Correlations among Brain Gray Matter Volumes, Age, Gender, and Hemisphere in Healthy Individuals
Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Kawashima, Ryuta; Fukuda, Hiroshi
2011-01-01
To determine the relationship between age and gray matter structure and how interactions between gender and hemisphere impact this relationship, we examined correlations between global or regional gray matter volume and age, including interactions of gender and hemisphere, using a general linear model with voxel-based and region-of-interest analyses. Brain magnetic resonance images were collected from 1460 healthy individuals aged 20–69 years; the images were linearly normalized and segmented and restored to native space for analysis of global gray matter volume. Linearly normalized images were then non-linearly normalized and smoothed for analysis of regional gray matter volume. Analysis of global gray matter volume revealed a significant negative correlation between gray matter ratio (gray matter volume divided by intracranial volume) and age in both genders, and a significant interaction effect of age × gender on the gray matter ratio. In analyzing regional gray matter volume, the gray matter volume of all regions showed significant main effects of age, and most regions, with the exception of several including the inferior parietal lobule, showed a significant age × gender interaction. Additionally, the inferior temporal gyrus showed a significant age × gender × hemisphere interaction. No regional volumes showed significant age × hemisphere interactions. Our study may contribute to clarifying the mechanism(s) of normal brain aging in each brain region. PMID:21818377
Brain volume change and cognitive trajectories in aging.
Fletcher, Evan; Gavett, Brandon; Harvey, Danielle; Farias, Sarah Tomaszewski; Olichney, John; Beckett, Laurel; DeCarli, Charles; Mungas, Dan
2018-05-01
Examine how longitudinal cognitive trajectories relate to brain baseline measures and change in lobar volumes in a racially/ethnically and cognitively diverse sample of older adults. Participants were 460 older adults enrolled in a longitudinal aging study. Cognitive outcomes were measures of episodic memory, semantic memory, executive function, and spatial ability derived from the Spanish and English Neuropsychological Assessment Scales (SENAS). Latent variable multilevel modeling of the four cognitive outcomes as parallel longitudinal processes identified intercepts for each outcome and a second order global change factor explaining covariance among the highly correlated slopes. We examined how baseline brain volumes (lobar gray matter, hippocampus, and white matter hyperintensity) and change in brain volumes (lobar gray matter) were associated with cognitive intercepts and global cognitive change. Lobar volumes were dissociated into global and specific components using latent variable methods. Cognitive change was most strongly associated with brain gray matter volume change, with strong independent effects of global gray matter change and specific temporal lobe gray matter change. Baseline white matter hyperintensity and hippocampal volumes had significant incremental effects on cognitive decline beyond gray matter change. Baseline lobar gray matter was related to cognitive decline, but did not contribute beyond gray matter change. Cognitive decline was strongly influenced by gray matter volume change and, especially, temporal lobe change. The strong influence of temporal lobe gray matter change on cognitive decline may reflect involvement of temporal lobe structures that are critical for late life cognitive health but also are vulnerable to diseases of aging. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Mao, Cuiping; Wei, Longxiao; Zhang, Qiuli; Liao, Xia; Yang, Xiaoli; Zhang, Ming
2013-01-01
A reduction in gray matter volume is common in patients with chronic back pain, and different types of pain are associated with gray matter abnormalities in distinct brain regions. To examine differences in brain morphology in patients with low back pain or neck and upper back pain, we investigated changes in gray matter volume in chronic back pain patients having different sites of pain using voxel-based morphometry. A reduction in cortical gray matter volume was found primarily in the left postcentral gyrus and in the left precuneus and bilateral cuneal cortex of patients with low back pain. In these patients, there was an increase in subcortical gray matter volume in the bilateral putamen and accumbens, right pallidum, right caudate nucleus, and left amygdala. In upper back pain patients, reduced cortical gray matter volume was found in the left precentral and left postcentral cortices. Our findings suggest that regional gray matter volume abnormalities in low back pain patients are more extensive than in upper back pain patients. Subcortical gray matter volume increases are found only in patients with low back pain. PMID:25206618
Correlation among body height, intelligence, and brain gray matter volume in healthy children.
Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta
2012-01-16
A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.
Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F.
2015-01-01
Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. PMID:22277302
Krongold, Mark; Cooper, Cassandra; Lebel, Catherine
2015-01-01
Abstract The human brain develops with a nonlinear contraction of gray matter across late childhood and adolescence with a concomitant increase in white matter volume. Across the adult population, properties of cortical gray matter covary within networks that may represent organizational units for development and degeneration. Although gray matter covariance may be strongest within structurally connected networks, the relationship to volume changes in white matter remains poorly characterized. In the present study we examined age-related trends in white and gray matter volume using T1-weighted MR images from 360 human participants from the NIH MRI study of Normal Brain Development. Images were processed through a voxel-based morphometry pipeline. Linear effects of age on white and gray matter volume were modeled within four age bins, spanning 4-18 years, each including 90 participants (45 male). White and gray matter age-slope maps were separately entered into k-means clustering to identify regions with similar age-related variability across the four age bins. Four white matter clusters were identified, each with a dominant direction of underlying fibers: anterior–posterior, left–right, and two clusters with superior–inferior directions. Corresponding, spatially proximal, gray matter clusters encompassed largely cerebellar, fronto-insular, posterior, and sensorimotor regions, respectively. Pairs of gray and white matter clusters followed parallel slope trajectories, with white matter changes generally positive from 8 years onward (indicating volume increases) and gray matter negative (decreases). As developmental disorders likely target networks rather than individual regions, characterizing typical coordination of white and gray matter development can provide a normative benchmark for understanding atypical development. PMID:26464999
Arvanitakis, Zoe; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue E; Barnes, Lisa L; Bennett, David A
2016-05-01
Both presence of white matter hyperintensities (WMH) and smaller total gray matter volume on brain magnetic resonance imaging (MRI) are common findings in old age, and contribute to impaired cognition. We tested whether total WMH volume and gray matter volume had independent associations with cognition in community-dwelling individuals without dementia or mild cognitive impairment (MCI). We used data from participants of the Rush Memory and Aging Project. Brain MRI was available in 209 subjects without dementia or MCI (mean age 80; education = 15 years; 74 % women). WMH and gray matter were automatically segmented, and the total WMH and gray matter volumes were measured. Both MRI-derived measures were normalized by the intracranial volume. Cognitive data included composite measures of five different cognitive domains, based on 19 individual tests. Linear regression analyses, adjusted for age, sex, and education, were used to examine the relationship of logarithmically-transformed total WMH volume and of total gray matter volume to cognition. Larger total WMH volumes were associated with lower levels of perceptual speed (p < 0.001), but not with episodic memory, semantic memory, working memory, or visuospatial abilities (all p > 0.10). Smaller total gray matter volumes were associated with lower levels of perceptual speed (p = 0.013) and episodic memory (p = 0.001), but not with the other three cognitive domains (all p > 0.14). Larger total WMH volume was correlated with smaller total gray matter volume (p < 0.001). In a model with both MRI-derived measures included, the relation of WMH to perceptual speed remained significant (p < 0.001), while gray matter volumes were no longer related (p = 0.14). This study of older community-dwelling individuals without overt cognitive impairment suggests that the association of larger total WMH volume with lower perceptual speed is independent of total gray matter volume. These results help elucidate the pathological processes leading to lower cognitive function in aging.
Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F
2012-04-01
Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Narkhede, Atul; Griffith, Erica Y; Cohen, Ronald; Sweet, Lawrence H; Josephson, Richard; Hughes, Joel; Gunstad, John
2016-01-01
Heart failure patients require assistance with instrumental activities of daily living in part because of the high rates of cognitive impairment in this population. Structural brain insult (eg, reduced gray matter volume) is theorized to underlie cognitive dysfunction in heart failure, although no study has examined the association among gray matter, cognition, and instrumental activities of daily living in heart failure. The aim of this study was to investigate the associations among gray matter volume, cognitive function, and functional ability in heart failure. A total of 81 heart failure patients completed a cognitive test battery and the Lawton-Brody self-report questionnaire to assess instrumental activities of daily living. Participants underwent magnetic resonance imaging to quantify total gray matter and subcortical gray matter volume. Impairments in instrumental activities of daily living were common in this sample of HF patients. Regression analyses controlling for demographic and medical confounders showed that smaller total gray matter volume predicted decreased scores on the instrumental activities of daily living composite, with specific associations noted for medication management and independence in driving. Interaction analyses showed that reduced total gray matter volume interacted with worse attention/executive function and memory to negatively impact instrumental activities of daily living. Smaller gray matter volume is associated with greater impairment in instrumental activities of daily living in persons with heart failure, possibly via cognitive dysfunction. Prospective studies are needed to clarify the utility of clinical correlates of gray matter volume (eg, cognitive dysfunction) in identifying heart failure patients at risk for functional decline and determine whether interventions that target improved brain and cognitive function can preserve functional independence in this high-risk population.
Berninger, Virginia W.; Gebregziabher, Mulugeta; Tsu, Loretta
2016-01-01
Abstract Meta-analysis of voxel-based morphometry dyslexia studies and direct analysis of 293 reading disability and control cases from six different research sites were performed to characterize defining gray matter features of reading disability. These analyses demonstrated consistently lower gray matter volume in left posterior superior temporal sulcus/middle temporal gyrus regions and left orbitofrontal gyrus/pars orbitalis regions. Gray matter volume within both of these regions significantly predicted individual variation in reading comprehension after correcting for multiple comparisons. These regional gray matter differences were observed across published studies and in the multisite dataset after controlling for potential age and gender effects, and despite increased anatomical variance in the reading disability group, but were not significant after controlling for total gray matter volume. Thus, the orbitofrontal and posterior superior temporal sulcus gray matter findings are relatively reliable effects that appear to be dependent on cases with low total gray matter volume. The results are considered in the context of genetics studies linking orbitofrontal and superior temporal sulcus regions to alleles that confer risk for reading disability. PMID:26835509
Longitudinal Study of Gray Matter Changes in Parkinson Disease.
Jia, X; Liang, P; Li, Y; Shi, L; Wang, D; Li, K
2015-12-01
The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. The observed progressive changes in gray matter volume in Parkinson disease may provide new insights into the neurodegenerative process. The current findings suggest that the caudate volume loss may contribute to cognitive decline in patients with Parkinson disease and the progressive thalamus enlargement may have relevance to tremor severity in Parkinson disease. © 2015 by American Journal of Neuroradiology.
Reduced volume of gray matter in patients with trigeminal neuralgia.
Li, Meng; Yan, Jianhao; Li, Shumei; Wang, Tianyue; Zhan, Wenfeng; Wen, Hua; Ma, Xiaofen; Zhang, Yong; Tian, Junzhang; Jiang, Guihua
2017-04-01
Accumulating evidence from brain structural imaging studies has supported that chronic pain could induce changes in brain gray matter volume. However, few studies have focused on the gray matter alterations of Trigeminal neuralgia (TN). In this study, twenty-eight TN patients (thirteen females; mean age, 45.86 years ±11.17) and 28 healthy controls (HC; thirteen females; mean age, 44.89 years ±7.67) were included. Using voxel-based morphometry (VBM), we detected abnormalities in gray matter volume in the TN patients. Based on a voxel-wise analysis, the TN group showed significantly decreased gray matter volume in the bilateral superior/middle temporal gyrus (STG/MTG), bilateral parahippocampus, left anterior cingulate cortex (ACC), caudate nucleus, right fusiform gyrus, and right cerebellum compared with the HC. In addition, we found that the gray matter volume in the bilateral STG/MTG was negatively correlated with the duration of TN. These results provide compelling evidence for gray matter abnormalities in TN and suggest that the duration of TN may be a critical factor associated with brain alterations.
Substance use and regional gray matter volume in individuals at high risk of psychosis.
Stone, James M; Bhattacharyya, Sagnik; Barker, Gareth J; McGuire, Philip K
2012-02-01
Individuals with an at risk mental state (ARMS) are at greatly increased risk of developing a psychotic illness. Risk of transition to psychosis is associated with regionally reduced cortical gray matter volume. There has been considerable interest in the interaction between psychosis risk and substance use. In this study we investigate the relationship between alcohol, cannabis and nicotine use with gray matter volume in ARMS subjects and healthy volunteers. Twenty seven ARMS subjects and 27 healthy volunteers took part in the study. All subjects underwent volumetric MRI imaging. The relationship between regional gray matter volume and cannabis use, smoking, and alcohol use in controls and ARMS subjects was analysed using voxel-based morphometry. In any region where a significant relationship with drug was present, data were analysed to determine if there was any group difference in this relationship. Alcohol intake was inversely correlated with gray matter volume in cerebellum, cannabis intake was use was inversely correlated with gray matter volume in prefrontal cortex and tobacco intake was inversely correlated with gray matter volume in left temporal cortex. There were no significant interactions by group in any region. There is no evidence to support the hypothesis of increased susceptibility to harmful effects of drugs and alcohol on regional gray matter in ARMS subjects. However, alcohol, tobacco and cannabis at low to moderate intake may be associated with lower gray matter in both ARMS subjects and healthy volunteers-possibly representing low-level cortical damage or change in neural plasticity. Copyright © 2011 Elsevier B.V. All rights reserved.
Lack of gender effects on gray matter volumes in adolescent generalized anxiety disorder.
Liao, Mei; Yang, Fan; Zhang, Yan; He, Zhong; Su, Linyan; Li, Lingjiang
2014-02-01
Previous epidemiological and clinical studies have reported gender differences in prevalence and clinical features of generalized anxiety disorder (GAD). Such gender differences in clinical phenomenology suggest that the underlying neural circuitry of GAD could also be different in males and females. This study aimed to explore the possible gender effect on gray matter volumes in adolescents with GAD. Twenty-six adolescent GAD patients and 25 healthy controls participated and underwent high-resolution structural magnetic resonance scans. Voxel-based morphometry (VBM) was used to investigate gray matter alterations. Our study revealed a significant diagnosis main effect in the right putamen, with larger gray matter volumes in GAD patients compared to healthy controls, and a significant gender main effect in the left precuneus/posterior cingulate cortex, with larger gray matter volumes in males compared to females. No gender-by-diagnosis interaction effect was found in this study. The relatively small sample size in this study might result in a lack of power to demonstrate gender effects on brain structure in GAD. The results suggested that there are differences in gray matter volumes between males and females, but gray matter volumes in GAD are not influenced by gender. © 2013 Published by Elsevier B.V.
Accelerated Gray and White Matter Deterioration With Age in Schizophrenia.
Cropley, Vanessa L; Klauser, Paul; Lenroot, Rhoshel K; Bruggemann, Jason; Sundram, Suresh; Bousman, Chad; Pereira, Avril; Di Biase, Maria A; Weickert, Thomas W; Weickert, Cynthia Shannon; Pantelis, Christos; Zalesky, Andrew
2017-03-01
Although brain changes in schizophrenia have been proposed to mirror those found with advancing age, the trajectory of gray matter and white matter changes during the disease course remains unclear. The authors sought to measure whether these changes in individuals with schizophrenia remain stable, are accelerated, or are diminished with age. Gray matter volume and fractional anisotropy were mapped in 326 individuals diagnosed with schizophrenia or schizoaffective disorder and in 197 healthy comparison subjects aged 20-65 years. Polynomial regression was used to model the influence of age on gray matter volume and fractional anisotropy at a whole-brain and voxel level. Between-group differences in gray matter volume and fractional anisotropy were regionally localized across the lifespan using permutation testing and cluster-based inference. Significant loss of gray matter volume was evident in schizophrenia, progressively worsening with age to a maximal loss of 8% in the seventh decade of life. The inferred rate of gray matter volume loss was significantly accelerated in schizophrenia up to middle age and plateaued thereafter. In contrast, significant reductions in fractional anisotropy emerged in schizophrenia only after age 35, and the rate of fractional anisotropy deterioration with age was constant and best modeled with a straight line. The slope of this line was 60% steeper in schizophrenia relative to comparison subjects, indicating a significantly faster rate of white matter deterioration with age. The rates of reduction of gray matter volume and fractional anisotropy were significantly faster in males than in females, but an interaction between sex and diagnosis was not evident. The findings suggest that schizophrenia is characterized by an initial, rapid rate of gray matter loss that slows in middle life, followed by the emergence of a deficit in white matter that progressively worsens with age at a constant rate.
Cope, Lora M; Shane, Matthew S; Segall, Judith M; Nyalakanti, Prashanth K; Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A
2012-11-30
Psychopathy is believed to be associated with brain abnormalities in both paralimbic (i.e., orbitofrontal cortex, insula, temporal pole, parahippocampal gyrus, posterior cingulate) and limbic (i.e., amygdala, hippocampus, anterior cingulate) regions. Recent structural imaging studies in both community and prison samples are beginning to support this view. Sixty-six participants, recruited from community corrections centers, were administered the Hare psychopathy checklist-revised (PCL-R), and underwent magnetic resonance imaging (MRI). Voxel-based morphometry was used to test the hypothesis that psychopathic traits would be associated with gray matter reductions in limbic and paralimbic regions. Effects of lifetime drug and alcohol use on gray matter volume were covaried. Psychopathic traits were negatively associated with gray matter volumes in right insula and right hippocampus. Additionally, psychopathic traits were positively associated with gray matter volumes in bilateral orbital frontal cortex and right anterior cingulate. Exploratory regression analyses indicated that gray matter volumes within right hippocampus and left orbital frontal cortex combined to explain 21.8% of the variance in psychopathy scores. These results support the notion that psychopathic traits are associated with abnormal limbic and paralimbic gray matter volume. Furthermore, gray matter increases in areas shown to be functionally impaired suggest that the structure-function relationship may be more nuanced than previously thought. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ryman, Sephira G; Yeo, Ronald A; Witkiewitz, Katie; Vakhtin, Andrei A; van den Heuvel, Martijn; de Reus, Marcel; Flores, Ranee A; Wertz, Christopher R; Jung, Rex E
2016-11-01
While there are minimal sex differences in overall intelligence, males, on average, have larger total brain volume and corresponding regional brain volumes compared to females, measures that are consistently related to intelligence. Limited research has examined which other brain characteristics may differentially contribute to intelligence in females to facilitate equal performance on intelligence measures. Recent reports of sex differences in the neural characteristics of the brain further highlight the need to differentiate how the structural neural characteristics relate to intellectual ability in males and females. The current study utilized a graph network approach in conjunction with structural equation modeling to examine potential sex differences in the relationship between white matter efficiency, fronto-parietal gray matter volume, and general cognitive ability (GCA). Participants were healthy adults (n = 244) who completed a battery of cognitive testing and underwent structural neuroimaging. Results indicated that in males, a latent factor of fronto-parietal gray matter was significantly related to GCA when controlling for total gray matter volume. In females, white matter efficiency and total gray matter volume were significantly related to GCA, with no specificity of the fronto-parietal gray matter factor over and above total gray matter volume. This work highlights that different neural characteristics across males and females may contribute to performance on intelligence measures. Hum Brain Mapp 37:4006-4016, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Maat, Arija; van Haren, Neeltje E M; Bartholomeusz, Cali F; Kahn, René S; Cahn, Wiepke
2016-02-01
Investigations of social cognition in schizophrenia have demonstrated consistent impairments compared to healthy controls. Functional imaging studies in schizophrenia patients and healthy controls have revealed that social cognitive processing depends critically on the amygdala and the prefrontal cortex (PFC). However, the relationship between social cognition and structural brain abnormalities in these regions in schizophrenia patients is less well understood. Measures of facial emotion recognition and theory of mind (ToM), two key social cognitive abilities, as well as face perception and IQ, were assessed in 166 patients with schizophrenia and 134 healthy controls. MRI brain scans were acquired. Automated parcellation of the brain to determine gray matter volume of the amygdala and the superior, middle, inferior and orbital PFC was performed. Between-group analyses showed poorer recognition of angry faces and ToM performance, and decreased amygdala and PFC gray matter volumes in schizophrenia patients as compared to healthy controls. Moreover, in schizophrenia patients, recognition of angry faces was associated with inferior PFC gray matter volume, particularly the pars triangularis (p=0.006), with poor performance being related to reduced pars triangularis gray matter volume. In addition, ToM ability was related to PFC gray matter volume, particularly middle PFC (p=0.001), in that poor ToM skills in schizophrenia patients were associated with reduced middle PFC gray matter volume. In conclusion, reduced PFC, but not amygdala, gray matter volume is associated with social cognitive deficits in schizophrenia. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
[A voxel-based morphometric analysis of brain gray matter in online game addicts].
Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han
2012-12-04
To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P < 0.05). Gray matter volume changes are present in online game addicts and they may be correlated with the occurrence and maintenance of OGA.
Hou, Yi-Cheng; Lai, Chien-Han; Wu, Yu-Te; Yang, Shwu-Huey
2016-01-01
Abstract The neurophysiology of prediabetes plays an important role in preventive medicine. The dysregulation of glucose metabolism is likely linked to changes in neuron-related gray matter. Therefore, we designed this study to investigate gray matter alterations in medication-naive prediabetic patients. We expected to find alterations in the gray matter of prediabetic patients. A total of 64 prediabetic patients and 54 controls were enrolled. All subjects received T1 scans using a 3-T magnetic resonance imaging machine. Subjects also completed nutritional intake records at the 24-hour and 3-day time points to determine their carbohydrate, protein, fat, and total calorie intake. We utilized optimized voxel-based morphometry to estimate the gray matter differences between the patients and controls. In addition, the preprandial serum glucose level and the carbohydrate, protein, fat, and total calorie intake levels were tested to determine whether these parameters were correlated with the gray matter volume. Prediabetic patients had lower gray matter volumes than controls in the right anterior cingulate gyrus, right posterior cingulate gyrus, left insula, left super temporal gyrus, and left middle temporal gyrus (corrected P < 0.05; voxel threshold: 33). Gray matter volume in the right anterior cingulate was also negatively correlated with the preprandial serum glucose level gyrus in a voxel-dependent manner (r = –0.501; 2-tailed P = 0.001). The cingulo-temporal and insula gray matter alterations may be associated with the glucose dysregulation in prediabetic patients. PMID:27336893
James, Lisa M; Christova, Peka; Lewis, Scott M; Engdahl, Brian E; Georgopoulos, Angeliki; Georgopoulos, Apostolos P
2018-03-01
Reduction of brain volume (brain atrophy) during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA) allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017). Seventy-one cognitively healthy women (32-69years old) underwent a structural Magnetic Resonance Imaging (sMRI) scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N=60) or carried the DRB1*13:02 allele (N=11). We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume) was the dependent variable and age was the independent variable. In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain aging (Wendt et al., 2008). Of course, other factors covarying with the presence of DRB1*13:02 could be involved. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Ladouceur, Cecile D.; Almeida, Jorge R. C.; Birmaher, Boris; Axelson, David A.; Nau, Sharon; Kalas, Catherine; Monk, Kelly; Kupfer, David J.; Phillips, Mary L.
2008-01-01
A study is conducted to examine the extent to which bipolar disorder (BD) is associated with gray matter volume abnormalities in brain regions in healthy bipolar offspring relative to age-matched controls. Results show increased gray matter volume in the parahippocampus/hippocampus in healthy offspring at genetic risk for BD.
Regional Gray Matter Volume Deficits in Adolescents with First-Episode Psychosis
ERIC Educational Resources Information Center
Janssen, Joost; Parellada, Mara; Moreno, Dolores; Graell, Montserrat; Fraguas, David; Zabala, Arantzazu; Vazquez, Veronica Garcia; Desco, Manuel; Arango, Celso
2008-01-01
The regional gray matter volumes of adolescents with first-episode psychosis are compared with those of a control group. Magnetic resonance imaging was conducted on 70 patients with early onset FEP and on 51 individuals without FEP. Findings revealed that volume deficits in the left medial frontal gray matter were common in individuals with…
Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G
2014-04-01
We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right inferior longitudinal fasciculus may be unique to children with SLI and Reading Disability. It was significantly associated to reading comprehension of sentences and receptive language composite z-score, especially receptive vocabulary and oral comprehension of stories. Copyright © 2014 Elsevier Ltd. All rights reserved.
Physical activity, fitness, and gray matter volume
Erickson, Kirk I.; Leckie, Regina L.; Weinstein, Andrea M.
2014-01-01
In this review we explore the association between physical activity, cardiorespiratory fitness, and exercise on gray matter volume in older adults. We conclude that higher cardiorespiratory fitness levels are routinely associated with greater gray matter volume in the prefrontal cortex and hippocampus, and less consistently in other regions. We also conclude that physical activity is associated with greater gray matter volume in the same regions that are associated with cardiorespiratory fitness including the prefrontal cortex and hippocampus. Some heterogeneity in the literature may be explained by effect moderation by age, stress, or other factors. Finally, we report promising results from randomized exercise interventions that suggest that the volume of the hippocampus and prefrontal cortex remain pliable and responsive to moderate intensity exercise for 6-months to 1-year. Physical activity appears to be a propitious method for influencing gray matter volume in late adulthood, but additional well-controlled studies are necessary to inform public policies about the potential protective or therapeutic effects of exercise on brain volume. PMID:24952993
Dalwani, Manish S; McMahon, Mary Agnes; Mikulich-Gilbertson, Susan K; Young, Susan E; Regner, Michael F; Raymond, Kristen M; McWilliams, Shannon K; Banich, Marie T; Tanabe, Jody L; Crowley, Thomas J; Sakai, Joseph T
2015-01-01
Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages. Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex), conflict processing (i.e., anterior cingulate), valuation of expected outcomes (i.e., medial orbitofrontal cortex) and the dopamine reward system (i.e. striatum). We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years) with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM) and voxel-based morphometric (VBM8) toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold. Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls. Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation of outcomes, decision-making, reward, risk-taking, and rule-breaking antisocial behavior.
Medial frontal white and gray matter contributions to general intelligence.
Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Saito, Yukiko; Hosokawa, Taiga; Kubicki, Marek
2014-01-01
The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.
Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study
Sakai, Hiroyuki; Ando, Takafumi; Sadato, Norihiro; Uchiyama, Yuji
2017-01-01
Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities. PMID:28417971
Greater cerebellar gray matter volume in car drivers: an exploratory voxel-based morphometry study.
Sakai, Hiroyuki; Ando, Takafumi; Sadato, Norihiro; Uchiyama, Yuji
2017-04-18
Previous functional neuroimaging studies have identified multiple brain areas associated with distinct aspects of car driving in simulated traffic environments. Few studies, however, have examined brain morphology associated with everyday car-driving experience in real traffic. Thus, the aim of the current study was to identify gray matter volume differences between drivers and non-drivers. We collected T1-weighted structural brain images from 73 healthy young adults (36 drivers and 37 non-drivers). We performed a whole-brain voxel-based morphometry analysis to examine between-group differences in regional gray matter volume. Compared with non-drivers, drivers showed significantly greater gray matter volume in the left cerebellar hemisphere, which has been associated with cognitive rather than motor functioning. In contrast, we found no brain areas with significantly greater gray matter volume in non-drivers compared with drivers. Our findings indicate that experience with everyday car driving in real traffic is associated with greater gray matter volume in the left cerebellar hemisphere. This brain area may be involved in abilities that are critical for driving a car, but are not commonly or frequently used during other daily activities.
Cannabis, Cigarettes, and Their Co-Occurring Use: Disentangling Differences in Gray Matter Volume
Jagannathan, Kanchana; Hager, Nathan; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R.
2015-01-01
Background: Structural magnetic resonance imaging techniques are powerful tools for examining the effects of drug use on the brain. The nicotine and cannabis literature has demonstrated differences between nicotine cigarette smokers and cannabis users compared to controls in brain structure; however, less is known about the effects of co-occurring cannabis and tobacco use. Methods: We used voxel-based morphometry to examine gray matter volume differences between four groups: (1) cannabis-dependent individuals who do not smoke tobacco (Cs); (2) cannabis-dependent individuals who smoke tobacco (CTs); (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (Ts); and (4) healthy controls (HCs). We also explored associations between gray matter volume and measures of cannabis and tobacco use. Results: A significant group effect was observed in the left putamen, thalamus, right precentral gyrus, and left cerebellum. Compared to HCs, the Cs, CTs, and Ts exhibited larger gray matter volumes in the left putamen. Cs also had larger gray matter volume than HCs in the right precentral gyrus. Cs and CTs exhibited smaller gray matter volume than HCs in the thalamus, and CTs and Ts had smaller left cerebellar gray matter volume than HCs. Conclusions: This study extends previous research that independently examined the effects of cannabis or tobacco use on brain structure by including an examination of co-occurring cannabis and tobacco use, and provides evidence that cannabis and tobacco exposure are associated with alterations in brain regions associated with addiction. PMID:26045474
Via, Esther; Radua, Joaquim; Cardoner, Narcis; Happé, Francesca; Mataix-Cols, David
2011-04-01
Studies investigating abnormalities of regional gray matter volume in autism spectrum disorder (ASD) have yielded contradictory results. It is unclear whether the current subtyping of ASD into autistic disorder and Asperger disorder is neurobiologically valid. To conduct a quantitative meta-analysis of voxel-based morphometry studies exploring gray matter volume abnormalities in ASD, to examine potential neurobiological differences among ASD subtypes, and to create an online database to facilitate replication and further analyses by other researchers. We retrieved studies from PubMed, ScienceDirect, Scopus, and Web of Knowledge databases between June 3, 1999, the date of the first voxel-based morphometry study in ASD, and October 31, 2010. Studies were also retrieved from reference lists and review articles. We contacted authors soliciting additional data. Twenty-four data sets met inclusion criteria, comprising 496 participants with ASD and 471 healthy control individuals. Peak coordinates of clusters of regional gray matter differences between participants with ASD and controls, as well as demographic, clinical, and methodologic variables, were extracted from each study or obtained from the authors. No differences in overall gray matter volume were found between participants with ASD and healthy controls. Participants with ASD were found to have robust decreases of gray matter volume in the bilateral amygdala-hippocampus complex and the bilateral precuneus. A small increase of gray matter volume in the middle-inferior frontal gyrus was also found. No significant differences in overall or regional gray matter volumes were found between autistic disorder and Asperger disorder. Decreases of gray matter volume in the right precuneus were statistically higher in adults than in adolescents with ASD. These results confirm the crucial involvement of structures linked to social cognition in ASD. The absence of significant differences between ASD subtypes may have important nosologic implications for the DSM-5. The publically available database will be a useful resource for future research.
Palmen, Saskia J M C; Hulshoff Pol, Hilleke E; Kemner, Chantal; Schnack, Hugo G; Durston, Sarah; Lahuis, Bertine E; Kahn, René S; Van Engeland, Herman
2005-04-01
To establish whether high-functioning children with autism spectrum disorder (ASD) have enlarged brains in later childhood, and if so, whether this enlargement is confined to the gray and/or to the white matter and whether it is global or more prominent in specific brain regions. Brain MRI scans were acquired from 21 medication-naive, high-functioning children with ASD between 7 and 15 years of age and 21 comparison subjects matched for gender, age, IQ, height, weight, handedness, and parental education, but not pubertal status. Patients showed a significant increase of 6% in intracranium, total brain, cerebral gray matter, cerebellum, and of more than 40% in lateral and third ventricles compared to controls. The cortical gray-matter volume was evenly affected in all lobes. After correction for brain volume, ventricular volumes remained significantly larger in patients. High-functioning children with ASD showed a global increase in gray-matter, but not white-matter and cerebellar volume, proportional to the increase in brain volume, and a disproportional increase in ventricular volumes, still present after correction for brain volume. Advanced pubertal development in the patients compared to the age-matched controls may have contributed to the findings reported in the present study.
Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.
Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta
2010-12-08
Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.
Zhang, Jian; Tan, Qingrong; Yin, Hong; Zhang, Xiaoliang; Huan, Yi; Tang, Lihua; Wang, Huaihai; Xu, Junqing; Li, Lingjiang
2011-05-31
Although limbic structure changes have been found in chronic and recent onset post-traumatic stress disorder (PTSD) patients, there are few studies about brain structure changes in recent onset PTSD patients after a single extreme and prolonged trauma. In the current study, 20 coal mine flood disaster survivors underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) and region of interest (ROI) techniques were used to detect the gray matter and white matter volume changes in 10 survivors with recent onset PTSD and 10 survivors without PTSD. The correlation between the Clinician-Administered PTSD Scale (CAPS) and gray matter density in the ROI was also studied. Compared with survivors without PTSD, survivors with PTSD had significantly decreased gray matter volume and density in left anterior hippocampus, left parahippocampal gyrus, and bilateral calcarine cortex. The CAPS score correlated negatively with the gray matter density in bilateral calcarine cortex and left hippocampus in coal mine disaster survivors. Our study suggests that the gray matter volume and density of limbic structure decreased in recent onset PTSD patients who were exposed to extreme trauma. PTSD symptom severity was associated with gray matter density in calcarine cortex and hippocampus. 2010 Elsevier Ireland Ltd. All rights reserved.
Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta
2013-08-01
We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.
Rivkin, Michael J; Davis, Peter E; Lemaster, Jennifer L; Cabral, Howard J; Warfield, Simon K; Mulkern, Robert V; Robson, Caroline D; Rose-Jacobs, Ruth; Frank, Deborah A
2008-04-01
The objective of this study was to use volumetric MRI to study brain volumes in 10- to 14-year-old children with and without intrauterine exposure to cocaine, alcohol, cigarettes, or marijuana. Volumetric MRI was performed on 35 children (mean age: 12.3 years; 14 with intrauterine exposure to cocaine, 21 with no intrauterine exposure to cocaine) to determine the effect of prenatal drug exposure on volumes of cortical gray matter; white matter; subcortical gray matter; cerebrospinal fluid; and total parenchymal volume. Head circumference was also obtained. Analyses of each individual substance were adjusted for demographic characteristics and the remaining 3 prenatal substance exposures. Regression analyses adjusted for demographic characteristics showed that children with intrauterine exposure to cocaine had lower mean cortical gray matter and total parenchymal volumes and smaller mean head circumference than comparison children. After adjustment for other prenatal exposures, these volumes remained smaller but lost statistical significance. Similar analyses conducted for prenatal ethanol exposure adjusted for demographics showed significant reduction in mean cortical gray matter; total parenchymal volumes; and head circumference, which remained smaller but lost statistical significance after adjustment for the remaining 3 exposures. Notably, prenatal cigarette exposure was associated with significant reductions in cortical gray matter and total parenchymal volumes and head circumference after adjustment for demographics that retained marginal significance after adjustment for the other 3 exposures. Finally, as the number of exposures to prenatal substances grew, cortical gray matter and total parenchymal volumes and head circumference declined significantly with smallest measures found among children exposed to all 4. CONCLUSIONS; These data suggest that intrauterine exposures to cocaine, alcohol, and cigarettes are individually related to reduced head circumference; cortical gray matter; and total parenchymal volumes as measured by MRI at school age. Adjustment for other substance exposures precludes determination of statistically significant individual substance effect on brain volume in this small sample; however, these substances may act cumulatively during gestation to exert lasting effects on brain size and volume.
Cannabis, Cigarettes, and Their Co-Occurring Use: Disentangling Differences in Gray Matter Volume.
Wetherill, Reagan R; Jagannathan, Kanchana; Hager, Nathan; Childress, Anna Rose; Rao, Hengyi; Franklin, Teresa R
2015-06-04
Structural magnetic resonance imaging techniques are powerful tools for examining the effects of drug use on the brain. The nicotine and cannabis literature has demonstrated differences between nicotine cigarette smokers and cannabis users compared to controls in brain structure; however, less is known about the effects of co-occurring cannabis and tobacco use. We used voxel-based morphometry to examine gray matter volume differences between four groups: (1) cannabis-dependent individuals who do not smoke tobacco (Cs); (2) cannabis-dependent individuals who smoke tobacco (CTs); (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (Ts); and (4) healthy controls (HCs). We also explored associations between gray matter volume and measures of cannabis and tobacco use. A significant group effect was observed in the left putamen, thalamus, right precentral gyrus, and left cerebellum. Compared to HCs, the Cs, CTs, and Ts exhibited larger gray matter volumes in the left putamen. Cs also had larger gray matter volume than HCs in the right precentral gyrus. Cs and CTs exhibited smaller gray matter volume than HCs in the thalamus, and CTs and Ts had smaller left cerebellar gray matter volume than HCs. This study extends previous research that independently examined the effects of cannabis or tobacco use on brain structure by including an examination of co-occurring cannabis and tobacco use, and provides evidence that cannabis and tobacco exposure are associated with alterations in brain regions associated with addiction. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Gennatas, Efstathios D; Avants, Brian B; Wolf, Daniel H; Satterthwaite, Theodore D; Ruparel, Kosha; Ciric, Rastko; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C
2017-05-17
Developmental structural neuroimaging studies in humans have long described decreases in gray matter volume (GMV) and cortical thickness (CT) during adolescence. Gray matter density (GMD), a measure often assumed to be highly related to volume, has not been systematically investigated in development. We used T1 imaging data collected on the Philadelphia Neurodevelopmental Cohort to study age-related effects and sex differences in four regional gray matter measures in 1189 youths ranging in age from 8 to 23 years. Custom T1 segmentation and a novel high-resolution gray matter parcellation were used to extract GMD, GMV, gray matter mass (GMM; defined as GMD × GMV), and CT from 1625 brain regions. Nonlinear models revealed that each modality exhibits unique age-related effects and sex differences. While GMV and CT generally decrease with age, GMD increases and shows the strongest age-related effects, while GMM shows a slight decline overall. Females have lower GMV but higher GMD than males throughout the brain. Our findings suggest that GMD is a prime phenotype for the assessment of brain development and likely cognition and that periadolescent gray matter loss may be less pronounced than previously thought. This work highlights the need for combined quantitative histological MRI studies. SIGNIFICANCE STATEMENT This study demonstrates that different MRI-derived gray matter measures show distinct age and sex effects and should not be considered equivalent but complementary. It is shown for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. A clear understanding of normal structural brain development is essential for the examination of brain-behavior relationships, the study of brain disease, and, ultimately, clinical applications of neuroimaging. Copyright © 2017 the authors 0270-6474/17/375065-09$15.00/0.
Nestor, Paul G; Ohtani, Toshiyuki; Bouix, Sylvain; Hosokawa, Taiga; Saito, Yukiko; Newell, Dominick T; Kubicki, Marek
2015-12-01
We examined intelligence and memory in 25 healthy participants who had both prior magnetic resonance imaging (MRI) of gray matter volumes of medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), along with diffusion tensor imaging (DTI) of posterior and anterior mOFC-rACC white matter microstructure, as assessed by fractional anisotropy (FA). Results showed distinct relationships between these basic structural brain parameters and higher cognition, highlighted by a highly significant correlation of left rACC gray matter volume with memory, and to a lesser extent, though still statistically significant, correlation of left posterior mOFC-rACC FA with intelligence. Regression analyses showed that left posterior mOFC-rACC connections and left rACC gray matter volume each contributed to intelligence, with left posterior mOFC-rACC FA uniquely accounting for between 20.43 and 24.99% of the variance in intelligence, in comparison to 13.54 to 17.98% uniquely explained by left rACC gray matter volume. For memory, only left rACC gray matter volume explained neuropsychological performance, uniquely accounting for a remarkably high portion of individual variation, ranging from 73.61 to 79.21%. These results pointed to differential contributions of white mater microstructure connections and gray matter volumes to individual differences in intelligence and memory, respectively.
Correlation between white matter damage and gray matter lesions in multiple sclerosis patients.
Han, Xue-Mei; Tian, Hong-Ji; Han, Zheng; Zhang, Ce; Liu, Ying; Gu, Jie-Bing; Bakshi, Rohit; Cao, Xia
2017-05-01
We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri), right parietal lobe (postcentral and inferior parietal gyri), right temporal lobe (caudate nucleus), right occipital lobe (middle occipital gyrus), right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.
Size Matters: Cerebral Volume Influences Sex Differences in Neuroanatomy
Towler, Stephen; Welcome, Suzanne; Halderman, Laura K.; Otto, Ron; Eckert, Mark A.; Chiarello, Christine
2008-01-01
Biological and behavioral differences between the sexes range from obvious to subtle or nonexistent. Neuroanatomical differences are particularly controversial, perhaps due to the implication that they might account for behavioral differences. In this sample of 200 men and women, large effect sizes (Cohen's d > 0.8) were found for sex differences in total cerebral gray and white matter, cerebellum, and gray matter proportion (women had a higher proportion of gray matter). The only one of these sex differences that survived adjustment for the effect of cerebral volume was gray matter proportion. Individual differences in cerebral volume accounted for 21% of the difference in gray matter proportion, while sex accounted for an additional 4%. The relative size of the corpus callosum was 5% larger in women, but this difference was completely explained by a negative relationship between relative callosal size and cerebral volume. In agreement with Jancke et al., individuals with higher cerebral volume tended to have smaller corpora callosa. There were few sex differences in the size of structures in Broca's and Wernicke's area. We conclude that individual differences in brain volume, in both men and women, account for apparent sex differences in relative size. PMID:18440950
Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard
2014-01-30
Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.
Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E
2016-01-01
Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.
A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa.
Castro-Fornieles, Josefina; Bargalló, Nuria; Lázaro, Luisa; Andrés, Susana; Falcon, Carles; Plana, Maria Teresa; Junqué, Carme
2009-01-01
The objective was to examine whether cerebral volumes are reduced, and in what regions, in adolescents with anorexia nervosa and to study changes after nutritional recovery. Twelve anorexia nervosa (DSM-IV) patients aged 11-17 consecutively admitted to an Eating Disorders Unit were assessed by means of psychopathological scales, neuropsychological battery and voxel-based morphometric (VBM) magnetic resonance imaging at admission and after 7 months' follow-up. Nine control subjects of similar age, gender and estimated intelligence level were also studied. The two groups showed differences in gray matter (F=22.2; p<0.001) and cerebrospinal fluid (CSF) (F=21.2; p<0.001) but not in white matter volumes. In anorexic patients, gray matter volume correlated negatively with the copy time from the Rey Complex Figure Test. In the regional VBM study several temporal and parietal gray matter regions were reduced. During follow-up there was a greater global increase in gray matter (F=10.7; p=0.004) and decrease in CSF (F=22.1; p=0.001) in anorexic patients. The increase in gray matter correlated with a decrease in cortisol (Spearman correlation=-0.73; p=0.017). At follow-up there were no differences in global gray matter (F=2.1; p=0.165), white matter (F=0.02, p=0.965) or CSF (F=1.8; p=0.113) volumes between both groups. There were still some smaller areas, in the right temporal and both supplementary motor area, showing differences between them in the regional VBM study. In conclusion, in adolescent anorexic patients gray matter is more affected than white matter and mainly involves the posterior regions of the brain. Overall gray matter alterations are reversible after nutritional recovery.
Externalizing personality traits, empathy, and gray matter volume in healthy young drinkers
Charpentier, Judith; Dzemidzic, Mario; West, John; Oberlin, Brandon G.; Eiler, William J.A.; Saykin, Andrew J.; Kareken, David A.
2016-01-01
Externalizing psychopathology has been linked to prefrontal abnormalities. While clinically diagnosed subjects show altered frontal gray matter, it is unknown if similar deficits relate to externalizing traits in non-clinical populations. We used voxel-based morphometry (VBM) to retrospectively analyze the cerebral gray matter volume of 176 young adult social to heavy drinkers (mean age= 24.0 ± 2.9, male= 83.5%) from studies of alcoholism risk. We hypothesized that prefrontal gray matter volume and externalizing traits would be correlated. Externalizing personality trait components— Boredom Susceptibility-Impulsivity (BS/IMP) and Empathy/Low Antisocial Behaviors (EMP/LASB)— were tested for correlations with gray matter partial volume estimates (gmPVE). Significantly large clusters (pFWE < 0.05, family-wise whole-brain corrected) of gmPVE correlated with EMP/LASB in dorsolateral and medial prefrontal regions, and in occipital cortex. BS/IMP did not correlate with gmPVE, but one scale of impulsivity (Eysenck I7) correlated positively with bilateral inferior frontal/orbitofrontal, and anterior insula gmPVE. In this large sample of community-dwelling young adults, antisocial behavior/low empathy corresponded with reduced prefrontal and occipital gray matter, while impulsivity correlated with increased inferior frontal and anterior insula cortical volume. These findings add to a literature indicating that externalizing personality features involve altered frontal architecture. PMID:26778367
Wang, Chunrong; Ding, Yanhui; Shen, Bixian; Gao, Dehong; An, Jie; Peng, Kewen; Hou, Gangqiang; Zou, Liqiu; Jiang, Mei; Qiu, Shijun
2017-05-01
Gray matter volume deficits have been identified in cognitively impaired patients with chronic obstructive pulmonary disease (COPD). However, it remains unknown whether the gray matter volume is altered in COPD patients with subclinical cognitive impairment. To determine whether any gray matter abnormalities are present in these patients, neuropsychological tests and structural MRI data were analyzed from 60 patients with COPD and 60 age-, gender-, education-, and handedness-matched normal controls (NCs). The COPD patients had similar Mini-Mental State Examination (MMSE) scores compared with the NCs. However, they had reduced Montreal Cognitive Assessment (MoCA) scores for visuospatial and executive and naming and memory functions (P < 0.001). Voxel-based morphometry (VBM) analysis revealed that the COPD patients had significantly lowered gray matter volumes in several brain regions, including the left precuneus (PrCU), bilateral calcarine (CAL), right superior temporal gyrus/middle temporal gyrus (STG/MTG), bilateral fusiform gyrus (FG), and right inferior parietal lobule (IPL) (P < 0.01, corrected). Importantly, the forced vital capacity (FVC) was found to be associated with the gray matter volume in the calcarine. The present study confirmed that brain structural changes were present in stable COPD patients with subclinical cognitive impairment. These findings may provide new insights into the pathogenesis of COPD.
Anterior Cortical Development During Adolescence in Bipolar Disorder
Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A.Y.; Cox Lippard, Elizabeth T.; Pittman, Brian P.; Lacadie, Cheryl; Staib, Lawrence H.; Papademetris, Xenophon; Blumberg, Hilary P.
2015-01-01
Background Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Methods Two high-resolution magnetic resonance imaging scans were obtained approximately two-years apart for 35 adolescents with BDI and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Results Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula, and orbitofrontal, rostral and dorsolateral prefrontal cortices (P<.05, corrected), including greater gray matter contraction and decreased white matter expansion over time, in the BD compared to the healthy group. Conclusions: The findings support neurodevelopmental abnormalities during adolescence in BDI in anterior cortices, include altered developmental trajectories of anterior gray and white matter. PMID:26033826
NASA Astrophysics Data System (ADS)
Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan
2011-03-01
Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.
Cognitive performance is associated with gray matter decline in first-episode psychosis.
Dempster, Kara; Norman, Ross; Théberge, Jean; Densmore, Maria; Schaefer, Betsy; Williamson, Peter
2017-06-30
Progressive loss of gray matter has been demonstrated over the early course of schizophrenia. Identification of an association between cognition and gray matter may lead to development of early interventions directed at preserving gray matter volume and cognitive ability. The present study evaluated the association between gray matter using voxel-based morphometry (VBM) and cognitive testing in a sample of 16 patients with first-episode psychosis. A simple regression was applied to investigate the association between gray matter at baseline and 80 months and cognitive tests at baseline. Performance on the Wisconsin Card Sorting Task (WCST) at baseline was positively associated with gray matter volume in several brain regions. There was an association between decreased gray matter at baseline in the nucleus accumbens and Trails B errors. Performing worse on Trails B and making more WCST perseverative errors at baseline was associated with gray matter decline over 80 months in the right globus pallidus, left inferior parietal lobe, Brodmann's area (BA) 40, and left superior parietal lobule and BA 7 respectively. All significant findings were cluster corrected. The results support a relationship between aspects of cognitive impairment and gray matter abnormalities in first-episode psychosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Pomares, Florence B; Funck, Thomas; Feier, Natasha A; Roy, Steven; Daigle-Martel, Alexandre; Ceko, Marta; Narayanan, Sridar; Araujo, David; Thiel, Alexander; Stikov, Nikola; Fitzcharles, Mary-Ann; Schweinhardt, Petra
2017-02-01
Chronic pain patients present with cortical gray matter alterations, observed with anatomical magnetic resonance (MR) imaging. Reduced regional gray matter volumes are often interpreted to reflect neurodegeneration, but studies investigating the cellular origin of gray matter changes are lacking. We used multimodal imaging to compare 26 postmenopausal women with fibromyalgia with 25 healthy controls (age range: 50-75 years) to test whether regional gray matter volume decreases in chronic pain are associated with compromised neuronal integrity. Regional gray matter decreases were largely explained by T1 relaxation times in gray matter, a surrogate measure of water content, and not to any substantial degree by GABA A receptor concentration, an indirect marker of neuronal integrity measured with [ 18 F] flumazenil PET. In addition, the MR spectroscopy marker of neuronal viability, N-acetylaspartate, did not differ between patients and controls. These findings suggest that decreased gray matter volumes are not explained by compromised neuronal integrity. Alternatively, a decrease in neuronal matter could be compensated for by an upregulation of GABA A receptors. The relation between regional gray matter and T1 relaxation times suggests decreased tissue water content underlying regional gray matter decreases. In contrast, regional gray matter increases were explained by GABA A receptor concentration in addition to T1 relaxation times, indicating perhaps increased neuronal matter or GABA A receptor upregulation and inflammatory edema. By providing information on the histological origins of cerebral gray matter alterations in fibromyalgia, this study advances the understanding of the neurobiology of chronic widespread pain. Regional gray matter alterations in chronic pain, as detected with voxel-based morphometry of anatomical magnetic resonance images, are commonly interpreted to reflect neurodegeneration, but this assumption has not been tested. We found decreased gray matter in fibromyalgia to be associated with T1 relaxation times, a surrogate marker of water content, but not with GABA A receptor concentration, a surrogate of neuronal integrity. In contrast, regional gray matter increases were partly explained by GABA A receptor concentration, indicating some form of neuronal plasticity. The study emphasizes that voxel-based morphometry is an exploratory measure, demonstrating the need to investigate the histological origin of gray matter alterations for every distinct clinical entity, and advances the understanding of the neurobiology of chronic (widespread) pain. Copyright © 2017 the authors 0270-6474/17/371091-12$15.00/0.
Fischer, Barbara L.; Bacher, Rhonda; Bendlin, Barbara B.; Birdsill, Alex C.; Ly, Martina; Hoscheidt, Siobhan M.; Chappell, Richard J.; Mahoney, Jane E.; Gleason, Carey E.
2017-01-01
Background: Mobility changes are concerning for elderly patients with cognitive decline. Given frail older individuals' vulnerability to injury, it is critical to identify contributors to limited mobility. Objective: To examine whether structural brain abnormalities, including reduced gray matter volume and white matter hyperintensities, would be associated with limited mobility among individuals with cognitive impairment, and to determine whether cognitive impairment would mediate this relationship. Methods: Thirty-four elderly individuals with mild cognitive impairment (MCI) and Alzheimer's disease underwent neuropsychological evaluation, mobility assessment, and structural brain neuroimaging. Linear regression was conducted with predictors including gray matter volume in six regions of interest (ROI) and white matter hyperintensity (WMH) burden, with mobility measures as outcomes. Results: Lower gray matter volume in caudate nucleus was associated with slower speed on a functional mobility task. Higher cerebellar volume was also associated with slower functional mobility. White matter hyperintensity burden was not significantly associated with mobility. Conclusion: Our findings provide evidence for associations between subcortical gray matter volume and speed on a functional mobility task among cognitively impaired individuals. PMID:28424612
Zhang, Y; Dong, A K; Cheng, J L; Li, Y L; Zhu, C D; Xu, K
2017-12-05
Objective: To evaluate gray matter structure changes in long-term male smokers by voxel-based morphological method. Methods: Fifty long-term smokers and 37 non-smoking healthy volunteers were scanned with Siemens Skyro 3.0T magnetic resonance scanner from August 2014 to August 2016. The subjects underwent routine MRI (excluding intracranial lesions) sequences and 3D-T1 structural sequences (3D-mprage). SPM8 pretreatment based on Matlab was used to analyze the structural data. All of the data were analyzed by SPM8 software. The data were compared between groups with independent sample t test. Spearman correlation analysis was used to analyze the relationship between gray matter volume (GMV) and smoking data of two groups. Results: The gray matter volume of bilateral thalamic, right supramarginal gyrus, left supramarginal gyrus and left putamen of smoking group were (0.55±0.07), (0.40±0.05), (0.48±0.07) and (0.14±0.04) voxels, respectively, and the gray matter volume of the corresponding gyri in control group were (0.61±0.09), (0.43±0.06), (0.54±0.07) and (0.16±0.03) voxels, respectively; and the gray matter volume of smoking group were all lower than those in control group ( t =-3.81, -3.51, -3.86, -2.33, all P <0.05), family wise error (FWE) correction ( P <0.05). The gray matter volume of bilateral thalamus, right supramarginal gyrus and left putamen was negatively correlated with smoking index ( r =-0.368, -0.189, -0.274, all P <0.05), and also negatively correlated with smoking years ( r =-0.391, -0.221, -0.355, all P <0.05), and bilateral thalamus gray matter volume was negatively correlated with daily cigarette smoking ( r =-0.186, P <0.05). Conclusion: The changes of brain structure of smokers mainly occur on reward-related pathways and marginal systems, and related to accumulation of cigarette smoking.
Hulshoff Pol, Hilleke E; Brans, Rachel G H; van Haren, Neeltje E M; Schnack, Hugo G; Langen, Marieke; Baaré, Wim F C; van Oel, Clarine J; Kahn, René S
2004-01-15
Whole brain tissue volume decreases in schizophrenia have been related to both genetic risk factors and disease-related (possibly nongenetic) factors; however, whether genetic and environmental risk factors in the brains of patients with schizophrenia are differentially reflected in gray or white matter volume change is not known. Magnetic resonance imaging (1.5 T) brain scans of 11 monozygotic and 11 same-gender dizygotic twin pairs discordant for schizophrenia were acquired and compared with 11 monozygotic and 11 same-gender dizygotic healthy control twin pairs. Repeated-measures volume analysis of covariance revealed decreased whole brain volume in the patients with schizophrenia as compared with their co-twins and with healthy twin pairs. Decreased white matter volume was found in discordant twin pairs compared with healthy twin pairs, particularly in the monozygotic twin pairs. A decrease in gray matter was found in the patients compared with their co-twins and compared with the healthy twins. The results suggest that the decreases in white matter volume reflect the increased genetic risk to develop schizophrenia, whereas the decreases in gray matter volume are related to environmental risk factors. Study of genes involved in the (maintenance) of white matter structures may be particularly fruitful in schizophrenia.
Anterior Cortical Development During Adolescence in Bipolar Disorder.
Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A Y; Cox Lippard, Elizabeth T; Pittman, Brian P; Lacadie, Cheryl; Staib, Lawrence H; Papademetris, Xenophon; Blumberg, Hilary P
2016-02-15
Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Two high-resolution magnetic resonance imaging scans were obtained approximately 2 years apart for 35 adolescents with bipolar I disorder (BDI) and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula and orbitofrontal, rostral, and dorsolateral prefrontal cortices (p < .05, corrected), including greater gray matter contraction and decreased white matter expansion over time, in the BD compared with the healthy group. The findings support neurodevelopmental abnormalities during adolescence in BDI in anterior cortices, including altered developmental trajectories of anterior gray and white matter. Published by Elsevier Inc.
Yamamoto, Mikie; Wada-Isoe, Kenji; Yamashita, Fumio; Nakashita, Satoko; Kishi, Masafumi; Tanaka, Kenichiro; Yamawaki, Mika; Nakashima, Kenji
2017-06-01
The relationship between exercise and subcortical gray matter volume is not well understood in the elderly population, although reports indicate that exercise may prevent cortical gray matter atrophy. To elucidate this association in the elderly, we measured subcortical gray matter volume and correlated this with volumes to exercise habits in a community-based cohort study in Japan. Subjects without mild cognitive impairment or dementia (n = 280, 35% male, mean age 73.1 ± 5.9 years) were evaluated using the Mini-Mental State Examination (MMSE), an exercise habit questionnaire, and brain magnetic resonance imaging. Subcortical gray matter volume was compared between groups based on the presence/absence of exercise habits. The MMSE was re-administered 3 years after the baseline examination. Ninety-one subjects (32.5%) reported exercise habits (exercise group), and 189 subjects (67.5%) reported no exercise habits (non-exercise group). Volumetric analysis revealed that the volumes in the exercise group were greater in the left hippocampus (p = 0.042) and bilateral nucleus accumbens (left, p = 0.047; right, p = 0.007) compared to those of the non-exercise group. Among the 195 subjects who received a follow-up MMSE examination, the normalized intra-cranial volumes of the left nucleus accumbens (p = 0.004) and right amygdala (p = 0.014)showed significant association with a decline in the follow-up MMSE score. Subjects with exercise habits show larger subcortical gray matter volumes than subjects without exercise habits in community-dwelling elderly subjects in Japan. Specifically, the volume of the nucleus accumbens correlates with both exercise habits and cognitive preservation.
Gray-matter macrostructure in cognitively healthy older persons: Associations with age and cognition
Fleischman, Debra A.; Leurgans, Sue; Arfanakis, Konstantinos; Arvanitakis, Zoe; Barnes, Lisa L.; Boyle, Patricia A.; Han, S. Duke; Bennett, David A.
2013-01-01
A deeper understanding of brain macrostructure and its associations with cognition in persons who are considered cognitively healthy is critical to the early detection of persons at risk of developing dementia. Few studies have examined the associations of all three gray-matter macrostructural brain indices (volume, thickness, surface area) with age and cognition, in the same persons who are over the age of 65 and do not have cognitive impairment. We performed automated morphometric reconstruction of total gray matter, cortical gray matter, subcortical gray matter and 84 individual regions in 186 participants (60% over the age of 80) without cognitive impairment. Morphometric measures were scaled and expressed as difference per decade of age and an adjusted score was created to identify those regions in which there was greater atrophy per decade of age compared to cortical or subcortical brain averages. The results showed that there is substantial total volume loss and cortical thinning in cognitively healthy older persons. Thinning was more widespread than volume loss, but volume loss, particularly in temporoparietal and hippocampal regions, was more strongly associated with cognition. PMID:23955313
[Gray matter abnormalities in developmental stuttering determined with voxel-based morphometry].
Song, Lu-ping; Peng, Dan-ling; Jin, Zhen; Yao, Li; Ning, Ning; Guo, Xiao-juan; Zhang, Tong
2007-11-06
To investigate the differences of regional grey matter volume between adults with persistent developmental stuttering and fluent speaking adults, and to determine whether stutterers have anomalous anatomy of speech-relevant brain areas that possibly affect speech fluency. High-resolution magnetic resonance imaging (MRI) scanning was performed on 10 adults with developmental stuttering, aged 26 (21 - 35) with the onset age of 4 (3 - 7) and 12 age, sex, hand preference, and education-matched controls. The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of MRI data was conducted using an optimized version of VBM, a fully automated unbiased and objective whole-brain MRI analysis technique. VBM analysis revealed that compared with the controls, the stuttering adults had significant clusters of locally gray matter volume increased in the superior temporal, middle temporal, precentral and postcentral gyrus, and inferior parietal lobule of the bilateral hemisphere (P < 0.001), the numbers of increased gray matter volume in the right and left hemispheres were 60,247 and 48,782 voxels respectively. The, Grey matter decrease was shown with an overall decreased gray matter volume of 32 394 voxels, mainly in the bilateral cerebella posterior lobe and dorsal part of medulla, especially inferior semi-lunar lobule, followed by cerebellar tonsil and bilateral medulla in comparison with the controls (P < 0.001). The reduction of the regional gray matter volume of bilateral cerebella and medulla is related to the neural mechanism of the controlling disorder of speech production and may be the essential cause of stuttering. Some areas with increased gray matter volume in temporal lobe, parietal lobe, and frontal lobe, may be the result of long term functional compensation for the cerebella and medulla function deficiency.
Walters, Glenn D; Kiehl, Kent A
2015-12-15
The purpose of this study was to determine whether scores on two temperament dimensions (fearlessness and disinhibition) correlated differentially with gray matter volumes in two limbic regions (amygdala and hippocampus). It was predicted that the fearlessness dimension would correlate with low gray matter volumes in the amygdala and the disinhibition dimension would correlate with low gray matter volumes in the hippocampus after controlling for age, IQ, regular substance use, and total brain volume. Participants were 191 male adolescents (age range=13-19 years) incarcerated in a maximum-security juvenile facility. Structural magnetic resonance imaging (MRI) analysis of the limbic and paralimbic regions of the brain was conducted. The temperament dimensions were estimated with items from the Psychopathy Checklist: Youth Version (PCL: YV: Forth et al., 2003). Analyses showed that the fearlessness dimension correlated negatively with gray matter volumes in the amygdala and the disinhibition dimension correlated negatively with gray matter volumes in the hippocampus but not vice versa. These findings provide preliminary support for the construct validity of the fearlessness and disinhibition temperament dimensions and offer confirmatory evidence for involvement of the amygdala and hippocampus in fear conditioning and behavioral inhibition, respectively. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Hanlon, Colleen A.; Owens, Max M.; Joseph, Jane E.; Zhu, Xun; George, Mark S.; Brady, Kathleen T.; Hartwell, Karen J.
