powerful message to the world about the willingness to register and systematize all the war experiences, especially those related to medicine and medical practice, in terms of what Europe has not known, since the Second World War. Partially, we succeeded in that. The total number of 286 presentations were presented in seven war Conferences, as quantitative and qualitative contribution to the scientific activities, despite the inhuman conditions, in which these articles emerged. These presentations and Conferences testify to the enthusiasm of B&H community and academic institutions that have collaborated with it. Authors and co-authors presented the “war” articles that deserve to be mentioned in the monograph “1479 days of the siege of Sarajevo”. Unfortunately, many of these brave authors are not alive and cannot read this. The task for us remains to remember them by their own good. Old Persian proverb says; “The event which is not recorded is as like it had never happened”. Sapienti sat. PMID:23678305

  16. Gravity, Tissue Engineering, and the Missing Link.

    PubMed

    Costa-Almeida, Raquel; Granja, Pedro L; Gomes, Manuela E

    2018-04-01

    The influence of microgravity and hypergravity on living systems has attracted significant attention, but the use of these tools in tissue engineering (TE) remains relatively unexplored. This Forum article highlights an emerging field of research to uncover new potential applications at the interface between altered gravity and TE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Research and technology, fiscal year 1986, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  18. Evaluation of conditions necessary for successful bioprocessing of gray water in a microgravity environment

    NASA Astrophysics Data System (ADS)

    Urban, James E.; Supra, Laura; MacKnight, Allen

    2000-01-01

    A unique combination of researchers are investigating biological and engineering aspects of a biological wastewater treatment system which could effectively function to treat gray water in a microgravity environment such as that on the International Space Station and human-occupied interplanetary spacecraft. As part of the effort, 23 bacterial strains have been isolated from a bioprocessor operating at unit gravity and various strain combinations have been tested in microgravity for survivability and reduction of total organic carbon in ersatz gray water. All tested strains survive equally well in microgravity and unit gravity and each is capable of reducing TOC in microgravity. While the results reported are encouraging, they also reveal that current testing procedures and equipment are inadequate for fully evaluating bioprocessing in microgravity. .

  19. The role of chemical engineering in space manufacturing

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.; Criswell, D. R.; Erstfeld, T. E.

    1979-01-01

    A survey of factors involved in space manufacturing is presented. It is shown that it will be more economical to obtain the necessary raw materials from the moon than from earth due to earth's greater gravity and atmosphere. Discussion covers what resources can be mined and recovered from the moon and what ranges of industrial feedstock can be provided from lunar materials, noting that metallurgy will be different in space due to the lack of key elements such as H, C, Na, Cl, etc. Also covered are chemical plant design, space environmental factors such as vacuum and zero gravity, recycling requirments, reagent and equipment mass, and unit operations such as materials handling and phase separation. It is concluded that a pilot plant in space could be an economic boon to mankind.

  20. They Schools: Culturally Relevant Pedagogy under Siege

    ERIC Educational Resources Information Center

    Royal, Camika; Gibson, Simone

    2017-01-01

    Background/Context: Culturally relevant pedagogy (CRP ) represents educators who work toward academic excellence, cultural competence, and sociopolitical awareness (Ladson-Billings, 2014). Although some profess to embrace CRP , many educators neglect sociopolitical consciousness (T. Howard, 2003; Simmons et al., 2013; Young, 2010).…

  1. Physics of Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Bukley, Angie; Paloski, William; Clement, Gilles

    2006-01-01

    This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.

  2. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  3. Mission Concepts and Operations for Asteroid Mitigation Involving Multiple Gravity Tractors

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Bellerose, Julie; Jaroux, Belgacem; Mauro, David

    2012-01-01

    The gravity tractor concept is a proposed method to deflect an imminent asteroid impact through gravitational tugging over a time scale of years. In this study, we present mission scenarios and operational considerations for asteroid mitigation efforts involving multiple gravity tractors. We quantify the deflection performance improvement provided by a multiple gravity tractor campaign and assess its sensitivity to staggered launches. We next explore several proximity operation strategies to accommodate multiple gravity tractors at a single asteroid including formation-flying and mechanically-docked configurations. Finally, we utilize 99942 Apophis as an illustrative example to assess the performance of a multiple gravity tractor campaign.

  4. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  5. 2008 Preserve America Presidential Awards

    Science.gov Websites

    Project, New York, New York; Corinth and Alcorn County Mississippi Heritage Tourism Initiative; Lower East and Alcorn County Mississippi Heritage Tourism Initiative were Rosemary Williams, Chairperson, Siege Heritage Tourism Initiative Mrs. Laura Bush poses for a photo with Preserve America Presidential Award

  6. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  7. Laundering in space - A summary of recent developments.

    NASA Technical Reports Server (NTRS)

    Houck, O. K.; Symons, J. J.

    1973-01-01

    Clothing must be washed and reused on future long duration space missions to maintain personal hygiene without severe weight penalties of stored clothing. Laundering equipment that may operate in the absence of gravity is being developed. Weight savings expected from this equipment are illustrated in this paper that describes a six-man combined clothes washer/dryer engineering prototype. Also included in the paper is the rationale used in selecting the final prototype design as well as a discussion of major factors affecting design and performance.

  8. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  9. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  10. Behind the Mosaic: Insurgent Centers of Gravity and Counterinsurgency

    DTIC Science & Technology

    2011-12-01

    centers of gravity vary by time, space , and purpose. While Clausewitz’s key statement on a center of gravity defines a single center of gravity, he...explicitly or implicitly, that multiple centers of gravity can vary with time, space , and purpose. Shimon Naveh Retired Israeli Reserve Brigadier...century military forces, which in turn expanded operations in time and space . The integration of operations distributed in time and space distributed

  11. Design and optimization of interplanetary spacecraft trajectories

    NASA Astrophysics Data System (ADS)

    McConaghy, Thomas Troy

    Scientists involved in space exploration are always looking for ways to accomplish more with their limited budgets. Mission designers can decrease operational costs by crafting trajectories with low launch costs, short time-of-flight, or low propellant requirements. Gravity-assist maneuvers and low-thrust, high-efficiency ion propulsion can be of great help. This dissertation describes advances in methods to design and optimize interplanetary spacecraft trajectories. particularly for missions using gravity-assist maneuvers or low-thrust engines (or both). The first part of this dissertation describes a new, efficient, two-step methodology to design and optimize low-thrust gravity-assist trajectories. Models for the launch vehicle, solar arrays, and engines are introduced and several examples of optimized trajectories are presented. For example, a 3.7-year Earth-Venus-Earth-Mars-Jupiter flyby trajectory with maximized final mass is described. The way that the parameterization of the optimization problem affects convergence speed and reliability is also investigated. The choice of coordinate system is shown to make a significant difference. The second part of this dissertation describes a way to construct Earth-Mars cycler trajectories---periodic orbits that repeatedly encounter Earth and Mars, yet require little or no propellant. We find that well-known cyclers, such as the Aldrin cycler, are special cases of a much larger family of cyclers. In fact, so many new cyclers are found that a comprehensive naming system (nomenclature) is proposed. One particularly promising new cycler, the "ballistic S1L1 cycler" is analyzed in greater detail.

  12. For Your Bookshelf.

    ERIC Educational Resources Information Center

    Jones, Rebecca

    2002-01-01

    Reviews notable education books of 2001: "Not in Front of the Children" (Marjorie Heins); "The other Boston Busing Story" (Susan E. Eaton); "Another Planet" (Elinor Burkett); "Parents Under Siege" (James Garbarino and Claire Bedard); "Radical Equations" (Robert P. Moses and Charles E. Cobb, Jr.); "School" (Sheila Curran Bernard and Sarah Mondale);…

  13. Militarized Maneuver Terrorism

    DTIC Science & Technology

    2015-06-12

    striking the heart of the Indian tourism market and creating a siege in the Taj Mahal, it was certain to create a theater of terror. A drama played out... sport facilities, malls, movie theaters, and more. Grossman argues that American society has put forth enormous effort preparing and preventing harm to

  14. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.

  15. Structural Design Considerations for an 8-m Space Telescope

    NASA Technical Reports Server (NTRS)

    Arnold, William R. Sr.; Stahl, H. Philip

    2009-01-01

    NASA's upcoming ARES V launch vehicle, with its' immerse payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.

  16. Structural design considerations for an 8-m space telescope

    NASA Astrophysics Data System (ADS)

    Arnold, William r., Sr.; Stahl, H. Philip

    2009-08-01

    NASA's upcoming ARES V launch vehicle, with its' immense payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.

  17. 19 CFR 12.95 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... handle of the knife, or any knife with a blade which opens automatically by operation of inertia, gravity... button or device in the handle of the knife or by operation of inertia, gravity, or both; (3) Unassembled... handle of the knife or by operation of inertia, gravity, or both; or (4) Knives with a detachable blade...

  18. 19 CFR 12.95 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... handle of the knife, or any knife with a blade which opens automatically by operation of inertia, gravity... button or device in the handle of the knife or by operation of inertia, gravity, or both; (3) Unassembled... handle of the knife or by operation of inertia, gravity, or both; or (4) Knives with a detachable blade...

  19. 19 CFR 12.95 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... handle of the knife, or any knife with a blade which opens automatically by operation of inertia, gravity... button or device in the handle of the knife or by operation of inertia, gravity, or both; (3) Unassembled... handle of the knife or by operation of inertia, gravity, or both; or (4) Knives with a detachable blade...

  20. 19 CFR 12.95 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... handle of the knife, or any knife with a blade which opens automatically by operation of inertia, gravity... button or device in the handle of the knife or by operation of inertia, gravity, or both; (3) Unassembled... handle of the knife or by operation of inertia, gravity, or both; or (4) Knives with a detachable blade...

  1. 19 CFR 12.95 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... handle of the knife, or any knife with a blade which opens automatically by operation of inertia, gravity... button or device in the handle of the knife or by operation of inertia, gravity, or both; (3) Unassembled... handle of the knife or by operation of inertia, gravity, or both; or (4) Knives with a detachable blade...

  2. Program Update for GRAV-D (Gravity for the Redefinition of the American Vertical Datum): Recent Airborne Surveys

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Diehl, T. M.; Roman, D. R.; Smith, D. A.

    2009-05-01

    The mission of NOAA's National Geodetic Survey (NGS) is to "define, maintain and provide access to the National Spatial Reference System" (NSRS). NAVD 88 (North American Vertical Datum of 1988) provides the vertical reference for the NSRS. However, comparisons of NAVD 88 with the Gravity Recovery and Climate Experiment (GRACE) satellite gravity data have demonstrated significant problems with the vertical reference, with an average difference between the two of 0.98 m and std dev of 0.37m. As repairing NAVD 88 through a massive leveling effort is impractical, our approach will be to establish a gravimetric geoid as the vertical reference. The linchpin in NGS's effort is the Gravity for the Redefinition of the American Vertical Datum (GRAV- D) program, which will ultimately incorporate satellite, airborne and terrestrial gravity data to build the 1-2 cm geoid that the U.S. surveying public is demanding. The program involves both an airborne component, for measuring a "baseline" gravity field, and a relative and absolute terrestrial program, for monitoring time variations of the gravity field. The GRAV-D aerogravity program commenced with a survey based from Anchorage, AK in the summer of 2008, additionally in support of NOAA's Hydropalooza program. Starting in October, the GRAV-D team has undertaken a concerted effort to survey Puerto Rico/US Virgin Islands, and then the Gulf Coast for the US Army Corps of Engineers. Gulf operations were from New Orleans, Lake Charles, and Austin, TX. This survey provides a continuous airborne field measurement at 10 km line spacing from the GA/AL state line to the Mexican border. We will present the results of these data collection efforts and outline the plans for the GRAV- D program during the remainder of 2009.

  3. CNN Newsroom Classroom Guides. March 1-31, 1996.

    ERIC Educational Resources Information Center

    Cable News Network, Atlanta, GA.

    These classroom guides, designed to accompany the daily CNN (Cable News Network) Newsroom broadcasts for the month of March, provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Topics include: negative campaign ads, the end of the Sarajevo siege, alternative medicine in…

  4. Returning Fire

    ERIC Educational Resources Information Center

    Gould, Jon B.

    2007-01-01

    Last December saw another predictable report from the Foundation for Individual Rights in Education (FIRE), a self-described watchdog group, highlighting how higher education is supposedly under siege from a politically correct plague of so-called hate-speech codes. In that report, FIRE declared that as many as 96 percent of top-ranked colleges…

  5. Contrasts between American and Afghan Warriors, a Comparison between two Martial Cultures

    DTIC Science & Technology

    2010-06-11

    nation. I am deeply indebted to MAJ Mike Kuhn for volunteering as my unofficial research coordinator, lending me his books , and providing me the most...Kabul from her roof, as well as secondhand stories from officers of her immediate acquaintance. Lady Sale records the siege and subsequent...

  6. The Gendered Nature of Education under Siege: A Palestinian Feminist Perspective

    ERIC Educational Resources Information Center

    Shalhoub-Kevorkian, Nadera

    2008-01-01

    Military occupation affects educational space and places, transforming them into politicized, sexed, gendered, and racialized ones. The uncontrolled political violence in conflict zones causes psychological trauma, internal displacement and economic stagnation, and intersect to shape the gendered nature of education. This article is based on data…

  7. A Citadel under Siege: A Strategy against the Censor.

    ERIC Educational Resources Information Center

    North, William D.

    1986-01-01

    Identifies the tasks that the library administrator must complete if the collection is to successfully withstand censorship. Using an analogy of the construction, arming, and manning of a "citadel," a strategy is presented which is adaptable to the broadest range of attack on collection, acquisition, and dissemination policies of…

  8. Parenthood in America: Undervalued, Underpaid, Under Siege.

    ERIC Educational Resources Information Center

    Westman, Jack C., Ed.

    Largely missing from debates about family values, childcare, education, and the future of children is the complex vocation called "parenthood." This book examines parenthood in the home, the community, and in society, and identifies parental stressors that have increased since the 1960s, calling on stakeholders to provide help with…

  9. Invasion of the exotics: the siege of western Washington.

    Treesearch

    Sally Duncan

    2001-01-01

    Settlement of the Pacific Northwest by immigrants from the Eastern United States changed the composition of lowland landscapes from dominance by forests and prairie to dominance by cities, suburbs, agriculture, and transportation infrastructure. Historical disturbance regimes imposed by nature and by indigenous people were disrupted. In the uplands, timber management...

  10. The NASA Space Life Sciences Training Program - Preparing the way

    NASA Technical Reports Server (NTRS)

    Biro, Ronald; Munsey, Bill; Long, Irene

    1990-01-01

    Attention is given to the goals and methods adopted in the NASA Space Life Sciences Training Program (SLSTP) for preparing scientists and engineers for space-related life-sciences research and operations. The SLSTP is based on six weeks of projects and lectures which give an overview of payload processing and experiment flow in the space environment. The topics addressed in the course of the program include descriptions of space vehicles, support hardware, equipment, and research directions. Specific lecture topics include the gravity responses of plants, mission integration of a flight experiment, and the cardiovascular deconditioning. The SLSTP is shown to be an important part of the process of recruiting and training qualified scientists and engineers to support space activities.

  11. Phase-exchange thermoacoustic engine

    NASA Astrophysics Data System (ADS)

    Offner, Avshalom; Meir, Avishai; Ramon, Guy Z.; WET Lab Team

    2017-11-01

    Phase-exchange thermoacoustic engines are reliable machines holding great promise in converting heat from low grade heat sources to mechanical or electrical power. In these engines the working fluid is a gas mixture containing one condensable component, decreasing the temperature difference required for ignition and steady state operation. Our experimental setup consists of a vertical acoustic resonator containing a mixture of air-water vapor. Water evaporates near the heat source, condenses at the heat sink and is drawn back down by gravity and capillary forces where it re-evaporates, sustaining a steady state closed thermodynamic cycle. We investigated the stability limit, namely the critical point at which temperature difference in the engine enables onset of self-excited oscillations, and the steady state of the engine. A simple theoretical model was derived, describing mechanisms of irreversible entropy generation and production of acoustic power in such engines. This model captures the essence in the differences between regular and phase-exchange thermoacoustic engines, and shows good agreement with experimental results of stability limit. Steady state results reveal not only a dramatic decrease in temperature difference, but also an increase in engine performances. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  12. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  13. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  14. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  15. A helium-3/helium-4 dilution cryocooler for operation in zero gravity

    NASA Technical Reports Server (NTRS)

    Hendricks, John B.

    1988-01-01

    This research effort covered the development of He-3/He-4 dilution cryocooler cycles for use in zero gravity. The dilution cryocooler is currently the method of choice for producing temperatures below 0.3 Kelvin in the laboratory. However, the current dilution cryocooler depends on gravity for their operation, so some modification is required for zero gravity operation. In this effort, we have demonstrated, by analysis, that the zero gravity dilution cryocooler is feasible. We have developed a cycle that uses He-3 circulation, and an alternate cycle that uses superfluid He-4 circulation. The key elements of both cycles were demonstrated experimentally. The development of a true 'zero-gravity' dilution cryocooler is now possible, and should be undertaken in a follow-on effort.

  16. 75 FR 39869 - Airworthiness Directives; Airbus Model A330-200 and A330-300 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... uncommanded engine 1 in flight spool down, which occurred while applying fuel gravity feed procedure, in... while applying fuel gravity feed procedure, in response to low pressure indications from all fuel boost... applying fuel gravity feed procedure, in response to low pressure indications from all fuel boost pumps, in...

  17. The space elevator: a new tool for space studies.

    PubMed

    Edwards, Bradley C

    2003-06-01

    The objective has been to develop a viable scenario for the construction, deployment and operation of a space elevator using current or near future technology. This effort has been primarily a paper study with several experimental tests of specific systems. Computer simulations, engineering designs, literature studies and inclusion of existing programs have been utilized to produce a design for the first space elevator. The results from this effort illustrate a viable design using current and near-term technology for the construction of the first space elevator. The timeline for possible construction is within the coming decades and estimated costs are less than $10 B. The initial elevator would have a 5 ton/day capacity and operating costs near $100/lb for payloads going to any Earth orbit or traveling to the Moon, Mars, Venus or the asteroids. An operational space elevator would allow for larger and much longer-term biological space studies at selectable gravity levels. The high-capacity and low operational cost of this system would also allow for inexpensive searches for life throughout our solar system and the first tests of environmental engineering. This work is supported by a grant from the NASA Institute for Advanced Concepts (NIAC).

  18. STS-40 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1991-01-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  19. STS-40 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1991-07-01

    The STS-40 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-first flight of the Space Shuttle and the eleventh flight of the Orbiter Vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) designated as ET-41 (LWT-34), three Space Shuttle main engines (SSME's) (serial numbers 2015, 2022, and 2027 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-044. The primary objective of the STS-40 flight was to successfully perform the planned operations of the Spacelab Life Sciences-1 (SLS-1) payload. The secondary objectives of this flight were to perform the operations required by the Getaway Special (GAS) payloads and the Middeck O-Gravity Dynamics Experiment (MODE) payload.

  20. Superconducting gravity gradiometer mission. Volume 1: Study team executive summary

    NASA Technical Reports Server (NTRS)

    Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)

    1989-01-01

    An executive summary is presented based upon the scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis Superconducting Gravity Gradiometer integrated with a six-axis superconducting accelerometer. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objectives, such as navigation and tests of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.

  1. Superconducting gravity gradiometer mission. Volume 2: Study team technical report

    NASA Technical Reports Server (NTRS)

    Morgan, Samuel H. (Editor); Paik, Ho Jung (Editor)

    1988-01-01

    Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed.

  2. The Design and Operation of Suborbital Low Cost and Low Risk Vehicle to the Edge of Space (SOLVES)

    NASA Astrophysics Data System (ADS)

    Ridzuan Zakaria, Norul; Nasrun, Nasri; Rashidy Zulkifi, Mohd; Izmir Yamin, Mohd; Othman, Jamaludin; Rafidi Zakaria, Norul

    2013-09-01

    Inclusive in the planning of Spaceport Malaysia are 2 local suborbital vehicles development. One of the vehicles is called SOLVES or Suborbital Low Cost and Low Risk Vehicle to the Edge of Space. The emphasis on the design and operation of SOLVES is green and robotic technology, where both green technology and robotic technology are used to protect the environment and enhance safety. As SOLVES climbs, its center of gravity stabilizes and remains at the bottom as its propellant being used until it depletes, due to the position of the vehicle's passenger cabin and its engines at its lower end. It will reach 80km from sea level generally known as "the edge of space" due to its momentum although its propellant will be depleted at a lower altitude. As the suborbital vehicle descends tail first, its wings automatically extend and rotate at horizontal axes perpendicular to the fuselage. These naturally and passively rotating wings ensure controlled low velocity and stable descend of the vehicle. The passenger cabin also rotates automatically at a steady low speed at the centerline of its fuselage as it descends, caused naturally by the lift force, enabling its passengers a surrounding 360 degrees view. SOLVES is steered automatically to its landing point by an electrical propulsion system with a vectoring nozzle. The electrical propulsion minimizes space and weight and is free of pollution and noise. Its electrical power comes from a battery aided by power generated by the naturally rotating wings. When the vehicle lands, it is in the safest mode as its propellant is depleted and its center of gravity remains at the bottom of its cabin. The cabin, being located at the bottom of the fuselage, enables very convenient, rapid and safe entry and exit of its passengers. SOLVES will be a robotic suborbital vehicle with green technology. The vehicle will carry 4 passengers and each passenger will be trained to land the vehicle manually if the fully automated landing system fails and therefore it will be engineered for simple operation by trained passengers. However, for certification by aviation authorities the vehicle may be operational with 3 passengers and a pilot. A specific operation considered for SOLVES is navaloperation where the suborbital vehicle will be operating from a seaborne spaceport, probably a superyacht with spacepad for the vertical launching and landing of the vehicle. Such naval operation enables the vehicle to fly above exotic locations reachable by sea. SOLVES is also planned for further development into reusable rocket booster to carry small suborbiter to 160km from sea level, enables the passengers aboard the suborbiter to experience longer zero gravity time and more effective suborbital flight.

  3. Transparent Alloys Operation

    NASA Image and Video Library

    2018-03-26

    iss055e005543 (March 26, 2018) --- Expedition 55 Flight Engineer and astronaut Scott Tingle is pictured conducting the Transparent Alloys experiment inside the Destiny lab module's Microgravity Science Glovebox. The Transparent Alloys study is a set of five experiments that seeks to improve the understanding of melting-solidification processes in plastics without the interference of Earth's gravity environment. Results may impact the development of new light-weight, high-performance structural materials for space applications. Observations may also impact fuel efficiency, consumption and recycling of materials on Earth potentially reducing costs and increasing industrial competitiveness.

  4. View of equipment used for Heat Flow and Convection Experiment

    NASA Image and Video Library

    1972-12-17

    AS17-162-24063 (7-19 Dec. 1972) --- A close-up view of the equipment used for the Heat Flow and Convection Experiment, an engineering and operational test and demonstration carried out aboard the Apollo 17 command module during the final lunar landing mission in NASA's Apollo program. Three test cells were used in the demonstration for measuring and observing fluid flow behavior in the absence of gravity in space flight. Data obtained from such demonstrations will be valuable in the design of future science experiments and for manufacturing processes in space.

  5. Integrated research to improve fire management decisionmaking.

    Treesearch

    Donald G. MacGregor; Richard W. Haynes

    2005-01-01

    The emergence of large fires of long duration (also known as siege fires) with their inherently high costs has raised numerous questions about the opportunities for cost containment. Cost reviews from the 2003 fire season have revealed how additional knowledge created through research can lead to better management and lower costs of fire incidents.

  6. Army Sustainment. Volume 43, Issue 2. March-April 2011

    DTIC Science & Technology

    2011-04-01

    the night before. Barker notes, “Like the men, the animals were nearly mad with thirst,” and consequentially “a number of mules made a dash for the...5-month siege. The majority of these cap- tives died of starvation, exhaustion, disease, or cruelty by their Turkish captors. The fall of Kut

  7. Enhancing Security - Projecting Civil Authority into America’s Uncontrolled Spaces

    DTIC Science & Technology

    2012-06-08

    end the siege. This application at Mumbai, in this research suggests that a similar gap exists within the U.S. The Columbine High school shooting......opportunity to attend college at Ft. Leavenworth, KS. It has been an honor and privilege to attend this school with the men and women of our armed

  8. Responding to Violence in Postapartheid Schools: On School Leadership as Mutual Engagement

    ERIC Educational Resources Information Center

    Davids, Nuraan; Waghid, Yusef

    2016-01-01

    Schools in post-apartheid South Africa appear to be under siege by violence. In turn, school leaders find themselves in the unenviable position of not only having to deal with inadequate educator professionalism and learner underachievement--particularly in previously disadvantaged schools--but are under pressure to find ways to counteract the…

  9. Early Rockets

    NASA Image and Video Library

    2004-04-15

    One of the earliest recorded instances of the use of rockets was as military weapons against the Mongols by the Chinese at the siege of Kai Fung Foo in 1232 A.D. An arrow with a tube of gunpowder produced an arrow of flying fire. The Mongol attackers fled in terror, even though the rockets were inaccurate and relatively harmless.

  10. Lilliput under Siege: New Zealand Society and Its Schools during the 'Red Scare', 1919-1922.

    ERIC Educational Resources Information Center

    Openshaw, Roger

    1980-01-01

    Characterizes public education in New Zealand during the period 1919-1922 as being influenced by increased instruction in patriotism and systematic monitoring of teacher and pupil loyalty. The reason for the politicization of education was fear of left-wing radicalism in the wake of the Russian revolution. (DB)

  11. The Artful Dodger: Creative Resistance to Neoliberalism in Education

    ERIC Educational Resources Information Center

    Adams, Jeff

    2013-01-01

    This article explores contemporary forms of creative practices and their survival under siege from what Stuart Hall (2011) describes as the neoliberal revolution, in the context of the tightly policed education system in the United Kingdom. The fragility and importance of the democratic struggle is discussed with reference to Chantal Mouffe's work…

  12. Survey of Broadcast Journalism 1970-1971: A State of Siege.

    ERIC Educational Resources Information Center

    Barrett, Marvin, Ed.

    The major topic is the running battle between news media and the government, as reflected in documentary exposes like "The Selling of the Pentagon,""Migrant," and "Banks and the Poor." The best examples of broadcast journalism during the year are reviewed, along with the response they got from the press, the…

  13. Swimming: On Oxygen, Resistance, and Possibility for Immigrant Youth under Siege

    ERIC Educational Resources Information Center

    Fine, Michelle; Jaffe-Walter, Reva; Pedraza, Pedro; Futch, Valerie; Stoudt, Brett

    2007-01-01

    In this article, we consider the ways in which educational policies and institutions today enable or obstruct young people who are immigrant English-language learners as they seek to cross cultural and educational borders. Contrasting a class action suit in California protesting high stakes testing that will significantly limit graduation rates,…

  14. The Ivory Tower Under Siege.

    ERIC Educational Resources Information Center

    Smith-Mello, Michal

    Increasing public dissatisfaction with the cost and quality of higher education is creating pressure for fundamental change. Higher education is not as certain to produce a higher standard of living as it used to be, and costs are rising faster than the rate of inflation. Declining state contributions to higher education have shifted the financial…

  15. Universalism under siege? Exploring the association between targeting, child benefits and child poverty across 26 countries.

    PubMed

    Van Lancker, Wim; Van Mechelen, Natascha

    2015-03-01

    The long-standing wisdom that universally designed benefits outperform targeted benefits in terms of poverty reduction has come under siege. Recent empirical studies tend to find that targeting is not necessarily associated anymore with lower levels of poverty reduction. In this study, we investigate for a broad set of European countries (1) the relationship between child benefits and child poverty reduction; (2) whether a universal or targeted approach is more effective in reducing child poverty; and (3) the causal mechanisms explaining the link between (1) and (2). In doing so, we take into account the general characteristics of the child benefit system, the size of the redistributive budget and the generosity of benefit levels. In contrast to previous studies, we construct an indicator of targeting that captures the design instead of the outcomes of child benefit systems. We find that targeting towards lower incomes is associated with higher levels of child poverty reduction, conditional on the direction of targeting and the characteristics of the benefit system. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    PubMed Central

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  17. Device for Extracting Flavors and Fragrances

    NASA Technical Reports Server (NTRS)

    Chang, F. R.

    1986-01-01

    Machine for making coffee and tea in weightless environment may prove even more valuable on Earth as general extraction apparatus. Zero-gravity beverage maker uses piston instead of gravity to move hot water and beverage from one chamber to other and dispense beverage. Machine functions like conventional coffeemaker during part of operating cycle and includes additional features that enable operation not only in zero gravity but also extraction under pressure in presence or absence of gravity.