2014-01-01
Although established adult smokers with long histories of nicotine dependence have lower neural tissue volume than non-smokers, it is not clear if lower regional brain volume is also observed in younger, less established smokers. The primary goal of this study was to investigate neural tissue volume in a large group of smokers and non-smokers, with a secondary goal of measuring the impact of age on these effects. We used voxel-based morphometry to compare regional gray matter volume in 118 individuals (59 smokers, 59 age- and gender-matched non-smokers). Younger smokers had significantly lower gray matter volume in the left thalamus and the left amygdala than their non-smoking peers (family-wise error-corrected clusters, P < 0.05). There was no correlation between smoking use variables and tissue volume among younger smokers. Established smokers had significantly lower gray matter volume than age-matched non-smokers in the insula, parahippocampal gyrus and pallidum. Medial prefrontal cortex gray matter volume was negatively correlated with pack-years of smoking among the established smokers, but not the younger smokers. These data reveal that regional tissue volume differences are not limited exclusively to established smokers. Deficits in young adults indicate that cigarette smoking may either be deleterious to the thalamus and amygdala at an earlier age than previously reported, or that pre-existing differences in these areas may predispose individuals to the development of nicotine dependence. PMID:25125263
Regional gray matter volume in the posterior precuneus is associated with general self-efficacy.
Sugiura, Ayaka; Aoki, Ryuta; Murayama, Kou; Yomogida, Yukihito; Haji, Tomoki; Saito, Atsuko; Hasegawa, Toshikazu; Matsumoto, Kenji
2016-12-14
Motivation in doing a task is influenced not only by the expected outcome of the task but also by the belief that one has in successfully executing the task. Over time, individuals accumulate experiences that contribute toward a general belief in one's overall ability to successfully perform tasks, which is called general self-efficacy (GSE). We investigated the relationship between regional gray matter volume and individual differences in GSE. Brain anatomy was analyzed using magnetic resonance images obtained from 64 healthy right-handed participants who had completed Sherer's GSE scale. After controlling for other factors related to motivation, age, sex, and total gray matter volume of each participant, results showed that regional gray matter volume in the posterior part of the precuneus significantly and positively correlated with the GSE score. These results suggest that one's accumulated experiences of success and failure, which contribute toward GSE, also influence the anatomical characteristics of the precuneus.
Freedman, Barry I; Gadegbeku, Crystal A; Bryan, R Nick; Palmer, Nicholette D; Hicks, Pamela J; Ma, Lijun; Rocco, Michael V; Smith, S Carrie; Xu, Jianzhao; Whitlow, Christopher T; Wagner, Benjamin C; Langefeld, Carl D; Hawfield, Amret T; Bates, Jeffrey T; Lerner, Alan J; Raj, Dominic S; Sadaghiani, Mohammad S; Toto, Robert D; Wright, Jackson T; Bowden, Donald W; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Pajewski, Nicholas M; Divers, Jasmin
2016-08-01
To assess apolipoprotein L1 gene (APOL1) renal-risk-variant effects on the brain, magnetic resonance imaging (MRI)-based cerebral volumes and cognitive function were assessed in 517 African American-Diabetes Heart Study (AA-DHS) Memory IN Diabetes (MIND) and 2568 hypertensive African American Systolic Blood Pressure Intervention Trial (SPRINT) participants without diabetes. Within these cohorts, 483 and 197 had cerebral MRI, respectively. AA-DHS participants were characterized as follows: 60.9% female, mean age of 58.6 years, diabetes duration 13.1 years, estimated glomerular filtration rate of 88.2 ml/min/1.73 m(2), and a median spot urine albumin to creatinine ratio of 10.0 mg/g. In additive genetic models adjusting for age, sex, ancestry, scanner, intracranial volume, body mass index, hemoglobin A1c, statins, nephropathy, smoking, hypertension, and cardiovascular disease, APOL1 renal-risk-variants were positively associated with gray matter volume (β = 3.4 × 10(-3)) and negatively associated with white matter lesion volume (β = -0.303) (an indicator of cerebral small vessel disease) and cerebrospinal fluid volume (β= -30707) (all significant), but not with white matter volume or cognitive function. Significant associations corresponding to adjusted effect sizes (β/SE) were observed with gray matter volume (0.16) and white matter lesion volume (-0.208), but not with cerebrospinal fluid volume (-0.251). Meta-analysis results with SPRINT Memory and Cognition in Decreased Hypertension (MIND) participants who had cerebral MRI were confirmatory. Thus, APOL1 renal-risk-variants are associated with larger gray matter volume and lower white matter lesion volume suggesting lower intracranial small vessel disease. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Goto, Masami; Abe, Osamu; Aoki, Shigeki; Kamagata, Koji; Hori, Masaaki; Miyati, Tosiaki; Gomi, Tsutomu; Takeda, Tohoru
2018-01-18
To evaluate the error in segmented tissue images and to show the usefulness of the brain image in voxel-based morphometry (VBM) using Statistical Parametric Mapping (SPM) 12 software and 3D T 1 -weighted magnetic resonance images (3D-T 1 WIs) processed to simulate idiopathic normal pressure hydrocephalus (iNPH). VBM analysis was performed on sagittal 3D-T 1 WIs obtained in 22 healthy volunteers using a 1.5T MR scanner. Regions of interest for the lateral ventricles of all subjects were carefully outlined on the original 3D-T 1 WIs, and two types of simulated 3D-T 1 WI were also prepared (non-dilated 3D-T 1 WI as normal control and dilated 3D-T 1 WI to simulate iNPH). All simulated 3D-T 1 WIs were segmented into gray matter, white matter, and cerebrospinal fluid images, and normalized to standard space. A brain image was made by adding the gray and white matter images. After smoothing with a 6-mm isotropic Gaussian kernel, group comparisons (dilated vs non-dilated) were made for gray and white matter, cerebrospinal fluid, and brain images using a paired t-test. In evaluation of tissue volume, estimation error was larger using gray or white matter images than using the brain image, and estimation errors in gray and white matter volume change were found for the brain surface. To our knowledge, this is the first VBM study to show the possibility that VBM of gray and white matter volume on the brain surface may be more affected by individual differences in the level of dilation of the lateral ventricles than by individual differences in gray and white matter volumes. We recommend that VBM evaluation in patients with iNPH should be performed using the brain image rather than the gray and white matter images.
Kasai, Kiyoto; Shenton, Martha E.; Salisbury, Dean F.; Hirayasu, Yoshio; Onitsuka, Toshiaki; Spencer, Magdalena H.; Yurgelun-Todd, Deborah A.; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.
2010-01-01
Background The Heschl gyrus and planum temporale have crucial roles in auditory perception and language processing. Our previous investigation using magnetic resonance imaging (MRI) indicated smaller gray matter volumes bilaterally in the Heschl gyrus and in left planum temporale in patients with first-episode schizophrenia but not in patients with first-episode affective psychosis. We sought to determine whether there are progressive decreases in anatomically defined MRI gray matter volumes of the Heschl gyrus and planum temporale in patients with first-episode schizophrenia and also in patients with first-episode affective psychosis. Methods At a private psychiatric hospital, we conducted a prospective high spatial resolution MRI study that included initial scans of 28 patients at their first hospitalization (13 with schizophrenia and 15 with affective psychosis, 13 of whom had a manic psychosis) and 22 healthy control subjects. Follow-up scans occurred, on average, 1.5 years after the initial scan. Results Patients with first-episode schizophrenia showed significant decreases in gray matter volume over time in the left Heschl gyrus (6.9%) and left planum temporale (7.2%) compared with patients with first-episode affective psychosis or control subjects. Conclusions These findings demonstrate a left-biased progressive volume reduction in the Heschl gyrus and planum temporale gray matter in patients with first-episode schizophrenia in contrast to patients with first-episode affective psychosis and control subjects. Schizophrenia but not affective psychosis seems to be characterized by a postonset progression of neocortical gray matter volume loss in the left superior temporal gyrus and thus may not be developmentally fixed. PMID:12912760
Gray Matter Hypertrophy and Thickening with Obstructive Sleep Apnea in Middle-aged and Older Adults.
Baril, Andrée-Ann; Gagnon, Katia; Brayet, Pauline; Montplaisir, Jacques; De Beaumont, Louis; Carrier, Julie; Lafond, Chantal; L'Heureux, Francis; Gagnon, Jean-François; Gosselin, Nadia
2017-06-01
Obstructive sleep apnea causes intermittent hypoxemia, hemodynamic fluctuations, and sleep fragmentation, all of which could damage cerebral gray matter that can be indirectly assessed by neuroimaging. To investigate whether markers of obstructive sleep apnea severity are associated with gray matter changes among middle-aged and older individuals. Seventy-one subjects (ages, 55-76 yr; apnea-hypopnea index, 0.2-96.6 events/h) were evaluated by magnetic resonance imaging. Two techniques were used: (1) voxel-based morphometry, which measures gray matter volume and concentration; and (2) FreeSurfer (an open source software suite) automated segmentation, which estimates the volume of predefined cortical/subcortical regions and cortical thickness. Regression analyses were performed between gray matter characteristics and markers of obstructive sleep apnea severity (hypoxemia, respiratory disturbances, and sleep fragmentation). Subjects had few symptoms, that is, sleepiness, depression, anxiety, and cognitive deficits. Although no association was found with voxel-based morphometry, FreeSurfer revealed increased gray matter with obstructive sleep apnea. Higher levels of hypoxemia correlated with increased volume and thickness of the left lateral prefrontal cortex as well as increased thickness of the right frontal pole, the right lateral parietal lobules, and the left posterior cingulate cortex. Respiratory disturbances positively correlated with right amygdala volume, and more severe sleep fragmentation was associated with increased thickness of the right inferior frontal gyrus. Gray matter hypertrophy and thickening were associated with hypoxemia, respiratory disturbances, and sleep fragmentation. These structural changes in a group of middle-aged and older individuals may represent adaptive/reactive brain mechanisms attributed to a presymptomatic stage of obstructive sleep apnea.
Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users.
Morales, A M; Kohno, M; Robertson, C L; Dean, A C; Mandelkern, M A; London, E D
2015-06-01
Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, P<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum and thalamus (P<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders.
Gray-Matter Volume, Midbrain Dopamine D2/D3 Receptors and Drug Craving in Methamphetamine Users
Morales, Angelica A.; Kohno, Milky; Robertson, Chelsea L.; Dean, Andy C.; Mandelkern, Mark A.; London, Edythe D.
2015-01-01
Dysfunction of the mesocorticolimbic system plays a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [18F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, p<0.05 corrected for multiple comparisons). Craving for methamphetamine was negatively associated with gray-matter volume in the insula, prefrontal cortex, amygdala, temporal cortex, occipital cortex, cerebellum, and thalamus (p<0.05 corrected for multiple comparisons). A relationship between midbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance use disorders. PMID:25896164
Sugranyes, Gisela; de la Serna, Elena; Romero, Soledad; Sanchez-Gistau, Vanessa; Calvo, Anna; Moreno, Dolores; Baeza, Inmaculada; Diaz-Caneja, Covadonga M; Sanchez-Gutierrez, Teresa; Janssen, Joost; Bargallo, Nuria; Castro-Fornieles, Josefina
2015-08-01
There is increasing support toward the notion that schizophrenia and bipolar disorder share neurodevelopmental underpinnings, although areas of divergence remain. We set out to examine gray matter volume characteristics of child and adolescent offspring of patients with schizophrenia or bipolar disorder comparatively. In this 2-center study, magnetic resonance structural neuroimaging data were acquired in 198 children and adolescents (aged 6-17 years): 38 offspring of patients with schizophrenia, 77 offspring of patients with bipolar disorder, and 83 offspring of community controls. Analyses of global brain volumes and voxel-based morphometry (using familywise error correction) were conducted. There was an effect of group on total cerebral gray matter volume (F = 3.26, p = .041), driven by a decrease in offspring of patients with schizophrenia relative to offspring of controls (p = .035). At a voxel-based level, we observed an effect of group in the left inferior frontal cortex/anterior insula (F = 14.7, p < .001), which was driven by gray matter volume reduction in offspring of patients with schizophrenia relative to both offspring of controls (p = .044) and of patients with bipolar disorder (p < .001). No differences were observed between offspring of patients with bipolar disorder and offspring of controls in either global or voxel-based gray matter volumes. This first comparative study between offspring of patients with schizophrenia and bipolar disorder suggests that gray matter volume reduction in childhood and adolescence may be specific to offspring of patients with schizophrenia; this may index a greater neurodevelopmental impact of risk for schizophrenia relative to bipolar disorder during youth. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Lavretsky, Helen; Roybal, Donna J; Ballmaier, Martina; Toga, Arthur W; Kumar, Anand
2005-08-01
Depressed elderly patients with and without antidepressant exposure were compared to normal controls to examine the effects of prior antidepressant exposure on regional brain gray matter volumes using magnetic resonance imaging (MRI). The study was conducted from October 1999 to January 2003. Patients and controls were closely matched by age and education. They underwent comprehensive neuropsychiatric and physical examinations. Measures of the total frontal lobe and the frontal gray and white matter volumes corrected by the intracranial volume were obtained using MRI, together with clinical measures of medical burden. Historical information about prior exposure to antidepressant drugs was collected using multiple information sources. The groups were compared using multivariate analyses of covariance, controlling for age, sex, and medical burden. The study sample comprised 41 patients who met the DSM-IV criteria for major depressive disorder (32 women; 11 antidepressant exposure and 30 drug-naive; mean age 70.5 years) and 41 controls (20 women; mean age 72.2 years). In the multivariate analysis, the depressed group had smaller corrected orbitofrontal cortex (OFC) total and gray matter volumes compared to the controls (p < .01). However, depressed patients with prior antidepressant exposure had larger OFC gray matter volumes compared to drug-naive depressed patients, but smaller than those in normal controls (p = .005). This effect was not explained by the group differences in sex ratio, age at onset of depression, or the number or duration of depressive episodes. We observed larger OFC regional volumes in depressed patients exposed to antidepressants compared to the drug-naive depressed subjects, but smaller than those in age-matched controls. Antidepressant exposure may protect against gray matter loss in geriatric depression.
Language and Brain Volumes in Children with Epilepsy
Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Shields, W. Donald; Sankar, Raman
2010-01-01
This study compared the relationship of language skill with fronto-temporal volumes in 69 medically treated epilepsy subjects and 34 healthy children, aged 6.1-16.6 years. It also determined if the patients with linguistic deficits had abnormal volumes and atypical associations between volumes and language skills in these brain regions. The children underwent language testing and magnetic resonance imaging scans at 1.5 Tesla. Brain tissue was segmented and fronto-temporal volumes were computed. Higher mean language scores were significantly associated with larger inferior frontal gyrus, temporal lobe, and posterior superior temporal gyrus gray matter volumes in the epilepsy group and in the children with epilepsy with average language scores. Increased total brain and dorsolateral prefrontal gray and white matter volumes, however, were associated with higher language scores in the healthy controls. Within the epilepsy group, linguistic deficits were related to smaller anterior superior temporal gyrus gray matter volumes and a negative association between language scores and dorsolateral prefrontal gray matter volumes. These findings demonstrate abnormal development of language related brain regions, and imply differential reorganization of brain regions subserving language in children with epilepsy with normal linguistic skills and in those with impaired language. PMID:20149755
Small gray matter volume in orbitofrontal cortex in Prader-Willi syndrome: a voxel-based MRI study.
Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Takahashi, Shoki; Mori, Etsuro
2011-07-01
Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder presenting with behavioral symptoms including hyperphagia, disinhibition, and compulsive behavior. The behavioral problems in individuals with PWS are strikingly similar to those in patients with frontal pathologies, particularly those affecting the orbitofrontal cortex (OFC). However, neuroanatomical abnormalities in the frontal lobe have not been established in PWS. The aim of this study was to look, using volumetric analysis, for morphological changes in the frontal lobe, especially the OFC, of the brains of individuals with PWS. Twelve adults with PWS and 13 age- and gender-matched control subjects participated in structural magnetic resonance imaging (MRI) scans. The whole-brain images were segmented and normalized to a standard stereotactic space. Regional gray matter volumes were compared between the PWS group and the control group using voxel-based morphometry. The PWS subjects showed small gray-matter volume in several regions, including the OFC, caudate nucleus, inferior temporal gyrus, precentral gyrus, supplementary motor area, postcentral gyrus, and cerebellum. The small gray-matter volume in the OFC remained significant in a separate analysis that included total gray matter volume as a covariate. These preliminary findings suggest that the neurobehavioral symptoms in individuals with PWS are related to structural brain abnormalities in these areas. Copyright © 2010 Wiley-Liss, Inc.
Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta
2016-01-01
A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children. PMID:27101139
Liu, Qi; Chen, Lizhou; Li, Fei; Chen, Ying; Guo, Lanting; Gong, Qiyong; Huang, Xiaoqi
2016-06-01
Attention-deficit/hyperactivity disorder(ADHD)is one of the most common neuro-developmental disorders occurring in childhood,characterized by symptoms of age-inappropriate inattention,hyperactivity/impulsivity,and the prevalence is higher in boys.Although gray matter volume deficits have been frequently reported for ADHD children via structural magnetic resonance imaging,few of them had specifically focused on male patients.The present study aimed to explore the alterations of gray matter volumes in medicated-naive boys with ADHD via a relatively new voxel-based morphometry technique.According to the criteria of DSM-IV-TR,43medicated-naive ADHD boys and 44age-matched healthy boys were recruited.The magnetic resonance image(MRI)scan was performed via a 3T MRI system with three-dimensional(3D)spoiled gradient recalled echo(SPGR)sequence.Voxel-based morphometry with diffeomorphic anatomical registration through exponentiated lie algebra in SPM8 was used to preprocess the3DT1-weighted images.To identify gray matter volume differences between the ADHD and the controls,voxelbased analysis of whole brain gray matter volumes between two groups were done via two sample t-test in SPM8 with age as covariate,threshold at P<0.001.Finally,compared to the controls,significantly reduced gray matter volumes were identified in the right orbitofrontal cortex(peak coordinates[-2,52,-25],t=4.01),and bilateral hippocampus(Left:peak coordinates[14,0,-18],t=3.61;Right:peak coordinates[-14,15,-28],t=3.64)of ADHD boys.Our results demonstrated obvious reduction of whole brain gray matter volumes in right orbitofrontal cortex and bilateral hippocampus in boys with ADHD.This suggests that the abnormalities of prefrontal-hippocampus circuit may be the underlying cause of the cognitive dysfunction and abnormal behavioral inhibition in medicatednaive boys with ADHD.
Peng, Fei; Wang, Lixin; Geng, Zuojun; Zhu, Qingfeng; Song, Zhenhu
2016-01-01
The aim of the study was to carry out a cross-sectional study of 124 cognitively normal Chinese adults using the voxel-based morphometry approach to delineate age-related changes in the gray matter volume of regions of interest (ROI) in the brain and further analyze their correlation with age. One hundred twenty-four cognitively normal adults were divided into the young age group, the middle age group, and the old age group. Conventional magnetic resonance imaging was performed with the Achieva 3.0 T system. Structural images were processed using VBM8 and SPM8. Regions of interest were obtained by WFU PickAtlas and all realigned images were spatially normalized. Females showed significantly greater total gray matter volume than males (t = 4.81, P = 0.0000, false discovery rate corrected). Compared with young subjects, old-aged subjects showed extensive reduction in gray matter volumes in all ROIs examined except the occipital lobe. In young- and middle-aged subjects, female and male subjects showed significant difference in the right middle temporal gyrus, right superior temporal gyrus, left angular gyrus, right middle occipital lobe, left middle cingulate gyrus, and the pars triangularis of the right inferior frontal gyrus, suggesting an interaction between age and sex (P < 0.001, uncorrected). Logistic regression analysis revealed linear negative correlation between the total gray matter volume and age (R = 0.529, P < 0.001). Significant age-related differences are present in gray matter volume across multiple brain regions during aging. The VPM approach may provide an emerging paradigm in the normal aging brain that may help differentiate underlying normal neurobiological aging changes of specific brain regions from neurodegenerative impairments.
Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta
2016-01-01
A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children.
Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume.
Luby, Joan L; Belden, Andy C; Whalen, Diana; Harms, Michael P; Barch, Deanna M
2016-05-01
A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breastfeeding and children's IQ scores. The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume
Luby, Joan L.; Belden, Andy C.; Whalen, Diana; Harms, Michael P.; Barch, Deanna M.
2016-01-01
Objective A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Method Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Results Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breast-feeding and children's IQ scores. Conclusion The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. PMID:27126850
Moran, C; Tapp, R J; Hughes, A D; Magnussen, C G; Blizzard, L; Phan, T G; Beare, R; Witt, N; Venn, A; Münch, G; Amaratunge, B C; Srikanth, V
2016-01-01
It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy.
Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.
Fujiwara, E; Kmech, J A; Cobzas, D; Sun, H; Seres, P; Blevins, G; Wilman, A H
2017-05-01
Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. Compared with controls, patients showed reduced memory ( P < .001) and processing speed ( P = .02) and smaller putamen ( P < .001), globus pallidus ( P = .002), and thalamic volumes ( P < .001). Quantitative susceptibility mapping values were increased in patients compared with controls in the putamen ( P = .003) and globus pallidus ( P = .003). In patients only, thalamus ( P < .001) and putamen ( P = .04) volumes were related to cognitive performance. After we controlled for volume effects, quantitative susceptibility mapping values in the globus pallidus ( P = .03; trend for transverse relaxation rate, P = .10) were still related to cognition. Quantitative susceptibility mapping was more sensitive compared with the transverse relaxation rate in detecting deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis. © 2017 by American Journal of Neuroradiology.
Brain structure predicts risk for obesity ☆
Smucny, Jason; Cornier, Marc-Andre; Eichman, Lindsay C.; Thomas, Elizabeth A.; Bechtell, Jamie L.; Tregellas, Jason R.
2014-01-01
The neurobiology of obesity is poorly understood. Here we report findings of a study designed to examine the differences in brain regional gray matter volume in adults recruited as either Obese Prone or Obese Resistant based on self-identification, body mass index, and personal/family weight history. Magnetic resonance imaging was performed in 28 Obese Prone (14 male, 14 female) and 25 Obese Resistant (13 male, 12 female) healthy adults. Voxel-based morphometry was used to identify gray matter volume differences between groups. Gray matter volume was found to be lower in the insula, medial orbitofrontal cortex and cerebellum in Obese Prone, as compared to Obese Resistant individuals. Adjusting for body fat mass did not impact these results. Insula gray matter volume was negatively correlated with leptin concentration and measures of hunger. These findings suggest that individuals at risk for weight gain have structural differences in brain regions known to be important in energy intake regulation, and that these differences, particularly in the insula, may be related to leptin. PMID:22963736
Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging.
Papenberg, Goran; Ferencz, Beata; Mangialasche, Francesca; Mecocci, Patrizia; Cecchetti, Roberta; Kalpouzos, Grégoria; Fratiglioni, Laura; Bäckman, Lars
2016-10-01
Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Gogtay, Nitin; Thompson, Paul M.
2010-01-01
Recent studies with brain magnetic resonance imaging (MRI) have scanned large numbers of children and adolescents repeatedly over time, as their brains develop, tracking volumetric changes in gray and white matter in remarkable detail. Focusing on gray matter changes specifically, here we explain how earlier studies using lobar volumes of specific…
Rojas, Donald C; Peterson, Eric; Winterrowd, Erin; Reite, Martin L; Rogers, Sally J; Tregellas, Jason R
2006-01-01
Background Although differences in brain anatomy in autism have been difficult to replicate using manual tracing methods, automated whole brain analyses have begun to find consistent differences in regions of the brain associated with the social cognitive processes that are often impaired in autism. We attempted to replicate these whole brain studies and to correlate regional volume changes with several autism symptom measures. Methods We performed MRI scans on 24 individuals diagnosed with DSM-IV autistic disorder and compared those to scans from 23 healthy comparison subjects matched on age. All participants were male. Whole brain, voxel-wise analyses of regional gray matter volume were conducted using voxel-based morphometry (VBM). Results Controlling for age and total gray matter volume, the volumes of the medial frontal gyri, left pre-central gyrus, right post-central gyrus, right fusiform gyrus, caudate nuclei and the left hippocampus were larger in the autism group relative to controls. Regions exhibiting smaller volumes in the autism group were observed exclusively in the cerebellum. Significant partial correlations were found between the volumes of the caudate nuclei, multiple frontal and temporal regions, the cerebellum and a measure of repetitive behaviors, controlling for total gray matter volume. Social and communication deficits in autism were also associated with caudate, cerebellar, and precuneus volumes, as well as with frontal and temporal lobe regional volumes. Conclusion Gray matter enlargement was observed in areas that have been functionally identified as important in social-cognitive processes, such as the medial frontal gyri, sensorimotor cortex and middle temporal gyrus. Additionally, we have shown that VBM is sensitive to associations between social and repetitive behaviors and regional brain volumes in autism. PMID:17166273
ERIC Educational Resources Information Center
Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.
2015-01-01
In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…
Hypothalamic tumors impact gray and white matter volumes in fronto-limbic brain areas.
Özyurt, Jale; Müller, Hermann L; Warmuth-Metz, Monika; Thiel, Christiane M
2017-04-01
Patients with hypothalamic involvement of a sellar/parasellar tumor often suffer from cognitive and social-emotional deficits that a lesion in the hypothalamus cannot fully explain. It is conceivable that these deficits are partly due to distal changes in hypothalamic networks, evolving secondary to a focal lesion. Focusing on childhood-onset craniopharyngioma patients, we aimed at investigating the impact of hypothalamic lesions on gray and white matter areas densely connected to the hypothalamus, and to relate structural changes to neuropsychological deficits frequently observed in patients. We performed a voxel-based morphometric analysis based on data of 11 childhood-onset craniopharyngioma patients with hypothalamic tumor involvement, and 18 healthy controls (median age: 17.2 and 17.4 yrs.). Whole-brain analyses were used to test for volumetric differences between the groups (T-tests) and subsequent regression analyses were used to correlate neuropsychological performance with gray and white matter volumes within the patient group. Patients compared to controls had significantly reduced gray matter volumes in areas of the anterior and posterior limbic subsystems which are densely connected with the hypothalamus. In addition, a reduction in white matter volumes was observed in tracts connecting the hypothalamus to other limbic areas. Worse long-term memory retrieval was correlated with smaller gray matter volumes in the posterior cingulate cortex. Our data provide the first evidence that hypothalamic tumor involvement impacts gray and white matter volumes in limbic areas, outside the area of tumor growth. Notably, the functional range of the two limbic subsystems affected, strikingly parallels the two major domains of psychological complaints in patients i.e., deficits in episodic memory and in socio-emotional functioning. We suggest that focal hypothalamic lesions may trigger distal changes in connected brain areas, which then contribute to the impairments in cognitive, social and emotional performance often observable in patients, and not explicable by a hypothalamic lesion alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anatürk, M; Demnitz, N; Ebmeier, K P; Sexton, C E
2018-06-22
Population aging has prompted considerable interest in identifying modifiable factors that may help protect the brain and its functions. Collectively, epidemiological studies show that leisure activities with high mental and social demands are linked with better cognition in old age. The extent to which socio-intellectual activities relate to the brain's structure is, however, not yet fully understood. This systematic review and meta-analysis summarizes magnetic resonance imaging studies that have investigated whether cognitive and social activities correlate with measures of gray and white matter volume, white matter microstructure and white matter lesions. Across eighteen included studies (total n = 8429), activity levels were associated with whole-brain white matter volume, white matter lesions and regional gray matter volume, although effect sizes were small. No associations were found for global gray matter volume and the evidence concerning white matter microstructure was inconclusive. While the causality of the reviewed associations needs to be established, our findings implicate socio-intellectual activity levels as promising targets for interventions aimed at promoting healthy brain aging. Copyright © 2018. Published by Elsevier Ltd.
Sassa, Yuko; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Asano, Michiko; Asano, Kohei; Wakabayashi, Akio; Kawashima, Ryuta
2012-05-01
The abilities to empathize and to systemize, two fundamental dimensions of cognitive style, are characterized by apparent individual differences. These abilities are typically measured using an empathizing quotient (EQ) and a systemizing quotient (SQ) questionnaire, respectively. The purpose of this study was to reveal any correlations between EQ and SQ scores and regional gray matter volumes in healthy children by applying voxel-based morphometry to magnetic resonance images. We collected MRIs of brain structure and administered children's versions of the EQ and SQ questionnaires (EQ-C and SQ-C, respectively) to 261 healthy children aged 5-15 years. Structural MRI data were segmented, normalized, and smoothed using an optimized voxel-based morphometric analysis. Next, we analyzed the correlation between regional gray matter volume and EQ-C and SQ-C scores adjusting for age, sex, and intracranial volume. The EQ-C scores showed significant positive correlations with the regional gray matter volumes of the left fronto-opercular and superior temporal cortices, including the precentral gyrus, the inferior frontal gyrus, the superior temporal gyrus, and the insula, which are functionally related to empathic processing. Additionally, SQ-C scores showed a significant negative correlation with the regional gray matter volume of the left posterior parietal cortex, which is functionally involved in selective attention processing. Our findings suggest that individual differences in cognitive style pertaining to empathizing or systemizing abilities could be explained by differences in the volume of brain structures that are functionally relevant to empathizing and systemizing. Copyright © 2012 Elsevier Inc. All rights reserved.
Kern, Kyle C; Wright, Clinton B; Bergfield, Kaitlin L; Fitzhugh, Megan C; Chen, Kewei; Moeller, James R; Nabizadeh, Nooshin; Elkind, Mitchell S V; Sacco, Ralph L; Stern, Yaakov; DeCarli, Charles S; Alexander, Gene E
2017-01-01
Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1) identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2) compare this relationship across blood pressure groups, and (3) relate it to cognitive performance. In this group of participants aged 60-86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.
Correlation between pulmonary function and brain volume in healthy elderly subjects.
Taki, Yasuyuki; Kinomura, Shigeo; Ebihara, Satoru; Thyreau, Benjamin; Sato, Kazunori; Goto, Ryoi; Kakizaki, Masako; Tsuji, Ichiro; Kawashima, Ryuta; Fukuda, Hiroshi
2013-06-01
Cigarette smoking decreases brain regional gray matter volume and is related to chronic obstructive lung disease (COPD). COPD leads to decreased pulmonary function, which is represented by forced expiratory volume in one second percentage (FEV1.0 %); however, it is unclear if decreased pulmonary function is directly related to brain gray matter volume decline. Because there is a link between COPD and cognitive decline, revealing a direct relationship between pulmonary function and brain structure is important to better understand how pulmonary function affects brain structure and cognitive function. Therefore, the purpose of this study was to analyze whether there were significant correlations between FEV1.0 % and brain regional gray and white matter volumes using brain magnetic resonance (MR) image data from 109 community-dwelling healthy elderly individuals. Brain MR images were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. We found a significant positive correlation between the regional white matter volume of the cerebellum and FEV1.0 % after adjusting for age, sex, and intracranial volume. Our results suggest that elderly individuals who have a lower FEV1.0 % have decreased regional white matter volume in the cerebellum. Therefore, preventing decreased pulmonary function is important for cerebellar white matter volume in the healthy elderly population.
Diker, Sevda; Has, Arzu Ceylan; Kurne, Aslı; Göçmen, Rahşan; Oğuz, Kader Karlı; Karabudak, Rana
2016-11-01
Multiple sclerosis can impair cognition from the early stages and has been shown to be associated with gray matter damage in addition to white matter pathology. To investigate the profile of cognitive impairment in clinically isolated syndrome (CIS), and the contribution of cortical inflammation, cortical and deep gray matter atrophy, and white matter lesions to cognitive decline. Thirty patients with clinically isolated syndrome and twenty demographically- matched healthy controls underwent neuropsychologic assessment through the Rao Brief Repeatable Battery, and brain magnetic resonance imaging with double inversion recovery using a 3T scanner. Patients with clinically isolated syndrome performed significantly worse than healthy controls on tests that evaluated verbal memory, visuospatial learning and memory, and verbal fluency. Significant deep gray matter atrophy was found in the patients but cortical volume was not lower than the controls. Visual memory tests correlated with the volume of the hippocampus, cerebral white matter and deep gray matter structures and with cerebellar cortical atrophy. Cortical or white matter lesion load did not affect cognitive test results. In our patients with CIS, it was shown that cognitive impairment was mainly related to cerebral white matter, cerebellar cortical and deep gray matter atrophy, but not with cortical inflammation, at least in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Manor, Brad; Newton, Elizabeth; Abduljalil, Amir; Novak, Vera
2012-09-01
Diabetic peripheral neuropathy (DPN) alters walking. Yet, the compensatory role of central locomotor circuits remains unclear. We hypothesized that walking outcomes would be more closely related to regional gray matter volumes in older adults with DPN as compared with nonneuropathic diabetic patients and nondiabetic control subjects. Clinically important outcomes of walking (i.e., speed, stride duration variability, and double support time) were measured in 29 patients with DPN (type 2 diabetes with foot-sole somatosensory impairment), 68 diabetic (DM) patients (type 2 diabetes with intact foot-sole sensation), and 89 control subjects. Global and regional gray matter volumes were calculated from 3 Tesla magnetic resonance imaging. DPN subjects walked more slowly (P = 0.005) with greater stride duration variability (P < 0.001) and longer double support (P < 0.001) as compared with DM and control subjects. Diabetes was associated with less cerebellar gray matter volume (P < 0.001), but global gray matter volume was similar between groups. DPN subjects with lower gray matter volume globally (P < 0.004) and regionally (i.e., cerebellum, right-hemisphere dorsolateral prefrontal cortex, basal ganglia, P < 0.005) walked more slowly with greater stride duration variability and/or longer double support. Each relationship was stronger in DPN than DM subjects. In control subjects, brain volumes did not relate to walking patterns. Strong relationships between brain volumes and walking outcomes were observed in the DPN group and to a lesser extent the DM group, but not in control subjects. Individuals with DPN may be more dependent upon supraspinal elements of the motor control system to regulate several walking outcomes linked to poor health in elderly adults.
Manor, Brad; Newton, Elizabeth; Abduljalil, Amir; Novak, Vera
2012-01-01
OBJECTIVE Diabetic peripheral neuropathy (DPN) alters walking. Yet, the compensatory role of central locomotor circuits remains unclear. We hypothesized that walking outcomes would be more closely related to regional gray matter volumes in older adults with DPN as compared with nonneuropathic diabetic patients and nondiabetic control subjects. RESEARCH DESIGN AND METHODS Clinically important outcomes of walking (i.e., speed, stride duration variability, and double support time) were measured in 29 patients with DPN (type 2 diabetes with foot-sole somatosensory impairment), 68 diabetic (DM) patients (type 2 diabetes with intact foot-sole sensation), and 89 control subjects. Global and regional gray matter volumes were calculated from 3 Tesla magnetic resonance imaging. RESULTS DPN subjects walked more slowly (P = 0.005) with greater stride duration variability (P < 0.001) and longer double support (P < 0.001) as compared with DM and control subjects. Diabetes was associated with less cerebellar gray matter volume (P < 0.001), but global gray matter volume was similar between groups. DPN subjects with lower gray matter volume globally (P < 0.004) and regionally (i.e., cerebellum, right-hemisphere dorsolateral prefrontal cortex, basal ganglia, P < 0.005) walked more slowly with greater stride duration variability and/or longer double support. Each relationship was stronger in DPN than DM subjects. In control subjects, brain volumes did not relate to walking patterns. CONCLUSIONS Strong relationships between brain volumes and walking outcomes were observed in the DPN group and to a lesser extent the DM group, but not in control subjects. Individuals with DPN may be more dependent upon supraspinal elements of the motor control system to regulate several walking outcomes linked to poor health in elderly adults. PMID:22665216
Na, Kyoung-Sae; Ham, Byung-Joo; Lee, Min-Soo; Kim, Leen; Kim, Yong-Ku; Lee, Heon-Jeong; Yoon, Ho-Kyoung
2013-08-01
Patients with panic disorder with agoraphobia (PDA) have clinical symptoms such as the fear of being outside or of open spaces from which escape would be difficult. Although recent neurobiological studies have suggested that fear conditioning and extinction are associated with PDA, no study has examined the possible structural abnormalities in patients with PDA. This preliminary study compares the gray matter volume among patients with PDA, those with panic disorder without agoraphobia (PDW), and healthy controls (HC) using high-resolution 3.0 T magnetic resonance imaging (MRI) with voxel-based morphometry (VBM). Compared with HC, patients with PDA showed decreased gray matter volume in their left medial orbitofrontal gyrus. However, differences were not found in the gray matter volumes of patients with PDW and whole panic disorder compared with HC. These findings suggest that the phobic avoidance found in patients with PDA arise from abnormalities in the medial orbitofrontal cortex, which plays an important role in fear extinction. Future studies should investigate the neuroanatomical substrates of PDA and distinguish them from those of PDW. Copyright © 2013 Elsevier Inc. All rights reserved.
Horga, Guillermo; Bernacer, Javier; Dusi, Nicola; Entis, Jonathan; Chu, Kingwai; Hazlett, Erin A; Haznedar, M Mehmet; Kemether, Eileen; Byne, William; Buchsbaum, Monte S
2011-10-01
Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.
The Neuroanatomy of Genetic Subtype Differences in Prader-Willi Syndrome
Honea, Robyn A.; Holsen, Laura M.; Lepping, Rebecca J.; Perea, Rodrigo; Butler, Merlin G.; Brooks, William M.; Savage, Cary R.
2012-01-01
Objective Despite behavioral differences between genetic subtypes of Prader-Willi syndrome, no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of Prader-Willi syndrome (PWS) [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Methods Fifteen individuals with PWS due to a typical deletion ((DEL) Type I; n=5, Type II; n=10), 8 with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume between groups, covarying for age, sex, and body mass index (BMI). Results Overall, compared to HWC, PWS individuals had lower gray matter volumes that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower white matter volumes in the brain stem, cerebellum, medial temporal and frontal cortex. Compared to UPD, the DEL subtypes had lower gray matter volume primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and white matter volumes in the orbitofrontal and limbic cortices compared to HWC. Conclusions These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. PMID:22241551
Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Luby, Joan L; Belden, Andy C; Jackson, Joshua J; Lessov-Schlaggar, Christina N; Harms, Michael P; Tillman, Rebecca; Botteron, Kelly; Whalen, Diana; Barch, Deanna M
2016-01-01
The trajectory of cortical gray matter development in childhood has been characterized by early neurogenesis and volume increase, peaking at puberty followed by selective elimination and myelination, resulting in volume loss and thinning. This inverted U-shaped trajectory, as well as cortical thickness, has been associated with cognitive and emotional function. Synaptic pruning-based volume decline has been related to experience-dependent plasticity in animals. To date, there have been no data to inform whether and how childhood depression might be associated with this trajectory. To examine the effects of early childhood depression, from the preschool age to the school age period, on cortical gray matter development measured across 3 waves of neuroimaging from late school age to early adolescence. Data were collected in an academic research setting from September 22, 2003, to December 13, 2014, on 193 children aged 3 to 6 years from the St Louis, Missouri, metropolitan area who were observed for up to 11 years in a longitudinal behavioral and neuroimaging study of childhood depression. Multilevel modeling was applied to explore the association between the number of childhood depression symptoms and prior diagnosis of major depressive disorder and the trajectory of gray matter change across 3 scan waves. Data analysis was conducted from October 29, 2014, to September 28, 2015. Volume, thickness, and surface area of cortical gray matter measured using structural magnetic resonance imaging at 3 scan waves. Of the 193 children, 90 had a diagnosis of major depressive disorder; 116 children had 3 full waves of neuroimaging scans. Findings demonstrated marked alterations in cortical gray matter volume loss (slope estimate, -0.93 cm³; 95% CI, -1.75 to -0.10 cm³ per scan wave) and thinning (slope estimate, -0.0044 mm; 95% CI, -0.0077 to -0.0012 mm per scan wave) associated with experiencing an episode of major depressive disorder before the first magnetic resonance imaging scan. In contrast, no significant associations were found between development of gray matter and family history of depression or experiences of traumatic or stressful life events during this period. This study demonstrates an association between early childhood depression and the trajectory of cortical gray matter development in late school age and early adolescence. These findings underscore the significance of early childhood depression on alterations in neural development.
Reduced Brain Gray Matter Concentration in Patients With Obstructive Sleep Apnea Syndrome
Joo, Eun Yeon; Tae, Woo Suk; Lee, Min Joo; Kang, Jung Woo; Park, Hwan Seok; Lee, Jun Young; Suh, Minah; Hong, Seung Bong
2010-01-01
Study Objectives: To investigate differences in brain gray matter concentrations or volumes in patients with obstructive sleep apnea syndrome (OSA) and healthy volunteers. Designs: Optimized voxel-based morphometry, an automated processing technique for MRI, was used to characterize structural differences in gray matter in newly diagnosed male patients. Setting: University hospital Patients and Participants: The study consisted of 36 male OSA and 31 non-apneic male healthy volunteers matched for age (mean age, 44.8 years). Interventions: Using the t-test, gray matter differences were identified. The statistical significance level was set to a false discovery rate P < 0.05 with an extent threshold of kE > 200 voxels. Measurements and Results: The mean apnea-hypopnea index (AHI) of patients was 52.5/ h. On visual inspection of MRI, no structural abnormalities were observed. Compared to healthy volunteers, the gray matter concentrations of OSA patients were significantly decreased in the left gyrus rectus, bilateral superior frontal gyri, left precentral gyrus, bilateral frontomarginal gyri, bilateral anterior cingulate gyri, right insular gyrus, bilateral caudate nuclei, bilateral thalami, bilateral amygdalo-hippocampi, bilateral inferior temporal gyri, and bilateral quadrangular and biventer lobules in the cerebellum (false discovery rate P < 0.05). Gray matter volume was not different between OSA patients and healthy volunteers. Conclusions: The brain gray matter deficits may suggest that memory impairment, affective and cardiovascular disturbances, executive dysfunctions, and dysregulation of autonomic and respiratory control frequently found in OSA patients might be related to morphological differences in the brain gray matter areas. Citation: Joo EY; Tae WS; Lee MJ; Kang JW; Park HS; Lee JY; Suh M; Hong SB. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome. SLEEP 2010;33(2):235-241. PMID:20175407
Liu, Jieke; Yao, Li; Zhang, Wenjing; Xiao, Yuan; Liu, Lu; Gao, Xin; Shah, Chandan; Li, Siyi; Tao, Bo; Gong, Qiyong; Lui, Su
2017-08-01
The gray matter abnormalities revealed by magnetic resonance imaging are inconsistent, especially in pediatric individuals with autism spectrum disorder (ASD) (age < 18 years old), a phenomenon possibly related to the core pathophysiology of ASD. The purpose of our meta-analysis was to identify and map the specific gray matter abnormalities in pediatric ASD individuals thereby exploring the potential effects of clinical and demographic characteristics of these gray matter changes. A systematic search was conducted to identify voxel-based morphometry studies in pediatric individuals with ASD. The effect-size signed differential mapping method was used to quantitatively estimate the regional gray matter abnormalities in pediatric ASD individuals. Meta-regression was used to examine the associations among age, gender, intelligence quotient, symptom severity and gray matter changes. Fifteen studies including 364 pediatric individuals with ASD (male = 282, age = 10.3 ± 4.4 years) and 377 healthy controls (male = 289, age = 10.5 ± 4.2 years) were included. Pediatric ASD individuals showed significant gray matter increases in the right angular gyrus, left superior and middle frontal gyrus, left precuneus, left inferior occipital gyrus and right inferior temporal gyrus, most of which involving the default mode network, and decreases in the left cerebellum and left postcentral gyrus. The meta-regression analysis showed that the repetitive behavior scores of the Autism Diagnostic Interview-Revised were positively associated with increased gray matter volumes in the right angular gyrus. Increased rather than decreased gray matter volume, especially involving the angular gyrus and prefrontal cortex may be the core pathophysiology in the early course of ASD.
Neumann, Nicola; Domin, Martin; Erhard, Katharina; Lotze, Martin
2018-05-18
Continuous practice modulates those features of brain anatomy specifically associated with requirements of the respective training task. The current study aimed to highlight brain structural changes going along with long-term experience in creative writing. To this end, we investigated the gray-matter volume of 23 expert writers with voxel-based morphometry and compared it to 28 matched non-expert controls. Expert writers had higher gray-matter volume in the right superior frontal and middle frontal gyri (BA 9,10) as well as left middle frontal gyrus (BA 9, 10, 46), the bilateral medial dorsal nuclei of the thalamus and left posterior cerebellum. A regression analysis confirmed the association of enhanced gray-matter volume in the right superior frontal gyrus (BA 10) with practice index of writing. In region-of interest based regression analyses, we found associations of gray-matter volume in the right Broca's analogue (BA 44) and right primary visual cortex (BA 17) with creativity ratings of the texts written during scanning, but not with a standardized verbal creativity test. Creative writing thus seems to be strongly connected to a prefronto-thalamic-cerebellar network that supports the continuous generation, organization and revision of ideas that is necessary to write literary texts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Large CSF Volume Not Attributable to Ventricular Volume in Schizotypal Personality Disorder
Dickey, Chandlee C.; Shenton, Martha E.; Hirayasu, Yoshio; Fischer, Iris; Voglmaier, Martina M.; Niznikiewicz, Margaret A.; Seidman, Larry J.; Fraone, Stephanie; McCarley, Robert W.
2010-01-01
Objective The purpose of this study was to determine whether schizotypal personality disorder, which has the same genetic diathesis as schizophrenia, manifests abnormalities in whole-brain and CSF volumes. Method Sixteen right-handed and neuroleptic-naive men with schizotypal personality disorder were recruited from the community and were age-matched to 14 healthy comparison subjects. Magnetic resonance images were obtained from the subjects and automatically parcellated into CSF, gray matter, and white matter. Subsequent manual editing separated cortical from noncortical gray matter. Lateral ventricles and temporal horns were also delineated. Results The men with schizotypal personality disorder had larger CSF volumes than the comparison subjects; the difference was not attributable to larger lateral ventricles. The cortical gray matter was somewhat smaller in the men with schizotypal personality disorder, but the difference was not statistically significant. Conclusions Consistent with many studies of schizophrenia, this examination of schizotypal personality disorder indicated abnormalities in brain CSF volumes. PMID:10618012
Insular and hippocampal gray matter volume reductions in patients with major depressive disorder.
Stratmann, Mirjam; Konrad, Carsten; Kugel, Harald; Krug, Axel; Schöning, Sonja; Ohrmann, Patricia; Uhlmann, Christina; Postert, Christian; Suslow, Thomas; Heindel, Walter; Arolt, Volker; Kircher, Tilo; Dannlowski, Udo
2014-01-01
Major depressive disorder is a serious psychiatric illness with a highly variable and heterogeneous clinical course. Due to the lack of consistent data from previous studies, the study of morphometric changes in major depressive disorder is still a major point of research requiring additional studies. The aim of the study presented here was to characterize and quantify regional gray matter abnormalities in a large sample of clinically well-characterized patients with major depressive disorder. For this study one-hundred thirty two patients with major depressive disorder and 132 age- and gender-matched healthy control participants were included, 35 with their first episode and 97 with recurrent depression. To analyse gray matter abnormalities, voxel-based morphometry (VBM8) was employed on T1 weighted MRI data. We performed whole-brain analyses as well as a region-of-interest approach on the hippocampal formation, anterior cingulate cortex and amygdala, correlating the number of depressive episodes. Compared to healthy control persons, patients showed a strong gray-matter reduction in the right anterior insula. In addition, region-of-interest analyses revealed significant gray-matter reductions in the hippocampal formation. The observed alterations were more severe in patients with recurrent depressive episodes than in patients with a first episode. The number of depressive episodes was negatively correlated with gray-matter volume in the right hippocampus and right amygdala. The anterior insula gray matter structure appears to be strongly affected in major depressive disorder and might play an important role in the neurobiology of depression. The hippocampal and amygdala volume loss cumulating with the number of episodes might be explained either by repeated neurotoxic stress or alternatively by higher relapse rates in patients showing hippocampal atrophy.
Insular and Hippocampal Gray Matter Volume Reductions in Patients with Major Depressive Disorder
Kugel, Harald; Krug, Axel; Schöning, Sonja; Ohrmann, Patricia; Uhlmann, Christina; Postert, Christian; Suslow, Thomas; Heindel, Walter; Arolt, Volker; Kircher, Tilo; Dannlowski, Udo
2014-01-01
Background Major depressive disorder is a serious psychiatric illness with a highly variable and heterogeneous clinical course. Due to the lack of consistent data from previous studies, the study of morphometric changes in major depressive disorder is still a major point of research requiring additional studies. The aim of the study presented here was to characterize and quantify regional gray matter abnormalities in a large sample of clinically well-characterized patients with major depressive disorder. Methods For this study one-hundred thirty two patients with major depressive disorder and 132 age- and gender-matched healthy control participants were included, 35 with their first episode and 97 with recurrent depression. To analyse gray matter abnormalities, voxel-based morphometry (VBM8) was employed on T1 weighted MRI data. We performed whole-brain analyses as well as a region-of-interest approach on the hippocampal formation, anterior cingulate cortex and amygdala, correlating the number of depressive episodes. Results Compared to healthy control persons, patients showed a strong gray-matter reduction in the right anterior insula. In addition, region-of-interest analyses revealed significant gray-matter reductions in the hippocampal formation. The observed alterations were more severe in patients with recurrent depressive episodes than in patients with a first episode. The number of depressive episodes was negatively correlated with gray-matter volume in the right hippocampus and right amygdala. Conclusions The anterior insula gray matter structure appears to be strongly affected in major depressive disorder and might play an important role in the neurobiology of depression. The hippocampal and amygdala volume loss cumulating with the number of episodes might be explained either by repeated neurotoxic stress or alternatively by higher relapse rates in patients showing hippocampal atrophy. PMID:25051163
ERIC Educational Resources Information Center
Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique
2013-01-01
Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…
Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People
ERIC Educational Resources Information Center
Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi
2011-01-01
This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…
Forsman, Lea J; de Manzano, Orjan; Karabanov, Anke; Madison, Guy; Ullén, Fredrik
2012-01-01
Extraverted individuals are sociable, behaviorally active, and happy. We report data from a voxel based morphometry study investigating, for the first time, if regional volume in gray and white matter brain regions is related to extraversion. For both gray and white matter, all correlations between extraversion and regional brain volume were negative, i.e. the regions were larger in introverts. Gray matter correlations were found in regions that included the right prefrontal cortex and the cortex around the right temporo-parietal junction--regions that are known to be involved in behavioral inhibition, introspection, and social-emotional processing, e.g. evaluation of social stimuli and reasoning about the mental states of others. White matter correlations extended from the brainstem to widespread cortical regions, and were largely due to global effects, i.e. a larger total white matter volume in introverts. We speculate that these white matter findings may reflect differences in ascending modulatory projections affecting cortical regions involved in behavioral regulation. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Cerebellum and cognition in multiple sclerosis: the fall status matters.
Kalron, Alon; Allali, Gilles; Achiron, Anat
2018-04-01
Cerebellar volume has been linked with cognitive performances in MS; however, the association in terms of fall status has never been compared. Therefore, the objective of the current study was to compare cognitive performance with cerebellar volume between MS fallers and non-fallers. The cross-sectional study included 140 PwMS (96 women). MRI volumetric analysis was based on the FreeSurfer image analysis suite. Volumes of the cerebellar gray and white matter were identified as the region of interest. Cognitive function included scores obtained from a computerized cognitive battery of tests. The sample was divided into fallers and non-fallers. MS fallers demonstrated a lower global cognitive performance and reduced gray and white matter cerebellar volumes compared to non-fallers. A significant association was found between total gray and white matter cerebellar volume and visual spatial subdomain (P value = 0.044 and 0.032, respectively) in the non-fallers group. The association remained significant after controlling for the total cranial volume and neurological disability (P value = 0.026 and 0.047, respectively). A relationship was found between the visual spatial score and the left gray matter cerebellum volume; R 2 = 0.44, P value = 0.021. We believe that a unique relationship exists between the cerebellum structure and cognitive processing according to fall history in PwMS and should be considered when investigating the association between brain functioning and cognitive performances in MS.
Methamphetamine users show greater than normal age-related cortical gray matter loss.
Nakama, Helenna; Chang, Linda; Fein, George; Shimotsu, Ryan; Jiang, Caroline S; Ernst, Thomas
2011-08-01
Methamphetamine (Meth) abuse continues to be a major illicit drug of abuse. Neuroimaging findings suggest that Meth is neurotoxic and may alter various brain structures, but the effect of Meth on the aging brain has not been studied. The aim was to determine regional volumes of cortical gray matter in the brains of adult Meth users versus healthy control subjects, and their interaction with age and Meth-usage variables. Cross-sectional study Magnetic resonance imaging (MRI) Research Center located in a university-affiliated hospital. Thirty-four Meth-dependent subjects (21 men and 13 women; ages 33.1 ± 8.9 years), diagnosed according to DSM-IV criteria, and 31 healthy non-Meth user comparison subjects (23 men and 8 women ages 35.7 ± 8.4 years). Regional gray matter volumes were segmented automatically in all subjects and evaluated in relation to age, using high-resolution MRIs at 3.0 Tesla. After adjustment for the effects of cranium size, the Meth users showed enhanced cortical gray matter volume loss with age in the frontal (analysis of covariance interaction P = 0.02), occipital (interaction P = 0.01), temporal (interaction P < 0.001) and the insular lobes (interaction P = 0.01) compared to controls, independently of Meth-usage patterns. Additionally, Meth users showed smaller gray matter volumes than control subjects in several subregions (dorsolateral prefrontal: P = 0.02; orbitofrontal: P = 0.03; prefrontal: P = 0.047; superior temporal: P = 0.04). Methamphetamine users appear to show increased cortical gray matter loss with age which raises the possibility of accelerated decline in mental functioning. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
Morphometric brain abnormalities in boys with conduct disorder.
Huebner, Thomas; Vloet, Timo D; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R; Herpertz, Sabine C; Herpertz-Dahlmann, Beate
2008-05-01
Children with the early-onset type of conduct disorder (CD) are at high risk for developing an antisocial personality disorder. Although there have been several neuroimaging studies on morphometric differences in adults with antisocial personality disorder, little is known about structural brain aberrations in boys with CD. Magnetic resonance imaging and voxel-based morphometry were used to assess abnormalities in gray matter volumes in 23 boys ages 12 to 17 years with CD (17 comorbid for attention-deficit/hyperactivity disorder) in comparison with age- and IQ-matched controls. Compared with healthy controls, mean gray matter volume was 6% smaller in the clinical group. Compared with controls, reduced gray matter volumes were found in the left orbitofrontal region and bilaterally in the temporal lobes, including the amygdala and hippocampus on the left side in the CD group. Regression analyses in the clinical group indicated an inverse association of hyperactive/impulsive symptoms and widespread gray matter abnormalities in the frontoparietal and temporal cortices. By contrast, CD symptoms correlated primarily with gray matter reductions in limbic brain structures. The data suggest that boys with CD and comorbid attention-deficit/hyperactivity disorder show brain abnormalities in frontolimbic areas that resemble structural brain deficits, which are typically observed in adults with antisocial behavior.
Latent Variable Modeling of Brain Gray Matter Volume and Psychopathy in Incarcerated Offenders
Baskin-Sommers, Arielle R.; Neumann, Craig S.; Cope, Lora M.; Kiehl, Kent A.
2016-01-01
Advanced statistical modeling has become a prominent feature in psychological science and can be a useful approach for representing the neural architecture linked to psychopathology. Psychopathy, a disorder characterized by dysfunction in interpersonal-affective and impulsive-antisocial domains, is associated with widespread neural abnormalities. Several imaging studies suggest that underlying structural deficits in paralimbic regions are associated with psychopathy. While these studies are useful, they make assumptions about the organization of the brain and its relevance to individuals displaying psychopathic features. Capitalizing on statistical modeling, the present study (N=254) used latent variable methods to examine the structure of gray matter volume in male offenders, and assessed the latent relations between psychopathy and gray matter factors reflecting paralimbic and non-paralimbic regions. Results revealed good fit for a four-factor gray matter paralimbic model and these first-order factors were accounted for by a super-ordinate paralimbic ‘system’ factor. Moreover, a super-ordinate psychopathy factor significantly predicted the paralimbic, but not the non-paralimbic factor. The latent variable paralimbic model, specifically linked with psychopathy, goes beyond understanding of single brain regions within the system and provides evidence for psychopathy-related gray matter volume reductions in the paralimbic system as a whole. PMID:27269123
Raffield, Laura M; Cox, Amanda J; Freedman, Barry I; Hugenschmidt, Christina E; Hsu, Fang-Chi; Wagner, Benjamin C; Xu, Jianzhao; Maldjian, Joseph A; Bowden, Donald W
2016-06-01
To examine the relationships between type 2 diabetes (T2D) status, glycemic control, and T2D duration with magnetic resonance imaging (MRI)-derived neuroimaging measures in European Americans from the Diabetes Heart Study (DHS) Mind cohort. Relationships were examined using marginal models with generalized estimating equations in 784 participants from 514 DHS Mind families. Fasting plasma glucose, glycated hemoglobin, and diabetes duration were analyzed in 682 participants with T2D. Models were adjusted for potential confounders, including age, sex, history of cardiovascular disease, smoking, educational attainment, and use of statins or blood pressure medications. Association was tested with gray and white matter volume, white matter lesion volume, gray matter cerebral blood flow, and white and gray matter fractional anisotropy and mean diffusivity. Adjusting for multiple comparisons, T2D status was associated with reduced white matter volume (p = 2.48 × 10(-6)) and reduced gray and white matter fractional anisotropy (p ≤ 0.001) in fully adjusted models, with a trend toward increased white matter lesion volume (p = 0.008) and increased gray and white matter mean diffusivity (p ≤ 0.031). Among T2D-affected participants, neither fasting glucose, glycated hemoglobin, nor diabetes duration were associated with the neuroimaging measures assessed (p > 0.05). While T2D was significantly associated with MRI-derived neuroimaging measures, differences in glycemic control in T2D-affected individuals in the DHS Mind study do not appear to significantly contribute to variation in these measures. This supports the idea that the presence or absence of T2D, not fine gradations of glycemic control, may be more significantly associated with age-related changes in the brain.
Gilbert, Andrew R.; Keshavan, Matcheri S.; Diwadkar, Vaibhav; Nutche, Jeffrey; MacMaster, Frank; Easter, Phillip C.; Buhagiar, Christian J.; Rosenberg, David R.
2008-01-01
Neuroimaging studies have identified alterations in frontostriatal circuitry in OCD. Voxel-based morphometry (VBM) allows for the assessment of differences in gray matter density across the whole brain. VBM has not previously been used to examine regional gray matter density in pediatric OCD patients and the siblings of pediatric OCD patients. Volumetric magnetic resonance imaging (MRI) studies were conducted in 10 psychotropic-naïve pediatric patients with OCD, 10 unaffected siblings of pediatric patients with OCD, and 10 healthy controls. VBM analysis was conducted using SPM2. Statistical comparisons were performed with the general linear model, implementing small volume random field corrections for a priori regions of interest (anterior cingulate cortex or ACC, striatum and thalamus). VBM analysis revealed significantly lower gray matter density in OCD patients compared to healthy in the left ACC and bilateral medial superior frontal gyrus (SFG). Furthermore, a small volume correction was used to identify a significantly greater gray matter density in the right putamen in OCD patients as compared to unaffected siblings of OCD patients. These findings in patients, siblings, and healthy controls, although preliminary, suggest the presence of gray matter structural differences between affected subjects and healthy controls as well as between affected subjects and individuals at risk for OCD. PMID:18314272
Woolley, Josh D; Strobl, Eric V; Sturm, Virginia E; Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott; Nguyen, Lauren; Eckart, Janet A; Levenson, Robert W; Seeley, William W; Miller, Bruce L; Rankin, Katherine P
2015-10-01
The ventroanterior insula is implicated in the experience, expression, and recognition of disgust; however, whether this brain region is required for recognizing disgust or regulating disgusting behaviors remains unknown. We examined the brain correlates of the presence of disgusting behavior and impaired recognition of disgust using voxel-based morphometry in a sample of 305 patients with heterogeneous patterns of neurodegeneration. Permutation-based analyses were used to determine regions of decreased gray matter volume at a significance level p <= .05 corrected for family-wise error across the whole brain and within the insula. Patients with behavioral variant frontotemporal dementia and semantic variant primary progressive aphasia were most likely to exhibit disgusting behaviors and were, on average, the most impaired at recognizing disgust in others. Imaging analysis revealed that patients who exhibited disgusting behaviors had significantly less gray matter volume bilaterally in the ventral anterior insula. A region of interest analysis restricted to behavioral variant frontotemporal dementia and semantic variant primary progressive aphasia patients alone confirmed this result. Moreover, impaired recognition of disgust was associated with decreased gray matter volume in the bilateral ventroanterior and ventral middle regions of the insula. There was an area of overlap in the bilateral anterior insula where decreased gray matter volume was associated with both the presence of disgusting behavior and impairments in recognizing disgust. These findings suggest that regulating disgusting behaviors and recognizing disgust in others involve two partially overlapping neural systems within the insula. Moreover, the ventral anterior insula is required for both processes. Published by Elsevier Inc.
Voxel-based morphometry study of the insular cortex in bipolar depression.
Tang, Li-Rong; Liu, Chun-Hong; Jing, Bin; Ma, Xin; Li, Hai-Yun; Zhang, Yu; Li, Feng; Wang, Yu-Ping; Yang, Zhi; Wang, Chuan-Yue
2014-11-30
Bipolar depression (BD) is a common psychiatric illness characterized by deficits in emotional and cognitive processing. Abnormalities in the subregions of the insula are common findings in neuroanatomical studies of patients with bipolar disorder. However, the specific relationships between morphometric changes in specific insular subregions and the pathogenesis of BD are not clear. In this study, structural magnetic resonance imaging (MRI) was used to investigate gray matter volume abnormalities in the insular subregion in 27 patients with BD and in 27 age and sex-matched controls. Using DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry (VBM), we examined changes in regional gray matter volumes of the insula in patients with BD. As compared with healthy controls, the BD patients showed decreased gray matter volumes in the right posterior insula and left ventral anterior insula and increased gray matter volumes in the left dorsal anterior insula. Consistent with the emerging theory of insular interference as a contributor to emotional-cognitive dysregulation, the current findings suggest that the insular cortex may be involved in the neural substrates of BD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Smagula, Stephen F; Karim, Helmet T; Lenze, Eric J; Butters, Meryl A; Wu, Gregory F; Mulsant, Benoit H; Reynolds, Charles F; Aizenstein, Howard J
2017-12-01
Eotaxin is a chemokine that exerts negative effects on neurogenesis. We recently showed that peripheral eotaxin levels correlate with both lower gray matter volume and poorer executive performance in older adults with major depressive disorder. These findings suggest that the relationship between eotaxin and set-shifting may be accounted for by lower gray matter volume in specific regions. Prior studies have identified specific gray matter regions that correlate with set-shifting performance, but have not examined whether these specific gray matter regions mediate the cross-sectional association between eotaxin and set-shifting. In 27 older adults (mean age: 68 ± 5.2 years) with major depressive disorder, we performed a whole brain (voxel-wise) analysis testing whether/where gray matter density statistically mediates the cross-sectional association of eotaxin and set-shifting performance. We found the association between eotaxin and set-shifting performance was fully statistically mediated by lower gray matter density in left middle cingulate, right pre-/post-central, lingual, inferior/superior frontal, cuneus, and middle temporal regions. The regions identified above may be both susceptible to a potential neurodegenerative effect of eotaxin, and critical to preserving set-shifting function. Longitudinal and intervention studies are needed to further evaluate whether targeting eotaxin levels will prevent neurodegeneration and executive impairment in older adults with depression. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Sakai, Hiroyuki; Takahara, Miwa; Honjo, Naomi F; Doi, Shun'ichi; Sadato, Norihiro; Uchiyama, Yuji
2012-01-01
Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.
Alexithymia in Neurodegenerative Disease
Sturm, Virginia E.; Levenson, Robert W.
2012-01-01
We investigated alexithymia, a deficit in the ability to identify and describe one’s emotions, in a sample that included patients with neurodegenerative disease and healthy controls. In addition, we investigated the relationship that alexithymia has with behavioral disturbance and with regional gray matter volumes. Alexithymia was examined with the Toronto Alexithymia Scale-20, behavioral disturbance was assessed with the Neuropsychiatric Inventory, and regional gray matter volumes were obtained from structural magnetic resonance images. Group analyses revealed higher levels of alexithymia in patients than controls. Alexithymia scores were positively correlated with behavioral disturbance (apathy and informant distress, in particular) and negatively correlated with the gray matter volume of the right pregenual anterior cingulate cortex, a region of the brain that is thought to play an important role in self and emotion processing. PMID:21432723
Schutter, Dennis J L G; Meuwese, Rosa; Bos, Marieke G N; Crone, Eveline A; Peper, Jiska S
2017-04-01
Previous research has found an association between a smaller cerebellar volume and higher levels of neuroticism. The steroid hormone testosterone reduces stress responses and the susceptibility to negative mood. Together with in vitro studies showing a positive effect of testosterone on cerebellar gray matter volumes, we set out to explore the role of testosterone in the relation between cerebellar gray matter and neuroticism. Structural magnetic resonance imaging scans were acquired, and indices of neurotic personality traits were assessed by administering the depression and anxiety scale of the revised NEO personality inventory and Gray's behavioural avoidance in one hundred and forty-nine healthy volunteers between 12 and 27 years of age. Results demonstrated an inverse relation between total brain corrected cerebellar volumes and neurotic personality traits in adolescents and young adults. In males, higher endogenous testosterone levels were associated with lower scores on neurotic personality traits and larger cerebellar gray matter volumes. No such relations were observed in the female participants. Analyses showed that testosterone significantly mediated the relation between male cerebellar gray matter and measures of neuroticism. Our findings on the interrelations between endogenous testosterone, neuroticism and cerebellar morphology provide a cerebellum-oriented framework for the susceptibility to experience negative emotions and mood in adolescence and early adulthood. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gray matter alteration in isolated congenital anosmia patient: a voxel-based morphometry study.
Yao, Linyin; Yi, Xiaoli; Wei, Yongxiang
2013-09-01
Decreased volume of gray matter (GM) was observed in olfactory loss in patients with neurodegenerative disorder. However, GM volume has not yet been investigated in isolated congenital anosmia (ICA) people. We herewith investigated the volume change of gray matter of an ICA boy by morphometric analysis of magnetic resonance images (voxel-based morphometry), and compared with that of 20 age-matched healthy controls. ICA boy presented a significant decrease in GM volume in the orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, insular cortex, cerebellum, precuneus, gyrus rectus, subcallosal gyrus, middle temporal gyrus, fusiform gyrus and piriform cortex. No significant GM volume increase was detected in other brain areas. The pattern of GM atrophy was similar as previous literature reported. Our results identified similar GM volume alterations regardless of the causes of olfactory impairment. Decreased GM volume was not only shown in olfactory bulbs, olfactory tracts and olfactory sulcus, also in primary olfactory cortex and the secondary cerebral olfactory areas in ICA people. This is the first study to evaluate GM volume alterations in ICA people.
Education, occupation, leisure activities, and brain reserve: a population-based study.
Foubert-Samier, Alexandra; Catheline, Gwenaelle; Amieva, Hélène; Dilharreguy, Bixente; Helmer, Catherine; Allard, Michèle; Dartigues, Jean-François
2012-02-01
The influence of education, occupation, and leisure activities on the passive and active components of reserve capacity remains unclear. We used the voxel-based morphometry (VBM) technique in a population-based sample of 331 nondemented people in order to investigate the relationship between these factors and the cerebral volume (a marker of brain reserve). The results showed a positive and significant association between education, occupation, and leisure activities and the cognitive performances on Isaac's set test. Among these factors, only education was significantly associated with a cerebral volume including gray and white matter (p = 0.01). In voxel-based morphometry analyses, the difference in gray matter volume was located in the temporoparietal lobes and in the orbitofrontal lobes bilaterally (a p-value corrected <0.05 by false discovery rate [FDR]). Although smaller, the education-related difference in white matter volume appeared in areas connected to the education-related difference in gray matter volume. Education, occupation attainment, and leisure activities were found to contribute differently to reserve capacity. Education could play a role in the constitution of cerebral reserve capacity. Copyright © 2012 Elsevier Inc. All rights reserved.
Nouwen, Arie; Chambers, Alison; Chechlacz, Magdalena; Higgs, Suzanne; Blissett, Jacqueline; Barrett, Timothy G; Allen, Harriet A
2017-01-01
In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.
Brain Volume Differences Associated With Hearing Impairment in Adults
Vriend, Chris; Heslenfeld, Dirk J.; Versfeld, Niek J.; Kramer, Sophia E.
2018-01-01
Speech comprehension depends on the successful operation of a network of brain regions. Processing of degraded speech is associated with different patterns of brain activity in comparison with that of high-quality speech. In this exploratory study, we studied whether processing degraded auditory input in daily life because of hearing impairment is associated with differences in brain volume. We compared T1-weighted structural magnetic resonance images of 17 hearing-impaired (HI) adults with those of 17 normal-hearing (NH) controls using a voxel-based morphometry analysis. HI adults were individually matched with NH adults based on age and educational level. Gray and white matter brain volumes were compared between the groups by region-of-interest analyses in structures associated with speech processing, and by whole-brain analyses. The results suggest increased gray matter volume in the right angular gyrus and decreased white matter volume in the left fusiform gyrus in HI listeners as compared with NH ones. In the HI group, there was a significant correlation between hearing acuity and cluster volume of the gray matter cluster in the right angular gyrus. This correlation supports the link between partial hearing loss and altered brain volume. The alterations in volume may reflect the operation of compensatory mechanisms that are related to decoding meaning from degraded auditory input. PMID:29557274
Higher homocysteine associated with thinner cortical gray matter in 803 ADNI subjects
Madsen, Sarah K.; Rajagopalan, Priya; Joshi, Shantanu H.; Toga, Arthur W.; Thompson, Paul M.
2014-01-01
A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor – high homocysteine levels in the blood – is known to increase risk for Alzheimer’s disease and vascular disorders. Here we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, surface area) computed from brain MRI in 803 elderly subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital and right temporal regions; and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex, and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, mild cognitive impairment, or Alzheimer’s disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. PMID:25444607
Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder.
Chang, Kiki; Barnea-Goraly, Naama; Karchemskiy, Asya; Simeonova, Diana Iorgova; Barnes, Patrick; Ketter, Terence; Reiss, Allan L
2005-08-01
Morphometric magnetic resonance imaging (MRI) studies of pediatric bipolar disorder (BD) have not reported on gray matter volumes but have reported increased lateral ventricular size and presence of white matter hyperintensities (WMH). We studied gray matter volume, ventricular-to-brain ratios (VBR), and number of WMH in patients with familial, pediatric BD compared with control subjects. Twenty subjects with BD (aged 14.6 +/- 2.8 years; 4 female) according to the Washington University in St. Louis Kiddie Schedule for Affective Disorders and Schizophrenia, each with a parent with BD, and 20 age-, gender-, and intelligence quotient-matched healthy control subjects (aged 14.1 +/- 2.8 years; 4 female) were scanned at 3 T. Most subjects were taking psychotropic medications. A high-resolution T1-weighted spoiled gradient echo three-dimensional MRI sequence was analyzed by BrainImage for volumetric measurements, and T2-weighted images were read by a neuroradiologist to determine presence of WMH. After covarying for age and total brain volume, there were no significant differences between subjects with BD and control subjects in volume of cerebral (p = .09) or prefrontal gray matter (p = .34). Subjects with BD did not have elevated numbers of WMH or greater VBR when compared with control subjects. Children and adolescents with familial BD do not seem to have decreased cerebral grey matter or increased numbers of WMH, dissimilar to findings in adults with BD. Gray matter decreases and development of WMH might be later sequelae of BD or unique to adult-onset BD.
Clausen, Ashley N.; Billinger, Sandra A.; Sisante, Jason-Flor V.; Suzuki, Hideo; Aupperle, Robin L.
2017-01-01
Background: Combat-exposed veteran populations are at an increased risk for developing cardiovascular disease. The anterior cingulate cortex (ACC) and insula have been implicated in both autonomic arousal to emotional stressors and homeostatic processes, which may contribute to cardiovascular dysfunction in combat veteran populations. The aim of the present study was to explore the intersecting relationships of combat experiences, rostral ACC and posterior insula volume, and cardiovascular health in a sample of combat veterans. Method: Twenty-four male combat veterans completed clinical assessment of combat experiences and posttraumatic stress symptoms. Subjects completed a magnetic resonance imaging scan and autosegmentation using FreeSurfer was used to estimate regional gray matter volume (controlling for total gray matter volume) of the rostral ACC and posterior insula. Flow-mediated dilation (FMD) was conducted to assess cardiovascular health. Theil-sen robust regressions and Welch's analysis of variance were used to examine relationships of combat experiences and PTSD symptomology with (1) FMD and (2) regional gray matter volume. Results: Increased combat experiences, deployment duration, and multiple deployments were related to smaller posterior insula volume. Combat experiences were marginally associated with poorer cardiovascular health. However, cardiovascular health was not related to rostral ACC or posterior insula volume. Conclusion: The present study provides initial evidence for the relationships of combat experiences, deployment duration, and multiple deployments with smaller posterior insula volume. Results may suggest that veterans with increased combat experiences may exhibit more dysfunction regulating the autonomic nervous system, a key function of the posterior insula. However, the relationship between combat and cardiovascular health was not mediated by regional brain volume. Future research is warranted to further clarify the cardiovascular or functional impact of smaller posterior insula volume in combat veterans. PMID:29312038
Halene, Tobias B.; Kozlenkov, Alexey; Jiang, Yan; Mitchell, Amanda; Javidfar, Behnam; Dincer, Aslihan; Park, Royce; Wiseman, Jennifer; Croxson, Paula; Giannaris, Eustathia Lela; Hof, Patrick R.; Roussos, Panos; Dracheva, Stella; Hemby, Scott E.; Akbarian, Schahram
2016-01-01
Increased neuronal densities in subcortical white matter have been reported for some cases with schizophrenia. The underlying cellular and molecular mechanisms remain unresolved. We exposed 26 young adult macaque monkeys for 6 months to either clozapine, haloperidol or placebo and measured by structural MRI frontal gray and white matter volumes before and after treatment, followed by observer-independent, flow-cytometry-based quantification of neuronal and non-neuronal nuclei and molecular fingerprinting of cell-type specific transcripts. After clozapine exposure, the proportion of nuclei expressing the neuronal marker NeuN increased by approximately 50% in subcortical white matter, in conjunction with a more subtle and non-significant increase in overlying gray matter. Numbers and proportions of nuclei expressing the oligodendrocyte lineage marker, OLIG2, and cell-type specific RNA expression patterns, were maintained after antipsychotic drug exposure. Frontal lobe gray and white matter volumes remained indistinguishable between antipsychotic-drug-exposed and control groups. Chronic clozapine exposure increases the proportion of NeuN+ nuclei in frontal subcortical white matter, without alterations in frontal lobe volumes or cell type-specific gene expression. Further exploration of neurochemical plasticity in non-human primate brain exposed to antipsychotic drugs is warranted. PMID:26776227
Facebook usage on smartphones and gray matter volume of the nucleus accumbens.
Montag, Christian; Markowetz, Alexander; Blaszkiewicz, Konrad; Andone, Ionut; Lachmann, Bernd; Sariyska, Rayna; Trendafilov, Boris; Eibes, Mark; Kolb, Julia; Reuter, Martin; Weber, Bernd; Markett, Sebastian
2017-06-30
A recent study has implicated the nucleus accumbens of the ventral striatum in explaining why online-users spend time on the social network platform Facebook. Here, higher activity of the nucleus accumbens was associated with gaining reputation on social media. In the present study, we touched a related research field. We recorded the actual Facebook usage of N=62 participants on their smartphones over the course of five weeks and correlated summary measures of Facebook use with gray matter volume of the nucleus accumbens. It appeared, that in particular higher daily frequency of checking Facebook on the smartphone was robustly linked with smaller gray matter volumes of the nucleus accumbens. The present study gives additional support for the rewarding aspects of Facebook usage. Moreover, it shows the feasibility to include real life behavior variables in human neuroscientific research. Copyright © 2017 Elsevier B.V. All rights reserved.
Wehry, Anna M; McNamara, Robert K; Adler, Caleb M; Eliassen, James C; Croarkin, Paul; Cerullo, Michael A; DelBello, Melissa P; Strawn, Jeffrey R
2015-01-15
Depressive and anxiety disorders are among the most frequently occurring psychiatric conditions in children and adolescents and commonly present occur together. Co-occurring depression and anxiety is associated with increased functional impairment and suicidality compared to depression alone. Despite this, little is known regarding the neurostructural differences between anxiety disorders and major depressive disorder (MDD). Moreover, the neurophysiologic impact of the presence of anxiety in adolescents with MDD is unknown. Using voxel-based morphometry, gray matter volumes were compared among adolescents with MDD (and no co-morbid anxiety disorders, n=14), adolescents with MDD and co-morbid anxiety ("anxious depression," n=12), and healthy comparison subjects (n=41). Patients with anxious depression exhibited decreased gray matter volumes in the dorsolateral prefrontal cortex (DLPFC) compared to patients with MDD alone. Compared to healthy subjects, adolescents with anxious depression had increased gray matter volumes in the pre- and post-central gyri. The current sample size was small and precluded an analysis of multiple covariates which may influence GMV. Gray matter deficits in the DLPFC in youth with anxious depression compared to patients with MDD and no co-occurring anxiety may reflect the more severe psychopathology in these patients. Additionally, the distinct gray matter fingerprints of MDD and anxious depression (compared to healthy subjects) suggest differing neurophysiologic substrates for these conditions, though the etiology and longitudinal trajectory of the differences remain to be determined. Copyright © 2014 Elsevier B.V. All rights reserved.
Wu, Huawang; Sun, Hui; Wang, Chao; Yu, Lin; Li, Yilan; Peng, Hongjun; Lu, Xiaobing; Hu, Qingmao; Ning, Yuping; Jiang, Tianzi; Xu, Jinping; Wang, Jiaojian
2017-01-01
Major depressive disorder (MDD) is a common psychiatric disorder that is characterized by cognitive deficits and affective symptoms. To date, an increasing number of neuroimaging studies have focused on emotion regulation and have consistently shown that emotion dysregulation is one of the central features and underlying mechanisms of MDD. Although gray matter morphological abnormalities in regions within emotion regulation networks have been identified in MDD, the interactions and relationships between these gray matter structures remain largely unknown. Thus, in this study, we adopted a structural covariance method based on gray matter volume to investigate the brain morphological abnormalities within the emotion regulation networks in a large cohort of 65 MDD patients and 65 age- and gender-matched healthy controls. A permutation test with p < 0.05 was used to identify the significant changes in covariance connectivity strengths between MDD patients and healthy controls. The structural covariance analysis revealed an increased correlation strength of gray matter volume between the left angular gyrus and the left amygdala and between the right angular gyrus and the right amygdala, as well as a decreased correlation strength of the gray matter volume between the right angular gyrus and the posterior cingulate cortex in MDD. Our findings support the notion that emotion dysregulation is an underlying mechanism of MDD by revealing disrupted structural covariance patterns in the emotion regulation network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Erickson, Kirk I.; Suever, Barbara L.; Shaurya Prakash, Ruchika; Colcombe, Stanley J.; McAuley, Edward; Kramer, Arthur F.
2008-01-01
Previous studies have reported that high concentrations of homocysteine and lower concentrations of vitamin B6, B12, and folate increase the risk for cognitive decline and pathology in aging populations. In this cross-sectional study, high-resolution magnetic resonance imaging (MRI) scans and a 3-day food diary were collected on 32 community-dwelling adults between the ages of 59 and 79. We examined the relation between vitamin B6, B12, and folate intake on cortical volume using an optimized voxel-based morphometry (VBM) method and global gray and white matter volume after correcting for age, sex, body mass index, calorie intake, and education. All participants met or surpassed the recommended daily intake for these vitamins. In the VBM analysis, we found that adults with greater vitamin B6 intake had greater gray matter volume along the medial wall, anterior cingulate cortex, medial parietal cortex, middle temporal gyrus, and superior frontal gyrus, whereas people with greater B12 intake had greater volume in the left and right superior parietal sulcus. These effects were driven by vitamin supplementation and were negated when only examining vitamin intake from diet. Folate had no effect on brain volume. Furthermore, there was no relationship between vitamin B6, B12, or folate intake on global brain volume measures, indicating that VBM methods are more sensitive for detecting localized differences in gray matter volume than global measures. These results are discussed in relation to a growing literature on vitamin intake on age-related neurocognitive deterioration. PMID:18281020
A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation.
Bonnier, Guillaume; Kober, Tobias; Schluep, Myriam; Du Pasquier, Renaud; Krueger, Gunnar; Meuli, Reto; Granziera, Cristina; Roche, Alexis
2016-01-01
The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes. Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations. Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter. The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.
Association between brain structure and phenotypic characteristics in pedophilia.
Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas
2013-05-01
Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gong, Nan-Jie; Chan, Chun-Chung; Leung, Lam-Ming; Wong, Chun-Sing; Dibb, Russell; Liu, Chunlei
2017-05-01
One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Carrion, Victor G.; Weems, Carl F.; Watson, Christa; Eliez, Stephan; Menon, Vinod; Reiss, Allan L.
2009-01-01
Objective Volumetric imaging research has shown abnormal brain morphology in posttraumatic stress disorder (PTSD) when compared to controls. We present results on a study of brain morphology in the prefrontal cortex (PFC) and midline structures, via indices of gray matter volume and density, in pediatric PTSD. We hypothesized that both methods would demonstrate aberrant morphology in the PFC. Further, we hypothesized aberrant brainstem anatomy and reduced corpus collosum volume in children with PTSD. Methods Twenty-four children (aged 7-14) with history of interpersonal trauma and 24 age, and gender matched controls underwent structural magnetic resonance imaging. Images of the PFC and midline brain structures were first analyzed using volumetric image analysis. The PFC data were then compared with whole-brain voxel-based techniques using statistical parametric mapping (SPM). Results The PTSD group showed significant increased gray matter volume in the right and left inferior and superior quadrants of the prefrontal cortex and smaller gray matter volume in pons, and posterior vermis areas by volumetric image analysis. The voxel-byvoxel group comparisons demonstrated increased gray matter density mostly localized to ventral PFC as compared to the control group. Conclusions Abnormal frontal lobe morphology, as revealed by separate-complementary image analysis methods, and reduced pons and posterior vermis areas are associated with pediatric PTSD. Voxel-based morphometry may help to corroborate and further localize data obtained by volume of interest methods in PTSD. PMID:19349151
Parvaz, Muhammad A; Moeller, Scott J; d'Oleire Uquillas, Federico; Pflumm, Amanda; Maloney, Tom; Alia-Klein, Nelly; Goldstein, Rita Z
2017-09-01
Deficits in prefrontal cortical (PFC) function have been consistently reported in individuals with cocaine use disorders (iCUD), and have separately been shown to improve with longer-term abstinence. However, it is less clear whether the PFC structural integrity possibly underlying these deficits is also modulated by sustained reduction in drug use in iCUD. Here, T1-weighted magnetic resonance imaging scans were acquired, and performance on a neuropsychological test battery was assessed, in 19 initially abstinent treatment-seeking iCUD, first at baseline and then after six months of significantly reduced or no drug use (follow-up). A comparison cohort of 12 healthy controls was also scanned twice with a similar inter-scan interval. The iCUD showed increased gray matter volume in the left inferior frontal gyrus and bilaterally in the ventromedial prefrontal cortex at follow-up compared to baseline; healthy controls, as expected, showed no changes over this same time period. The iCUD also showed improved decision making and cognitive flexibility, with the latter correlated significantly with the gray matter volume increases in the inferior frontal gyrus. Given its association with improved cognitive function, the longitudinal recovery in cortical gray matter volume, particularly in regions where structure and function are adversely affected by chronic drug use, reflects a quantifiable positive impact of significantly reduced drug use on cortical structural integrity. © 2016 Society for the Study of Addiction.
Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Kan, Eric; Dahl, Ronald E; Sowell, Elizabeth R
2014-11-01
It has been postulated that pubertal hormones may drive some neuroanatomical changes during adolescence, and may do so differently in girls and boys. Here, we use growth curve modeling to directly assess how sex hormones [testosterone (T) and estradiol (E₂)] relate to changes in subcortical brain volumes utilizing a longitudinal design. 126 adolescents (63 girls), ages 10 to 14, were imaged and restudied ∼2 years later. We show, for the first time, that best-fit growth models are distinctly different when using hormones as compared to a physical proxy of pubertal maturation (Tanner Stage) or age, to predict brain development. Like Tanner Stage, T and E₂ predicted white matter and right amygdala growth across adolescence in both sexes, independent of age. Tanner Stage also explained decreases in both gray matter and caudate volumes, whereas E₂ explained only gray matter decreases and T explained only caudate volume decreases. No pubertal measures were related to hippocampus development. Although specificity was seen, sex hormones had strikingly similar relationships with white matter, gray matter, right amygdala, and bilateral caudate volumes, with larger changes in brain volume seen at early pubertal maturation (as indexed by lower hormone levels), followed by less robust, or even reversals in growth, by late puberty. These novel longitudinal findings on the relationship between hormones and brain volume change represent crucial first steps toward understanding which aspects of puberty influence neurodevelopment. Copyright © 2014 Wiley Periodicals, Inc.
Lange, Nicholas; Froimowitz, Michael P; Bigler, Erin D; Lainhart, Janet E
2010-01-01
In the course of efforts to establish quantitative norms for healthy brain development by magnetic resonance imaging (MRI) (Brain Development Cooperative Group, 2006), previously unreported associations of parental education and temporal and frontal lobe volumes with full scale IQ and its verbal and performance subscales were discovered. Our findings were derived from the largest, most representative MRI sample to date of healthy children and adolescents, ages 4 years 10 months to 18 years 4 months. We first find that parental education has a strong association with IQ in children that is not mediated by total or regional brain volumes. Second, we find that our observed correlations between temporal gray matter, temporal white matter and frontal white matter volumes with full scale IQ, between 0.14 to 0.27 in children and adolescents, are due in large part to their correlations with performance IQ and not verbal IQ. The volumes of other lobar gray and white matter, subcortical gray matter (thalamus, caudate nucleus, putamen, and globus pallidus), cerebellum, and brainstem do not contribute significantly to IQ variation. Third, we find that head circumference is an insufficient index of cerebral volume in typically developing older children and adolescents. The relations between total and regional brain volumes and IQ can best be discerned when additional variables known to be associated with IQ, especially parental education and other demographic measures, are considered concurrently.
Greven, Corina U; Bralten, Janita; Mennes, Maarten; O'Dwyer, Laurence; van Hulzen, Kimm J E; Rommelse, Nanda; Schweren, Lizanne J S; Hoekstra, Pieter J; Hartman, Catharina A; Heslenfeld, Dirk; Oosterlaan, Jaap; Faraone, Stephen V; Franke, Barbara; Zwiers, Marcel P; Arias-Vasquez, Alejandro; Buitelaar, Jan K
2015-05-01
Attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental disorder. It has been linked to reductions in total brain volume and subcortical abnormalities. However, owing to heterogeneity within and between studies and limited sample sizes, findings on the neuroanatomical substrates of ADHD have shown considerable variability. Moreover, it remains unclear whether neuroanatomical alterations linked to ADHD are also present in the unaffected siblings of those with ADHD. To examine whether ADHD is linked to alterations in whole-brain and subcortical volumes and to study familial underpinnings of brain volumetric alterations in ADHD. In this cross-sectional study, we included participants from the large and carefully phenotyped Dutch NeuroIMAGE sample (collected from September 2009-December 2012) consisting of 307 participants with ADHD, 169 of their unaffected siblings, and 196 typically developing control individuals (mean age, 17.21 years; age range, 8-30 years). Whole-brain volumes (total brain and gray and white matter volumes) and volumes of subcortical regions (nucleus accumbens, amygdala, caudate nucleus, globus pallidus, hippocampus, putamen, thalamus, and brainstem) were derived from structural magnetic resonance imaging scans using automated tissue segmentation. Regression analyses revealed that relative to control individuals, participants with ADHD had a 2.5% smaller total brain (β = -31.92; 95% CI, -52.69 to -11.16; P = .0027) and a 3% smaller total gray matter volume (β = -22.51; 95% CI, -35.07 to -9.96; P = .0005), while total white matter volume was unaltered (β = -10.10; 95% CI, -20.73 to 0.53; P = .06). Unaffected siblings had total brain and total gray matter volumes intermediate to participants with ADHD and control individuals. Significant age-by-diagnosis interactions showed that older age was linked to smaller caudate (P < .001) and putamen (P = .01) volumes (both corrected for total brain volume) in control individuals, whereas age was unrelated to these volumes in participants with ADHD and their unaffected siblings. Attention-deficit/hyperactivity disorder was not significantly related to the other subcortical volumes. Global differences in gray matter volume may be due to alterations in the general mechanisms underlying normal brain development in ADHD. The age-by-diagnosis interaction in the caudate and putamen supports the relevance of different brain developmental trajectories in participants with ADHD vs control individuals and supports the role of subcortical basal ganglia alterations in the pathophysiology of ADHD. Alterations in total gray matter and caudate and putamen volumes in unaffected siblings suggest that these volumes are linked to familial risk for ADHD.
Gray matter volume and rapid decision-making in major depressive disorder.
Nakano, Masayuki; Matsuo, Koji; Nakashima, Mami; Matsubara, Toshio; Harada, Kenichiro; Egashira, Kazuteru; Masaki, Hiroaki; Takahashi, Kanji; Watanabe, Yoshifumi
2014-01-03
Reduced motivation and blunted decision-making are key features of major depressive disorder (MDD). Patients with MDD show abnormal decision-making when given negative feedback regarding a reward. The brain mechanisms underpinning this behavior remain unclear. In the present study, we examined the association between rapid decision-making with negative feedback and brain volume in MDD. Thirty-six patients with MDD and 54 age-, sex- and IQ-matched healthy subjects were studied. Subjects performed a rapid decision-making monetary task in which participants could make high- or low-risk choices. We compared between the 2 groups the probability that a high-risk choice followed negative feedback. In addition, we used voxel-based morphometry (VBM) to compare between group differences in gray matter volume, and the correlation between the probability for high-risk choices and brain volume. Compared to the healthy group, the MDD group showed significantly lower probabilities for high-risk choices following negative feedback. VBM analysis revealed that the MDD group had less gray matter volume in the right medial prefrontal cortex and orbitofrontal cortex (OFC) compared to the healthy group. The right OFC volume was negatively correlated with the probability that a high-risk choice followed negative feedback in patients with MDD. We did not observe these trends in healthy subjects. Patients with MDD show reduced motivation for monetary incentives when they were required to make rapid decisions following negative feedback. We observed a correlation between this reduced motivation and gray matter volume in the medial and ventral prefrontal cortex, which suggests that these brain regions are likely involved in the pathophysiology of aberrant decision-making in MDD. © 2013.
ERIC Educational Resources Information Center
Batty, Martin J.; Liddle, Elizabeth B.; Pitiot, Alain; Toro, Roberto; Groom, Madeleine J.; Scerif, Gaia; Liotti, Mario; Liddle, Peter F.; Paus, Tomas; Hollis, Chris
2010-01-01
Objective: Previous studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis,…
Regional gray matter correlates of vocational interests
2012-01-01
Background Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. Findings First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic (“blue-collar”) interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Conclusions Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations. PMID:22591829
Regional gray matter correlates of vocational interests.
Schroeder, David H; Haier, Richard J; Tang, Cheuk Ying
2012-05-16
Previous studies have identified brain areas related to cognitive abilities and personality, respectively. In this exploratory study, we extend the application of modern neuroimaging techniques to another area of individual differences, vocational interests, and relate the results to an earlier study of cognitive abilities salient for vocations. First, we examined the psychometric relationships between vocational interests and abilities in a large sample. The primary relationships between those domains were between Investigative (scientific) interests and general intelligence and between Realistic ("blue-collar") interests and spatial ability. Then, using MRI and voxel-based morphometry, we investigated the relationships between regional gray matter volume and vocational interests. Specific clusters of gray matter were found to be correlated with Investigative and Realistic interests. Overlap analyses indicated some common brain areas between the correlates of Investigative interests and general intelligence and between the correlates of Realistic interests and spatial ability. Two of six vocational-interest scales show substantial relationships with regional gray matter volume. The overlap between the brain correlates of these scales and cognitive-ability factors suggest there are relationships between individual differences in brain structure and vocations.
Neurofilament light protein in blood predicts regional atrophy in Huntington disease
Johnson, Eileanoir B.; Byrne, Lauren M.; Gregory, Sarah; Rodrigues, Filipe B.; Blennow, Kaj; Durr, Alexandra; Leavitt, Blair R.; Roos, Raymund A.; Zetterberg, Henrik; Tabrizi, Sarah J.; Scahill, Rachael I.
2018-01-01
Objective Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers. Methods We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers. Results After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression. Conclusions These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change. PMID:29367444
Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine; Sherwood, Chet C; Herndon, James G; Preuss, Todd; Schapiro, Steve J; Hopkins, William D
2014-11-01
Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.
Relationship between symptom dimensions and brain morphology in obsessive-compulsive disorder.
Hirose, Motohisa; Hirano, Yoshiyuki; Nemoto, Kiyotaka; Sutoh, Chihiro; Asano, Kenichi; Miyata, Haruko; Matsumoto, Junko; Nakazato, Michiko; Matsumoto, Koji; Masuda, Yoshitada; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko
2017-10-01
Obsessive-compulsive disorder (OCD) is known as a clinically heterogeneous disorder characterized by symptom dimensions. Although substantial numbers of neuroimaging studies have demonstrated the presence of brain abnormalities in OCD, their results are controversial. The clinical heterogeneity of OCD could be one of the reasons for this. It has been hypothesized that certain brain regions contributed to the respective obsessive-compulsive dimensions. In this study, we investigated the relationship between symptom dimensions of OCD and brain morphology using voxel-based morphometry to discover the specific regions showing alterations in the respective dimensions of obsessive-compulsive symptoms. The severities of symptom dimensions in thirty-three patients with OCD were assessed using Obsessive-Compulsive Inventory-Revised (OCI-R). Along with numerous MRI studies pointing out brain abnormalities in autistic spectrum disorder (ASD) patients, a previous study reported a positive correlation between ASD traits and regional gray matter volume in the left dorsolateral prefrontal cortex and amygdala in OCD patients. We investigated the correlation between gray and white matter volumes at the whole brain level and each symptom dimension score, treating all remaining dimension scores, age, gender, and ASD traits as confounding covariates. Our results revealed a significant negative correlation between washing symptom dimension score and gray matter volume in the right thalamus and a significant negative correlation between hoarding symptom dimension score and white matter volume in the left angular gyrus. Although our result was preliminary, our findings indicated that there were specific brain regions in gray and white matter that contributed to symptom dimensions in OCD patients.
Normal gray and white matter volume after weight restoration in adolescents with anorexia nervosa.
Lázaro, Luisa; Andrés, Susana; Calvo, Anna; Cullell, Clàudia; Moreno, Elena; Plana, M Teresa; Falcón, Carles; Bargalló, Núria; Castro-Fornieles, Josefina
2013-12-01
The aim of this study was to determine whether treated, weight-stabilized adolescents with anorexia nervosa (AN) present brain volume differences in comparison with healthy controls. Thirty-five adolescents with weight-recovered AN and 17 healthy controls were assessed by means of psychopathology scales and magnetic resonance imaging. Axial three-dimensional T1-weighted images were obtained in a 1.5 Tesla scanner and analyzed using optimized voxel-based morphometry (VBM). There were no significant differences between controls and weight-stabilized AN patients with regard to global volumes of either gray or white brain matter, or in the regional VBM study. Differences were not significant between patients with psychopharmacological treatment and without, between those with amenorrhea and without, as well as between patients with restrictive versus purgative AN. The present findings reveal no global or regional gray or white matter abnormalities in this sample of adolescents following weight restoration. Copyright © 2013 Wiley Periodicals, Inc.
Lang, Yi; Cui, Fang-yuan; Li, Kuang-shi; Tan, Zhong-jian; Zou, Yi-huai
2016-03-01
To study features of brain gray matter injury in cerebral infarction patients and intervention of scalp acupuncture by using voxel-based morphology. A total of 16 cerebral infarction patients were recruited in this study, and assigned to the scalp acupuncture group and the control group, 8 in each group. Another 16 healthy volunteers were recruited as a normal group. All patients received scanning of T1 structure. Images were managed using VBM8 Software package. Difference of the gray matter structure was compared among the scalp acupuncture group, the control group, and the healthy volunteers. Compared with healthy volunteers, gray matter injury of cerebral infarction patients mainly occurred in 14 brain regions such as cingulate gyrus, precuneus, cuneus, anterior central gyrus, insular lobe, and so on. They were mainly distributed in affected side. Two weeks after treatment when compared with healthy volunteers, gray matter injury of cerebral infarction patients in the scalp acupuncture group still existed in 8 brain regions such as bilateral lingual gyrus, posterior cingulate gyrus, left cuneus, right precuneus, and so on. New gray matter injury occurred in lingual gyrus and posterior cingulate gyrus. Two weeks after treatment when compared with healthy volunteers, gray matter injury of cerebral infarction patients in the control group existed in 23 brain regions: bilateral anterior cingulum, caudate nucleus, cuneate lobe, insular lobe, inferior frontal gyrus, medial frontal gyrus, precuneus, paracentral lobule, superior temporal gyrus, middle temporal gyrus, lingual gyrus, right postcentral gyrus, posterior cingulate gyrus, precentral gyrus, middle frontal gyrus, and so on. New gray matter injury still existed in 9 cerebral regions such as lingual gyrus, posterior cingulate gyrus, postcentral gyrus, and so on. Brain gray matter structure is widely injured after cerebral infarction. Brain gray matter volume gradually decreased as time went by. Combined use of scalp acupuncture might inhibit the progression of gray matter injury more effectively.
As-Sanie, Sawsan; Harris, Richard; Napadow, Vitaly; Kim, Jieun; Neshewat, Gina; Kairys, Anson; Williams, David; Clauw, Daniel; Schmidt-Wilcke, Tobias
2012-01-01
Chronic pelvic pain (CPP) is a highly prevalent pain condition, estimated to affect 15-20% of women in the United States. Endometriosis is often associated with CPP, however other factors, such as pre-existing or concomitant changes of the central pain system, might contribute to the development of chronic pain. We applied voxel-based morphometry to determine whether women with CPP with and without endometriosis display changes in brain morphology in regions known to be involved in pain processing.Four subgroups of women participated: 17 with endometriosis and CPP, 15 with endometriosis without CPP, 6 with CPP without endometriosis, as well as 23 healthy controls. All patients with endometriosis and/or CPP were surgically-confirmed. Relative to controls, women with endometriosis-associated CPP displayed decreased gray matter volume in brain regions involved in pain perception including the left thalamus, left cingulategyrus, right putamen, and right insula. Women with CPP without endometriosis also showed decreases in gray matter volume in the left thalamus. Such decreases were not observed in patients with endometriosis that had no CPP. We conclude thatCPP is associated with changes in regional gray matter volume within the central pain system. Although endometriosis may be an important risk factor for the development of CPP, acting as a cyclic source of peripheral nociceptive input, our data support the notion that changes in the central pain system also play an important role in the development of chronic pain, regardless of the presence of endometriosis. PMID:22387096
Butler, O; Adolf, J; Gleich, T; Willmund, G; Zimmermann, P; Lindenberger, U; Gallinat, J; Kühn, S
2017-02-14
Research investigating the effects of trauma exposure on brain structure and function in adults has mainly focused on post-traumatic stress disorder (PTSD), whereas trauma-exposed individuals without a clinical diagnoses often serve as controls. However, this assumes a dichotomy between clinical and subclinical populations that may not be supported at the neural level. In the current study we investigate whether the effects of repeated or long-term stress exposure on brain structure in a subclinical sample are similar to previous PTSD neuroimaging findings. We assessed 27 combat trauma-exposed individuals by means of whole-brain voxel-based morphometry on 3 T magnetic resonance imaging scans and identified a negative association between duration of military deployment and gray matter volumes in ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (ACC). We also found a negative relationship between deployment-related gray matter volumes and psychological symptoms, but not between military deployment and psychological symptoms. To our knowledge, this is the first whole-brain analysis showing that longer military deployment is associated with smaller regional brain volumes in combat-exposed individuals without PTSD. Notably, the observed gray matter associations resemble those previously identified in PTSD populations, and concern regions involved in emotional regulation and fear extinction. These findings question the current dichotomy between clinical and subclinical populations in PTSD neuroimaging research. Instead, neural correlates of both stress exposure and PTSD symptomatology may be more meaningfully investigated at a continuous level.
Jeon, Yujin; Kim, Binna; Kim, Jieun E; Kim, Bori R; Ban, Soonhyun; Jeong, Jee Hyang; Kwon, Oran; Rhie, Sandy Jeong; Ahn, Chang-Won; Kim, Jong-Hoon; Jung, Sung Ug; Park, Soo-Hyun; Lyoo, In Kyoon; Yoon, Sujung
2016-01-01
This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).
Episodic Memory and Regional Atrophy in Frontotemporal Lobar Degeneration
Söderlund, Hedvig; Black, Sandra E.; Miller, Bruce L.; Freedman, Morris; Levine, Brian
2008-01-01
It has been unclear to what extent memory is affected in frontotemporal lobar degeneration (FTLD). Since patients usually have atrophy in regions implicated in memory function, the frontal and/or temporal lobes, one would expect some memory impairment, and that the degree of atrophy in these regions would be inversely related to memory function. The purposes of this study were 1) to assess episodic memory function in FTLD, and more specifically patients' ability to episodically re-experience an event, and determine its source; 2) to examine whether memory performance is related to quantified regional brain atrophy. FTLD patients (n=18) and healthy comparison subjects (n=14) were assessed with cued recall, recognition, “remember/know” (self-reported re-experiencing) and source recall, at 30 min and 24 hr after encoding. Regional gray matter volumes were assessed with high resolution structural MRI concurrently to testing. Patients performed worse than comparison subjects on all memory measures. Gray matter volume in the left medial temporal lobe was positively correlated with recognition, re-experiencing, and source recall. Gray matter volume in the left posterior temporal lobe correlated significantly with recognition, at 30 min and 24 hr, and with source recall at 30 min. Estimated familiarity at 30 min was positively correlated with gray matter volume in the left inferior parietal lobe. In summary, episodic memory deficits in FTLD may be more common than previously thought, particularly in patients with left medial and posterior temporal atrophy. PMID:17888461
Neuroanatomy Predicts Individual Risk Attitudes
Gilaie-Dotan, Sharon; Tymula, Agnieszka; Cooper, Nicole; Kable, Joseph W.; Glimcher, Paul W.
2014-01-01
Over the course of the last decade a multitude of studies have investigated the relationship between neural activations and individual human decision-making. Here we asked whether the anatomical features of individual human brains could be used to predict the fundamental preferences of human choosers. To that end, we quantified the risk attitudes of human decision-makers using standard economic tools and quantified the gray matter cortical volume in all brain areas using standard neurobiological tools. Our whole-brain analysis revealed that the gray matter volume of a region in the right posterior parietal cortex was significantly predictive of individual risk attitudes. Participants with higher gray matter volume in this region exhibited less risk aversion. To test the robustness of this finding we examined a second group of participants and used econometric tools to test the ex ante hypothesis that gray matter volume in this area predicts individual risk attitudes. Our finding was confirmed in this second group. Our results, while being silent about causal relationships, identify what might be considered the first stable biomarker for financial risk-attitude. If these results, gathered in a population of midlife northeast American adults, hold in the general population, they will provide constraints on the possible neural mechanisms underlying risk attitudes. The results will also provide a simple measurement of risk attitudes that could be easily extracted from abundance of existing medical brain scans, and could potentially provide a characteristic distribution of these attitudes for policy makers. PMID:25209279
Butler, O; Adolf, J; Gleich, T; Willmund, G; Zimmermann, P; Lindenberger, U; Gallinat, J; Kühn, S
2017-01-01
Research investigating the effects of trauma exposure on brain structure and function in adults has mainly focused on post-traumatic stress disorder (PTSD), whereas trauma-exposed individuals without a clinical diagnoses often serve as controls. However, this assumes a dichotomy between clinical and subclinical populations that may not be supported at the neural level. In the current study we investigate whether the effects of repeated or long-term stress exposure on brain structure in a subclinical sample are similar to previous PTSD neuroimaging findings. We assessed 27 combat trauma-exposed individuals by means of whole-brain voxel-based morphometry on 3 T magnetic resonance imaging scans and identified a negative association between duration of military deployment and gray matter volumes in ventromedial prefrontal cortex (vmPFC) and dorsal anterior cingulate cortex (ACC). We also found a negative relationship between deployment-related gray matter volumes and psychological symptoms, but not between military deployment and psychological symptoms. To our knowledge, this is the first whole-brain analysis showing that longer military deployment is associated with smaller regional brain volumes in combat-exposed individuals without PTSD. Notably, the observed gray matter associations resemble those previously identified in PTSD populations, and concern regions involved in emotional regulation and fear extinction. These findings question the current dichotomy between clinical and subclinical populations in PTSD neuroimaging research. Instead, neural correlates of both stress exposure and PTSD symptomatology may be more meaningfully investigated at a continuous level. PMID:28195568
Serum vitamin D and hippocampal gray matter volume in schizophrenia.
Shivakumar, Venkataram; Kalmady, Sunil V; Amaresha, Anekal C; Jose, Dania; Narayanaswamy, Janardhanan C; Agarwal, Sri Mahavir; Joseph, Boban; Venkatasubramanian, Ganesan; Ravi, Vasanthapuram; Keshavan, Matcheri S; Gangadhar, Bangalore N
2015-08-30
Disparate lines of evidence including epidemiological and case-control studies have increasingly implicated vitamin D in the pathogenesis of schizophrenia. Vitamin D deficiency can lead to dysfunction of the hippocampus--a brain region hypothesized to be critically involved in schizophrenia. In this study, we examined for potential association between serum vitamin D level and hippocampal gray matter volume in antipsychotic-naïve or antipsychotic-free schizophrenia patients (n = 35). Serum vitamin D level was estimated using 25-OH vitamin D immunoassay. Optimized voxel-based morphometry was used to analyze 3-Tesla magnetic resonance imaging (MRI) (1-mm slice thickness). Ninety-seven percent of the schizophrenia patients (n = 34) had sub-optimal levels of serum vitamin D (83%, deficiency; 14%, insufficiency). A significant positive correlation was seen between vitamin D and regional gray matter volume in the right hippocampus after controlling for age, years of education and total intracranial volume (Montreal Neurological Institute (MNI) coordinates: x = 35, y = -18, z = -8; t = 4.34 pFWE(Corrected) = 0.018). These observations support a potential role of vitamin D deficiency in mediating hippocampal volume deficits, possibly through neurotrophic, neuroimmunomodulatory and glutamatergic effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Esteban-Cornejo, Irene; Cadenas-Sanchez, Cristina; Contreras-Rodriguez, Oren; Verdejo-Roman, Juan; Mora-Gonzalez, Jose; Migueles, Jairo H; Henriksson, Pontus; Davis, Catherine L; Verdejo-Garcia, Antonio; Catena, Andrés; Ortega, Francisco B
2017-10-01
Obesity, as compared to normal weight, is associated with detectable structural differences in the brain. To the best of our knowledge, no previous study has examined the association of physical fitness with gray matter volume in overweight/obese children using whole brain analyses. Thus, the aim of this study was to examine the association between the key components of physical fitness (i.e. cardiorespiratory fitness, speed-agility and muscular fitness) and brain structural volume, and to assess whether fitness-related changes in brain volumes are related to academic performance in overweight/obese children. A total of 101 overweight/obese children aged 8-11 years were recruited from Granada, Spain. The physical fitness components were assessed following the ALPHA health-related fitness test battery. T1-weighted images were acquired with a 3.0 T S Magnetom Tim Trio system. Gray matter tissue was calculated using Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL). Academic performance was assessed by the Batería III Woodcock-Muñoz Tests of Achievement. All analyses were controlled for sex, peak high velocity offset, parent education, body mass index and total brain volume. The statistical threshold was calculated with AlphaSim and further Hayasaka adjusted to account for the non-isotropic smoothness of structural images. The main results showed that higher cardiorespiratory fitness was related to greater gray matter volumes (P < 0.001, k = 64) in 7 clusters with β ranging from 0.493 to 0.575; specifically in frontal regions (i.e. premotor cortex and supplementary motor cortex), subcortical regions (i.e. hippocampus and caudate), temporal regions (i.e. inferior temporal gyrus and parahippocampal gyrus) and calcarine cortex. Three of these regions (i.e. premotor cortex, supplementary motor cortex and hippocampus) were related to better academic performance (β ranging from 0.211 to 0.352; all P < 0.05). Higher speed-agility was associated with greater gray matter volumes (P < 0.001, k = 57) in 2 clusters (i.e. the inferior frontal gyrus and the superior temporal gyrus) with β ranging from 0.564 to 0.611. Both clusters were related to better academic performance (β ranging from 0.217 to 0.296; both P < 0.05). Muscular fitness was not independently associated with greater gray matter volume in any brain region. Furthermore, there were no statistically significant negative association between any component of physical fitness and gray matter volume in any region of the brain. In conclusion, cardiorespiratory fitness and speed-agility, but not muscular fitness, may independently be associated with greater volume of numerous cortical and subcortical brain structures; besides, some of these brain structures may be related to better academic performance. Importantly, the identified associations of fitness and gray matter volume were different for each fitness component. These findings suggest that increases in cardiorespiratory fitness and speed-agility may positively influence the development of distinctive brain regions and academic indicators, and thus counteract the harmful effect of overweight and obesity on brain structure during childhood. Copyright © 2017 Elsevier Inc. All rights reserved.
Examining the volume efficiency of the cortical architecture in a multi-processor network model.
Ruppin, E; Schwartz, E L; Yeshurun, Y
1993-01-01
The convoluted form of the sheet-like mammalian cortex naturally raises the question whether there is a simple geometrical reason for the prevalence of cortical architecture in the brains of higher vertebrates. Addressing this question, we present a formal analysis of the volume occupied by a massively connected network or processors (neurons) and then consider the pertaining cortical data. Three gross macroscopic features of cortical organization are examined: the segregation of white and gray matter, the circumferential organization of the gray matter around the white matter, and the folded cortical structure. Our results testify to the efficiency of cortical architecture.
Trick, Leanne; Kempton, Matthew J; Williams, Steven C R; Duka, Theodora
2014-01-01
Alcoholic patients with multiple detoxifications/relapses show cognitive and emotional deficits. We performed structural magnetic resonance imaging and examined performance on a cognitive flexibility task (intra-extradimensional set shift and reversal; IED). We also presented subjects with fearful, disgust and anger facial emotional expressions. Participants were abstaining, multiply detoxified (MDTx; n = 12) or singly detoxified patients (SDTx; n = 17) and social drinker controls (n = 31). Alcoholic patients were less able than controls to change their behavior in accordance with the changing of the rules in the IED and they were less accurate in recognizing fearful expressions in particular. They also showed lower gray matter volume compared with controls in frontal brain areas, including inferior frontal cortex (IFC) and insula that mediate emotional processing, inferior parietal lobule and medial frontal cortex that mediate attentional and motor planning processes, respectively. Impairments in performance and some of the regional decreases in gray matter were greater in MDTx. Gray matter volume in IFC in patients was negatively correlated with the number of detoxifications, whereas inferior parietal lobule was negatively correlated with the control over drinking score (impaired control over drinking questionnaire). Performance in IED was also negatively correlated with gray matter volume in IFC/BA47, whereas recognition of fearful faces was positively correlated with the IFC gray matter. Repeated episodes of detoxification from alcohol, related to severity of dependency, are coupled with altered brain structure in areas of emotional regulation, attention and motor planning. Such changes may confer increased inability to switch behavior according to environmental demands and social incompetence, contributing to relapse. PMID:25123156
Gray matter volume and dual-task gait performance in mild cognitive impairment.
Doi, Takehiko; Blumen, Helena M; Verghese, Joe; Shimada, Hiroyuki; Makizako, Hyuma; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Suzuki, Takao
2017-06-01
Dual-task gait performance is impaired in older adults with mild cognitive impairment, but the brain substrates associated with dual-task gait performance are not well-established. The relationship between gray matter and gait speed under single-task and dual-task conditions (walking while counting backward) was examined in 560 seniors with mild cognitive impairment (non-amnestic mild cognitive impairment: n = 270; mean age = 72.4 yrs., 63.6 % women; amnestic mild cognitive impairment: n = 290; mean age = 73.4 yrs., 45.4 % women). Multivariate covariance-based analyses of magnetic resonance imaging data, adjusted for potential confounders including single-task gait speed, were performed to identify gray matter patterns associated with dual-task gait speed. There were no differences in gait speed or cognitive performance during dual-task gait between individuals with non-amnestic mild cognitive impairment and amnestic mild cognitive impairment. Overall, increased dual-task gait speed was associated with a gray matter pattern of increased volume in medial frontal gyrus, superior frontal gyrus, anterior cingulate, cingulate, precuneus, fusiform gyrus, middle occipital gyrus, inferior temporal gyrus and middle temporal gyrus. The relationship between dual-task gait speed and brain substrates also differed by mild cognitive impairment subtype. Our study revealed a pattern of gray matter regions associated with dual-task performance. Although dual-task gait performance was similar in amnestic and non-amnestic mild cognitive impairment, the gray matter patterns associated with dual-task gait performance differed by mild cognitive impairment subtype. These findings suggest that the brain substrates supporting dual-task gait performance in amnestic and non-amnestic subtypes are different, and consequently may respond differently to interventions, or require different interventions.
Gray matter volume and dual-task gait performance in mild cognitive impairment
Blumen, Helena M.; Verghese, Joe; Shimada, Hiroyuki; Makizako, Hyuma; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Suzuki, Takao
2017-01-01
Dual-task gait performance is impaired in older adults with mild cognitive impairment, but the brain substrates associated with dual-task gait performance are not well-established. The relationship between gray matter and gait speed under single-task and dual-task conditions (walking while counting backward) was examined in 560 seniors with mild cognitive impairment (non-amnestic mild cognitive impairment: n = 270; mean age = 72.4 yrs., 63.6 % women; amnestic mild cognitive impairment: n = 290; mean age = 73.4 yrs., 45.4 % women). Multivariate covariance-based analyses of magnetic resonance imaging data, adjusted for potential confounders including single-task gait speed, were performed to identify gray matter patterns associated with dual-task gait speed. There were no differences in gait speed or cognitive performance during dual-task gait between individuals with non-amnestic mild cognitive impairment and amnestic mild cognitive impairment. Overall, increased dual-task gait speed was associated with a gray matter pattern of increased volume in medial frontal gyrus, superior frontal gyrus, anterior cingulate, cingulate, precuneus, fusiform gyrus, middle occipital gyrus, inferior temporal gyrus and middle temporal gyrus. The relationship between dual-task gait speed and brain substrates also differed by mild cognitive impairment subtype. Our study revealed a pattern of gray matter regions associated with dual-task performance. Although dual-task gait performance was similar in amnestic and non-amnestic mild cognitive impairment, the gray matter patterns associated with dual-task gait performance differed by mild cognitive impairment subtype. These findings suggest that the brain substrates supporting dual-task gait performance in amnestic and non-amnestic subtypes are different, and consequently may respond differently to interventions, or require different interventions. PMID:27392792
van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M
2016-03-01
Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.
Ou, X; Andres, A; Pivik, R T; Cleves, M A; Snow, J H; Ding, Z; Badger, T M
2016-04-01
Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain gray matter structure and function in 8-year-old children who were predominantly breastfed or fed cow's milk formula as infants. Forty-two healthy children (breastfed: n = 22, 10 boys and 12 girls; cow's milk formula: n = 20, 10 boys and 10 girls) were studied by using structural MR imaging (3D T1-weighted imaging) and blood oxygen level-dependent fMRI (while performing tasks involving visual perception and language functions). They were also administered standardized tests evaluating intelligence (Reynolds Intellectual Assessment Scales) and language skills (Clinical Evaluation of Language Fundamentals). Total brain gray matter volume did not differ between the breastfed and cow's milk formula groups. However, breastfed children had significantly higher (P < .05, corrected) regional gray matter volume measured by voxel-based morphometry in the left inferior temporal lobe and left superior parietal lobe compared with cow's milk formula-fed children. Breastfed children showed significantly more brain activation in the right frontal and left/right temporal lobes on fMRI when processing the perception task and in the left temporal/occipital lobe when processing the visual language task than cow's milk formula-fed children. The imaging findings were associated with significantly better performance for breastfed than cow's milk formula-fed children on both tasks. Our findings indicated greater regional gray matter development and better regional gray matter function in breastfed than cow's milk formula-fed children at 8 years of age and suggested that infant diets may have long-term influences on brain development in children. © 2016 by American Journal of Neuroradiology.
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta
2011-01-01
Training working memory (WM) improves performance on untrained cognitive tasks and alters functional activity. However, WM training's effects on gray matter morphology and a wide range of cognitive tasks are still unknown. We investigated this issue using voxel-based morphometry (VBM), various psychological measures, such as non-trained WM tasks and a creativity task, and intensive adaptive training of WM using mental calculations (IATWMMC), all of which are typical WM tasks. IATWMMC was associated with reduced regional gray matter volume in the bilateral fronto-parietal regions and the left superior temporal gyrus. It improved verbal letter span and complex arithmetic ability, but deteriorated creativity. These results confirm the training-induced plasticity in psychological mechanisms and the plasticity of gray matter structures in regions that have been assumed to be under strong genetic control.
A Pediatric Twin Study of Brain Morphometry
ERIC Educational Resources Information Center
Wallace, Gregory L.; Schmitt, J. Eric; Lenroot, Rhoshel; Viding, Essi; Ordaz, Sarah; Rosenthal, Michael A.; Molloy, Elizabeth A.; Clasen, Liv S.; Kendler, Kenneth S.; Neale, Michael C.; Giedd, Jay N.
2006-01-01
Background: Longitudinal pediatric neuroimaging studies have demonstrated increasing volumes of white matter and regionally-specific inverted U shaped developmental trajectories of gray matter volumes during childhood and adolescence. Studies of monozygotic and dyzygotic twins during this developmental period allow exploration of genetic and…
Long-Term Effects of Cannabis on Brain Structure
Battistella, Giovanni; Fornari, Eleonora; Annoni, Jean-Marie; Chtioui, Haithem; Dao, Kim; Fabritius, Marie; Favrat, Bernard; Mall, Jean-Frédéric; Maeder, Philippe; Giroud, Christian
2014-01-01
The dose-dependent toxicity of the main psychoactive component of cannabis in brain regions rich in cannabinoid CB1 receptors is well known in animal studies. However, research in humans does not show common findings across studies regarding the brain regions that are affected after long-term exposure to cannabis. In the present study, we investigate (using Voxel-based Morphometry) gray matter changes in a group of regular cannabis smokers in comparison with a group of occasional smokers matched by the years of cannabis use. We provide evidence that regular cannabis use is associated with gray matter volume reduction in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex; these regions are rich in cannabinoid CB1 receptors and functionally associated with motivational, emotional, and affective processing. Furthermore, these changes correlate with the frequency of cannabis use in the 3 months before inclusion in the study. The age of onset of drug use also influences the magnitude of these changes. Significant gray matter volume reduction could result either from heavy consumption unrelated to the age of onset or instead from recreational cannabis use initiated at an adolescent age. In contrast, the larger gray matter volume detected in the cerebellum of regular smokers without any correlation with the monthly consumption of cannabis may be related to developmental (ontogenic) processes that occur in adolescence. PMID:24633558
Long-term effects of cannabis on brain structure.
Battistella, Giovanni; Fornari, Eleonora; Annoni, Jean-Marie; Chtioui, Haithem; Dao, Kim; Fabritius, Marie; Favrat, Bernard; Mall, Jean-Frédéric; Maeder, Philippe; Giroud, Christian
2014-08-01
The dose-dependent toxicity of the main psychoactive component of cannabis in brain regions rich in cannabinoid CB1 receptors is well known in animal studies. However, research in humans does not show common findings across studies regarding the brain regions that are affected after long-term exposure to cannabis. In the present study, we investigate (using Voxel-based Morphometry) gray matter changes in a group of regular cannabis smokers in comparison with a group of occasional smokers matched by the years of cannabis use. We provide evidence that regular cannabis use is associated with gray matter volume reduction in the medial temporal cortex, temporal pole, parahippocampal gyrus, insula, and orbitofrontal cortex; these regions are rich in cannabinoid CB1 receptors and functionally associated with motivational, emotional, and affective processing. Furthermore, these changes correlate with the frequency of cannabis use in the 3 months before inclusion in the study. The age of onset of drug use also influences the magnitude of these changes. Significant gray matter volume reduction could result either from heavy consumption unrelated to the age of onset or instead from recreational cannabis use initiated at an adolescent age. In contrast, the larger gray matter volume detected in the cerebellum of regular smokers without any correlation with the monthly consumption of cannabis may be related to developmental (ontogenic) processes that occur in adolescence.
A structural–functional basis for dyslexia in the cortex of Chinese readers
Siok, Wai Ting; Niu, Zhendong; Jin, Zhen; Perfetti, Charles A.; Tan, Li Hai
2008-01-01
Developmental dyslexia is a neurobiologically based disorder that affects ≈5–17% of school children and is characterized by a severe impairment in reading skill acquisition. For readers of alphabetic (e.g., English) languages, recent neuroimaging studies have demonstrated that dyslexia is associated with weak reading-related activity in left temporoparietal and occipitotemporal regions, and this activity difference may reflect reductions in gray matter volume in these areas. Here, we find different structural and functional abnormalities in dyslexic readers of Chinese, a nonalphabetic language. Compared with normally developing controls, children with impaired reading in logographic Chinese exhibited reduced gray matter volume in a left middle frontal gyrus region previously shown to be important for Chinese reading and writing. Using functional MRI to study language-related activation of cortical regions in dyslexics, we found reduced activation in this same left middle frontal gyrus region in Chinese dyslexics versus controls, and there was a significant correlation between gray matter volume and activation in the language task in this same area. By contrast, Chinese dyslexics did not show functional or structural (i.e., volumetric gray matter) differences from normal subjects in the more posterior brain systems that have been shown to be abnormal in alphabetic-language dyslexics. The results suggest that the structural and functional basis for dyslexia varies between alphabetic and nonalphabetic languages. PMID:18391194
Blumen, Helena M; Brown, Lucy L; Habeck, Christian; Allali, Gilles; Ayers, Emmeline; Beauchet, Olivier; Callisaya, Michele; Lipton, Richard B; Mathuranath, P S; Phan, Thanh G; Pradeep Kumar, V G; Srikanth, Velandai; Verghese, Joe
2018-04-09
Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.