  18. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    NASA Technical Reports Server (NTRS)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  19. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  20. Space Station tethered elevator system

    NASA Technical Reports Server (NTRS)

    Haddock, Michael H.; Anderson, Loren A.; Hosterman, K.; Decresie, E.; Miranda, P.; Hamilton, R.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The tethered elevator is an unmanned, mobile structure which operates on a ten-kilometer tether spanning the distance between Space Station Freedom and a platform. Its capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The report discusses the potential uses, parameters, and evolution of the spacecraft design. Emphasis is placed on the elevator's structural configuration and three major subsystem designs. First, the design of elevator robotics used to aid in elevator operations and tethered experimentation is presented. Second, the design of drive mechanisms used to propel the vehicle is discussed. Third, the design of an onboard self-sufficient power generation and transmission system is addressed.

  1. Twitter in the Cross Fire—The Use of Social Media in the Westgate Mall Terror Attack in Kenya

    PubMed Central

    Simon, Tomer; Goldberg, Avishay; Aharonson-Daniel, Limor; Leykin, Dmitry; Adini, Bruria

    2014-01-01

    On September 2013 an attack on the Westgate mall in Kenya led to a four day siege, resulting in 67 fatalities and 175 wounded. During the crisis, Twitter became a crucial channel of communication between the government, emergency responders and the public, facilitating the emergency management of the event. The objectives of this paper are to present the main activities, use patterns and lessons learned from the use of the social media in the crisis. Using TwitterMate, a system developed to collect, store and analyze tweets, the main hashtags generated by the crowd and specific Twitter accounts of individuals, emergency responders and NGOs, were followed throughout the four day siege. A total of 67,849 tweets were collected and analyzed. Four main categories of hashtags were identified: geographical locations, terror attack, social support and organizations. The abundance of Twitter accounts providing official information made it difficult to synchronize and follow the flow of information. Many organizations posted simultaneously, by their manager and by the organization itself. Creating situational awareness was facilitated by information tweeted by the public. Threat assessment was updated through the information posted on social media. Security breaches led to the relay of sensitive data. At times, misinformation was only corrected after two days. Social media offer an accessible, widely available means for a bi-directional flow of information between the public and the authorities. In the crisis, all emergency responders used and leveraged social media networks for communicating both with the public and among themselves. A standard operating procedure should be developed to enable multiple responders to monitor, synchronize and integrate their social media feeds during emergencies. This will lead to better utilization and optimization of social media resources during crises, providing clear guidelines for communications and a hierarchy for dispersing information to the public and among responding organizations. PMID:25153889

  2. Twitter in the cross fire--the use of social media in the Westgate Mall terror attack in Kenya.

    PubMed

    Simon, Tomer; Goldberg, Avishay; Aharonson-Daniel, Limor; Leykin, Dmitry; Adini, Bruria

    2014-01-01

    On September 2013 an attack on the Westgate mall in Kenya led to a four day siege, resulting in 67 fatalities and 175 wounded. During the crisis, Twitter became a crucial channel of communication between the government, emergency responders and the public, facilitating the emergency management of the event. The objectives of this paper are to present the main activities, use patterns and lessons learned from the use of the social media in the crisis. Using TwitterMate, a system developed to collect, store and analyze tweets, the main hashtags generated by the crowd and specific Twitter accounts of individuals, emergency responders and NGOs, were followed throughout the four day siege. A total of 67,849 tweets were collected and analyzed. Four main categories of hashtags were identified: geographical locations, terror attack, social support and organizations. The abundance of Twitter accounts providing official information made it difficult to synchronize and follow the flow of information. Many organizations posted simultaneously, by their manager and by the organization itself. Creating situational awareness was facilitated by information tweeted by the public. Threat assessment was updated through the information posted on social media. Security breaches led to the relay of sensitive data. At times, misinformation was only corrected after two days. Social media offer an accessible, widely available means for a bi-directional flow of information between the public and the authorities. In the crisis, all emergency responders used and leveraged social media networks for communicating both with the public and among themselves. A standard operating procedure should be developed to enable multiple responders to monitor, synchronize and integrate their social media feeds during emergencies. This will lead to better utilization and optimization of social media resources during crises, providing clear guidelines for communications and a hierarchy for dispersing information to the public and among responding organizations.

  3. The Never-Ending Siege

    ERIC Educational Resources Information Center

    Netzley, Michael

    2007-01-01

    Citizens of Sarajevo, scared for their lives during the war, fled their homes and crowded into the stadium in hopes of surviving. As the casualties mounted, there was no place to put all the bodies. Those taking refuge in the stadium did the only thing they could do: They buried the dead in the football pitch beside the stadium. Now, as a daily…

  4. Higher Education under Siege: Implications for Public Intellectuals

    ERIC Educational Resources Information Center

    Giroux, Henry A.

    2006-01-01

    What is the task of educators at a time when mainstream American culture is increasingly characterized by a declining interest in and misgiving about national politics? How one answers this question will have a grave impact not only on higher education but on the future of democratic public life. There are no simple solutions says author Henry…

  5. Geography Ed for a Flat World

    ERIC Educational Resources Information Center

    Schachter, Ron

    2012-01-01

    Geography is not what it used to be. Nowadays, that subject is often buried--and therefore inadequately covered--in a social studies curriculum itself under siege because of the extended commitment in schools to reading and math. But geographical knowledge also is not what it used to be. It has become essential to understanding a brave new world…

  6. The Corporate Assault on Higher Education and Union Responses

    ERIC Educational Resources Information Center

    Lafer, Gordon

    2017-01-01

    Higher education is under siege by a barrage of policy initiatives that aim to fundamentally transform the academy. The most visible and most sustained assault has come in the form of funding cuts. Nationally, funding for public higher education was 18 percent lower in 2016 than in 2008, amounting to a $10 billion total disinvestment. In many…

  7. Supporting New Educators to Teach for Social Justice: The Critical Inquiry Project Model

    ERIC Educational Resources Information Center

    Picower, Bree

    2007-01-01

    Urban public schools and their teachers are under siege. From increased standardization, privatization and testing to a growing number of students whose needs are not being met by schools, urban public school teachers face a daunting task. Without a space in which to critically examine their daily experiences within schools, many well-intentioned…

  8. Celluloid under Siege

    ERIC Educational Resources Information Center

    Doherty, Thomas

    2008-01-01

    From 1895, the traditional date for the birth of cinema as everybody knows it (that is, the projection of celluloid, in public space, for money--a racket first stumbled upon by Auguste and Louis Lumiere in the basement of the Grand Cafe in Paris), until now, the 35mm photographic image has been the preferred canvas for motion-picture art. Through…

  9. Under Siege: Schools as the New Battleground. Strategies To Protect Students, Staff, and Facilities.

    ERIC Educational Resources Information Center

    Agron, Joe, Ed.

    1999-01-01

    This American School and University supplement theme issue provides information from experts in the security industry concerning school violence and its prevention. Articles address the lessons learned from recent school shootings that may help reduce future occurrences, the need for a greater adherence to order in schools to set the stage for a…

  10. Sally Smith's Art Methods Applied: Music Education for Adolescents with Learning Disabilities & ADHD

    ERIC Educational Resources Information Center

    Rozsics, M. Sean

    2010-01-01

    In recent years, Arts Education in America's secondary schools has been underfunded, undervalued, and underdeveloped. Music, in particular, has been under siege in the "No Child Left Behind" era as teachers increasingly teach students to pass specific written tests, and administrators focus on improving these test scores and struggle with related…

  11. Information Overload or Information under Siege: Filipino Faculty Extendees' Concept, Motivation and Expectations

    ERIC Educational Resources Information Center

    de Guzman, Allan B.; Corpuz, Jacky Q.; Creencia, Jam R.; Crisostomo, Mary Joy S.; Cristobal, David John Gabriel E.

    2010-01-01

    Previous studies have quantified the extent of usage, knowledge, and relationship of people's behavior in regard to food supplements--particularly in developed countries such as the United States. Despite the prevalence of supplements use and the issues surrounding its use, there has been little or no study of supplement use in a developing…

  12. Designing to Sample the Unknown: Lessons from OSIRIS-REx Project Systems Engineering

    NASA Technical Reports Server (NTRS)

    Everett, David; Mink, Ronald; Linn, Timothy; Wood, Joshua

    2017-01-01

    On September 8, 2016, the third NASA New Frontiers mission launched on an Atlas V 411. The Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) will rendezvous with asteroid Bennu in 2018, collect a sample in 2020, and return that sample to Earth in September 2023. The development team has overcome a number of challenges in order to design and build a system that will make contact with an unexplored, airless, low-gravity body. This paper will provide an overview of the mission, then focus in on the system-level challenges and some of the key system-level processes. Some of the lessons here are unique to the type of mission, like discussion of operating at a largely-unknown, low-gravity object. Other lessons, particularly from the build phase, have broad implications. The OSIRIS-REx risk management process was particularly effective in achieving an on-time and under-budget development effort. The systematic requirements management and verification and the system validation also helped identify numerous potential problems. The final assessment of the OSIRIS-REx performance will need to wait until the sample is returned in 2023, but this post-launch assessment will capture some of the key systems-engineering lessons from the development team.

  13. 40 CFR 1065.630 - 1980 international gravity formula.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...

  14. 40 CFR 1065.630 - 1980 international gravity formula.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...

  15. 40 CFR 1065.630 - 1980 international gravity formula.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...

  16. 40 CFR 1065.630 - 1980 international gravity formula.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false 1980 international gravity formula. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 1980...

  17. 40 CFR 1065.630 - Local acceleration of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Local acceleration of gravity. 1065.630 Section 1065.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.630 Local...

  18. Diffusive smoothing of surfzone bathymetry by gravity-driven sediment transport

    NASA Astrophysics Data System (ADS)

    Moulton, M. R.; Elgar, S.; Raubenheimer, B.

    2012-12-01

    Gravity-driven sediment transport often is assumed to have a small effect on the evolution of nearshore morphology. Here, it is shown that down-slope gravity-driven sediment transport is an important process acting to smooth steep bathymetric features in the surfzone. Gravity-driven transport can be modeled as a diffusive term in the sediment continuity equation governing temporal (t) changes in bed level (h): ∂h/∂t ≈ κ ▽2h, where κ is a sediment diffusion coefficient that is a function of the bed shear stress (τb) and sediment properties, such as the grain size and the angle of repose. Field observations of waves, currents, and the evolution of large excavated holes (initially 10-m wide and 2-m deep, with sides as steep as 35°) in an energetic surfzone are consistent with diffusive smoothing by gravity. Specifically, comparisons of κ estimated from the measured bed evolution with those estimated with numerical model results for several transport theories suggest that gravity-driven sediment transport dominates the bed evolution, with κ proportional to a power of τb. The models are initiated with observed bathymetry and forced with observed waves and currents. The diffusion coefficients from the measurements and from the model simulations were on average of order 10-5 m2/s, implying evolution time scales of days for features with length scales of 10 m. The dependence of κ on τb varies for different transport theories and for high and low shear stress regimes. The US Army Corps of Engineers Field Research Facility, Duck, NC provided excellent logistical support. Funded by a National Security Science and Engineering Faculty Fellowship, a National Defense Science and Engineering Graduate Fellowship, and the Office of Naval Research.

  19. Black hole thermodynamics and heat engines in conformal gravity

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Sun, Yuan; Zhao, Liu

    The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.

  20. Flight Mechanics Experiment Onboard NASA's Zero Gravity Aircraft

    ERIC Educational Resources Information Center

    Matthews, Kyle R.; Motiwala, Samira A.; Edberg, Donald L.; García-Llama, Eduardo

    2012-01-01

    This paper presents a method to promote STEM (Science, Technology, Engineering, and Mathematics) education through participation in a reduced gravity program with NASA (National Aeronautics and Space Administration). Microgravity programs with NASA provide students with a unique opportunity to conduct scientific research with innovative and…

  1. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  2. The Events of the Beslan, Russia School Siege. SVRC Fact Sheet

    ERIC Educational Resources Information Center

    School Violence Resource Center, 2004

    2004-01-01

    On September 1, 2004, the community of Beslan, North Ossetia, Russia was changed forever. On this day, thirty-two Chechen terrorists entered the local school on the first day of the school year and took hostage of 1,181 people, mostly children, who were in the school at that time. Over the next three days, negotiations occurred between the…

  3. "The Siege of the Cultural City Is Underway:" Adolescents with Developmental Disabilities Make "Art"

    ERIC Educational Resources Information Center

    Wexler, Alice

    2011-01-01

    As art educators are asked to broaden their scope to include children with a variety of abilities, they are beginning to seek answers from sources that might traditionally be outside their field. In an era of hybridization, appropriation, and bricolage, the divide among fields has become anachronistic and unfruitful. A new form of scholarship in…

  4. Fear and Loathing in the Academy? The Role of Emotion in Response to an Impact Agenda in the UK and Australia

    ERIC Educational Resources Information Center

    Chubb, Jennifer; Watermeyer, Richard; Wakeling, Paul

    2017-01-01

    The research impact agenda is frequently portrayed through "crisis" accounts whereby academic identity is at risk of a kind of existential unravelling. Amid reports of academics under siege in an environment in which self-sovereignty is traditionally preferred and regulation is resisted, heightened emotionalism, namely fear and dread,…

  5. Packing the PLSS

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory

    2011-01-01

    NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.

  6. Growth of mercuric iodide (HgI2) for nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Vandenberg, L.; Schnepple, W. F.

    1988-01-01

    Mercuric iodide is a material used for the fabrication of the sensing element in solid state X-ray and gamma ray detecting instruments. The operation of the devices is determined to a large degree by the density of structural defects in the single crystalline material used in the sensing element. Since there were strong indications that the quality of the material was degraded by the effects of gravity during the growth process, a research and engineering program was initiated to grow one or more crystals of mercuric iodide in the reduced gravity environment of space. A special furnace assembly was designed which could be accommodated in a Spacelab rack, and at the same time made it possible to use the same growth procedures and controls used when growing a crystal on the ground. The space crystal, after the flight, was subjected to the same evaluation methods used for earth-grown crystals, so that comparisons could be made.

  7. Around Marshall

    NASA Image and Video Library

    1992-01-28

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Spacelab Operations Support Room Space Engineering Support team in the SL POCC during STS-42, IML-1 mission.

  8. Impact of low gravity on water electrolysis operation

    NASA Technical Reports Server (NTRS)

    Powell, F. T.; Schubert, F. H.; Lee, M. G.

    1989-01-01

    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.

  9. UPC BarcelonaTech Platform. Innovative aerobatic parabolic flights for life sciences experiments.

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni; Gonzalez, Daniel

    We present an innovative method of performing parabolic flights with aerobatic single-engine planes. A parabolic platform has been established in Sabadell Airport (Barcelona, Spain) to provide an infraestructure ready to allow Life Sciences reduced gravity experiments to be conducted in parabolic flights. Test flights have demonstrated that up to 8 seconds of reduced gravity can be achieved by using a two-seat CAP10B aircraft, with a gravity range between 0.1 and 0.01g in the three axis. A parabolic flight campaign may be implemented with a significant reduction in budget compared to conventional parabolic flight campaigns, and with a very short time-to-access to the platform. Operational skills and proficiency of the pilot controling the aircraft during the maneuvre, sensitivity to wind gusts, and aircraft balance are the key issues that make a parabola successful. Efforts are focused on improving the total “zero-g” time and the quality of reduced gravity achieved, as well as providing more space for experiments. We report results of test flights that have been conducted in order to optimize the quality and total microgravity time. A computer sofware has been developed and implemented to help the pilot optimize his or her performance. Finally, we summarize the life science experiments that have been conducted in this platform. Specific focus is given to the very successful 'Barcelona ZeroG Challenge', this year in its third edition. This educational contest gives undergraduate and graduate students worldwide the opportunity to design their research within our platform and test it on flight, thus becoming real researchers. We conclude that aerobatic parabolic flights have proven to be a safe, unexpensive and reliable way to conduct life sciences reduced gravity experiments.

  10. Aerial profiling of terrain to define stream-valley geometry: study report

    USGS Publications Warehouse

    Desai, Mukund; Drohan, William A.; Hursh, John W.; Mamon, Glenn; Youmans, Douglas G.

    1976-01-01

    A six-month engineering analysis was performed by The Charles Stark Draper Laboratory, Inc., at the request of the U. S. Geological Survey, to investigate the suitability of an airborne instrument package based on inertial techniques to serve as the datum for a laser altimeter in a system for aerial profiling of terrain to determine selected features of stream-valley geometry to an accuracy of ± 0.5 ft. in the vertical coordinate and ± 10 ft. in the horizontal coordinates. Feasible system configuration features a high performance inertial platform incorporating an integral laser tracker, pointing and ranging on retroreflectors on the ground, in order to provide the frequent updates needed to meet the accuracy requirements. In all environments except those of severe gravity gradients the nominal two- by twenty-mile survey area can be covered using three ground-surveyed retroreflectors, interspersed with several unlocated retroreflectors that are surveyed in by the airborne system along a longitudinal path within the river valley when the aircraft arrives over the site. Subsequent transverse profiling runs (traverses that may be spaced as close as one-quarter mile apart) are flown using, in turn, all retroreflectors as updating position references. Pointing and range information from the tracker are optimally combined with the on-board inertial measurements and available gravity data to provide position information and serve as the height datum for a terrain-clearance measuring laser altimeter. Data-logging means and operator display, as well as steering commands to the aircraft autopilot, are provided. The system configuration is capable of operating in single- or twin-engine aircraft including helecopters. It is recommended that work proceed into the design phase.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J.H.; Im, C.J.

    The following report presents the technical progress achieved during the first quarter. The completion of this contract entails engineering evaluation in conjunction with basic laboratory research to determine overall process improvements, associated cost savings and the effect of these savings on product price as they relate to the UCC Physical Beneficiation Process for coal-water slurry manufacture. The technical effort for this quarter has concentrated on two basic areas of concern as they relate to the above-mentioned process. First, an engineering evaluation was carried out to examine the critical areas of improvement in the existing UCC Research Corporation single-stage cleaning circuitmore » (coarse coal, heavy media washer). When the plant runs for low ash coal product, at the specific gravity near 1.30, it was found that substantial product contamination resulted from magnetite carry over in the clean coal product. The reduction of the magnetite contamination would entail the application of more spray water to the clean coal drain and rinse screen, and the refinement of the existing dilute media handling system, to accept the increased quality of rinse water. It was also determined that a basic mechanical overhaul is needed on the washbox to ensure dependable operation during the future production of low-ash coal. The various cost elements involved with this renovation were determined by UCC personnel in the operational division. The second area of investigation was concerned with the laboratory evaluation of three separate source coals obtained from United Coal Company (UCC) and nearby mines to determine probable cleanability when using each seam of coal as a feed in the existing beneficiation process. Washability analyses were performed on each sample utilizing a specific gravity range from 1.25 to 1.50. 4 figures, 3 tables.« less

  12. Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved fundamental understanding of droplet combustion may contribute to the clean and safe utilization of fossil fuels (Williams, Dryer, Haggard & Nayagam, 1997, f 2). The present state of knowledge on convective extinction of fuel droplets derives from experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA's Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  13. Aqueous Solution Heat Pipe Transport: Qu-Tube vs. Capillary-Pumped Heat Pipe

    DTIC Science & Technology

    2013-07-01

    independently of gravity , exhibit very high conductivity, work over large distances and temperature ranges, and operate at a lower pressure than...tubes” or “Qu-tubes.” These purportedly superior tubes were claimed to have such desirable qualities as entirely dry operation, gravity -independence... gravity -dependent. Our detailed and quantitative findings suggest that the devices we purchased are not revolutionary in performance, and may in fact

  14. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  15. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  16. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  17. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  18. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  19. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  20. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  1. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  2. 14 CFR 27.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity limitations...

  3. 14 CFR 29.1519 - Weight and center of gravity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity limitations...

  4. Critical Pedagogy in the New Dark Ages: Challenges and Possibilities. Counterpoints: Studies in the Postmodern Theory of Education. Volume 422

    ERIC Educational Resources Information Center

    Nikolakaki, Maria, Ed.

    2012-01-01

    This book unmasks the neoliberal ideology that led modern civilization to withdraw from its previous accomplishments into what may be called the new Dark Ages. The international group of contributors to this volume aggressively rejects the siege of society by capitalism and the resulting deterioration. These authors engage a critical pedagogy that…

  5. Parents under Siege: Why You Are the Solution, not the Problem, in Your Child's Life.

    ERIC Educational Resources Information Center

    Garbarino, James; Bedard, Claire

    Confidential surveys reveal that 20 percent of American parents say they have a child at home who is so difficult it is nearly impossible to lead a normal life. Noting that to regain control, parents must first see clearly the many forces at work both around their families and within themselves, this book advises parents how to become better…

  6. At the University of Arizona, Goals Collide with Reality

    ERIC Educational Resources Information Center

    Kelderman, Eric

    2009-01-01

    To be at the University of Arizona these days is, in some ways, to be under siege. The flagship university in one of the nation's fastest-growing states may have to eliminate some 600 jobs and merge dozens of programs to deal with two rounds of budget cuts imposed since June. Now the governor is telling the university and other state agencies to…

  7. Interface for Physics Simulation Engines

    NASA Technical Reports Server (NTRS)

    Damer, Bruce

    2007-01-01

    DSS-Prototyper is an open-source, realtime 3D virtual environment software that supports design simulation for the new Vision for Space Exploration (VSE). This is a simulation of NASA's proposed Robotic Lunar Exploration Program, second mission (RLEP2). It simulates the Lunar Surface Access Module (LSAM), which is designed to carry up to four astronauts to the lunar surface for durations of a week or longer. This simulation shows the virtual vehicle making approaches and landings on a variety of lunar terrains. The physics of the descent engine thrust vector, production of dust, and the dynamics of the suspension are all modeled in this set of simulations. The RLEP2 simulations are drivable (by keyboard or joystick) virtual rovers with controls for speed and motor torque, and can be articulated into higher or lower centers of gravity (depending on driving hazards) to enable drill placement. Gravity also can be set to lunar, terrestrial, or zero-g. This software has been used to support NASA's Marshall Space Flight Center in simulations of proposed vehicles for robotically exploring the lunar surface for water ice, and could be used to model all other aspects of the VSE from the Ares launch vehicles and Crew Exploration Vehicle (CEV) to the International Space Station (ISS). This simulator may be installed and operated on any Windows PC with an installed 3D graphics card.

  8. Global Lunar Gravity Field Recovery from SELENE

    NASA Technical Reports Server (NTRS)

    Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo

    2002-01-01

    Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.

  9. Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John

    1997-01-01

    Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.

  10. 46 CFR 44.340 - Operating restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... refuge; and (4) Specific gravity of the spoil carried is not more than the highest specific gravity of... paragraph (a)(1) through (a)(3) of this section; and (2) The maximum specific gravity of the spoils allowed...

  11. 46 CFR 44.340 - Operating restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refuge; and (4) Specific gravity of the spoil carried is not more than the highest specific gravity of... paragraph (a)(1) through (a)(3) of this section; and (2) The maximum specific gravity of the spoils allowed...

  12. 46 CFR 44.340 - Operating restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refuge; and (4) Specific gravity of the spoil carried is not more than the highest specific gravity of... paragraph (a)(1) through (a)(3) of this section; and (2) The maximum specific gravity of the spoils allowed...

  13. 46 CFR 44.340 - Operating restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refuge; and (4) Specific gravity of the spoil carried is not more than the highest specific gravity of... paragraph (a)(1) through (a)(3) of this section; and (2) The maximum specific gravity of the spoils allowed...

  14. 46 CFR 44.340 - Operating restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refuge; and (4) Specific gravity of the spoil carried is not more than the highest specific gravity of... paragraph (a)(1) through (a)(3) of this section; and (2) The maximum specific gravity of the spoils allowed...

  15. AGARD Flight Test Techniques Series. Volume 8. Flight Testing under Extreme Environmental Conditions

    DTIC Science & Technology

    1988-01-01

    gravity control system operation. The overall objective of fuel system tests is to determine whether the system functions properly at all conditions both... gravity . 3.3.4 Hydraulic System The functional adequacy of the hydraulic system should be evaluated by monitoring operating system temperatures and...mechanical or gravity function of the crew ladder should be evaluated. The ladder should be exposed to freasing rain and icing to evaluate the non

  16. Cassini Maneuver Experience for the Fourth Year of the Solstice Mission

    NASA Technical Reports Server (NTRS)

    Vaquero, Mar; Hahn, Yungsun; Stumpf, Paul; Valerino, Powtawche; Wagner, Sean; Wong, Mau

    2014-01-01

    After sixteen years of successful mission operations and invaluable scientific discoveries, the Cassini orbiter continues to tour Saturn on the most complex gravity-assist trajectory ever flown. To ensure that the end-of-mission target of September 2017 is achieved, propellant preservation is highly prioritized over maneuver cycle minimization. Thus, the maneuver decision process, which includes determining whether a maneuver is performed or canceled, designing a targeting strategy and selecting the engine for execution, is being continuously re-evaluated. This paper summarizes the maneuver experience throughout the fourth year of the Solstice Mission highlighting 27 maneuvers targeted to nine Titan flybys.

  17. SpeedyTime_3_Treadmill_2

    NASA Image and Video Library

    2017-07-31

    When you live in a place where your heart doesn’t even have to work against the pull of gravity, you need help with exercise: the astronauts on the International Space Station have a suite of exercise equipment at their disposal, including a treadmill. In this “SpeedyTime” segment Expedition 52 flight engineer Jack Fischer runs through the workout they get on the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) in the station’s Tranquility module. HD Link: https://archive.org/details/jsc2017m000676_SpeedyTime_3_Treadmill_2 _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  18. Engineering and simulation of life science Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Bush, B.; Rummel, J.; Johnston, R. S.

    1977-01-01

    Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.

  19. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  20. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  1. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  2. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  3. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  4. Adjoint Sensitivity Analysis of Orbital Mechanics: Application to Computations of Observables' Partials with Respect to Harmonics of the Planetary Gravity Fields

    NASA Technical Reports Server (NTRS)

    Ustinov, Eugene A.; Sunseri, Richard F.

    2005-01-01

    An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.

  5. Orion Crew Module / Service Module Structural Weight and Center of Gravity Simulator and Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing

    NASA Technical Reports Server (NTRS)

    Ascoli, Peter A.; Haddock, Michael H.

    2014-01-01

    An Orion Crew Module Service Module Structural Weight and Center of Gravity Simulator and a Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing were designed during a summer 2014 internship in Kennedy Space Centers Structures and Mechanisms Design Branch. The simulator is a structure that supports ballast, which will be integrated into an existing Orion mock-up to simulate the mass properties of the Exploration Mission-1 flight vehicle in both fueled and unfueled states. The simulator mimics these configurations through the use of approximately 40,000 lbf of steel and water ballast, and a steel support structure. Draining four water tanks, which house the water ballast, transitions the simulator from the fueled to unfueled mass properties. The Ground Systems Development and Operations organization will utilize the simulator to verify and validate equipment used to maneuver and transport the Orion spacecraft in its fueled and unfueled configurations. The second design comprises a cantilevered tripod hoist structure that provides the capability to position a large Orion Service Module Umbilical in proximity to the Vehicle Motion Simulator. The Ground Systems Development and Operations organization will utilize the Vehicle Motion Simulator, with the hoist structure attached, to test the Orion Service Module Umbilical for proper operation prior to installation on the Mobile Launcher. Overall, these two designs provide NASA engineers viable concepts worthy of fabricating and placing into service to prepare for the launch of Orion in 2017.

  6. Reorientation of rotating fluid in microgravity environment with and without gravity jitters

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Shyu, K. L.

    1990-01-01

    In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellant transfer. The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank prior main engine restart poses a microgravity fluid behavior problem. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellant resettling have been carried out through the execution of supercomputer CRAY X-MP to simulate the fluid management in a microgravity environment. Results show that the resettlement of fluid can be accomplished more efficiently for fluid in rotating tank than in nonrotating tank, and also better performance for gravity jitters imposed on fluid settlement than without gravity jitters based on the amount of time needed to carry out resettlement period of time between the initiation and termination of geysering.

  7. A study of two-phase flow in a reduced gravity environment

    NASA Technical Reports Server (NTRS)

    Hill, D.; Downing, Robert S.

    1987-01-01

    A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.

  8. Initiation of geyser during the resettlement of cryogenic liquid under impulsive reverse gravity acceleration in microgravity environment

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.