A Genetic Analysis of Brain Volumes and IQ in Children
ERIC Educational Resources Information Center
van Leeuwen, Marieke; Peper, Jiska S.; van den Berg, Stephanie M.; Brouwer, Rachel M.; Hulshoff Pol, Hilleke E.; Kahn, Rene S.; Boomsma, Dorret I.
2009-01-01
In a population-based sample of 112 nine-year old twin pairs, we investigated the association among total brain volume, gray matter and white matter volume, intelligence as assessed by the Raven IQ test, verbal comprehension, perceptual organization and perceptual speed as assessed by the Wechsler Intelligence Scale for Children-III. Phenotypic…
Longitudinal development of cortical and subcortical gray matter from birth to 2 years.
Gilmore, John H; Shi, Feng; Woolson, Sandra L; Knickmeyer, Rebecca C; Short, Sarah J; Lin, Weili; Zhu, Hongtu; Hamer, Robert M; Styner, Martin; Shen, Dinggang
2012-11-01
Very little is known about cortical development in the first years of life, a time of rapid cognitive development and risk for neurodevelopmental disorders. We studied regional cortical and subcortical gray matter volume growth in a group of 72 children who underwent magnetic resonance scanning after birth and at ages 1 and 2 years using a novel longitudinal registration/parcellation approach. Overall, cortical gray matter volumes increased substantially (106%) in the first year of life and less so in the second year (18%). We found marked regional differences in developmental rates, with primary motor and sensory cortices growing slower in the first year of life with association cortices growing more rapidly. In the second year of life, primary sensory regions continued to grow more slowly, while frontal and parietal regions developed relatively more quickly. The hippocampus grew less than other subcortical structures such as the amygdala and thalamus in the first year of life. It is likely that these patterns of regional gray matter growth reflect maturation and development of underlying function, as they are consistent with cognitive and functional development in the first years of life.
Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume.
Cui, Zaixu; Su, Mengmeng; Li, Liangjie; Shu, Hua; Gong, Gaolang
2018-05-01
Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.
Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran
2008-08-30
"Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCL<10). We found significant gray matter reductions in frontal and temporal brain regions in psychopaths compared with controls. In particular, we found a highly significant volume loss in the right superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.
Regional gray matter variation in male-to-female transsexualism
Luders, Eileen; Sánchez, Francisco J.; Gaser, Christian; Toga, Arthur W.; Narr, Katherine L.; Hamilton, Liberty S.; Vilain, Eric
2009-01-01
Gender identity—one's sense of being a man or a woman—is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity. PMID:19341803
Regional gray matter variation in male-to-female transsexualism.
Luders, Eileen; Sánchez, Francisco J; Gaser, Christian; Toga, Arthur W; Narr, Katherine L; Hamilton, Liberty S; Vilain, Eric
2009-07-15
Gender identity-one's sense of being a man or a woman-is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity.
Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier
2013-01-01
Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.
Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier
2013-01-01
Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510
de Zeeuw, Patrick; van Belle, Janna; van Dijk, Sarai; Weusten, Juliette; Koeleman, Bobby; Janson, Esther; van Engeland, Herman; Durston, Sarah
2012-01-01
This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58 children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cerebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were retrospectively collected using questionnaires. There was an interaction between genotype and birth weight for cerebellum gray matter volume (p = .020). The combination of homozygosity for the G-allele (the allele previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in controls, but not ADHD (interaction: p = .021). The interaction of genotype with birth weight affecting cerebellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an otherwise favorable prenatal environment. The absence of an association between birth weight and cerebellum white matter volume in ADHD suggests that other genetic or environmental effects may be at play, unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging genetics studies. PMID:24179763
Neurofilament light protein in blood predicts regional atrophy in Huntington disease.
Johnson, Eileanoir B; Byrne, Lauren M; Gregory, Sarah; Rodrigues, Filipe B; Blennow, Kaj; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A; Zetterberg, Henrik; Tabrizi, Sarah J; Scahill, Rachael I; Wild, Edward J
2018-02-20
Neurofilament light (NfL) protein in blood plasma has been proposed as a prognostic biomarker of neurodegeneration in a number of conditions, including Huntington disease (HD). This study investigates the regional distribution of NfL-associated neural pathology in HD gene expansion carriers. We examined associations between NfL measured in plasma and regionally specific atrophy in cross-sectional (n = 198) and longitudinal (n = 177) data in HD gene expansion carriers from the international multisite TRACK-HD study. Using voxel-based morphometry, we measured associations between baseline NfL levels and both baseline gray matter and white matter volume; and longitudinal change in gray matter and white matter over the subsequent 3 years in HD gene expansion carriers. After controlling for demographics, associations between increased NfL levels and reduced brain volume were seen in cortical and subcortical gray matter and within the white matter. After also controlling for known predictors of disease progression (age and CAG repeat length), associations were limited to the caudate and putamen. Longitudinally, NfL predicted subsequent occipital gray matter atrophy and widespread white matter reduction, both before and after correction for other predictors of disease progression. These findings highlight the value of NfL as a dynamic marker of brain atrophy and, more generally, provide further evidence of the strong association between plasma NfL level, a candidate blood biomarker, and pathologic neuronal change. © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Harrison, Daniel M; Oh, Jiwon; Roy, Snehashis; Wood, Emily T; Whetstone, Anna; Seigo, Michaela A; Jones, Craig K; Pham, Dzung; van Zijl, Peter; Reich, Daniel S; Calabresi, Peter A
2015-08-01
Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. We obtained 7T MRI scans on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing-remitting (mean ±SD, 10.7 ±0.7 vs. 3.0 ±0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Using 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. © The Author(s), 2015.
Webb, C A; Weber, M; Mundy, E A; Killgore, W D S
2014-10-01
Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e., comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g., DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e., severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. To examine the extent to which depressive symptoms--even at subclinical levels--are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations.
Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin
2012-02-01
In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that have been implicated in EOS and cannabis use disorders (CUD). T1-weighted magnetic resonance images were acquired from adolescents with EOS (n = 35), CUD (n = 16), EOS + CUD (n = 13), and healthy controls (HC) (n = 51). Using FreeSurfer, brain volume was examined within frontal, temporal, parietal and subcortical ROIs by a 2 (EOS versus no EOS) × 2 (CUD versus no CUD) design using multivariate analysis of covariance. In ROIs in which volumetric differences were identified, additional analyses of cortical thickness and surface area were conducted. A significant EOS-by-CUD interaction was observed. In the left superior parietal region, both "pure" EOS and "pure" CUD had smaller gray matter volumes that were associated with lower surface area compared with HC. A similar alteration was observed in the comorbid group compared with HC, but there was no additive volumetric deficit found in the comorbid group compared with the separate groups. In the left thalamus, the comorbid group had smaller gray matter volumes compared with the CUD and HC groups. These preliminary data indicate that the presence of a CUD may moderate the relationship between EOS and cerebral cortical gray matter structure in the left superior parietal lobe. Future research will follow this cohort over adolescence to further examine the impact of cannabis use on neurodevelopment.
Innes, Carrie R H; Kelly, Paul T; Hlavac, Michael; Melzer, Tracy R; Jones, Richard D
2015-05-01
To investigate gray matter volume and concentration and cerebral perfusion in people with untreated obstructive sleep apnea (OSA) while awake. Voxel-based morphometry to quantify gray matter concentration and volume. Arterial spin labeling perfusion imaging to quantify cerebral perfusion. Lying supine in a 3-T magnetic resonance imaging scanner in the early afternoon. 19 people with OSA (6 females, 13 males; mean age 56.7 y, range 41-70; mean AHI 18.5, range 5.2-52.8) and 19 controls (13 females, 6 males; mean age: 50.0 y, range 41-81). N/A. There were no differences in regional gray matter concentration or volume between participants with OSA and controls. Neither was there any difference in regional perfusion between controls and people with mild OSA (n = 11). However, compared to controls, participants with moderate-severe OSA (n = 8) had decreased perfusion (while awake) in three clusters. The largest cluster incorporated, bilaterally, the paracingulate gyrus, anterior cingulate gyrus, and subcallosal cortex, and the left putamen and left frontal orbital cortex. The second cluster was right-lateralized, incorporating the posterior temporal fusiform cortex, parahippocampal gyrus, and hippocampus. The third cluster was located in the right thalamus. There is decreased regional perfusion during wakefulness in participants with moderate-severe obstructive sleep apnea, and these are in brain regions which have shown decreased regional gray matter volume in previous studies in people with severe OSA. Thus, we hypothesize that cerebral perfusion changes are evident before (and possibly underlie) future structural changes. © 2015 Associated Professional Sleep Societies, LLC.
Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshimura, Sayaka; Kubota, Yasutaka; Sawada, Reiko; Sakihama, Morimitsu; Toichi, Motomi
2017-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by behavioral impairment in social interactions. Although theoretical and empirical evidence suggests that impairment in the social brain network could be the neural underpinnings of ASD, previous structural magnetic resonance imaging (MRI) studies in adults with ASD have not provided clear support for this, possibly due to confounding factors, such as language impairments. To further explore this issue, we acquired structural MRI data and analyzed gray matter volume in adults with ASD (n = 36) who had no language impairments (diagnosed with Asperger’s disorder or pervasive developmental disorder not otherwise specified, with symptoms milder than those of Asperger’s disorder), had no comorbidity, and were not taking medications, and in age- and sex-matched typically developing (TD) controls (n = 36). Univariate voxel-based morphometry analyses revealed that regional gray matter volume was lower in the ASD than in the control group in several brain regions, including the right inferior occipital gyrus, left fusiform gyrus, right middle temporal gyrus, bilateral amygdala, right inferior frontal gyrus, right orbitofrontal cortex, and left dorsomedial prefrontal cortex. A multivariate approach using a partial least squares (PLS) method showed that these regions constituted a network that could be used to discriminate between the ASD and TD groups. A PLS discriminant analysis using information from these regions showed high accuracy, sensitivity, specificity, and precision (>80%) in discriminating between the groups. These results suggest that reduced gray matter volume in the social brain network represents the neural underpinnings of behavioral social malfunctioning in adults with ASD. PMID:28824399
No relative expansion of the number of prefrontal neurons in primate and human evolution.
Gabi, Mariana; Neves, Kleber; Masseron, Carolinne; Ribeiro, Pedro F M; Ventura-Antunes, Lissa; Torres, Laila; Mota, Bruno; Kaas, Jon H; Herculano-Houzel, Suzana
2016-08-23
Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume.
Bellander, Martin; Berggren, Rasmus; Mårtensson, Johan; Brehmer, Yvonne; Wenger, Elisabeth; Li, Tie-Qiang; Bodammer, Nils C; Shing, Yee-Lee; Werkle-Bergner, Markus; Lövdén, Martin
2016-05-01
Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10weeks. T1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N=33) compared to an active control group (N=23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.
Tang, Wanjie; Li, Bin; Huang, Xiaoqi; Jiang, Xiaoyu; Li, Fei; Wang, Lijuan; Chen, Taolin; Wang, Jinhui; Gong, Qiyong; Yang, Yanchun
2013-10-01
Few studies have used neuroimaging to characterize treatment-refractory obsessive-compulsive disorder (OCD). This study sought to explore gray matter structure in patients with treatment-refractory OCD and compare it with that of healthy controls. A total of 18 subjects with treatment-refractory OCD and 26 healthy volunteers were analyzed by MRI using a 3.0-T scanner and voxel-based morphometry (VBM). Diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) was used to identify structural changes in gray matter associated with treatment-refractory OCD. A partial correlation model was used to analyze whether morphometric changes were associated with Yale-Brown Obsessive-Compulsive Scale scores and illness duration. Gray matter volume did not differ significantly between the two groups. Treatment-refractory OCD patients showed significantly lower gray matter density than healthy subjects in the left posterior cingulate cortex (PCC) and mediodorsal thalamus (MD) and significantly higher gray matter density in the left dorsal striatum (putamen). These changes did not correlate with symptom severity or illness duration. Our findings provide new evidence of deficits in gray matter density in treatment-refractory OCD patients. These patients may show characteristic density abnormalities in the left PCC, MD and dorsal striatum (putamen), which should be verified in longitudinal studies. © 2013. Published by Elsevier Inc. All rights reserved.
Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis.
Weng, Hsu-Huei; Chen, Chih-Feng; Tsai, Yuan-Hsiung; Wu, Chih-Ying; Lee, Meng; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang; Yang, Chun-Yuh
2015-12-01
The authors reviewed the literature on the use of voxel-based morphometry (VBM) in narcolepsy magnetic resonance imaging (MRI) studies via the use of a meta-analysis of neuroimaging to identify concordant and specific structural deficits in patients with narcolepsy as compared with healthy subjects. We used PubMed to retrieve articles published between January 2000 and March 2014. The authors included all VBM research on narcolepsy and compared the findings of the studies by using gray matter volume (GMV) or gray matter concentration (GMC) to index differences in gray matter. Stereotactic data were extracted from 8 VBM studies of 149 narcoleptic patients and 162 control subjects. We applied activation likelihood estimation (ALE) technique and found significant regional gray matter reduction in the bilateral hypothalamus, thalamus, globus pallidus, extending to nucleus accumbens (NAcc) and anterior cingulate cortex (ACC), left mid orbital and rectal gyri (BAs 10 and 11), right inferior frontal gyrus (BA 47), and the right superior temporal gyrus (BA 41) in patients with narcolepsy. The significant gray matter deficits in narcoleptic patients occurred in the bilateral hypothalamus and frontotemporal regions, which may be related to the emotional processing abnormalities and orexin/hypocretin pathway common among populations of patients with narcolepsy. Copyright © 2015. Published by Elsevier Ltd.
Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.
Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo
2009-12-01
Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.
[MRI for brain structure and function in patients with first-episode panic disorder].
Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang
2011-12-01
To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.
Prefrontal gray matter volume mediates genetic risks for obesity.
Opel, N; Redlich, R; Kaehler, C; Grotegerd, D; Dohm, K; Heindel, W; Kugel, H; Thalamuthu, A; Koutsouleris, N; Arolt, V; Teuber, A; Wersching, H; Baune, B T; Berger, K; Dannlowski, U
2017-05-01
Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.
Whole-brain voxel-based morphometry in Kallmann syndrome associated with mirror movements.
Koenigkam-Santos, M; Santos, A C; Borduqui, T; Versiani, B R; Hallak, J E C; Crippa, J A S; Castro, M
2008-10-01
There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract; and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.
Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash
2012-10-01
To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.
Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido
2007-02-07
Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.
Hsu, Chun Liang; Best, John R.; Chiu, Bryan K.; Nagamatsu, Lindsay S; Voss, Michelle W.; Handy, Todd C.; Bolandzadeh, Niousha; Liu-Ambrose, Teresa
2016-01-01
Impaired mobility, such as falls, may be an early biomarker of subsequent cognitive decline and is associated with subclinical alterations in both brain structure and function. In this 12-month prospective study, we examined whether there are volumetric differences in gray matter and subcortical regions, as well as cerebral white matter, between older fallers and non-fallers. In addition, we assessed whether these baseline volumetric differences are associated with changes in cognitive function over 12 months. A total of 66 community-dwelling older adults were recruited and categorized by their falls status. Magnetic resonance imaging occurred at baseline and participants’ physical and cognitive performances were assessed at baseline and 12-months. At baseline, fallers showed significantly lower volumes in gray matter, subcortical regions, and cerebral white matter compared with non-fallers. Notably, fallers had significantly lower left lateral orbitofrontal white matter volume. Moreover, lower left lateral orbitofrontal white matter volume at baseline was associated with greater decline in set-shifting performance over 12 months. Our data suggest that falls may indicate subclinical alterations in regional brain volume that are associated with subsequent decline in executive functions. PMID:27079333
Gray matter abnormalities of the dorsal posterior cingulate in sleep walking.
Heidbreder, Anna; Stefani, Ambra; Brandauer, Elisabeth; Steiger, Ruth; Kremser, Christian; Gizewski, Elke R; Young, Peter; Poewe, Werner; Högl, Birgit; Scherfler, Christoph
2017-08-01
This study aimed to determine whether voxel-based analysis of T1 weighted magnetic resonance imaging (MRI) and diffusion tensor imaging is able to detect alterations of gray and white matter morphometry as well as measures of mean diffusivity and fractional anisotropy in patients with non-rapid eye movement parasomnia. 3 Tesla MRI was performed in 14 drug-free, polysomnography-confirmed adult patients with non-rapid eye movement parasomnia (age: 29 ± 4.2 years; disease duration 19.2 ± 7.7 years) and 14 healthy subjects, matched for age and gender. Statistical parametric mapping was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. Statistical parametric mapping localized significant decreases of gray matter volume in the left dorsal posterior cingulate cortex (BA23) and posterior midcingulate cortex (BA24) in patients with non-rapid eye movement parasomnias compared to the control group (p < 0.001, corrected for multiple comparisons). No significant differences of mean diffusivity and fractional anisotropy measures were found between the non-rapid eye movement parasomnia group and the healthy control group. Recently, the simultaneous co-existence of arousal or wakefulness originating from the motor and cingulate cortices and persistent sleep in associative cortical regions was suggested as a functional framework of somnambulism. Gray matter volume decline in the dorsal posterior and posterior midcingulate cortex reported in this study might represent the neuroanatomical substrate for this condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Janiri, Delfina; Sani, Gabriele; Rossi, Pietro De; Piras, Fabrizio; Iorio, Mariangela; Banaj, Nerisa; Giuseppin, Giulia; Spinazzola, Edoardo; Maggiora, Matteo; Ambrosi, Elisa; Simonetti, Alessio; Spalletta, Gianfranco
2017-08-01
Volumetric studies on deep gray matter structures in bipolar disorder (BP) have reported contrasting results. Childhood trauma, a relevant environmental stressor for BP, could account for the variability of the results, modulating differences in the amygdala and hippocampus in patients with BP compared with healthy controls (HC). Our study aimed to test this hypothesis. We assessed 105 outpatients, diagnosed with bipolar disorder type I (BP-I) or bipolar disorder type II (BP-II) according to DSM-IV-TR criteria, and 113 HC subjects. History of childhood trauma was obtained using the Childhood Trauma Questionnaire (CTQ). High-resolution magnetic resonance imaging was performed on all subjects and volumes of the amygdala, hippocampus, nucleus accumbens, caudate, pallidum, putamen, and thalamus were measured using FreeSurfer. Patients with BP showed a global reduction of deep gray matter volumes compared to HCs. However, childhood trauma modulated the impact of the diagnosis specifically on the amygdala and hippocampus. Childhood trauma was associated with bilateral decreased volumes in HCs and increased volumes in patients with BP. The results suggest that childhood trauma may have a different effect in health and disease on volumes of gray matter in the amygdala and hippocampus, which are brain areas specifically involved in response to stress and emotion processing. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Frank, Guido K.; Shott, Megan E.; Hagman, Jennifer O.; Mittal, Vijay A.
2013-01-01
Objective The pathophysiology of the eating disorder anorexia nervosa remains obscure, but structural brain alterations could be functionally important biomarkers. Here we assessed taste pleasantness and reward sensitivity in relation to brain structure, which might be related to food avoidance commonly seen in eating disorders. Method We used structural magnetic resonance brain imaging to study gray and white matter volumes in individuals with restricting type currently ill (n = 19) or recovered-anorexia nervosa (n = 24), bulimia nervosa (n= 19) and healthy control women (n=24). Results All eating disorder groups showed increased gray matter volume of the medial orbitofrontal cortex (gyrus rectus). Manually tracing confirmed larger gyrus rectus volume, and predicted taste pleasantness across all groups. The analyses also indicated other morphological differences between diagnostic categories: Ill and recovered-anorexia nervosa had increased right, while bulimia nervosa had increased left antero-ventral insula gray matter volumes compared to controls. Furthermore, dorsal striatum volumes were reduced in recovered-anorexia and bulimia nervosa, and predicted sensitivity to reward in the eating disorder groups. The eating disorder groups also showed reduced white matter in right temporal and parietal areas when compared to healthy controls. Notably, the results held when controlling for a range of covariates (e.g., age, depression, anxiety, medications). Conclusion Brain structure in medial orbitofrontal cortex, insula and striatum is altered in eating disorders and suggests altered brain circuitry that has been associated with taste pleasantness and reward value. PMID:23680873
Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.
Chronic cocaine use has been associated with structural deficits in brain regions having dopamine receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. We therefore examined variations in gray matter volume (GMV) as a function of lifetime drug use and the monoamine oxidase A (MAOA) genotype in cocaine use disorders (CUD) and healthy controls.
Wojtalik, Jessica A; Eack, Shaun M; Pollock, Bruce G; Keshavan, Matcheri S
2012-11-30
Antipsychotic and other medications used in the treatment of schizophrenia place a burden on the cholinergic subsystems of the brain, which have been associated with increased cognitive impairment in the disorder. This study sought to examine the neurobiologic correlates of the association between serum anticholinergic activity (SAA) and cognitive impairments in early schizophrenia. Neurocognitive performance on measures of memory and executive function, structural magnetic resonance imaging (MRI) scans, and SAA assays were collected from 47 early course, stabilized outpatients with schizophrenia or schizoaffective disorder. Voxel-based morphometry analyses employing general linear models, adjusting for demographic and illness-related confounds, were used to investigate the associations between SAA, gray matter morphology, and neurocognitive impairment. SAA was related to working memory and executive function impairments. Higher SAA was significantly associated with lower gray matter density in broad regions of the frontal and medial-temporal lobes, including the dorsolateral prefrontal cortex (DLPFC), hippocampus, and striatum. Lower gray matter volume in the left DLPFC was found to significantly mediate the association between SAA and working memory impairment. Disease- and/or medication-related cholinergic dysfunction may be associated with brain volume abnormalities in early course schizophrenia, which may account for the association between SAA and cognitive dysfunction in the disorder. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa.
Wagner, Angela; Greer, Phil; Bailer, Ursula F; Frank, Guido K; Henry, Shannan E; Putnam, Karen; Meltzer, Carolyn C; Ziolko, Scott K; Hoge, Jessica; McConaha, Claire; Kaye, Walter H
2006-02-01
Individuals who are ill with anorexia (AN) and bulimia nervosa (BN) often have increased cerebrospinal fluid (CSF) volumes and decreased total gray and white matter volumes. It is unclear whether such disturbances persist after recovery from an eating disorder. Magnetic resonance imaging was performed on 40 women who were long-term recovered (>1 year no binging, purging, or restricting behaviors, normal weight, and menstrual cycles, not on medication) from restricting or binge/purging type AN or BN and 31 healthy control women (CW). Voxel-based morphometry (VBM) was used for data analysis. Recovered AN and BN subgroups were similar to CW in terms of cerebrospinal fluid (CSF) volume as well as total or regional gray or white matter volume. These findings suggest that structural brain abnormalities are reversible in individuals with eating disorders after long-term recovery.
Lin, Joanne C; Chu, Larry F; Stringer, Elizabeth Ann; Baker, Katharine S; Sayyid, Zahra N; Sun, John; Campbell, Kelsey A; Younger, Jarred W
2016-08-01
Prolonged exposure to opioids is known to produce neuroplastic changes in animals; however, few studies have investigated the effects of short-term prescription opioid use in humans. A previous study from our laboratory demonstrated a dosage-correlated volumetric decrease in the right amygdala of participants administered oral morphine daily for 1 month. The purpose of this current study was to replicate and extend the initial findings. Twenty-one participants with chronic low back pain were enrolled in this double-blind, placebo-controlled study. Participants were randomized to receive daily morphine (n = 11) or a matched placebo (n = 10) for 1 month. High-resolution anatomical images were acquired immediately before and after the treatment administration period. Morphological gray matter changes were investigated using tensor-based morphometry, and significant regions were subsequently tested for correlation with morphine dosage. Decreased gray matter volume was observed in several reward- and pain-related regions in the morphine group, including the bilateral amygdala, left inferior orbitofrontal cortex, and bilateral pre-supplementary motor areas. Morphine administration was also associated with significant gray matter increases in cingulate regions, including the mid cingulate, dorsal anterior cingulate, and ventral posterior cingulate. Many of the volumetric increases and decreases overlapped spatially with the previously reported changes. Individuals taking placebo for 1 month showed neither gray matter increases nor decreases. The results corroborate previous reports that rapid alterations occur in reward-related networks following short-term prescription opioid use. © 2015 American Academy of Pain Medicine.
NASA Astrophysics Data System (ADS)
Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen
2013-12-01
Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.
Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging.
Yang, Alicia W; Jensen, Jens H; Hu, Caixia C; Tabesh, Ali; Falangola, Maria F; Helpern, Joseph A
2013-02-01
To evaluate the cerebral spinal fluid (CSF) partial volume effect on diffusional kurtosis imaging (DKI) metrics in white matter and cortical gray matter. Four healthy volunteers participated in this study. Standard DKI and fluid-attenuated inversion recovery (FLAIR) DKI experiments were performed using a twice-refocused-spin-echo diffusion sequence. The conventional diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, D[symbol in text], D[symbol in text] together with DKI metrics of mean, axial, and radial kurtosis (MK, K[symbol in text], K[symbol in text], were measured and compared. Single image slices located above the lateral ventricles, with similar anatomical features for each subject, were selected to minimize the effect of CSF from the ventricles. In white matter, differences of less than 10% were observed between diffusion metrics measured with standard DKI and FLAIR-DKI sequences, suggesting minimal CSF contamination. For gray matter, conventional DTI metrics differed by 19% to 52%, reflecting significant CSF partial volume effects. Kurtosis metrics, however, changed by 11% or less, indicating greater robustness with respect to CSF contamination. Kurtosis metrics are less sensitive to CSF partial voluming in cortical gray matter than conventional diffusion metrics. The kurtosis metrics may then be more specific indicators of changes in tissue microstructure, provided the effect sizes for the changes are comparable. Copyright © 2012 Wiley Periodicals, Inc.
Li, Hehui; Booth, James R; Bélanger, Nathalie N; Feng, Xiaoxia; Tian, Mengyu; Xie, Weiyi; Zhang, Manli; Gao, Yue; Ang, Chen; Yang, Xiujie; Liu, Li; Meng, Xiangzhi; Ding, Guosheng
2018-06-12
Several neuroimaging studies have explored the neural basis of literacy difficulties in the second language (L2). However, it remains unclear whether the associated neural alterations are related to literacy abilities in the first language (L1). Using magnetic resonance imaging, we explore this issue with two experiments in Mandarin-speaking children learning English as second language. In the first experiment, we investigated children with literacy difficulties in L2 and L1 (poor in both, PB) and children with literacy difficulties only in L2 (poor in English, PE). We compared the brain structure in these two groups to a control literacy (CL) group. The results showed that the CL group had significantly less gray matter volume in the left supramarginal gyrus compared to the PB group and moderately less gray matter volume compared to the PE group. In addition, the PB group had significant greater gray matter volume in the left medial fusiform gyrus compared to the PE group and had marginally greater gray matter volume compared to the CL group. In the second experiment, we explored the relationship between the two atypical regions and literacy abilities in the two languages in an independent sample consisting of children with typical literacy. Correlation analyses revealed that the left supramarginal gyrus was significantly associated with literacy performance only in the second language, English, whereas the left medial fusiform gyrus did not correlate with the performances in either L1 or L2. Taken together, these findings suggest that literacy difficulties in an alphabetic L2 are associated with a structural abnormality in the left supramarginal gyrus, a region implicated in phonological processing, which is independent of literacy abilities in the native language. Copyright © 2018 Elsevier Inc. All rights reserved.
Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier
2013-06-01
Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W
2017-02-01
To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.
Neuroanatomical profiles of alexithymia dimensions and subtypes.
Goerlich-Dobre, Katharina Sophia; Votinov, Mikhail; Habel, Ute; Pripfl, Juergen; Lamm, Claus
2015-10-01
Alexithymia, a major risk factor for a range of psychiatric and neurological disorders, has been recognized to comprise two dimensions, a cognitive dimension (difficulties identifying, analyzing, and verbalizing feelings) and an affective one (difficulties emotionalizing and fantasizing). Based on these dimensions, the existence of four distinct alexithymia subtypes has been proposed, but never empirically tested. In this study, 125 participants were assigned to four groups corresponding to the proposed alexithymia subtypes: Type I (impairment on both dimensions), Type II (impairment on the cognitive, but not the affective dimension), Type III (impairment on the affective, but not the cognitive dimension), and Lexithymics (no impairment on either dimension). By means of voxel-based morphometry, associations of the alexithymia dimensions and subtypes with gray and white matter volumes were analyzed. Type I and Type II alexithymia were characterized by gray matter volume reductions in the left amygdala and the thalamus. The cognitive dimension was further linked to volume reductions in the right amygdala, left posterior insula, precuneus, caudate, hippocampus, and parahippocampus. Type III alexithymia was marked by volume reduction in the MCC only, and the affective dimension was further characterized by larger sgACC volume. Moreover, individuals with the intermediate alexithymia Types II and III showed gray matter volume reductions in distinct regions, and had larger corpus callosum volumes compared to Lexithymics. These results substantiate the notion of a differential impact of the cognitive and affective alexithymia dimensions on brain morphology and provide evidence for separable neuroanatomical representations of the different alexithymia subtypes. © 2015 Wiley Periodicals, Inc.
Early visual cortical structural changes in diabetic patients without diabetic retinopathy.
Ferreira, Fábio S; Pereira, João M S; Reis, Aldina; Sanches, Mafalda; Duarte, João V; Gomes, Leonor; Moreno, Carolina; Castelo-Branco, Miguel
2017-11-01
It is known that diabetic patients have changes in cortical morphometry as compared to controls, but it remains to be clarified whether the visual cortex is a disease target, even when diabetes complications such as retinopathy are absent. Therefore, we compared type 2 diabetes patients without diabetic retinopathy with control subjects using magnetic resonance imaging to assess visual cortical changes when retinal damage is not yet present. We performed T1-weighted imaging in 24 type 2 diabetes patients without diabetic retinopathy and 27 age- and gender-matched controls to compare gray matter changes in the occipital cortex between groups using voxel based morphometry. Patients without diabetic retinopathy showed reduced gray matter volume in the occipital lobe when compared with controls. Reduced gray matter volume in the occipital cortex was found in diabetic patients without retinal damage. We conclude that cortical early visual processing regions may be affected in diabetic patients even before retinal damage occurs.
Chung, Hui-Kuan; Tymula, Agnieszka; Glimcher, Paul
2017-12-06
The population of people above 65 years old continues to grow, and there is mounting evidence that as humans age they are more likely to make errors. However, the specific effect of neuroanatomical aging on the efficiency of economic decision-making is poorly understood. We used whole-brain voxel-based morphometry analysis to determine where reduction of gray matter volume in healthy female and male adults over the age of 65 years correlates with a classic measure of economic irrationality: violations of the Generalized Axiom of Revealed Preference. All participants were functionally normal with Mini-Mental State Examination scores ranging between 26 and 30. While our elders showed the previously reported decline in rationality compared with younger subjects, chronological age per se did not correlate with rationality measures within our population of elders. Instead, reduction of gray matter density in ventrolateral prefrontal cortex correlates tightly with irrational behavior. Interestingly, using a large fMRI sample and meta-analytic tool with Neurosynth, we found that this brain area shows strong coactivation patterns with nearly all of the value-associated regions identified in previous studies. These findings point toward a neuroanatomic locus for economic rationality in the aging brain and highlight the importance of understanding both anatomy and function in the study of aging, cognition, and decision-making. SIGNIFICANCE STATEMENT Age is a crucial factor in decision-making, with older individuals making more errors in choices. Using whole-brain voxel-based morphometry analysis, we found that reduction of gray matter density in ventrolateral prefrontal cortex correlates with economic irrationality: reduced gray matter volume in this area correlates with the frequency and severity of violations of the Generalized Axiom of Revealed Preference. Furthermore, this brain area strongly coactivates with other reward-associated regions identified with Neurosynth. These findings point toward a role for neuroscientific discoveries in shaping long-standing economic views of decision-making. Copyright © 2017 the authors 0270-6474/17/3712068-10$15.00/0.
Tymula, Agnieszka
2017-01-01
The population of people above 65 years old continues to grow, and there is mounting evidence that as humans age they are more likely to make errors. However, the specific effect of neuroanatomical aging on the efficiency of economic decision-making is poorly understood. We used whole-brain voxel-based morphometry analysis to determine where reduction of gray matter volume in healthy female and male adults over the age of 65 years correlates with a classic measure of economic irrationality: violations of the Generalized Axiom of Revealed Preference. All participants were functionally normal with Mini-Mental State Examination scores ranging between 26 and 30. While our elders showed the previously reported decline in rationality compared with younger subjects, chronological age per se did not correlate with rationality measures within our population of elders. Instead, reduction of gray matter density in ventrolateral prefrontal cortex correlates tightly with irrational behavior. Interestingly, using a large fMRI sample and meta-analytic tool with Neurosynth, we found that this brain area shows strong coactivation patterns with nearly all of the value-associated regions identified in previous studies. These findings point toward a neuroanatomic locus for economic rationality in the aging brain and highlight the importance of understanding both anatomy and function in the study of aging, cognition, and decision-making. SIGNIFICANCE STATEMENT Age is a crucial factor in decision-making, with older individuals making more errors in choices. Using whole-brain voxel-based morphometry analysis, we found that reduction of gray matter density in ventrolateral prefrontal cortex correlates with economic irrationality: reduced gray matter volume in this area correlates with the frequency and severity of violations of the Generalized Axiom of Revealed Preference. Furthermore, this brain area strongly coactivates with other reward-associated regions identified with Neurosynth. These findings point toward a role for neuroscientific discoveries in shaping long-standing economic views of decision-making. PMID:28982708
Zaremba, Dario; Enneking, Verena; Meinert, Susanne; Förster, Katharina; Bürger, Christian; Dohm, Katharina; Grotegerd, Dominik; Redlich, Ronny; Dietsche, Bruno; Krug, Axel; Kircher, Tilo; Kugel, Harald; Heindel, Walter; Baune, Bernhard T; Arolt, Volker; Dannlowski, Udo
2018-02-08
Patients with major depression show reduced hippocampal volume compared to healthy controls. However, the contribution of patients' cumulative illness severity to hippocampal volume has rarely been investigated. It was the aim of our study to find a composite score of cumulative illness severity that is associated with hippocampal volume in depression. We estimated hippocampal gray matter volume using 3-tesla brain magnetic resonance imaging in 213 inpatients with acute major depression according to DSM-IV criteria (employing the SCID interview) and 213 healthy controls. Patients' cumulative illness severity was ascertained by six clinical variables via structured clinical interviews. A principal component analysis was conducted to identify components reflecting cumulative illness severity. Regression analyses and a voxel-based morphometry approach were used to investigate the influence of patients' individual component scores on hippocampal volume. Principal component analysis yielded two main components of cumulative illness severity: Hospitalization and Duration of Illness. While the component Hospitalization incorporated information from the intensity of inpatient treatment, the component Duration of Illness was based on the duration and frequency of illness episodes. We could demonstrate a significant inverse association of patients' Hospitalization component scores with bilateral hippocampal gray matter volume. This relationship was not found for Duration of Illness component scores. Variables associated with patients' history of psychiatric hospitalization seem to be accurate predictors of hippocampal volume in major depression and reliable estimators of patients' cumulative illness severity. Future studies should pay attention to these measures when investigating hippocampal volume changes in major depression.
Macrostructural abnormalities in Korsakoff syndrome compared with uncomplicated alcoholism.
Pitel, A-L; Chételat, G; Le Berre, A P; Desgranges, B; Eustache, F; Beaunieux, H
2012-04-24
To distinguish, in patients with Korsakoff syndrome (KS), the structural brain abnormalities shared with alcoholic patients without KS (AL), from those specific to KS. MRI data were collected in 11 alcoholic patients with KS, 34 alcoholic patients without KS, and 25 healthy control subjects (CS). Gray and white matter volumes were compared in the 3 groups using a voxel-based approach. A conjunction analysis indicated a large pattern of shared gray and white matter volume deficits in AL and KS. There were graded effects of volume deficits (KS < AL < CS) in the medial portion of the thalami, hypothalamus (mammillary bodies), left insula, and genu of the corpus callosum. Abnormalities in the left thalamic radiation were observed only in KS. Our results indicate considerable similarities in the pattern of gray and white matter damage in AL and KS. This finding confirms the widespread neurotoxic effect of chronic alcohol consumption. Only a few cerebral regions, including the medial thalami, mammillary bodies, and corpus callosum, were more severely damaged in KS than in AL. The continuum of macrostructural damage from AL to KS is therefore restricted to key brain structures. Longitudinal investigations are required to determine whether alcoholic patients with medial thalamic volumes that are comparable to those of patients with KS are at increased risk of developing KS.
Impact of gray matter reductions on theory of mind abilities in patients with schizophrenia.
Koelkebeck, Katja; Hirao, Kazuyuki; Miyata, Jun; Kawada, Ryosaku; Saze, Teruyasu; Dannlowski, Udo; Ubukata, Shiho; Ohrmann, Patricia; Bauer, Jochen; Pedersen, Anya; Fukuyama, Hidenao; Sawamoto, Nobukatsu; Takahashi, Hidehiko; Murai, Toshiya
2013-01-01
To identify the brain regions involved in the interpretation of intentional movement by patients with schizophrenia, we investigated the association between cerebral gray matter (GM) volumes and performance on a theory of mind (ToM) task using voxel-based morphometry. Eighteen patients with schizophrenia and thirty healthy controls participated in the study. Participants were given a moving shapes task that employs the interpretation of intentional movement. Verbal descriptions were rated according to intentionality. ToM performance deficits in patients were found to be positively correlated with GM volume reductions in the superior temporal sulcus and medial prefrontal cortex. Our findings confirm that divergent brain regions contribute to mentalizing abilities and that GM volume reductions impact behavioral deficits in patients with schizophrenia.
Prigge, Molly D; Bigler, Erin D; Fletcher, P Thomas; Zielinski, Brandon A; Ravichandran, Caitlin; Anderson, Jeffrey; Froehlich, Alyson; Abildskov, Tracy; Papadopolous, Evangelia; Maasberg, Kathryn; Nielsen, Jared A; Alexander, Andrew L; Lange, Nicholas; Lainhart, Janet
2013-04-01
Heightened auditory sensitivity and atypical auditory processing are common in autism. Functional studies suggest abnormal neural response and hemispheric activation to auditory stimuli, yet the neurodevelopment underlying atypical auditory function in autism is unknown. In this study, we model longitudinal volumetric growth of Heschl's gyrus gray matter and white matter during childhood and adolescence in 40 individuals with autism and 17 typically developing participants. Up to three time points of magnetic resonance imaging data, collected on average every 2.5 years, were examined from individuals 3-12 years of age at the time of their first scan. Consistent with previous cross-sectional studies, no group differences were found in Heschl's gyrus gray matter volume or asymmetry. However, reduced longitudinal gray matter volumetric growth was found in the right Heschl's gyrus in autism. Reduced longitudinal white matter growth in the left hemisphere was found in the right-handed autism participants. Atypical Heschl's gyrus white matter volumetric growth was found bilaterally in the autism individuals with a history of delayed onset of spoken language. Heightened auditory sensitivity, obtained from the Sensory Profile, was associated with reduced volumetric gray matter growth in the right hemisphere. Our longitudinal analyses revealed dynamic gray and white matter changes in Heschl's gyrus throughout childhood and adolescence in both typical development and autism. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes.
Liu, Min; Concha, Luis; Beaulieu, Christian; Gross, Donald W
2011-12-01
By definition idiopathic generalized epilepsy (IGE) is not associated with structural abnormalities on conventional magnetic resonance imaging (MRI). However, recent quantitative studies suggest white and gray matter alterations in IGE. The purpose of this study was to investigate whether there are white and/or gray matter structural differences between controls and two subsets of IGE, namely juvenile myoclonic epilepsy (JME) and IGE with generalized tonic-clonic seizures only (IGE-GTC). We assessed white matter integrity and gray matter volume using diffusion tensor tractography-based analysis of fractional anisotropy and voxel-based morphometry, respectively, in 25 patients with IGE, all of whom had experienced generalized tonic-clonic convulsions. Specifically, 15 patients with JME and 10 patients with IGE-GTC were compared to two groups of similarly matched controls separately. Correlations between total lifetime generalized tonic-clonic seizures and fractional anisotropy were investigated for both groups. Tractography revealed lower fractional anisotropy in specific tracts including the crus of the fornix, body of corpus callosum, uncinate fasciculi, superior longitudinal fasciculi, anterior limb of internal capsule, and corticospinal tracts in JME with respect to controls, whereas there were no fractional anisotropy differences in IGE-GTC. No correlation was found between fractional anisotropy and total lifetime generalized tonic-clonic seizures for either JME or IGE-GTC. Although false discovery rate-corrected voxel-based morphometry (VBM) showed no gray matter volume differences between patient and control groups, spatial extent cluster-corrected VBM analysis suggested a trend of gray matter volume reduction in frontal and central regions in both patient groups, more lateral in JME and more medial in IGE-GTC. The findings support the idea that the clinical syndromes of JME and IGE-GTC have unique anatomic substrates. The fact that the primary clinical difference between JME and IGE-GTC is the occurrence of myoclonus in the former raises the possibility that disruption of white matter integrity may be the underlying mechanism responsible for myoclonus in JME. The cross-sectional study design and relatively small number of subjects limits the conclusions that can be drawn here; however, the absence of a correlation between fractional anisotropy and lifetime seizures is suggestive that the white matter abnormalities observed in JME may not be secondary to seizures. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
Ansell, Emily B; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita
2012-07-01
Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p < .001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Ansell, Emily B.; Rando, Kenneth; Tuit, Keri; Guarnaccia, Joseph; Sinha, Rajita
2012-01-01
Background Cumulative adversity and stress are associated with risk of psychiatric disorders. While basic science studies show repeated and chronic stress effects on prefrontal and limbic neurons, human studies examining cumulative stress and effects on brain morphology are rare. Thus, we assessed whether cumulative adversity is associated with differences in gray matter volume, particularly in regions regulating emotion, self-control, and top-down processing in a community sample. Methods One hundred three healthy community participants, aged 18 to 48 and 68% male, completed interview assessment of cumulative adversity and a structural magnetic resonance imaging protocol. Whole-brain voxel-based-morphometry analysis was performed adjusting for age, gender, and total intracranial volume. Results Cumulative adversity was associated with smaller volume in medial prefrontal cortex (PFC), insular cortex, and subgenual anterior cingulate regions (familywise error corrected, p <.001). Recent stressful life events were associated with smaller volume in two clusters: the medial PFC and the right insula. Life trauma was associated with smaller volume in the medial PFC, anterior cingulate, and subgenual regions. The interaction of greater subjective chronic stress and greater cumulative life events was associated with smaller volume in the orbitofrontal cortex, insula, and anterior and subgenual cingulate regions. Conclusions Current results demonstrate that increasing cumulative exposure to adverse life events is associated with smaller gray matter volume in key prefrontal and limbic regions involved in stress, emotion and reward regulation, and impulse control. These differences found in community participants may serve to mediate vulnerability to depression, addiction, and other stress-related psychopathology. PMID:22218286
Carlson, Joshua M; Beacher, Felix; Reinke, Karen S; Habib, Reza; Harmon-Jones, Eddie; Mujica-Parodi, Lilianne R; Hajcak, Greg
2012-01-16
An important aspect of the fear response is the allocation of spatial attention toward threatening stimuli. This response is so powerful that modulations in spatial attention can occur automatically without conscious awareness. Functional neuroimaging research suggests that the amygdala and anterior cingulate cortex (ACC) form a network involved in the rapid orienting of attention to threat. A hyper-responsive attention bias to threat is a common component of anxiety disorders. Yet, little is known of how individual differences in underlying brain morphometry relate to variability in attention bias to threat. Here, we performed two experiments using dot-probe tasks that measured individuals' attention bias to backward masked fearful faces. We collected whole-brain structural magnetic resonance images and used voxel-based morphometry to measure brain morphometry. We tested the hypothesis that reduced gray matter within the amygdala and ACC would be associated with reduced attention bias to threat. In Experiment 1, we found that backward masked fearful faces captured spatial attention and that elevated attention bias to masked threat was associated with greater ACC gray matter volumes. In Experiment 2, this association was replicated in a separate sample. Thus, we provide initial and replicating evidence that ACC gray matter volume is correlated with biased attention to threat. Importantly, we demonstrate that variability in affective attention bias within the healthy population is associated with ACC morphometry. This result opens the door for future research into the underlying brain morphometry associated with attention bias in clinically anxious populations. Copyright © 2011 Elsevier Inc. All rights reserved.
Moon, Hyeong Cheol; Park, Chan-A; Jeon, Yeong-Jae; You, Soon Tae; Baek, Hyun Man; Lee, Youn Joo; Cho, Chul Beom; Cheong, Chae Joon; Park, Young Seok
2018-05-16
The cingulate cortex (CC) is a brain region that plays a key role in pain processing, but CC abnormalities are not unclear in patients with trigeminal neuralgia (TN). The purpose of this study was to determine the central causal mechanisms of TN and the surrounding brain structure in healthy controls and patients with TN using 7 Tesla (T) magnetic resonance imaging (MRI). Whole-brain parcellation in gray matter volume and thickness was assessed in 15 patients with TN and 16 healthy controls matched for sex, age, and regional variability using T1-weighted imaging. Regions of interest (ROIs) were measured in rostral anterior CC (rACC), caudal anterior CC (cACC) and posterior CC (PCC). We also investigated associations between gray matter volume or thickness and clinical symptoms, such as pain duration, Barrow Neurologic Institute (BNI) scores, offender vessel, and medications, in patients with TN. The cACC and PCC exhibited gray matter atrophy and reduced thickness between the TN and control groups. However, the rACC did not. Cortical volumes were negatively correlated with pain duration in transverse and inferior temporal areas, and thickness was also negatively correlated with pain duration in superior frontal and parietal areas. The cACC and PCC gray matter atrophy occurred in the patients with TN, and pain duration was associated with frontal, parietal, and temporal cortical regions. These results suggest that the cACC, PCC but not the rACC are associated with central pain mechanisms in TN. Copyright © 2018 Elsevier Inc. All rights reserved.
Bailey, Stephen; Hoeft, Fumiko; Aboud, Katherine; Cutting, Laurie
2016-01-01
Specific reading comprehension deficits (SRCD) affects up to 10% of all children. SRCD is distinct from dyslexia (DYS) in that individuals with SRCD show poor comprehension despite adequate decoding skills. Despite its prevalence and considerable behavioral research, there is not yet a unified cognitive explanation of SRCD. While its neuroanatomical basis is unknown, SRCD could be anomalous in regions subserving their commonly reported cognitive weaknesses in semantic processing and/or executive function. Here we investigated, for the first time, patterns of gray matter volume difference in SRCD as compared to DYS and typical developing (TD) adolescent readers (N=41). A linear support vector machine algorithm was applied to whole brain gray matter volumes generated through voxel-based morphometry. As expected, analyses revealed that DYS differed significantly from TD in a pattern that included features from left fusiform and supramarginal gyri (DYS vs. TD: 80.0%, p < 0.01). SRCD was well differentiated not only from TD (92.5%, p < 0.001) but also from DYS (88.0%, p < 0.001). Of particular interest were findings of reduced gray matter volume in right frontal areas that were also supported by univariate analysis. These areas are thought to subserve executive processes relevant for reading, such as monitoring and manipulating mental representations. Thus, preliminary analyses suggest that SRCD readers possess a distinct neural profile compared to both TD and DYS readers and that these differences might be linked to domain-general abilities. This work provides a foundation for further investigation into variants of reading disability beyond DYS. PMID:27324343
Convection-enhanced delivery of M13 bacteriophage to the brain
Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C.; Asthagiri, Ashok R.; Heiss, John D.; Lonser, Russell R.
2013-01-01
Object Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Methods Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Results Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was −2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. Conclusions The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation enhances distribution of this large nanoparticle. Real-time MRI studies of coinfused Gd-DTPA (1 mM) can be used for accurate tracking of distribution during infusion of M13 bacteriophage. PMID:22606981
Convection-enhanced delivery of M13 bacteriophage to the brain.
Ksendzovsky, Alexander; Walbridge, Stuart; Saunders, Richard C; Asthagiri, Ashok R; Heiss, John D; Lonser, Russell R
2012-08-01
Recent studies indicate that M13 bacteriophage, a very large nanoparticle, binds to β-amyloid and α-synuclein proteins, leading to plaque disaggregation in models of Alzheimer and Parkinson disease. To determine the feasibility, safety, and characteristics of convection-enhanced delivery (CED) of M13 bacteriophage to the brain, the authors perfused primate brains with bacteriophage. Four nonhuman primates underwent CED of M13 bacteriophage (900 nm) to thalamic gray matter (4 infusions) and frontal white matter (3 infusions). Bacteriophage was coinfused with Gd-DTPA (1 mM), and serial MRI studies were performed during infusion. Animals were monitored for neurological deficits and were killed 3 days after infusion. Tissues were analyzed for bacteriophage distribution. Real-time T1-weighted MRI studies of coinfused Gd-DTPA during infusion demonstrated a discrete region of perfusion in both thalamic gray and frontal white matter. An MRI-volumetric analysis revealed that the mean volume of distribution (Vd) to volume of infusion (Vi) ratio of M13 bacteriophage was 2.3 ± 0.2 in gray matter and 1.9 ± 0.3 in white matter. The mean values are expressed ± SD. Immunohistochemical analysis demonstrated mean Vd:Vi ratios of 2.9 ± 0.2 in gray matter and 2.1 ± 0.3 in white matter. The Gd-DTPA accurately tracked M13 bacteriophage distribution (the mean difference between imaging and actual bacteriophage Vd was insignificant [p > 0.05], and was -2.2% ± 9.9% in thalamic gray matter and 9.1% ± 9.5% in frontal white matter). Immunohistochemical analysis revealed evidence of additional spread from the initial delivery site in white matter (mean Vd:Vi, 16.1 ± 9.1). All animals remained neurologically intact after infusion during the observation period, and histological studies revealed no evidence of toxicity. The CED method can be used successfully and safely to distribute M13 bacteriophage in the brain. Furthermore, additional white matter spread after infusion cessation enhances distribution of this large nanoparticle. Real-time MRI studies of coinfused Gd-DTPA (1 mM) can be used for accurate tracking of distribution during infusion of M13 bacteriophage.
Mercier, Manuel R; Bickel, Stephan; Megevand, Pierre; Groppe, David M; Schroeder, Charles E; Mehta, Ashesh D; Lado, Fred A
2017-02-15
While there is a strong interest in meso-scale field potential recording using intracranial electroencephalography with penetrating depth electrodes (i.e. stereotactic EEG or S-EEG) in humans, the signal recorded in the white matter remains ignored. White matter is generally considered electrically neutral and often included in the reference montage. Moreover, re-referencing electrophysiological data is a critical preprocessing choice that could drastically impact signal content and consequently the results of any given analysis. In the present stereotactic electroencephalography study, we first illustrate empirically the consequences of commonly used references (subdermal, white matter, global average, local montage) on inter-electrode signal correlation. Since most of these reference montages incorporate white matter signal, we next consider the difference between signals recorded in cortical gray matter and white matter. Our results reveal that electrode contacts located in the white matter record a mixture of activity, with part arising from the volume conduction (zero time delay) of activity from nearby gray matter. Furthermore, our analysis shows that white matter signal may be correlated with distant gray matter signal. While residual passive electrical spread from nearby matter may account for this relationship, our results suggest the possibility that this long distance correlation arises from the white matter fiber tracts themselves (i.e. activity from distant gray matter traveling along axonal fibers with time lag larger than zero); yet definitive conclusions about the origin of the white matter signal would require further experimental substantiation. By characterizing the properties of signals recorded in white matter and in gray matter, this study illustrates the importance of including anatomical prior knowledge when analyzing S-EEG data. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain Morphology Links Systemic Inflammation to Cognitive Function in Midlife Adults
Marsland, Anna L.; Gianaros, Peter J.; Kuan, Dora C-H.; Sheu, Lei K.; Krajina, Katarina; Manuck, Stephen B.
2015-01-01
Background Inflammation is linked to cognitive decline in midlife, but the neural basis for this link is unclear. One possibility is that inflammation associates with adverse changes in brain morphology, which accelerates cognitive aging and later dementia risk. Clear evidence is lacking, however, regarding whether inflammation relates to cognition in midlife via changes in brain morphology. Accordingly, the current study examines whether associations of inflammation with cognitive function are mediated by variation in cortical gray matter volume among midlife adults. Methods Plasma levels of interleukin (IL)-6 and C-reactive protein (CRP), relatively stable markers of peripheral systemic inflammation, were assessed in 408 community volunteers aged 30–54 years. All participants underwent structural neuroimaging to assess global and regional brain morphology and completed neuropsychological tests sensitive to early changes in cognitive function. Measurements of brain morphology (regional tissue volumes and cortical thickness and surface area) were derived using Freesurfer. Results Higher peripheral inflammation was associated with poorer spatial reasoning, short term memory, verbal proficiency, learning and memory, and executive function, as well as lower cortical gray and white matter volumes, hippocampal volume and cortical surface area. Mediation models with age, sex and intracranial volume as covariates showed cortical gray matter volume to partially mediate the association of inflammation with cognitive performance. Exploratory analyses of body mass suggested that adiposity may be a source of the inflammation linking brain morphology to cognition. Conclusions Inflammation and adiposity might relate to cognitive decline via influences on brain morphology. PMID:25882911
Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring
Parvaz, Muhammad A.; Maloney, Thomas; Moeller, Scott J.; Malaker, Pias; Konova, Anna B.; Alia-Klein, Nelly; Goldstein, Rita Z.
2014-01-01
Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC–N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations. PMID:24918068
Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring.
Parvaz, Muhammad A; Maloney, Thomas; Moeller, Scott J; Malaker, Pias; Konova, Anna B; Alia-Klein, Nelly; Goldstein, Rita Z
2014-01-01
Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC-N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations.
Variations in Brain Volume and Growth in Young Children With Type 1 Diabetes.
Mazaika, Paul K; Weinzimer, Stuart A; Mauras, Nelly; Buckingham, Bruce; White, Neil H; Tsalikian, Eva; Hershey, Tamara; Cato, Allison; Aye, Tandy; Fox, Larry; Wilson, Darrell M; Tansey, Michael J; Tamborlane, William; Peng, Daniel; Raman, Mira; Marzelli, Matthew; Reiss, Allan L
2016-02-01
Early-onset type 1 diabetes may affect the developing brain during a critical window of rapid brain maturation. Structural MRI was performed on 141 children with diabetes (4-10 years of age at study entry) and 69 age-matched control subjects at two time points spaced 18 months apart. For the children with diabetes, the mean (±SD) HbA1c level was 7.9 ± 0.9% (63 ± 9.8 mmol/mol) at both time points. Relative to control subjects, children with diabetes had significantly less growth of cortical gray matter volume and cortical surface area and significantly less growth of white matter volume throughout the cortex and cerebellum. For the population with diabetes, the change in the blood glucose level at the time of scan across longitudinal time points was negatively correlated with the change in gray and white matter volumes, suggesting that fluctuating glucose levels in children with diabetes may be associated with corresponding fluctuations in brain volume. In addition, measures of hyperglycemia and glycemic variation were significantly negatively correlated with the development of surface curvature. These results demonstrate that early-onset type 1 diabetes has widespread effects on the growth of gray and white matter in children whose blood glucose levels are well within the current treatment guidelines for the management of diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Neuroimaging correlates of parent ratings of working memory in typically developing children
Mahone, E. Mark; Martin, Rebecca; Kates, Wendy R.; Hay, Trisha; Horská, Alena
2009-01-01
The purpose of the present study was to investigate construct validity of parent ratings of working memory in children, using a multi-trait/multi-method design including neuroimaging, rating scales, and performance-based measures. Thirty-five typically developing children completed performance-based tests of working memory and nonexecutive function (EF) skills, received volumetric MRI, and were rated by parents on both EF-specific and broad behavior rating scales. After controlling for total cerebral volume and age, parent ratings of working memory were significantly correlated with frontal gray, but not temporal, parietal, or occipital gray, or any lobar white matter volumes. Performance-based measures of working memory were also moderately correlated with frontal lobe gray matter volume; however, non-EF parent ratings and non-EF performance-based measures were not correlated with frontal lobe volumes. Results provide preliminary support for the convergent and discriminant validity of parent ratings of working memory, and emphasize their utility in exploring brain–behavior relationships in children. Rating scales that directly examine EF skills may potentially have ecological validity, not only for “everyday” function, but also as correlates of brain volume. PMID:19128526
Cognition in multiple sclerosis: Between cognitive reserve and brain volume.
Fenu, G; Lorefice, L; Arru, M; Sechi, V; Loi, L; Contu, F; Cabras, F; Coghe, G; Frau, J; Fronza, M; Sbrescia, G; Lai, V; Boi, M; Mallus, S; Murru, S; Porcu, A; Barracciu, M A; Marrosu, M G; Cocco, E
2018-03-15
Several correlations between cognitive impairment (CI), radiologic markers and cognitive reserve (CR) have been documented in MS. To evaluate correlation between CI and brain volume (BV) considering CR as possibile mitigating factor. 195 relapsing MS patients underwent a neuropsychological assessment using BICAMS. BV was estimated using SIENAX to obtain normalized volume of brain (NBV), white matter (NWV), gray matter (NGV) and cortical gray matter (CGV). CR was estimated using a previously validated tool. Pearson test showed a correlation between the symbol digit modality test (SDMT) score and NBV (r=0.38; p<0.000) NGV(r=0.31; p<0.000), CGV (r=0.35; p<0.000) and CRI score(r=0.42; p<0.000). Linear regression (dependent variable:SDMT) showed a relationship with CR scores (p=0.000) and NGV(p<0.000). A difference was detected between cognitive impaired and preserved patients regarding mean of NBV(p=0.002), NGV(p=0.007), CGV(p=0.002) and CR Scores (p=0.007). Anova showed a association between the presence of CI (dependent variable) and the interaction term CRIQ × CGV (p=0.004) whit adjustment for age and disability evaluated by EDSS. Our study shows a correlation between cognition and BV, in particular gray matter volume. Cognitive reserve is also confirmed as an important element playing a role in the complex interaction to determine the cognitive functions in MS. Copyright © 2018 Elsevier B.V. All rights reserved.
Origins of R2∗ and white matter
Rudko, David A.; Klassen, L. Martyn; de Chickera, Sonali N.; Gati, Joseph S.; Dekaban, Gregory A.; Menon, Ravi S.
2014-01-01
Estimates of the apparent transverse relaxation rate () can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (Δχ). Through this comparative analysis we calculated scaling relations quantifying (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating Δχ were compared in gray and white matter. The value of Δχ derived from fitting the Generalized Lorentzian model was then connected to the observed orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence Δχ. PMID:24374633
Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance
ERIC Educational Resources Information Center
Koscik, Tim; O'Leary, Dan; Moser, David J.; Andreasen, Nancy C.; Nopoulos, Peg
2009-01-01
Structural magnetic resonance imaging (MRI) studies of the human brain have reported evidence for sexual dimorphism. In addition to sex differences in overall cerebral volume, differences in the proportion of gray matter (GM) to white matter (WM) volume have been observed, particularly in the parietal lobe. To our knowledge there have been no…
Brain organization of gorillas reflects species differences in ecology
Barks, Sarah K.; Calhoun, Michael E.; Hopkins, William D.; Cranfield, Michael R.; Mudakikwa, Antoine; Stoinski, Tara S.; Patterson, Francine G.; Erwin, Joseph M.; Hecht, Erin E.; Hof, Patrick R.; Sherwood, Chet C.
2014-01-01
Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engage in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. PMID:25360547
Brain organization of gorillas reflects species differences in ecology.
Barks, Sarah K; Calhoun, Michael E; Hopkins, William D; Cranfield, Michael R; Mudakikwa, Antoine; Stoinski, Tara S; Patterson, Francine G; Erwin, Joseph M; Hecht, Erin E; Hof, Patrick R; Sherwood, Chet C
2015-02-01
Gorillas include separate eastern (Gorilla beringei) and western (Gorilla gorilla) African species that diverged from each other approximately 2 million years ago. Although anatomical, genetic, behavioral, and socioecological differences have been noted among gorilla populations, little is known about variation in their brain structure. This study examines neuroanatomical variation between gorilla species using structural neuroimaging. Postmortem magnetic resonance images were obtained of brains from 18 captive western lowland gorillas (Gorilla gorilla gorilla), 15 wild mountain gorillas (Gorilla beringei beringei), and 3 Grauer's gorillas (Gorilla beringei graueri) (both wild and captive). Stereologic methods were used to measure volumes of brain structures, including left and right frontal lobe gray and white matter, temporal lobe gray and white matter, parietal and occipital lobes gray and white matter, insular gray matter, hippocampus, striatum, thalamus, each hemisphere and the vermis of the cerebellum, and the external and extreme capsules together with the claustrum. Among the species differences, the volumes of the hippocampus and cerebellum were significantly larger in G. gorilla than G. beringei. These anatomical differences may relate to divergent ecological adaptations of the two species. Specifically, G. gorilla engages in more arboreal locomotion and thus may rely more on cerebellar circuits. In addition, they tend to eat more fruit and have larger home ranges and consequently might depend more on spatial mapping functions of the hippocampus. © 2015 Wiley Periodicals, Inc.
New MR imaging assessment tool to define brain abnormalities in very preterm infants at term.
Kidokoro, H; Neil, J J; Inder, T E
2013-01-01
WM injury is the dominant form of injury in preterm infants. However, other cerebral structures, including the deep gray matter and the cerebellum, can also be affected by injury and/or impaired growth. Current MR imaging injury assessment scales are subjective and are challenging to apply. Thus, we developed a new assessment tool and applied it to MR imaging studies obtained from very preterm infants at term age. MR imaging scans from 97 very preterm infants (< 30 weeks' gestation) and 22 healthy term-born infants were evaluated retrospectively. The severity of brain injury (defined by signal abnormalities) and impaired brain growth (defined with biometrics) was scored in the WM, cortical gray matter, deep gray matter, and cerebellum. Perinatal variables for clinical risks were collected. In very preterm infants, brain injury was observed in the WM (n=23), deep GM (n=5), and cerebellum (n=23). Combining measures of injury and impaired growth showed moderate to severe abnormalities most commonly in the WM (n=38) and cerebellum (n=32) but still notable in the cortical gray matter (n=16) and deep gray matter (n=11). WM signal abnormalities were associated with a reduced deep gray matter area but not with cerebellar abnormality. Intraventricular and/or parenchymal hemorrhage was associated with cerebellar signal abnormality and volume reduction. Multiple clinical risk factors, including prolonged intubation, prolonged parenteral nutrition, postnatal corticosteroid use, and postnatal sepsis, were associated with increased global abnormality on MR imaging. Very preterm infants demonstrate a high prevalence of injury and growth impairment in both the WM and gray matter. This MR imaging scoring system provides a more comprehensive and objective classification of the nature and extent of abnormalities than existing measures.
Lyall, Amanda E; Woolson, Sandra; Wolfe, Honor M; Goldman, Barbara Davis; Reznick, J Steven; Hamer, Robert M; Lin, Weili; Styner, Martin; Gerig, Guido; Gilmore, John H
2012-08-01
Enlargement of the lateral ventricles is thought to originate from abnormal prenatal brain development and is associated with neurodevelopmental disorders. Fetal isolated mild ventriculomegaly (MVM) is associated with the enlargement of lateral ventricle volumes in the neonatal period and developmental delays in early childhood. However, little is known about postnatal brain development in these children. Twenty-eight children with fetal isolated MVM and 56 matched controls were followed at ages 1 and 2 years with structural imaging on a 3T Siemens scanner and assessment of cognitive development with the Mullen Scales of Early Learning. Lateral ventricle, total gray and white matter volumes, and Mullen cognitive composite scores and subscale scores were compared between groups. Compared to controls, children with prenatal isolated MVM had significantly larger lateral ventricle volumes at ages 1 and 2 years. Lateral ventricle volume at 1 and 2 years of age was significantly correlated with prenatal ventricle size. Enlargement of the lateral ventricles was associated with increased intracranial volumes and increased gray and white matter volumes. Children with MVM had Mullen composite scores similar to controls, although there was evidence of delay in fine motor and expressive language skills. Children with prenatal MVM have persistent enlargement of the lateral ventricles through the age of 2 years; this enlargement is associated with increased gray and white matter volumes and some evidence of delay in fine motor and expressive language development. Further study is needed to determine if enlarged lateral ventricles are associated with increased risk for neurodevelopmental disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gray and white matter correlates of the Big Five personality traits.
Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto
2017-05-04
Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Gray matter and white matter abnormalities in online game addiction.
Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han
2013-08-01
Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A voxel-based morphometry study of regional gray and white matter correlate of self-disclosure.
Wang, ShanShan; Wei, DongTao; Li, WenFu; Li, HaiJiang; Wang, KangCheng; Xue, Song; Zhang, Qinglin; Qiu, Jiang
2014-01-01
Self-disclosure is an important performance in human social communication. Generally, an individual is likely to have a good physical and mental health if he is prone to self-disclosure under stressful life events. However, as for now, little is known about the neural structure associated with self-disclosure. Therefore, in this study, we used voxel-based morphometry to explore regional gray matter volume (rGMV) and white matter volume (rWMV) associated with self-disclosure measured by the Jourard Self-disclosure Questionnaire in a large sample of college students. Results showed that individual self-disclosure was significantly and positively associated with rGMV of the left postcentral gyrus, which might be related to strengthen individual's ability of body feeling; while self-disclosure was significantly and negatively associated with rGMV of the right orbitofrontal cortex (OFC), which might be involved in increased positive emotion experience seeking (intrinsically rewarding). In addition, individual self-disclosure was also associated with smaller rWMV in the right inferior parietal lobule (IPL). These findings suggested a biological basis for individual self-disclosure, distributed across different gray and white matter areas of the brain.
The Big Five of Personality and structural imaging revisited: a VBM - DARTEL study.
Liu, Wei-Yin; Weber, Bernd; Reuter, Martin; Markett, Sebastian; Chu, Woei-Chyn; Montag, Christian
2013-05-08
The present study focuses on the neurostructural foundations of the human personality. In a large sample of 227 healthy human individuals (168 women and 59 men), we used MRI to examine the relationship between personality traits and both regional gray and white matter volume, while controlling for age and sex. Personality was assessed using the German version of the NEO Five-Factor Inventory that measures individual differences in the 'Big Five of Personality': extraversion, neuroticism, agreeableness, conscientiousness, and openness to experience. In contrast to most previous studies on neural correlates of the Big Five, we used improved processing strategies: white and gray matter were independently assessed by segmentation steps before data analysis. In addition, customized sex-specific diffeomorphic anatomical registration using exponentiated lie algebra templates were used. Our results did not show significant correlations between any dimension of the Big Five and regional gray matter volume. However, among others, higher conscientiousness scores correlated significantly with reductions in regional white matter volume in different brain areas, including the right insula, putamen, caudate, and left fusiformis. These correlations were driven by the female subsample. The present study suggests that many results from the literature on the neurostructural basis of personality should be reviewed carefully, considering the results when the sample size is larger, imaging methods are rigorously applied, and sex-related and age-related effects are controlled.
Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian
2016-01-01
Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.
Regional brain gray and white matter changes in perinatally HIV-infected adolescents☆
Sarma, Manoj K.; Nagarajan, Rajakumar; Keller, Margaret A.; Kumar, Rajesh; Nielsen-Saines, Karin; Michalik, David E.; Deville, Jaime; Church, Joseph A.; Thomas, M. Albert
2013-01-01
Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM) and white matter (WM) volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years) compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted images with voxel based morphometry (VBM) analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC), bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain. PMID:24380059
Cortical gray and subcortical white matter associations in Parkinson's disease.
Sterling, Nicholas W; Du, Guangwei; Lewis, Mechelle M; Swavely, Steven; Kong, Lan; Styner, Martin; Huang, Xuemei
2017-01-01
Cortical atrophy has been documented in both Parkinson's disease (PD) and healthy aging, but its relationship to changes in subcortical white matter is unknown. This was investigated by obtaining T1- and diffusion-weighted images from 76 PD and 70 controls at baseline and 18 and 36 months, from which cortical volumes and underlying subcortical white matter axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) were determined. Twelve of 69 cortical subregions had significant group differences, and for these, underlying subcortical white matter was explored. At baseline, higher cortical volumes were significantly correlated with lower underlying subcortical white matter AD, RD, and higher FA (ps ≤ 0.017) in PD. Longitudinally, higher rates of cortical atrophy in PD were associated with increased rates of change in AD RD, and FA values (ps ≤ 0.0013) in 2 subregions explored. The significant gray-white matter associations were not found in controls. Thus, unlike healthy aging, cortical atrophy and subcortical white matter changes may not be independent events in PD. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of familial sinistrality on planum temporale surface and brain tissue asymmetries.
Tzourio-Mazoyer, Nathalie; Simon, Gregory; Crivello, Fabrice; Jobard, Gael; Zago, Laure; Perchey, Guy; Hervé, Pierre-Yves; Joliot, Marc; Petit, Laurent; Mellet, Emmanuel; Mazoyer, Bernard
2010-06-01
The impact of having left-handers (LHs) among one's close relatives, called familial sinistrality (FS), on neuroanatomical markers of left-hemisphere language specialization was studied in 274 normal adults, including 199 men and 75 women, among whom 77 men and 27 women were positive for FS. Measurements of the surface of a phonological cortical area, the "planum temporale" (PT), and gray and white matter hemispheric volumes and asymmetries were made using brain magnetic resonance images. The size of the left PT of subjects with left-handed close relatives (FS+) was reduced by 10%, decreasing with the number of left-handed relatives, and lowest when the subject's mother was left-handed. Such findings had no counterparts in the right hemisphere, and the subject's handedness and sex were found to have no significant effect or interaction with FS on the left PT size. The FS+ subjects also exhibited increased gray matter volume, reduced hemispheric gray matter leftward asymmetry, and, in LHs, reduced strength of hand preference. These results add to the increasing body of evidence suggesting multiple and somewhat independent mechanisms for the inheritance of hand and language lateralization.
Meoded, Avner; Kwan, Justin Y.; Peters, Tracy L.; Huey, Edward D.; Danielian, Laura E.; Wiggs, Edythe; Morrissette, Arthur; Wu, Tianxia; Russell, James W.; Bayat, Elham; Grafman, Jordan; Floeter, Mary Kay
2013-01-01
Introduction Executive dysfunction occurs in many patients with amyotrophic lateral sclerosis (ALS), but it has not been well studied in primary lateral sclerosis (PLS). The aims of this study were to (1) compare cognitive function in PLS to that in ALS patients, (2) explore the relationship between performance on specific cognitive tests and diffusion tensor imaging (DTI) metrics of white matter tracts and gray matter volumes, and (3) compare DTI metrics in patients with and without cognitive and behavioral changes. Methods The Delis-Kaplan Executive Function System (D-KEFS), the Mattis Dementia Rating Scale (DRS-2), and other behavior and mood scales were administered to 25 ALS patients and 25 PLS patients. Seventeen of the PLS patients, 13 of the ALS patients, and 17 healthy controls underwent structural magnetic resonance imaging (MRI) and DTI. Atlas-based analysis using MRI Studio software was used to measure fractional anisotropy, and axial and radial diffusivity of selected white matter tracts. Voxel-based morphometry was used to assess gray matter volumes. The relationship between diffusion properties of selected association and commissural white matter and performance on executive function and memory tests was explored using a linear regression model. Results More ALS than PLS patients had abnormal scores on the DRS-2. DRS-2 and D-KEFS scores were related to DTI metrics in several long association tracts and the callosum. Reduced gray matter volumes in motor and perirolandic areas were not associated with cognitive scores. Conclusion The changes in diffusion metrics of white matter long association tracts suggest that the loss of integrity of the networks connecting fronto-temporal areas to parietal and occipital areas contributes to cognitive impairment. PMID:24052798
Subtle volume differences in brain parenchyma of children surviving medulloblastoma
NASA Astrophysics Data System (ADS)
Reddick, Wilburn E.; Mulhern, Raymond K.; Elkin, T. David; Glass, John O.; Langston, James W.
1998-07-01
The overriding incentive for accurate quantification of the functional status of children treated for brain tumors emerges from the clinician's desire to balance the efficacy and chronic toxicity of therapies used for the developing child. A hybrid combination of the Kohonen self-organizing map (SOM) for segmentation and a multilayer backpropagation (MLBP) neural network for classification removes observer variances to yield a reproducible and accurate identification of tissues. A group of 17 volunteers and 77 patients from a larger ongoing study of pediatric patients with brain tumors were used to investigate the sensitivity of segmented volumes to determine atrophy as measured by two radiologists. The atrophy study revealed a significant relationship for brain parenchyma, CSF and white matter volumes with atrophy while gray matter had no significant relationship. Brain parenchyma and subsequently white matter were found to be inversely proportional to increasing grades of atrophy. An additional study compared fifteen age-matched patients treated with irradiation and surgery with patients treated with surgery alone. The age-matched study of patients demonstrated that brain volumes in the irradiated patients were significantly decreased compared to those treated with surgery alone. Further investigation of this difference revealed that white matter was significantly reduced while gray matter was relatively unchanged.
Zhou, Feng; Montag, Christian; Sariyska, Rayna; Lachmann, Bernd; Reuter, Martin; Weber, Bernd; Trautner, Peter; Kendrick, Keith M; Markett, Sebastian; Becker, Benjamin
2017-10-23
Internet gaming disorder represents a growing health issue. Core symptoms include unsuccessful attempts to control the addictive patterns of behavior and continued use despite negative consequences indicating a loss of regulatory control. Previous studies revealed brain structural deficits in prefrontal regions subserving regulatory control in individuals with excessive Internet use. However, because of the cross-sectional nature of these studies, it remains unknown whether the observed brain structural deficits preceded the onset of excessive Internet use. Against this background, the present study combined a cross-sectional and longitudinal design to determine the consequences of excessive online video gaming. Forty-one subjects with a history of excessive Internet gaming and 78 gaming-naive subjects were enrolled in the present study. To determine effects of Internet gaming on brain structure, gaming-naive subjects were randomly assigned to 6 weeks of daily Internet gaming (training group) or a non-gaming condition (training control group). At study inclusion, excessive Internet gamers demonstrated lower right orbitofrontal gray matter volume compared with Internet gaming-naive subjects. Within the Internet gamers, a lower gray matter volume in this region was associated with higher online video gaming addiction severity. Longitudinal analysis revealed initial evidence that left orbitofrontal gray matter volume decreased during the training period in the training group as well as in the group of excessive gamers. Together, the present findings suggest an important role of the orbitofrontal cortex in the development of Internet addiction with a direct association between excessive engagement in online gaming and structural deficits in this brain region. © 2017 Society for the Study of Addiction.
Voormolen, Eduard H.J.; Wei, Corie; Chow, Eva W.C.; Bassett, Anne S.; Mikulis, David J.; Crawley, Adrian P.
2011-01-01
Voxel-based morphometry (VBM) and automated lobar region of interest (ROI) volumetry are comprehensive and fast methods to detect differences in overall brain anatomy on magnetic resonance images. However, VBM and automated lobar ROI volumetry have detected dissimilar gray matter differences within identical image sets in our own experience and in previous reports. To gain more insight into how diverging results arise and to attempt to establish whether one method is superior to the other, we investigated how differences in spatial scale and in the need to statistically correct for multiple spatial comparisons influence the relative sensitivity of either technique to group differences in gray matter volumes. We assessed the performance of both techniques on a small dataset containing simulated gray matter deficits and additionally on a dataset of 22q11-deletion syndrome patients with schizophrenia (22q11DS-SZ) vs. matched controls. VBM was more sensitive to simulated focal deficits compared to automated ROI volumetry, and could detect global cortical deficits equally well. Moreover, theoretical calculations of VBM and ROI detection sensitivities to focal deficits showed that at increasing ROI size, ROI volumetry suffers more from loss in sensitivity than VBM. Furthermore, VBM and automated ROI found corresponding GM deficits in 22q11DS-SZ patients, except in the parietal lobe. Here, automated lobar ROI volumetry found a significant deficit only after a smaller subregion of interest was employed. Thus, sensitivity to focal differences is impaired relatively more by averaging over larger volumes in automated ROI methods than by the correction for multiple comparisons in VBM. These findings indicate that VBM is to be preferred over automated lobar-scale ROI volumetry for assessing gray matter volume differences between groups. PMID:19619660
Al-Kawaz, Mais; Monohan, Elizabeth; Morris, Eric; Perumal, Jai S; Nealon, Nancy; Vartanian, Timothy; Gauthier, Susan A
2017-05-01
African Americans with multiple sclerosis (AAwMS) have different disease phenotypes when compared to Caucasians Americans with MS (CAwMS). The pathologic basis of this difference in disease presentation is unknown. Fifty-Four AAwMS and 54 CAwMS were appropriately matched for age, gender, treatment duration, and disease duration. FreeSurfer was used to segment brain white matter and gray matter from T1 images and compute thalamic volume. Regional cortical thickness was calculated using QDEC. The 2 matched cohorts differed in disability, with AAwMS demonstrating significantly higher EDSS scores (2.3±2.2 vs. 1.3±1.5, P < .009), yet the 2 populations had similar T2 hyperintense lesion volumes (P = .35). AAwMS had a significantly lower total global cortical thickness when compared to CAwMS (P = .03). Controlling for EDSS, AAwMS showed multiple cortical regions to be significantly thinner than CAwMS; these included areas within the temporal, parietal and occipital lobes, as well as the precentral and postcentral gyrus. Middletemporal cortex was most affected in AAwMS in the left hemisphere (P = .009), while the superiortemporal cortex was most affected in the right hemisphere (P = .0001). In contrast, thalamic volume was significantly reduced in CAwMS when compared to AAwMS (P = .01). In both groups, worse disability was associated with lower total thalamic volume percentage. AAwMS and CAwMS patients differ with regard to global and regional cortical thickness and thalamic volume. This diverging pattern of gray matter volumetrics among otherwise matched patients suggests that racial-specific disease differences may exist. Copyright © 2016 by the American Society of Neuroimaging.
Raji, Cyrus A.; Merrill, David A.; Eyre, Harris; Mallam, Sravya; Torosyan, Nare; Erickson, Kirk I.; Lopez, Oscar L.; Becker, James T.; Carmichael, Owen T.; Gach, H. Michael; Thompson, Paul M.; Longstreth, W.T.; Kuller, Lewis H.
2016-01-01
Background: Physical activity (PA) can be neuroprotective and reduce the risk for Alzheimer’s disease (AD). In assessing physical activity, caloric expenditure is a proxy marker reflecting the sum total of multiple physical activity types conducted by an individual. Objective:To assess caloric expenditure, as a proxy marker of PA, as a predictive measure of gray matter (GM) volumes in the normal and cognitively impaired elderly persons. Methods: All subjects in this study were recruited from the Institutional Review Board approved Cardiovascular Health Study (CHS), a multisite population-based longitudinal study in persons aged 65 and older. We analyzed a sub-sample of CHS participants 876 subjects (mean age 78.3, 57.5% F, 42.5% M) who had i) energy output assessed as kilocalories (kcal) per week using the standardized Minnesota Leisure-Time Activities questionnaire, ii) cognitive assessments for clinical classification of normal cognition, mild cognitive impairment (MCI), and AD, and iii) volumetric MR imaging of the brain. Voxel-based morphometry modeled the relationship between kcal/week and GM volumes while accounting for standard covariates including head size, age, sex, white matter hyperintensity lesions, MCI or AD status, and site. Multiple comparisons were controlled using a False Discovery Rate of 5 percent. Results: Higher energy output, from a variety of physical activity types, was associated with larger GM volumes in frontal, temporal, and parietal lobes, as well as hippocampus, thalamus, and basal ganglia. High levels of caloric expenditure moderated neurodegeneration-associated volume loss in the precuneus, posterior cingulate, and cerebellar vermis. Conclusion:Increasing energy output from a variety of physical activities is related to larger gray matter volumes in the elderly, regardless of cognitive status. PMID:26967227
Structural and functional cerebral correlates of hypnotic suggestibility.
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.
Butler, Oisin; Yang, Xiao-Fei; Laube, Corinna; Kühn, Simone; Immordino-Yang, Mary Helen
2018-05-01
Adolescents' exposure to community violence is a significant public health issue in urban settings and has been associated with poorer cognitive performance and increased risk for psychiatric illnesses, including PTSD. However, no study to date has investigated the neural correlates of community violence exposure in adolescents. Sixty-five healthy adolescents (age = 14-18 years; 36 females, 29 males) from moderate- to high-crime neighborhoods in Los Angeles reported their violence exposure, parents' education level, and free/reduced school lunch status (socio-economic status, SES), and underwent structural neuroimaging and intelligence testing. Violence exposure negatively correlated with measures of SES, IQ, and gray matter volume. Above and beyond the effect of SES, violence exposure negatively correlated with IQ and with gray matter volume in the left inferior frontal gyrus and anterior cingulate cortex, regions involved in high-level cognitive functions and autonomic modulation, and previously shown to be reduced in PTSD and combat-exposed military populations. The current results provide first evidence that frontal brain regions involved in cognition and affect appear to be selectively affected by exposure to community violence, even in healthy nondelinquent adolescents who are not the direct victims or perpetrators of violence. © 2018 Wiley Periodicals, Inc.
Leung, Mei-Kei; Chan, Chetwyn C H; Yin, Jing; Lee, Chack-Fan; So, Kwok-Fai; Lee, Tatia M C
2013-01-01
Previous voxel-based morphometry (VBM) studies have revealed that meditation is associated with structural brain changes in regions underlying cognitive processes that are required for attention or mindfulness during meditation. This VBM study examined brain changes related to the practice of an emotion-oriented meditation: loving-kindness meditation (LKM). A 3 T magnetic resonance imaging (MRI) scanner captured images of the brain structures of 25 men, 10 of whom had practiced LKM in the Theravada tradition for at least 5 years. Compared with novices, more gray matter volume was detected in the right angular and posterior parahippocampal gyri in LKM experts. The right angular gyrus has not been previously reported to have structural differences associated with meditation, and its specific role in mind and cognitive empathy theory suggests the uniqueness of this finding for LKM practice. These regions are important for affective regulation associated with empathic response, anxiety and mood. At the same time, gray matter volume in the left temporal lobe in the LKM experts appeared to be greater, an observation that has also been reported in previous MRI meditation studies on meditation styles other than LKM. Overall, the findings of our study suggest that experience in LKM may influence brain structures associated with affective regulation.
Navigating the auditory scene: an expert role for the hippocampus.
Teki, Sundeep; Kumar, Sukhbinder; von Kriegstein, Katharina; Stewart, Lauren; Lyness, C Rebecca; Moore, Brian C J; Capleton, Brian; Griffiths, Timothy D
2012-08-29
Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner.
Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements
Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.
2011-01-01
Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261
Betancourt, Laura M; Avants, Brian; Farah, Martha J; Brodsky, Nancy L; Wu, Jue; Ashtari, Manzar; Hurt, Hallam
2016-11-01
There is increasing interest in both the cumulative and long-term impact of early life adversity on brain structure and function, especially as the brain is both highly vulnerable and highly adaptive during childhood. Relationships between SES and neural development have been shown in children older than age 2 years. Less is known regarding the impact of SES on neural development in children before age 2. This paper examines the effect of SES, indexed by income-to-needs (ITN) and maternal education, on cortical gray, deep gray, and white matter volumes in term, healthy, appropriate for gestational age, African-American, female infants. At 5 weeks postnatal age, unsedated infants underwent MRI (3.0T Siemens Verio scanner, 32-channel head coil). Images were segmented based on a locally constructed template. Utilizing hierarchical linear regression, SES effects on MRI volumes were examined. In this cohort of healthy African-American female infants of varying SES, lower SES was associated with smaller cortical gray and deep gray matter volumes. These SES effects on neural outcome at such a young age build on similar studies of older children, suggesting that the biological embedding of adversity may occur very early in development. © 2015 John Wiley & Sons Ltd.
Lázaro, Luisa; Bargalló, Nuria; Castro-Fornieles, Josefina; Falcón, Carles; Andrés, Susana; Calvo, Rosa; Junqué, Carme
2009-05-15
The aim of this study is to determine whether children and adolescents with treatment-naïve obsessive-compulsive disorder (OCD) present brain structure differences in comparison with healthy subjects, and to evaluate brain changes after treatment and clinical improvement. Initial and 6 months' follow-up evaluations were performed in 15 children and adolescents (age range=9-17 years, mean=13.7, S.D.=2.5; 8 male, 7 female) with DSM-IV OCD and 15 healthy subjects matched for age, sex and estimated intellectual level. An evaluation with psychopathological scales and magnetic resonance imaging (MRI) was carried out at admission and after 6 months' follow-up. Axial three-dimensional T1-weighted images were obtained in a 1.5 T scanner and analysed using optimized voxel-based morphometry (VBM) and longitudinal VBM approaches. Compared with controls, OCD patients presented significantly less gray matter volume bilaterally in right and left parietal lobes and right parietal white matter (P=0.001 FWE corrected) at baseline evaluation. After 6 months of treatment, and with a clear clinical improvement, the differences between OCD patients and controls in the parietal lobes in gray and white matter were no longer statistically significant. During follow-up in the longitudinal study, an increase in gray matter volume in the right striatum of OCD patients was observed, though the difference was not statistically significant. Children and adolescents with untreated OCD present gray and white matter decreases in lateral parietal cortices, but this abnormality is reversible after clinical improvement.
Structural correlates of impaired working memory in hippocampal sclerosis.
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-07-01
Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Structural correlates of impaired working memory in hippocampal sclerosis
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-01-01
Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Significance: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. PMID:23614459
2013-01-01
Background The risk of falling is associated with cognitive dysfunction. Older adults with mild cognitive impairment (MCI) exhibit an accelerated reduction of brain volume, and face an increased risk of falling. The current study examined the relationship between baseline physical performance, baseline gray matter volume and falls during a 12-month follow-up period among community-dwelling older adults with MCI. Methods Forty-two older adults with MCI (75.6 years, 43% women) underwent structural magnetic resonance imaging and baseline physical performance assessment, including knee-extension strength, one-legged standing time, and walking speed with normal pace. ‘Fallers’ were defined as people who had one or more falls during the 12-month follow-up period. Results Of the 42 participants, 26.2% (n = 11) experienced at least one fall during the 12-month follow-up period. Fallers exhibited slower walking speed and shorter one-legged standing time compared with non-fallers (both p < .01). One-legged standing time (sec) (standardized odds ratio [95% confidence interval]: 0.89 [0.81, 0.98], p = .02) was associated with a significantly lower rate of falls during the 12-month follow-up after adjusting for age, sex, body mass index, and history of falling in the past year at baseline. Voxel-based morphometry was used to examine differences in baseline gray matter volume between fallers and non-fallers, revealing that fallers exhibited a significantly greater reduction in the bilateral middle frontal gyrus and superior frontal gyrus. Conclusions Poor balance predicts falls over 12 months, and baseline lower gray matter densities in the middle frontal gyrus and superior frontal gyrus were associated with falls in older adults with MCI. Maintaining physical function, especially balance, and brain structural changes through many sorts of prevention strategies in the early stage of cognitive decline may contribute to decreasing the risk of falls in older adults with MCI. PMID:23915144
Elkady, Ahmed M; Sun, Hongfu; Wilman, Alan H
2016-05-01
Quantitative Susceptibility Mapping (QSM) is an emerging area of brain research with clear application to brain iron studies in deep gray matter. However, acquisition of standard whole brain QSM can be time-consuming. One means to reduce scan time is to use a focal acquisition restricted only to the regions of interest such as deep gray matter. However, the non-local dipole field necessary for QSM reconstruction extends far beyond the structure of interest. We demonstrate the practical implications of these non-local fields on the choice of brain volume for QSM. In an illustrative numerical simulation and then in human brain experiments, we examine the effect on QSM of volume reduction in each dimension. For the globus pallidus, as an example of iron-rich deep gray matter, we demonstrate that substantial errors can arise even when the field-of-view far exceeds the physical structural boundaries. Thus, QSM reconstruction requires a non-local field-of-view prescription to ensure minimal errors. An axial QSM acquisition, centered on the globus pallidus, should encompass at least 76mm in the superior-inferior direction to conserve susceptibility values from the globus pallidus. This dimension exceeds the physical coronal extent of this structure by at least five-fold. As QSM sees wider use in the neuroscience community, its unique requirement for an extended field-of-view needs to be considered. Copyright © 2016 Elsevier Inc. All rights reserved.
Le Berre, Anne-Pascale; Pitel, Anne-Lise; Chanraud, Sandra; Beaunieux, Hélène; Eustache, Francis; Martinot, Jean-Luc; Reynaud, Michel; Martelli, Catherine; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.
2015-01-01
Alcohol consumption patterns and recognition of health outcomes related to hazardous drinking vary widely internationally, raising the question whether these national differences are reflected in brain damage observed in alcoholism. This retrospective analysis assessed variability of alcoholism's effects on brain cerebrospinal fluid (CSF) and white matter volumes between France and the United States (U.S.). MRI data from two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) were acquired on 1.5T imaging systems in 287 controls, 165 uncomplicated alcoholics (ALC), and 26 alcoholics with Korsakoff's Syndrome (KS). All data were analyzed at the U.S. site using atlas-based parcellation. Results revealed graded CSF volume enlargement from ALC to KS and white matter volume deficits in KS only. In ALC from France but not the U.S., CSF and white matter volumes correlated with lifetime alcohol consumption, alcoholism duration, and length of sobriety. MRI highlighted CSF volume enlargement in both ALC and KS, serving as a basis for an ex vacuo process to explain correlated gray matter shrinkage. By contrast, MRI provided a sensitive in vivo biomarker of white matter volume shrinkage in KS only, suggesting a specific process sensitive to mechanisms contributing to Wernicke's encephalopathy, the precursor of KS. Identified structural brain abnormalities may provide biomarkers underlying alcoholism's heterogeneity in and among nations and suggest a substrate of gray matter tissue shrinkage. Proposed are hypotheses for national differences in interpreting whether the severity of sequelae observe a graded phenomenon or a continuum from uncomplicated alcoholism to alcoholism complicated by KS. PMID:26157376
Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P
2017-07-01
Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.
Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.
2018-01-01
Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (p<0.05, corrected). In exploratory analyses, among attempters, right rostral prefrontal connectivity was negatively correlated with suicidal ideation (p<0.05), and left ventral prefrontal connectivity was negatively correlated with attempt lethality (p<0.05). Conclusions Adolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845
Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder
de Zeeuw, Patrick; Schnack, Hugo G.; van Belle, Janna; Weusten, Juliette; van Dijk, Sarai; Langen, Marieke; Brouwer, Rachel M.; van Engeland, Herman; Durston, Sarah
2012-01-01
Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development. In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development. PMID:22536435
Ethnoracial differences in brain structure change and cognitive change.
Gavett, Brandon E; Fletcher, Evan; Harvey, Danielle; Farias, Sarah Tomaszewski; Olichney, John; Beckett, Laurel; DeCarli, Charles; Mungas, Dan
2018-04-12
The purpose of this study was to examine longitudinal associations between structural MRI and cognition in a diverse sample. Older adults (n = 444; Mage = 74.5)-121 African Americans, 212 Whites, and 111 Hispanics-underwent an average of 5.3 annual study visits. Approximately half were cognitively normal at baseline (global Clinical Dementia Rating M = 0.5). Of the patients with dementia, most (79%) were diagnosed with Alzheimer's disease (AD). MRI measures of gray matter volume (baseline and change), and hippocampal and white matter hyperintensity (WMH) volumes (baseline), were used to predict change in global cognition. Multilevel latent variable modeling was used to test the hypothesis that brain effects on cognitive change differed across ethnoracial groups. In a multivariable model, global gray matter change was the strongest predictor of cognitive decline in Whites and African Americans and specific temporal lobe change added incremental explanatory power in Whites. Baseline WMH volume was the strongest predictor of cognitive decline in Hispanics and made an incremental contribution in Whites. We found ethnoracial group differences in associations of brain variables with cognitive decline. The unique patterns in Whites appeared to suggest a greater influence of AD in this group. In contrast, cognitive decline in African Americans and Hispanics was most uniquely attributable to global gray matter change and baseline WMH, respectively. Brain changes underlying cognitive decline in older adults are heterogeneous and depend on fixed and modifiable risk factors that differ based on ethnicity and race. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Rempp, K A; Brix, G; Wenz, F; Becker, C R; Gückel, F; Lorenz, W J
1994-12-01
Quantification of regional cerebral blood flow (rCBF) and volume (rCBV) with dynamic magnetic resonance (MR) imaging. After bolus administration of a paramagnetic contrast medium, rapid T2*-weighted gradient-echo images of two sections were acquired for the simultaneous creation of concentration-time curves in the brain-feeding arteries and in brain tissue. Absolute rCBF and rCBV values were determined for gray and white brain matter in 12 subjects with use of principles of the indicator dilution theory. The mean rCBF value in gray matter was 69.7 mL/min +/- 29.7 per 100 g tissue and in white matter, 33.6 mL/min +/- 11.5 per 100 g tissue; the average rCBV was 8.0 mL +/- 3.1 per 100 g tissue and 4.2 mL +/- 1.0 per 100 g tissue, respectively. An age-related decrease in rCBF and rCBV for gray and white matter was observed. Preliminary data demonstrate that the proposed technique allows the quantification of rCBF and rCBV. Although the results are in good agreement with data from positron emission tomography studies, further evaluation is needed to establish the validity of method.
Steketee, Rebecca M E; Meijboom, Rozanna; de Groot, Marius; Bron, Esther E; Niessen, Wiro J; van der Lugt, Aad; van Swieten, John C; Smits, Marion
2016-07-01
This study investigates regional coherence between white matter (WM) microstructure and gray matter (GM) volume and perfusion measures in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using a correlational approach. WM-GM coherence, compared with controls, was stronger between cingulum WM and frontotemporal GM in AD, and temporoparietal GM in bvFTD. In addition, in AD compared with controls, coherence was stronger between inferior fronto-occipital fasciculus WM microstructure and occipital GM perfusion. In this first study assessing regional WM-GM coherence in AD and bvFTD, we show that WM microstructure and GM volume and perfusion measures are coherent, particularly in regions implicated in AD and bvFTD pathology. This indicates concurrent degeneration in disease-specific networks. Our methodology allows for the detection of incipient abnormalities that go undetected in conventional between-group analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
White Matter Injury in Ischemic Stroke
Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong
2017-01-01
Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions. PMID:27090751
Family poverty affects the rate of human infant brain growth.
Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D
2013-01-01
Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.
Family Poverty Affects the Rate of Human Infant Brain Growth
Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.
2013-01-01
Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025
Alexithymia is related to differences in gray matter volume: a voxel-based morphometry study.
Ihme, Klas; Dannlowski, Udo; Lichev, Vladimir; Stuhrmann, Anja; Grotegerd, Dominik; Rosenberg, Nicole; Kugel, Harald; Heindel, Walter; Arolt, Volker; Kersting, Anette; Suslow, Thomas
2013-01-23
Alexithymia has been characterized as the inability to identify and describe feelings. Functional imaging studies have revealed that alexithymia is linked to reactivity changes in emotion- and face-processing-relevant brain areas. In this respect, anterior cingulate cortex (ACC), amygdala, anterior insula and fusiform gyrus (FFG) have been consistently reported. However, it remains to be clarified whether alexithymia is also associated with structural differences. Voxel-based morphometry on T1-weighted magnetic resonance images was used to investigate gray matter volume in 17 high alexithymics (HA) and 17 gender-matched low alexithymics (LA), which were selected from a sample of 161 healthy volunteers on basis of the 20-item Toronto Alexithymia Scale. Data were analyzed as statistic parametric maps for the comparisons LA>HA and HA>LA in a priori determined regions of interests (ROIs), i.e., ACC, amygdala, anterior insula and FFG. Moreover, an exploratory whole brain analysis was accomplished. For the contrast LA>HA, significant clusters were detected in the ACC, left amygdala and left anterior insula. Additionally, the whole brain analysis revealed volume differences in the left middle temporal gyrus. No significant differences were found for the comparison HA>LA. Our findings suggest that high compared to low alexithymics show less gray matter volume in several emotion-relevant brain areas. These structural differences might contribute to the functional alterations found in previous imaging studies in alexithymia. Copyright © 2012 Elsevier B.V. All rights reserved.
Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin
2016-06-01
In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured. Copyright © 2016 Elsevier Inc. All rights reserved.
Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon
2012-11-01
In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations
Honce, Justin Morris
2013-01-01
It is abundantly clear that there is extensive gray matter pathology occurring in multiple sclerosis. While attention to gray matter pathology was initially limited to studies of autopsy specimens and biopsies, the development of new MRI techniques has allowed assessment of gray matter pathology in vivo. Current MRI techniques allow the direct visualization of gray matter demyelinating lesions, the quantification of diffuse damage to normal appearing gray matter, and the direct measurement of gray matter atrophy. Gray matter demyelination (both focal and diffuse) and gray matter atrophy are found in the very earliest stages of multiple sclerosis and are progressive over time. Accumulation of gray matter damage has substantial impact on the lives of multiple sclerosis patients; a growing body of the literature demonstrates correlations between gray matter pathology and various measures of both clinical disability and cognitive impairment. The effect of disease modifying therapies on the rate accumulation of gray matter pathology in MS has been investigated. This review focuses on the neuroimaging of gray matter pathology in MS, the effect of the accumulation of gray matter pathology on clinical and cognitive disability, and the effect of disease-modifying agents on various measures of gray matter damage. PMID:23878736
Microstructure abnormalities in adolescents with internet addiction disorder.
Yuan, Kai; Qin, Wei; Wang, Guihong; Zeng, Fang; Zhao, Liyan; Yang, Xuejuan; Liu, Peng; Liu, Jixin; Sun, Jinbo; von Deneen, Karen M; Gong, Qiyong; Liu, Yijun; Tian, Jie
2011-01-01
Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction. We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD. Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.
Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos
2014-01-01
Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160
Gray Matter Increase in Motor Cortex in Pediatric ADHD: A Voxel-Based Morphometry Study.
Sutcubasi Kaya, Bernis; Metin, Baris; Tas, Zeynep Cubukcuoglu; Buyukaslan, Ayse; Soysal, Aysegul; Hatiloglu, Deniz; Tarhan, Nevzat
2018-05-01
Several studies report that ADHD is associated with reduced gray matter (GM), whereas others report no differences in GM volume between ADHD patients and controls, and some even report more GM volume in individuals with ADHD. These conflicting findings suggest that reduced GM is not a universal finding in ADHD, and that more research is needed to delineate with greater accuracy the range of GM alterations. The present study aimed to identify GM alterations in ADHD using pediatric templates. 19 drug-naïve ADHD patients and 18 controls, all aged 7 to 14 years, were scanned using magnetic resonance imaging. Relative to the controls, the ADHD patients had more GM, predominantly in the precentral and supplementary motor areas. Moreover, there were positive correlations between GM volume in these areas and ADHD scale scores. The clinical and pathophysiological significance of increased GM in the motor areas remains to be elucidated by additional research.
Digging Deeper Using Neuroimaging Tools Reveals Important Clues to Early-Onset Schizophrenia
ERIC Educational Resources Information Center
Kumra, Sanjiv
2008-01-01
The article describes the use of structural neuroimaging to understand the psychopathology of childhood-onset schizophrenia. Results showed an increase in lateral volumes, reduced total and regional volumes of gray matter in the cortex and increased basal ganglia volumes as in adult-onset schizophrenia in comparison with healthy subjects.
Increased cerebellar gray matter volume in head chefs.
Cerasa, Antonio; Sarica, Alessia; Martino, Iolanda; Fabbricatore, Carmelo; Tomaiuolo, Francesco; Rocca, Federico; Caracciolo, Manuela; Quattrone, Aldo
2017-01-01
Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question.
Unveiling the mystery of déjà vu: the structural anatomy of déjà vu.
Brázdil, Milan; Mareček, Radek; Urbánek, Tomáš; Kašpárek, Tomáš; Mikl, Michal; Rektor, Ivan; Zeman, Adam
2012-10-01
Déjà vu (DV) is a widespread, fascinating and mysterious human experience. It occurs both in health and in disease, notably as an aura of temporal lobe epilepsy. This feeling of inappropriate familiarity has attracted interest from psychologists and neuroscientists for over a century, but still there is no widely agreed explanation for the phenomenon of non-pathological DV. Here we investigated differences in brain morphology between healthy subjects with and without DV using a novel multivariate neuroimaging technique, Source-Based Morphometry. The analysis revealed a set of cortical (predominantly mesiotemporal) and subcortical regions in which there was significantly less gray matter in subjects reporting DV. In these regions gray matter volume was inversely correlated with the frequency of DV. Our results demonstrate a structural correlate of DV in healthy individuals for the first time and support a neurological explanation for the phenomenon. We hypothesis that the observed local gray matter decrease in subjects experiencing DV reflects an alteration of hippocampal function and postnatal neurogenesis with resulting changes of volume in remote brain regions. Copyright © 2012 Elsevier Srl. All rights reserved.
Hong, Jin Yong; Yun, Hyuk Jin; Sunwoo, Mun Kyung; Ham, Jee Hyun; Lee, Jong-Min; Sohn, Young H.; Lee, Phil Hyu
2015-01-01
Pure akinesia with gait freezing (PAGF) is considered a clinical phenotype of progressive supranuclear palsy. The brain atrophy and cognitive deficits in PAGF are expected to be less prominent than in classical Richardson's syndrome (RS), but this hypothesis has not been explored yet. We reviewed the medical records of 28 patients with probable RS, 19 with PAGF, and 29 healthy controls, and compared cortical thickness, subcortical gray matter volume, and neuropsychological performance among the three groups. Patients with PAGF had thinner cortices in frontal, inferior parietal, and temporal areas compared with controls; however, areas of cortical thinning in PAGF patients were less extensive than those in RS patients. In PAGF patients, hippocampal, and thalamic volumes were also smaller than controls, whereas subcortical gray matter volumes in PAGF and RS patients were comparable. In a comparison of neuropsychological tests, PAGF patients had better cognitive performance in executive function, visual memory, and visuospatial function than RS patients had. These results demonstrate that cognitive impairment, cortical thinning, and subcortical gray matter atrophy in PAGF patients resemble to those in RS patients, though the severity of cortical thinning and cognitive dysfunction is milder. Our results suggest that, PAGF and RS may share same pathology but that it appears to affect a smaller proportion of the cortex in PAGF. PMID:26483680
Structural and Functional Cerebral Correlates of Hypnotic Suggestibility
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity. PMID:24671130
Zhang, Lei; Li, Wenfu; Wei, Dongtao; Yang, Wenjing; Yang, Ning; Qiao, Lei; Qiu, Jiang; Zuo, Xi-Nian; Zhang, Qinglin
2016-06-01
Mind pops or involuntary semantic memories refer to words, phrases, images, or melodies that suddenly pop into one's mind without any deliberate attempt to recall them. Despite their prevalence in everyday life, research on mind pops has started only recently. Notably, mind pops are very similar to clinical involuntary phenomena such as hallucinations in schizophrenia, suggesting their potential role in pathology. The present study aimed to investigate the relationship between mind pops and the brain morphometry measured in 302 healthy young adults; after exclusions, 256 participants were included in our analyses. Specifically, the Mind Popping Questionnaire (MPQ) was employed to measure the degree of individual mind pops, whereas the Voxel-Based Morphometry (VBM) was used to compute the volumes of both gray and white matter tissues. Multiple regression analyses on MPQ and VBM metrics indicated that high-frequency mind pops were significantly associated with smaller gray matter volume in the left middle temporal gyrus as well as with larger gray and white matter volume in the right medial prefrontal cortex. This increase in mind pops is also linked to higher creativity and the personality trait of 'openness'. These data not only suggest a key role of the two regions in generating self-related thoughts, but also open a possible link between brain and creativity or personality.
Ontogenetic pattern of gyrification in fetuses of cynomolgus monkeys.
Sawada, K; Sun, X-Z; Fukunishi, K; Kashima, M; Saito, S; Sakata-Haga, H; Sukamoto, T; Aoki, I; Fukui, Y
2010-05-19
The ontogenetic pattern of gyrification and its relationship with cerebral cortical volume were examined in cynomolgus monkey fetuses. T(1)-weighted coronal magnetic resonance (MR) images at 7 T were acquired from the fixed cerebra of three male fetuses, each at embryonic days (EDs) 70 to 150, and the gyrification index (GI) of each slice was estimated. The mean GI was low (1.1-1.2) during EDs 70 to 90, and then increased dramatically on ED 100. The developmental profiles of the rostrocaudal GI distribution revealed that cortical convolution was more frequent in the parietooccipital region than in other regions during EDs 100 to 150, forming an adult-like pattern by ED 150. The mean GI was closely correlated with the volume of cortical gray matter (r=0.9877), and also with the volume of white matter/intermediate zone (r=0.8961). These findings suggest that cortical convolution is correlated with either the maturation of cortical gray matter or the development of white matter bundles. The characteristic GI distribution pattern of catarrhines was formed by ED 150 in correlation with the progressive sulcal infolding in the parietooccipital region of the cerebrum. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Lee, Young-Min; Ha, Ji-Kyung; Park, Je-Min; Lee, Byung-Dae; Moon, EunSoo; Chung, Young-In; Kim, Ji-Hoon; Kim, Hak-Jin; Mun, Chi-Woong; Kim, Tae-Hyung; Kim, Young-Hoon
2016-01-01
The aim of this study is to compare gray matter (GM) volume and white matter (WM) integrity in Apolipoprotein E4 (ApoE ε4) carriers with that of ApoE ε4 noncarriers using the voxel-based morphometry and diffusion tensor imaging (DTI) to investigate the effect of the ApoE ε4 on brain structures in subjective memory impairment (SMI) without white matter hyperintensities (WMH). Altogether, 26 participants with SMI without WMH were finally recruited from the Memory impairment clinics of Pusan National University Hospital in Korea. All participants were ApoE genotyped (ApoE ε4 carriers: n = 13, matched ApoE ε4 noncarriers: n = 13) and underwent 3-tesla magnetic resonance imaging (MRI) including 3-dimensional volumetric images for GM volume and DTI for WM integrity. ApoE ε4 carriers compared with noncarriers in SMI without WMH showed the atrophy of GM in inferior temporal gyrus, inferior parietal lobule, anterior cingulum, middle frontal gyrus, and precentral gyrus and significantly lower fractional anisotropy WM values in the splenium of corpus callosum and anterior corona radiate. Our findings suggest that the ApoE ε4 is associated with both atrophy of GM volume and disruption of WM integrity in SMI without WMH. Copyright © 2015 by the American Society of Neuroimaging.
Lemaitre, Herve; Goldman, Aaron L; Sambataro, Fabio; Verchinski, Beth A; Meyer-Lindenberg, Andreas; Weinberger, Daniel R; Mattay, Venkata S
2012-03-01
Normal aging is accompanied by global as well as regional structural changes. While these age-related changes in gray matter volume have been extensively studied, less has been done using newer morphological indexes, such as cortical thickness and surface area. To this end, we analyzed structural images of 216 healthy volunteers, ranging from 18 to 87 years of age, using a surface-based automated parcellation approach. Linear regressions of age revealed a concomitant global age-related reduction in cortical thickness, surface area and volume. Cortical thickness and volume collectively confirmed the vulnerability of the prefrontal cortex, whereas in other cortical regions, such as in the parietal cortex, thickness was the only measure sensitive to the pronounced age-related atrophy. No cortical regions showed more surface area reduction than the global average. The distinction between these morphological measures may provide valuable information to dissect age-related structural changes of the brain, with each of these indexes probably reflecting specific histological changes occurring during aging. Published by Elsevier Inc.
Hu, Yifan; Iordan, Alexandru D.; Moore, Matthew; Dolcos, Florin
2016-01-01
Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain–personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. PMID:26371336
Lexical factors and cerebral regions influencing verbal fluency performance in MCI.
Clark, D G; Wadley, V G; Kapur, P; DeRamus, T P; Singletary, B; Nicholas, A P; Blanton, P D; Lokken, K; Deshpande, H; Marson, D; Deutsch, G
2014-02-01
To evaluate assumptions regarding semantic (noun), verb, and letter fluency in mild cognitive impairment (MCI) and Alzheimer disease (AD) using novel techniques for measuring word similarity in fluency lists and a region of interest (ROI) analysis of gray matter correlates. Fifty-eight individuals with normal cognition (NC, n=25), MCI (n=23), or AD (n=10) underwent neuropsychological tests, including 10 verbal fluency tasks (three letter tasks [F, A, S], six noun categories [animals, water creatures, fruits and vegetables, tools, vehicles, boats], and verbs). All pairs of words generated by each participant on each task were compared in terms of semantic (meaning), orthographic (spelling), and phonemic (pronunciation) similarity. We used mixed-effects logistic regression to determine which lexical factors were predictive of word adjacency within the lists. Associations between each fluency raw score and gray matter volumes in sixteen ROIs were identified by means of multiple linear regression. We evaluated causal models for both types of analyses to specify the contributions of diagnosis and various mediator variables to the outcomes of word adjacency and fluency raw score. Semantic similarity between words emerged as the strongest predictor of word adjacency for all fluency tasks, including the letter fluency tasks. Semantic similarity mediated the effect of cognitive impairment on word adjacency only for three fluency tasks employing a biological cue. Orthographic similarity was predictive of word adjacency for the A and S tasks, while phonemic similarity was predictive only for the S task and one semantic task (vehicles). The ROI analysis revealed different patterns of correlations among the various fluency tasks, with the most common associations in the right lower temporal and bilateral dorsal frontal regions. Following correction with gray matter volumes from the opposite hemisphere, significant associations persisted for animals, vehicles, and a composite nouns score in the left inferior frontal gyrus, but for letter A, letter S, and a composite FAS score in the right inferior frontal gyrus. These regressions also revealed a lateralized association of the left subcortical nuclei with all letter fluency scores and fruits and vegetables fluency, and an association of the right lower temporal ROI with letter A, FAS, and verb fluency. Gray matter volume in several bihemispheric ROIs (left dorsal frontal, right lower temporal, right occipital, and bilateral mesial temporal) mediated the relationship between cognitive impairment and fluency for fruits and vegetables. Gray matter volume in the right lower temporal ROI mediated the relationship between cognitive impairment and five fluency raw scores (animals, fruits and vegetables, tools, verbs, and the composite nouns score). Semantic memory exerts the strongest influence on word adjacency in letter fluency as well as semantic verbal fluency tasks. Orthography is a stronger influence than pronunciation. All types of fluency task raw scores (letter, noun, and verb) correlate with cerebral regions known to support verbal or nonverbal semantic memory. The findings emphasize the contribution of right hemisphere regions to fluency task performance, particularly for verb and letter fluency. The relationship between diagnosis and semantic fluency performance is mediated by semantic similarity of words and by gray matter volume in the right lower temporal region. Published by Elsevier Ltd.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Piattella, Maria Cristina; Upadhyay, N; Bologna, M; Sbardella, E; Tona, F; Formica, A; Petsas, N; Berardelli, A; Pantano, P
2015-08-01
To evaluate gray matter (GM) and white matter (WM) abnormalities and their clinical correlates in patients with progressive supranuclear palsy (PSP). Sixteen PSP patients and sixteen age-matched healthy subjects underwent a clinical evaluation and multimodal magnetic resonance imaging, including three-dimensional T1-weighted imaging and diffusion tensor imaging (DTI). Volumetric and DTI analyses were computed using SPM and FSL tools. PSP patients showed GM volume decrease, involving the frontal cortex, putamen, pallidum, thalamus and accumbens nucleus, cerebellum, and brainstem. Additionally, they had widespread changes in WM bundles, mainly affecting cerebellar peduncles, thalamic radiations, corticospinal tracts, corpus callosum, and longitudinal fasciculi. GM volumes did not correlate with WM abnormalities. DTI indices of WM damage, but not GM volumes, correlated with clinical scores of disease severity and cognitive impairment. The neurodegenerative changes that occur in PSP involve both GM and WM structures and develop concurrently though independently. WM damage in PSP correlates with clinical scores of disease severity and cognitive impairment, thus providing further insight into the pathophysiology of the disease.
Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis
2011-07-01
focal and diffuse effects in brain (including cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based morphometry and...to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry , and
Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun
2014-08-15
Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.
Sabayan, Behnam; van Buchem, Mark A; Sigurdsson, Sigurdur; Zhang, Qian; Meirelles, Osorio; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J
2016-11-01
Pathologies in the heart-brain axis might, independently or in combination, accelerate the process of brain parenchymal loss. We aimed to investigate the association of serum N-terminal brain natriuretic peptide (NT-proBNP), as a marker of cardiac dysfunction, and carotid intima media thickness (CIMT), as a marker of carotid atherosclerosis burden, with structural brain changes. In the longitudinal population-based AGES-Reykjavik study (Age, Gene/Environment Susceptibility-Reykjavik), we included 2430 subjects (mean age, 74.6 years; 41.4% men) with baseline data on NT-proBNP and CITM (assessed by ultrasound imaging). Participants underwent a high-resolution brain magnetic resonance imaging at baseline and 5 years later to assess total brain (TBV), gray matter, and white matter volumes. Each unit higher log-transformed NT-proBNP was associated with 3.6 mL (95% confidence interval [CI], -6.0 to -1.1) decline in TBV and 3.5 mL (95% CI, -5.7 to -1.3) decline in gray matter volume. Likewise, each millimeter higher CIMT was associated with 10.8 mL (95% CI, -17.3 to -4.2) decline in TBV and 8.6 mL (95% CI, -14.4 to -2.8) decline in gray matter volume. There was no association between NT-proBNP and CIMT and changes in white matter volume. Compared with participants with low NT-proBNP and CIMT, participants with both high NT-proBNP and CIMT had 3.8 mL (95% CI, -6.0 to -1.6) greater decline in their TBV and 4 mL (95% CI, -6.0 to -2.0) greater decline in GMW. These associations were independent of sociodemographic and cardiovascular factors. Older subjects with both cardiac dysfunction and carotid atherosclerosis are at an increased risk for brain parenchymal loss. Accumulated pathologies in the heart-brain axis might accelerate brain atrophy. © 2016 American Heart Association, Inc.
Neurostructural abnormalities associated with axes of emotion dysregulation in generalized anxiety.
Makovac, Elena; Meeten, Frances; Watson, David R; Garfinkel, Sarah N; Critchley, Hugo D; Ottaviani, Cristina
2016-01-01
Despite the high prevalence of generalized anxiety disorder (GAD) and its negative impact on society, its neurobiology remains obscure. This study characterizes the neurostructural abnormalities associated with key symptoms of GAD, focusing on indicators of impaired emotion regulation (excessive worry, poor concentration, low mindfulness, and physiological arousal). These domains were assessed in 19 (16 women) GAD patients and 19 healthy controls matched for age and gender, using questionnaires and a low demand behavioral task performed before and after an induction of perseverative cognition (i.e. worry and rumination). Continuous pulse oximetry was used to measure autonomic physiology (heart rate variability; HRV). Observed cognitive and physiological changes in response to the induction provided quantifiable data on emotional regulatory capacity. Participants underwent structural magnetic resonance imaging; voxel-based morphometry was used to quantify the relationship between gray matter volume and psychological and physiological measures. Overall, GAD patients had lower gray matter volume than controls within supramarginal, precentral, and postcentral gyrus bilaterally. Across the GAD group, increased right amygdala volume was associated with prolonged reaction times on the tracking task (indicating increased attentional impairment following the induction) and lower scores on the 'Act with awareness' subscale of the Five Facets Mindfulness Questionnaire. Moreover in GAD, medial frontal cortical gray matter volume correlated positively with the 'Non-react mindfulness' facet. Lastly, smaller volumes of bilateral insula, bilateral opercular cortex, right supramarginal and precentral gyri, anterior cingulate and paracingulate cortex predicted the magnitude of autonomic change following the induction (i.e. a greater decrease in HRV). Results distinguish neural structures associated with impaired capacity for cognitive, attentional and physiological disengagement from worry, suggesting that aberrant competition between these levels of emotional regulation is intrinsic to symptom expression in GAD.
Saarela, Carina; Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O; Karrasch, Mira
2017-01-01
Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions.
Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O.; Karrasch, Mira
2017-01-01
Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions. PMID:28771634
Evolution of deep gray matter volume across the human lifespan.
Narvacan, Karl; Treit, Sarah; Camicioli, Richard; Martin, Wayne; Beaulieu, Christian
2017-08-01
Magnetic resonance imaging of subcortical gray matter structures, which mediate behavior, cognition and the pathophysiology of several diseases, is crucial for establishing typical maturation patterns across the human lifespan. This single site study examines T1-weighted MPRAGE images of 3 healthy cohorts: (i) a cross-sectional cohort of 406 subjects aged 5-83 years; (ii) a longitudinal neurodevelopment cohort of 84 subjects scanned twice approximately 4 years apart, aged 5-27 years at first scan; and (iii) a longitudinal aging cohort of 55 subjects scanned twice approximately 3 years apart, aged 46-83 years at first scan. First scans from longitudinal subjects were included in the cross-sectional analysis. Age-dependent changes in thalamus, caudate, putamen, globus pallidus, nucleus accumbens, hippocampus, and amygdala volumes were tested with Poisson, quadratic, and linear models in the cross-sectional cohort, and quadratic and linear models in the longitudinal cohorts. Most deep gray matter structures best fit to Poisson regressions in the cross-sectional cohort and quadratic curves in the young longitudinal cohort, whereas the volume of all structures except the caudate and globus pallidus decreased linearly in the longitudinal aging cohort. Males had larger volumes than females for all subcortical structures, but sex differences in trajectories of change with age were not significant. Within subject analysis showed that 65%-80% of 13-17 year olds underwent a longitudinal decrease in volume between scans (∼4 years apart) for the putamen, globus pallidus, and hippocampus, suggesting unique developmental processes during adolescence. This lifespan study of healthy participants will form a basis for comparison to neurological and psychiatric disorders. Hum Brain Mapp 38:3771-3790, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gold, Brian T.; Jiang, Yang; Powell, David K.; Smith, Charles D.
2012-01-01
White matter (WM) microstructural declines have been demonstrated in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection. PMID:22460327
Pitel, Anne-Lise; Aupée, Anne-Marie; Chételat, Gaël; Mézenge, Florence; Beaunieux, Hélène; de la Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Desgranges, Béatrice
2009-01-01
Background Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS). Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. Methodology/Principal Findings Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. Conclusions/Significance These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker. PMID:19936229
Waldstein, Shari R; Dore, Gregory A; Davatzikos, Christos; Katzel, Leslie I; Gullapalli, Rao; Seliger, Stephen L; Kouo, Theresa; Rosenberger, William F; Erus, Guray; Evans, Michele K; Zonderman, Alan B
2017-04-01
The aim of the study was to examine interactive relations of race and socioeconomic status (SES) to magnetic resonance imaging (MRI)-assessed global brain outcomes with previously demonstrated prognostic significance for stroke, dementia, and mortality. Participants were 147 African Americans (AAs) and whites (ages 33-71 years; 43% AA; 56% female; 26% below poverty) in the Healthy Aging in Neighborhoods of Diversity across the Life Span SCAN substudy. Cranial MRI was conducted using a 3.0 T unit. White matter (WM) lesion volumes and total brain, gray matter, and WM volumes were computed. An SES composite was derived from education and poverty status. Significant interactions of race and SES were observed for WM lesion volume (b = 1.38; η = 0.036; p = .028), total brain (b = 86.72; η = 0.042; p < .001), gray matter (b = 40.16; η = 0.032; p = .003), and WM (b = 46.56; η = 0.050; p < .001). AA participants with low SES exhibited significantly greater WM lesion volumes than white participants with low SES. White participants with higher SES had greater brain volumes than all other groups (albeit within normal range). Low SES was associated with greater WM pathology-a marker for increased stroke risk-in AAs. Higher SES was associated with greater total brain volume-a putative global indicator of brain health and predictor of mortality-in whites. Findings may reflect environmental and interpersonal stressors encountered by AAs and those of lower SES and could relate to disproportionate rates of stroke, dementia, and mortality.
Structural MRI correlates of apathy symptoms in older persons without dementia
Grool, Anne M.; Geerlings, Mirjam I.; Sigurdsson, Sigurdur; Eiriksdottir, Gudny; Jonsson, Palmi V.; Garcia, Melissa E.; Siggeirsdottir, Kristin; Harris, Tamara B.; Sigmundsson, Thordur; Gudnason, Vilmundur
2014-01-01
Objective: We aimed to investigate the relation between apathy symptoms and structural brain changes on MRI, including white matter lesions (WMLs) and atrophy, in a large cohort of older persons. Methods: Cross-sectional analyses are based on 4,354 persons without dementia (aged 76 ± 5 years) participating in the population-based Age, Gene/Environment Susceptibility–Reykjavik Study. Apathy symptoms were assessed with 3 items from the 15-item Geriatric Depression Scale. Brain volumes and total WML volume were estimated on 1.5-tesla MRI using an automated segmentation program; regional WML load was calculated using a semiquantitative scale. Regression analyses were adjusted for age, sex, education, intracranial volume, vascular risk factors, physical activity, brain infarcts, depressive symptoms, antidepressants, and cognitive status. Results: Compared to those with <2 apathy symptoms, participants with ≥2 apathy symptoms (49% of the cohort) had significantly smaller gray matter volumes (mean adjusted difference −3.6 mL, 95% confidence interval [CI] −6.2 to −1.0), particularly in the frontal and temporal lobes; smaller white matter volumes (mean adjusted difference −1.9 mL, 95% CI −3.6 to −0.3), mainly in the parietal lobe; and smaller thalamus volumes. They were also more likely to have WMLs in the frontal lobe (adjusted odds ratio = 1.08, 95% CI 0.9–1.3). Excluding participants with a depression diagnosis did not change the associations. Conclusions: In this older population without dementia, apathy symptoms are associated with a more diffuse loss of both gray and white matter volumes, independent of depression. PMID:24739783
Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis
2012-07-01
sensitive to focal and diffuse changes in brain tissue (including cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based...sensitive to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry , and
Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709
Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F.; Westlye, Lars T.; Fjell, Anders M.; Walhovd, Kristine B.; Hu, Xiaoping; Herndon, James G.; Preuss, Todd M.; Rilling, James K.