    1991-01-01

    The requirement to settle or to position liquid fluid over the outlet end of spacecraft propellant tank prior to main engine restart poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undesirable fluid motion for the space fluid management under microgravity environment. The purpose of present study is to investigate most efficient technique for propellant resettling through the minimization of propellant usage and weight penalties. Comparison between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for the activation of propellant resettlement, it shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust for liquid reorientation in a reduced gravity environment.

  9. The 4-meter lunar engineering telescope

    NASA Technical Reports Server (NTRS)

    Peacock, Keith; Giannini, Judith A.; Kilgus, Charles C.; Bely, Pierre Y.; May, B. Scott; Cooper, Shannon A.; Schlimm, Gerard H.; Sounder, Charles; Ormond, Karen; Cheek, Eric

    1991-01-01

    The 16-meter diffraction limited lunar telescope incorporates a primary mirror with 312 one-meter segments; 3 nanometer active optics surface control with laser metrology and hexapod positioners; a space frame structure with one-millimeter stability; and a hexapod mount for pointing. The design data needed to limit risk in this development can be obtained by building a smaller engineering telescope on the moon with all of the features of the 16-meter design. This paper presents a 4.33-meter engineering telescope concept developed by the Summer 1990 Student Program of the NASA/JHU Space Grant Consortium Lunar Telescope Project. The primary mirror, made up of 18 one-meter hexagonal segments, is sized to provide interesting science as well as engineering data. The optics are configured as a Ritchey-Chretien with a coude relay to the focal plane beneath the surface. The optical path is continuously monitored with 3-nanometer precision interferometrically. An active optics processor and piezoelectric actuators operate to maintain the end-to-end optical configuration established by wave front sensing using a guide star. The mirror segments, consisting of a one-centimeter thick faceplate on 30-cm deep ribs, maintain the surface figure to a few nanometers under lunar gravity and thermal environment.

  10. Sovereignty Under Siege: Drug Trafficking and State Capacity in the Caribbean and Central America

    DTIC Science & Technology

    2016-06-01

    CARIBBEAN AND CENTRAL AMERICA 5. FUNDING NUMBERS 6. AUTHOR(S) Ryan Thomas King 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A...trafficking organizations have increased their prominence throughout the Caribbean and Central America. These organizations undermine the rule of law

  11. 13. Photograph of a photograph in possession of the Watervliet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photograph of a photograph in possession of the Watervliet Arsenal Museum, New York. THE FIRST 16' BREECH LOADING RIFLE PRODUCED BY THE ARSENAL SHOWN WITH THE GUN SHOP'S MECHANICS AND FOREMAN IN FRONT OF THE NORTH WING OF THE SEACOAST GUN SHOP AND THE FIELD AND SIEGE GUN SHOP. TAKEN IN 1901. - Watervliet Arsenal, Building No. 110, Hagner Road between Schull & Whittemore Roads, Watervliet, Albany County, NY

  12. States Under Siege: Rising Terrorism and the Ascent of Political Islam

    NASA Astrophysics Data System (ADS)

    Hoodbhoy, Pervez

    2014-07-01

    Religious extremists are challenging the authority of several Muslim states and the legitimacy of their governments through the use of terror. As state authority crumbles, victorious extremists could create new centers of international terrorism with wide-ranging consequences. To combat the threat effectively, it is necessary to understand both the ideology of extremism and the forces that propel it. And also, to situate them in a historical context...

  13. Political Soldiers and Democratic Institution-Building in Bosnia-Herzegovina

    DTIC Science & Technology

    2006-09-01

    Latin alphabet and the Roman church in the West, and, in the East, the Cyrillic script and the Orthodox church...Empire 1526- 1918 (Berkeley: The University of California Press, 1974), 65-9. After the failed siege of Vienna in 1883, Belgrade was taken by the...Slav national interest. They had considered the orthodox Serbs as a junior, less culturally advanced partner of the nation.” 44 technically named

  14. JPRS Report, Near East & South Asia, Iraq

    DTIC Science & Technology

    1991-08-20

    and half of whom would be elected by direct, lected medicine and milk for children and told the world secret balloting, about the killing of civilians...the continua- nomic siege on Iraq and banning milk from reaching the tion of campaigns of pressure and the blockade. Conser- children and elderly...organizations, which are characterized by ment. falsehood, falsification of facts, the shirking of responsi- bility, insistence on pushing for the

  15. Bringing a Perspective from Outside the Field: A Commentary on Davis et al.'s (2010) Use of a Modified Regression Discontinuity Design to Evaluate a Gifted Program

    ERIC Educational Resources Information Center

    Adelson, Jill L.; Kelcey, Benjamin

    2016-01-01

    In this commentary of "Evaluating the Gifted Program of an Urban School District Using a Modified Regression Discontinuity Design" by Davis, Engberg, Epple, Sieg, and Zimmer, we examine the background of the study, critique the methods used, and discuss the results and implications. The study used a fuzzy regression discontinuity design…

  16. Poland: Lone Eagle over Europe

    DTIC Science & Technology

    2012-05-17

    found himself surrounded by enemies. To complicate matters, the Treaty of Versailles and the Paris Peace Conference left many unanswered questions...reported Russian forces 75 miles from Warsaw and laying siege to the fortresses of Lomza and Brest -Litovsk along the Bug River.80 Like Pilsudski’s drive...territories granted by the Treaty of Versailles and the Paris Peace Conference.124 With the possibility of war, the Poles turned their nation’s military

  17. [sup 13]C and [sup 18]O of wood from the Roman siege rampart in Masada, Israel (AD 70-73): Evidence for a less arid climate for the region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakir, D.; Gat, J.; Issar, A.

    1994-08-01

    The isotopic ratios [sup 13]C/[sup 12]C and [sup 18]O/[sup 16]O of cellulose from tamarix trees which were used by the Roman army as a groundwork of the siege-rampart of Masada (AD 70-73) were compared with ratios measured in present-day tamarix trees growing in the Masada region and in central Israel. The ancient tamarix cellulose is depleted in both [sup 13]C and [sup 18]O compared to cellulose from trees growing in the Masada region today. Similar trends were observed on comparing modern tamarix trees growing in the Negev Desert with those growing in the temperate climate of central Israel. Considering themore » factors that can contribute to the observed changes in isotopic composition, the authors conclude that the ancient trees enjoyed less arid environmental conditions during their growth compared to contemporary trees in this desert region. This report demonstrates the potential in using combined [sup 18]O and [sup 13]C analyses of archeological plant material as independent indication of regional climate change in desert areas (where conventional isotopic analyses, such as in tree rings, are impractical).« less

  18. Coming attractions: sexual expression in the next decade.

    PubMed

    Klein, M

    2000-01-01

    This article offers predictions concerning sexual expression in the US in the 21st century. Section 1 focuses on trends in sexuality education, aspects of programming, and the future by which sex education programs operate. Section 2 looks at HIV/AIDS in the next decade and the response of the American community, especially the young people and their view of lethal and chronic diseases. Section 3 provides insights on the possible state of reproductive rights that America will face, particularly in the areas of abortion, insurance coverage, hospital and pharmaceutical company involvement, and fertility technology. Section 4 focuses on the issue of sexual orientation, particularly homosexuality. Section 5 projects the continuing rise of censorship as a response to increased cultural diversity; this will affect various entities, such as libraries, strip clubs, erotica, retail, school curricula, nude beaches, museum exhibits, and the Internet. Thus, the 21st century will begin from where it ended: with sexual expression under siege from all directions.

  19. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  20. Test Operations Procedure (TOP) 02-2-603A Vehicle Fuel Consumption

    DTIC Science & Technology

    2012-05-10

    API) Hydrometer . The API Hydrometer is used for accurate determination of the density, relative density (specific gravity), or API gravity of... Hydrometer Method. 5. TOP 02-2-505, Inspection and Preliminary Operation of Vehicles, 4 February 1987. 6. TOP 02-1-003, Hybrid Electric

  1. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  2. Rocket Engines Displayed for 1966 Inspection at Lewis Research Center

    NASA Image and Video Library

    1966-10-21

    An array of rocket engines displayed in the Propulsion Systems Laboratory for the 1966 Inspection held at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis engineers had been working on chemical, nuclear, and solid rocket engines throughout the 1960s. The engines on display are from left to right: two scale models of the Aerojet M-1, a Rocketdyne J-2, a Pratt and Whitney RL-10, and a Rocketdyne throttleable engine. Also on display are several ejector plates and nozzles. The Chemical Rocket Division resolved issues such as combustion instability and screech, and improved operation of cooling systems and turbopumps. The 1.5-million pound thrust M-1 engine was the largest hydrogen-fueled rocket engine ever created. It was a joint project between NASA Lewis and Aerojet-General. Although much larger in size, the M-1 used technology developed for the RL-10 and J-2. The M-1 program was cancelled in late 1965 due to budget cuts and the lack of a post-Apollo mission. The October 1966 Inspection was the culmination of almost a year of events held to mark the centers’ 25th anniversary. The three‐day Inspection, Lewis’ first since 1957, drew 2000 business, industry, and government executives and included an employee open house. The visitors witnessed presentations at the major facilities and viewed the Gemini VII spacecraft, a Centaur rocket, and other displays in the hangar. In addition, Lewis’ newest facility, the Zero Gravity Facility, was shown off for the first time.

  3. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  4. Quantum Interferometry

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  5. The Secret Siphon

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2011-01-01

    Although the siphon has been in use since ancient times, the exact mechanism of operation is still under discussion. For example, most dictionaries assert that atmospheric pressure is essential to the operation of a siphon rather than gravity. Although there is general agreement that gravity is the motivating force in a siphon, there is…

  6. Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  7. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  8. Firepower in Limited War

    DTIC Science & Technology

    1990-04-01

    Bananas " began ferrying Vietnamese troops into combat. Later in that same year, armed Hueys began escorting the vulnerable trans- ports into landing...region of Afghani- stan in an open vehicle. Flying lazily above were two Hinds, each taking turns peeling off to attack a destroyed, obviously deserted...58number used by NVA. 154 H-21 (Flying Banana ), 20-21siege, 5-7 HC-I B transport, 20-21Gunships. See also Aerial rocket Marine Corps observation

  9. Gifted Identification and the Role of Gifted Education: A Commentary on "Evaluating the Gifted Program of an Urban School District Using a Modified Regression Discontinuity Design"

    ERIC Educational Resources Information Center

    Steenbergen-Hu, Saiying; Olszewski-Kubilius, Paula

    2016-01-01

    The article by Davis, Engberg, Epple, Sieg, and Zimmer (2010) represents one of the recent research efforts from economists in evaluating the impact of gifted programs. It can serve as a worked example of the implementation of the regression discontinuity (RD) design method in gifted education research. In this commentary, we first illustrate the…

  10. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  11. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  12. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  13. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  14. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  15. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  16. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  17. 14 CFR 23.23 - Load distribution limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... distribution limits. (a) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within... established for the corresponding weight and center of gravity combinations. (b) The load distribution limits...

  18. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  19. 14 CFR 25.23 - Load distribution limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Ranges of weights and centers of gravity within which the airplane may be safely operated must be established. If a weight and center of gravity combination is allowable only within certain load distribution... and center of gravity combinations must be established. (b) The load distribution limits may not...

  20. An experiment to evaluate liquid hydrogen storage in space

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.

    1981-01-01

    The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.

  1. Numerical Simulation And Experimental Investigation Of The Lift-Off And Blowout Of Enclosed Laminar Flames

    NASA Technical Reports Server (NTRS)

    Venuturmilli, Rajasekhar; Zhang, Yong; Chen, Lea-Der

    2003-01-01

    Enclosed flames are found in many industrial applications such as power plants, gas-turbine combustors and jet engine afterburners. A better understanding of the burner stability limits can lead to development of combustion systems that extend the lean and rich limits of combustor operations. This paper reports a fundamental study of the stability limits of co-flow laminar jet diffusion flames. A numerical study was conducted that used an adaptive mesh refinement scheme in the calculation. Experiments were conducted in two test rigs with two different fuels and diluted with three inert species. The numerical stability limits were compared with microgravity experimental data. Additional normal-gravity experimental results were also presented.

  2. The Advantages, Potentials and Safety of VTOL Suborbital Space Tourism Operations

    NASA Astrophysics Data System (ADS)

    Ridzuan Zakaria, N.; Nasrun, N.; Abu, J.; Jusoh, A.; Azim, L.; Said, A.; Ishak, S.; Rafidi Zakaria, N.

    2012-01-01

    Suborbital space tourism offers short-time zero gravity and Earth view from space to its customers, and a package that can offer the longest duration of zero- gravity and the most exciting Earth view from space to its customer can be considered a better one than the others. To increase the duration of zero gravity time involves the design and engineering of the suborbital vehicles, but to improve the view of Earth from space aboard a suborbital vehicle, involves more than just the design and engineering of the vehicle, but more on the location of where the vehicle operates. So far, most of the proposed operations of suborbital space tourism vehicles involve a flight to above 80km and less than 120km and taking-off and landing at the same location. Therefore, the operational location of the suborbital vehicle clearly determines the view of earth from space that will be available to its passengers. The proposed operational locations or spaceports usually are existing airports such as the airport at Curacao Island in the Caribbean or spaceport specially built at locations with economic interests such as Spaceport America in New Mexico or an airport that is going to be built, such as SpaceportSEA in Selangor, Malaysia. Suborbital vehicles operating from these spaceports can only offer limited views of Earth from space which is only few thousand kilometers of land or sea around their spaceports, and a clear view of only few hundred kilometers of land or sea directly below them, even though the views can be enhanced by the application of optical devices. Therefore, the view of some exotic locations such as a colorful coral reef, and phenomena such as a smoking volcano on Earth which may be very exciting when viewed from space will not be available on these suborbital tourism packages. The only possible way for the passengers of a suborbital vehicle to view such exotic locations and phenomena is by flying above or near them, and since it will not be economic and will be more risky for a suborbital vehicle to fly above such objects after taking off from a spaceport far away from the object, and later returning to the spaceport, the way to go is to have the operation of the suborbital vehicle near the exotic locations. Unfortunately, some exotic locations such as a tropical archipelago in the middle of a clear blue ocean or a permanent icecap on a mountain range with variety of vegetation around it due to differences in height may not have suitable runway to function as spaceport, and for such reason, VTOL (vertical take-off and landing) capability for suborbital tourism vehicle may be worth considered. VTOL suborbital space tourism vehicle may not operate from a remote uneconomical location even though the location is near an exotic viewing target, but such vehicle may operate from a luxury super yacht that can sail to exotic locations around the world, and during the journey, the passengers can be trained and prepared for the flight of their life. Such is an advantage and potential of VTOL suborbital space tourism vehicle, but VTOL operation can be more complex than a conventional operation and therefore will increase the risk of operation, and for this reason the safety issue for such operation is very significant. This paper explores and discusses some advantages and potentials of VTOL suborbital space tourism operations and safety issues related to them. It also describes a couple of proposed concepts of VTOL suborbital tourism vehicles and potential exotic locations on Earth to be viewed from such vehicles.

  3. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  4. Engineering a Classroom Discussion.

    ERIC Educational Resources Information Center

    Smith, Walter E.

    1983-01-01

    Describes physical science activities that civil/mechanical engineers (serving as resource persons) can use with students during units on force, work, center of gravity, simple machines, and other basic mechanics concepts. Activities are adapted from Career Oriented Modules to Explore Topics in Science for grades 5-9 (COMETS). (Author/JN)

  5. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2016-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of zero-gravity (0-g) experienced by cosmonauts and astronauts during their approximately 0.5 to 1.2 year long stays in low Earth orbit (LEO). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity (AG) spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced bimodal nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (Isp) capability of approximately 900 s-twice that of today's best chemical rockets. The AG/MTV concepts using conventional Nuclear Thermal Propulsion (NTP) carry twin cylindrical International Space Station (ISS)- type habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own closed secondary helium(He)-xenon (Xe) gas loop and Brayton Rotating Unit (BRU) that can generate 10s of kilowatts (kWe) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable TransHab-type habitation module is also used with multiple vertical floors oriented radial to the MTV spin axis. The BNTR MTV's geometry-long and linear-is naturally compatible with AG operation. By rotating the vehicle about its center-of-mass (CM) and perpendicular to its flight vector at approximately 3.0 to 5.2 rpm, a centrifugal force and AG environment corresponding to approximately 0.38 to 1.0 g can be established to help maintain crew fitness out to Mars and back. Vehicles using NTP/ Bimodal Nuclear Thermal Propulsion (BNTP) can more readily accommodate the heavier payload mass and increased RCS propellant loading associated with AG operation, and can travel faster to and from Mars thereby reducing the crew's exposure to galactic cosmic radiation and solar flares. Mission scenario descriptions, key vehicle features and operational characteristics for each propulsion option are presented using the lift capability and payload volumes estimated for the Space Launch System (SLS)-1B and followon Heavy Lift Vehicle (HLV).

  6. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of "zero-gravity" (0-g) experienced by cosmonauts and astronauts during their approximately 0.5-1.2 year long stays in LEO (Low Earth Orbit). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced "bimodal" nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (I (sub sp)) capability of approximately 900 s - twice that of today's best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical "ISS-type" habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own "closed" secondary helium-xenon gas loop and Brayton rotating unit that can generate tens of kilowatts (kW (sub e)) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable "TransHab-type" habitation module is also used with multiple vertical floors oriented radial to the MTV spin axis. The BNTR MTV's geometry - long and linear - is naturally compatible with AG operation. By rotating the vehicle about its center-of-mass and perpendicular to its flight vector at approximately 3.0 - 5.2 rpm, a centrifugal force and AG environment corresponding to approximately 0.38 - 1.0 g can be established to help maintain crew fitness out to Mars and back. Vehicles using NTP/BNTP can more readily accommodate the heavier payload mass and increased RCS propellant loading associated with AG operation, and can travel faster to and from Mars thereby reducing the crew's exposure to galactic cosmic radiation and solar flares. Mission scenario descriptions, key vehicle features and operational characteristics for each propulsion options are presented using the lift capability and payload volumes estimated for the SLS-1A and HLV.

  7. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  8. The failure analysis, redesign, and final preparation of the Brilliant Eyes Thermal Storage Unit for flight testing

    NASA Astrophysics Data System (ADS)

    Lamkin, T.; Whitney, Brian

    1995-09-01

    This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.

  9. Smart-1 Moon Impact Operations

    NASA Technical Reports Server (NTRS)

    Ayala, Andres; Rigger, Ralf

    2007-01-01

    This paper describes the operations to control the Moon impact of the 3-axis stabilized spacecraft SMART-1 in September 2006. SMART-1 was launched on 27/09/2003. It was the first ESA mission to use an Electric Propulsion (EP) engine as the main motor to spiral out of the Earth gravity field and reach a scientific moon orbit [1]. During September 2005 the last EP maneuvers were performed using the remaining Xenon, in order to compensate for the 3rd body perturbations of the Sun and Earth. These operations extended the mission for an additional year. Afterwards the EP performance became unpredictable and low, so that no meaningful operation for the moon impact could be done. To move the predicted impact point on the 16/8/2006 into visibility from Earth an alternative Delta-V strategy was designed. Due to their alignment, the attitude thrusters could not be used directly to generate the Delta-V, so this strategy was based on controlled angular momentum biasing. Firing along the velocity vector around apolune, the remaining Hydrazine left from the attitude control budget was used, to shift the impact to the required coordinates.

  10. Free-Spinning-Tunnel Investigation of a 1/17 Scale Model of the Cessna T-37A Airplane

    NASA Technical Reports Server (NTRS)

    Bowman, James S., Jr.; Healy, Frederick M.

    1958-01-01

    Results of an investigation of a dynamic model in the Langley 20-foot free-spinning tunnel are presented. Erect spin and recovery characteristics were determined for a range of mass distributions and center-of-gravity positions. The effects of lateral displacement of the center of gravity, engine rotation, nose strakes, and increased rudder area were investigated.

  11. India's mission to Mars cost less than the movie Gravity: Multidimensional View in Engineering Education

    NASA Astrophysics Data System (ADS)

    Rani, Meenu; Kumar, Pawan; Vandana, Vandana

    2016-07-01

    Over the years, Mars has been the centre of attraction for science fiction writers, Hollywood movie makers, astrologers, astronomers and the scientific community. For scientists and technologists, Mars continues to be an enigma. This is essentially because even tough humans have dreamt for long about human colonisation of Mars. Indian space programme had a very humble beginning during the early 1960s. India launched its first satellite in 1975 with assistance from the erstwhile USSR. India achieved the status of space-faring nation2 by 1980, and by the end of 2014 has launched around 75 satellites. India has become the first nation to reach Mars on its maiden attempt after its Mars Orbiter Mission completed its 10-month journey and successfully entered the Red Planet's orbit. The Mars Orbiter Mission, a low-cost 74 million project, blasted off from Earth on November 5, 2013, aboard an Indian Polar Satellite Launch Vehicle. At its initial stage, the rocket booster placed the probe into Earth's orbit before the craft fired the engines to break free of Earth's gravity en route to Mars. This is India's first mission into such deep space to search for evidence of life on the Red Planet. But the mission's primary objective is technological-if successful, the country will be joining an elite club of nations: the United States, Russia and Europe. India is becoming known for low-cost innovation in diverse fields such as healthcare and education. The technological capability being demonstrated and the knowledge gained from the operations of the mission will be invaluable in future developments and also in the training of the flight operations and mission control staff. All of this capability can be carried forward to future launches and operations. The sustained presence of methane observed by previous missions suggests that an active production mechanism is at work, most likely tectonic in nature, although there are some suggestions that it may point to a biological origin. The MOM observations will help increase our knowledge of the methane plumes and possibly provide some clues as to their origin.

  12. An Optimisation Procedure for the Conceptual Analysis of Different Aerodynamic Configurations

    DTIC Science & Technology

    2000-06-01

    G. Lombardi, G. Mengali Department of Aerospace Engineering , University of Pisa Via Diotisalvi 2, 56126 PISA, Italy F. Beux Scuola Normale Superiore...obtain engines , gears and various systems; their weights and centre configurations with improved performances with respect to a of gravity positions...design parameters have been arranged for The optimisation process includes the following steps: cruise: payload, velocity, range, cruise height, engine

  13. Antibody binding in altered gravity: implications for immunosorbent assay during space flight

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Fogel, Marilyn; Steele, Andrew; Wainwright, Norman; Pierson, Duane L.; McKay, David S.

    2003-01-01

    A single antibody-incubation step of an indirect, enzyme-linked immunosorbent assay (ELISA) was performed during microgravity, Martian gravity (0.38 G) and hypergravity (1.8 G) phases of parabolic flight, onboard the NASA KC-135 aircraft. Antibody-antigen binding occurred within 15 seconds; the level of binding did not differ between microgravity, Martian gravity and 1 G (Earth's gravity) conditions. During hypergravity and 1 G, antibody binding was directly proportional to the fluid volume (per microtiter well) used for incubation; this pattern was not observed during microgravity. These effects in microgravity may be due to "fluid spread" within the chamber (observed during microgravity with digital photography), leading to greater fluid-surface contact and subsequently antibody-antigen contact. In summary, these results demonstrate that: i) ELISA antibody-incubation and washing steps can be successfully performed by human operators during microgravity, Martian gravity and hypergravity; ii) there is no significant difference in antibody binding between microgravity, Martian gravity and 1 G conditions; and iii) a smaller fluid volume/well (and therefore less antibody) was required for a given level of binding during microgravity. These conclusions indicate that reduced gravity would not present a barrier to successful operation of immunosorbent assays during spaceflight.

  14. Effects of Structural Flexibility on Aircraft-Engine Mounts

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1986-01-01

    Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.

  15. CTC Sentinel. Volume 7, Issue 11. November/December 2014

    DTIC Science & Technology

    2014-12-01

    Europe and Kurds in Turkey Could Elect Erdogan ,” Policywatch However, there is no shortage of critics of this current status of Turkish- Kurdish...for doubt, and perhaps allaying the conservative remnants of the Turkish deep-state, Erdogan recently stated (in reference to siege of the town of... Erdogan was to allow a select number of members of the Free Syrian Army access to Kobani.12 The YPG were also aided by a small Arab FSA brigade

  16. A historical case of beaten-copper cranium.

    PubMed

    Rühli, Frank J; Nicklisch, Nicole; Alt, Kurt W

    2007-01-01

    The authors present the oldest historical case of a so-called beaten-copper cranium. The typical pattern was identified on a skull from a child, probably a boy, who died at approximately 6 years of age and was buried in a provisional cemetery used during the siege of Hanau, Germany, in 1635 and 1636. Morphological and radiological analyses of the severe digitate impressions ubiquitous on the child's endocranium support the diagnosis of chronically elevated intracranial pressure due to hydrocephalus.

  17. Initial impressions from the Northern California 2008 lightning siege: A report by a Wildland Fire Lessons Learned Center Information Collection Team

    Treesearch

    Jonetta T. Holt; David Christenson; Anne Black; Brett Fay; Kim Round

    2009-01-01

    This event in NorCal is another of the major events we have experienced in fire management. In line with our desire to learn, we ought to line up a team to help us capture lessons learned from this event." This statement, and a regional delegation, was the impetus for an information collection team from the Wildland Fire Lessons Learned Center to visit with...

  18. A Companion for Aspirant Air Warriors: A Handbook for Personal Professional Study

    DTIC Science & Technology

    2010-05-01

    evacuation had been conceptualized to rescue political leader Leon Gambetta from the Prussian siege of Paris during the Franco-Prussian War. Carrier...69. Douhet, Giulio. The Command of the Air. Washington, DC: Office of Air Force History, 1983. (Reprint of 1942 edition. Originally published in 1921...of Brest when British torpedo planes caught up with her. One of them put a weapon into the ship’s steering gear, jamming it so that it could only

  19. Gravity Thickening. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Klopping, Paul H.

    The basic operation of the gravity thickener is described in this lesson, focusing on the theory of operation, components found in a typical thickener, and the parameters which must be understood in optimizing the opeation of the thickener. Attention is given to mathematics concepts which are used in controlling hydraulic loading, detention time,…

  20. [Starving in childhood and diabetes mellitus in elderly age].

    PubMed

    Khoroshinina, L P; Zhavoronkova, N V

    2008-01-01

    The long-term consequences of the protracted starvation or inadequate nutrition of children is a problem in which considerable interest has been shown in recent decades. Between June 1941 and January 1944 the civilian population of Leningrad was besieged for two and a half years. The non-combatant population of this large European city lived through lengthy periods of starvation or malnutrition against a background of additional complex stress factors (including cold, bombing, death of relatives and acquaintances, and lack of means of transport and communication). It may be assumed that the health in adulthood of those who were children and young people in Leningrad during the siege differed from that of people of the same age who were spared those extreme conditions. Impact of starvation in childhood on prevalence rate of diabetes mellitus in elderly age, time of onset, clinical features of the disease course were studied. The results confirm that insulin-independent diabetes without obesity develops more often and earlier in women who got through the Siege of Leningrad in their childhood. Health status of elderly people who underwent continuous starvation in their childhood is the actual problem, because health status of young people in this country who got through 90's, when one of three children in the age of 2 years starved, suggests developing of medical and social problems because of forthcoming changes in the illness patterns of the population in modern Russia.

  1. Development of a gravity-independent wastewater bioprocessor for advanced life support in space

    NASA Technical Reports Server (NTRS)

    Nashashibi-Rabah, Majda; Christodoulatos, Christos; Korfiatis, George P.; Janes, H. W. (Principal Investigator)

    2005-01-01

    Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.

  2. Low gravity two-phase flow with heat transfer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1991-01-01

    A realistic model for the transfer line chilldown operation under low-gravity conditions is developed to provide a comprehensive predictive capability on the behavior of liquid vapor, two-phase diabatic flows in pipes. The tasks described involve the development of numerical code and the establishment of the necessary experimental data base for low-gravity simulation.

  3. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, S.; Martin, C. P.

    2018-03-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.

  4. Phobos Environment Model and Regolith Simulant for MMX Mission

    NASA Technical Reports Server (NTRS)

    Miyamoto, H.; Niihara, T.; Wada, K.; Ogawa, K.; Baresi, N.; Abell, Paul A.; Asphaug, E.; Britt, D.; Dodbiba, G.; Fujita, T.; hide

    2018-01-01

    Phobos and Deimos, the two moons of Mars, are considered to be scientifically important and potential human mission's target. Martian Moons eXplorer (MMX) is the JAXA's mission to explore Phobos (and/or Deimos), which is scheduled to be launched in 2024. The main spacecraft of MMX will perform in-situ observations of both Phobos and Deimos, land on one of them (most likely, Phobos), and bring samples back to Earth. Small landing modules may be included in the mission as for the Hayabusa-2 mission. The designs of both the landing and sampling devices depend largely on the surface conditions of the target body and on how this surface reacts to an external action in the low gravity conditions of the target. Thus, the Landing Operation Working Team (LOWT) of MMX, which is composed of both scientists and engineers, is studying Phobos' surface based on previous observations and theoretical/experimental considerations. Though engineering motivation initiated this activity, the results will be extremely useful for scientific purposes.