2013-01-01
Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. PMID:23623601
Gilmore, John H.; Kang, Chaeryon; Evans, Dianne D.; Wolfe, Honor M.; Smith, J. Keith; Lieberman, Jeffrey A.; Lin, Weili; Hamer, Robert M.; Styner, Martin; Gerig, Guido
2011-01-01
Objective Schizophrenia is a neurodevelopmental disorder associated with abnormalities of brain structure and white matter, although little is known about when these abnormalities arise. This study was conducted to identify structural brain abnormalities in the prenatal and neonatal periods associated with genetic risk for schizophrenia. Method Prenatal ultrasound scans and neonatal structural magnetic resonance imaging (MRI) and diffusion tensor imaging were prospectively obtained in the offspring of mothers with schizophrenia or schizoaffective disorder (N=26) and matched comparison mothers without psychiatric illness (N=26). Comparisons were made for prenatal lateral ventricle width and head circumference, for neonatal intracranial, CSF, gray matter, white matter, and lateral ventricle volumes, and for neonatal diffusion properties of the genu and splenium of the corpus callosum and corticospinal tracts. Results Relative to the matched comparison subjects, the offspring of mothers with schizophrenia did not differ in prenatal lateral ventricle width or head circumference. Overall, the high-risk neonates had nonsignificantly larger intracranial, CSF, and lateral ventricle volumes. Subgroup analysis revealed that male high-risk infants had significantly larger intracranial, CSF, total gray matter, and lateral ventricle volumes; the female high-risk neonates were similar to the female comparison subjects. There were no group differences in white matter diffusion tensor properties. Conclusions Male neonates at genetic risk for schizophrenia had several larger than normal brain volumes, while females did not. To the authors' knowledge, this study provides the first evidence, in the context of its limitations, that early neonatal brain development may be abnormal in males at genetic risk for schizophrenia. PMID:20516153
Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana
2013-01-01
The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID:24032005
Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas
2014-01-01
Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689
Kelly, Philip A; Viding, Essi; Puetz, Vanessa B; Palmer, Amy L; Mechelli, Andrea; Pingault, Jean-Baptiste; Samuel, Sophie; McCrory, Eamon J
2015-11-01
While maltreatment is known to impact social and emotional functioning, threat processing, and neural structure, the potentially dimorphic influence of sex on these outcomes remains relatively understudied. We investigated sex differences across these domains in a large community sample of children aged 10 to 14 years (n = 122) comprising 62 children with verified maltreatment experience and 60 well-matched nonmaltreated peers. The maltreated group relative to the nonmaltreated comparison group exhibited poorer social and emotional functioning (more peer problems and heightened emotional reactivity). Cognitively, they displayed a pattern of attentional avoidance of threat in a visual dot-probe task. Similar patterns were observed in males and females in these domains. Reduced gray matter volume was found to characterize the maltreated group in the medial orbitofrontal cortex, bilateral middle temporal lobes, and bilateral supramarginal gyrus; sex differences were observed only in the supramarginal gyrus. In addition, a disordinal interaction between maltreatment exposure and sex was found in the postcentral gyrus. Finally, attentional avoidance to threat mediated the relationship between maltreatment and emotional reactivity, and medial orbitofrontal cortex gray matter volume mediated the relationship between maltreatment and peer functioning. Similar mediation patterns were observed across sexes. This study highlights the utility of combining multiple levels of analysis when studying the "latent vulnerability" engendered by childhood maltreatment and yields tentative findings regarding a neural basis of sex differences in long-term outcomes for maltreated children.
Impact of Zika Virus on adult human brain structure and functional organization.
Bido-Medina, Richard; Wirsich, Jonathan; Rodríguez, Minelly; Oviedo, Jairo; Miches, Isidro; Bido, Pamela; Tusen, Luis; Stoeter, Peter; Sadaghiani, Sepideh
2018-06-01
To determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain-Barré Syndrome (GBS)-like manifestations and include symptoms of the central nervous system (CNS). In this first case-control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age- and sex-matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel-based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain. Gray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes. We provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor-related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS-independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV-related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.
Structural brain correlates of associative memory in older adults.
Becker, Nina; Laukka, Erika J; Kalpouzos, Grégoria; Naveh-Benjamin, Moshe; Bäckman, Lars; Brehmer, Yvonne
2015-09-01
Associative memory involves binding two or more items into a coherent memory episode. Relative to memory for single items, associative memory declines greatly in aging. However, older individuals vary substantially in their ability to memorize associative information. Although functional studies link associative memory to the medial temporal lobe (MTL) and prefrontal cortex (PFC), little is known about how volumetric differences in MTL and PFC might contribute to individual differences in associative memory. We investigated regional gray-matter volumes related to individual differences in associative memory in a sample of healthy older adults (n=54; age=60years). To differentiate item from associative memory, participants intentionally learned face-scene picture pairs before performing a recognition task that included single faces, scenes, and face-scene pairs. Gray-matter volumes were analyzed using voxel-based morphometry region-of-interest (ROI) analyses. To examine volumetric differences specifically for associative memory, item memory was controlled for in the analyses. Behavioral results revealed large variability in associative memory that mainly originated from differences in false-alarm rates. Moreover, associative memory was independent of individuals' ability to remember single items. Older adults with better associative memory showed larger gray-matter volumes primarily in regions of the left and right lateral PFC. These findings provide evidence for the importance of PFC in intentional learning of associations, likely because of its involvement in organizational and strategic processes that distinguish older adults with good from those with poor associative memory. Copyright © 2015 Elsevier Inc. All rights reserved.
A semi-automated algorithm for hypothalamus volumetry in 3 Tesla magnetic resonance images.
Wolff, Julia; Schindler, Stephanie; Lucas, Christian; Binninger, Anne-Sophie; Weinrich, Luise; Schreiber, Jan; Hegerl, Ulrich; Möller, Harald E; Leitzke, Marco; Geyer, Stefan; Schönknecht, Peter
2018-07-30
The hypothalamus, a small diencephalic gray matter structure, is part of the limbic system. Volumetric changes of this structure occur in psychiatric diseases, therefore there is increasing interest in precise volumetry. Based on our detailed volumetry algorithm for 7 Tesla magnetic resonance imaging (MRI), we developed a method for 3 Tesla MRI, adopting anatomical landmarks and work in triplanar view. We overlaid T1-weighted MR images with gray matter-tissue probability maps to combine anatomical information with tissue class segmentation. Then, we outlined regions of interest (ROIs) that covered potential hypothalamus voxels. Within these ROIs, seed growing technique helped define the hypothalamic volume using gray matter probabilities from the tissue probability maps. This yielded a semi-automated method with short processing times of 20-40 min per hypothalamus. In the MRIs of ten subjects, reliabilities were determined as intraclass correlations (ICC) and volume overlaps in percent. Three raters achieved very good intra-rater reliabilities (ICC 0.82-0.97) and good inter-rater reliabilities (ICC 0.78 and 0.82). Overlaps of intra- and inter-rater runs were very good (≥ 89.7%). We present a fast, semi-automated method for in vivo hypothalamus volumetry in 3 Tesla MRI. Copyright © 2018 Elsevier B.V. All rights reserved.
Increased cerebellar gray matter volume in head chefs
Sarica, Alessia; Martino, Iolanda; Fabbricatore, Carmelo; Tomaiuolo, Francesco; Rocca, Federico; Caracciolo, Manuela; Quattrone, Aldo
2017-01-01
Objective Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. Methods Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. Results Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. Conclusions We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question. PMID:28182712
Steffener, Jason; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza; Bherer, Louis; Stern, Yaakov
2016-04-01
This study investigated the relationship between education and physical activity and the difference between a physiological prediction of age and chronological age (CA). Cortical and subcortical gray matter regional volumes were calculated from 331 healthy adults (range: 19-79 years). Multivariate analyses identified a covariance pattern of brain volumes best predicting CA (R(2) = 47%). Individual expression of this brain pattern served as a physiologic measure of brain age (BA). The difference between CA and BA was predicted by education and self-report measures of physical activity. Education and the daily number of flights of stairs climbed (FOSC) were the only 2 significant predictors of decreased BA. Effect sizes demonstrated that BA decreased by 0.95 years for each year of education and by 0.58 years for 1 additional FOSC daily. Effects of education and FOSC on regional brain volume were largely driven by temporal and subcortical volumes. These results demonstrate that higher levels of education and daily FOSC are related to larger brain volume than predicted by CA which supports the utility of regional gray matter volume as a biomarker of healthy brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.
Wilke, M; Kaufmann, C; Grabner, A; Pütz, B; Wetter, T C; Auer, D P
2001-05-01
Voxel-based morphometry has recently been used successfully to detect gray matter volume reductions in schizophrenic patients. The aim of the present study was to confirm the findings on gray-matter changes and to complement these by applying the methodology to CSF-differences. Also, we wanted to determine whether a correlation exists between a clinically defined parameter of disease severity and brain morphology in schizophrenic patients. We investigated 48 schizophrenic patients and compared them with 48 strictly age- and sex-matched controls. High-resolution whole-brain MR-images were segmented and analyzed using SPM99. In a further analysis, the covariate effect of the global assessment of functioning-score (GAF) was calculated. Main findings were (i) left-dominant frontal, temporal, and insular GM-reductions and (ii) GM-increases in schizophrenic patients in the right basal ganglia and bilaterally in the superior cerebellum; (iii) CSF-space increases in patients complementary to some GM-reductions; (iv) a correlation between the GAF-score and local GM-volume in the left inferior frontal and inferior parietal lobe of schizophrenic patients. This study confirms and extends some earlier findings on GM-reduction and detected distinct GM-increases in schizophrenic patients. These changes were corroborated by complementary CSF-increases. Most importantly, a correlation could be established between two particular gray matter-regions and the overall disease severity, with more severely ill patients displaying a local GM-deficit. These findings may be of potentially large importance for both the future interpretation and design of neuroimaging studies in schizophrenia and the further elucidation of possible pathophysiological processes occurring in this disease. Copyright 2001 Academic Press.
PA, JUDY; POSSIN, KATHERINE L.; WILSON, STEPHEN M.; QUITANIA, LOVINGLY C.; KRAMER, JOEL H.; BOXER, ADAM L.; WEINER, MICHAEL W.; JOHNSON, JULENE K.
2010-01-01
There is increasing recognition that set-shifting, a form of cognitive control, is mediated by different neural structures. However, these regions have not yet been carefully identified as many studies do not account for the influence of component processes (e.g., motor speed). We investigated gray matter correlates of set-shifting while controlling for component processes. Using the Design Fluency (DF), Trail Making Test (TMT), and Color Word Interference (CWI) subtests from the Delis-Kaplan Executive Function System (D-KEFS), we investigated the correlation between set-shifting performance and gray matter volume in 160 subjects with neurodegenerative disease, mild cognitive impairment, and healthy older adults using voxel-based morphometry. All three set-shifting tasks correlated with multiple, widespread gray matter regions. After controlling for the component processes, set-shifting performance correlated with focal regions in prefrontal and posterior parietal cortices. We also identified bilateral prefrontal cortex and the right posterior parietal lobe as common sites for set-shifting across the three tasks. There was a high degree of multicollinearity between the set-shifting conditions and the component processes of TMT and CWI, suggesting DF may better isolate set-shifting regions. Overall, these findings highlight the neuroanatomical correlates of set-shifting and the importance of controlling for component processes when investigating complex cognitive tasks. PMID:20374676
Goldstein, Kim E; Hazlett, Erin A; Savage, Kimberley R; Berlin, Heather A; Hamilton, Holly K; Zelmanova, Yuliya; Look, Amy E; Koenigsberg, Harold W; Mitsis, Effie M; Tang, Cheuk Y; McNamara, Margaret; Siever, Larry J; Cohen, Barry H; New, Antonia S
2011-04-15
Schizotypal personality disorder (SPD) individuals and borderline personality disorder (BPD) individuals have been reported to show neuropsychological impairments and abnormalities in brain structure. However, relationships between neuropsychological function and brain structure in these groups are not well understood. This study compared visual-spatial working memory (SWM) and its associations with dorsolateral prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) gray matter volume in 18 unmedicated SPD patients with no BPD traits, 18 unmedicated BPD patients with no SPD traits, and 16 healthy controls (HC). Results showed impaired SWM in SPD but not BPD, compared with HC. Moreover, among the HC group, but not SPD patients, better SWM performance was associated with larger VLPFC (BA44/45) gray matter volume (Fisher's Z p-values <0.05). Findings suggest spatial working memory impairments may be a core neuropsychological deficit specific to SPD patients and highlight the role of VLPFC subcomponents in normal and dysfunctional memory performance. Published by Elsevier B.V.
Interleukin-6 -174 and -572 genotypes and the volume of deep gray matter in preterm infants.
Reiman, Milla; Parkkola, Riitta; Lapinleimu, Helena; Lehtonen, Liisa; Haataja, Leena
2009-01-01
Preterm infants have smaller cerebral and cerebellar volumes at term compared with term born infants. Perinatal factors leading to the reduction in volumes are not well known. IL-6 -174 and -572 genotypes partly regulate individual immunologic responses and have also been connected with deviant neurologic development in preterm infants. Our hypothesis was that IL-6 -174 and -572 genetic polymorphisms are associated with brain lesions and regional brain volumes in very low birth weight or in very preterm infants. DNA was genotyped for IL-6 -174 and -572 polymorphisms (GG/GC/CC). Study infants (n = 175) were categorized into three groups according to the most pathologic brain finding in ultrasound examinations until term. The brain MRI performed at term was analyzed for regional brain volumes. Analyzed IL-6 genotypes did not show statistically significant association with structural brain lesions. However, IL-6 -174 CC and -572 GG genotypes associated with reduced volume of one brain region, the combined volume of basal ganglia and thalami, both in univariate and in multivariate analyses (p = 0.009, 0.009, respectively). The association of IL-6 -174 and -572 genetic polymorphisms with smaller volumes in deep gray matter provides us new ways to understand the processes leading to neurologic impairments in preterm infants.
Dolcos, Sanda; Hu, Yifan; Iordan, Alexandru D; Moore, Matthew; Dolcos, Florin
2016-02-01
Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain-personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly
Seiler, Stephan; Pirpamer, Lukas; Hofer, Edith; Duering, Marco; Jouvent, Eric; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold
2014-01-01
Magnetization transfer imaging (MTI) can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR) in gray and white matter (WM) and cognitive functioning in 355 participants of the Austrian stroke prevention family study (ASPS-Fam) aged 38–86 years. MTR maps were generated for the neocortex, deep gray matter structures, WM hyperintensities, and normal appearing WM (NAWM). Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function, and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and NAWM correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions, and cortex volume. Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia. PMID:25309438
Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study.
Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-09-01
Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature.
2012-01-01
Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798
Tamboer, Peter; Scholte, H Steven; Vorst, Harrie C M
2015-10-01
In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics and 57 non-dyslexics) with two analyses: group differences in local GM and total GM and WM volume and correlations between GM and WM volumes and five behavioural measures. We found no significant group differences after corrections for multiple comparisons although total WM volume was lower in the group of dyslexics when age was partialled out. We presented an overview of uncorrected clusters of voxels (p < 0.05, cluster size k > 200) with reduced or increased GM volume. We found four significant correlations between factors of dyslexia representing various behavioural measures and the clusters found in the first analysis. In the whole sample, a factor related to performances in spelling correlated negatively with GM volume in the left posterior cerebellum. Within the group of dyslexics, a factor related to performances in Dutch-English rhyme words correlated positively with GM volume in the left and right caudate nucleus and negatively with increased total WM volume. Most of our findings were in accordance with previous reports. A relatively new finding was the involvement of the caudate nucleus. We confirmed the multiple cognitive nature of dyslexia and suggested that experience greatly influences anatomical alterations depending on various subtypes of dyslexia, especially in a student sample.
Cortical morphology of visual creativity.
Gansler, David A; Moore, Dana W; Susmaras, Teresa M; Jerram, Matthew W; Sousa, Janelle; Heilman, Kenneth M
2011-07-01
The volume of cortical tissue devoted to a function often influences the quality of a person's ability to perform that function. Up to now only white matter correlates of creativity have been reported, and we wanted to learn if the creative visuospatial performance on the figural Torrance Test of Creative Thinking (TTCT) is associated with measurements of cerebral gray matter volume in the regions of the brain that are thought to be important in divergent reasoning and visuospatial processing. Eighteen healthy college educated men (mean age=40.78; 15 right-handers) were recruited (via advertisement) as participants. High-resolution MRI scans were acquired on a 1.5T MRI scanner. Voxel-based morphometry regression analyses of TTCT to cortical volume were restrained within the anatomic regions identified. One significant positive focus of association with TTCT emerged within the right parietal lobe gray matter (MNI coordinates: 44, -24, 63; 276 voxels). Based on theories of parietal lobe function and the requirements of the TTCT, the area observed may be related due to its dominant role in global aspects of attention and visuospatial processing including the capacity for manipulating spatial representations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhou, Yongxia; Yu, Fang; Duong, Timothy
2014-01-01
This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.
Bomba, Monica; Riva, Anna; Veggo, Federica; Grimaldi, Marco; Morzenti, Sabrina; Neri, Francesca; Nacinovich, Renata
2013-02-19
Anorexia nervosa commonly arises during adolescence and is associated with more than one medical morbidity. Abnormalities in brain structure (defined as "pseudoatrophy") are common in adolescents with anorexia nervosa; however, their correlations with endocrinological profiles and clinical parameters are still unclear. In particular, no study has described the impact of BMI (body mass index) variations (speed and magnitude of weight loss) on cerebral trophism changes. Eleven adolescents with anorexia nervosa and 8 healthy controls underwent cerebral MRI (magnetic resonance imaging) examination to obtain global and partial volumes (gray matter, white matter and cerebrospinal fluid) and clinical evaluation. The Mann-Whitney U test was used to compare partial volumes and clinical variables between cases and controls. The Spearman non-parametric test was performed in order to explore correlations between the variables studied. The patients diagnosed with AN showed significantly increased cerebrospinal fluid (CSF) volumes and decreased total gray (GM) and white matter (WM) volumes. The degree of weight loss (deltaBMI) correlated inversely with the GM volume; the increase of CSF compartment correlated directly with the rapidity of weight loss (DeltaBMI/disease duration). This study suggests a correlation between cerebral alterations in AN and the speed and magnitude of weight loss, and outlines its importance for the therapeutic treatment.
Tanner, Jared J; Levy, Shellie-Anne; Schwab, Nadine A; Hizel, Loren P; Nguyen, Peter T; Okun, Michael S; Price, Catherine C
2017-04-01
A 71-year-old (MN) with an 11-year history of left onset tremor diagnosed as Parkinson's disease (PD) completed longitudinal brain magnetic resonance imaging (MRI) and neuropsychological testing. MRI scans showed an asymmetric caudate nucleus (right < left volume). We describe this asymmetry at baseline and the progression over time relative to other subcortical gray, frontal white matter, and cortical gray matter regions of interest. Isolated structural changes are compared to MN's cognitive profiles. MN completed yearly MRIs and neuropsychological assessments. For comparison, left onset PD (n = 15) and non-PD (n = 43) peers completed the same baseline protocol. All MRI scans were processed with FreeSurfer and the FMRIB Software Library to analyze gray matter structures and frontal fractional anisotropy (FA) metrics. Processing speed, working memory, language, verbal memory, abstract reasoning, visuospatial, and motor functions were examined using reliable change methods. At baseline, MN had striatal volume and frontal lobe thickness asymmetry relative to peers with mild prefrontal white matter FA asymmetry. Over time only MN's right caudate nucleus showed accelerated atrophy. Cognitively, MN had slowed psychomotor speed and visuospatial-linked deficits with mild visuospatial working memory declines longitudinally. This is a unique report using normative neuroimaging and neuropsychology to describe an individual diagnosed with PD who had striking striatal asymmetry followed secondarily by cortical thickness asymmetry and possible frontal white matter asymmetry. His decline and variability in visual working memory could be linked to ongoing atrophy of his right caudate nucleus.
Tanner, Jared J.; Levy, Shellie-Anne; Schwab, Nadine A.; Hizel, Loren P.; Nguyen, Peter T.; Okun, Michael S.; Price, Catherine C.
2016-01-01
Objective A 71-year old (MN) with an 11-year history of left onset tremor diagnosed as Parkinson’s disease (PD) completed longitudinal brain magnetic resonance imaging (MRI) and neuropsychological testing. MRI scans showed an asymmetric caudate nucleus (right< left volume). We describe this asymmetry at baseline and the progression over time relative to other subcortical gray, frontal white matter, and cortical gray matter regions of interest. Isolated structural changes are compared to MN’s cognitive profiles. Method MN completed yearly MRIs and neuropsychological assessments. For comparison, left onset PD (n=15) and non-PD (n=43) peers completed the same baseline protocol. All MRI scans were processed with FreeSurfer and the FMRIB Software Library (FSL) to analyze gray matter structures and frontal fractional anisotropy (FA) metrics. Processing speed, working memory, language, verbal memory, abstract reasoning, visuospatial, and motor functions were examined using reliable change methods. Results At baseline MN had striatal volume and frontal lobe thickness asymmetry relative to peers with mild prefrontal white matter FA asymmetry. Over time only MN’s right caudate nucleus showed accelerated atrophy. Cognitively, MN had slowed psychomotor speed and visuospatial-linked deficits with mild visuospatial working memory declines longitudinally. Conclusions This is a unique report using normative neuroimaging and neuropsychology to describe an individual diagnosed with PD who had striking striatal asymmetry followed secondarily by cortical thickness asymmetry and possible frontal white matter asymmetry. His decline and variability in visual working memory could be linked to ongoing atrophy of his right caudate nucleus. PMID:27813459
Fusiform gyrus volume reduction and facial recognition in chronic schizophrenia.
Onitsuka, Toshiaki; Shenton, Martha E; Kasai, Kiyoto; Nestor, Paul G; Toner, Sarah K; Kikinis, Ron; Jolesz, Ferenc A; McCarley, Robert W
2003-04-01
The fusiform gyrus (FG), or occipitotemporal gyrus, is thought to subserve the processing and encoding of faces. Of note, several studies have reported that patients with schizophrenia show deficits in facial processing. It is thus hypothesized that the FG might be one brain region underlying abnormal facial recognition in schizophrenia. The objectives of this study were to determine whether there are abnormalities in gray matter volumes for the anterior and the posterior FG in patients with chronic schizophrenia and to investigate relationships between FG subregions and immediate and delayed memory for faces. Patients were recruited from the Boston VA Healthcare System, Brockton Division, and control subjects were recruited through newspaper advertisement. Study participants included 21 male patients diagnosed as having chronic schizophrenia and 28 male controls. Participants underwent high-spatial-resolution magnetic resonance imaging, and facial recognition memory was evaluated. Main outcome measures included anterior and posterior FG gray matter volumes based on high-spatial-resolution magnetic resonance imaging, a detailed and reliable manual delineation using 3-dimensional information, and correlation coefficients between FG subregions and raw scores on immediate and delayed facial memory derived from the Wechsler Memory Scale III. Patients with chronic schizophrenia had overall smaller FG gray matter volumes (10%) than normal controls. Additionally, patients with schizophrenia performed more poorly than normal controls in both immediate and delayed facial memory tests. Moreover, the degree of poor performance on delayed memory for faces was significantly correlated with the degree of bilateral anterior FG reduction in patients with schizophrenia. These results suggest that neuroanatomic FG abnormalities underlie at least some of the deficits associated with facial recognition in schizophrenia.
Cherbuin, Nicolas; Shaw, Marnie E; Walsh, Erin; Sachdev, Perminder; Anstey, Kaarin J
2017-12-14
Strong evidence is available suggesting that effective reduction of exposure to demonstrated modifiable risk factors in mid-life or before could significantly decrease the incidence of Alzheimer's disease (AD) and delay its onset. A key ingredient to achieving this goal is the reliable identification of individuals at risk well before they develop clinical symptoms. The aim of this study was to provide further neuroimaging evidence of the effectiveness of a validated tool, the ANU Alzheimer's Disease Risk Index, for the assessment of future risk of cognitive decline. Participants were 461 (60-64 years, 48% female) community-living individuals free of dementia at baseline. Associations between risk estimates obtained with the ANU-ADRI, total and regional brain volumes including in the default mode network (DMN) measured at the same assessment and diagnosis of MCI/dementia over a 12-year follow-up were tested in a large sample of community-living individuals free of dementia at baseline. Higher risk estimates on the ANU-ADRI were associated with lower cortical gray matter and particularly in the DMN. Importantly, difference in participants with high and low risk scores explained 7-9% of the observed difference in gray matter volume. In this sample, every one additional risk point on the ANU-ADRI was associated with an 8% increased risk of developing MCI/dementia over a 12-year follow-up and this association was partly mediated by a sub-region of the DMN. Risk of cognitive decline assessed with a validated instrument is associated with gray matter volume, particularly in the DMN, a region known to be implicated in the pathological process of the disease.
Nemoto, Kiyotaka; Takahashi, Tsutomu; Aleksic, Branko; Furuichi, Atsushi; Nakamura, Yumiko; Ikeda, Masashi; Noguchi, Kyo; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio; Suzuki, Michio
2014-01-01
Background YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. Methods In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. Results Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. Conclusions These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia. PMID:25105667
Sack, Markus; Lenz, Jenny N; Jakovcevski, Mira; Biedermann, Sarah V; Falfán-Melgoza, Claudia; Deussing, Jan; Bielohuby, Maximilian; Bidlingmaier, Martin; Pfister, Frederik; Stalla, Günter K; Sartorius, Alexander; Gass, Peter; Weber-Fahr, Wolfgang; Fuss, Johannes; Auer, Matthias K
2017-10-01
Excessive intake of high-caloric diets as well as subsequent development of obesity and diabetes mellitus may exert a wide range of unfavorable effects on the central nervous system (CNS) in the long-term. The potentially harmful effects of such diets were suggested to be mitigated by physical exercise. Here, we conducted a study investigating early effects of a cafeteria-diet on gray and white brain matter volume by means of voxel-based morphometry (VBM) and region-of-interest (ROI) analysis. Half of the mice performed voluntary wheel running to study if regular physical exercise prevents unfavorable effects of a cafeteria-diet. In addition, histological analyses for myelination and neurogenesis were performed. As expected, wheel running resulted in a significant increase of gray matter volume in the CA1-3 areas, the dentate gyrus and stratum granulosum of the hippocampus in the VBM analysis, while a positive effect of the cafeteria-diet was shown for the whole hippocampal CA1-3 area only in the ROI analysis, indicating a regional volume effect. It was earlier found that hippocampal neurogenesis may be related to volume increases after exercise. Interestingly, while running resulted in a significant increase in neurogenesis assessed by doublecortin (DCX)-labeling, this was not true for cafeteria diet. This indicates different underlying mechanisms for gray matter increase. Moreover, animals receiving cafeteria diet only showed mild deficits in long-term memory assessed by the puzzle-box paradigm, while executive functioning and short term memory were not affected. Our data therefore highlight that high caloric diet impacts on the brain and behavior. Physical exercise seems not to interact with these mechanisms.
Wang, Li; Shi, Feng; Gao, Yaozong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang
2014-01-01
Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination process. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6–8 months of age, where the white and gray matter tissues are isointense in T1 and T2 weighted images and hence exhibit the extremely low tissue contrast, posing significant challenges for automated segmentation. In this paper, we propose a general framework that adopts sparse representation to fuse the multi-modality image information and further incorporate the anatomical constraints for brain tissue segmentation. Specifically, we first derive an initial segmentation from a library of aligned images with ground-truth segmentations by using sparse representation in a patch-based fashion for the multi-modality T1, T2 and FA images. The segmentation result is further iteratively refined by integration of the anatomical constraint. The proposed method was evaluated on 22 infant brain MR images acquired at around 6 months of age by using a leave-one-out cross-validation, as well as other 10 unseen testing subjects. Our method achieved a high accuracy for the Dice ratios that measure the volume overlap between automated and manual segmentations, i.e., 0.889±0.008 for white matter and 0.870±0.006 for gray matter. PMID:24291615
Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C
2015-01-01
Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.
Senior Dance Experience, Cognitive Performance, and Brain Volume in Older Women.
Niemann, Claudia; Godde, Ben; Voelcker-Rehage, Claudia
2016-01-01
Physical activity is positively related to cognitive functioning and brain volume in older adults. Interestingly, different types of physical activity vary in their effects on cognition and on the brain. For example, dancing has become an interesting topic in aging research, as it is a popular leisure activity among older adults, involving cardiovascular and motor fitness dimensions that can be positively related to cognition. However, studies on brain structure are missing. In this study, we tested the association of long-term senior dance experience with cognitive performance and gray matter brain volume in older women aged 65 to 82 years. We compared nonprofessional senior dancers ( n = 28) with nonsedentary control group participants without any dancing experience ( n = 29), who were similar in age, education, IQ score, lifestyle and health factors, and fitness level. Differences neither in the four tested cognitive domains (executive control, perceptual speed, episodic memory, and long-term memory) nor in brain volume (VBM whole-brain analysis, region-of-interest analysis of the hippocampus) were observed. Results indicate that moderate dancing activity (1-2 times per week, on average) has no additional effects on gray matter volume and cognitive functioning when a certain lifestyle or physical activity and fitness level are reached.
Lázaro, L; Ortiz, A G; Calvo, A; Ortiz, A E; Moreno, E; Morer, A; Calvo, R; Bargallo, N
2014-10-03
The aims of this study were to identify gray matter (GM) and white matter (WM) volume abnormalities in pediatric obsessive-compulsive patients, to examine their relationship between these abnormalities and the severity of disorder, and to explore whether they could be explained by the different symptom dimensions. 62 child and adolescent OCD patients (11-18years old) and 46 healthy subjects of the same gender and similar age and estimated intellectual quotient were assessed by means of psychopathological scales and magnetic resonance imaging (MRI). Axial three-dimensional T1-weighted images were obtained in a 3T scanner and analyzed using optimized voxel-based morphometry (VBM). Compared with healthy controls, OCD patients showed lower white matter (WM) volume in the left dorsolateral and cingulate regions involving the superior and middle frontal gyri and anterior cingulate gyrus (t=4.35, p=0.049 FWE (family wise error)-corrected). There was no significant correlation between WM and the severity of obsessive-compulsive symptomatology. There were no regions with lower gray matter (GM) volume in OCD patients than in controls. Compared with healthy controls, only the "harm/checking" OCD dimension showed a cluster with a near significant decrease in WM volume in the right superior temporal gyrus extending into the insula (t=5.61, p=.056 FWE-corrected). The evidence suggests that abnormalities in the dorsolateral prefrontal cortex, anterior cingulate cortex, temporal and limbic regions play a central role in the pathophysiology of OCD. Moreover, regional brain volumes in OCD may vary depending on specific OCD symptom dimensions, indicating the clinical heterogeneity of the condition. Copyright © 2014 Elsevier Inc. All rights reserved.
Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.
Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong
2017-11-02
Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.
Wei, Wei; Chen, Chuansheng; Dong, Qi; Zhou, Xinlin
2016-01-01
Behavioral studies have reported that males perform better than females in 3-dimensional (3D) mental rotation. Given the important role of the hippocampus in spatial processing, the present study investigated whether structural differences in the hippocampus could explain the sex difference in 3D mental rotation. Results showed that after controlling for brain size, males had a larger anterior hippocampus, whereas females had a larger posterior hippocampus. Gray matter volume (GMV) of the right anterior hippocampus was significantly correlated with 3D mental rotation score. After controlling GMV of the right anterior hippocampus, sex difference in 3D mental rotation was no longer significant. These results suggest that the structural difference between males’ and females’ right anterior hippocampus was a neurobiological substrate for the sex difference in 3D mental rotation. PMID:27895570
Hsu, Fang-Chi; Yuan, Mingxia; Bowden, Donald W; Xu, Jianzhao; Smith, S Carrie; Wagenknecht, Lynne E; Langefeld, Carl D; Divers, Jasmin; Register, Thomas C; Carr, J Jeffrey; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A; Freedman, Barry I
To assess associations between body mass index (BMI), waist circumference (WC), and computed tomography-determined volumes of pericardial, visceral, and subcutaneous adipose tissue with magnetic resonance imaging-(MRI) based cerebral structure and cognitive performance in individuals with type 2 diabetes (T2D). This study was performed in 348 African Americans (AAs) and 256 European Americans (EAs) with T2D. Associations between adiposity measures with cerebral volumes of white matter (WMV), gray matter (GMV), white matter lesions, hippocampal GMV, and hippocampal WMV, cognitive performance and depression were examined using marginal models incorporating generalized estimating equations. All models were adjusted for age, sex, education, smoking, HbA1c, hypertension, statins, cardiovascular disease, MRI scanner (MRI outcomes only), and time between scans; some neuroimaging measures were additionally adjusted for intracranial volume. Participants were 59.9% female with mean (SD) age 57.7(9.3)years, diabetes duration 9.6(6.8)years, and HbA1c 7.8(1.9)%. In AAs, inverse associations were detected between hippocampal GMV and both BMI (β [95% CI]-0.18 [-0.30, -0.07], P=0.0018) and WC (-0.23 [-0.35, -0.12], P=0.0001). In the full bi-ethnic sample, inverse associations were detected between hippocampal WMV and WC (P≤0.0001). Positive relationships were observed between BMI (P=0.0007) and WC (P<0.0001) with depression in EAs. In patients with T2D, adiposity is inversely associated with hippocampal gray and white matter volumes. Copyright © 2016 Elsevier Inc. All rights reserved.
Planum Temporale Volume in Children and Adolescents with Autism
ERIC Educational Resources Information Center
Rojas, Donald C.; Camou, Suzanne L.; Reite, Martin L.; Rogers, Sally J.
2005-01-01
Previous research has revealed a lack of planum temporale (PT) asymmetry in adults with autism. This finding is now extended to children and adolescents with the disorder. MRI scans were obtained from 12 children with autism and 12 gender, handedness and age-matched comparison participants. The volume of gray matter in the PT and Heschl's gyrus…
Gilman, Jodi M; Kuster, John K; Lee, Sang; Lee, Myung Joo; Kim, Byoung Woo; Makris, Nikos; van der Kouwe, Andre; Blood, Anne J; Breiter, Hans C
2014-04-16
Marijuana is the most commonly used illicit drug in the United States, but little is known about its effects on the human brain, particularly on reward/aversion regions implicated in addiction, such as the nucleus accumbens and amygdala. Animal studies show structural changes in brain regions such as the nucleus accumbens after exposure to Δ9-tetrahydrocannabinol, but less is known about cannabis use and brain morphometry in these regions in humans. We collected high-resolution MRI scans on young adult recreational marijuana users and nonusing controls and conducted three independent analyses of morphometry in these structures: (1) gray matter density using voxel-based morphometry, (2) volume (total brain and regional volumes), and (3) shape (surface morphometry). Gray matter density analyses revealed greater gray matter density in marijuana users than in control participants in the left nucleus accumbens extending to subcallosal cortex, hypothalamus, sublenticular extended amygdala, and left amygdala, even after controlling for age, sex, alcohol use, and cigarette smoking. Trend-level effects were observed for a volume increase in the left nucleus accumbens only. Significant shape differences were detected in the left nucleus accumbens and right amygdala. The left nucleus accumbens showed salient exposure-dependent alterations across all three measures and an altered multimodal relationship across measures in the marijuana group. These data suggest that marijuana exposure, even in young recreational users, is associated with exposure-dependent alterations of the neural matrix of core reward structures and is consistent with animal studies of changes in dendritic arborization.
Modifications of resting state networks in spinocerebellar ataxia type 2.
Cocozza, Sirio; Saccà, Francesco; Cervo, Amedeo; Marsili, Angela; Russo, Cinzia Valeria; Giorgio, Sara Maria Delle Acque; De Michele, Giuseppe; Filla, Alessandro; Brunetti, Arturo; Quarantelli, Mario
2015-09-01
We aimed to investigate the integrity of the Resting State Networks in spinocerebellar ataxia type 2 (SCA2) and the correlations between the modification of these networks and clinical variables. Resting-state functional magnetic resonance imaging (RS-fMRI) data from 19 SCA2 patients and 29 healthy controls were analyzed using an independent component analysis and dual regression, controlling at voxel level for the effect of atrophy by co-varying for gray matter volume. Correlations between the resting state networks alterations and disease duration, age at onset, number of triplets, and clinical score were assessed by Spearman's coefficient, for each cluster which was significantly different in SCA2 patients compared with healthy controls. In SCA2 patients, disruption of the cerebellar components of all major resting state networks was present, with supratentorial involvement only for the default mode network. When controlling at voxel level for gray matter volume, the reduction in functional connectivity in supratentorial regions of the default mode network, and in cerebellar regions within the default mode, executive and right fronto-parietal networks, was still significant. No correlations with clinical variables were found for any of the investigated resting state networks. The SCA2 patients show significant alterations of the resting state networks, only partly explained by the atrophy. The default mode network is the only resting state network that shows also supratentorial changes, which appear unrelated to the cortical gray matter volume. Further studies are needed to assess the clinical significance of these changes. © 2015 International Parkinson and Movement Disorder Society.
Neural Predictors of Visuomotor Adaptation Rate and Multi-Day Savings
NASA Technical Reports Server (NTRS)
Cassady, Kaitlin; Ruitenberg, Marit; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos Castenada, Roy; Kofman, Igor; Bloomberg, Jacob;
2017-01-01
Recent studies of sensorimotor adaptation have found that individual differences in task-based functional brain activation are associated with the rate of adaptation and savings at subsequent sessions. However, few studies to date have investigated offline neural predictors of adaptation and multi-day savings. In the present study, we explore whether individual differences in the rate of visuomotor adaptation and multi-day savings are associated with differences in resting state functional connectivity and gray matter volume. Thirty-four participants performed a manual adaptation task during two separate test sessions, on average 9 days apart. We found that resting state functional connectivity strength between sensorimotor, anterior cingulate, and temporoparietal areas of the brain was a significant predictor of adaptation rate during the early, cognitive phase of practice. In contrast, default mode network functional connectivity strength was found to predict late adaptation rate and savings on day two, which suggests that these behaviors may rely on overlapping processes. We also found that gray matter volume in temporoparietal and occipital regions was a significant predictor of early learning, whereas gray matter volume in superior posterior regions of the cerebellum was a significant predictor of late adaptation. The results from this study suggest that offline neural predictors of early adaptation facilitate the cognitive mechanisms of sensorimotor adaptation, with support from by the involvement of temporoparietal and cingulate networks. In contrast, the neural predictors of late adaptation and savings, including the default mode network and the cerebellum, likely support the storage and modification of newly acquired sensorimotor representations. These findings provide novel insights into the neural processes associated with individual differences in sensorimotor adaptation.
Risk profiles for heavy drinking in adolescence: differential effects of gender.
Seo, Sambu; Beck, Anne; Matthis, Caroline; Genauck, Alexander; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Quinlan, Erin Burke; Flor, Herta; Frouin, Vincent; Garavan, Hugh; Gowland, Penny; Ittermann, Bernd; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Papadopoulos Orfanos, Dimitri; Poustka, Luise; Hohmann, Sarah; Fröhner, Juliane H; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Desrivières, Sylvane; Heinz, Andreas; Schumann, Gunter; Obermayer, Klaus
2018-05-30
Abnormalities across different domains of neuropsychological functioning may constitute a risk factor for heavy drinking during adolescence and for developing alcohol use disorders later in life. However, the exact nature of such multi-domain risk profiles is unclear, and it is further unclear whether these risk profiles differ between genders. We combined longitudinal and cross-sectional analyses on the large IMAGEN sample (N ≈ 1000) to predict heavy drinking at age 19 from gray matter volume as well as from psychosocial data at age 14 and 19-for males and females separately. Heavy drinking was associated with reduced gray matter volume in 19-year-olds' bilateral ACC, MPFC, thalamus, middle, medial and superior OFC as well as left amygdala and anterior insula and right inferior OFC. Notably, this lower gray matter volume associated with heavy drinking was stronger in females than in males. In both genders, we observed that impulsivity and facets of novelty seeking at the age of 14 and 19, as well as hopelessness at the age of 14, are risk factors for heavy drinking at the age of 19. Stressful life events with internal (but not external) locus of control were associated with heavy drinking only at age 19. Personality and stress assessment in adolescents may help to better target counseling and prevention programs. This might reduce heavy drinking in adolescents and hence reduce the risk of early brain atrophy, especially in females. In turn, this could additionally reduce the risk of developing alcohol use disorders later in adulthood. © 2018 Society for the Study of Addiction.
Chen, Xu; Errangi, Bhargav; Li, Longchuan; Glasser, Matthew F; Westlye, Lars T; Fjell, Anders M; Walhovd, Kristine B; Hu, Xiaoping; Herndon, James G; Preuss, Todd M; Rilling, James K
2013-10-01
Among primates, humans are uniquely vulnerable to many age-related neurodegenerative disorders. We used structural and diffusion magnetic resonance imaging (MRI) to examine the brains of chimpanzees and rhesus monkeys across each species' adult lifespan, and compared these results with published findings in humans. As in humans, gray matter volume decreased with age in chimpanzees and rhesus monkeys. Also like humans, chimpanzees showed a trend for decreased white matter volume with age, but this decrease occurred proportionally later in the chimpanzee lifespan than in humans. Diffusion MRI revealed widespread age-related decreases in fractional anisotropy and increases in radial diffusivity in chimpanzees and macaques. However, both the fractional anisotropy decline and the radial diffusivity increase started at a proportionally earlier age in humans than in chimpanzees. Thus, even though overall patterns of gray and white matter aging are similar in humans and chimpanzees, the longer lifespan of humans provides more time for white matter to deteriorate before death, with the result that some neurological effects of aging may be exacerbated in our species. Copyright © 2013 Elsevier Inc. All rights reserved.
Williams, Victoria; Hayes, Jasmeet P.; Forman, Daniel E.; Salat, David H.; Sperling, Reisa A.; Verfaellie, Mieke; Hayes, Scott M.
2016-01-01
Aging is associated with reductions in gray matter volume and cortical thickness. One factor that may play a role in mitigating age-associated brain decline is cardiorespiratory fitness (CRF). Although previous work has identified a positive association between CRF and gray matter volume, the relationship between CRF and cortical thickness, which serves as a more sensitive indicator of gray matter integrity, has yet to be assessed in healthy young and older adults. To address this gap in the literature, 32 young and 29 older adults completed treadmill-based progressive maximal exercise testing to assess CRF (peak VO2), and structural magnetic resonance imaging (MRI) to determine vertex-wise surface-based cortical thickness metrics. Results indicated a significant CRF by age group interaction such that Peak VO2 was associated with thicker cortex in older adults but with thinner cortex in young adults. Notably, the majority of regions demonstrating a positive association between peak VO2 and cortical thickness in older adults overlapped with brain regions showing significant age-related cortical thinning. Further, when older adults were categorized as high or low fit based on normative data, we observed a stepwise pattern whereby cortex was thickest in young adults, intermediate in high fit older adults and thinnest in low fit older adults. Overall, these results support the notion that CRF-related neuroplasticity may reduce although not eliminate age-related cortical atrophy. PMID:27989841
The neuroanatomy of genetic subtype differences in Prader-Willi syndrome.
Honea, Robyn A; Holsen, Laura M; Lepping, Rebecca J; Perea, Rodrigo; Butler, Merlin G; Brooks, William M; Savage, Cary R
2012-03-01
Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. Copyright © 2012 Wiley Periodicals, Inc.
Williams, Victoria J; Hayes, Jasmeet P; Forman, Daniel E; Salat, David H; Sperling, Reisa A; Verfaellie, Mieke; Hayes, Scott M
2017-02-01
Aging is associated with reductions in gray matter volume and cortical thickness. One factor that may play a role in mitigating age-associated brain decline is cardiorespiratory fitness (CRF). Although previous work has identified a positive association between CRF and gray matter volume, the relationship between CRF and cortical thickness, which serves as a more sensitive indicator of gray matter integrity, has yet to be assessed in healthy young and older adults. To address this gap in the literature, 32 young and 29 older adults completed treadmill-based progressive maximal exercise testing to assess CRF (peak VO 2 ), and structural magnetic resonance imaging (MRI) to determine vertex-wise surface-based cortical thickness metrics. Results indicated a significant CRF by age group interaction such that Peak VO 2 was associated with thicker cortex in older adults but with thinner cortex in young adults. Notably, the majority of regions demonstrating a positive association between peak VO 2 and cortical thickness in older adults overlapped with brain regions showing significant age-related cortical thinning. Further, when older adults were categorized as high or low fit based on normative data, we observed a stepwise pattern whereby cortex was thickest in young adults, intermediate in high fit older adults and thinnest in low fit older adults. Overall, these results support the notion that CRF-related neuroplasticity may reduce although not eliminate age-related cortical atrophy. Published by Elsevier Inc.
Tsuchiyagaito, Aki; Hirano, Yoshiyuki; Asano, Kenichi; Oshima, Fumiyo; Nagaoka, Sawako; Takebayashi, Yoshitake; Matsumoto, Koji; Masuda, Yoshitada; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko
2017-01-01
Cognitive behavioral therapy (CBT) is an effective treatment for obsessive–compulsive disorder (OCD) and is also applicable to patients with both OCD and autism spectrum disorder (ASD). However, previous studies have reported that CBT for patients with both OCD and ASD might be less effective than for patients with OCD alone. In addition, there is no evidence as to why autistic traits might be risk factors. Therefore, we investigated whether comorbidity between ASD and OCD may significantly affect treatment outcome and discovered predictors of CBT outcomes using structural magnetic resonance imaging (MRI) data. A total of 39 patients, who were diagnosed with OCD, were enrolled in this study. Of these, except for 2 dropout cases, 15 patients were diagnosed with ASD, and 22 patients were diagnosed with OCD without ASD. Both groups took CBT for 11–20 sessions. First, to examine the effectiveness of CBT for OCD patients with and without ASD, we compared CBT outcomes between the two groups. Second, to investigate how the structural abnormality profile of the brain at pretreatment influenced CBT outcomes, we performed a structural MRI comparison focusing on the gray matter volume of the whole brain in both patients with only OCD, and those with both OCD and ASD. In order to discover neurostructural predictors of CBT outcomes besides autistic traits, we divided our samples again into two groups of those who did and those who did not remit after CBT, and repeated the analysis taking autistic traits into account. The results showed that OCD patients with ASD responded significantly less well to CBT. The OCD patients with ASD had much less gray matter volume in the left occipital lobe than OCD patients without ASD. The non-remission group had a significantly smaller volume of gray matter in the left dorsolateral prefrontal cortex (DLPFC) compared with the remission group, after having partialed out autistic traits. These results indicate that the abnormalities in DLPFC negatively affect the CBT outcome, regardless of the severity of the autistic traits. PMID:28861007
Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg
2015-08-30
Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Terada, Tatsuhiro; Miyata, Jun; Obi, Tomokazu; Kubota, Manabu; Yoshizumi, Miho; Murai, Toshiya
2018-07-15
To identify the brain-volume reductions associated with frontal cognitive and behavioral impairments in Parkinson's disease (PD). Forty PD patients without dementia or amnesia (Hoehn and Yahr stage 3) and 10 age-matched controls underwent brain magnetic resonance imaging. Cognitive and behavioral impairments were assessed by using the Frontal Assessment Battery (FAB) and Frontal Systems Behavioral Scale (FrSBe), respectively. We applied voxel-based morphometry to investigate the correlations of regional gray matter volume with FAB, FrSBe, and physical disability. FAB was significantly lower in PD than in controls. FrSBe was significantly higher after PD onset than before, notably in the apathy subscale. FAB and FrSBe were significantly intercorrelated. In PD patients, left inferior frontal volume was positively correlated with FAB, whereas right precentral volume was negatively correlated with FrSBe total score. The brain volumes in both of these regions were not correlated with the Unified PD Rating Scale III. Behavioral impairments in PD tended to coexist with progression of frontal cognitive impairment. Regional atrophy within the frontal lobe was associated with both frontal cognitive and behavioral impairments. However, the specific region responsible for behavioral impairment differed from that for frontal cognitive impairment. These associations were independent of physical disability. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Tae-Hoon; Kim, Seok-Kwun; Jeong, Gwang-Woo
2015-12-16
Several studies seem to support the hypothesis that brain anatomy is associated with transsexualism. However, these studies were still limited because few neuroanatomical findings have been obtained from female-to-male (FtM) transsexuals. This study compared the cerebral regional volumes of gray matter (GM) between FtM transsexuals and female controls using a voxel-based morphometry. Twelve FtM transsexuals who had undergone sex-reassignment surgery and 15 female controls participated in this study. Both groups were age matched and right-handed, with no history of neurological illness. Fifteen female controls were recruited to determine whether GM volumes in FtM transsexuals more closely resembled individuals who shared their biological sex. MRI data were processed using SPM 8 with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL). FtM transsexuals showed significantly larger volumes of the thalamus, hypothalamus, midbrain, gyrus rectus, head of caudate nucleus, precentral gyrus, and subcallosal area compared with the female controls. However, the female controls showed a significantly larger volume in the superior temporal gyrus including Heschl's gyrus and Rolandic operculum. These findings confirm that the volume difference in brain substructures in FtM transsexuals is likely to be associated with transsexualism and that transsexualism is probably associated with distinct cerebral structures, determining gender identity.
Brain gray matter structural network in myotonic dystrophy type 1.
Sugiyama, Atsuhiko; Sone, Daichi; Sato, Noriko; Kimura, Yukio; Ota, Miho; Maikusa, Norihide; Maekawa, Tomoko; Enokizono, Mikako; Mori-Yoshimura, Madoka; Ohya, Yasushi; Kuwabara, Satoshi; Matsuda, Hiroshi
2017-01-01
This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.
Sexual dimorphism of the planum temporale in schizophrenia: A MRI study.
Delvecchio, Giuseppe; Pigoni, Alessandro; Perlini, Cinzia; Barillari, Marco; Ruggeri, Mirella; Altamura, Alfredo Carlo; Bellani, Marcella; Brambilla, Paolo
2017-10-01
Anatomical alterations in the superior temporal gyrus have been consistently reported in patients with schizophrenia, and they have mostly been linked to positive symptoms, including hallucinations and thought disorders. The superior temporal gyrus is considered one of the most asymmetric and lateralized structure of the human brain, and the process of lateralization seems to vary according to gender in the normal population. However, although it has been consistently suggested that patients with schizophrenia did not show normal brain lateralization in several regions, only few studies investigated it in the superior temporal gyrus and its sub-regions considering the effects of gender. In this context, the aim of this study was to evaluate sexual dimorphism in superior temporal gyrus volumes in a sample of patients with schizophrenia compared to age- and gender-matched healthy controls. A total of 72 right/left-handed males (40 schizophrenia patients and 32 healthy controls) and 45 right/left-handed females (18 schizophrenia patients and 27 healthy controls) underwent clinical evaluation and a 1.5T magnetic resonance imaging scan. Gray and white matter volumes of regions of interest within the superior temporal gyrus were manually detected, including the Heschl's gyrus and the planum temporale. Female patients with schizophrenia presented a reduction in left planum temporale gray matter volumes ( F = 4.58, p = 0.03) and a lack of the normal planum temporale asymmetry index ( t = 0.27; p = 0.79) compared to female controls ( t = 5.47; p = 0.001). No differences were found between males for any volumes or laterality indices. Finally, in female patients with schizophrenia, Heschl's gyrus gray and white matter volumes negatively correlated with positive symptoms ( r = -0.56, p = 0.01). Our results showed that sexual dimorphism plays a key role on planum temporale in schizophrenia, underlining the importance of gender as a modulator of brain morphology and lateralization of schizophrenia.
Sleep-disordered breathing, brain volume, and cognition in older individuals with heart failure.
Moon, Chooza; Melah, Kelsey E; Johnson, Sterling C; Bratzke, Lisa C
2018-06-19
Sleep-disordered breathing is common in individuals with heart failure and may contribute to changes in the brain and decreased cognition. However, limited research has explored how the apnea-hypopnea index contributes to brain structure and cognition in this population. The aims of this study were to explore how the apnea-hypopnea index is associated with brain volume and cognition in heart failure patients. Data of 28 heart failure patients (mean age = 67.93; SD = 5.78) were analyzed for this cross-sectional observational study. We evaluated the apnea-hypopnea index using a portable multichannel sleep-monitoring device. All participants were scanned using 3.0 Tesla magnetic resonance imaging and neuropsychological tests. Brain volume was evaluated using a voxel-based morphometry method with T1-weighted images. We used multiple regressions to analyze how the apnea-hypopnea index is associated with brain volume and cognition. We found an inverse association between apnea-hypopnea index scores and white matter volume (β = -0.002, p = 0.026), but not in gray matter volume (β = -0.001, p = 0.237). Higher apnea-hypopnea index was associated with reduced regional gray and white matter volume (p < 0.001, uncorrected). Cognitive scores were not associated with the apnea-hypopnea index (p-values were >0.05). Findings from this study provide exploratory evidence that higher apnea-hypopnea index may be associated with greater brain volume reduction in heart failure patients. Future studies are needed to establish the relationship between sleep-disordered breathing, brain volume, and cognition in heart failure samples. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Structural MRI biomarkers of shared pathogenesis in autism spectrum disorder and epilepsy.
Blackmon, Karen
2015-06-01
Etiological factors that contribute to a high comorbidity between autism spectrum disorder (ASD) and epilepsy are the subject of much debate. Does epilepsy cause ASD or are there common underlying brain abnormalities that increase the risk of developing both disorders? This review summarizes evidence from quantitative MRI studies to suggest that abnormalities of brain structure are not necessarily the consequence of ASD and epilepsy but are antecedent to disease expression. Abnormal gray and white matter volumes are present prior to onset of ASD and evident at the time of onset in pediatric epilepsy. Aberrant brain growth trajectories are also common in both disorders, as evidenced by blunted gray matter maturation and white matter maturation. Although the etiological factors that explain these abnormalities are unclear, high heritability estimates for gray matter volume and white matter microstructure demonstrate that genetic factors assert a strong influence on brain structure. In addition, histopathological studies of ASD and epilepsy brain tissue reveal elevated rates of malformations of cortical development (MCDs), such as focal cortical dysplasia and heterotopias, which supports disruption of neuronal migration as a contributing factor. Although MCDs are not always visible on MRI with conventional radiological analysis, quantitative MRI detection methods show high sensitivity to subtle malformations in epilepsy and can be potentially applied to MCD detection in ASD. Such an approach is critical for establishing quantitative neuroanatomic endophenotypes that can be used in genetic research. In the context of emerging drug treatments for seizures and autism symptoms, such as rapamycin and rapalogs, in vivo neuroimaging markers of subtle structural brain abnormalities could improve sample stratification in human clinical trials and potentially extend the range of patients that might benefit from treatment. This article is part of a Special Issue entitled "Autism and Epilepsy". Copyright © 2015 Elsevier Inc. All rights reserved.
Neuroimaging abnormalities in clade C HIV are independent of Tat genetic diversity.
Paul, Robert H; Phillips, Sarah; Hoare, Jacqueline; Laidlaw, David H; Cabeen, Ryan; Olbricht, Gayla R; Su, Yuqing; Stein, Dan J; Engelbrecht, Susan; Seedat, Soraya; Salminen, Lauren E; Baker, Laurie M; Heaps, Jodi; Joska, John
2017-04-01
Controversy remains regarding the neurotoxicity of clade C human immunodeficiency virus (HIV-C). When examined in preclinical studies, a cysteine to serine substitution in the C31 dicysteine motif of the HIV-C Tat protein (C31S) results in less severe brain injury compared to other viral clades. By contrast, patient cohort studies identify significant neuropsychological impairment among HIV-C individuals independent of Tat variability. The present study clarified this discrepancy by examining neuroimaging markers of brain integrity among HIV-C individuals with and without the Tat substitution. Thirty-seven HIV-C individuals with the Tat C31S substitution, 109 HIV-C individuals without the Tat substitution (C31C), and 34 HIV- controls underwent 3T structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Volumes were determined for the caudate, putamen, thalamus, corpus callosum, total gray matter, and total white matter. DTI metrics included fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Tracts of interest included the anterior thalamic radiation (ATR), cingulum bundle (CING), uncinate fasciculus (UNC), and corpus callosum (CC). HIV+ individuals exhibited smaller volumes in subcortical gray matter, total gray matter and total white matter compared to HIV- controls. HIV+ individuals also exhibited DTI abnormalities across multiple tracts compared to HIV- controls. By contrast, neither volumetric nor diffusion indices differed significantly between the Tat C31S and C31C groups. Tat C31S status is not a sufficient biomarker of HIV-related brain integrity in patient populations. Clinical attention directed at brain health is warranted for all HIV+ individuals, independent of Tat C31S or clade C status.
Tanner, Jared J; Mareci, Thomas H; Okun, Michael S; Bowers, Dawn; Libon, David J; Price, Catherine C
2015-01-01
The current investigation examined verbal memory in idiopathic non-dementia Parkinson's disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum) on memory impairment in Parkinson's disease. Forty non-demented Parkinson's disease patients and forty non-Parkinson's disease controls completed two verbal memory tests--a wordlist measure (Philadelphia repeatable Verbal Memory Test) and a story measure (Logical Memory). All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens) sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight) were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables. Individuals with Parkinson's disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson's disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson's disease patients (23%) had deficits (z-scores < -1.5) across both memory measures. Relative to non-impaired Parkinson's peers, this memory-impaired group had smaller entorhinal volumes. Although entorhinal cortex volume was significantly reduced in Parkinson's disease patients relative to non-Parkinson's peers, only white matter connections associated with the entorhinal cortex were significantly associated with verbal memory performance in our sample. There was also no suggestion of contribution from frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson's disease.
The correlation between emotional intelligence and gray matter volume in university students.
Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun
2014-11-01
A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems. Copyright © 2014 Elsevier Inc. All rights reserved.
Decreased centrality of cortical volume covariance networks in autism spectrum disorders.
Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo
2015-10-01
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Baseline Gray- and White Matter Volume Predict Successful Weight Loss in the Elderly
Mokhtari, Fatemeh; Paolini, Brielle M.; Burdette, Jonathan H.; Marsh, Anthony P.; Rejeski, W. Jack; Laurienti, Paul J.
2016-01-01
Objective The purpose of this study is to investigate if structural brain phenotypes can be used to predict weight loss success following behavioral interventions in older adults that are overweight or obese and have cardiometabolic dysfunction. Methods A support vector machine (SVM) with a repeated random subsampling validation approach was used to classify participants into the upper and lower halves of the weight loss distribution following 18 months of a weight loss intervention. Predictions were based on baseline brain gray matter (GM) and white matter (WM) volume from 52 individuals that completed the intervention and a magnetic resonance imaging session. Results The SVM resulted in an average classification accuracy of 72.62 % based on GM and WM volume. A receiver operating characteristic analysis indicated that classification performance was robust based on an area under the curve of 0.82. Conclusions Our findings suggest that baseline brain structure is able to predict weight loss success following 18 months of treatment. The identification of brain structure as a predictor of successful weight loss is an innovative approach to identifying phenotypes for responsiveness to intensive lifestyle interventions. This phenotype could prove useful in future research focusing on the tailoring of treatment for weight loss. PMID:27804273
Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin
2015-01-01
Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.
Interactive Medical Volume Visualization for Surgical Operations
2001-10-25
the preprocessing and processing stages, related medical brain tissues, which are skull, white matter, gray matter and pathology ( tumor ), are segmented ...from 12 or 16 bit data depths. NMR segmentation plays an important role in our work, because, classifying brain tissues from NMR slices requires an...performing segmentation of brain structures. Our segmentation process uses Self Organizing Feature Maps (SOFM) [12]. In SOM, on the contrary to Feedback
Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo
2011-02-01
A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits. Copyright © 2010 Elsevier Inc. All rights reserved.
Large-scale structural alteration of brain in epileptic children with SCN1A mutation.
Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung
2017-01-01
Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n = 21) with those of age and gender matched healthy controls ( n = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.
Frontotemporoparietal asymmetry and lack of illness awareness in schizophrenia.
Gerretsen, Philip; Chakravarty, M Mallar; Mamo, David; Menon, Mahesh; Pollock, Bruce G; Rajji, Tarek K; Graff-Guerrero, Ariel
2013-05-01
Lack of illness awareness or anosognosia occurs in both schizophrenia and right hemisphere lesions due to stroke, dementia, and traumatic brain injury. In the latter conditions, anosognosia is thought to arise from unilateral hemispheric dysfunction or interhemispheric disequilibrium, which provides an anatomical model for exploring illness unawareness in other neuropsychiatric disorders, such as schizophrenia. Both voxel-based morphometry using Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra (DARTEL) and a deformation-based morphology analysis of hemispheric asymmetry were performed on 52 treated schizophrenia subjects, exploring the relationship between illness awareness and gray matter volume. Analyses included age, gender, and total intracranial volume as covariates. Hemispheric asymmetry analyses revealed illness unawareness was significantly associated with right < left hemisphere volumes in the anteroinferior temporal lobe (t = 4.83, P = 0.051) using DARTEL, and the dorsolateral prefrontal cortex (t = 5.80, P = 0.003) and parietal lobe (t = 4.3, P = 0.050) using the deformation-based approach. Trend level associations were identified in the right medial prefrontal cortex (t = 4.49, P = 0.127) using DARTEL. Lack of illness awareness was also strongly associated with reduced total white matter volume (r = 0.401, P < 0.01) and illness severity (r = 0.559, P < 0.01). These results suggest a relationship between anosognosia and hemispheric asymmetry in schizophrenia, supporting previous volume-based MRI studies in schizophrenia that found a relationship between illness unawareness and reduced right hemisphere gray matter volume. Functional imaging studies are required to examine the neural mechanisms contributing to these structural observations. Copyright © 2012 Wiley Periodicals, Inc.
Gu, Yian; Vorburger, Robert; Scarmeas, Nikolaos; Luchsinger, José A; Manly, Jennifer J; Schupf, Nicole; Mayeux, Richard; Brickman, Adam M
2017-10-01
The aim of this investigation was to determine whether circulating inflammatory biomarkers c-reactive protein (CRP), interleukin-6 (IL6), and alpha 1-antichymotrypsin (ACT) were related to structural brain measures assessed by magnetic resonance imaging (MRI). High-resolution structural MRI was collected on 680 non-demented elderly (mean age 80.1years) participants of a community-based, multiethnic cohort. Approximately three quarters of these participants also had peripheral inflammatory biomarkers (CRP, IL6, and ACT) measured using ELISA. Structural measures including brain volumes and cortical thickness (with both global and regional measures) were derived from MRI scans, and repeated MRI measures were obtained after 4.5years. Mean fractional anisotropy was used as the indicator of white matter integrity assessed with diffusion tensor imaging. We examined the association of inflammatory biomarkers with brain volume, cortical thickness, and white matter integrity using regression models adjusted for age, gender, ethnicity, education, APOE genotype, and intracranial volume. A doubling in CRP (b=-2.48, p=0.002) was associated with a smaller total gray matter volume, equivalent to approximately 1.5years of aging. A doubling in IL6 was associated with smaller total brain volume (b=-14.96, p<0.0001), equivalent to approximately 9years of aging. Higher IL6 was also associated with smaller gray matter (b=-6.52, p=0.002) and white matter volumes (b=-7.47, p=0.004). The volumes of most cortical regions including frontal, occipital, parietal, temporal, as well as subcortical regions including pallidum and thalamus were associated with IL6. In a model additionally adjusted for depression, vascular factors, BMI, and smoking status, the association between IL6 and brain volumes remained, and a doubling in ACT was marginally associated with 0.054 (p=0.001) millimeter thinner mean cortical thickness, equivalent to that of approximately 2.7years of aging. None of the biomarkers was associated with mean fractional anisotropy or longitudinal change of brain volumes and thickness. Among older adults, increased circulating inflammatory biomarkers were associated with smaller brain volume and cortical thickness but not the white matter tract integrity. Our preliminary findings suggest that peripheral inflammatory processes may be involved in the brain atrophy in the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
Senior Dance Experience, Cognitive Performance, and Brain Volume in Older Women
Niemann, Claudia; Godde, Ben
2016-01-01
Physical activity is positively related to cognitive functioning and brain volume in older adults. Interestingly, different types of physical activity vary in their effects on cognition and on the brain. For example, dancing has become an interesting topic in aging research, as it is a popular leisure activity among older adults, involving cardiovascular and motor fitness dimensions that can be positively related to cognition. However, studies on brain structure are missing. In this study, we tested the association of long-term senior dance experience with cognitive performance and gray matter brain volume in older women aged 65 to 82 years. We compared nonprofessional senior dancers (n = 28) with nonsedentary control group participants without any dancing experience (n = 29), who were similar in age, education, IQ score, lifestyle and health factors, and fitness level. Differences neither in the four tested cognitive domains (executive control, perceptual speed, episodic memory, and long-term memory) nor in brain volume (VBM whole-brain analysis, region-of-interest analysis of the hippocampus) were observed. Results indicate that moderate dancing activity (1-2 times per week, on average) has no additional effects on gray matter volume and cognitive functioning when a certain lifestyle or physical activity and fitness level are reached. PMID:27738528
Rogers, Mark A; Yamasue, Hidenori; Abe, Osamu; Yamada, Haruyasu; Ohtani, Toshiyuki; Iwanami, Akira; Aoki, Shigeki; Kato, Nobumasa; Kasai, Kiyoto
2009-12-30
Although post-traumatic stress disorder (PTSD) may be seen to represent a failure to extinguish learned fear, significant aspects of the pathophysiology relevant to this hypothesis remain unknown. Both the amygdala and hippocampus are necessary for fear extinction occur, and thus both regions may be abnormal in PTSD. Twenty-five people who experienced the Tokyo subway sarin attack in 1995, nine who later developed PTSD and 16 who did not, underwent magnetic resonance imaging (MRI) with manual tracing to determine bilateral amygdala and hippocampus volumes. At the time of scanning, one had PTSD and eight had a history of PTSD. Results indicated that the group with a history of PTSD had significantly smaller mean bilateral amygdala volume than did the group that did not develop PTSD. Furthermore, left amygdala volume showed a significant negative correlation with severity of PTSD symptomatology as well as reduced gray matter density in the left anterior cingulate cortex. To our knowledge, this is the first observation of an association between PTSD and amygdala volume. Furthermore the apparent interplay between amygdala and anterior cingulate cortex represents support at the level of gross brain morphology for the theory of PTSD as a failure of fear extinction.
Mauras, Nelly; Mazaika, Paul; Buckingham, Bruce; Weinzimer, Stuart; White, Neil H; Tsalikian, Eva; Hershey, Tamara; Cato, Allison; Cheng, Peiyao; Kollman, Craig; Beck, Roy W; Ruedy, Katrina; Aye, Tandy; Fox, Larry; Arbelaez, Ana Maria; Wilson, Darrell; Tansey, Michael; Tamborlane, William; Peng, Daniel; Marzelli, Matthew; Winer, Karen K; Reiss, Allan L
2015-05-01
Significant regional differences in gray and white matter volume and subtle cognitive differences between young diabetic and nondiabetic children have been observed. Here, we assessed whether these differences change over time and the relation with dysglycemia. Children ages 4 to <10 years with (n = 144) and without (n = 72) type 1 diabetes (T1D) had high-resolution structural MRI and comprehensive neurocognitive tests at baseline and 18 months and continuous glucose monitoring and HbA1c performed quarterly for 18 months. There were no differences in cognitive and executive function scores between groups at 18 months. However, children with diabetes had slower total gray and white matter growth than control subjects. Gray matter regions (left precuneus, right temporal, frontal, and parietal lobes and right medial-frontal cortex) showed lesser growth in diabetes, as did white matter areas (splenium of the corpus callosum, bilateral superior-parietal lobe, bilateral anterior forceps, and inferior-frontal fasciculus). These changes were associated with higher cumulative hyperglycemia and glucose variability but not with hypoglycemia. Young children with T1D have significant differences in total and regional gray and white matter growth in brain regions involved in complex sensorimotor processing and cognition compared with age-matched control subjects over 18 months, suggesting that chronic hyperglycemia may be detrimental to the developing brain. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory
Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro
2014-01-01
Background Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. Methods A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. Results We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. Conclusions The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5. PMID:24819610
DRD2/CHRNA5 interaction on prefrontal biology and physiology during working memory.
Di Giorgio, Annabella; Smith, Ryan M; Fazio, Leonardo; D'Ambrosio, Enrico; Gelao, Barbara; Tomasicchio, Aldo; Selvaggi, Pierluigi; Taurisano, Paolo; Quarto, Tiziana; Masellis, Rita; Rampino, Antonio; Caforio, Grazia; Popolizio, Teresa; Blasi, Giuseppe; Sadee, Wolfgang; Bertolino, Alessandro
2014-01-01
Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume. A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI. We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups. The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.
Sörös, Peter; Bachmann, Katharina; Lam, Alexandra P; Kanat, Manuela; Hoxhaj, Eliza; Matthies, Swantje; Feige, Bernd; Müller, Helge H O; Thiel, Christiane; Philipsen, Alexandra
2017-01-01
Attention-deficit/hyperactivity disorder (ADHD) in adulthood is a serious and frequent psychiatric disorder with the core symptoms inattention, impulsivity, and hyperactivity. The principal aim of this study was to investigate associations between brain morphology, i.e., cortical thickness and volumes of subcortical gray matter, and individual symptom severity in adult ADHD. Surface-based brain morphometry was performed in 35 women and 29 men with ADHD using FreeSurfer. Linear regressions were calculated between cortical thickness and the volumes of subcortical gray matter and the inattention, hyperactivity, and impulsivity subscales of the Conners Adult ADHD Rating Scales (CAARS). Two separate analyses were performed. For the first analysis, age was included as additional regressor. For the second analysis, both age and severity of depression were included as additional regressors. Study participants were recruited between June 2012 and January 2014. Linear regression identified an area in the left occipital cortex of men, covering parts of the middle occipital sulcus and gyrus, in which the score on the CAARS inattention subscale predicted increased mean cortical thickness [ F (1,27) = 26.27, p < 0.001, adjusted R 2 = 0.4744]. No significant associations were found between cortical thickness and the scores on CAARS subscales in women. No significant associations were found between the volumes of subcortical gray matter and the scores on CAARS subscales, neither in men nor in women. These results remained stable when severity of depression was included as additional regressor, together with age. Increased cortical thickness in the left occipital cortex may represent a mechanism to compensate for dysfunctional attentional networks in male adult ADHD patients.
Demirakca, Traute; Sartorius, Alexander; Ende, Gabriele; Meyer, Nadja; Welzel, Helga; Skopp, Gisela; Mann, Karl; Hermann, Derik
2011-04-01
Chronic cannabis use has been associated with memory deficits and a volume reduction of the hippocampus, but none of the studies accounted for different effects of tetrahydrocannabinol (THC) and cannabidiol (CBD). Using a voxel based morphometry approach optimized for small subcortical structures (DARTEL) gray matter (GM) concentration and volume of the hippocampus were measured in 11 chronic recreational cannabis users and 13 healthy controls, and correlated with THC and CBD from hair analyses. GM volume was calculated by modulating VBM using Jacobian determinants derived from the spatial normalization. Cannabis users showed lower GM volume located in a cluster of the right anterior hippocampus (P(uncorr)=0.002; effect size Cohen's d=1.34). In a regression analysis an inverse correlation of the ratio THC/CBD with the volume of the right hippocampus (P(uncorr) p<0.001, Cohen's d=3.43) was observed. Furthermore Cannabidiol correlated positively with GM concentration (unmodulated VBM data), but not with GM volume (modulated VBM) in the bilateral hippocampus (P=0.03 after correction for hippocampal volume; left hippocampus Cohen's d=4.37 and right hippocampus 4.65). Lower volume in the right hippocampus in chronic cannabis users was corroborated. Higher THC and lower CBD was associated with this volume reduction indicating neurotoxic effects of THC and neuroprotective effects of CBD. This confirms existing preclinical and clinical results. As a possible mechanism the influence of cannabinoids on hippocampal neurogenesis is suggested. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun
2018-05-04
Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.
Chung, Yoonho; Haut, Kristen; He, George; Van Erp, Theo; McEwen, Sarah; Addington, Jean; Bearden, Carrie; Cadenhead, Kristin; Cornblatt, Barbara; Mathalon, Daniel; McGlashan, Thomas; Perkins, Diana; Seidman, Larry; Tsuang, Ming; Walker, Elaine; Woods, Scott; Cannon, Tyrone
2017-01-01
Abstract Background: In a recent prospective longitudinal neuroimaging study, clinical high-risk (CHR) individuals who later developed full-blown psychosis showed an accelerated rate of gray matter thinning in superior and medial prefrontal cortex (PFC) and expansion of the ventricular system after applying a stringent correction for multiple comparisons. Although cortical and subcortical volume loss and enlarged ventricles are well characterized structural brain abnormalities among patients with schizophrenia, no prior study has evaluated whether these progressive changes of neuroanatomical indicators are linked in time prior to onset of psychosis. Therefore, we investigated the relationship between the changes in cortical gray matter thickness and ventricular volume using the longitudinal neuroimaging data from the North American Prodrome Longitudinal Study (NAPLS) at the whole-brain level. Methods: MRI structural data were acquired at baseline and 12-month follow-up, and follow-up scans for those who developed fully psychotic symptoms were assessed at the point of conversion. In total, 37 CHR cases who converted to psychosis, 230 CHR cases who did not convert (nonconverters), and 132 healthy comparison subjects had usable baseline and second time point scans. Imaging measures were first transformed to annualized rates of percent change (ARCH) in each cortical vertex. Interval is the time between BL and FU scans in years. Relationships between ARCH of total ventricle volume and ARCH of cortical gray matter values were tested vertex-wise using the general linear model. Among the subjects with BL and 12-FU data available, 125 CHR cases and 66 controls were followed to an additional third time point for a 24-month MRI assessment. For the purpose of testing the replicability of our main hypotheses, neuroanatomical ARCH measures between the 12 and 24 month follow-ups were also computed with a parallel set of statistical tests as described earlier. Results: The results showed that ventricular expansion is linked in time to progressive reduction of gray matter, rather than to structural changes in proximal subcortical regions, in a broadly distributed set of cortical regions among CHR youth, including superior, medial, lateral, and inferior PFC, superior temporal gyrus, and parietal cortices. In contrast, the healthy controls did not show the same pattern of associations. The main findings were further replicated using a third assessment wave of MRI scans in a subset of study participants who were followed for an additional year. Conclusion: In summary, expansion of the ventricular spaces is linked in time with an accelerated rate of widespread cortical thinning prior to psychosis onset. The cortical regions experiencing altered maturation during the psychosis prodrome may be more widespread than the regionally specific clusters that have been identified in previous case–control studies
Readiness to change and brain damage in patients with chronic alcoholism.
Le Berre, Anne-Pascale; Rauchs, Géraldine; La Joie, Renaud; Segobin, Shailendra; Mézenge, Florence; Boudehent, Céline; Vabret, François; Viader, Fausto; Eustache, Francis; Pitel, Anne-Lise; Beaunieux, Hélène
2013-09-30
High motivation to change is a crucial triggering factor to patients' engagement in clinical treatment. This study investigates whether the low readiness to change observed in some alcoholic inpatients at treatment entry could, at least partially, be linked with macrostructural gray matter abnormalities in critical brain regions. Participants comprised 31 alcoholic patients and 27 controls, who underwent 1.5-T magnetic resonance imaging. The Readiness to Change Questionnaire, designed to assess three stages of motivation to change (precontemplation, contemplation and action stages), was completed by all patients, who were then divided into "Action" (i.e., patients in action stage) and "PreAction" (i.e., patients in precontemplation or in contemplation stage) subgroups. The PreAction subgroup, but not the Action subgroup, had gray matter volume deficits compared with controls. Unlike the patients in the Action subgroup, the PreAction patients had gray matter abnormalities in the cerebellum (Crus I), fusiform gyri and frontal cortex. The low level of motivation to modify drinking behavior observed in some alcoholic patients at treatment entry may be related to macrostructural brain abnormalities in regions subtending cognitive, emotional and social abilities. These brain volume deficits may result in impairment of critical abilities such as decision making, executive functions and social cognition skills. Those abilities may be needed to resolve ambivalence toward alcohol addiction and to apply "processes of change", which are essential for activating the desire to change problematic behavior. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The influence of sex steroids on structural brain maturation in adolescence.
Koolschijn, P Cédric M P; Peper, Jiska S; Crone, Eveline A
2014-01-01
Puberty reflects a period of hormonal changes, physical maturation and structural brain reorganization. However, little attention has been paid to what extent sex steroids and pituitary hormones are associated with the refinement of brain maturation across adolescent development. Here we used high-resolution structural MRI scans from 215 typically developing individuals between ages 8-25, to examine the association between cortical thickness, surface area and (sub)cortical brain volumes with luteinizing hormone, testosterone and estradiol, and pubertal stage based on self-reports. Our results indicate sex-specific differences in testosterone related influences on gray matter volumes of the anterior cingulate cortex after controlling for age effects. No significant associations between subcortical structures and sex hormones were found. Pubertal stage was not a stronger predictor than chronological age for brain anatomical differences. Our findings indicate that sex steroids are associated with cerebral gray matter morphology in a sex specific manner. These hormonal and morphological differences may explain in part differences in brain development between boys and girls.
The effects of adjunctive intranasal oxytocin in patients with schizophrenia.
Ota, Miho; Yoshida, Sumiko; Nakata, Masanori; Yada, Toshihiko; Kunugi, Hiroshi
2018-01-01
Both human and animal studies have suggested that oxytocin may have therapeutic potential in the treatment of schizophrenia. We evaluated the effects of intranasal oxytocin on cognition and its predictive factors in Japanese patients with schizophrenia. Subjects were 16 chronic schizophrenia patients who underwent intranasal oxytocin treatment for 3 months and were assessed for changes in severity of clinical symptoms and cognitions. Fifteen of the 16 subjects underwent 3-Tesla magnetic resonance imaging. Oxytocin significantly reduced scores on the positive and negative syndrome scale, especially on the negative symptoms. As for cognition, there was an improvement of the verbal fluency. Furthermore, the change of the negative score in positive and negative syndrome scale showed a negative correlation with the gray matter volumes of the right insula and left cingulate cortex. Our results indicate that daily administration of intranasal oxytocin may be effective for ameliorating clinical symptoms and cognitive functions in chronic schizophrenia patients, and this improvement may be related to the gray matter volume of the right insula and left cingulate cortex.
Krause, Florian; Lindemann, Oliver; Toni, Ivan; Bekkering, Harold
2014-04-01
A dominant hypothesis on how the brain processes numerical size proposes a spatial representation of numbers as positions on a "mental number line." An alternative hypothesis considers numbers as elements of a generalized representation of sensorimotor-related magnitude, which is not obligatorily spatial. Here we show that individuals' relative use of spatial and nonspatial representations has a cerebral counterpart in the structural organization of the posterior parietal cortex. Interindividual variability in the linkage between numbers and spatial responses (faster left responses to small numbers and right responses to large numbers; spatial-numerical association of response codes effect) correlated with variations in gray matter volume around the right precuneus. Conversely, differences in the disposition to link numbers to force production (faster soft responses to small numbers and hard responses to large numbers) were related to gray matter volume in the left angular gyrus. This finding suggests that numerical cognition relies on multiple mental representations of analogue magnitude using different neural implementations that are linked to individual traits.
Inder, Terrie E; Wells, Scott J; Mogridge, Nina B; Spencer, Carole; Volpe, Joseph J
2003-08-01
The aim of this study was to define qualitatively the nature and extent of white and gray matter abnormalities in a longitudinal population-based study of infants with very low birth weight. Perinatal factors were then related to the presence and severity of magnetic resonance imaging (MRI) abnormalities. From November 1998 to December 2000, 100 consecutive premature infants admitted to the neonatal intensive care unit at Christchurch Women's Hospital were recruited (98% eligible) after informed parental consent to undergo an MRI scan at term equivalent. The scans were analyzed by a single neuroradiologist experienced in pediatric MRI, with a second independent scoring of the MRI using a combination of criteria for white matter (cysts, signal abnormality, loss of volume, ventriculomegaly, corpus callosal thinning, myelination) and gray matter (gray matter signal abnormality, gyration, subarachnoid space). Results were analyzed against individual item scores as well as the presence of moderate-severe white matter score, total gray matter score, and total brain score. The mean gestational age was 27.9+/-2.4 weeks (range, 23-32 weeks), and mean birth weight was 1063+/-292 g. The greatest univariate predictors for moderate-severe white matter abnormality were lower gestational age (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.7; P<.01), maternal fever (OR, 2.2; 95% CI, 1.1-4.6; P<.04), proven sepsis in the infant at delivery (OR, 1.8; 95% CI, 1.1-3.6; P=0.03), inotropic support (OR, 2.7; 95% CI, 1.5-4.5; P<.001), patent ductus arteriosus (OR, 2.2; 95% CI, 1.2-3.8; P=.01), grade III/IV intraventricular hemorrhage (P=.015), and the occurrence of a pneumothorax (P=.05). There was a significant protective effect of intrauterine growth restriction (OR, 0.51; 95% CI, 0.23-0.99; P=.04). Gray matter abnormality was highly related to the presence and severity of white matter abnormality. A unique pattern of cerebral abnormality consisting of significant diffuse white matter atrophy, ventriculomegaly, immature gyral development, and enlarged subarachnoid space was found in 10 of 11 infants with birth gestation <26 weeks. Given the later outcome of these infants, this pattern may have very high risk for later global neurodevelopmental disability. This MRI study confirms a high incidence of cerebral white matter abnormality at term in an unselected population of premature infants, which is predominantly a result of noncystic injury in the extremely immature infant. We confirm that the major perinatal risk factors for white matter abnormality are related to perinatal infection, particularly maternal fever and infant sepsis, and hypotension with inotrope use. We have defined a distinct pattern of diffuse white and gray matter abnormality in the extremely immature infant.
van Zoest, Rosan A; Underwood, Jonathan; De Francesco, Davide; Sabin, Caroline A; Cole, James H; Wit, Ferdinand W; Caan, Matthan W A; Kootstra, Neeltje A; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B L M; Portegies, Peter; Winston, Alan; Sharp, David J; Gisslén, Magnus; Reiss, Peter
2017-12-27
Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Chen, Hua-Hsuan; Rosenberg, David R; MacMaster, Frank P; Easter, Philip C; Caetano, Sheila C; Nicoletti, Mark; Hatch, John P; Nery, Fabiano G; Soares, Jair C
2008-12-01
Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naïve children with MDD to determine whether abnormalities of OFC are present early in the illness course. Twenty seven medication naïve pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.
Neural correlates of cognitive processing in monolinguals and bilinguals
Grundy, John G.; Anderson, John A.E.; Bialystok, Ellen
2017-01-01
Here we review the neural correlates of cognitive control associated with bilingualism. We demonstrate that lifelong practice managing two languages orchestrates global changes to both the structure and function of the brain. Compared with monolinguals, bilinguals generally show greater gray matter volume, especially in perceptual/motor regions, greater white matter integrity, and greater functional connectivity between gray matter regions. These changes complement electroencephalography findings showing that bilinguals devote neural resources earlier than monolinguals. Parallel functional findings emerge from the functional magnetic resonance imaging literature: bilinguals show reduced frontal activity, suggesting that they do not need to rely on top-down mechanisms to the same extent as monolinguals. This shift for bilinguals to rely more on subcortical/posterior regions, which we term the bilingual anterior-to-posterior and subcortical shift (BAPSS), fits with results from cognitive aging studies and helps to explain why bilinguals experience cognitive decline at later stages of development than monolinguals. PMID:28415142
The antisocial brain: psychopathy matters.
Gregory, Sarah; ffytche, Dominic; Simmons, Andrew; Kumari, Veena; Howard, Matthew; Hodgins, Sheilagh; Blackwood, Nigel
2012-09-01
The population of men who display persistent antisocial and violent behavior is heterogeneous. Callous-unemotional traits in childhood and psychopathic traits in adulthood characterize a distinct subgroup. To identify structural gray matter (GM) differences between persistent violent offenders who meet criteria for antisocial personality disorder and the syndrome of psychopathy (ASPDP) and those meeting criteria only for ASPD (ASPD-P). Cross-sectional case-control structural magnetic resonance imaging study. Inner-city probation services and neuroimaging research unit in London, England. Sixty-six men, including 17 violent offenders with ASPDP, 27 violent offenders with ASPD-P, and 22 healthy nonoffenders participated in the study. Forensic clinicians assessed participants using the Structured Clinical Interview for DSM-IV and the Psychopathy Checklist-Revised. Gray matter volumes as assessed by structural magnetic resonance imaging and volumetric voxel-based morphometry analyses. Offenders with ASPDP displayed significantly reduced GM volumes bilaterally in the anterior rostral prefrontal cortex (Brodmann area 10) and temporal poles (Brodmann area 20/38) relative to offenders with ASPD-P and nonoffenders. These reductions were not attributable to substance use disorders. Offenders with ASPD-P exhibited GM volumes similar to the nonoffenders. Reduced GM volume within areas implicated in empathic processing, moral reasoning, and processing of prosocial emotions such as guilt and embarrassment may contribute to the profound abnormalities of social behavior observed in psychopathy. Evidence of robust structural brain differences between persistently violent men with and without psychopathy adds to the evidence that psychopathy represents a distinct phenotype. This knowledge may facilitate research into the etiology of persistent violent behavior.
Post-stroke dementia: the contribution of thalamus and basal ganglia changes.
Lopes, Marcos Antonio; Firbank, Michael J; Widdrington, Michelle; Blamire, Andrew M; Kalaria, Raj N; O'Brien, John T
2012-04-01
The neurobiological basis of increased risk of dementia in stroke patients is unclear, though there are several related pathological changes, including white matter hyperintensities (WMH), and medial temporal atrophy. Subcortical gray matter structures have also been implicated in dementia resulting from vascular pathology, particularly vascular dementia. This study aimed to investigate the contribution of changes in subcortical gray matter structures to post-stroke dementia (PSD). T1- and T2-weighted images and T2-weighted fluid-attenuated inversion recovery (FLAIR) images were obtained on a 3-Tesla magnetic resonance (MR) system, in four groups aged over 75 years: post-stroke with dementia (PSD; 8), post-stroke no dementia (PSnoD; 33), Alzheimer's disease (AD; 26) and controls (30). Automated software was used to measure the volume of thalamus, putamen, caudate nucleus, and hippocampus as well as total WMH volume. The number of subcortical lacunes was also counted. The number of caudate lacunes was higher in the PSnoD group, compared with AD (p = 0.029) and controls (p = 0.019). The putamen volume was smaller in the stroke and AD groups, when compared with controls. In the whole stroke group, putamen lacunes were correlated with impairment in memory (Rey test; ρ = -0.365; p = 0.031), while WMH and hippocampal volume both correlated with global dysfunction. Our findings implicate a variety of neurobiological substrates of dementia, such as small vessel disease and Alzheimer pathology, which develop after stroke in an old older population, with a contribution from subcortical brain structures.
Kim, Jinna
2010-01-01
Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428
Brain anatomy differences in childhood stuttering.
Chang, Soo-Eun; Erickson, Kirk I; Ambrose, Nicoline G; Hasegawa-Johnson, Mark A; Ludlow, Christy L
2008-02-01
Stuttering is a developmental speech disorder that occurs in 5% of children with spontaneous remission in approximately 70% of cases. Previous imaging studies in adults with persistent stuttering found left white matter deficiencies and reversed right-left asymmetries compared to fluent controls. We hypothesized that similar differences might be present indicating brain development differences in children at risk of stuttering. Optimized voxel-based morphometry compared gray matter volume (GMV) and diffusion tensor imaging measured fractional anisotropy (FA) in white matter tracts in 3 groups: children with persistent stuttering, children recovered from stuttering, and fluent peers. Both the persistent stuttering and recovered groups had reduced GMV from normal in speech-relevant regions: the left inferior frontal gyrus and bilateral temporal regions. Reduced FA was found in the left white matter tracts underlying the motor regions for face and larynx in the persistent stuttering group. Contrary to previous findings in adults who stutter, no increases were found in the right hemisphere speech regions in stuttering or recovered children and no differences in right-left asymmetries. Instead, a risk for childhood stuttering was associated with deficiencies in left gray matter volume while reduced white matter integrity in the left hemisphere speech system was associated with persistent stuttering. Anatomical increases in right hemisphere structures previously found in adults who stutter may have resulted from a lifetime of stuttering. These findings point to the importance of considering the role of neuroplasticity during development when studying persistent forms of developmental disorders in adults.
Brain Anatomy Differences in Childhood Stuttering
Chang, Soo-Eun; Erickson, Kirk I.; Ambrose, Nicoline G.; Hasegawa-Johnson, Mark A.; Ludlow, Christy L.
2009-01-01
Stuttering is a developmental speech disorder that occurs in 5% of children with spontaneous remission in approximately 70% of cases. Previous imaging studies in adults with persistent stuttering found left white matter deficiencies and reversed right-left asymmetries compared to fluent controls. We hypothesized that similar differences might be present indicating brain development differences in children at risk of stuttering. Optimized voxel-based morphometry compared gray matter volume (GMV) and diffusion tensor imaging measured fractional anisotropy (FA) in white matter tracts in 3 groups: children with persistent stuttering, children recovered from stuttering, and fluent peers. Both the persistent stuttering and recovered groups had reduced GMV from normal in speech-relevant regions: the left inferior frontal gyrus, and bilateral temporal regions. Reduced FA was found in the left white matter tracts underlying the motor regions for face and larynx in the persistent stuttering group. Contrary to previous findings in adults who stutter, no increases were found in the right hemisphere speech regions in stuttering or recovered children and no differences in right-left asymmetries. Instead, a risk for childhood stuttering was associated with deficiencies in left gray matter volume while reduced white matter integrity in the left hemisphere speech system was associated with persistent stuttering. Anatomical increases in right hemisphere structures previously found in adults who stutter may have resulted from a life-time of stuttering. These findings point to the importance of considering the role of neuroplasticity during development when studying persistent forms of developmental disorders in adults. PMID:18023366
Visual System Involvement in Patients with Newly Diagnosed Parkinson Disease.
Arrigo, Alessandro; Calamuneri, Alessandro; Milardi, Demetrio; Mormina, Enricomaria; Rania, Laura; Postorino, Elisa; Marino, Silvia; Di Lorenzo, Giuseppe; Anastasi, Giuseppe Pio; Ghilardi, Maria Felice; Aragona, Pasquale; Quartarone, Angelo; Gaeta, Michele
2017-12-01
Purpose To assess intracranial visual system changes of newly diagnosed Parkinson disease in drug-naïve patients. Materials and Methods Twenty patients with newly diagnosed Parkinson disease and 20 age-matched control subjects were recruited. Magnetic resonance (MR) imaging (T1-weighted and diffusion-weighted imaging) was performed with a 3-T MR imager. White matter changes were assessed by exploring a white matter diffusion profile by means of diffusion-tensor imaging-based parameters and constrained spherical deconvolution-based connectivity analysis and by means of white matter voxel-based morphometry (VBM). Alterations in occipital gray matter were investigated by means of gray matter VBM. Morphologic analysis of the optic chiasm was based on manual measurement of regions of interest. Statistical testing included analysis of variance, t tests, and permutation tests. Results In the patients with Parkinson disease, significant alterations were found in optic radiation connectivity distribution, with decreased lateral geniculate nucleus V2 density (F, -8.28; P < .05), a significant increase in optic radiation mean diffusivity (F, 7.5; P = .014), and a significant reduction in white matter concentration. VBM analysis also showed a significant reduction in visual cortical volumes (P < .05). Moreover, the chiasmatic area and volume were significantly reduced (P < .05). Conclusion The findings show that visual system alterations can be detected in early stages of Parkinson disease and that the entire intracranial visual system can be involved. © RSNA, 2017 Online supplemental material is available for this article.
O'Hanlon, Erik; Howley, Sarah; Prasad, Sarah; McGrath, Jane; Leemans, Alexander; McDonald, Colm; Garavan, Hugh; Murphy, Kieran C
2016-12-01
Impaired spatial working memory is a core cognitive deficit observed in people with 22q11 Deletion syndrome (22q11DS) and has been suggested as a candidate endophenotype for schizophrenia. However, to date, the neuroanatomical mechanisms describing its structural and functional underpinnings in 22q11DS remain unclear. We quantitatively investigate the cognitive processes and associated neuroanatomy of spatial working memory in people with 22q11DS compared to matched controls. We examine whether there are significant between-group differences in spatial working memory using task related fMRI, Voxel based morphometry and white matter fiber tractography. Multimodal magnetic resonance imaging employing functional, diffusion and volumetric techniques were used to quantitatively assess the cognitive and neuroanatomical features of spatial working memory processes in 22q11DS. Twenty-six participants with genetically confirmed 22q11DS aged between 9 and 52 years and 26 controls aged between 8 and 46 years, matched for age, gender, and handedness were recruited. People with 22q11DS have significant differences in spatial working memory functioning accompanied by a gray matter volume reduction in the right precuneus. Gray matter volume was significantly correlated with task performance scores in these areas. Tractography revealed extensive differences along fibers between task-related cortical activations with pronounced differences localized to interhemispheric commissural fibers within the parietal section of the corpus callosum. Abnormal spatial working memory in 22q11DS is associated with aberrant functional activity in conjunction with gray and white matter structural abnormalities. These anomalies in discrete brain regions may increase susceptibility to the development of psychiatric disorders such as schizophrenia. Hum Brain Mapp 37:4689-4705, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans.
Chao, Linda L; Zhang, Yu; Buckley, Shannon
2015-05-01
We previously found evidence of reduced gray and white matter volume in Gulf War (GW) veterans with predicted low-level exposure to sarin (GB) and cyclosarin (GF). Because loss of white matter tissue integrity has been linked to both gray and white matter atrophy, the current study sought to test the hypothesis that GW veterans with predicted GB/GF exposure have evidence of disrupted white matter microstructural integrity. Measures of fractional anisotropy and directional (i.e., axial and radial) diffusivity were assessed from the 4T diffusion tensor images (DTI) of 59 GW veterans with predicted GB/GF exposure and 59 "matched" unexposed GW veterans (mean age: 48 ± 7 years). The DTI data were analyzed using regions of interest (ROI) analyses that accounted for age, sex, total brain gray and white matter volume, trauma exposure, posttraumatic stress disorder, current major depression, and chronic multisymptom illness status. There were no significant group differences in fractional anisotropy or radial diffusivity. However, there was increased axial diffusivity in GW veterans with predicted GB/GF exposure compared to matched, unexposed veterans throughout the brain, including the temporal stem, corona radiata, superior and inferior (hippocampal) cingulum, inferior and superior fronto-occipital fasciculus, internal and external capsule, and superficial cortical white matter blades. Post hoc analysis revealed significant correlations between higher fractional anisotropy and lower radial diffusivity with better neurobehavioral performance in unexposed GW veterans. In contrast, only increased axial diffusivity in posterior limb of the internal capsule was associated with better psychomotor function in GW veterans with predicted GB/GF exposure. The finding that increased axial diffusivity in a region of the brain that contains descending corticospinal fibers was associated with better psychomotor function and the lack of significant neurobehavioral deficits in veterans with predicted GB/GF exposure hint at the possibility that the widespread increases in axial diffusivity that we observed in GW veterans with predicted GB/GF exposure relative to unexposed controls may reflect white matter reorganization after brain injury (i.e., exposure to GB/GF). Published by Elsevier B.V.
Proal, Erika; Reiss, Philip T.; Klein, Rachel G.; Mannuzza, Salvatore; Gotimer, Kristin; Ramos-Olazagasti, Maria A.; Lerch, Jason P.; He, Yong; Zijdenbos, Alex; Kelly, Clare; Milham, Michael P.; Castellanos, F. Xavier
2013-01-01
Context Volumetric studies have reported relatively decreased cortical thickness and gray matter volumes in adults with Attention-Deficit/Hyperactivity Disorder (ADHD) whose childhood status was retrospectively recalled. We present the first prospective study combining cortical thickness and voxel-based morphometry (VBM) in adults diagnosed with ADHD in childhood. Objective In adults who had Combined Type ADHD in childhood, to 1) test whether they exhibit cortical thinning and decreased gray matter in regions hypothesized related to ADHD, and 2) test whether anatomic differences are associated with current ADHD diagnosis, including persistence versus remission. Design Cross-sectional analysis embedded in a 33-year prospective follow-up at mean age 41. Setting Research outpatient center. Participants ADHD probands were from a cohort of 207 6–12 year old Caucasian boys; male comparison subjects (n=178) had been free of ADHD in childhood. We obtained MRI scans in 59 probands and 80 comparisons (28% and 45% of original samples, respectively). Main Outcome Measure Whole-brain VBM and vertex-wise cortical thickness analyses. Results Cortex was significantly thinner in ADHD probands than comparisons in the dorsal attentional network and limbic areas (FDR<0.05, corrected). Additionally, gray matter was significantly decreased in probands in right caudate, right thalamus and bilateral cerebellar hemispheres. Probands with persistent ADHD (n=17) did not differ significantly from remitters (n=26) at FDR<0.05. At uncorrected p<0.05, remitters had thicker cortex relative to those with persistent ADHD in medial occipital cortex, insula, parahippocampus, and prefrontal regions. Conclusions We observed anatomic gray matter reductions in adults with childhood ADHD, regardless of current diagnosis. The most affected regions underpin top-down control of attention and regulation of emotion and motivation. Exploratory analyses suggest that diagnostic remission may result from compensatory maturation of prefrontal, cerebellar, and thalamic circuitry. PMID:22065528
Anosmia leads to a loss of gray matter in cortical brain areas.
Bitter, Thomas; Gudziol, Hilmar; Burmeister, Hartmut Peter; Mentzel, Hans-Joachim; Guntinas-Lichius, Orlando; Gaser, Christian
2010-06-01
Chronic olfactory disorders, including the complete loss of the sense of smell (anosmia), are common. Using voxel-based morphometry (VBM) in magnetic resonance imaging (MRI), structural changes in the cerebral gray matter (GM) of a group of patients with anosmia compared with a normosmic, healthy control group were evaluated. Patients with anosmia presented a significant decrease of GM volume mainly in the nucleus accumbens with adjacent subcallosal gyrus, in the medial prefrontal cortex (MPC) including the middle and anterior cingulate cortices, and in the dorsolateral prefrontal cortex (dlPFC). These areas are part of the limbic loop of the basal ganglia and except the dlPFC secondary olfactory areas. They also play an important role in many neurological diseases. Furthermore, volume decreases in smaller areas like the piriform cortex, insular cortex, orbitofrontal cortex, hippocampus, parahippocampal gyrus, supramarginal gyrus, and cerebellum could be seen. Longer disease duration was associated with a stronger atrophy in the described areas. No local increases in the GM volume could be observed. A comparison with results of an additionally executed functional MRI study on olfaction in healthy subjects was performed to evaluate the significance of the observed atrophy areas in cerebral olfactory processing. To our knowledge, this is the first study on persisting structural changes in cortical GM volume after complete olfactory loss.
Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Nagase, Tomomi; Nouchi, Rui; Fukushima, Ai; Kawashima, Ryuta
2012-02-01
During Stroop tasks, subjects experience cognitive interference when they resolve interferences such as identifying the ink color of a printed word while ignoring the word's identity. Stroop paradigms are commonly used as an index of attention deficits and a tool for investigating the functions of the frontal lobes and other associated structures. Despite these uses and the vast amount of attention given to Stroop paradigms, the regional gray matter volume/regional white matter volume (rGMV/rWMV) correlates of Stroop interference have not yet been identified at the whole brain level in normal adults. We examined this issue using voxel-based morphometry in right-handed healthy young adults. We found significant negative relationships between the Stroop interference rate and rGMV in the anterior cingulate cortex (ACC), right inferior frontal gyrus, and cerebellum. Furthermore, we found relationships between the Stroop interference rate and rWMV in bilateral anatomical clusters that extended around extensive WM regions in the dorsal part of the frontal lobe. These findings are the first to reveal rGMV/rWMV that underlie the performance of the Stroop task, a widely used psychological paradigm at the whole brain level. Of note, our findings support the notion that ACC contributes to Stroop performance and show the involvement of regions that have been implicated in response inhibition and attention. Copyright © 2011 Elsevier Inc. All rights reserved.
Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis.
Paquin, M-Ê; El Mendili, M M; Gros, C; Dupont, S M; Cohen-Adad, J; Pradat, P-F
2018-01-01
There is an emerging need for biomarkers to better categorize clinical phenotypes and predict progression in amyotrophic lateral sclerosis. This study aimed to quantify cervical spinal gray matter atrophy in amyotrophic lateral sclerosis and investigate its association with clinical disability at baseline and after 1 year. Twenty-nine patients with amyotrophic lateral sclerosis and 22 healthy controls were scanned with 3T MR imaging. Standard functional scale was recorded at the time of MR imaging and after 1 year. MR imaging data were processed automatically to measure the spinal cord, gray matter, and white matter cross-sectional areas. A statistical analysis assessed the difference in cross-sectional areas between patients with amyotrophic lateral sclerosis and controls, correlations between spinal cord and gray matter atrophy to clinical disability at baseline and at 1 year, and prediction of clinical disability at 1 year. Gray matter atrophy was more sensitive to discriminate patients with amyotrophic lateral sclerosis from controls ( P = .004) compared with spinal cord atrophy ( P = .02). Gray matter and spinal cord cross-sectional areas showed good correlations with clinical scores at baseline ( R = 0.56 for gray matter and R = 0.55 for spinal cord; P < .01). Prediction at 1 year with clinical scores ( R 2 = 0.54) was improved when including a combination of gray matter and white matter cross-sectional areas ( R 2 = 0.74). Although improvements over spinal cord cross-sectional areas were modest, this study suggests the potential use of gray matter cross-sectional areas as an MR imaging structural biomarker to monitor the evolution of amyotrophic lateral sclerosis. © 2018 by American Journal of Neuroradiology.
Mechanical properties of gray and white matter brain tissue by indentation
Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C.; Kuhl, Ellen
2015-01-01
The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.895kPa±0.592kPa, was on average 39% stiffer than gray matter, p<0.01, with an average modulus of 1.389kPa±0.289kPa, and displayed larger regional variations. It was also more viscous than gray matter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders. PMID:25819199
Fibromyalgia interacts with age to change the brain☆☆☆
Ceko, Marta; Bushnell, M. Catherine; Fitzcharles, Mary-Ann; Schweinhardt, Petra
2013-01-01
Although brain plasticity in the form of gray matter increases and decreases has been observed in chronic pain, factors determining the patterns of directionality are largely unknown. Here we tested the hypothesis that fibromyalgia interacts with age to produce distinct patterns of gray matter differences, specifically increases in younger and decreases in older patients, when compared to age-matched healthy controls. The relative contribution of pain duration was also investigated. Regional gray matter was measured in younger (n = 14, mean age 43, range 29–49) and older (n = 14; mean age 55, range 51–60) female fibromyalgia patients and matched controls using voxel-based morphometry and cortical thickness analysis of T1-weighted magnetic resonance images. To examine their functional significance, gray matter differences were compared with experimental pain sensitivity. Diffusion-tensor imaging was used to assess whether white matter changed in parallel with gray matter, and resting-state fMRI was acquired to examine whether pain-related gray matter changes are associated with altered functional connectivity. Older patients showed exclusively decreased gray matter, accompanied by compromised white matter integrity. In contrast, younger patients showed exclusively gray matter increases, namely in the basal ganglia and insula, which were independent of pain duration. Associated white matter changes in younger patients were compatible with gray matter hypertrophy. In both age groups, structural brain alterations were associated with experimental pain sensitivity, which was increased in older patients but normal in younger patients. Whereas more pronounced gray matter decreases in the posterior cingulate cortex were related to increased experimental pain sensitivity in older patients, insular gray matter increases in younger patients correlated with lower pain sensitivity, possibly indicating the recruitment of endogenous pain modulatory mechanisms. This is supported by the finding that the insula in younger patients showed functional decoupling from an important pain-processing region, the dorsal anterior cingulate cortex. These results suggest that brain structure and function shift from being adaptive in younger to being maladaptive in older patients, which might have important treatment implications. PMID:24273710
Evidence for regional hippocampal damage in patients with schizophrenia.
Singh, Sadhana; Khushu, Subash; Kumar, Pawan; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N
2018-02-01
Schizophrenia patients show cognitive and mood impairments, including memory loss and depression, suggesting damage in the brain regions. The hippocampus is a brain structure that is significantly involved in memory and mood function and shows impairment in schizophrenia. In the present study, we examined the regional hippocampal changes in schizophrenia patients using voxel-based morphometry (VBM), Freesurfer, and proton magnetic resonance spectroscopy ( 1 H MRS) procedures. 1 H MRS and high-resolution T1-weighted magnetic resonance imaging were collected in both healthy control subjects (N = 28) and schizophrenia patients (N = 28) using 3-Tesla whole body MRI system. Regional hippocampal volume was analyzed using VBM and Freesufer procedures. The relative ratios of the neurometabolites were calculated using linear combination model (LCModel). Compared to controls, schizophrenia patients showed significantly decreased gray matter volume in the hippocampus. Schizophrenia patients also showed significantly reduced glutamate (Glu) and myo-inositol (mI) ratios in the hippocampus. Additionally, significant positive correlation between gray matter volume and Glu/tCr was also observed in the hippocampus in schizophrenia. Our findings provide an evidence for a possible association between structural deficits and metabolic alterations in schizophrenia patients.
Brain structure is changed in congenital anosmia.
Frasnelli, Johannes; Fark, Therese; Lehmann, Jacqueline; Gerber, Johannes; Hummel, Thomas
2013-12-01
Olfactory function in healthy people correlates with structural features of both the olfactory bulb and higher order olfactory processing areas, but we do not yet know how congenital anosmia affects these latter structures. In order to examine this question closer, we acquired T1 weighted magnetic resonance images from 17 subjects with congenital anosmia and from 17 age- and sex-matched controls. We compared white and gray matter volumes as well as cortical thickness between both groups. We found subjects with congenital anosmia to exhibit larger gray matter volumes in the left entorhinal and piriform cortices. Further, they had thicker orbitofrontal cortices bilaterally. Their left piriform cortex was also thicker than that of controls. These findings are in contrast to those observed in acquired anosmia, where reduced olfactory function is associated with reduced volumes and thickness. However, they fit well with observations from other sensory systems, e.g., vision, where congenital sensory loss is associated with a thicker primary cortex. This finding has been attributed to reduced or absent synaptic pruning as a result of missing peripheral sensory input. Our findings suggest that similar mechanisms take place in the olfactory system. © 2013.
Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying
2015-01-01
Although much attention has been directed towards life satisfaction that refers to an individual’s general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals’ life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual’s life satisfaction. PMID:25406366
Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder
Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.
2015-01-01
Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567
Sexual dimorphism of Broca's region: More gray matter in female brains in Brodmann areas 44 and 45.
Kurth, Florian; Jancke, Lutz; Luders, Eileen
2017-01-02
Although a sexual dimorphism in brain structure is generally well established, evidence for sex differences in Brodmann areas (BA) 44 and 45 is inconclusive. This may be due to the difficulty of accurately defining BA 44 and BA 45 in magnetic resonance images, given that these regions are variable in their location and extent and that they do not match well with macroanatomic landmarks. Here we set out to test for possible sex differences in the local gray matter of BA 44/45 by integrating imaging-based signal intensities with cytoarchitectonically defined tissue probabilities in a sample of 50 male and 50 female subjects. In addition to testing for sex differences with respect to left- and right-hemispheric measures of BA 44/45, we also assessed possible sex differences in BA 44/45 asymmetry. Our analyses revealed significantly larger gray matter volumes in females compared with males for BA 44 and BA 45 bilaterally. However, there was a lack of significant sex differences in BA 44/45 asymmetry. These results corroborate reports of a language-related female superiority, particularly with respect to verbal fluency and verbal memory tasks. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Aberrant Paralimbic Gray Matter in Incarcerated Male Adolescents with Psychopathic Traits
ERIC Educational Resources Information Center
Ermer, Elsa; Cope, Lora M.; Nyalakanti, Prashanth K.; Calhoun, Vince D.; Kiehl, Kent A.
2013-01-01
Objective: To investigate the relationship between brain structure and psychopathic traits in maximum-security incarcerated male adolescents, and to examine whether the associations between brain volumes in paralimbic and limbic regions and psychopathic traits observed in incarcerated adult men extend to an independent sample of incarcerated male…
Deployment and Post-Deployment Experiences in OEF/OIF Veterans: Relationship to Gray Matter Volume
2013-09-18
loss of consciousness or .1 day posttraumatic amnesia ), significant Figure 1. Interaction between deployment social support and combat experiences...823–829. 69. Ekstrom AD, Copara MS, Isham EA, Wang WC, Yonelinas AP (2011) Dissociable networks involved in spatial and temporal order source
MRI Neuroanatomy in Young Girls with Autism: A Preliminary Study
ERIC Educational Resources Information Center
Bloss, Cinnamon S.; Courchesne, Eric
2007-01-01
Objective: To test the hypothesis that young girls and boys with autism exhibit different profiles of neuroanatomical abnormality relative to each other and relative to typically developing children. Method: Structural magnetic resonance imaging was used to measure gray and white matter volumes (whole cerebrum, cerebral lobes, and cerebellum) and…
Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years.
Lean, Rachel E; Melzer, Tracy R; Bora, Samudragupta; Watts, Richard; Woodward, Lianne J
2017-08-01
This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected p<.05). Poorer sustained auditory attention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).
Sampaio-Baptista, Cassandra; Scholz, Jan; Jenkinson, Mark; Thomas, Adam G.; Filippini, Nicola; Smit, Gabrielle; Douaud, Gwenaëlle; Johansen-Berg, Heidi
2014-01-01
The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6 weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4 weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes. PMID:24680712
Supratentorial Neurometabolic Alterations in Pediatric Survivors of Posterior Fossa Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueckriegel, Stefan M., E-mail: rueckriegel.s@nch.uni-wuerzburg.de; Driever, Pablo Hernaiz; Bruhn, Harald
2012-03-01
Purpose: Therapy and tumor-related effects such as hypoperfusion, internal hydrocephalus, chemotherapy, and irradiation lead to significant motor and cognitive sequelae in pediatric posterior fossa tumor survivors. A distinct proportion of those factors related to the resulting late effects is hitherto poorly understood. This study aimed at separating the effects of neurotoxic factors on central nervous system metabolism by using H-1 MR spectroscopy to quantify cerebral metabolite concentrations in these patients in comparison to those in age-matched healthy peers. Methods and Materials: Fifteen patients with World Health Organization (WHO) I pilocytic astrocytoma (PA) treated by resection only, 24 patients with WHOmore » IV medulloblastoma (MB), who additionally received chemotherapy and craniospinal irradiation, and 43 healthy peers were investigated using single-volume H-1 MR spectroscopy of parietal white matter and gray matter. Results: Concentrations of N-acetylaspartate (NAA) were significantly decreased in white matter (p < 0.0001) and gray matter (p < 0.0001) of MB patients and in gray matter (p = 0.005) of PA patients, compared to healthy peers. Decreased creatine concentrations in parietal gray matter correlated significantly with older age at diagnosis in both patient groups (MB patients, p = 0.009, r = 0.52; PA patients, p = 0.006, r = 0.7). Longer time periods since diagnosis were associated with lower NAA levels in white matter of PA patients (p = 0.008, r = 0.66). Conclusions: Differently decreased NAA concentrations were observed in both PA and MB groups of posterior fossa tumor patients. We conclude that this reflects a disturbance of the neurometabolic steady state of normal-appearing brain tissue due to the tumor itself and to the impact of surgery in both patient groups. Further incremental decreases of metabolite concentrations in MB patients may point to additional harm caused by irradiation and chemotherapy. The stronger decrease of NAA in MB patients may correspond to the additional damage of combined irradiation and chemotherapy on neuroaxonal cell viability and number.« less
Lyall, Amanda E; Savadjiev, Peter; Del Re, Elisabetta C; Seitz, Johanna; O'Donnell, Lauren J; Westin, Carl-Fredrik; Mesholam-Gately, Raquelle I; Petryshen, Tracey; Wojcik, Joanne D; Nestor, Paul; Niznikiewicz, Margaret; Goldstein, Jill; Seidman, Larry J; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek
2018-04-03
Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.
The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults
Zanolie, Kiki; Kleibeuker, Sietske W.; Crone, Eveline A.
2014-01-01
Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted. PMID:25514366
Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J.; Pastor, María A.
2013-01-01
High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising, 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies. PMID:23831414
Identification of a common neurobiological substrate for mental illness.
Goodkind, Madeleine; Eickhoff, Simon B; Oathes, Desmond J; Jiang, Ying; Chang, Andrew; Jones-Hagata, Laura B; Ortega, Brissa N; Zaiko, Yevgeniya V; Roach, Erika L; Korgaonkar, Mayuresh S; Grieve, Stuart M; Galatzer-Levy, Isaac; Fox, Peter T; Etkin, Amit
2015-04-01
Psychiatric diagnoses are currently distinguished based on sets of specific symptoms. However, genetic and clinical analyses find similarities across a wide variety of diagnoses, suggesting that a common neurobiological substrate may exist across mental illness. To conduct a meta-analysis of structural neuroimaging studies across multiple psychiatric diagnoses, followed by parallel analyses of 3 large-scale healthy participant data sets to help interpret structural findings in the meta-analysis. PubMed was searched to identify voxel-based morphometry studies through July 2012 comparing psychiatric patients to healthy control individuals for the meta-analysis. The 3 parallel healthy participant data sets included resting-state functional magnetic resonance imaging, a database of activation foci across thousands of neuroimaging experiments, and a data set with structural imaging and cognitive task performance data. Studies were included in the meta-analysis if they reported voxel-based morphometry differences between patients with an Axis I diagnosis and control individuals in stereotactic coordinates across the whole brain, did not present predominantly in childhood, and had at least 10 studies contributing to that diagnosis (or across closely related diagnoses). The meta-analysis was conducted on peak voxel coordinates using an activation likelihood estimation approach. We tested for areas of common gray matter volume increase or decrease across Axis I diagnoses, as well as areas differing between diagnoses. Follow-up analyses on other healthy participant data sets tested connectivity related to regions arising from the meta-analysis and the relationship of gray matter volume to cognition. Based on the voxel-based morphometry meta-analysis of 193 studies comprising 15 892 individuals across 6 diverse diagnostic groups (schizophrenia, bipolar disorder, depression, addiction, obsessive-compulsive disorder, and anxiety), we found that gray matter loss converged across diagnoses in 3 regions: the dorsal anterior cingulate, right insula, and left insula. By contrast, there were few diagnosis-specific effects, distinguishing only schizophrenia and depression from other diagnoses. In the parallel follow-up analyses of the 3 independent healthy participant data sets, we found that the common gray matter loss regions formed a tightly interconnected network during tasks and at resting and that lower gray matter in this network was associated with poor executive functioning. We identified a concordance across psychiatric diagnoses in terms of integrity of an anterior insula/dorsal anterior cingulate-based network, which may relate to executive function deficits observed across diagnoses. This concordance provides an organizing model that emphasizes the importance of shared neural substrates across psychopathology, despite likely diverse etiologies, which is currently not an explicit component of psychiatric nosology.
Colom, Roberto; Burgaleta, Miguel; Román, Francisco J; Karama, Sherif; Alvarez-Linera, Juan; Abad, Francisco J; Martínez, Kenia; Quiroga, Ma Ángeles; Haier, Richard J
2013-05-15
Evidence from neuroimaging studies suggests that intelligence differences may be supported by a parieto-frontal network. Research shows that this network is also relevant for cognitive functions such as working memory and attention. However, previous studies have not explicitly analyzed the commonality of brain areas between a broad array of intelligence factors and cognitive functions tested in the same sample. Here fluid, crystallized, and spatial intelligence, along with working memory, executive updating, attention, and processing speed were each measured by three diverse tests or tasks. These twenty-one measures were completed by a group of one hundred and four healthy young adults. Three cortical measures (cortical gray matter volume, cortical surface area, and cortical thickness) were regressed against psychological latent scores obtained from a confirmatory factor analysis for removing test and task specific variance. For cortical gray matter volume and cortical surface area, the main overlapping clusters were observed in the middle frontal gyrus and involved fluid intelligence and working memory. Crystallized intelligence showed an overlapping cluster with fluid intelligence and working memory in the middle frontal gyrus. The inferior frontal gyrus showed overlap for crystallized intelligence, spatial intelligence, attention, and processing speed. The fusiform gyrus in temporal cortex showed overlap for spatial intelligence and attention. Parietal and occipital areas did not show any overlap across intelligence and cognitive factors. Taken together, these findings underscore that structural features of gray matter in the frontal lobes support those aspects of intelligence related to basic cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Learning new color names produces rapid increase in gray matter in the intact adult human cortex
Kwok, Veronica; Niu, Zhendong; Kay, Paul; Zhou, Ke; Mo, Lei; Jin, Zhen; So, Kwok-Fai; Tan, Li Hai
2011-01-01
The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases the volume of gray matter in V2/3 of the left visual cortex, a region known to mediate color vision. This pattern of findings demonstrates that the anatomical structure of the adult human brain can change very quickly, specifically during the acquisition of new, named categories. Also, prior behavioral and neuroimaging research has shown that differences between languages in the boundaries of named color categories influence the categorical perception of color, as assessed by judgments of relative similarity, by response time in alternative forced-choice tasks, and by visual search. Moreover, further behavioral studies (visual search) and brain imaging studies have suggested strongly that the categorical effect of language on color processing is left-lateralized, i.e., mediated by activity in the left cerebral hemisphere in adults (hence “lateralized Whorfian” effects). The present results appear to provide a structural basis in the brain for the behavioral and neurophysiologically observed indices of these Whorfian effects on color processing. PMID:21464316
Ozgen Saydam, Basak; Has, Arzu Ceylan; Bozdag, Gurkan; Oguz, Kader Karli; Yildiz, Bulent Okan
2017-07-01
To detect differences in global brain volumes and identify relations between brain volume and appetite-related hormones in women with polycystic ovary syndrome (PCOS) compared to body mass index-matched controls. Forty subjects participated in this study. Cranial magnetic resonance imaging and measurements of fasting ghrelin, leptin and glucagon-like peptide 1 (GLP-1), as well as GLP-1 levels during mixed-meal tolerance test (MTT), were performed. Total brain volume and total gray matter volume (GMV) were decreased in obese PCOS compared to obese controls (p < 0.05 for both) whereas lean PCOS and controls did not show a significant difference. Secondary analyses of regional brain volumes showed decreases in GMV of the caudate nucleus, ventral diencephalon and hippocampus in obese PCOS compared to obese controls (p < 0.05 for all), whereas lean patients with PCOS had lower GMV in the amygdala than lean controls (p < 0.05). No significant relations were detected between structural differences and measured hormone levels at baseline or during MTT. This study, investigating structural brain alterations in PCOS, suggests volumetric reductions in global brain areas in obese women with PCOS. Functional studies with larger sample size are needed to determine physiopathological roles of these changes and potential effects of long-term medical management on brain structure of PCOS.
Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S
2015-03-30
Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Associations between subjective sleep quality and brain volume in Gulf War veterans.
Chao, Linda L; Mohlenhoff, Brian S; Weiner, Michael W; Neylan, Thomas C
2014-03-01
To investigate whether subjective sleep quality is associated with brain volume independent of comorbid psychiatric conditions. Cross-sectional. Department of Veterans Affairs (VA) Medical Center. One hundred forty-four Gulf War Veterans (mean age 45 years; range: 31-70 years; 14% female). None. Total cortical, lobar gray matter, and hippocampal volumes were quantified from 1.5 Tesla magnetic resonance images using Freesurfer version 4.5. Subjective sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI). Multiple linear regressions were used to determine the association of sleep quality with total and regional brain volumes. The global PSQI score was positively correlated with lifetime and current posttraumatic stress disorder (PTSD) and current depressive symptoms (P < 0.001) and was higher in veterans with Gulf War Illness, trauma exposure, and those using psychotropic medication (P ≤ 0.03). After adjusting for these comorbid variables, age, intracranial volume, and multiple comparisons, global PSQI was inversely associated with total cortical and frontal gray matter volume (adjusted P ≤ 0.03). Within the frontal lobe, total PSQI was inversely associated with the superior and middle frontal, orbitofrontal, anterior cingulate, and frontal pole volumes (adjusted P ≤ 0.02). Examination of the 3-factor structure of the PSQI revealed that the associations were driven by perceived sleep quality. Poorer subjective sleep quality was associated with reduced total cortical and regional frontal lobe volumes independent of comorbid psychiatric conditions. Future work will be needed to examine if effective treatment of disturbed sleep leads to improved structural and functional integrity of the frontal lobes.
Cai, Suping; Jiang, Yuanyuan; Wang, Yubo; Wu, Xiaoming; Ren, Junchan; Lee, Min Seob; Lee, Sunghoon; Huang, Liyu
2017-03-30
Apolipoprotein E (APOE) ε4 allele is the genetic risk factor with the most established evidence for sporadic Alzheimer's disease. Previous neuroimaging studies have demonstrated insufficiently consistent functional and structural changes among healthy APOE ε4 carriers when compared to non-carriers. Here, in a cognitively intact elderly group (a total of 110: 45 APOE ε4 carriers, 65 non-carriers), we aimed to investigate the potential role of APOE ε4 in the modulation of grey matter activity, white matter integrity, and brain morphology before the development of clinically significant symptoms and signs, by methods of: amplitude of low frequency fluctuations and regional homogeneity analysis based on resting state fMRI, and fiber tractography approach based on diffusion tensor imaging. Our results revealed that compared to non-carriers, APOE ε4 carriers showed: (1) an inconsistent pattern of activity change in the default mode network, including increased gray matter activity in anterior cingulate cortex and medial prefrontal cortex and decreased activity in precuneus; (2) lower mean diffusivity (MD) in fibers of corona radiata and corpus callosum, and lower axial diffusivity in genu of corpus callosum; and (3) significant positive correlation between the MD value of the right superior corona radiate and gross white matter volume; significant negative correlation between the MD value of the right superior corona radiate and Mini-Mental State Examination (MMSE) score. Our results suggested that APOE ε4 gene can modulate gray matter activity and white matter integrity in cognitive and memory related regions, even before any clinical or neuropsychic symtoms or signs of imminent disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Association of IQ Changes and Progressive Brain Changes in Patients With Schizophrenia.
Kubota, Manabu; van Haren, Neeltje E M; Haijma, Sander V; Schnack, Hugo G; Cahn, Wiepke; Hulshoff Pol, Hilleke E; Kahn, René S
2015-08-01
Although schizophrenia is characterized by impairments in intelligence and the loss of brain volume, the relationship between changes in IQ and brain measures is not clear. To investigate the association between IQ and brain measures in patients with schizophrenia across time. Case-control longitudinal study at the Department of Psychiatry at the University Medical Center Utrecht, Utrecht, the Netherlands, comparing patients with schizophrenia and healthy control participants between September 22, 2004, and April 17, 2008. Magnetic resonance imaging of the brain and IQ scores were obtained at baseline and the 3-year follow-up. Participants included 84 patients with schizophrenia (mean illness duration, 4.35 years) and 116 age-matched healthy control participants. Associations between changes in IQ and the total brain, cerebral gray matter, cerebral white matter, lateral ventricular, third ventricles, cortical, and subcortical volumes; cortical thickness; and cortical surface area. Cerebral gray matter volume (P = .006) and cortical volume (P = .03) and thickness (P = .02) decreased more in patients with schizophrenia across time compared with control participants. Patients showed additional loss in cortical volume and thickness of the right supramarginal, posterior superior temporal, left supramarginal, left postcentral, and occipital regions (P values were between <.001 and .03 after clusterwise correction). Although IQ increased similarly in patients with schizophrenia and control participants, changes in IQ were negatively correlated with changes in lateral ventricular volume (P = .05) and positively correlated with changes in cortical volume (P = .007) and thickness (P = .004) only in patients with schizophrenia. Positive correlations between changes in IQ and cortical volume and thickness were found globally and in widespread regions across frontal, temporal, and parietal cortices (P values were between <.001 and .03 after clusterwise correction). These findings were independent of symptom severity at follow-up, cannabis use, and the use of cumulative antipsychotic medications during the 3 years of follow-up. Progressive brain tissue loss in schizophrenia is related to relative cognitive decline during the early course of illness.