  5. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  6. Aerodynamic Control-Augmentation Devices For Saturn-Class Launch Vehicles With Aft Centers Of Gravity

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report describes study of aerodynamic flight-control-augmentation devices proposed for use in increasing payload capabilities of future launch vehicles by allowing more aft centers of gravity. Proposed all-movable devices not only provide increased control authority during ascent trajectory, but also reduce engine gimballing requirements and enhance crew safety. Report proposes various aerodynamic control surfaces mounted fore and aft on Saturn-class launch vehicle.

  7. Farside gravity field of the moon from four-way Doppler measurements of SELENE (Kaguya).

    PubMed

    Namiki, Noriyuki; Iwata, Takahiro; Matsumoto, Koji; Hanada, Hideo; Noda, Hirotomo; Goossens, Sander; Ogawa, Mina; Kawano, Nobuyuki; Asari, Kazuyoshi; Tsuruta, Sei-Itsu; Ishihara, Yoshiaki; Liu, Qinghui; Kikuchi, Fuyuhiko; Ishikawa, Toshiaki; Sasaki, Sho; Aoshima, Chiaki; Kurosawa, Kosuke; Sugita, Seiji; Takano, Tadashi

    2009-02-13

    The farside gravity field of the Moon is improved from the tracking data of the Selenological and Engineering Explorer (SELENE) via a relay subsatellite. The new gravity field model reveals that the farside has negative anomaly rings unlike positive anomalies on the nearside. Several basins have large central gravity highs, likely due to super-isostatic, dynamic uplift of the mantle. Other basins with highs are associated with mare fill, implying basalt eruption facilitated by developed faults. Basin topography and mantle uplift on the farside are supported by a rigid lithosphere, whereas basins on the nearside deformed substantially with eruption. Variable styles of compensation on the near- and farsides suggest that reheating and weakening of the lithosphere on the nearside was more extensive than previously considered.

  8. Earthquake Response of Concrete Gravity Dams Including Hydrodynamic and Foundation Interaction Effects,

    DTIC Science & Technology

    1980-01-01

    standard procedure for Analysis of all types of civil engineering struc- tures. Early in its development, it became apparent that this method had...unique potentialities in the evaluation of stress in dams, and many of its earliest civil engineering applications concerned special problems associated...with such structures [3,4]. The earliest dynamic finite element analyses of civil engineering structures involved the earthquake response analysis of

  9. Hypergravity as a Tool for Cell Stimulation: : Implications in Biomedicine

    NASA Astrophysics Data System (ADS)

    Genchi, Giada Graziana; Rocca, Antonella; Marino, Attilio; Grillone, Agostina; Mattoli, Virgilio; Ciofani, Gianni

    2016-08-01

    Gravity deeply influences numerous biological events in living organisms. Variations in gravity values induce adaptive reactions that have been shown to play important roles, for instance in cell survival, growth, and spatial organization. In this paper, we summarize effects of gravity values higher than that one experienced by cells and tissues on Earth, i.e., hypergravity, with particular attention to the nervous and the musculoskeletal systems. Besides the biological consequences that hypergravity induces in the living matter, we will discuss the possibility of exploiting this augmented force in tissue engineering and regenerative medicine, and thus hypergravity significance as a new therapeutic approach both in vitro and in vivo.

  10. Recommended Research on Artificial Gravity. Chapter 13

    NASA Technical Reports Server (NTRS)

    Vernikos, Joan; Paloski, William; Fuller, Charles; Clement, Gilles

    2006-01-01

    Based on the summaries presented in the above sections of what is still to be learned on the effects of artificial gravity on human functions, this chapter will discuss the short- and long-term steps of research required to understand fundamentals and to validate operational aspects of using artificial gravity as an effective countermeasure for long-duration space travel.

  11. Two-loop renormalization of quantum gravity simplified

    NASA Astrophysics Data System (ADS)

    Bern, Zvi; Chi, Huan-Hang; Dixon, Lance; Edison, Alex

    2017-02-01

    The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple. We explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.

  12. The potential of quantum technology gravity sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Tuckwell, G.; Metje, N.; Boddice, D.; Usher, C.

    2017-12-01

    Potential field techniques have advantages over active geophysical techniques as they are not limited to the depth they can image features, provided the signals of interest are detectable amongst the other variations recorded by the instrument. A new generation of gravity instruments based on quantum technology promise greatly increased measurement sensitivity, but with this comes significant challenges in data processing and noise suppression. In the UK Innovate UK funded SIGMA project (http://www.rsksigma.co.uk/) the field of opportunity for a step change in gravity sensor accuracy has been evaluated by comparison with existing geophysical sensors, identifying the range of targets and depths of interest to commercial end users that are currently undetectable and might become visible. Forward modelling was used to quantify the potential of a Quantum Technology (QT) gravity and gravity gradiometer sensor. A substantive improvement in detectability of targets is predicted, which can be considered as a factor of 1.5 to 2 increase in the depth of detectability, or in the reduction of the size of the feature of interest. To take further advantage of new instrument sensitivity, new survey workflows are required. The accuracy of measured gravity maps is limited by environmental vibration noise, and by the accuracy with which tidal variations and terrain signals can be removed. It is still common practice in engineering scale surveys for gravity values to be reduced to Bouguer residuals. However, with a more sensitive instrument comes the need to measure the terrain more accurately. This can be achieved within a commercially viable workflow using a laser scanner for rapid data acquisition and advanced processing to produce an accurate DEM. Initial tests on 4 commercial sites have shown that an improvement of 10s of mGal can be achieved if applying a full digital terrain model correction to the microgravity data even on sites with very minor topographic height variations. At the same time, the new algorithms developed by the project can reduce the computational time by a factor of 20. This will have implications on the commercial viability of a QT gravity instrument.

  13. Near East/South Asia Report No. 2803

    DTIC Science & Technology

    1983-08-16

    future siege. A discreet visit to the site enables one to correct the image projected by public rumor. The People’s Palace is not like the Elysee, the...industrial owners — although a much more rapacious "new bourgeoisie " has long since taken their place —and has given many social advantages to the...outdated charm of the .Club d’Alep, whose architecture, aging furnishings and clientele remind one of the nostalg-ic atmosphere recreated.in the Visconti

  14. CTC Sentinel. Volume 2, Issue 11, November 2009. Lashkar-i-Tayyiba: One Year After Mumbai

    DTIC Science & Technology

    2009-11-01

    1 O ne year ago, 10 gunmen from Lashkar- i -Tayyiba (LT) laid siege to multiple targets in India’s financial capital of Mumbai over the course of...member of LT, Faisalabad, Pakistan, May 13, 2009. Lashkar- i -Tayyiba: One Year After Mumbai By Stephen Tankel Contents FEATURE ARTICLE 1 Lashkar- i ...Islam By Luv puri 22 Maintaining the Message: How Jihadists Have Adapted to Web Disruptions By Manuel R. Torres Soriano 24 Recent Highlights in

  15. The Armored and Mechanized Division Armored Cavalry Squadron

    DTIC Science & Technology

    1977-06-10

    not. You might think some of the historians were speaking today. This review will also attempt to provide a base for further research. HISTORY It is... historians believe the Chinese first used horse mounted soldiers as early as 2b00 B,C, The fighting at the siege of Troy had warrior chiefs called...34 moto -mechanized" divisions, "mobile" divisions, the "Panzer Corps," etc. It seems to be the fashio- of the times to apply a mechanical name to

  16. Conservation biology. Galápagos station survives latest attack by fishers.

    PubMed

    Ferber, D

    2000-12-15

    Researchers at the Darwin Research Station are attempting to put the pieces back together after a festering dispute over fishing quotas turned violent between 13 and 17 November. The fuse that set off the most recent conflagration was an annual 50-ton limit on spiny lobsters that local fishers reached barely halfway into the 4-month season. Unruly bands of fishers laid siege to the station and the park service, blocked roads and offices, tore down the island's telephone antenna, and destroyed research records.

  17. An Evaluation of the Intensity of Radical Islam in the Balkans and the Assessment of Its Level of Threat for European Security

    DTIC Science & Technology

    2011-12-01

    conquest of the Balkans and failed siege of Vienna, they considered the Balkans as a new border between their states and Islam and thus a lost cause for...security environment, globalization facilitated the rise of terrorism and unified religious fanatics in their irrational cause . Throughout history...Western World: “The freedom given to these individuals to disseminate propaganda and to rally for the cause among Muslim communities in Europe

  18. Risk analysis of gravity dam instability using credibility theory Monte Carlo simulation model.

    PubMed

    Xin, Cao; Chongshi, Gu

    2016-01-01

    Risk analysis of gravity dam stability involves complicated uncertainty in many design parameters and measured data. Stability failure risk ratio described jointly by probability and possibility has deficiency in characterization of influence of fuzzy factors and representation of the likelihood of risk occurrence in practical engineering. In this article, credibility theory is applied into stability failure risk analysis of gravity dam. Stability of gravity dam is viewed as a hybrid event considering both fuzziness and randomness of failure criterion, design parameters and measured data. Credibility distribution function is conducted as a novel way to represent uncertainty of influence factors of gravity dam stability. And combining with Monte Carlo simulation, corresponding calculation method and procedure are proposed. Based on a dam section, a detailed application of the modeling approach on risk calculation of both dam foundation and double sliding surfaces is provided. The results show that, the present method is feasible to be applied on analysis of stability failure risk for gravity dams. The risk assessment obtained can reflect influence of both sorts of uncertainty, and is suitable as an index value.

  19. Slanted-edge MTF testing for establishing focus alignment at infinite conjugate of space optical systems with gravity sag effects

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon

    2017-09-01

    For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.

  20. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing along with results from ground based van testing and laboratory results have shown that the new sensor provides more consistent gravity data, as measured by repeated line surveys, as well as preserving the inherent sensitivity of the Lacoste and Romberg zero length spring design. The sensor also provides reliability during survey operation as there is no mechanical counter screw. Results will be presented which show the advantages of the new sensor system over the current technology in both data quality and survey productivity. Applications include high resolution geoid mapping, crustal structure investigations and resource mapping of minerals, oil and gas.

  1. 46 CFR 160.032-2 - General requirements for davits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... condition. (b) Davits may be either of the mechanical or gravity types. (1) Mechanical davits shall be... davits with mechanical means for operating are not acceptable under this category. (2) Gravity davits...

  2. 46 CFR 160.032-2 - General requirements for davits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... condition. (b) Davits may be either of the mechanical or gravity types. (1) Mechanical davits shall be... davits with mechanical means for operating are not acceptable under this category. (2) Gravity davits...

  3. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  4. Building a Futuristic Telescope on the Moon - A Fun Project for Research, Science Teaching, and Outreach

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.; Haas, J. Patrick; Mirel, Paul

    2018-01-01

    We present the design and demonstrate the operation of a model lunar observatory. While this is a research project, it is also intended to stimulate student interest in space science, astronomy, physics, chemistry, and engineering. First, we discuss the science objectives of a lunar observatory. The Moon is a great location for astronomy. Why? What science can best be done from there? What are exoplanets? We would like to see what planets around other stars look like. Why is it so difficult? What are optical interferometers and why do we need them? Next, we discuss the physics, chemistry, and engineering principles involved. The lunar environment is totally different from Earth. It features high vacuum, low gravity, very slow rotation rate, cryogenic temperatures, and dust. How can an observatory be designed that not only survives, but can take advantage of the environment? We present a “cool” solution (the model uses liquid nitrogen) that combines the following elements: high temperature superconductors, telescope mirrors made of “moondust”, novel telescope support system, an observatory structure made of simulated lunar soil, 3D printing, and methods for dust mitigation. Information will be provided on how similar systems can be built and what further refinements (e.g. voice control, precision stepper drives, autonomous operation, and telerobotics) can be added.

  5. Bone mechanobiology, gravity and tissue engineering: effects and insights.

    PubMed

    Ruggiu, Alessandra; Cancedda, Ranieri

    2015-12-01

    Bone homeostasis strongly depends on fine tuned mechanosensitive regulation signals from environmental forces into biochemical responses. Similar to the ageing process, during spaceflights an altered mechanotransduction occurs as a result of the effects of bone unloading, eventually leading to loss of functional tissue. Although spaceflights represent the best environment to investigate near-zero gravity effects, there are major limitations for setting up experimental analysis. A more feasible approach to analyse the effects of reduced mechanostimulation on the bone is represented by the 'simulated microgravity' experiments based on: (1) in vitro studies, involving cell cultures studies and the use of bioreactors with tissue engineering approaches; (2) in vivo studies, based on animal models; and (3) direct analysis on human beings, as in the case of the bed rest tests. At present, advanced tissue engineering methods allow investigators to recreate bone microenvironment in vitro for mechanobiology studies. This group and others have generated tissue 'organoids' to mimic in vitro the in vivo bone environment and to study the alteration cells can go through when subjected to unloading. Understanding the molecular mechanisms underlying the bone tissue response to mechanostimuli will help developing new strategies to prevent loss of tissue caused by altered mechanotransduction, as well as identifying new approaches for the treatment of diseases via drug testing. This review focuses on the effects of reduced gravity on bone mechanobiology by providing the up-to-date and state of the art on the available data by drawing a parallel with the suitable tissue engineering systems. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Towing Asteroids with Gravity Tractors Enhanced by Tethers and Solar Sails

    NASA Technical Reports Server (NTRS)

    Shen, Haijun; Roithmayr, Carlos M.

    2015-01-01

    Material collected from an asteroid's surface can be used to increase gravitational attraction between the asteroid and a Gravity Tractor (GT); the spacecraft therefore operates more effectively and is referred to as an Enhanced Gravity Tractor (EGT). The use of tethers and solar sails to further improve effectiveness and simplify operations is investigated. By employing a tether, the asteroidal material can be placed close to the asteroid while the spacecraft is stationed farther away, resulting in a better safety margin and improved thruster efficiency. A solar sail on a spacecraft can naturally provide radial offset and inter-spacecraft separation required for multiple EGTs.

  7. Combustion and fires in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    Fire safety always receives priority attention in NASA mission designs and operations, with emphasis on fire prevention and material acceptance standards. Recently, interest in spacecraft fire-safety research and development has increased because improved understanding of the significant differences between low-gravity and normal-gravity combustion suggests that present fire-safety techniques may be inadequate or, at best, non-optimal; and the complex and permanent orbital operations in Space Station Freedom demand a higher level of safety standards and practices. This presentation outlines current practices and problems in fire prevention and detection for spacecraft, specifically the Space Station Freedom's fire protection. Also addressed are current practices and problems in fire extinguishment for spacecraft.

  8. Entirely passive heat pipe apparatus capable of operating against gravity

    DOEpatents

    Koenig, Daniel R.

    1982-01-01

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  9. Entirely passive heat-pipe apparatus capable of operating against gravity

    DOEpatents

    Koenig, D.R.

    1981-02-11

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  10. Microgravity and Hypogravity Compatible Methods for the Destruction of Solid Wastes by Magnetically Assisted Gasification

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Akse, James R.; Wheeler, Richard R., Jr.; Jovanovic, Goran N.; Pinto-Espinoza, Joaquin; Reed, Brian; Sornchamni, Thana

    2003-01-01

    This report summarizes a three-year collaborative effort between researchers at UMPQUA Research Company (URC) and the Chemical Engineering Department at Oregon State University (OSU). The Magnetically Assisted Gasification (MAG) concept was originally conceived as a microgravity and hypogravity compatible means for the decomposition of solid waste materials generated aboard spacecraft, lunar and planetary habitations, and for the recovery of potentially valuable resources. While a number of methods such as supercritical water oxidation (SCW0), fluidized bed incineration, pyrolysis , composting and related biological processes have been demonstrated for the decomposition of solid wastes, none of these methods are particularly well- suited for employment under microgravity or hypogravity conditions. For example, fluidized bed incineration relies upon a balance between drag forces which the flowing gas stream exerts upon the fluidization particles and the opposing force of gravity. In the absence of gravity, conventional fluidization cannot take place. Hypogravity operation can also be problematic for conventional fluidized bed reactors, because the various factors which govern fluidization phenomena do not all scale linearly with gravity. For this reason it may be difficult to design and test fluidized bed reactors in lg, which are intended to operate under different gravitational conditions. However, fluidization can be achieved in microgravity (and hypogravity) if a suitable replacement force to counteract the forces between fluid and particles can be found. Possible alternatives include: centripetal force, electric fields, or magnetic fields. Of these, magnetic forces created by the action of magnetic fields and magnetic field gradients upon ferromagnetic media offer the most practical approach. The goal of this URC-OSU collaborative effort was to develop magnetic hardware and methods to control the degree of fluidization (or conversely consolidation) of granular ferromagnetic media and to employ these innovations in sequential filtration and fluidized bed processes for the segregation and decomposition of solid waste materials, and for the concentration and collection of inorganic residue (ash). This required the development of numerous enabling technologies and tools.

  11. Testing local Lorentz invariance with short-range gravity

    DOE PAGES

    Kostelecký, V. Alan; Mewes, Matthew

    2017-01-10

    The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.

  12. Microgravity Effects on Materials Processing: A Review. Appendix D

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.

    2003-01-01

    Materials processing in space has been studied both theoretically and experimentally for over 1/4 of a century. In the beginning, we naively spoke of zero gravity, elimination of convection, growth of perfect crystals, and eventual manufacturing in space. All of these appear to have fallen by the wayside. On the other hand, we have learned an unprecedented amount about the influences of gravity on materials processing. We have had many surprises, and not all experimental results have yet been satisfactorily explained. Gravity was found to influence processes that were thought to be gravity-independent. One consequence is that materials processing on earth has often been improved. And it is difficult to imagine how the materials-processing industries could have flourished without the engineers and scientists who received their training by working on microgravity materials processing.

  13. 35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM THE ARTISAN WELL (THROUGH THE DOORWAY) TO THE CISTERN ON THE ROOF. WATER WAS THEN FED BY GRAVITY TO THE REST OF THE FACTORY. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  14. Status threat, not economic hardship, explains the 2016 presidential vote

    PubMed Central

    2018-01-01

    This study evaluates evidence pertaining to popular narratives explaining the American public’s support for Donald J. Trump in the 2016 presidential election. First, using unique representative probability samples of the American public, tracking the same individuals from 2012 to 2016, I examine the “left behind” thesis (that is, the theory that those who lost jobs or experienced stagnant wages due to the loss of manufacturing jobs punished the incumbent party for their economic misfortunes). Second, I consider the possibility that status threat felt by the dwindling proportion of traditionally high-status Americans (i.e., whites, Christians, and men) as well as by those who perceive America’s global dominance as threatened combined to increase support for the candidate who emphasized reestablishing status hierarchies of the past. Results do not support an interpretation of the election based on pocketbook economic concerns. Instead, the shorter relative distance of people’s own views from the Republican candidate on trade and China corresponded to greater mass support for Trump in 2016 relative to Mitt Romney in 2012. Candidate preferences in 2016 reflected increasing anxiety among high-status groups rather than complaints about past treatment among low-status groups. Both growing domestic racial diversity and globalization contributed to a sense that white Americans are under siege by these engines of change. PMID:29686081

  15. Geodesy and gravity experiment in earth orbit using a superconducting gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1985-01-01

    A superconducting gravity gradiometer is under development with NASA support for space application. It is planned that a sensitive three-axis gravity gradiometer will be flown in a low-altitude (about 160 km) polar orbit in the 1990's for the purpose of obtaining a high-resolution gravity map of the earth. The large twice-an-orbit term in the harmonic expansion of gravity coming from the oblateness of the earth can be analyzed to obtain a precision test of the inverse square law at a distance of 100-1000 km. In this paper, the design, operating principle, and performance of the superconducting gravity gradiometer are described. The concept of a gravity-gradiometer mission (GGM), which is in an initial stage of development is discussed. In particular, requirements that such a mission imposes on the design of the cryogenic spacecraft will be addressed.

  16. Weightbearing vs Gravity Stress Radiographs for Stability Evaluation of Supination-External Rotation Fractures of the Ankle.

    PubMed

    Seidel, Angela; Krause, Fabian; Weber, Martin

    2017-07-01

    Isolated lateral malleolar fractures may result from a supination-external rotation (SER) injury of the ankle. Stable fractures maintain tibiotalar congruence due to competent medial restraints and can be treated nonoperatively with excellent functional results and long-term prognosis. Stability might be assessed with either stress radiographs or weightbearing radiographs. A consecutive series of patients with closed SER fractures (presumed AO 44-B1) were prospectively enrolled from 2008 to 2015. Patients with clearly unstable fractures (medial clear space more than 7 mm) on the initial nonweightbearing radiograph were excluded and operated on. All other patients were examined with a gravity stress and a weightbearing anteroposterior radiograph. Borderline instability of the fracture was assumed when the medial clear space was 4 to 7 mm. Those were treated nonoperatively. Of 104 patients with isolated lateral malleolar fractures of the SER type, 14 patients were treated operatively because of clear instability (displacement) on the initial radiographs. Of the nonoperative patients, 44 patients demonstrated borderline instability on the gravity stress but stability on the weightbearing radiograph ("gravity borderline"); the remaining 46 were stable in both tests ("gravity stable"). At an average follow-up of 23 months, no significant differences were seen in the American Orthopaedic Foot & Ankle Society hindfoot score (92 points gravity-borderline group vs 93 points gravity-unstable group), the Foot Functional Index score (11 vs 10 points), the Short Form 36 (SF-36) physical component (86 vs 85 points), and SF-36 mental component (84 vs 81 points). Radiographically, all fractures had healed with anatomic congruity of the ankle. Weightbearing radiographs provided a reliable basis to decide about stability and nonoperative treatment in isolated lateral malleolar fractures of the SER type with excellent clinical and radiographic outcome at short-term follow-up. Gravity stress radiographs appear to overrate the need for operative treatment. Level III, prospective comparative study.

  17. In-Flight Operation of the Dawn Ion Propulsion System Through Start of the Vesta Cruise Phase

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.

    2009-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. IPS will be operated for over two years at throttled power levels leading to arrival at Vesta in September of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of deterministic thrusting to Vesta.

  18. Two-loop renormalization of quantum gravity simplified

    DOE PAGES

    Bern, Zvi; Chi, Huan -Hang; Dixon, Lance; ...

    2017-02-22

    The coefficient of the dimensionally regularized two-loop R 3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when nondynamical three-forms are added to the theory, or when a pseudoscalar is replaced by the antisymmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences for renormalized scattering processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple.more » As a result, we explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators.« less

  19. Generation of Acoustic Self-bending and Bottle Beams by Phase Engineering

    DTIC Science & Technology

    2014-07-03

    projectile under the action of gravity . We synthesize an acoustic beam propagating along a free-form Bézier curve in air33 by employing a planar speaker...the axial radiation force can be negative, indicating the existence of a pulling force against the beam propagation direction as well as the gravity ...use Legendre transformations to construct the geometric wavefront from a preset beam trajectory. Assume that the geometric wavefront W corresponding to

  20. A summary of existing and planned experiment hardware for low-gravity fluids research

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; Omalley, Terence F.

    1991-01-01

    An overview is presented of (1) existing ground-based, low gravity research facilities, with examples of hardware capabilities, and (2) existing and planned space-based research facilities, with examples of current and past flight hardware. Low-gravity, ground-based facilities, such as drop towers and aircraft, provide the experimenter with quick turnaround time, easy access to equipment, gravity levels ranging from 10(exp -2) to 10(exp -6) G, and low-gravity durations ranging from 2 to 30 sec. Currently, the only operational space-based facility is the Space Shuttle. The Shuttle's payload bay and middeck facilities are described. Existing and planned low-gravity fluids research facilities are also described with examples of experiments and hardware capabilities.

  1. The Attraction of Gravity (Jean Dominique Cassini Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Iess, Luciano

    2017-04-01

    The motion of planetary bodies, their interior structure, their shape, and ultimately their landscape, are all determined, more or less directly, by gravity. It is therefore not surprising that by measuring the orbital motion and the gravity field of planets and satellites we have been able to gather crucial information on the interior structure and evolution of those bodies, and at the same time to put the laws of gravity to the test. Planetary geodesy is now a fully developed discipline that uses methods and observable quantities adopted also in other fields, such as space navigation and telecommunications. Thanks to this winning synergy between science and engineering, we can now measure spacecraft velocities to 10-6 m/s and accelerations to 10-9 m/s2 over time scales as short as 1000 s, everywhere in the solar system. The past ten years have seen outstanding results in the scientific exploration of the deep space, with gravity investigations contributing to the success of many missions. Thanks to gravity measurements, MESSENGER was able to unveil the main features of Mercury's interior structure. GRAIL, the first planetary mission entirely devoted to gravity, recovered the structure of the lunar gravity anomalies to a spatial resolution and accuracy unmatched even for the Earth. The discovery and characterization of habitable environments in the Saturnian system, on Enceladus and Titan, were possible also by the radio science investigations of the mission Cassini. Thanks to a carefully designed orbit, with a pericenter just 3000 km above the cloud level, the spacecraft Juno is now carrying out precise gravity measurements at Jupiter to unveil the interior structure of the planet and the depth of its winds. With Cassini providing similar information at Saturn in the Grand Finale orbits, just before the final plunge into the planet, we will soon be able to reveal how similar or different the two gas giants are. But the interior structure of many planetary bodies remains elusive, and much remains to be explored. New missions and new tools are needed. In the next five years the planetary community will see the launch of BepiColombo and JUICE, two spacecraft equipped with a powerful suite of instruments devoted to the tomography of Mercury and Ganymede. Innovative instrumentation and probes are being conceived and designed. The Cassini Medal Lecture will review the past successes and future trends of planetary geodesy and radio science, from the peculiar perspective of someone whose attraction for gravity kept him at the ill-defined boundary between science and engineering, measuring angles, distances and velocities in the solar system.

  2. The results of studies to determine the impact of far-aft center-of-gravity locations on the design of a single-stage-to-orbit vehicle system

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Powell, R. W.

    1979-01-01

    Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.

  3. The Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Hoffman, Tom L.; Havens, Glen G.

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and is currently in Extended Mission operations. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission uses twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  4. In-Flight Operation of the Dawn Ion Propulsion System: Status at One Year from the Vesta Rendezvous

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2010-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer among Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer among Ceres science orbits. The Dawn ion thruster [I thought we only called it a thruster. Both terms are used in the paper, but I think a replacement of every occurrence of "engine" with "thruster" would be clearer.] design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. Since resumption of cruise to Vesta IPS has been operated at throttled power levels, most of the time at full power, and with a duty cycle of approximately 93%, leading to an arrival at Vesta in July of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through one year from the spacecraft's rendezvous with Vesta.

  5. Narratives from caregivers of children surviving the terrorist attack in Beslan: issues of health, culture, and resilience.

    PubMed

    Moscardino, Ughetta; Axia, Giovanna; Scrimin, Sara; Capello, Fabia

    2007-04-01

    Acts of terrorism have an extremely negative impact on the mental health of children and families. The school siege in Beslan, Russia, in 2004, represents a particularly traumatizing event as it was directed specifically at children and involved the entire community. This qualitative study aims to: (a) examine caregiver reactions to the terrorist attack in Beslan as reported 3 months after the traumatic event; (b) determine the extent to which indigenous cultural values and religious belief systems play a role in Beslan's caregivers' reactions to such event; and (c) identify variables that may function as sources of resilience to caregivers. A convenience sample of 17 primary caregivers from Beslan with at least one child who survived the school siege were asked to participate in semi-structured interviews. Narratives generated from the interviews were qualitatively analyzed using a thematic approach; nine major themes were identified. Caregivers' concerns centered on children's physical and psychological well-being, the reorganization of family life, and the disruption of community ties. Cultural values of pride, heroism, courage, and revenge emerged as relevant aspects shaping caregivers' reactions to the traumatic event. Possible sources of resilience included the willingness to return to normality, social support, and the reaffirmation of positive, culturally shared values in face of the perceived threat of future terrorist attacks. Findings are discussed in terms of their theoretical implications on the effects of trauma on children and families as well as interventions with highly traumatized populations in diverse cultural settings.

  6. Gravity Effect on Capillary Limit in a Miniature Loop Heat Pipe with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Nagano, Hosei; Ku, Jentung

    2007-01-01

    This paper describes the gravity effect on heat transport characteristics in a minia6re loop heat pipe with multiple evaporators and multiple condensers. Tests were conducted in three different orientations: horizontal, 45deg tilt, and vertical. The gravity affected the loop's natural operating temperature, the maximum heat transport capability, and the thermal conductance. In the case that temperatures of compensation chambers were actively controlled, the required control heater power was also dependent on the test configuration. In the vertical configuration, the secondary wick was not able to pump the liquid from the CC to the evaporator against the gravity. Thus the loop could operate stably or display some peculiar behaviors depending on the initial liquid distribution between the evaporator and the CC. Because such an initial condition was not known prior to the test, the subsequent loop performance was unpredictable.

  7. Initial conditions and degrees of freedom of non-local gravity

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Modesto, Leonardo; Nardelli, Giuseppe

    2018-05-01

    We prove the equivalence between non-local gravity with an arbitrary form factor and a non-local gravitational system with an extra rank-2 symmetric tensor. Thanks to this reformulation, we use the diffusion-equation method to transform the dynamics of renormalizable non-local gravity with exponential operators into a higher-dimensional system local in spacetime coordinates. This method, first illustrated with a scalar field theory and then applied to gravity, allows one to solve the Cauchy problem and count the number of initial conditions and of non-perturbative degrees of freedom, which is finite. In particular, the non-local scalar and gravitational theories with exponential operators are both characterized by four initial conditions in any dimension and, respectively, by one and eight degrees of freedom in four dimensions. The fully covariant equations of motion are written in a form convenient to find analytic non-perturbative solutions.

  8. On holographic Rényi entropy in some modified theories of gravity

    NASA Astrophysics Data System (ADS)

    Dey, Anshuman; Roy, Pratim; Sarkar, Tapobrata

    2018-04-01

    We perform a detailed analysis of holographic entanglement Rényi entropy in some modified theories of gravity with four dimensional conformal field theory duals. First, we construct perturbative black hole solutions in a recently proposed model of Einsteinian cubic gravity in five dimensions, and compute the Rényi entropy as well as the scaling dimension of the twist operators in the dual field theory. Consistency of these results are verified from the AdS/CFT correspondence, via a corresponding computation of the Weyl anomaly on the gravity side. Similar analyses are then carried out for three other examples of modified gravity in five dimensions that include a chemical potential, namely Born-Infeld gravity, charged quasi-topological gravity and a class of Weyl corrected gravity theories with a gauge field, with the last example being treated perturbatively. Some interesting bounds in the dual conformal field theory parameters in quasi-topological gravity are pointed out. We also provide arguments on the validity of our perturbative analysis, whenever applicable.

  9. Pressurization of cryogens - A review of current technology and its applicability to low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Van Dresar, N. T.

    1992-01-01

    A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluid will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.

  10. Pressurization of cryogens: A review of current technology and its applicability to low-gravity conditions

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.

    1992-01-01

    A review of technology, history, and current status for pressurized expulsion of cryogenic tankage is presented. Use of tank pressurization to expel cryogenic fluids will continue to be studied for future spacecraft applications over a range of operating conditions in the low-gravity environment. The review examines experimental test results and analytical model development for quiescent and agitated conditions in normal-gravity, followed by a discussion of pressurization and expulsion in low-gravity. Validated, 1-D, finite difference codes exist for the prediction of pressurant mass requirements within the range of quiescent normal-gravity test data. To date, the effects of liquid sloshing have been characterized by tests in normal-gravity, but analytical models capable of predicting pressurant gas requirements remain unavailable. Efforts to develop multidimensional modeling capabilities in both normal and low-gravity have recently occurred. Low-gravity cryogenic fluid transfer experiments are needed to obtain low-gravity pressurized expulsion data. This data is required to guide analytical model development and to verify code performance.

  11. Geoid determination by airborne gravimetry - principles and applications

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.

    2009-12-01

    The operational development of long-range airborne gravimetry has meant that large areas can be covered in a short time frame with high-quality medium-wavelength gravity field data, perfectly matching the needs of geoid determination. Geoid from a combination of surface, airborne and satellite data not only is able to cover the remaining large data voids on the earth, notably Antarctica and tropical jungle regions, but also provide seamless coverage across the coastal zone, and tie in older marine and land gravity data. Airborne gravity can therefore provide essential data for GPS applications both on land and at sea, e.g. for marine construction projects such as bridges, wind mill farms etc. Current operational accuracies with the DTU-Space/UiB airborne system are in the 1-2 mGal range, which translates into geoid accuracies of 5-10 cm, dependent on track spacing. In the paper we will outline the current accuracy of airborne gravity and geoid determination, and show examples from recent international airborne gravity campaigns, aimed at either providing national survey infrastructure, or scientific applications for e.g. oceanography or sea-ice thickness determination.

  12. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  13. Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    Wali, Kameshwar; Viet, Nguyen Ali

    2017-01-01

    A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.

  14. Holography as a highly efficient renormalization group flow. I. Rephrasing gravity

    NASA Astrophysics Data System (ADS)

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2016-07-01

    We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.

  15. Influence of gravity on transport and retention of representative engineered nanoparticles in quartz sand.

    PubMed

    Cai, Li; Zhu, Jinghan; Hou, Yanglong; Tong, Meiping; Kim, Hyunjung

    2015-10-01

    Four types of NPs: carbon nanotubes and graphene oxide (carbon-based NPs), titanium dioxide and zinc oxide metal-oxide NPs, were utilized to systematically determine the influence of gravity on the transport of NPs in porous media. Packed column experiments for two types of carbon-based NPs were performed under unfavorable conditions in both up-flow (gravity-negative) and down-flow (gravity-positive) orientations, while for two types of metal-oxide NPs, experiments were performed under both unfavorable and favorable conditions in both up-flow and down-flow orientations. Both breakthrough curves and retained profiles of two types of carbon-based NPs in up-flow orientation were equivalent to those in down-flow orientation, indicating that gravity had negligible effect on the transport and retention of carbon-based NPs under unfavorable conditions. In contrast, under both unfavorable and favorable conditions, the breakthrough curves for two types of metal-oxide NPs in down-flow orientation were lower relative to those in up-flow orientation, indicating that gravity could decrease the transport of metal-oxide NPs in porous media. The distinct effect of gravity on the transport and retention of carbon-based and metal-oxide NPs was mainly attributed to the contribution of gravity to the force balance on the NPs in quartz sand. The contribution of gravity was determined by the interplay of the density and sizes of NP aggregates under examined solution conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microflow1, a sheathless fiber-optic flow cytometry biomedical platform: demonstration onboard the international space station.

    PubMed

    Dubeau-Laramée, Geneviève; Rivière, Christophe; Jean, Isabelle; Mermut, Ozzy; Cohen, Luchino Y

    2014-04-01

    A fiber-optic based flow cytometry platform was designed to build a portable and robust instrument for space applications. At the core of the Microflow1 is a unique fiber-optic flow cell fitted to a fluidic system and fiber coupled to the source and detection channels. A Microflow1 engineering unit was first tested and benchmarked against a commercial flow cytometer as a reference in a standard laboratory environment. Testing in parabolic flight campaigns was performed to establish Microflow1's performance in weightlessness, before operating the new platform on the International Space Station. Microflow1 had comparable performances to commercial systems, and operated remarkably and robustly in weightlessness (microgravity). Microflow1 supported immunophenotyping as well as microbead-based multiplexed cytokine assays in the space environment and independently of gravity levels. Results presented here provide evidence that this fiber-optic cytometer technology is inherently compatible with the space environment with negligible compromise to analytical performance. © 2013 International Society for Advancement of Cytometry.

  17. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  18. Combustion Integrated Rack (CIR)

    NASA Image and Video Library

    2016-06-22

    NASA Glenn engineer Chris Mroczka installs a gas-jet burner in a chamber within the center’s Combustion Integrated Rack. This chamber is where scientists conduct gaseous combustion experiments in a zero gravity environment.

  19. GRC-2015-C-00903

    NASA Image and Video Library

    2011-03-15

    NASA (Zin Technologies) engineer prepares Advanced Colloid Experiment Heated-2 samples that will be analyzed aboard the International Space Station using the zero-gravity Light Microscopy Module, LMM in the Fluids Integrated Rack, FIR

  20. SpeedyTime-5_Water_In_Space

    NASA Image and Video Library

    2017-08-10

    The International Space Station is a one-of-a-kind spot for scientists who want to do experiments where there’s no gravity, to find out how other natural forces function without gravity’s influence. In this “SpeedyTime” segment, Expedition 52 flight engineer Jack Fischer uses a few simple tools to demonstrate what happens to water in space when there’s no pull of gravity. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  1. Human Factors Engineering. A Self-Paced Text, Lessons 21-25,

    DTIC Science & Technology

    1981-08-01

    the moon’ mission really consists of several unitary missions, such as: (1) Supersonic speed (2) Orbit earth (3) Re-enter earth’s gravity , and so on...radar antenna height to clear surrounding obstructions raises the ship’s center of gravity and, therefore, makes it less stable in the water. While... meterial is documented in the Letter Requirement (LR), which is an abbreviated version of the LOA used for acquisition of low-cost items. The Outline

  2. Dynamics for a 2-vertex quantum gravity model

    NASA Astrophysics Data System (ADS)

    Borja, Enrique F.; Díaz-Polo, Jacobo; Garay, Iñaki; Livine, Etera R.

    2010-12-01

    We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global U(N) symmetry. We then propose a U(N)-invariant Hamiltonian operator and study the induced dynamics. Finally, we explore the analogies between this model and loop quantum cosmology and sketch some possible generalizations of it.

  3. Criteria for Applying the Lucas-Washburn Law.

    PubMed

    Li, Kewen; Zhang, Danfeng; Bian, Huiyuan; Meng, Chao; Yang, Yanan

    2015-09-14

    Spontaneous imbibition happens in many natural and chemical engineering processes in which the mean advancing front usually follows Lucas-Washburn's law. However it has been found that the scaling law does not apply in many cases. There have been few criteria to determine under what conditions the Washburn law works. The effect of gravity on spontaneous imbibition in porous media was investigated both theoretically and experimentally. The mathematical model derived analytically was used to calculate the imbibition rates in porous media with different permeabilities. The results demonstrated that the effect of gravity on spontaneous imbibition was governed by the hydraulic conductivity of the porous media (permeability of the imbibition systems). The criteria for applying the Lucas-Washburn law have been proposed. The effect of gravity becomes more apparent with the increase in permeability or with the decrease in CGR number (the ratio of capillary pressure to gravity forces) and may be ignored when the CGR number is less than a specific value N(*)(cg) ≅ 3.0. The effect of gravity on imbibition in porous media can be modeled theoretically. It may not be necessary to conduct spontaneous imbibition experiments horizontally in order to exclude the effect of gravity, as has been done previously.

  4. Terrestrial gravity instrumentation in the 20th Century: A brief review

    NASA Technical Reports Server (NTRS)

    Valliant, H. D.

    1989-01-01

    At the turn of the century, only pendulum apparatuses and torsion balances were available for general exploration work. Both of these early techniques were cumbersome and time-consuming. It was no wonder that the development of the gravity meter was welcomed with a universal sigh of relief. By 1935 potential field measurements with gravity meters supplanted gradient measurements with torsion balances. Potential field measurements are generally characterized by three types: absolute - measurements are made in fundamental units, traceable to national standards of length and time at each observation site; relative with absolute scale - differences in gravity are measured in fundamental units traceable to national standards of length and time; and relative - differences in gravity are measured with arbitrary scale. Improvements in the design of gravity meters since their introduction has led to a significant reduction in size and greatly increased precision. As the precision increased, applications expanded to include the measurement of crustal motion, the search for non-Newtonian forces, archeology, and civil engineering. Apart from enhancements to the astatic gravity meter, few developments in hardware were achieved. One of these was the vibrating string gravity meter which was developed in the 1950s and was employed briefly for marine and borehole applications. Another is the cryogenic gravity meter which utilizes the stability of superconducting current to achieve a relative instrument with extremely low drift suitable for tidal and secular gravity measurements. An advance in performing measurements from a moving platform was achieved with the development of the straight-line gravity meter. The latter part of the century also saw the rebirth of gradient measurements which offers advantages for observations from a moving platform. Definitive testing of the Bell gradiometer was recently reported.

  5. Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport

    NASA Astrophysics Data System (ADS)

    O’Connor, Evan P.; Couch, Sean M.

    2018-02-01

    We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.

  6. Foam formation in low gravity

    NASA Technical Reports Server (NTRS)

    Wessling, Francis C.; Mcmanus, Samuel P.; Matthews, John; Patel, Darayas

    1990-01-01

    An apparatus that produced the first polyurethane foam in low gravity has been described. The chemicals were mixed together in an apparatus designed for operation in low gravity. Mixing was by means of stirring the chemicals with an electric motor and propeller in a mixing chamber. The apparatus was flown on Consort 1, the first low-gravity materials payload launched by a commercial rocket launch team. The sounding rocket flight produced over 7 min of low gravity during which a polyurethane spheroidal foam of approximately 2300 cu cm was formed. Photographs of the formation of the foam during the flight show the development of the spheroidal form. This begins as a small sphere and grows to approximately a 17-cm-diam spheroid. The apparatus will be flown again on subsequent low-gravity flights.

  7. Performance Evaluation and Analysis for Gravity Matching Aided Navigation.

    PubMed

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-04-05

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN.

  8. Performance Evaluation and Analysis for Gravity Matching Aided Navigation

    PubMed Central

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-01-01

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178

  9. Gas/Liquid Separator Being Developed for Microgravity

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.

    2002-01-01

    The examination and research of how liquids and gases behave in very low gravity will improve our understanding of the behavior of fluids on Earth. The knowledge of multiphase fluid behavior is applicable to many industries on Earth, including the pharmaceutical, biotechnology, chemical, and nuclear industries, just to name a few. In addition, this valuable knowledge applies very well to the engineering and design of microgravity materials processing and of life-support systems for extended space flight. Professors Ashok Sangani of Syracuse University and Donald Koch of Cornell University are principal investigators in the Microgravity Fluid Physics Program, which is managed and sponsored by the NASA Glenn Research Center. Their flight experiment entitled "Microgravity Observations of Bubble Interactions" (MOBI) is planned for operation in the Fluids and Combustion Facility aboard the International Space Station.

  10. Evanescent Effects can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences.

    PubMed

    Bern, Zvi; Cheung, Clifford; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh

    2015-11-20

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R^{3} counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly-the coefficient of the Gauss-Bonnet operator-changes under p-form duality transformations. We concur and also find that the leading R^{3} divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.

  11. Study of Vibrational Energy Transfer at a Surface by a Time-of-Flight Method.

    DTIC Science & Technology

    1983-07-31

    82174* - *-. L7 .i.&. I- I OD(D SOI x O 1 6/81 INIT DISTRIBUTION LIST July 31, 1983 No. Copies No. Copies Dr. L.V. Schmidt 1 Dr. F. Roberto 1 Assistant...of Scientific Dr. A.L. Slafkosky 1Research Scientific Advisor Directorate of Aerospace Sciences Commandant of the Marine Corps Bolling Air Force Base...Research Research Code 432 Directorate of Chemical Sciences Arlington, VA 22217 Bolling Air Force Base Washington, D.C. 20332Mr. David SiegelI Office of

  12. Brazil--On the Road to Greatness.

    DTIC Science & Technology

    1985-05-01

    plenty of brain power, technology and initiative in that country, and the defense rndu--trv has its share. The export mar! et is benefittinq alo...are the sales of weapons by Brazil’s armaments industry., a]~re-4d y ihe wor1d’s si xth-largest. to ar-ms.- hungry Third World nations. In 198?, arms...Nation Under Econumic Siege." MacLeans, November 21, 1983. 2). Pang, Eul-Soo, and Jarnagin, Laura . "Br>i 1 n Democracy and the Foreign Debt." Current H

  13. Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Grafarend, E. W.

    2001-09-01

    The Somigliana-Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana-Pizzetti gravity o({,u) as a function of Jacobi spheroidal latitude { and height u to the order ™(10m10 Gal), and o(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ™(10m10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana-Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (u,{,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet.

  14. Gravity Probe B Inspection

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)

  15. Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kim, Jin Bong; Kim, Man Geun

    This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.

  16. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  17. Integrating gravity and magnetic field data to delineate structurally controlled gold mineralization in the Sefwi Belt of Ghana

    NASA Astrophysics Data System (ADS)

    Konadu Amoah, Bernard; Dadzie, Isaac; Takyi-Kyeremeh, Kwaku

    2018-08-01

    Gravity and magnetic surveys were used to delineate potential gold mineralization zones in the Sefwi belt of Ghana. The study area is an intrusive dominated area that hosts pockets of small scale mining operations locally referred to as Galamsey. These Galamsey operations are not guided by a scientific approach to back the trend of gold mineralization which is conventionally mined. The study aimed at mapping lithological units, structural setting and relating Galamsey sites to delineate potential zones of gold mineralization. A Scintrex CG5 gravimeter and GEM’s Overhauser magnetometer were used for gravity and magnetic data acquisition respectively. The magnetic data were corrected and enhancing filters such as reduction to the pole (RTP), analytical signal and first vertical derivative were applied using Oasis montaj 7.1. Gravity data were also reduced to the geoid using the Oasis montaj software to produce a complete Bouguer anomaly map. The regional/residual separation technique produced a residual gravity map. The RTP and analytical signal filters from the magnetic data and residual gravity anomaly map from the gravity data helped in mapping belt type (Dixcove) Birimian granitoids and mafic intrusive unit, interpreted as gabbro. The first vertical derivative filter was useful in mapping NE/SW minor faults and crosscutting dykes largely concentrated in the belt type Birimian granitoids. All the three mapped Galamsey sites fell on a minor fault and are associated with the belt type granitoids which were used in delineating four potential zones of gold mineralization.

  18. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  19. Generalized Hodge dual for torsion in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Yuan, Fang-Fang

    2016-07-01

    For teleparallel gravity in four dimensions, Lucas and Pereira have shown that its action can be constructed via a generalized Hodge dual for torsion tensor. In this paper, we demonstrate that a direct generalization of this approach to other dimensions fails due to the fact that no generalized Hodge dual operator could be given in general dimensions. Furthermore, if one enforces the definition of a generalized Hodge dual to be consistent with the action of teleparallel gravity in general dimensions, the basic identity for any sensible Hodge dual would require an ad hoc definition for the second Hodge dual operation which is totally unexpected. Therefore, we conclude that at least for the torsion tensor, the observation of Lucas and Pereira only applies to four dimensions.

  20. A study of flight control requirements for advanced, winged, earth-to-orbit vehicles with far-aft center-of-gravity locations

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.

    1982-01-01

    Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.

  1. Amor: Investigating The Triple Asteroid System 2001 SN263

    NASA Astrophysics Data System (ADS)

    Jones, T.; Bellerose, Julie; Lee, P.; Prettyman, T.; Lawrence, D.; Smith, P.; Gaffey, M.; Nolan, M.; Goldsten, J.; Thomas, P.; Veverka, J.; Farquhar, R.; Heldmann, J.; Reddy, V.; Williams, B.; Chartres, J.; DeRosee, R.; Dunham, D.

    2010-10-01

    The Amor mission will rendezvous and land at the triple Near-Earth Asteroid system (153591) 2001 SN263 and execute detailed, in-situ science investigations. The spacecraft reaches 2001 SN263 by using a two-year ΔVEGA (ΔV-Earth Gravity Assist) trajectory with a relatively low launch C3 of 33.5 km2/s2. Rendezvous will enable reconnaissance activities including global and regional imaging, shape modeling, system dynamics, and compositional mapping. After landing, Amor will conduct in-situ imaging (panoramic to microscopic scale) and compositional measurements to include elemental abundance. The main objectives are to 1) establish in-situ the long-hypothesized link between C-type asteroids and the primitive carbonaceous chondrite (CC) meteorites, 2) investigate the nature, origin and evolution of C-type asteroids, and 3) investigate the origin and evolution of a multiple asteroid system. The mission also addresses the distribution of volatiles and organic materials, impact hazards, and resources for future exploration. Amor is managed by NASA Ames Research Center in partnership with Orbital Sciences, KinetX, MDA, and Draper with heritage instruments provided by Ball Aerospace, JHU/APL, and Firestar Engineering. The science team brings experience from NEAR, Hayabusa, Deep Impact, Dawn, LCROSS, Kepler, and Mars missions. In this paper, we describe the science, mission design, and main operational challenges of performing in-situ science at this triple asteroid system. Challenges include landing on the asteroid components, thermal environment, short day-night cycles, and the operation of deployed instruments in a low gravity (10^-5 g) environment.

  2. Approaches to emergent spacetime in gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Sully, James Kenneth

    2013-08-01

    In this thesis we explore approaches to emergent local spacetime in gauge/gravity duality. We first conjecture that every CFT with a large-N type limit and a parametrically large gap in the spectrum of single-trace operators has a local bulk dual. We defend this conjecture by counting consistent solutions to the four-point function in simple scalar models and matching to the number of local interaction terms in the bulk. Next, we proceed to explicitly construct local bulk operators using smearing functions. We argue that this construction allows one to probe inside black hole horizons for only short times. We then suggest that the failure to construct bulk operators inside a black hole at late times is indicative of a break-down of local effective field theory at the black hole horizon. We argue that the postulates of black hole complementarity are inconsistent and cannot be realized within gauge/gravity duality. We argue that the most conservative solution is a firewall at the black hole horizon and we critically explore alternative resolutions. We then examine the CGHS model of two-dimensional gravity to look for dynamical formation of firewalls. We find that the CGHS model does not exhibit firewalls, but rather contains long-lived remnants. We argue that, while this is consistent for the CGHS model, it cannot be so in higher-dimensional theories of gravity. Lastly, we turn to F-theory, and detail local and global obstructions to writing elliptic fibrations in Tate form. We determine more general possible forms.

  3. Stability issues of black hole in non-local gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  4. Materials Science Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.

    1999-01-01

    The Performance Goal for NASA's Microgravity Materials Science Program reads "Use microgravity to establish and improve quantitative and predictive relationships between the structure, processing and properties of materials." The advent of the International Space Station will open up a new era in Materials Science Research including the ability to perform long term and frequent experiments in microgravity. As indicated the objective is to gain a greater understanding of issues of materials science in an environment in which the force of gravity can be effectively switched off. Thus gravity related issues of convection, buoyancy and hydrostatic forces can be reduced and the science behind the structure/processing/properties relationship can more easily be understood. The specific areas of research covered within the program are (1) the study of Nucleation and Metastable States, (2) Prediction and Control of Microstructure (including pattern formation and morphological stability), (3) Phase Separation and Interfacial Stability, (4) Transport Phenomena (including process modeling and thermophysical properties measurement), and (5) Crystal Growth, and Defect Generation and Control. All classes of materials, including metals and alloys, glasses and ceramics, polymers, electronic materials (including organic and inorganic single crystals), aerogels and nanostructures, are included in these areas. The principal experimental equipment available to the materials scientist on the International Space Station (ISS) will be the Materials Science Research Facility (MSRF). Each of these systems will be accommodated in a single ISS rack, which can operate autonomously, will accommodate telescience operations, and will provide real time data to the ground. Eventual plans call for three MSRF racks, the first of which will be shared with the European Space Agency (ESA). Under international agreements, ESA and other partners will provide some of the equipment, while NASA covers launch and integration costs. The MSRF facilities will include modular components, which can be exchanged to provide inserts specifically matched to the engineering requirements of the particular Principal Investigator. To defray costs and avoid duplication of engineering effort NASA is also pursuing the possibility of using facilities provided by international partners. By this means it is anticipated that all of the types of research outlined in the previous paragraph can be done on the ISS.

  5. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    NASA Astrophysics Data System (ADS)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  6. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Paik, H. J.; Zagarola, M.; Shirron, P. J.; Griggs, C. E.; Moody, M. V.; Han, S.-C.

    2016-01-01

    Measurement of a planet's gravity field provides fundamental information about the planet's mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planet's geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESA's GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  7. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Shirron, P. J.; Paik, H. J.; Griggs, C. E.; Moody, M. V.; Han, S. C.; Zagarola, M.

    2016-01-01

    Measurement of a planets gravity field provides fundamental information about the planets mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planets geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESAs GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  8. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    NASA Technical Reports Server (NTRS)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design & Fabrication (ADF), the NASA Lewis Research Center, and the University of Dayton. The hardware consisted of two experiment modules that each contained an instrumented test loop (idealized capillary-pumped loop), a base unit for power conversion and backlighting, a display unit with 15 LED's (light-emitting diodes) to display temperatures, pressure, heater power, and time, a control unit to select heaters and heater settings, a cooling fan, and associated cables.

  9. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.

  10. Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?

    PubMed

    Berenstein, David; Miller, Alexandra

    2017-06-30

    In the context of Lin-Lunin-Maldacena geometries, we show that superpositions of classical coherent states of trivial topology can give rise to new classical limits where the topology of spacetime has changed. We argue that this phenomenon implies that neither the topology nor the geometry of spacetime can be the result of an operator measurement. We address how to reconcile these statements with the usual semiclassical analysis of low energy effective field theory for gravity.

  11. Geometric phase of cosmological scalar and tensor perturbations in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Balajany, Hamideh; Mehrafarin, Mohammad

    2018-05-01

    By using the conformal equivalence of f(R) gravity in vacuum and the usual Einstein theory with scalar-field matter, we derive the Hamiltonian of the linear cosmological scalar and tensor perturbations in f(R) gravity in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic Berry phase for sub-horizon modes as a Lewis-Riesenfeld phase.

  12. The AFGL (Air Force Geophysics Laboratory) Absolute Gravity System’s Error Budget Revisted.

    DTIC Science & Technology

    1985-05-08

    also be induced by equipment not associated with the system. A systematic bias of 68 pgal was observed by the Istituto di Metrologia "G. Colonnetti...Laboratory Astrophysics, Univ. of Colo., Boulder, Colo. IMGC: Istituto di Metrologia "G. Colonnetti", Torino, Italy Table 1. Absolute Gravity Values...measurements were made with three Model D and three Model G La Coste-Romberg gravity meters. These instruments were operated by the following agencies

  13. Gravity Scaling of a Power Reactor Water Shield

    NASA Technical Reports Server (NTRS)

    Reid, Robert S.; Pearson, J. Boise

    2007-01-01

    A similarity analysis on a water-based reactor shield examined the effect of gravity on free convection between a reactor shield inner and outer vessel boundaries. Two approaches established similarity between operation on the Earth and the Moon: 1) direct scaling of Rayleigh number equating gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant. Nusselt number for natural convection (laminar and turbulent) is assumed of form Nu = CRa(sup n).

  14. A Water-Immersion Technique for the Study of Mobility of a Pressure-Suited Subject Under Balanced-Gravity Conditions

    DTIC Science & Technology

    1966-01-01

    simulating zero-gravity performance of an astronaut in a pressurized spacesuit by complete water immersion has been developed and inves- tigated. The...critical operational characteristics relating to space- craft and spacesuit design under conditions of zero gravity. In addition, the physical...the legs of the suit and are contained by insulated flight boots . The Mark IV suit used in the tests is shown in figure 1. 3 Pressure-Suit

  15. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  16. Use of wild and semi-wild edible plants in nutrition and survival of people in 1430 days of siege of Sarajevo during the war in Bosnia and Herzegovina (1992-1995).

    PubMed

    Redzić, Sulejman

    2010-06-01

    This study is a systematic overview of data on use of wild and semi-wild edible plants in nutrition of people in 1430 days of the siege of Sarajevo during aggression on Bosnia and Herzegovina (1992-1995). The author of this study spent all that time in Sarajevo. In 1993, the author prepared a survival program for people that included usage of edible wild plants. In addition, he conducted a detailed survey, including special interviews, on 630 people of average age 37.4 years (55% residential inhabitants, the rest were refuges), 310 males and the rest were females. According to survey, 91 species of mostly wild plants and three species of fungus were used: Küchneromyces mutabilis, Armillariella mellea and Coprinus comatus. Wild vegetables included 49 species, spices 24, wild fruits 16, and 2 species of bread-plants. They belong to 26 plants communities, and grew on 24 different habitats (urban surfaces, river coasts, low forest and scrubs, meadows and rocky grasslands). The 156 plant parts (leaves, young branches, fruit, flower, seed, root and rhizome) from 91 plant species were used. Vegetables were dominant category of use (soups, pottages, sauces) with 80 ways of preparation (30.53%), then salads 41 (15.65%), spices 39 (14.89%), different beverages 38 (14.50%), sweets 21 (8.02%), nutritive teas 15 (5.73%), and other preparations. In order to improve conventional food (war pasta, rice, lentils, old beans) people used spices made from different wild plants.

  17. Acute polyradiculoneuritis in Sarajevo during the war.

    PubMed

    Delilović-Vranić, Jasminka; Dautović-Krkić, Sajma

    2006-02-01

    Acute polyradiuloneuritis is acute inflammatory demyelinizing polyneuropathy, with still unknown cause, and which main pathophysiological disorder is degeneration of axons which affects peripheral nerves. Most frequently it occurs as acute, several days or weeks after viral, respiratory or gastrointestinal infections. Survival rate is in the world between 95-98% of cases. The goal of the research is to determine by retrospective study number of cases of acute polyradiculoneuritis during the war in the Sarajevo under the siege and their outcome. In this paper we have analyzed total number of acute polyradiculoneuritis cases within the period since April 1992 until April 1996, when the city of Sarajevo was completely under siege. Diagnostic criteria's besides anamnesis was detailed neurological exam, blood tests, analysis of the cerebrospinal liquor, EMG, ECG and cardiac tests. Within the above mentioned period there was 17 cases of polyradiculoneuritis, 13 male and 4 females, age between 14-65 years. Motor weakness and parestesias was most dominant in clinical image. Number of cases increased during the years and it was greatest during 1995. Previous infections were noted in 6 cases, and 5 of those respiratory, and one case of gastrointestinal. Proteinorahia in liquor was found among 10 cases (4 during first and 6 during the second week of illness). Pathological EMG was found in 8 cases. Milder form of illness had 4 patients, while 13 patients had more severe form. In total 7 patients survived, 2 of them without consequences, 3 with milder and 2 with more severe consequences while in 10 cases there was a lethal outcome.

  18. Lorentz and diffeomorphism violations in linearized gravity

    NASA Astrophysics Data System (ADS)

    Kostelecký, V. Alan; Mewes, Matthew

    2018-04-01

    Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion relation for gravitational modes involving operators of arbitrary mass dimension is constructed, and various special limits are discussed.

  19. Low-thrust trajectory optimization in a full ephemeris model

    NASA Astrophysics Data System (ADS)

    Cai, Xing-Shan; Chen, Yang; Li, Jun-Feng

    2014-10-01

    The low-thrust trajectory optimization with complicated constraints must be considered in practical engineering. In most literature, this problem is simplified into a two-body model in which the spacecraft is subject to the gravitational force at the center of mass and the spacecraft's own electric propulsion only, and the gravity assist (GA) is modeled as an instantaneous velocity increment. This paper presents a method to solve the fuel-optimal problem of low-thrust trajectory with complicated constraints in a full ephemeris model, which is closer to practical engineering conditions. First, it introduces various perturbations, including a third body's gravity, the nonspherical perturbation and the solar radiation pressure in a dynamic equation. Second, it builds two types of equivalent inner constraints to describe the GA. At the same time, the present paper applies a series of techniques, such as a homotopic approach, to enhance the possibility of convergence of the global optimal solution.

  20. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    NASA Technical Reports Server (NTRS)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  1. Simulation study on combination of GRACE monthly gravity field solutions

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2016-04-01

    The GRACE monthly gravity fields from different processing centers are combined in the frame of the project EGSIEM. This combination is done on solution level first to define weights which will be used for a combination on normal equation level. The applied weights are based on the deviation of the individual gravity fields from the arithmetic mean of all involved gravity fields. This kind of weighting scheme relies on the assumption that the true gravity field is close to the arithmetic mean of the involved individual gravity fields. However, the arithmetic mean can be affected by systematic errors in individual gravity fields, which consequently results in inappropriate weights. For the future operational scientific combination service of GRACE monthly gravity fields, it is necessary to examine the validity of the weighting scheme also in possible extreme cases. To investigate this, we make a simulation study on the combination of gravity fields. Firstly, we show how a deviated gravity field can affect the combined solution in terms of signal and noise in the spatial domain. We also show the impact of systematic errors in individual gravity fields on the resulting combined solution. Then, we investigate whether the weighting scheme still works in the presence of outliers. The result of this simulation study will be useful to understand and validate the weighting scheme applied to the combination of the monthly gravity fields.

  2. Satellite borne gravity gradiometer study

    NASA Technical Reports Server (NTRS)

    Metzger, E.; Jircitano, A.; Affleck, C.

    1976-01-01

    Gravity gradiometry is recognized to be a very difficult instrumentation problem because extremely small differential acceleration levels have to be measured, 0.1 EU corresponds to an acceleration of 10 to the minus 11th power g at two points 1 meter apart. A feasibility model of a gravity gradiometer is being developed for airborne applications using four modified versions of the proven Model VII accelerometers mounted on a slowly rotating fixture. Gravity gradients are being measured to 1.07 EU in a vertical rotation axis orientation. Equally significant are the outstanding operational characteristics such as fast reaction time, low temperature coefficients and high degree of bias stability over long periods of time. The rotating accelerometer gravity gradiometer approach and its present status is discussed and it is the foundation for the orbital gravity gradiometer analyzed. The performance levels achieved in a 1 g environment of the earth and under relatively high seismic disturbances, lend the orbital gravity gradiometer a high confidence level of success.

  3. A Small Aircraft Transportation System (SATS) Demand Model

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Kostiuk, Peter; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision-makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top-down, modular principles in systems engineering. There are three principal models, SATS Airport Demand Model (SATS-ADM), SATS Flight Demand Model (SATS-FDM), and LMINET-SATS. SATS-ADM models SATS operations, by aircraft type, from the forecasts in fleet, configuration and performance, utilization, and traffic mixture. Given the SATS airport operations such as the ones generated by SATS-ADM, SATS-FDM constructs the SATS origin and destination (O&D) traffic flow based on the solution of the gravity model, from which it then generates SATS flights using the Monte Carlo simulation based on the departure time-of-day profile. LMINET-SATS, an extension of LMINET, models SATS demands at airspace and airport by all aircraft operations in US The models use parameters to provide the user with flexibility and ease of use to generate SATS demand for different scenarios. Several case studies are included to illustrate the use of the models, which are useful to identify the need for a new air traffic management system to cope with SATS.

  4. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  5. A terracing operator for physical property mapping with potential field data

    USGS Publications Warehouse

    Cordell, L.; McCafferty, A.E.

    1989-01-01

    The terracing operator works iteratively on gravity or magnetic data, using the sense of the measured field's local curvature, to produce a field comprised of uniform domains separated by abrupt domain boundaries. The result is crudely proportional to a physical-property function defined in one (profile case) or two (map case) horizontal dimensions. This result can be extended to a physical-property model if its behavior in the third (vertical) dimension is defined, either arbitrarily or on the basis of the local geologic situation. The terracing algorithm is computationally fast and appropriate to use with very large digital data sets. The terracing operator was applied separately to aeromagnetic and gravity data from a 136km x 123km area in eastern Kansas. Results provide a reasonable good physical representation of both the gravity and the aeromagnetic data. Superposition of the results from the two data sets shows many areas of agreement that can be referenced to geologic features within the buried Precambrian crystalline basement. -from Authors

  6. Review study and evaluation of possible flight experiments relating to cloud physics experiments in space

    NASA Technical Reports Server (NTRS)

    Hunt, R. J.; Wu, S. T.

    1976-01-01

    The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.

  7. Modeling of load lifting process with unknown center of gravity position

    NASA Astrophysics Data System (ADS)

    Kamanin, Y. N.; Zhukov, M. I.; Panichkin, A. V.; Redelin, R. A.

    2018-03-01

    The article proposes a new type of lifting beams that allows one to lift loads where the position of the center of gravity is unknown beforehand. The benefit of implementing this type of traverse is confirmed by the high demand for this product from the industrial enterprises and lack of their availability on the market. In conducted studies, the main kinematic and dynamic dependencies of the load lifting process with an unknown position of the center of gravity were described allowing for design and verification calculations of the traverse with flexible slings and an adjustable bail to be carried out. The obtained results can be useful to engineers and employees of enterprises engaged in the design and manufacturing of the lifting equipment and scientists doing research in “Carrying and lifting machines”.

  8. Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools

    NASA Astrophysics Data System (ADS)

    Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.

    2017-12-01

    In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.

  9. The Gravity Recovery and Interior Laboratory mission

    NASA Astrophysics Data System (ADS)

    Lehman, D. H.; Hoffman, T. L.; Havens, G. G.

    The Gravity Recovery and Interior Laboratory (GRAIL) mission, launched in September 2011, successfully completed its Primary Science Mission in June 2012 and Extended Mission in December 2012. Competitively selected under a NASA Announcement of Opportunity in December 2007, GRAIL is a Discovery Program mission subject to a mandatory project cost cap. The purpose of the mission is to precisely map the gravitational field of the Moon to reveal its internal structure from crust to core, determine its thermal evolution, and extend this knowledge to other planets. The mission used twin spacecraft flying in tandem to provide the gravity map. The GRAIL Flight System, consisting of the spacecraft and payload, was developed based on significant heritage from previous missions such as an experimental U.S. Air Force satellite, the Mars Reconnaissance Orbiter (MRO) mission, and the Gravity Recovery and Climate Experiment (GRACE) mission. The Mission Operations System (MOS) was based on high-heritage multimission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin. Both the Flight System and MOS were adapted to meet the unique challenges posed by the GRAIL mission design. This paper summarizes the implementation challenges and accomplishments of getting GRAIL ready for launch. It also discusses the in-flight challenges and experiences of operating two spacecraft, and mission results.

  10. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  11. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  12. Vibracoring on the New Jersey Shelf: Investigating the Stratigraphic Response to 50,000 Years of Eustasy

    DTIC Science & Technology

    2007-01-01

    accomplished during weather conditions that otherwise precluded operating the vibracorer. More than 100 gravity core casts were conducted. When...barrel, or shelly /sandy material caught in the core catcher. We bagged all samples we deemed significant enough to keep. All gravity core

  13. Towards timelike singularity via AdS dual

    NASA Astrophysics Data System (ADS)

    Bhowmick, Samrat; Chatterjee, Soumyabrata

    2017-07-01

    It is well known that Kasner geometry with spacelike singularity can be extended to bulk AdS-like geometry, furthermore, one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including spacelike geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.

  14. Status threat, not economic hardship, explains the 2016 presidential vote.

    PubMed

    Mutz, Diana C

    2018-05-08

    This study evaluates evidence pertaining to popular narratives explaining the American public's support for Donald J. Trump in the 2016 presidential election. First, using unique representative probability samples of the American public, tracking the same individuals from 2012 to 2016, I examine the "left behind" thesis (that is, the theory that those who lost jobs or experienced stagnant wages due to the loss of manufacturing jobs punished the incumbent party for their economic misfortunes). Second, I consider the possibility that status threat felt by the dwindling proportion of traditionally high-status Americans (i.e., whites, Christians, and men) as well as by those who perceive America's global dominance as threatened combined to increase support for the candidate who emphasized reestablishing status hierarchies of the past. Results do not support an interpretation of the election based on pocketbook economic concerns. Instead, the shorter relative distance of people's own views from the Republican candidate on trade and China corresponded to greater mass support for Trump in 2016 relative to Mitt Romney in 2012. Candidate preferences in 2016 reflected increasing anxiety among high-status groups rather than complaints about past treatment among low-status groups. Both growing domestic racial diversity and globalization contributed to a sense that white Americans are under siege by these engines of change. Copyright © 2018 the Author(s). Published by PNAS.

  15. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  16. A critical analysis of the numerical and analytical methods used in the construction of the lunar gravity potential model.

    NASA Astrophysics Data System (ADS)

    Tuckness, D. G.; Jost, B.

    1995-08-01

    Current knowledge of the lunar gravity field is presented. The various methods used in determining these gravity fields are investigated and analyzed. It will be shown that weaknesses exist in the current models of the lunar gravity field. The dominant part of this weakness is caused by the lack of lunar tracking data information (farside, polar areas), which makes modeling the total lunar potential difficult. Comparisons of the various lunar models reveal an agreement in the low-order coefficients of the Legendre polynomials expansions. However, substantial differences in the models can exist in the higher-order harmonics. The main purpose of this study is to assess today's lunar gravity field models for use in tomorrow's lunar mission designs and operations.

  17. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.

    1986-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.

  18. NASA's PEM Fuel Cell Power Plant Development Program for Space Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.

    2008-01-01

    A three-center NASA team led by the Glenn Research Center in Cleveland, Ohio is completing a five-year PEM fuel cell power plant development program for future space applications. The focus of the program has been to adapt commercial PEM fuel cell technology for space applications by addressing the key mission requirements of using pure oxygen as an oxidant and operating in a multi-gravity environment. Competing vendors developed breadboard units in the 1 to 5 kW power range during the first phase of the program, and a single vendor developed a nominal 10-kW engineering model power pant during the second phase of the program. Successful performance and environmental tests conducted by NASA established confidence that PEM fuel cell technology will be ready to meet the electrical power needs of future space missions.

  19. A Detailed Historical Review of Propellant Management Devices for Low Gravity Propellant Acquisition

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.

    2016-01-01

    This paper presents a comprehensive background and historical review of Propellant Management Devices (PMDs) used throughout spaceflight history. The purpose of a PMD is to separate liquid and gas phases within a propellant tank and to transfer vapor-free propellant from a storage tank to a transfer line en route to either an engine or receiver depot tank, in any gravitational or thermal environment. The design concept, basic flow physics, and principle of operation are presented for each type of PMD. The three primary capillary driven PMD types of vanes, sponges, and screen channel liquid acquisition devices are compared and contrasted. For each PMD type, a detailed review of previous applications using storable propellants is given, which include space experiments as well as space missions and vehicles. Examples of previous cryogenic propellant management are also presented.

  20. Foundations of geophysics. [College textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheidegger, A.E.

    1976-01-01

    The following subjects are covered/: geography, geodesy, and geology; seismology, gravity, and the Earth's interior; magnetic and electrical properties of the earth; thermicity of the earth and related subjects; tectonophysics; geophysical exploration; geohydrology; physical oceanography; physical meteorology; and engineering geophysics. (MHR)

  1. Multi-dimensional modeling of a thermal energy storage canister. M.S. Thesis - Cleveland State Univ., Dec. 1990

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    1991-01-01

    The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.

  2. Modified gravity and the CMB

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Davis, Anne-Christine

    2012-01-01

    We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.

  3. Gravity at sea--A memoir of a marine geophysicist.

    PubMed

    Tomoda, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts.

  4. Gravity at sea —A memoir of a marine geophysicist—

    PubMed Central

    TOMODA, Yoshibumi

    2010-01-01

    A history of studies on the gravity measurements at sea in Japan is reviewed with an emphasis on the contribution of the author. The first successful measurements at sea were made in 1923 by Vening Meinesz in the Netherlands using the pendulum apparatus installed in a submarine. However, the gravity measurements using a submarine are not convenient because the access to a submarine is limited. Professor Chuji Tsuboi made a number of unsuccessful attempts at developing a gravity meter that can be operated on a normal surface ship by reducing the noise by minimizing the motion of the gravity meter through a mechanical design. I have chosen a new approach toward the measurements of gravity on a surface ship by simplifying the mechanical part using a string gravity meter that was installed directly on a vertical gyroscope in combination with the numerical and/or electronic reduction of noises. With this gravity meter TSSG (Tokyo Surface Ship Gravity Meter), we firstly succeeded in measuring gravity at sea onboard a surface ship in July 1961 and the measurements have been extended to the northwestern Pacific and beyond. The results reveal the fine structures of gravity field in and around trenches that provide important clues as to a number of geodynamic issues including the nature of the trench-trench interaction and the interaction of trenches with seamounts. PMID:20948173

  5. Granular Simulation of NEO Anchoring

    NASA Technical Reports Server (NTRS)

    Mazhar, Hammad

    2011-01-01

    NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.

  6. The wounding of Alexander the Great in Cyropolis (329 BC): the first reported case of the syndrome of transient cortical blindness?

    PubMed

    Lascaratos, J

    1997-01-01

    I believe that the transient blindness which presented Alexander the Great after his being wounded on his head and/or his neck by a stone from a catapult during the siege of Cyropolis (329 BC) was in all probability a case of transient cortical blindness that was recognized as a special entity in the 1960s. I reached this conclusion after the comparative study of the Emperor's clinical picture provided by ancient texts, especially those of Plutarch and Quintus Curtius Rufus, with that of a modern medical bibliography.

  7. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  8. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    PubMed

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  9. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    PubMed Central

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-01

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094

  10. Application of the gravity search algorithm to multi-reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.

    2016-12-01

    Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.

  11. Invariant measure of the one-loop quantum gravitational backreaction on inflation

    NASA Astrophysics Data System (ADS)

    Miao, S. P.; Tsamis, N. C.; Woodard, R. P.

    2017-06-01

    We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.

  12. Study of toluene rotary fluid management device and shear flow condenser performance for a space-based organic Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.

  13. Electrostatic Accelerometer for the Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent

    2014-05-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. The post-processing needed to achieve the performance, in particular with regards to the temperature stability, will be explained.

  14. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh

    2015-04-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014 and will be achieved on January 2015. The results of the Engineering Model tests and the status of the Flight Models will be presented.

  15. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.

  16. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  17. Virtual environment application with partial gravity simulation

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Vanchau, Michael N.

    1994-01-01

    To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.

  18. Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.; Brooker, John E. (Technical Monitor)

    2002-01-01

    The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found for a surprisingly high dilution fuel with argon. The maximum flame temperature seems to be of minor importance in fullerene formation. The HRTEM analysis of the soot showed an increase of the curvature of the carbon layers, and hence increased fullerenic character. After this maximum, the curvature decreases. In addition to the soot, the samples included fullerenic nanostructures, such as tubes and spheroids including highly-ordered multilayered or onion-like structures. The soot itself shows highly ordered regions that appear to have been cells of ongoing fullerenic nanostructure formation.

  19. NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    NASA Technical Reports Server (NTRS)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2011-01-01

    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on understanding the interactions between CG, mass, and subject differences.

  20. Gravity Survey of the Carson Sink - Data and Maps

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data: Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. Results: The gravity survey of the Carson Sink yielded the following products. Project location and station location map (Figure 14). Complete Bouguer Anomaly @ 2.67 gm/cc reduction density. Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map (Figure 15). Gravity Horizontal Gradient Magnitude Shaded Color Contour Map. Gravity 1st Vertical Derivative Color Contour Map. Interpreted Depth to Mesozoic Basement (Figure 16), incorporating drill-hole intercept values. Preliminary Interpretation of Results: The Carson Sink is a complex composite basin with several major depocenters (Figures 15 and 16). Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.

  1. Analyzing the Use of Gaseous Helium as a Pressurant with Cryogenic Propellants with Thermodynamic Venting System Modelling and Test Data

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Nelson, S.L.; Hastings, L.J.; Flachbart, R.H.; Vermillion, D.J.; Tucker, S.P.

    2007-01-01

    Cryogens are viable candidate propellants for NASA's Lunar and Mars exploration programs. To provide adequate mass flow to the system's engines and/or to prevent feed system cavitation, gaseous helium (GHe) is frequently considered as a pressurant. During low gravity operations, a Thermodynamic Venting System (TVS) is designed to maintain tank pressure during low gravity operations without propellant resettling. Therefore, a series of tests were conducted in the Multi-purpose Hydrogen Test Bed (MHTB) of Marshall Space Flight Center (MSFC) in order to evaluate the effects of GHe pressurant on pressure control performance of a TVS with liquid hydrogen (LH2) and nitrogen (LN2) as the test liquids. The TVS used in these test series consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted from the tank recirculation line, passing it through the J-T valve, and then through the heat exchanger, thermal energy is extracted from the bulk liquid and ullage thereby enabling pressure control. The LH2/GHe tests were performed at fill levels of 90%, 50%, and 25% and LN2/GHe tests were conducted at fill levels of 50% and 25%. Moreover, each test was conducted with a specified tank ullage pressure control band. A one-dimensional TVS performance program was used to analyze and correlate the test data. Predictions and comparisons with test data of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented.

  2. The Laser Ranging Experiment of the Lunar Reconnaissance Orbiter: Five Years of Operations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Mao, Dandan; McGarry, Jan F.; Mazarico, Erwan; Neumann, Gregory A.; Sun, Xiaoli; Torrence, Mark H.; Zagwodzki, Thomas W.; Rowlands, David D.; Hoffman, Evan D.; Horvath, Julie E.; hide

    2016-01-01

    We describe the results of the Laser Ranging (LR) experiment carried out from June 2009 to September 2014 in order to make one-way time-of-flight measurements of laser pulses between Earth-based laser ranging stations and the Lunar Reconnaissance Orbiter (LRO) orbiting the Moon. Over 4,000 hours of successful LR data are obtained from 10 international ground stations. The 20-30 centimeter precision of the full-rate LR data is further improved to 5-10 centimeter after conversion into normal points. The main purpose of LR is to utilize the high accuracy normal point data to improve the quality of the LRO orbits, which are nomi- nally determined by the radiometric S-band tracking data. When independently used in the LRO precision orbit determination process with the high-resolution GRAIL (Gravity Recovery and Interior Laboratory) gravity model, LR data provide good orbit solutions, with an average difference of approximately 50 meters in total position, and approximately 20 centimeters in radial direction, compared to the definitive LRO trajectory. When used in combination with the S-band tracking data, LR data help to improve the orbit accuracy in the radial direction to approximately 15 centimeters. In order to obtain highly accurate LR range measurements for precise orbit determination results, it is critical to closely model the behavior of the clocks both at the ground stations and on the spacecraft. LR provides a unique data set to calibrate the spacecraft clock. The LRO spacecraft clock is characterized by the LR data to a timing knowledge of 0.015 milliseconds over the entire 5 years of LR operation. We here present both the engineering setup of the LR experiments and the detailed analysis results of the LR data.

  3. Artificial gravity studies and design considerations for Space Station centrifuges

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Brown, A. H.; Fuller, C. A.; Oyama, J.

    1984-01-01

    The requirements to and capabilities of a Space Station biological facility centrifuge are discussed on the basis of an assessment of the objectives and subjects of future microgravity biological experiments. It is argued that the facility should be capable of both acute and extended chronic exposure of test subjects and biological materials to altered-g loading. In addition, the experimental approaches and equipment for microgravity studies on a Space Station are outlined. Finally, the engineering requirements of such a centrifuge are examined, with consideration of radial gravity gradients, size, and physical access to animals.

  4. Space Time Theories Confirmed

    NASA Image and Video Library

    2011-05-04

    Seated from left, Bill Danchi, Senior Astrophysicist and Program Scientist at NASA Headquarters, Francis Everitt, Principal Investigator for the Gravity Probe B Mission at Stanford University, Rex Geveden, President of Teledyne Brown Engineering, Colleen Hartman, a research professor at George Washington University, and Clifford Will, Professor of Physics at Washington University in St. Louis, Mo., conduct a press conference, Wednesday, May 4, 2011, to discuss NASA's Gravity Probe B (GP-B) mission which has confirmed two key predictions derived from Albert Einstein's general theory of relativity, which the spacecraft was designed to test. at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  5. Fluid lavage of open wounds (FLOW): design and rationale for a large, multicenter collaborative 2 x 3 factorial trial of irrigating pressures and solutions in patients with open fractures.

    PubMed

    2010-05-06

    Open fractures frequently result in serious complications for patients, including infections, wound healing problems, and failure of fracture healing, many of which necessitate subsequent operations. One of the most important steps in the initial management of open fractures is a thorough wound irrigation and debridement to remove any contaminants. There is, however, currently no consensus regarding the optimal approach to irrigating open fracture wounds during the initial operative procedure. The selection of both the type of irrigating fluid and the pressure of fluid delivery remain controversial. The primary objective of this study is to investigate the effects of irrigation solutions (soap vs. normal saline) and pressure (low vs. high; gravity flow vs. high; low vs. gravity flow) on re-operation within one year among patients with open fractures. The FLOW study is a multi-center, randomized controlled trial using a 2 x 3 factorial design. Surgeons at clinical sites in North America, Europe, Australia, and Asia will recruit 2 280 patients who will be centrally randomized into one of the 6 treatment arms (soap + low pressure; soap + gravity flow pressure; soap + high pressure; saline + low pressure; saline + gravity flow pressure; saline + high pressure). The primary outcome of the study is re-operation to promote wound or bone healing, or to treat an infection. This composite endpoint of re-operation includes a narrow spectrum of patient-important procedures: irrigation and debridement for infected wound, revision and closure for wound dehiscence, wound coverage procedures for infected or necrotic wound, bone grafts or implant exchange procedures for established nonunion in patients with postoperative fracture gaps less than 1 cm, intramedullary nail dynamizations in the operating room, and fasciotomies for compartment syndrome. Patients, outcome adjudicators, and data analysts will be blinded. We will compare rates of re-operation at 12 months across soap vs. saline, low pressure vs. high pressure, gravity flow pressure vs. high pressure, and low pressure vs. gravity flow pressure. We will measure function and quality of life with the Short Form-12 (SF-12) and the EuroQol-5 Dimensions (EQ-5D) at baseline, 2 weeks, 6 weeks, 3 months, 6 months, 9 months, and 12 months after initial surgical management, and measure patients' illness beliefs with the Somatic Pre-Occupation and Coping (SPOC) questionnaire at 1 and 6 weeks. We will also compare non-operatively managed infections, wound healing, and fracture healing problems at 12 months after initial surgery. This study represents a major international effort to identify a simple and easily applicable strategy for emergency wound management. The importance of the question and the potential to identify a low cost treatment strategy argues strongly for global participation, especially in low and middle income countries such as India and China where disability from traumatic injuries is substantial. This trial is registered at ClinicalTrials.gov (NCT00788398).

  6. Recent gravity monitoring of ETS transient deformation in the northern Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Henton, J. A.; Dragert, H.; Lambert, A.; Nykolaishen, L.; Liard, J.; Courtier, N.

    2012-12-01

    High-precision gravity observations are sensitive to vertical motion of the observation site as well as mass redistribution and can be used to investigate the physical processes involved in Episodic Tremor and Slip (ETS). For the 2011 ETS event in the northern portion of the Cascadia Subduction Zone, absolute gravity (AG) observations and continuous gravity monitoring with an earth tide (ET) gravimeter were carried out at the Pacific Geoscience Centre (PGC) in order to augment the GPS and borehole strainmeter (BSM) data used in constraining models of slip on the subduction plate interface. Unfortunately, the surface displacements and strains for the August 2011 slow slip event were significantly less for southern Vancouver Island than those recorded for previous events making this particular ETS episode less than ideal for the search for attendant gravity signals. Nonetheless, preliminary AG results for the 2011 ETS event show a subtle (≤ 1μGal) negative transient gravity signal but its origin is not clear. This residual gravity change, after accounting for the gravity offset predicted from the observed height change, may reflect a migration of fluids and/or a change in mean density. No significant vertical change is observed in the GPS data. Based on previous events, this is expected since PGC lies close to the hinge-line for vertical deformation for regional ETS. We attempt to improve the resolution of the GPS results by including results from NRCan's PPP software in our analyses. Data from the 3 co-located BSM's operated by the Plate Boundary Observatory show discrepancies that indicate interfering signals of likely non-tectonic origin. Preliminary data from the ET gravimeter appear to be dominated by non-linear instrumental drift that is often observed at the outset of continuous operation at a new location. To improve the resolution of the gravity signal, future monitoring of ETS events will be supplemented at PGC by continuous gravity measurements with a superconducting gravimeter. For the 2012 ETS event in northern Cascadia, AG observations are also planned for Port Renfrew, British Columbia. The Port Renfrew region is targeted since it has typically had large (~7mm) vertical displacements and strains during past ETS episodes. Analysis of the multiple-epoch series of AG observations at Port Renfrew during the 2010 ETS event indicate a gravity decrease larger than expected for observed GPS height change associated with thrust faulting.

  7. Circulation-based Modeling of Gravity Currents

    NASA Astrophysics Data System (ADS)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.

  8. Geopotential research mission, science, engineering and program summary

    NASA Technical Reports Server (NTRS)

    Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)

    1986-01-01

    This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.

  9. A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Perez, Alejandro

    2017-05-01

    We show that the non-Abelian nature of geometric fluxes—the corner-stone in the definition of quantum geometry in the framework of loop quantum gravity (LQG)—follows directly form the continuum canonical commutations relations of gravity in connection variables and the validity of the Gauss law. The present treatment simplifies previous formulations and thus identifies more clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to arbitrary gauge theories and relies only on the validity of the Gauss law.

  10. Magnetic Launch Assist System-Artist's Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This illustration is an artist's concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth's gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  12. Characteristics of the advanced supersonic technology AST-105-1 configured for transpacific range with Pratt and Whitney aircraft variable stream control engines

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.

    1979-01-01

    Credence to systems weights and assurance that the noise study AST concept can be balanced were studied. Current titanium structural technology is assumed. A duct-burning turbofan variable stream control engine (VSCE), with noise reduction potential through use of a coannular nozzle was used. With 273 passengers, range of the AST-105-1 for a cruise Mach number of 2.62 is essentially transpacific. Lift-to-drag ratio is slightly higher than for previous AST configurations. It is trimmable over a center-of-gravity range of 4.7m (15.5 ft). Inherent high positive effective dihedral, typical of arrow-wing configurations in high-lift approach, would limit AST-105-1 to operating in crosswinds of 11.6 m/sec (22.4 kt), or less, with 75 percent of available lateral control. Normal power takeoff with cutback results in noise in excess of Federal Aviation Regulation Part 36 but less than for conventional procedure takeoff. Results of advanced (noncertificated) programmed throttle takeoff and approach procedures, not yet optimized, indicate that such can be an important additional method noise reduction.

  13. Coupled Gravity and Elevation Measurement of Ice Sheet Mass Change

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Baumgartner, F.

    2005-01-01

    During June 2003, we measured surface gravity at six locations about a glaciological measurement site located on the South-central Greenland Ice. We operated a GPS unit for 90 minutes at each site -the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. Two gravimeters were used simultaneously at each site. Measurements were repeated at each site with at time lapse of at least 50 minutes. We measured snow physical properties in two shallow pits The same measurement sites were occupied in 1981 and all were part of a hexagonal network of geodetic and glaciological measurements established by The Ohio State University in 1980. Additional gravity observations were acquired at three of the sites in 1993 and 1995. Gravity data were collected in conjunction with Doppler satellite measurements of position and elevation in 1981 and global positioning system measurements subsequently. The use of satellite navigation techniques permitted reoccupation of the same sites in each year to within a few 10 s of meters or better. After detrending the gravity data, making adjustments for tides and removing the residual effects of local spatial gradients in gravity, we observe an average secular decrease in gravity of about 0.01 milligal/year, but with tenths of milligal variations about the mean trend. The trend is consistent with a nearly linear increase in surface elevation of between 7 to 10 c d y r (depending on location) as measured by repeated airborne laser altimeter, surface Doppler satellite and GPS elevation measurements. Differences between the residual gravity anomalies after free air correction may be attributable to local mass changes. This project is a collaboration between the Byrd Polar Research Center of the Ohio State University and the Arctic Technology Center of the Danish Technical University.

  14. JPL Counterfeit Parts Avoidance

    NASA Technical Reports Server (NTRS)

    Risse, Lori

    2012-01-01

    SPACE ARCHITECTURE / ENGINEERING: It brings an extreme test bed for both technologies/concepts as well as procedures/processes. Design and construction (engineering) always go together, especially with complex systems. Requirements (objectives) are crucial. More important than the answers are the questions/Requirements/Tools-Techniques/Processes. Different environments force architects and engineering to think out of the box. For instance there might not be gravity forces. Architectural complex problems have common roots: in Space and on Earth. Let us bring Space down on Earth so we can keep sending Mankind to the stars from a better world. Have fun being architects and engineers...!!! This time is amazing and historical. We are changing the way we inhabit the solar systems!

  15. A commercial isoelectric focusing apparatus for use in microgravity

    NASA Astrophysics Data System (ADS)

    Johnson, Jerald F.; Dandy, Jonathan S.; Johnson, Terry C.

    2000-01-01

    A series of studies have tested the possibility that the microgravity environment may be superior to laboratories on earth for several biomedical applications. One such application is isoelectric focusing (IEF). The purpose of our research is to design, build, test, and employ an analytical IEF instrument for use in the laboratory on the International Space Station (ISS) and to demonstrate the advantages of space-based IEF. This paper describes IEF in general, discusses the design considerations that arise for IEF in low-gravity, and presents design solutions to some of the systems under development. Isoelectric focusing is a powerful technique that has applications for both analytical analysis the preparative purification of macromolecules. IEF resolves proteins by net charge separation, in either liquid or semi-solid substrates, where the molecules migrate to their isoelectric point (pI). In earth-based IEF, separation media are usually semi-solids such as polyacrylamide and agarose gels. The matrix structure of these media is used to offset the gravity-induced diffusion and convection that occurs in free solutions. With these effects being greatly reduced, a free solution could be used as a superior media. Because diffusion in liquids is reduced in microgravity (Snyder, 1986), a given electrical field should result in more tightly focused bands. This would allow for the separation of proteins that have very closely spaced pI's. If superior results are achieved, there are numerous pharmaceutical and genetic engineering companies that would take advantage of this unique development. The design of the Commercial IsoElectric Focusing Apparatus (CIEFA) presents several significant engineering challenges specific to its operation in the microgravity environment. Three difficulties of particular importance are gases generated through electrolysis, temperature control and verification of protein separation. Gases generated through electrolysis must be isolated from electrodes to prevent current limiting. Special measures for temperature control must be made due to the absence of gravity-induced convective heat flow. In order for the experiment results to be examined, some mechanism must be in place to either document or preserve the protein bands. Preliminary testing aboard the space shuttle requires that the CIEFA be compatible with the shuttle's middeck locker. This requirement poses limits in the physical parameters of size, mass, power consumption, and heat generation. In addition, the design must be NASA certifiable for shuttle flight. This diverse list of design obstacles requires integration of biological, electrical, and mechanical solutions. .

  16. Structural Test Laboratory | Water Power | NREL

    Science.gov Websites

    Structural Test Laboratory Structural Test Laboratory NREL engineers design and configure structural components can validate models, demonstrate system reliability, inform design margins, and assess , including mass and center of gravity, to ensure compliance with design goals Dynamic Characterization Use

  17. Handbook of human engineering design data for reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Marton, T.; Rudek, F. P.; Miller, R. A.; Norman, D. G.

    1971-01-01

    A Handbook is presented for the use of engineers, designers, and human factors specialists during the developmental and detailed design phases of manned spacecraft programs. Detailed and diverse quantified data on man's capabilities and tolerances for survival and productive effort in the extraterrestrial environment are provided. Quantified data and information on the space environment as well as the characteristics of the vehicular or residential environment required to support man in outer space are also given.

  18. Foundations of Tensor Analysis for Students of Physics and Engineering With an Introduction to the Theory of Relativity

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.

    2005-01-01

    Tensor analysis is one of the more abstruse, even if one of the more useful, higher math subjects enjoined by students of physics and engineering. It is abstruse because of the intellectual gap that exists between where most physics and engineering mathematics leave off and where tensor analysis traditionally begins. It is useful because of its great generality, computational power, and compact, easy to use, notation. This paper bridges the intellectual gap. It is divided into three parts: algebra, calculus, and relativity. Algebra: In tensor analysis, coordinate independent quantities are sought for applications in physics and engineering. Coordinate independence means that the quantities have such coordinate transformations as to leave them invariant relative to a particular observer s coordinate system. Calculus: Non-zero base vector derivatives contribute terms to dynamical equations that correspond to pseudoaccelerations in accelerated coordinate systems and to curvature or gravity in relativity. These derivatives have a specific general form in tensor analysis. Relativity: Spacetime has an intrinsic geometry. Light is the tool for investigating that geometry. Since the observed geometry of spacetime cannot be made to match the classical geometry of Euclid, Einstein applied another more general geometry differential geometry. The merger of differential geometry and cosmology was accomplished in the theory of relativity. In relativity, gravity is equivalent to curvature.

  19. Centre of Gravity Plethysmography--A Means of Detecting Mass Transfer of Fluid within the Body.

    ERIC Educational Resources Information Center

    Buck, Michael

    1988-01-01

    Describes the monitoring of the redistribution of blood by using a technique which detects changes in the center of gravity of the body. Provides information about the principles and application, construction of apparatus, operating routines, and use of the computer as a recorder. Includes suggested investigations, demonstrations, and diagrams.…

  20. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  1. Distance between Quantum States and Gauge-Gravity Duality.

    PubMed

    Miyaji, Masamichi; Numasawa, Tokiro; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento

    2015-12-31

    We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an anti-de Sitter spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.

  2. The space station tethered elevator system

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1989-01-01

    The optimized conceptual engineering design of a space station tethered elevator is presented. The elevator is an unmanned mobile structure which operates on a ten kilometer tether spanning the distance between the Space Station and a tethered platform. Elevator capabilities include providing access to residual gravity levels, remote servicing, and transportation to any point along a tether. The potential uses, parameters, and evolution of the spacecraft design are discussed. Engineering development of the tethered elevator is the result of work conducted in the following areas: structural configurations; robotics, drive mechanisms; and power generation and transmission systems. The structural configuration of the elevator is presented. The structure supports, houses, and protects all systems on board the elevator. The implementation of robotics on board the elevator is discussed. Elevator robotics allow for the deployment, retrieval, and manipulation of tethered objects. Robotic manipulators also aid in hooking the elevator on a tether. Critical to the operation of the tethered elevator is the design of its drive mechanisms, which are discussed. Two drivers, located internal to the elevator, propel the vehicle along a tether. These modular components consist of endless toothed belts, shunt-wound motors, regenerative power braking, and computer controlled linear actuators. The designs of self-sufficient power generation and transmission systems are reviewed. Thorough research indicates all components of the elevator will operate under power provided by fuel cells. The fuel cell systems will power the vehicle at seven kilowatts continuously and twelve kilowatts maximally. A set of secondary fuel cells provides redundancy in the unlikely event of a primary system failure. Power storage exists in the form of Nickel-Hydrogen batteries capable of powering the elevator under maximum loads.

  3. Four-dimensional gravity as an almost-Poisson system

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo

    2015-04-01

    In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.

  4. Laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements

    NASA Technical Reports Server (NTRS)

    Paik, Ho J.; Canavan, Edgar R.; Kong, Qin; Moody, M. V.

    1992-01-01

    The paper describes the superconducting gravity gradiometers (SGGs) and superconducting accelerometers being developed at the University of Maryland, which take advantage of many exotic properties of superconductivity to obtain the required low noise, high stability, and large dynamic range. Results of laboratory demonstrations of some of these instruments are presented together with the design and operating principles. Particular attention is given to the three-axis Model II SGG and a six-axis superconducting accelerometer model (Model I SSA). Model II SGG, after a residual common-mode balance, exhibited a noise level of 0.05/sq rt Hz above 0.1 Hz and a 1/f-squared noise below 0.1 Hz. All six channels of Model I SSA operated simultaneously with linear and angular acceleration noise levels of 3 x 10 exp -10 g(E)/sq rt Hz and 5 x 10 exp -8 rad/sec per sec per sq rt Hz, respectively.

  5. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    NASA Astrophysics Data System (ADS)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  6. Estimation des masses, des centres de gravite ainsi que des moments d'inertie de l'avion cessna citation X

    NASA Astrophysics Data System (ADS)

    Chahbani, Samia

    The masses, centers of gravity and moments of inertia are the main parameters in the three phases of the design of the aircraft. They are of extreme importance in the studies of the stability and proper functioning of the aircraft by modeling and simulation methods. Unfortunately, these data are not always available given the confidentiality of aerospace field. A question arises naturally: How to estimate the mass, center of gravity and moments of inertia of an aircraft based on only its geometry? In this context in which this thesis is realized, the masses are estimated by Raymer`s methods. The aircraft described in procedures based on mechanical techniques engineers are used for determining the centers of gravity. The DATCOM is applied for obtaining moments of inertia. Finally, the results obtained are validated by using the flight simulator at the LARCASE corresponding to Cessna Citation X. we conclude with a representation of an analytical model that sum up the different step to follow up for estimating masses, centers of gravity and moments of inertia for any commercial aircraft.

  7. Short and long periodic atmospheric variations between 25 and 200 km

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.

  8. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  9. Suppression of morphogenesis in embryonic mouse limbs exposed in vitro to excess gravity.

    PubMed

    Duke, J C

    1983-06-01

    This paper is a report of the first investigation of the effect of excess gravity on in vitro mammalian limb chondrogenesis. Limb buds from mice of various gestational stages were exposed to excess gravity (2.6G) using a culture centrifuge. Both forelimbs and hind limbs were cultured and the development of various limb elements was scored after four to six days. The 2.6G force significantly depressed the development of limb elements when applied during the teratogen-sensitive period of chondrogenesis. There was a proximodistal gradient of sensitivity to excess gravity in the limb with proximal structures being less susceptible than distal ones. In some cases, proximal limb elements present prior to explantation disappeared upon exposure to excess gravity. Hypergravity's teratogenic effect is assumed to operate via changes in tension and/or pressure on the cells, accompanied by alterations in cell morphometry and membrane properties.

  10. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  11. Optimization study on the primary mirror lightweighting of a remote sensing instrument

    NASA Astrophysics Data System (ADS)

    Chan, Chia-Yen; Huang, Bo-Kai; You, Zhen-Ting; Chen, Yi-Cheng; Huang, Ting-Ming

    2015-07-01

    Remote sensing instrument (RSI) is used to take images for ground surface observation, which will be exposed to high vacuum, high temperature difference, gravity, 15 g-force and random vibration conditions and other harsh environments during operation. While designing a RSI optical system, not only the optical quality but also the strength of mechanical structure we should be considered. As a result, an optimization method is adopted to solve this engineering problem. In the study, a ZERODUR® mirror with a diameter of 466 mm has been chosen as the model and the optimization has been executed by combining the computer-aided design, finite element analysis, and parameter optimization software. The optimization is aimed to obtain the most lightweight mirror with maintaining structural rigidity and good optical quality. Finally, the optimum optical mirror with a lightweight ratio of 0.55 is attained successfully.

  12. Over-the-wing propeller

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr. (Inventor); White, E. Richard (Inventor)

    1986-01-01

    This invention is an aircraft with a system for increasing the lift drag ratio over a broad range of operating conditions. The system positions the engines and nacelles over the wing in such a position that gains in propeller efficiency is achieved simultaneously with increases in wing lift and a reduction in wing drag. Adverse structural and torsional effects on the wings are avoided by fuselage mounted pylons which attach to the upper portion of the fuselage aft of the wings. Similarly, pylon-wing interference is eliminated by moving the pylons to the fuselage. Further gains are achieved by locating the pylon surface area aft of the aircraft center of gravity, thereby augmenting both directional and longitudinal stability. This augmentation has the further effect of reducing the size, weight and drag of empennage components. The combination of design changes results in improved cruise performance and increased climb performance while reducing fuel consumption and drag and weight penalties.

  13. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  14. Reduced-gravity environment hardware demonstrations of a prototype miniaturized flow cytometer and companion microfluidic mixing technology.

    PubMed

    Phipps, William S; Yin, Zhizhong; Bae, Candice; Sharpe, Julia Z; Bishara, Andrew M; Nelson, Emily S; Weaver, Aaron S; Brown, Daniel; McKay, Terri L; Griffin, DeVon; Chan, Eugene Y

    2014-11-13

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described.

  15. Reduced-gravity Environment Hardware Demonstrations of a Prototype Miniaturized Flow Cytometer and Companion Microfluidic Mixing Technology

    PubMed Central

    Bae, Candice; Sharpe, Julia Z.; Bishara, Andrew M.; Nelson, Emily S.; Weaver, Aaron S.; Brown, Daniel; McKay, Terri L.; Griffin, DeVon; Chan, Eugene Y.

    2014-01-01

    Until recently, astronaut blood samples were collected in-flight, transported to earth on the Space Shuttle, and analyzed in terrestrial laboratories. If humans are to travel beyond low Earth orbit, a transition towards space-ready, point-of-care (POC) testing is required. Such testing needs to be comprehensive, easy to perform in a reduced-gravity environment, and unaffected by the stresses of launch and spaceflight. Countless POC devices have been developed to mimic laboratory scale counterparts, but most have narrow applications and few have demonstrable use in an in-flight, reduced-gravity environment. In fact, demonstrations of biomedical diagnostics in reduced gravity are limited altogether, making component choice and certain logistical challenges difficult to approach when seeking to test new technology. To help fill the void, we are presenting a modular method for the construction and operation of a prototype blood diagnostic device and its associated parabolic flight test rig that meet the standards for flight-testing onboard a parabolic flight, reduced-gravity aircraft. The method first focuses on rig assembly for in-flight, reduced-gravity testing of a flow cytometer and a companion microfluidic mixing chip. Components are adaptable to other designs and some custom components, such as a microvolume sample loader and the micromixer may be of particular interest. The method then shifts focus to flight preparation, by offering guidelines and suggestions to prepare for a successful flight test with regard to user training, development of a standard operating procedure (SOP), and other issues. Finally, in-flight experimental procedures specific to our demonstrations are described. PMID:25490614

  16. Gravity Modeling for Variable Fidelity Environments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2006-01-01

    Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.

  17. Infrared consistency and the weak gravity conjecture

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2014-12-11

    The weak gravity conjecture (WGC) asserts that an Abelian gauge theory coupled to gravity is inconsistent unless it contains a particle of charge q and mass m such that q ≥ m/m Pl. This criterion is obeyed by all known ultraviolet completions and is needed to evade pathologies from stable black hole remnants. In this paper, we explore the WGC from the perspective of low-energy effective field theory. Below the charged particle threshold, the effective action describes a photon and graviton interacting via higher-dimension operators. We derive infrared consistency conditions on the parameters of the effective action using i )more » analyticity of light-by-light scattering, ii ) unitarity of the dynamics of an arbitrary ultraviolet completion, and iii ) absence of superluminality and causality violation in certain non-trivial backgrounds. For convenience, we begin our analysis in three spacetime dimensions, where gravity is non-dynamical but has a physical effect on photon-photon interactions. We then consider four dimensions, where propagating gravity substantially complicates all of our arguments, but bounds can still be derived. Operators in the effective action arise from two types of diagrams: those that involve electromagnetic interactions (parameterized by a charge-to-mass ratio q/m) and those that do not (parameterized by a coefficient γ). In conclusion, infrared consistency implies that q/m is bounded from below for small γ.« less

  18. A Test Run of the EGSIEM Near Real-Time Service Based on GRACE Mission Data

    NASA Astrophysics Data System (ADS)

    Kvas, A.; Gruber, C.; Gouweleeuw, B.; Guntner, A.; Mayer-Gürr, T.; Flechtner, F. M.

    2017-12-01

    To enable the use of GRACE and GRACE-FO data for rapid monitoring applications, the EGSIEM (European Gravity Service for Improved Emergency Management) project, funded by the Horizon 2020 Framework Program for Research and Innovation of the European Union, has implemented a demonstrator for a near real-time (NRT) gravity field service. The goal of this service is to provide daily gravity field solutions with a maximum latency of five days. For this purpose, two independent approaches were developed at the German Research Centre for Geosciences (GFZ) and Graz University of Technology (TUG). Based on these daily gravity field solutions, statistical flood and drought indicators are derived by the EGSIEM Hydrological Service, developed at GFZ. The NRT products are subsequently provided to the Center for Satellite based Crisis Information (ZKI) at the German Aerospace Center as well as the Global Flood Awareness System (GloFAS) at the Joint Research Center of the European Commission. In the first part of this contribution, the performance of the service based on a statistical analysis of historical flood events during the GRACE period is evaluated. Then, results from the six month long operational test run of the service which started on April 1st 2017 are presented and a comparison between historical and operational gravity products and flood indicators is made.

  19. Scale hierarchy in Hořava-Lifshitz gravity: strong constraint from synchrotron radiation in the Crab Nebula.

    PubMed

    Liberati, Stefano; Maccione, Luca; Sotiriou, Thomas P

    2012-10-12

    Hořava-Lifshitz gravity models contain higher-order operators suppressed by a characteristic scale, which is required to be parametrically smaller than the Planck scale. We show that recomputed synchrotron radiation constraints from the Crab Nebula suffice to exclude the possibility that this scale is of the same order of magnitude as the Lorentz breaking scale in the matter sector. This highlights the need for a mechanism that suppresses the percolation of Lorentz violation in the matter sector and is effective for higher-order operators as well.

  20. Last ion engine thrust puts ESA's SMART-1 on the right track for its Moon encounter

    NASA Astrophysics Data System (ADS)

    2004-10-01

    SMART-1, on its way to the Moon, has now covered more than 80 million kilometres. Its journey started on 27 September 2003, when the spacecraft was launched on board an Ariane 5 rocket from Europe’s spaceport in Kourou, French Guiana. Since then, it has been spiralling in progressively larger orbits around Earth, to eventually be captured by the lunar gravity and enter into orbit around the Moon in November this year. The SMART-1 mission was designed to pursue two main objectives. The first is purely technological: to demonstrate and test a number of space techniques to be applied to future interplanetary exploration missions. The second goal is scientific, mainly dedicated to lunar science. It is the technology demonstration goal, in particular the first European flight test of a solar-powered ion engine as a spacecraft’s main propulsion system, that gave shape to the peculiar route and duration (13 months) of the SMART-1 journey to the Moon. The long spiralling orbit around Earth, which is bringing the spacecraft closer and closer to the Moon, is needed for the ion engine to function and be tested over a distance comparable to that a spacecraft would travel during a possible interplanetary trip. The SMART-1 mission is also testing the response of a spacecraft propelled by such an engine during gravity-assisted manoeuvres. These are techniques currently used on interplanetary journeys, which make use of the gravitational pull of celestial objects (e.g. planets) for the spacecraft to gain acceleration and reach its final target while saving fuel. In SMART-1’s case, the Moon’s gravitational pull has been exploited in three “lunar resonance” manoeuvres. The first two successfully took place in August and September 2004. The last resonance manoeuvre was on 12 October, during the last major ion engine thrust, which lasted nearly five days, from 10 to 14 October. Thanks to this final thrust, SMART-1 will make two more orbits around Earth without any further need to switch on the engine, apart from minor trajectory correction if needed. The same thrust will allow the spacecraft to progressively fall into the natural sphere of attraction of the Moon and start orbiting around it from 13 November, when it is 60 000 kilometres from the lunar surface. SMART-1 will reach its first perilune (initial closest distance from the lunar surface) on 15 November, while the ion engine is performing its first and major thrust in orbit around the Moon. After that it will continue orbiting around the Moon in smaller loops until it reaches its final operational orbit (spanning between 3000 and 300 kilometres over the Moon’s poles) in mid-January 2005. From then, for six months Smart-1 will start the first comprehensive survey of key chemical elements on the lunar surface and will investigate the theory of how the Moon was formed.

  1. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer... the U.S. National Oceanographic and Atmospheric Administration's surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl. If this Web site is unavailable, you may use the...

  2. 40 CFR 1065.310 - Torque calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintenance. Use good engineering judgment to repeat the calibration. Follow the torque transducer... the U.S. National Oceanographic and Atmospheric Administration's surface gravity prediction Web site at http://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl. If this Web site is unavailable, you may use the...

  3. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  4. Pancam Mast Assembly on Mars Rover

    NASA Technical Reports Server (NTRS)

    Warden, Robert M.; Cross, Mike; Harvison, Doug

    2004-01-01

    The Pancam Mast Assembly (PMA) for the 2003 Mars Rover is a deployable structure that provides an elevated platform for several cameras. The PMA consists of several mechanisms that enable it to raise the cameras as well as point the cameras in all directions. This paper describes the function of the various mechanisms as well as a description of the mechanisms and some test parameters. Designing these mechanisms to operate on the surface of Mars presented several challenges. Typical spacecraft mechanisms must operate in zero-gravity and high vacuum. These mechanisms needed to be designed to operate in Martian gravity and atmosphere. Testing conditions were a little easier because the mechanisms are not required to operate in a vacuum. All of the materials are vacuum compatible, but the mechanisms were tested in a dry nitrogen atmosphere at various cold temperatures.

  5. Quantum group structure and local fields in the algebraic approach to 2D gravity

    NASA Astrophysics Data System (ADS)

    Schnittger, J.

    1995-07-01

    This review contains a summary of the work by J.-L. Gervais and the author on the operator approach to 2d gravity. Special emphasis is placed on the construction of local observables — the Liouville exponentials and the Liouville field itself — and the underlying algebra of chiral vertex operators. The double quantum group structure arising from the presence of two screening charges is discussed and the generalized algebra and field operators are derived. In the last part, we show that our construction gives rise to a natural definition of a quantum tau function, which is a noncommutative version of the classical group-theoretic representation of the Liouville fields by Leznov and Saveliev.

  6. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  7. International Space University variable gravity research facility design

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1994-03-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. This report describes the VGRF design that was developed by international participants specializing in the following areas: the politics of international cooperation; engineering, architecture; in-space physiological, materials, and life science experimentation; data communications; and business and management.

  8. The International Space University's variable gravity research facility design

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1991-09-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

  9. The International Space University's variable gravity research facility design

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1991-01-01

    A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.

  10. Asteroid Deflection: How, Where and When?

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2008-10-01

    To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.

  11. Manufacturing techniques for Gravity Probe B gyroscopes

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.

    1978-01-01

    Additional and improved techniques for the manufacture of Gravity Probe B gyroscopes are reported. Improvements discussed include the redesign of the housings, new techniques for indentation of the electrode surfaces, and a new rotor ball lapping machine. These three items represent a significant improvement in operation of the gyroscope and also make possible the fabrication of a gyroscope which will meet flight requirements.

  12. Analysis of gravity-induced particle motion and fluid perfusion flow in the NASA-designed rotating zero-head-space tissue culture vessel

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1991-01-01

    The gravity induced motions, through the culture media, is calculated of living tissue segments cultured in the NASA rotating zero head space culture vessels. This is then compared with the media perfusion speed which is independent of gravity. The results may be interpreted as a change in the physical environment which will occur by operating the NASA tissue culture systems in actual microgravity (versus unit gravity). The equations governing particle motions which induce flows at the surface of tissues contain g terms. This allows calculation of the fluid flow speed, with respect to a cultured particle, as a function of the external gravitational field strength. The analysis is approached from a flow field perspective. Flow is proportional to the shear exerted on a structure which maintains position within the field. The equations are solved for the deviation of a particle from its original position in a circular streamline as a function of time. The radial deviation is important for defining the operating limits and dimensions of the vessel because of the finite radius at which particles necessarily intercept the wall. This analysis uses a rotating reference frame concept.

  13. Coupled Gravity and Elevation Measurements of Ice Sheet Mass Change

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.

    2005-01-01

    We measured surface gravity and position at ten locations about two glaciological measurement networks located on the South-central Greenland Ice during June 2004. Six of the individual sites of the first network were occupied the previous year. At the repeat sites we were able to measure annual accumulation rate and surface displacement by referencing measurements to aluminum poles left in the firn the previous year. We occupied 4 additional sites at a second measurement network for the first time since initial observations were last made at the network in 1981. At each individual site, we operated a GPS unit for 90 minutes - the unit was operated simultaneously with a base station unit in Sondrestrom Fjord so as to enable differential, post-processing of the data. We installed an aluminum, accumulation-rate-pole at each site. The base section of the pole also served as the mount for the GPS antenna. A new, Scintrex gravimeter was used at each site and relative gravity measurements were tied to the network of absolute gravity stations in Sondrestrom. We measured snow physical properties in two shallow pits. This report summarizes our observations and data analysis.

  14. Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences

    DOE PAGES

    Bern, Zvi; Cheung, Clifford; Chi, Huan -Hang; ...

    2015-11-17

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R 3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual inmore » D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly—the coefficient of the Gauss-Bonnet operator—changes under p-form duality transformations. In addition, we concur and also find that the leading R 3 divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.« less

  15. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  16. Hybrid gravity survey to search for submarine ore deposit

    NASA Astrophysics Data System (ADS)

    Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.

    2011-12-01

    Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.

  17. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the new system are: - Reduce the size of the system to approximately one third of the volume of the original TAGS and reduce the weight by one half. - Use slip ring technology to eliminate cable drag on the sensor and gimbal platform. - Use a double oven system to further isolate the gravity sensor from large external temperature variations commonly experienced in airborne survey operations. - Completely redesign both the platform control system and data acquisition and recording system to eliminate reliance on standard computer and windows software enhancing reliability and data throughput. - Increase data recording rate to 20 hertz to assist in making GPS corrections to platform levelling. - Use an advanced force feedback system to increase system resolution in turbulent conditions, eliminate dependence on the spring tension counter and the need to clamp the beam during turns. - Enable the system to be used for drape flying and remove the requirement for an operator and hence be suitable for unmanned aerial vehicle (UAV) operations. Prototype testing of the mechanical and electronic components has been ongoing through the first half of 2011. Ground testing and airborne testing began in May of 2011 and will continue through until October of 2011. This paper will present the results of the full hardware testing in different environments and confirmation of the capabilities of the system.

  18. Experiments to ensure Space Station fire safety - A challenge

    NASA Technical Reports Server (NTRS)

    Youngblood, W. W.; Seiser, K. M.

    1988-01-01

    Three experiments have been formulated in order to address prominent fire safety requirements aboard the NASA Space Shuttle; these experiments are to be conducted as part of a Space Station-based Technology Development Mission for the growth phase of Space Station construction and operation. The experiments are: (1) an investigation of the flame-spread rate and combustion-product evolution in the burning of typical spacecraft materials in low gravity; (2) an evaluation of the interaction of fires and candidate fire extinguishers in low gravity; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion in low gravity.

  19. On the source of cross-grain lineations in the central Pacific gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, David C.; Sandwell, David T.

    1989-01-01

    The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.

  20. FLUID MECHANICS AND TANKAGE DESIGN FOR LOW GRAVITY ENVIRONMENT

    DTIC Science & Technology

    tankage delivers only single-phase propellants. The requirements for feed systems of electric engines are described briefly. Also, the 1.85-second drop...direction of mass transfer in tapered tubes and liquid-vapor interface shapes in an annular space between concentric cylinders. Possible feed systems

  1. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  2. Cloud physics laboratory project science and applications working group

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1977-01-01

    The conditions of the expansion chamber under zero gravity environment were simulated. The following three branches of fluid mechanics simulation under low gravity environment were accomplished: (1) oscillation of the water droplet which characterizes the nuclear oscillation in nuclear physics, bubble oscillation of two phase flow in chemical engineering, and water drop oscillation in meteorology; (2) rotation of the droplet which characterizes nuclear fission in nuclear physics, formation of binary stars and rotating stars in astrophysics, and breakup of the water droplet in meteorology; and (3) collision and coalescence of the water droplets which characterizes nuclear fusion in nuclear physics and processes of rain formation in meteorology.

  3. Engineering Support of Microgravity Life Science Research: Development of an Avian Development Facility

    NASA Technical Reports Server (NTRS)

    Vellinger, J.; Deuser, M.; Hullinger, R.

    1995-01-01

    The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.

  4. Benefit from NASA

    NASA Image and Video Library

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  5. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  6. SR&DB Cryogenic Research & Development for Space Applications

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. I.; Arkhipov, V. T.; Logvinenko, S. P.; Solodovnik, L. L.; Rusanov, K. V.; Shcherbakova, N. S.

    The Special Research and Development Bureau (SR&DB) for Cryogenic Technology of the B. Verkin Institute for Low Temperature Physics & Engineering was founded in 1971 and is located in Kharkov, Ukraine. Its primary focus has been in the area of applied r&d in the field of cryogenic technology for space applications. Within this field SR&DB has had many successful accomplishments, especially in the development of satellite based cryogenic cooling systems, mass spectrometer measurement devices, resistence thermometers, and cryogenically cooled optical systems. We have developed very advanced technology in the fields of fluids, heat transfer and hydrodynamics under micro-gravity conditions. Many of the SR&DB cryogenic products have been successfully implemented for former Soviet space applications, both near-earth and deep space. The SR&DB unique experience in many R&D areas can be and are being used for a new generation of space applications which have a requirement for planetary and deep-space missions. Systems we have developed have been proven to have a 5-year life in orbit. Recently we have focused much of our attention, as well, to the requirement low-weight and low-power systems which are mandatory requirements for outerspace missions. The funtionality of the exterior surfaces of a spacecraft are mainly dependent on the composition of its internally generated local atmosphere. In order to continually assess the content and concentration of components of this atmosphere we have developed space based mass spectrometric measuring devices. Devices which require such continual measurement are optical devices, emission receivers, solar cells, etc. A significant technology advance in the field of cryogenics is the application of cryoagents in systems of life support and spacecraft engine operation. We have studied and have an in-depth comprehension of unique phase-transition for these cryoagents such as oxygen, hydrogen, et al. under microgravity conditions. Currently SR&DB under contract to the National Space Agency of Ukraine has been developing an experimental apparatus for studying the continuous boiling off of cryogenic fluids under micro-gravity conditions.

  7. The middeck 0-gravity dynamics experiment

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Vanschoor, Marthinus C.; Bokhour, Edward B.

    1993-01-01

    The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids.

  8. Stratification established by peeling detrainment from gravity currents: laboratory experiments and models

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie; Dalziel, Stuart; Huppert, Herbert; Imberger, Jorg; Department of Applied Mathematics; Theoretical Physics Team; CentreWater Research Team

    2014-11-01

    Dense gravity currents feed fluid into confined basins in lakes, the oceans and many industrial applications. Existing models of the circulation and mixing in such basins are often based on the currents entraining ambient fluid. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the mixing in such currents. Laboratory experiments were carried out which visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the stratification in the basin. This new model gives a better approximation of the stratification observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lakes.

  9. Entanglement entropy and correlations in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Feller, Alexandre; Livine, Etera R.

    2018-02-01

    Black hole entropy is one of the few windows into the quantum aspects of gravitation, and its study over the years has highlighted the holographic nature of gravity. At the non-perturbative level in quantum gravity, promising explanations are being explored in terms of the entanglement entropy between regions of space. In the context of loop quantum gravity, this translates into an analysis of the correlations between the regions of the spin network states defining the quantum state of the geometry of space. In this paper, we explore a class of states, motivated by results in condensed matter physics, satisfying an area law for entanglement entropy and having non-trivial correlations. We highlight that entanglement comes from holonomy operators acting on loops crossing the boundary of the region.

  10. Preliminary flight prototype waste collection subsystem. [performance of waste disposal system in weightless environment

    NASA Technical Reports Server (NTRS)

    Swider, J. E., Jr.

    1974-01-01

    The zero gravity test program demonstrated the feasibility and practicability of collecting urine from both male and female crew members in a zero gravity environment in an earthlike manner not requiring any manual handling of urine containers. In addition, the testing demonstrated that a seat which is comfortable in both regimes of operation could be designed for use on the ground and in zero-gravity. Further, the tests showed that the vortex liquid/air separator is an effective liquid/air separation method in zero gravity. Visual observations indicate essentially zero liquid carry over. The system also demonstrated its ability to handle post elimination wipes without difficulty. The designs utilized in the WCS were verified as acceptable for usage in the space shuttle or other space vehicles.

  11. In-Flight Operation of the Dawn Ion Propulsion System - The First Nine Months

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Mikes, Steven C.; Raymond, Marc D.

    2008-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta-V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion engine design is based on the design validated on NASA's Deep Space 1 mission. However, because of the very substantial (11 km/s) delta-V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are also based on the DS1 design. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft prior to the initiation of long-term thrusting for the heliocentric transfer to Vesta. The IPS hardware, consisting of three ion thrusters and TGAs, two PPUs and DCIUs, xenon feed system, and spacecraft control software, was investigated extensively. Thrust measurements, roll torque measurements, pointing capabilities, control characteristics, and thermal behavior of the spacecraft and IPS were carefully evaluated. The Dawn IPS fully met all its initial checkout performance objectives. Deterministic thrusting for cruise began on December 17, 2007. Over the subsequent approximately 330 days the IPS will be operated virtually continuously at full power thrusting (approximately 91 mN) leading to a Mars flyby in February 2009. The encounter with Mars provides a gravity assist for a plane change and is the only source of post-launch delta-V apart from the IPS. Following the Mars gravity assist IPS will be operated for approximately one year at full power and for 1.3 years at throttled power levels leading to rendezvous with Vesta in August of 2011. Following nine months of orbital operations with IPS providing the propulsion needed for orbit capture, science orbit transfer and orbit maintenance and Vesta escape, Dawn will transit to Ceres with an expected arrival date of February 2015. As of June 16, 2008 the ion thrusters on Dawn have operated for close to 3,846 hours and have delivered nearly 1 km/s of delta-V to the spacecraft. Dawn IPS operation has been almost flawless during the initial checkout and six months of cruise. This paper provides an overview of Dawn's mission objectives, mission and system design, and the results of the post-launch Dawn IPS mission operations through June 2008

  12. State variable modeling of the integrated engine and aircraft dynamics

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Sprinţu, Iuliana

    2014-12-01

    This study explores the dynamic characteristics of the combined aircraft-engine system, based on the general theory of the state variables for linear and nonlinear systems, with details leading first to the separate formulation of the longitudinal and the lateral directional state variable models, followed by the merging of the aircraft and engine models into a single state variable model. The linearized equations were expressed in a matrix form and the engine dynamics was included in terms of variation of thrust following a deflection of the throttle. The linear model of the shaft dynamics for a two-spool jet engine was derived by extending the one-spool model. The results include the discussion of the thrust effect upon the aircraft response when the thrust force associated with the engine has a sizable moment arm with respect to the aircraft center of gravity for creating a compensating moment.

  13. Yugoslav seismological research threatened

    NASA Astrophysics Data System (ADS)

    Allegretti, Ivo; Hamburger, Michael

    We in the Western scientific community have had the luxury, throughout most of our careers, of working in an environment insulated from the terrors of war and political violence. Well distanced from these horrors, we are often numbed by headlines reporting political turmoil elsewhere in the world—whether in Afghanistan, South Africa, or Yugoslavia. There are times, however, when personal contact with a colleague caught within one of these political wildfires reminds us of the very human tragedy that underlies these headlines.In studying a number of large earthquakes that took place in Central Asia in the 1930s and 1940s, we have been collecting seismograms from the well established European seismic observatories that recorded the events. Among them was the Zagreb Observatory, operated by the Mohorovicic Geophysical Institute of the University of Zagreb. The city of Zagreb—along with its scientific and cultural institutions—is now under siege, a result of the violent military conflict between the Yugoslav federal government and the Republic of Croatia. The following letter, which accompanied the Zagreb seismograms, provides a vivid picture of the daily hardships that our colleagues in Yugoslavia must be facing and a call to members of the international scientific community to help put an end to the rapidly escalating violence in Yugoslavia.

  14. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    NASA Technical Reports Server (NTRS)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  15. Constellation

    NASA Image and Video Library

    2008-02-15

    SHOWN IS A CONCEPT IMAGE OF THE ARES V EARTH DEPARTURE STAGE AND LUNAR SURFACE ACCESS MODULE DOCKED WITH THE ORION CREW EXPLORATION VEHICLE IN EARTH ORBIT. THE DEPARTURE STAGE, POWERED BY A J-2X ENGINE, IS NEEDED TO ESCAPE EARTH'S GRAVITY AND SEND THE CREW VEHICLE AND LUNAR MODULE ON THEIR JOURNEY TO THE MOON.

  16. Predicting the concentration and specific gravity of biodiesel-diesel blends using near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Biodiesel made from different source materials usually have different physical and chemical properties and the concentration of biodiesel in biodiesel-diesel blends varies from pump to pump and from user to user; all these factors have significant effects on performance and efficiency of engines fue...

  17. Using Center of Gravity Analysis to Defeat Violent Extremist Organizations

    DTIC Science & Technology

    2016-04-04

    elephant . They know a definition exists, but they describe it according to their own experiences.”9 Eikmeier notes “Centers of Gravity are not self... Elephant Pass demonstrated the LTTE’s ability to conduct conventional military operations.21 16...the Battle of Elephant Pass see Ahmed Hashim’s When Counterinsurgency Wins, 99- 100. 15 Analysis Both sides reached culmination leading to the

  18. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations) on space biology research.

  19. ARTEMIS Mission Overview: From Concept to Operations

    NASA Technical Reports Server (NTRS)

    Folta, David; Sweetser, Theodore

    2011-01-01

    ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) repurposed two spacecraft to extend their useful science (Angelopoulos, 2010) by moving them via lunar gravity assists from elliptical Earth orbits to L1 and L2 Earth-Moon libration orbits and then to lunar orbits by exploiting the Earth-Moon-Sun dynamical environment. This paper describes the complete design from conceptual plans using weak stability transfer options and lunar gravity assist to the implementation and operational support of the Earth-Moon libration and lunar orbits. The two spacecraft of the ARTEMIS mission will have just entered lunar orbit at this paper's presentation.

  20. Gas-Liquid Flows and Phase Separation

    NASA Technical Reports Server (NTRS)

    McQuillen, John

    2004-01-01

    Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .

  1. Cryogenic Fluid Technologies for Long Duration In-Space Operations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Tramel, Terri L.

    2008-01-01

    Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of storage, distribution, and low-gravity propellant management. The Vision for Space Exploration mission objectives will require the use of high performance cryogenic propellants (hydrogen, oxygen, and methane). Additionally, lunar missions will require success in storing and transferring liquid and gas commodities on the surface. The fundamental challenges associated with the in-space use of cryogens are their susceptibility to environmental heat, their complex thermodynamic and fluid dynamic behavior in low gravity and the uncertainty of the position of the liquid-vapor interface if the propellants are not settled. The Cryogenic Fluid Management (CFM) project is addressing these issues through ground testing and analytical model development, and has crosscutting applications and benefits to virtually all missions requiring in-space operations with cryogens. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and on-orbit margins, and simplify vehicle operations. The Cryogenic Fluid Management (CFM) Project is conducting testing and performing analytical evaluation of several areas to enable NASA s Exploration Vision. This paper discusses the content and progress of the technology focus areas within CFM.

  2. Towards apparent convergence in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Denz, T.; Pawlowski, J. M.; Reichert, M.

    2018-04-01

    The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present work this expansion scheme is extended to the dynamical graviton four-point function. For the first time, this provides us with a closed flow equation for the graviton propagator: all vertices and propagators involved are computed from their own flows. In terms of a covariant operator expansion the current approximation gives access to Λ , R, R^2 as well as R_{μ ν }^2 and higher derivative operators. We find a UV fixed point with three attractive and two repulsive directions, thus confirming previous studies on the relevance of the first three operators. In the infrared we find trajectories that correspond to classical general relativity and further show non-classical behaviour in some fluctuation couplings. We also find signatures for the apparent convergence of the systematic vertex expansion. This opens a promising path towards establishing asymptotically safe gravity in terms of apparent convergence.

  3. Operational Design and ISR and Zombies or How Operational Design Can Help to Re-aggregate Joint ISR at the Theater and Component Levels

    DTIC Science & Technology

    2010-04-01

    effects and objectives." 47 The JIOC, components, and end users, in coordination with the organization conducting Collection Operation Management (COM...CFACC Combined Force Air Component Commander COA Course of Action COG Center of Gravity COM Collection Operation Management CONOPS Concept of

  4. pyGrav, a Python-based program for handling and processing relative gravity data

    NASA Astrophysics Data System (ADS)

    Hector, Basile; Hinderer, Jacques

    2016-06-01

    pyGrav is a Python-based open-source software dedicated to the complete processing of relative-gravity data. It is particularly suited for time-lapse gravity surveys where high precision is sought. Its purpose is to bind together single-task processing codes in a user-friendly interface for handy and fast treatment of raw gravity data from many stations of a network. The intuitive object-based implementation allows to easily integrate additional functions (reading/writing routines, processing schemes, data plots) related to the appropriate object (a station, a loop, or a survey). This makes pyGrav an evolving tool. Raw data can be corrected for tides and air pressure effects. The data selection step features a double table-plot graphical window with either manual or automatic selection according to specific thresholds on data channels (tilts, gravity values, gravity standard deviation, duration of measurements, etc.). Instrumental drifts and gravity residuals are obtained by least square analysis of the dataset. This first step leads to the gravity simple differences between a reference point and any point of the network. When different repetitions of the network are done, the software computes then the gravity double differences and associated errors. The program has been tested on two specific case studies: a large dataset acquired for the study of water storage changes on a small catchment in West Africa, and a dataset operated and processed by several different users for geothermal studies in northern Alsace, France. In both cases, pyGrav proved to be an efficient and easy-to-use solution for the effective processing of relative-gravity data.

  5. RASSOR - Regolith Advanced Surface Systems Operations Robot

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (<100 kg) robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  6. Status of Electrostatic Accelerometer Development for Gravity Recovery and Climate Experiment Follow-on Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.

    2014-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The Critical Design Review is scheduled at the end of September 2014, and the integration of the first Flight Model will begin on October 2014. The results of the Engineering Model tests and the status of the Flight Models will be presented.

  7. A revolutionary lunar space transportation system architecture using extraterrestrial LOX-augmented NTR propulsion

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.

    1994-08-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively.

  8. A Revolutionary Lunar Space Transportation System Architecture Using Extraterrestrial Lox-augmented NTR Propulsion

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; Mcilwain, Mel C.

    1994-01-01

    The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively.

  9. Scaling of Two-Phase Flows to Partial-Earth Gravity

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Witte, Larry C.

    2003-01-01

    A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid-properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

  10. Lewis Research Center R and D Facilities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  11. Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)

    NASA Astrophysics Data System (ADS)

    Phillips, Kyle G.

    West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via experimentation provided repeatability characteristics of the facility. Based on checkout instrumentation, Initial repeatability results indicated a drop time of 1.26 seconds at an average of 0.06g, with a standard deviation of 0.085g over the period of the drop, and a peak impact load of 28.72g, with a standard deviation of 10.73g, for a payload weight of 113.8 lbs. In order to thoroughly check out the facility, a full-scale, fully operational experiment was developed to create an experience that provides a comprehensive perspective of the end-user experience to the developer, so as to incorporate the details that may have been overlooked to the designer and/or developer, in this case, Kyle Phillips. The experiment that was chosen was to determine the effects of die swell, or extrudate swell, in reduced gravity. Die swell is a viscoelastic phenomenon that occurs when a dilatant, or shear-thickening substance is forced through a sufficient constriction, or "die," such that the substance expands, or "swells," downstream of the constriction, even while forming and maintaining a free jet at ambient sea level conditions. A wide range of dilatants exhibit die swell when subjected to the correct conditions, ranging from simple substances such as ketchup, oobleck, and shampoo to complex specially-formulated substances to be used for next generation body armor and high performance braking systems. To date, very few, if any, have researched the stabilizing effect that gravity may have on the phenomenon of die swell. By studying a fluid phenomenon in a reduced gravity environment, both the effect of gravity can be studied and the predominant forces acting on the fluid can be concluded. Furthermore, a hypothesis describing the behavior of a viscoelastic fluid particle employing the viscous Navier-Stokes Equations was derived to attempt to push the fluid mechanics community toward further integrating more fluid behavior into a unified mathematical model of fluid mechanics. While inconclusive in this experiment, several suggestions for future research were made in order to further the science behind die swell, and a comprehensive checkout of the facility and its operations were characterized. As a result of this checkout experience, several details were modified or added to the facility in order for the drop tower to be properly operated and provide the optimal user experience, such that open operation of the WVU SMiRF may begin in the Fall of 2014.

  12. An Artificial-Gravity Space-Settlement Ground-Analogue Design Concept

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2016-01-01

    The design concept of a modular and extensible hypergravity facility is presented. Several benefits of this facility are described including that the facility is suitable as a full-scale artificial-gravity space-settlement ground analogue for humans, animals, and plants for indefinite durations. The design is applicable as an analogue for on-orbit settlements as well as those on moons, asteroids, and Mars. The design creates an extremely long-arm centrifuge using a multi-car hypergravity vehicle travelling on one or more concentric circular tracks. This design supports the simultaneous generation of multiple-gravity levels to explore the feasibility and value of and requirements for such space-settlement designs. The design synergizes a variety of existing technologies including centrifuges, tilting trains, roller coasters, and optionally magnetic levitation. The design can be incrementally implemented such that the facility can be operational for a small fraction of the cost and time required for a full implementation. Brief concept of operation examples are also presented.

  13. Gravity flow operated small electricity generator retrofit kit to flour mill industry.

    PubMed

    Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara

    2013-10-01

    Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.

  14. Fluid Acquisition and Resupply Experiment (FARE-I) flight results

    NASA Astrophysics Data System (ADS)

    Dominick, Sam M.; Driscoll, Susan L.

    1993-06-01

    The Fluid Acquisition and Resupply Experiment, (FARE) is a Shuttle middeck-mounted experiment to demonstrate techniques for handling liquids in zero gravity for operations such as refueling spacecraft in orbit. The first flight took place on STS 53 launched December 2, 1992. Eight tests were performed during the mission and the experiment achieved 100 percent mission success. The second flight will be on STS 57, scheduled for launch in June 1993. The objective of FARE I was to demonstrate techniques for controlling the position of the liquid and gas within a tank during refilling and to better understand the operation of screen-type surface tension devices used to drain tanks in zero gravity. Tests were performed to demonstrate tank refilling, low gravity propellant slosh, and expulsion efficiency of the screen device. Expulsion efficiencies of 97 percent - 98 percent were demonstrated under a variety of flowrates and accelerations. Final fill levels of 60 percent to 80 percent were achieved during the vented fill tests.

  15. Seasonal gravity wave drags on the upper stratosphere due to the northwestern pacific typhoons

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu; Lu, Daren

    In a recent study of the first author and his co-authors (Zeyu Chen, Peter Preusse, Michael Jarisch, Manfred Ern, and Dirk Offermann, 2003), it has been revealed that a northwestern Pacific typhoon can generate stratospheric gravity waves with the horizontal scales ranging from 500 km ˜ 1000 km, and carrying a magnitude of ˜ 0.001 Pascal of momentum flux into the upper stratosphere Statistics indicates that the annual mean number of typhoon in the northwestern Pacific is about 32, most of them happen in summer. In this presentation, we show that a parameterization scheme is developed to derive the magnitude of the momentum flux of the waves from operational satellite observations that can scale the intensity of a typhoon (e.g. the brightness temperature observations from the GMS-5 satellite), and operational meteorological data analysis. The seasonal effect of the Gravity Wave Drags due to the typhoons in the area is derived.

  16. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  17. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  18. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  19. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  20. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  1. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  2. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  3. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  4. 14 CFR 27.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  5. 14 CFR 29.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...

  6. Effects on in Vivo and in Vitro Exposure to Excess Gravity on Growth and Differentiation of Mammalian Embryos

    NASA Technical Reports Server (NTRS)

    Duke, J.

    1985-01-01

    Studies on the development of embryonic mouse tissues exposed to excess gravity in vitro and in vivo are discussed. Suppression is seen in limb buds cultured under 3G. Mouse palates were exposed to excess G in vitro, 13- and 14-day palates were exposed to 2.6G for 24 hours. For in vivo studies, a small animal centrifuge was constructed. When the centrifuge is operated at 40 and 45 rpm, the linear accelerations generated range from 1.8 to 3.5G. The effects of gravity on body weights and on reproduction is also presented.

  7. Progress towards a space-borne quantum gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  8. Behavioral regulation of gravity - Schedule effects under escape-avoidance procedures

    NASA Technical Reports Server (NTRS)

    Clark, F. C.; Lange, K. O.; Belleville, R. E.

    1973-01-01

    Squirrel monkeys were restrained in a centrifuge capsule and trained to escape and avoid increases in artificial gravity. During escape-avoidance, lever responses reduced centrifugally simulated gravity or postponed scheduled increases. The effect of variation in the interval of postponement (equal to the duration of decrease produced by escape responses) was studied under a multiple schedule of four components. Three components were gravity escape-avoidance with postponement times of 20, 40, and 60 sec. The fourth component was extinction. Each component was associated with a different auditory stimulus. Rate of responding decreased with increasing postponement time and higher mean g-levels occurred at shorter intervals of postponement. Effects of the schedule parameter on response rate and mean g-level were similar to effects of the schedule on free-operant avoidance and on titration behavior maintained by shock.

  9. Topologically massive gravity and galilean conformal algebra: a study of correlation functions

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun

    2011-02-01

    The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.

  10. Soldering Tested in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Pettegrew, Richard D.; Watson, J. Kevin; Down, Robert S.; Haylett, Daniel R.

    2005-01-01

    Whether used occasionally for contingency repair or routinely in nominal repair operations, soldering will become increasingly important to the success of future long-duration human space missions. As a result, it will be critical to have a thorough understanding of the service characteristics of solder joints produced in reduced-gravity environments. The National Center for Space Exploration Research (via the Research for Design program), the NASA Glenn Research Center, and the NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole (see the drawing and image on the preceding figure) and surface-mounted devices are being investigated. This effort (the low-gravity portion being conducted on NASA s KC-135 research aircraft) uses the soldering hardware currently available on the International Space Station. The experiment involves manual soldering by a contingent of test operators, including both highly skilled technicians and less skilled individuals to provide a skill mix that might be encountered in space mission crews. The experiment uses both flux-cored solder and solid-core solder with an externally applied flux. Other experimental parameters include the type of flux, gravitational level (nominally zero,

  11. Mesospheric Temperature Measurements over Scandinavia During the Gravity Wave Life Cycle Campaign (GW-LCYCLE)

    NASA Astrophysics Data System (ADS)

    Pautet, P. D.; Taylor, M.; Kaifler, B.

    2016-12-01

    The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.

  12. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  13. NASA's Hybrid Reality Lab: One Giant Leap for Full Dive

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco J.; Noyes, Matthew

    2017-01-01

    This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.

  14. Feasibility Study of the Superconducting Gravity Gradiometer (SGG) Flight Test on the European Retrievable Carrier (EURECA)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A study was performed to determine the feasibility of conducting a flight test of the Superconducting Gravity Gradiometer (SGG) Experiment Module on one of the reflights of the European Retrievable Carrier (EURECA). EURECA was developed expressly to accommodate space science experimentation, while providing a high quality microgravity environment. As a retrievable carrier, it offers the ability to recover science experiments after a nominal six months of operations in orbit. The study concluded that the SGG Experiment Module can be accommodated and operated in a EURECA reflight mission. It was determined that such a flight test would enable the verification of the SGG Instrument flight performance and validate the design and operation of the Experiment Module. It was also concluded that a limited amount of scientific data could be obtained on this mission.

  15. Prototype test article verification of the Space Station Freedom active thermal control system microgravity performance

    NASA Technical Reports Server (NTRS)

    Chen, I. Y.; Ungar, E. K.; Lee, D. Y.; Beckstrom, P. S.

    1993-01-01

    To verify the on-orbit operation of the Space Station Freedom (SSF) two-phase external Active Thermal Control System (ATCS), a test and verification program will be performed prior to flight. The first system level test of the ATCS is the Prototype Test Article (PTA) test that will be performed in early 1994. All ATCS loops will be represented by prototypical components and the line sizes and lengths will be representative of the flight system. In this paper, the SSF ATCS and a portion of its verification process are described. The PTA design and the analytical methods that were used to quantify the gravity effects on PTA operation are detailed. Finally, the gravity effects are listed, and the applicability of the 1-g PTA test results to the validation of on-orbit ATCS operation is discussed.

  16. Turbulent Swirling Flow Downstream of an Abrupt Pipe Expansion -- Modeling and Experimental Measurements.

    DTIC Science & Technology

    1982-07-01

    aerospace engineering um~Ŕ" eqe~vswse 0engiee amp snry stem englnerlag. enI~e so ISaCW , meterI scienc Turbulent Swirling Flow Dowstreas of an Abrupt...With the horizontal test section and circumferentially local measurements, the extent of the influence of gravity -induced convection can be determined

  17. 14 CFR Appendix A to Part 23 - Simplified Design Load Criteria

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quarter-chord), delta planforms, or slatted lifting surfaces; or (5) Winglets or other wing tip devices... single engine excluding turbine powerplants; (2) A main wing located closer to the airplane's center of gravity than to the aft, fuselage-mounted, empennage; (3) A main wing that contains a quarter-chord sweep...

  18. 14 CFR Appendix A to Part 23 - Simplified Design Load Criteria

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quarter-chord), delta planforms, or slatted lifting surfaces; or (5) Winglets or other wing tip devices... single engine excluding turbine powerplants; (2) A main wing located closer to the airplane's center of gravity than to the aft, fuselage-mounted, empennage; (3) A main wing that contains a quarter-chord sweep...

  19. Data basic to the engineering of reconstituted flakeboard

    Treesearch

    Robert L. Geimer

    1979-01-01

    Flakeboards made with uniform densities throughout their thickness and different degrees of flake alignment were used to establish relationships between bending, tension, and compression values of modulus of elasticity or modulus of rupture (or stress to maximum load) and the variables of specific gravity and flake alignment. An equation using sonic velocity as an...

  20. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.

    1999-01-01

    Nonpremixed (diffusion) flames are attractive for practical applications because they avoid the stability, autoignition, flashback, etc. problems of premixed flames. Unfortunately, soot formation in practical hydrocarbon-fueled diffusion flames reduces their attractiveness due to widely-recognized public health and combustor durability problems of soot emissions. For example, more deaths are attributed to the emission of soot (15,000-60,000 deaths annually in the U.S. alone) than any other combustion-generated pollutant. In addition, continuum radiation from soot-containing flames is the principle heat load to combustor components and is mainly responsible for engine durability problems of aircraft and gas turbine engines. As a result, there is considerable interest in controlling both soot concentrations within flames and soot emissions from flames. Thus, the objective of the present investigation is to study ways to control soot formation in diffusion flames by manipulating the mixing process between the fuel and oxidant streams. In order to prevent the intrusion of gravity from masking flow properties that reduce soot formation in practical flames (where effects of gravity are small), methods developed during past work will be exploited to minimize effects of buoyant motion.

Top