Better diet quality relates to larger brain tissue volumes: The Rotterdam Study.
Croll, Pauline H; Voortman, Trudy; Ikram, M Arfan; Franco, Oscar H; Schoufour, Josje D; Bos, Daniel; Vernooij, Meike W
2018-05-16
To investigate the relation of diet quality with structural brain tissue volumes and focal vascular lesions in a dementia-free population. From the population-based Rotterdam Study, 4,447 participants underwent dietary assessment and brain MRI scanning between 2005 and 2015. We excluded participants with an implausible energy intake, prevalent dementia, or cortical infarcts, leaving 4,213 participants for the current analysis. A diet quality score (0-14) was calculated reflecting adherence to Dutch dietary guidelines. Brain MRI was performed to obtain information on brain tissue volumes, white matter lesion volume, lacunes, and cerebral microbleeds. The associations of diet quality score and separate food groups with brain structures were assessed using multivariable linear and logistic regression. We found that better diet quality related to larger brain volume, gray matter volume, white matter volume, and hippocampal volume. Diet quality was not associated with white matter lesion volume, lacunes, or microbleeds. High intake of vegetables, fruit, whole grains, nuts, dairy, and fish and low intake of sugar-containing beverages were associated with larger brain volumes. A better diet quality is associated with larger brain tissue volumes. These results suggest that the effect of nutrition on neurodegeneration may act via brain structure. More research, in particular longitudinal research, is needed to unravel direct vs indirect effects between diet quality and brain health. © 2018 American Academy of Neurology.
Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan
2017-01-01
Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.
PET MRI Coregistration in Intractable Epilepsy and Gray Matter Heterotopia.
Seniaray, Nikhil; Jain, Anuj
2017-03-01
A 25-year-old woman with intractable seizures underwent FDG PET/MRI for seizure focus localization. MRI demonstrated bilateral carpetlike nodular subependymal gray matter and asymmetrical focal dilatation in the right temporal horn. PET/MRI showed increased FDG within subependymal gray matter with significant hypometabolism in right anterior temporal lobe. EEG and ictal semiology confirmed the right temporal seizure origin. This case highlights the importance of identification of gray matter heterotopia on FDG PET/MRI.
In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.
Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine
2017-02-01
Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.
Fraello, David; Maller-Kesselman, Jill; Vohr, Betty; Katz, Karol H; Kesler, Shelli; Schneider, Karen; Reiss, Allan; Ment, Laura; Spann, Marisa N
2011-06-01
This study tested the hypothesis that preterm early adolescents' short-term memory is compromised when presented with increasingly complex verbal information and that associated neuroanatomical volumes would differ between preterm and term groups. Forty-nine preterm and 20 term subjects were evaluated at age 12 years with neuropsychological measures and magnetic resonance imaging (MRI). There were no differences between groups in simple short-term and working memory. Preterm subjects performed lower on learning and short-term memory tests that included increased verbal complexity. They had reduced right parietal, left temporal, and right temporal white matter volumes and greater bilateral frontal gray and right frontal white matter volumes. There was a positive association between complex working memory and the left hippocampus and frontal white matter in term subjects. While not correlated, memory scores and volumes of cortical regions known to subserve language and memory were reduced in preterm subjects. This study provides evidence of possible mechanisms for learning problems in former preterm infants.
ERIC Educational Resources Information Center
Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin
2012-01-01
Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that…
Reduced Amygdalar Gray Matter Volume in Familial Pediatric Bipolar Disorder
ERIC Educational Resources Information Center
Chang, Kiki; Karchemskiy, Asya; Barnea-Goraly, Naama; Garrett, Amy; Simeonova, Diana Iorgova; Reiss, Allan
2005-01-01
Objective: Subcortical limbic structures have been proposed to be involved in the pathophysiology of adult and pediatric bipolar disorder (BD). We sought to study morphometric characteristics of these structures in pediatric subjects with familial BD compared with healthy controls. Method: Twenty children and adolescents with BD I (mean age = 14.6…
ERIC Educational Resources Information Center
Drury, Stacy S.
2009-01-01
Dr. Jay Giedd says that the main alterations in the adolescent brain are the inverted U-shaped developmental trajectories with late childhood/early teen peaks for gray matter volume among others. Giedd adds that the adolescent brain is vulnerable to substances that artificially modulate dopamine levels since its reward system is in a state of flux.
Bilingualism provides a neural reserve for aging populations.
Abutalebi, Jubin; Guidi, Lucia; Borsa, Virginia; Canini, Matteo; Della Rosa, Pasquale A; Parris, Ben A; Weekes, Brendan S
2015-03-01
It has been postulated that bilingualism may act as a cognitive reserve and recent behavioral evidence shows that bilinguals are diagnosed with dementia about 4-5 years later compared to monolinguals. In the present study, we investigated the neural basis of these putative protective effects in a group of aging bilinguals as compared to a matched monolingual control group. For this purpose, participants completed the Erikson Flanker task and their performance was correlated to gray matter (GM) volume in order to investigate if cognitive performance predicts GM volume specifically in areas affected by aging. We performed an ex-Gaussian analysis on the resulting RTs and report that aging bilinguals performed better than aging monolinguals on the Flanker task. Bilingualism was overall associated with increased GM in the ACC. Likewise, aging induced effects upon performance correlated only for monolinguals to decreased gray matter in the DLPFC. Taken together, these neural regions might underlie the benefits of bilingualism and act as a neural reserve that protects against the cognitive decline that occurs during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brain segmentation and the generation of cortical surfaces
NASA Technical Reports Server (NTRS)
Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.
1999-01-01
This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.
Neurobiological correlates of emotional intelligence in voice and face perception networks
Karle, Kathrin N; Ethofer, Thomas; Jacob, Heike; Brück, Carolin; Erb, Michael; Lotze, Martin; Nizielski, Sophia; Schütz, Astrid; Wildgruber, Dirk; Kreifelts, Benjamin
2018-01-01
Abstract Facial expressions and voice modulations are among the most important communicational signals to convey emotional information. The ability to correctly interpret this information is highly relevant for successful social interaction and represents an integral component of emotional competencies that have been conceptualized under the term emotional intelligence. Here, we investigated the relationship of emotional intelligence as measured with the Salovey-Caruso-Emotional-Intelligence-Test (MSCEIT) with cerebral voice and face processing using functional and structural magnetic resonance imaging. MSCEIT scores were positively correlated with increased voice-sensitivity and gray matter volume of the insula accompanied by voice-sensitivity enhanced connectivity between the insula and the temporal voice area, indicating generally increased salience of voices. Conversely, in the face processing system, higher MSCEIT scores were associated with decreased face-sensitivity and gray matter volume of the fusiform face area. Taken together, these findings point to an alteration in the balance of cerebral voice and face processing systems in the form of an attenuated face-vs-voice bias as one potential factor underpinning emotional intelligence. PMID:29365199
Neurobiological correlates of emotional intelligence in voice and face perception networks.
Karle, Kathrin N; Ethofer, Thomas; Jacob, Heike; Brück, Carolin; Erb, Michael; Lotze, Martin; Nizielski, Sophia; Schütz, Astrid; Wildgruber, Dirk; Kreifelts, Benjamin
2018-02-01
Facial expressions and voice modulations are among the most important communicational signals to convey emotional information. The ability to correctly interpret this information is highly relevant for successful social interaction and represents an integral component of emotional competencies that have been conceptualized under the term emotional intelligence. Here, we investigated the relationship of emotional intelligence as measured with the Salovey-Caruso-Emotional-Intelligence-Test (MSCEIT) with cerebral voice and face processing using functional and structural magnetic resonance imaging. MSCEIT scores were positively correlated with increased voice-sensitivity and gray matter volume of the insula accompanied by voice-sensitivity enhanced connectivity between the insula and the temporal voice area, indicating generally increased salience of voices. Conversely, in the face processing system, higher MSCEIT scores were associated with decreased face-sensitivity and gray matter volume of the fusiform face area. Taken together, these findings point to an alteration in the balance of cerebral voice and face processing systems in the form of an attenuated face-vs-voice bias as one potential factor underpinning emotional intelligence.
Sex differences in the association between gray matter volume and verbal creativity.
Shi, Baoguo; Xu, Li; Chen, Qunlin; Qiu, Jiang
2017-08-02
The explanation for why significant sex differences are found in creativity has become an increasingly important topic. The current study applied a cognitive neuroscience perspective and voxel-based morphometry to investigate the sex differences for the association between verbal creativity and gray matter volume (GMV) in a large sample of healthy adults from the Chinese Mainland (163 men and 193 women). Furthermore, we sought to determine which brain regions are responsible for these differences. Our behavioral results showed a significant sex difference. Specifically, women scored higher than men on originality. The voxel-based morphometry results indicated that the relationship between originality and GMV differed between men and women in the left temporo-occipital junction. Higher originality scores in women were associated with more GMV. In contrast, higher originality scores in men were related to less GMV. These findings suggest the left temporo-occipital junction GMV plays a unique role in the sex differences in verbal creativity because women usually surpass men in semantic processing, which is the major function of the left temporal region.
Yao, Yuan-Wei; Liu, Lu; Ma, Shan-Shan; Shi, Xin-Hui; Zhou, Nan; Zhang, Jin-Tao; Potenza, Marc N
2017-12-01
This meta-analytic study aimed to identify the common and specific neural alterations in Internet gaming disorder (IGD) across different domains and modalities. Two separate meta-analyses for functional neural activation and gray-matter volume were conducted. Sub-meta-analyses for the domains of reward, cold-executive, and hot-executive functions were also performed, respectively. IGD subjects, compared with healthy controls, showed: (1) hyperactivation in the anterior and posterior cingulate cortices, caudate, posterior inferior frontal gyrus (IFG), which were mainly associated with studies measuring reward and cold-executive functions; and, (2) hypoactivation in the anterior IFG in relation to hot-executive function, the posterior insula, somatomotor and somatosensory cortices in relation to reward function. Furthermore, IGD subjects showed reduced gray-matter volume in the anterior cingulate, orbitofrontal, dorsolateral prefrontal, and premotor cortices. These findings suggest that IGD is associated with both functional and structural neural alterations in fronto-striatal and fronto-cingulate regions. Moreover, multi-domain assessments capture different aspects of neural alterations in IGD, which may be helpful for developing effective interventions targeting specific functions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Konishi, Jun; Asami, Takeshi; Hayano, Fumi; Yoshimi, Asuka; Hayasaka, Shunsuke; Fukushima, Hiroshi; Whitford, Thomas J.; Inoue, Tomio; Hirayasu, Yoshio
2014-01-01
Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD. PMID:24663245
Structural neuroplasticity in expert pianists depends on the age of musical training onset.
Vaquero, Lucía; Hartmann, Karl; Ripollés, Pablo; Rojo, Nuria; Sierpowska, Joanna; François, Clément; Càmara, Estela; van Vugt, Floris Tijmen; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F; Rodríguez-Fornells, Antoni; Altenmüller, Eckart
2016-02-01
In the last decade, several studies have investigated the neuroplastic changes induced by long-term musical training. Here we investigated structural brain differences in expert pianists compared to non-musician controls, as well as the effect of the age of onset (AoO) of piano playing. Differences with non-musicians and the effect of sensitive periods in musicians have been studied previously, but importantly, this is the first time in which the age of onset of music-training was assessed in a group of musicians playing the same instrument, while controlling for the amount of practice. We recruited a homogeneous group of expert pianists who differed in their AoO but not in their lifetime or present amount of training, and compared them to an age-matched group of non-musicians. A subset of the pianists also completed a scale-playing task in order to control for performance skill level differences. Voxel-based morphometry analysis was used to examine gray-matter differences at the whole-brain level. Pianists showed greater gray matter (GM) volume in bilateral putamen (extending also to hippocampus and amygdala), right thalamus, bilateral lingual gyri and left superior temporal gyrus, but a GM volume shrinkage in the right supramarginal, right superior temporal and right postcentral gyri, when compared to non-musician controls. These results reveal a complex pattern of plastic effects due to sustained musical training: a network involved in reinforcement learning showed increased GM volume, while areas related to sensorimotor control, auditory processing and score-reading presented a reduction in the volume of GM. Behaviorally, early-onset pianists showed higher temporal precision in their piano performance than late-onset pianists, especially in the left hand. Furthermore, early onset of piano playing was associated with smaller GM volume in the right putamen and better piano performance (mainly in the left hand). Our results, therefore, reveal for the first time in a single large dataset of healthy pianists the link between onset of musical practice, behavioral performance, and putaminal gray matter structure. In summary, skill-related plastic adaptations may include decreases and increases in GM volume, dependent on an optimization of the system caused by an early start of musical training. We believe our findings enrich the plasticity discourse and shed light on the neural basis of expert skill acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.
A two-year longitudinal pilot MRI study of the brainstem in autism.
Jou, Roger J; Frazier, Thomas W; Keshavan, Matcheri S; Minshew, Nancy J; Hardan, Antonio Y
2013-08-15
Research has demonstrated the potential role of the brainstem in the pathobiology of autism. Previous studies have suggested reductions in brainstem volume and a relationship between this structure and sensory abnormalities. However, little is known regarding the developmental aspects of the brainstem across childhood and adolescence. The goal of this pilot study was to examine brainstem development via MRI volumetry using a longitudinal research design. Participants included 23 boys with autism and 23 matched controls (age range=8-17 years), all without intellectual disability. Participants underwent structural MRI scans once at baseline and again at two-year follow-up. Brainstem volumetric measurements were performed using the BRAINS2 software package. There were no significant group differences in age, gender, handedness, and total brain volume; however, full-scale IQ was higher in controls. Autism and control groups showed different patterns of growth in brainstem volume. While whole brainstem volume remained stable in controls over the two-year period, the autism group showed increases with age reaching volumes comparable to controls by age 15 years. This increase of whole brainstem volume was primarily driven by bilateral increases in gray matter volume. Findings from this preliminary study are suggestive of developmental brainstem abnormalities in autism primarily involving gray matter structures. These findings are consistent with autism being conceptualized as a neurodevelopmental disorder with alterations in brain-growth trajectories. More longitudinal MRI studies are needed integrating longitudinal cognitive/behavioral data to confirm and elucidate the clinical significance of these atypical growth patterns. Copyright © 2013 Elsevier B.V. All rights reserved.
Gray matter volume correlates of global positive alcohol expectancy in non-dependent adult drinkers
Ide, Jaime S.; Zhang, Sheng; Hu, Sien; Matuskey, David; Bednarski, Sarah R.; Erdman, Emily; Farr, Olivia M.; Li, Chiang-shan R.
2013-01-01
Alcohol use and misuse is known to involve structural brain changes. Numerous imaging studies have examined changes in gray matter (GM) volumes in dependent drinkers, but there is little information on whether non-dependent drinking is associated with structural changes and whether these changes are related to psychological factors – such as alcohol expectancy – that influence drinking behavior. We used voxel based morphometry (VBM) to examine whether the global positive scale of alcohol expectancy, as measured by the Alcohol Expectancy Questionnaire AEQ-3, is associated with specific structural markers and whether such markers are associated with drinking behavior in 113 adult non-dependent drinkers (66 women). Alcohol expectancy is positively correlated with GM volume of left precentrral gyrus (PCG) in men and women combined and bilateral superior frontal gyri (SFG) in women, and negatively correlated with GM volume of the right ventral putamen in men. Furthermore, mediation analyses showed that the GM volume of PCG mediate the correlation of alcohol expectancy and the average number of drinks consumed per occasion and monthly total number of drinks in the past year. When recent drinking was directly accounted for in multiple regressions, GM volume of bilateral dorsolateral prefrontal cortices (DLPFC) correlated positively with alcohol expectancy in the combined sample. To our knowledge, these results are the first to identify the structural brain correlates of alcohol expectancy and its mediation of drinking behaviors. These findings suggest that more studies are needed to investigate increased GM volume in the frontal cortices as a neural correlate of alcohol expectancy. PMID:23461484
Wang, Lei; Gama, Clarissa S.; Barch, Deanna M.
2017-01-01
Abstract Background: Schizophrenia (SZ) is often characterized by cognitive and intellectual impairment. However, there is much heterogeneity across individuals, suggesting different trajectories of the illness. Recent findings have shown brain volume differences across subgroups of individuals with psychosis (SZ and bipolar disorder), such that those with intellectual and cognitive impairments presented evidence of early cerebral disruption, while those with cognitive but not intellectual impairments showed evidence of progressive brain abnormalities. Our aim was to investigate the relations of cognition and intellectual functioning with brain structure abnormalities in a sample of SZ compared to unaffected individuals. Methods: 92 individuals with SZ and 94 healthy controls part of the Northwestern University Schizophrenia Data and Software Tool (NUSDAST) underwent neuropsychological assessment and structural magnetic resonance imaging (MRI). Individuals with SZ were divided into subgroups according their estimated premorbid crystallized intellectual (ePMC-IQ) and cognitive performance. Brain volumes differences were investigated across groups. Results: SZ with ePMC-IQ and cognitive impairments had reduced total brain volume (TBV), intracranial volume (ICV), TBV corrected for ICV, and cortical gray matter volume, as well as reduced cortical thickness, and insula volumes. SZ with cognitive impairment but intact ePMC-IQ showed only reduced cortical gray matter volume and cortical thickness. Conclusions: These data provide additional evidence for heterogeneity in SZ. Impairments in cognition associated with reduced ePMC-IQ were related to evidence of broad brain structural alterations, including suggestion of early cerebral disruption. In contrast, impaired cognitive functioning in the context of more intact intellectual functioning was associated with cortical alterations that may reflect neurodegeneration. PMID:27369471
Aging of Cerebral White Matter
Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K.; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming
2016-01-01
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer’s disease, and Parkinson’s disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. PMID:27865980
Aging of cerebral white matter.
Liu, Huan; Yang, Yuanyuan; Xia, Yuguo; Zhu, Wen; Leak, Rehana K; Wei, Zhishuo; Wang, Jianyi; Hu, Xiaoming
2017-03-01
White matter (WM) occupies a large volume of the human cerebrum and is mainly composed of myelinated axons and myelin-producing glial cells. The myelinated axons within WM are the structural foundation for efficient neurotransmission between cortical and subcortical areas. Similar to neuron-enriched gray matter areas, WM undergoes a series of changes during the process of aging. WM malfunction can induce serious neurobehavioral and cognitive impairments. Thus, age-related changes in WM may contribute to the functional decline observed in the elderly. In addition, aged WM becomes more susceptible to neurological disorders, such as stroke, traumatic brain injury (TBI), and neurodegeneration. In this review, we summarize the structural and functional alterations of WM in natural aging and speculate on the underlying mechanisms. We also discuss how age-related WM changes influence the progression of various brain disorders, including ischemic and hemorrhagic stroke, TBI, Alzheimer's disease, and Parkinson's disease. Although the physiology of WM is still poorly understood relative to gray matter, WM is a rational therapeutic target for a number of neurological and psychiatric conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Cognitive correlates of white matter lesion load and brain atrophy
Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov
2015-01-01
Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514
TLR4 Methylation Moderates the Relationship Between Alcohol Use Severity and Gray Matter Loss.
Karoly, Hollis C; Thayer, Rachel E; Hagerty, Sarah L; Hutchison, Kent E
2017-09-01
Alcohol use disorders (AUDs) are associated with decreased gray matter, and neuroinflammation is one mechanism through which alcohol may confer such damage, given that heavy alcohol use may promote neural damage via activation of toll-like receptor 4 (TLR4)-mediated inflammatory signaling cascades. We previously demonstrated that TLR4 is differentially methylated in AUD compared with control subjects, and the present study aims to extend this work by examining whether TLR4 methylation moderates the relationship between alcohol use and gray matter. We examined TLR4 methylation and gray matter thickness in a large sample (N = 707; 441 males) of adults (ages 18-56) reporting a range of AUD severity (mean Alcohol Use Disorders Identification Test score = 13.18; SD = 8.02). We used a series of ordinary least squares multiple regression equations to regress gray matter in four bilateral brain regions (precuneus, lateral orbitofrontal, inferior parietal, and superior temporal) on alcohol use, TLR4 methylation, and their interaction, controlling for demographic, psychological, and other substance use variables. After we corrected for multiple tests, a significant Alcohol × TLR4 Methylation interaction emerged in the equations modeling left precuneus and right inferior parietal gray matter. Follow-up analyses examining the nature of these interactions demonstrated a significant negative association between alcohol and precuneus and inferior parietal gray matter in individuals with low TLR4 methylation, but no relationship between alcohol and gray matter in the high methylation group. These findings suggest that TLR4 methylation may be protective against the damage conferred by alcohol on precuneus and inferior parietal gray matter, thereby implicating TLR4 for further investigation as a possible AUD treatment target.
Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi
2017-01-01
While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and right inferior frontal gyrus (IFG), which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.
Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.
Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta
2017-03-06
The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Ueda, Takehiro; Kanda, Fumio; Nishiyama, Masahiro; Nishigori, Chikako; Toda, Tatsushi
2017-10-15
Xeroderma pigmentosum (XP) is an inherited congenital disease presenting with dermatological and neurological manifestations. In Japan, XP complementation group A (XP-A) is most frequently observed in eight clinical subtypes, and the homozygous founder mutation, IVS3-1G>C in XPA, suffer from severe manifestations including progressive brain atrophy since childhood. In this study, we used magnetic resonance imaging (MRI) and applied volumetric analysis to elucidate the start and the progression of the brain atrophy in these patients. Twelve Japanese patients with XP-A carrying the founder mutation and seven controls were included. MRI was performed for each patient once or more. Three-dimensional T1 weighted images were segmented to gray matter, white matter, and cerebrospinal fluid, and each volume was calculated. Conventional MRI demonstrated progressive whole brain atrophy in patients with XP-A. Moreover, volumetric analysis showed that reductions of total gray matter volumes (GMV) and total brain volumes (TBV) started at the age of five. The slope of reduction was similar in all cases. The GMV and TBV values in controls were higher than those in XP-A cases after the age of five. This is the first quantitative report presenting with the progression of brain atrophy in patients with XP-A. It is revealed that the brain atrophy started from early childhood in Japanese patients with XP-A carrying the homozygous founder mutation. Copyright © 2017 Elsevier B.V. All rights reserved.
Gray Matter Volume Reduction of Olfactory Cortices in Patients With Idiopathic Olfactory Loss
Yao, Linyin; Pinto, Jayant Marian; Yi, Xiaoli; Li, Li; Peng, Peng
2014-01-01
Idiopathic olfactory loss (IOL) is a common olfactory disorder. Little is known about the pathophysiology of this disease. Previous studies demonstrated decreased olfactory bulb (OB) volume in IOL patients when compared with controls. The aim of our study was to investigate structural brain alterations in areas beyond the OB. We acquired T1-weighted magnetic resonance images from 16 patients with IOL and from 16 age- and sex-matched controls on a 3T scanner. Voxel-based morphometry (VBM) was performed using VBM8 toolbox and SPM8 in a Matlab environment. Psychophysical testing confirmed that patients had higher scores for Toyota and Takagi olfactometer and lower scores for Sniffin’ Sticks olfactory test than controls (t = 46.9, P < 0.001 and t = 21.4, P < 0.001, respectively), consistent with olfactory dysfunction. There was a significant negative correlation between the 2 olfactory tests (r = −0.6, P = 0.01). In a volume of interest analysis including primary and secondary olfactory areas, we found patients with IOL to exhibit gray matter volume loss in the orbitofrontal cortex, anterior cingulate cortex, insular cortex, parahippocampal cortex, and the piriform cortex. The present study indicates that changes in the central brain structures proximal to the OB occur in IOL. Further investigations of this phenomenon may be helpful to elucidate the etiology of IOL. PMID:25240014
Decision-making performance in Parkinson's disease correlates with lateral orbitofrontal volume.
Kobayakawa, Mutsutaka; Tsuruya, Natsuko; Kawamura, Mitsuru
2017-01-15
Patients with Parkinson's disease (PD) exhibit poor decision-making, and the underlying neural correlates are unclear. We used voxel-based morphometry with Diffeomorphic Anatomical Registration through Exponentiated Lie algebra to examine this issue. The decision-making abilities of 20 patients with PD and 37 healthy controls (HCs) were measured with a computerized Iowa Gambling Task (IGT). We assessed the local gray matter volumes of the patients and HCs and their correlations with decision-making performance, disease duration, disease severity, and anti-Parkinsonism medication dose. Compared with the HCs, the patients with PD exhibited poor IGT performances. The gray matter volumes in the medial orbitofrontal cortex, left inferior temporal cortex, and right middle frontal gyrus were decreased in the patients. Results in the regression analysis showed that lateral orbitofrontal volume correlated with performance in the IGT in PD. Regions that correlated with disease duration, severity, and medication dose did not overlap with orbitofrontal regions. Our results indicate that the lateral and medial orbitofrontal cortex are related to decision-making in PD patients. Since the medial orbitofrontal cortex is shown to be involved in monitoring reward, reward monitoring seems to be impaired as a whole in PD patients. Meanwhile, the lateral region is related to evaluation of punishment, which is considered to have an influence on individual differences in decision-making performance in PD patients. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe
2014-03-01
Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.
Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes.
Espeland, Mark A; Brinton, Roberta Diaz; Manson, JoAnn E; Yaffe, Kristine; Hugenschmidt, Christina; Vaughan, Leslie; Craft, Suzanne; Edwards, Beatrice J; Casanova, Ramon; Masaki, Kamal; Resnick, Susan M
2015-09-29
To examine whether the effect of postmenopausal hormone therapy (HT) on brain volumes in women aged 65-79 years differs depending on type 2 diabetes status during postintervention follow-up of a randomized controlled clinical trial. The Women's Health Initiative randomized clinical trials assigned women to HT (0.625 mg/day conjugated equine estrogens with or without 2.5 mg/day medroxyprogesterone acetate) or placebo for an average of 5.6 years. A total of 1,402 trial participants underwent brain MRI 2.4 years after the trials; these were repeated in 699 women 4.7 years later. General linear models were used to assess the interaction between diabetes status and HT assignment on brain volumes. Women with diabetes at baseline or during follow-up who had been assigned to HT compared to placebo had mean decrement in total brain volume of -18.6 mL (95% confidence interval [CI] -29.6, -7.6). For women without diabetes, this mean decrement was -0.4 (95% CI -3.8, 3.0) (interaction p=0.002). This interaction was evident for total gray matter (p<0.001) and hippocampal (p=0.006) volumes. It was not evident for changes in brain volumes over follow-up or for ischemic lesion volumes and was not influenced by diabetes duration or oral medications. For women aged 65 years or older who are at increased risk for brain atrophy due to type 2 diabetes, prescription of postmenopausal HT is associated with lower gray matter (total and hippocampal) volumes. Interactions with diabetes and insulin resistance may explain divergent findings on how estrogen influences brain volume among older women. © 2015 American Academy of Neurology.
Postmenopausal hormone therapy, type 2 diabetes mellitus, and brain volumes
Brinton, Roberta Diaz; Manson, JoAnn E.; Yaffe, Kristine; Hugenschmidt, Christina; Vaughan, Leslie; Craft, Suzanne; Edwards, Beatrice J.; Casanova, Ramon; Masaki, Kamal; Resnick, Susan M.
2015-01-01
Objective: To examine whether the effect of postmenopausal hormone therapy (HT) on brain volumes in women aged 65–79 years differs depending on type 2 diabetes status during postintervention follow-up of a randomized controlled clinical trial. Methods: The Women's Health Initiative randomized clinical trials assigned women to HT (0.625 mg/day conjugated equine estrogens with or without 2.5 mg/day medroxyprogesterone acetate) or placebo for an average of 5.6 years. A total of 1,402 trial participants underwent brain MRI 2.4 years after the trials; these were repeated in 699 women 4.7 years later. General linear models were used to assess the interaction between diabetes status and HT assignment on brain volumes. Results: Women with diabetes at baseline or during follow-up who had been assigned to HT compared to placebo had mean decrement in total brain volume of −18.6 mL (95% confidence interval [CI] −29.6, −7.6). For women without diabetes, this mean decrement was −0.4 (95% CI −3.8, 3.0) (interaction p = 0.002). This interaction was evident for total gray matter (p < 0.001) and hippocampal (p = 0.006) volumes. It was not evident for changes in brain volumes over follow-up or for ischemic lesion volumes and was not influenced by diabetes duration or oral medications. Conclusions: For women aged 65 years or older who are at increased risk for brain atrophy due to type 2 diabetes, prescription of postmenopausal HT is associated with lower gray matter (total and hippocampal) volumes. Interactions with diabetes and insulin resistance may explain divergent findings on how estrogen influences brain volume among older women. PMID:26163429
Reduced Cortical Gray Matter Volume In Male Adolescents With Substance And Conduct Problems
Dalwani, Manish; Sakai, Joseph T.; Mikulich-Gilbertson, Susan K.; Tanabe, Jody; Raymond, Kristen; McWilliams, Shannon K.; Thompson, Laetitia L.; Banich, Marie T.; Crowley, Thomas J.
2011-01-01
Boys with serious conduct and substance problems (“Antisocial Substance Dependence” (ASD)) repeatedly make impulsive and risky decisions in spite of possible negative consequences. Because prefrontal cortex (PFC) is involved in planning behavior in accord with prior rewards and punishments, structural abnormalities in PFC could contribute to a person's propensity to make risky decisions. Methods We acquired high-resolution structural images of 25 male ASD patients (ages 14–18 years) and 19 controls of similar ages using a 3T MR system. We conducted whole-brain voxel-based morphometric analysis (p<0.05, corrected for multiple comparisons at whole-brain cluster-level) using Statistical Parametric Mapping version-5 and tested group differences in regional gray matter (GM) volume with analyses of covariance, adjusting for total GM volume, age, and IQ; we further adjusted between-group analyses for ADHD and depression. As secondary analyses, we tested for negative associations between GM volume and impulsivity within groups and separately, GM volume and symptom severity within patients using whole-brain regression analyses. Results ASD boys had significantly lower GM volume than controls in left dorsolateral PFC (DLPFC), right lingual gyrus and bilateral cerebellum, and significantly higher GM volume in right precuneus. Left DLPFC GM volume showed negative association with impulsivity within controls and negative association with substance dependence severity within patients. Conclusions ASD boys show reduced GM volumes in several regions including DLPFC, a region highly relevant to impulsivity, disinhibition, and decision-making, and cerebellum, a region important for behavioral regulation, while they showed increased GM in precuneus, a region associated with self-referential and self-centered thinking. PMID:21592680
Age-Related Gray and White Matter Changes in Normal Adult Brains
Farokhian, Farnaz; Yang, Chunlan; Beheshti, Iman; Matsuda, Hiroshi; Wu, Shuicai
2017-01-01
Normal aging is associated with both structural changes in many brain regions and functional declines in several cognitive domains with advancing age. Advanced neuroimaging techniques enable explorative analyses of structural alterations that can be used as assessments of such age-related changes. Here we used voxel-based morphometry (VBM) to investigate regional and global brain volume differences among four groups of healthy adults from the IXI Dataset: older females (OF, mean age 68.35 yrs; n=69), older males (OM, 68.43 yrs; n=66), young females (YF, 27.09 yrs; n=71), and young males (YM, 27.91 yrs; n=71), using 3D T1-weighted MRI data. At the global level, we investigated the influence of age and gender on brain volumes using a two-way analysis of variance. With respect to gender, we used the Pearson correlation to investigate global brain volume alterations due to age in the older and young groups. At the regional level, we used a flexible factorial statistical test to compare the means of gray matter (GM) and white matter (WM) volume alterations among the four groups. We observed different patterns in both the global and regional GM and WM alterations in the young and older groups with respect to gender. At the global level, we observed significant influences of age and gender on global brain volumes. At the regional level, the older subjects showed a widespread reduction in GM volume in regions of the frontal, insular, and cingulate cortices compared to the young subjects in both genders. Compared to the young subjects, the older subjects showed a widespread WM decline prominently in the thalamic radiations, in addition to increased WM in pericentral and occipital areas. Knowledge of these observed brain volume differences and changes may contribute to the elucidation of mechanisms underlying aging as well as age-related brain atrophy and disease. PMID:29344423
White and Gray Matter Abnormalities After Cranial Radiation in Children and Mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieman, Brian J., E-mail: brian.nieman@utoronto.ca; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Ontario Institute for Cancer Research, Toronto, Ontario
Purpose: Pediatric patients treated with cranial radiation are at high risk of developing lasting cognitive impairments. We sought to identify anatomical changes in both gray matter (GM) and white matter (WM) in radiation-treated patients and in mice, in which the effect of radiation can be isolated from other factors, the time course of anatomical change can be established, and the effect of treatment age can be more fully characterized. Anatomical results were compared between species. Methods and Materials: Patients were imaged with T{sub 1}-weighted magnetic resonance imaging (MRI) after radiation treatment. Nineteen radiation-treated patients were divided into groups of 7 yearsmore » of age and younger (7−) and 8 years and older (8+) and were compared to 41 controls. C57BL6 mice were treated with radiation (n=52) or sham treated (n=52) between postnatal days 16 and 36 and then assessed with in vivo and/or ex vivo MRI. In both cases, measurements of WM and GM volume, cortical thickness, area and volume, and hippocampal volume were compared between groups. Results: WM volume was significantly decreased following treatment in 7− and 8+ treatment groups. GM volume was unchanged overall, but cortical thickness was slightly increased in the 7− group. Results in mice mostly mirrored these changes and provided a time course of change, showing early volume loss and normal growth. Hippocampal volume showed a decreasing trend with age in patients, an effect not observed in the mouse hippocampus but present in the olfactory bulb. Conclusions: Changes in mice treated with cranial radiation are similar to those in humans, including significant WM and GM alterations. Because mice did not receive any other treatment, the similarity across species supports the expectation that radiation is causative and suggests mice provide a representative model for studying impaired brain development after cranial radiation and testing novel treatments.« less
Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien
2017-04-15
The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10 -6 ). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Jingjuan; Zhou, Li; Cui, Chunlei; Liu, Zhening; Lu, Jie
2017-11-22
Cognitive deficits are a core feature of early schizophrenia. However, the pathological foundations underlying cognitive deficits are still unknown. The present study examined the association between gray matter density and cognitive deficits in first-episode schizophrenia. Structural magnetic resonance imaging of the brain was performed in 34 first-episode schizophrenia patients and 21 healthy controls. Patients were divided into two subgroups according to working memory task performance. The three groups were well matched for age, gender, and education, and the two patient groups were also further matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to estimate changes in gray matter density in first-episode schizophrenia patients with cognitive deficits. The relationships between gray matter density and clinical outcomes were explored. Patients with cognitive deficits were found to have reduced gray matter density in the vermis and tonsil of cerebellum compared with patients without cognitive deficits and healthy controls, decreased gray matter density in left supplementary motor area, bilateral precentral gyrus compared with patients without cognitive deficits. Classifier results showed GMD in cerebellar vermis tonsil cluster could differentiate SZ-CD from controls, left supplementary motor area cluster could differentiate SZ-CD from SZ-NCD. Gray matter density values of the cerebellar vermis cluster in patients groups were positively correlated with cognitive severity. Decreased gray matter density in the vermis and tonsil of cerebellum may underlie early psychosis and serve as a candidate biomarker for schizophrenia with cognitive deficits.
Abnormal brain structure in youth who commit homicide
Cope, L.M.; Ermer, E.; Gaudet, L.M.; Steele, V.R.; Eckhardt, A.L.; Arbabshirani, M.R.; Caldwell, M.F.; Calhoun, V.D.; Kiehl, K.A.
2014-01-01
Background Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Methods Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Results Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Conclusions Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses. PMID:24936430
Abnormal brain structure in youth who commit homicide.
Cope, L M; Ermer, E; Gaudet, L M; Steele, V R; Eckhardt, A L; Arbabshirani, M R; Caldwell, M F; Calhoun, V D; Kiehl, K A
2014-01-01
Violence that leads to homicide results in an extreme financial and emotional burden on society. Juveniles who commit homicide are often tried in adult court and typically spend the majority of their lives in prison. Despite the enormous costs associated with homicidal behavior, there have been no serious neuroscientific studies examining youth who commit homicide. Here we use neuroimaging and voxel-based morphometry to examine brain gray matter in incarcerated male adolescents who committed homicide (n = 20) compared with incarcerated offenders who did not commit homicide (n = 135). Two additional control groups were used to understand further the nature of gray matter differences: incarcerated offenders who did not commit homicide matched on important demographic and psychometric variables (n = 20) and healthy participants from the community (n = 21). Compared with incarcerated adolescents who did not commit homicide (n = 135), incarcerated homicide offenders had reduced gray matter volumes in the medial and lateral temporal lobes, including the hippocampus and posterior insula. Feature selection and support vector machine learning classified offenders into the homicide and non-homicide groups with 81% overall accuracy. Our results indicate that brain structural differences may help identify those at the highest risk for committing serious violent offenses.
Matsuoka, Kiwamu; Yasuno, Fumihiko; Hashimoto, Akiko; Miyasaka, Toshiteru; Takahashi, Masato; Kiuchi, Kuniaki; Iida, Junzo; Kichikawa, Kimihiko; Kishimoto, Toshifumi
2018-05-01
Caregivers of patients with dementia experience physical and mental deterioration. We have previously reported a correlation between caregiver burden and the Frontal Assessment Battery (FAB) total scores of patients with Alzheimer's disease (AD), especially regarding the dependency factor from the Zarit Burden Interview. The present study aimed to identify an objective biomarker for predicting caregiver burden. The participants were 26 pairs of caregivers and patients with AD and mild-to-moderate dementia. Correlations between regional gray matter volumes in the patients with AD and the FAB total scores were explored by using whole-brain voxel-based morphometric analysis. Path analysis was used to estimate the relationships between regional gray matter volumes, FAB total scores, and caregiver burden based on the Zarit Burden Interview. The voxel-based morphometric revealed a significant positive correlation between the FAB total scores and the volume of the left dorsolateral prefrontal cortex. This positive correlation persisted after controlling for the effect of general cognitive dysfunction, which was assessed by using the Mini-Mental State Examination. Path analysis revealed that decreases in FAB scores, caused by reduced frontal lobe volumes, negatively affected caregiver burden. The present study revealed that frontal lobe function, based on FAB scores, was affected by the volume of the left dorsolateral prefrontal cortex. Decreased scores were associated with greater caregiver burden, especially for the dependency factor. These findings may facilitate the development of an objective biomarker for predicting caregiver burden. Copyright © 2017 John Wiley & Sons, Ltd.
Ahmed, Mohamed; Cannon, Dara M; Scanlon, Cathy; Holleran, Laurena; Schmidt, Heike; McFarland, John; Langan, Camilla; McCarthy, Peter; Barker, Gareth J; Hallahan, Brian; McDonald, Colm
2015-09-01
Despite evidence that clozapine may be neuroprotective, there are few longitudinal magnetic resonance imaging (MRI) studies that have specifically explored an association between commencement of clozapine treatment for schizophrenia and changes in regional brain volume or cortical thickness. A total of 33 patients with treatment-resistant schizophrenia and 31 healthy controls matched for age and gender underwent structural MRI brain scans at baseline and 6-9 months after commencing clozapine. MRI images were analyzed using SIENA (Structural Image Evaluation, using Normalization, of Atrophy) and FreeSurfer to investigate changes over time in brain volume and cortical thickness respectively. Significantly greater reductions in volume were detected in the right and left medial prefrontal cortex and in the periventricular area in the patient group regardless of treatment response. Widespread further cortical thinning was observed in patients compared with healthy controls. The majority of patients improved symptomatically and functionally over the study period, and patients who improved were more likely to have less cortical thinning of the left medial frontal cortex and the right middle temporal cortex. These findings demonstrate on-going reductions in brain volume and progressive cortical thinning in patients with schizophrenia who are switched to clozapine treatment. It is possible that this gray matter loss reflects a progressive disease process irrespective of medication use or that it is contributed to by switching to clozapine treatment. The clinical improvement of most patients indicates that antipsychotic-related gray matter volume loss may not necessarily be harmful or reflect neurotoxicity.
Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.
Gene x Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.
Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. The objective is to examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high- and low-repeat alleles).more » The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis x MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. The results are: (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls; (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low- MAOA genotype and by lifetime cocaine use; and (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction.« less
Ferreira, Daniel; Voevodskaya, Olga; Imrell, Kerstin; Stawiarz, Leszek; Spulber, Gabriela; Wahlund, Lars-Olof; Hillert, Jan; Westman, Eric; Karrenbauer, Virginija Danylaité
2014-09-15
To investigate whether multiple sclerosis (MS) patients with and without cerebrospinal fluid (CSF) oligoclonal immunoglobulin G bands (OCB) differ in brain atrophy. Twenty-eight OCB-negative and thirty-five OCB-positive patients were included. Larger volumes of total CSF and white matter (WM) lesions; smaller gray matter (GM) volume in the basal ganglia, diencephalon, cerebellum, and hippocampus; and smaller WM volume in corpus callosum, periventricular-deep WM, brainstem, and cerebellum, were observed in OCB-positives. OCB-negative patients, known to differ genetically from OCB-positives, are characterized by less global and regional brain atrophy. This finding supports the notion that OCB-negative MS patients may represent a clinically relevant MS subgroup. Copyright © 2014 Elsevier B.V. All rights reserved.
Ruggieri, Serena; Petracca, Maria; Miller, Aaron; Krieger, Stephen; Ghassemi, Rezwan; Bencosme, Yadira; Riley, Claire; Howard, Jonathan; Lublin, Fred; Inglese, Matilde
2015-12-01
The investigation of cortical gray matter (GM), deep GM nuclei, and spinal cord damage in patients with primary progressive multiple sclerosis (PP-MS) provides insights into the neurodegenerative process responsible for clinical progression of MS. To investigate the association of magnetic resonance imaging measures of cortical, deep GM, and spinal cord damage and their effect on clinical disability. Cross-sectional analysis of 26 patients with PP-MS (mean age, 50.9 years; range, 31-65 years; including 14 women) and 20 healthy control participants (mean age, 51.1 years; range, 34-63 years; including 11 women) enrolled at a single US institution. Clinical disability was measured with the Expanded Disability Status Scale, 9-Hole Peg Test, and 25-Foot Walking Test. We collected data from January 1, 2012, through December 31, 2013. Data analysis was performed from January 21 to April 10, 2015. Cortical lesion burden, brain and deep GM volumes, spinal cord area and volume, and scores on the Expanded Disability Status Scale (score range, 0 to 10; higher scores indicate greater disability), 9-Hole Peg Test (measured in seconds; longer performance time indicates greater disability), and 25-Foot Walking Test (test covers 7.5 m; measured in seconds; longer performance time indicates greater disability). The 26 patients with PP-MS showed significantly smaller mean (SD) brain and spinal cord volumes than the 20 control group patients (normalized brain volume, 1377.81 [65.48] vs 1434.06 [53.67] cm3 [P = .003]; normalized white matter volume, 650.61 [46.38] vs 676.75 [37.02] cm3 [P = .045]; normalized gray matter volume, 727.20 [40.74] vs 757.31 [38.95] cm3 [P = .02]; normalized neocortical volume, 567.88 [85.55] vs 645.00 [42.84] cm3 [P = .001]; normalized spinal cord volume for C2-C5, 72.71 [7.89] vs 82.70 [7.83] mm3 [P < .001]; and normalized spinal cord volume for C2-C3, 64.86 [7.78] vs 72.26 [7.79] mm3 [P =.002]). The amount of damage in deep GM structures, especially with respect to the thalamus, was correlated with the number and volume of cortical lesions (mean [SD] thalamus volume, 8.89 [1.10] cm3; cortical lesion number, 12.6 [11.7]; cortical lesion volume, 0.65 [0.58] cm3; r = -0.52; P < .01). Thalamic atrophy also showed an association with cortical lesion count in the frontal cortex (mean [SD] thalamus volume, 8.89 [1.1] cm3; cortical lesion count in the frontal lobe, 5.0 [5.7]; r = -0.60; P < .01). No association was identified between magnetic resonance imaging measures of the brain and spinal cord damage. In this study, the neurodegenerative process occurring in PP-MS appeared to spread across connected structures in the brain while proceeding independently in the spinal cord. These results support the relevance of anatomical connectivity for the propagation of MS damage in the PP phenotype.
Wagshal, Dana; Knowlton, Barbara Jean; Cohen, Jessica Rachel; Bookheimer, Susan Yost; Bilder, Robert Martin; Fernandez, Vindia Gisela; Asarnow, Robert Franklin
2015-01-01
Patients with childhood onset schizophrenia (COS) display widespread gray matter (GM) structural brain abnormalities. Healthy siblings of COS patients share some of these structural abnormalities, suggesting that GM abnormalities are endophenotypes for schizophrenia. Another possible endophenotype for schizophrenia that has been relatively unexplored is corticostriatal dysfunction. The corticostriatal system plays an important role in skill learning. Our previous studies have demonstrated corticostriatal dysfunction in COS siblings with a profound skill learning deficit and abnormal pattern of brain activation during skill learning. This study investigated whether structural abnormalities measured using volumetric brain morphometry (VBM) were present in siblings of COS patients and whether these were related to deficits in cognitive skill learning. Results revealed smaller GM volume in COS siblings relative to controls in a number of regions, including occipital, parietal, and subcortical regions including the striatum, and greater GM volume relative to controls in several subcortical regions. Volume in the right superior frontal gyrus and cerebellum were related to performance differences between groups on the weather prediction task, a measure of cognitive skill learning. Our results support the idea that corticostriatal and cerebellar impairment in unaffected siblings of COS patients are behaviorally relevant and may reflect genetic risk for schizophrenia. PMID:25541139
Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users.
Chye, Yann; Suo, Chao; Yücel, Murat; den Ouden, Lauren; Solowij, Nadia; Lorenzetti, Valentina
2017-07-01
Cannabis use is associated with neuroanatomical alterations in the hippocampus. While the hippocampus is composed of multiple subregions, their differential vulnerability to cannabis dependence remains unknown. The objective of the study is to investigate gray matter alteration in each of the hippocampal subregions (presubiculum, subiculum, cornu ammonis (CA) subfields CA1-4, and dentate gyrus (DG)) as associated with cannabis use and dependence. A total of 35 healthy controls (HC), 22 non-dependent (CB-nondep), and 39 dependent (CB-dep) cannabis users were recruited. We investigated group differences in hippocampal subregion volumes between HC, CB-nondep, and CB-dep users. We further explored the association between CB use variables (age of onset of regular use, monthly use, lifetime use) and hippocampal subregions in CB-nondep and CB-dep users separately. The CA1, CA2/3, CA4/DG, as well as total hippocampal gray matter were reduced in volume in CB-dep but not in CB-nondep users, relative to HC. The right CA2/3 and CA4/DG volumes were also negatively associated with lifetime cannabis use in CB-dep users. Our results suggest a regionally and dependence-specific influence of cannabis use on the hippocampus. Hippocampal alteration in cannabis users was specific to the CA and DG regions and confined to dependent users.
Yang, Junyi; Yin, Ping; Wei, Dongtao; Wang, Kangcheng; Li, Yongmei; Qiu, Jiang
2017-06-01
The depression-related personality trait is associated with the severity of patients' current depressive symptoms and with the vulnerability to depression within the nonclinical groups. However, little is known about the anatomical structure associated with the depression-related personality traits within the nonclinical sample. Parenting behavior is associated with the depression symptoms; however, whether or not parenting behavior influence the neural basis of the depression-related personality traits is unclear. Thus in current study, first, we used voxel-based morphometry to identify the brain regions underlying individual differences in depression-related personality traits, as measured by the revised Neuroticism-Extraversion-Openness Personality Inventory, in a large sample of young healthy adults. Second, we use mediation analysis to investigate the relationship between parenting behavior and neural basis of depression-related personality traits. The results revealed that depression-related personality traits were positively correlated with gray matter volume mainly in medial frontal gyrus (MFG) that is implicated in the self-referential processing and emotional regulation. Furthermore, parental emotional warmth acted as a mediational mechanism underlying the association between the MFG volume and the depression-related personality trait. Together, our findings suggested that the family environment might play an important role in the acquisition and process of the depression-related personality traits.
Impaired decision-making and brain shrinkage in alcoholism.
Le Berre, A-P; Rauchs, G; La Joie, R; Mézenge, F; Boudehent, C; Vabret, F; Segobin, S; Viader, F; Allain, P; Eustache, F; Pitel, A-L; Beaunieux, H
2014-03-01
Alcohol-dependent individuals usually favor instant gratification of alcohol use and ignore its long-term negative consequences, reflecting impaired decision-making. According to the somatic marker hypothesis, decision-making abilities are subtended by an extended brain network. As chronic alcohol consumption is known to be associated with brain shrinkage in this network, the present study investigated relationships between brain shrinkage and decision-making impairments in alcohol-dependent individuals early in abstinence using voxel-based morphometry. Thirty patients performed the Iowa Gambling Task and underwent a magnetic resonance imaging investigation (1.5T). Decision-making performances and brain data were compared with those of age-matched healthy controls. In the alcoholic group, a multiple regression analysis was conducted with two predictors (gray matter [GM] volume and decision-making measure) and two covariates (number of withdrawals and duration of alcoholism). Compared with controls, alcoholics had impaired decision-making and widespread reduced gray matter volume, especially in regions involved in decision-making. The regression analysis revealed links between high GM volume in the ventromedial prefrontal cortex, dorsal anterior cingulate cortex and right hippocampal formation, and high decision-making scores (P<0.001, uncorrected). Decision-making deficits in alcoholism may result from impairment of both emotional and cognitive networks. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Brain gray matter phenotypes across the psychosis dimension
Ivleva, Elena I.; Bidesi, Anup S.; Thomas, Binu P.; Meda, Shashwath A.; Francis, Alan; Moates, Amanda F.; Witte, Bradley; Keshavan, Matcheri S.; Tamminga, Carol A.
2013-01-01
This study sought to examine whole brain and regional gray matter (GM) phenotypes across the schizophrenia (SZ)–bipolar disorder psychosis dimension using voxel-based morphometry (VBM 8.0 with DARTEL segmentation/normalization) and semi-automated regional parcellation, FreeSurfer (FS 4.3.1/64 bit). 3T T1 MPRAGE images were acquired from 19 volunteers with schizophrenia (SZ), 16 with schizoaffective disorder (SAD), 17 with psychotic bipolar I disorder (BD-P) and 10 healthy controls (HC). Contrasted with HC, SZ showed extensive cortical GM reductions, most pronounced in fronto-temporal regions; SAD had GM reductions overlapping with SZ, albeit less extensive; and BD-P demonstrated no GM differences from HC. Within the psychosis dimension, BD-P showed larger volumes in fronto-temporal and other cortical/subcortical regions compared with SZ, whereas SAD showed intermediate GM volumes. The two volumetric methodologies, VBM and FS, revealed highly overlapping results for cortical GM, but partially divergent results for subcortical volumes (basal ganglia, amygdala). Overall, these findings suggest that individuals across the psychosis dimension show both overlapping and unique GM phenotypes: decreased GM, predominantly in fronto-temporal regions, is characteristic of SZ but not of psychotic BD-P, whereas SAD display GM deficits overlapping with SZ, albeit less extensive. PMID:23177922
Brain gray matter phenotypes across the psychosis dimension.
Ivleva, Elena I; Bidesi, Anup S; Thomas, Binu P; Meda, Shashwath A; Francis, Alan; Moates, Amanda F; Witte, Bradley; Keshavan, Matcheri S; Tamminga, Carol A
2012-10-30
This study sought to examine whole brain and regional gray matter (GM) phenotypes across the schizophrenia (SZ)-bipolar disorder psychosis dimension using voxel-based morphometry (VBM 8.0 with DARTEL segmentation/normalization) and semi-automated regional parcellation, FreeSurfer (FS 4.3.1/64 bit). 3T T1 MPRAGE images were acquired from 19 volunteers with schizophrenia (SZ), 16 with schizoaffective disorder (SAD), 17 with psychotic bipolar I disorder (BD-P) and 10 healthy controls (HC). Contrasted with HC, SZ showed extensive cortical GM reductions, most pronounced in fronto-temporal regions; SAD had GM reductions overlapping with SZ, albeit less extensive; and BD-P demonstrated no GM differences from HC. Within the psychosis dimension, BD-P showed larger volumes in fronto-temporal and other cortical/subcortical regions compared with SZ, whereas SAD showed intermediate GM volumes. The two volumetric methodologies, VBM and FS, revealed highly overlapping results for cortical GM, but partially divergent results for subcortical volumes (basal ganglia, amygdala). Overall, these findings suggest that individuals across the psychosis dimension show both overlapping and unique GM phenotypes: decreased GM, predominantly in fronto-temporal regions, is characteristic of SZ but not of psychotic BD-P, whereas SAD display GM deficits overlapping with SZ, albeit less extensive. Published by Elsevier Ireland Ltd.
Knopman, David S; Jack, Clifford R; Lundt, Emily S; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Machulda, Mary M; Roberts, Rosebud O; Boeve, Bradley F; Jones, David T; Petersen, Ronald C
2016-10-01
The availability of antemortem biomarkers for Alzheimer's disease (AD) enables monitoring the evolution of neurodegenerative processes in real time. Pittsburgh compound B (PIB) positron emission tomography (PET) was used to select participants in the Mayo Clinic Study of Aging and the Mayo Alzheimer's Disease Research Center with elevated β-amyloid, designated as "A+," and hippocampal volume and (18)fluorodeoxyglucose (FDG) positron emission tomography were used to characterize participants as having evidence of neurodegeneration ("N+") at the baseline evaluation. There were 145 clinically normal (CN) A+ individuals, 62 persons with mild cognitive impairment (MCI) who were A+ and 20 with A+ AD dementia. Over a period of 1-6 years, MCI A+N+ individuals showed declines in medial temporal, lateral temporal, lateral parietal, and to a lesser extent, medial parietal regions for both FDG standardized uptake value ratio and gray matter volume that exceeded declines seen in the CN A+N+ group. The AD dementia group showed declines in the same regions on FDG standardized uptake value ratio and gray matter volume with rates that exceeded that in MCI A+N+. Expansion of regional involvement and faster rate of neurodegeneration characterizes progression in the AD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparative study of standard space and real space analysis of quantitative MR brain data.
Aribisala, Benjamin S; He, Jiabao; Blamire, Andrew M
2011-06-01
To compare the robustness of region of interest (ROI) analysis of magnetic resonance imaging (MRI) brain data in real space with analysis in standard space and to test the hypothesis that standard space image analysis introduces more partial volume effect errors compared to analysis of the same dataset in real space. Twenty healthy adults with no history or evidence of neurological diseases were recruited; high-resolution T(1)-weighted, quantitative T(1), and B(0) field-map measurements were collected. Algorithms were implemented to perform analysis in real and standard space and used to apply a simple standard ROI template to quantitative T(1) datasets. Regional relaxation values and histograms for both gray and white matter tissues classes were then extracted and compared. Regional mean T(1) values for both gray and white matter were significantly lower using real space compared to standard space analysis. Additionally, regional T(1) histograms were more compact in real space, with smaller right-sided tails indicating lower partial volume errors compared to standard space analysis. Standard space analysis of quantitative MRI brain data introduces more partial volume effect errors biasing the analysis of quantitative data compared to analysis of the same dataset in real space. Copyright © 2011 Wiley-Liss, Inc.
Bellis, Michael D. De; Hooper, Stephen R.; Chen, Steven D.; Provenzale, James M.; Boyd, Brian D.; Glessner, Christopher E.; MacFall, James R.; Payne, Martha E.; Rybczynski, Robert; Woolley, Donald P
2016-01-01
Magnetic resonance imaging (MRI) studies of maltreated children with posttraumatic stress disorder (PTSD) suggest that maltreatment-related PTSD is associated with adverse brain development. Maltreated youth resilient to chronic PTSD were not previously investigated and may elucidate neuro-mechanisms of the stress diathesis that leads to resilience to chronic PTSD. In this cross-sectional study, anatomical volumetric and corpus callosum diffusion tensor imaging measures were examined using MRI in maltreated youth with chronic PTSD (N=38), without PTSD (N=35), and non-maltreated participants (n=59). Groups were sociodemographically similar. Participants underwent assessments for strict inclusion/exclusion criteria and psychopathology. Maltreated youth with PTSD were psychobiologically different from maltreated youth without PTSD and non-maltreated controls. Maltreated youth with PTSD had smaller posterior cerebral and cerebellar gray matter volumes than maltreated youth without PTSD and non-maltreated participants. Cerebral and cerebellar gray matter volumes inversely correlated with PTSD symptoms. Posterior corpus callosum microstructure in pediatric maltreatment-related PTSD differed compared to maltreated youth without PTSD and controls. The group differences remained significant when controlling for psychopathology, numbers of Axis I disorders, and trauma load. Alterations of these posterior brain structures may result from a shared trauma related-mechanism or an inherent vulnerability that mediates the pathway from chronic PTSD to co-morbidity. PMID:26535944
Keltner, John R.; Fennema-Notestine, Christine; Vaida, Florin; Wang, Dongzhe; Franklin, Donald R.; Dworkin, Robert H.; Sanders, Chelsea; McCutchan, J. Allen; Archibald, Sarah L.; Miller, David J.; Kesidis, George; Cushman, Clint; Kim, Sung Min; Abramson, Ian; Taylor, Michael J.; Theilmann, Rebecca J.; Julaton, Michelle D.; Notestine, Randy J.; Corkran, Stephanie; Cherner, Mariana; Duarte, Nichole A.; Alexander, Terry; Robinson-Papp, Jessica; Gelman, Benjamin B.; Simpson, David M.; Collier, Ann C.; Marra, Christina M.; Morgello, Susan; Brown, Greg; Grant, Igor; Atkinson, J. Hampton; Jernigan, Terry L.; Ellis, Ronald J.
2014-01-01
Despite modern antiretroviral therapy, HIV-associated sensory neuropathy affects over 50% of HIV patients. The clinical expression of HIV neuropathy is highly variable: many individuals report few symptoms, but about half report distal neuropathic pain (DNP), making it one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of pain is not fully explained by the degree of peripheral nerve damage, making it unclear why some patients do, and others do not, report pain. To better understand central nervous system contributions to HIV DNP, we performed a cross-sectional analysis of structural magnetic resonance imaging (MRI) volumes in 241 HIV-infected participants from an observational multi-site cohort study at five US sites (CNS HIV Antiretroviral Treatment Effects Research Study, CHARTER). The association between DNP and the structural imaging outcomes was investigated using both linear and nonlinear (Gaussian Kernel support vector) multivariable regression, controlling for key demographic and clinical variables. Severity of DNP symptoms was correlated with smaller total cerebral cortical gray matter volume (R = −0.24; p = 0.004). Understanding the mechanisms for this association between smaller total cortical volumes and DNP may provide insight into HIV DNP chronicity and treatment-resistance. PMID:24549970
Wirth, Miranka; Pichet Binette, Alexa; Brunecker, Peter; Köbe, Theresa; Witte, A Veronica; Flöel, Agnes
2017-03-01
Reductions of cerebral blood flow and gray matter structure have been implicated in early pathogenesis of Alzheimer's disease, potentially providing complementary information. The present study evaluated regional patterns of cerebral hypoperfusion and atrophy in patients with mild cognitive impairment and healthy older adults. In each participant, cerebral perfusion and gray matter structure were extracted within selected brain regions vulnerable to Alzheimer's disease using magnetic resonance imaging. Measures were compared between diagnostic groups with/without adjustment for covariates. In mild cognitive impairment patients, cerebral blood flow was significantly reduced in comparison with healthy controls in temporo-parietal regions and the basal ganglia in the absence of local gray matter atrophy. By contrast, gray matter structure was significantly reduced in the hippocampus in the absence of local hypoperfusion. Both, cerebral perfusion and gray matter structure were significantly reduced in the entorhinal and isthmus cingulate cortex in mild cognitive impairment patients compared with healthy older adults. Our results demonstrated partly divergent patterns of temporo-parietal hypoperfusion and medial-temporal atrophy in mild cognitive impairment patients, potentially indicating biomarker sensitivity to dissociable pathological mechanisms. The findings support applicability of cerebral perfusion and gray matter structure as complementary magnetic resonance imaging-based biomarkers in early Alzheimer's disease detection, a hypothesis to be further evaluated in longitudinal studies.
Meda, Shashwath A.; Giuliani, Nicole R.; Calhoun, Vince D.; Jagannathan, Kanchana; Schretlen, David J.; Pulver, Anne; Cascella, Nicola; Keshavan, Matcheri; Kates, Wendy; Buchanan, Robert; Sharma, Tonmoy; Pearlson, Godfrey D.
2008-01-01
Background Many studies have employed voxel-based morphometry (VBM) of MRI images as an automated method of investigating cortical gray matter differences in schizophrenia. However, results from these studies vary widely, likely due to different methodological or statistical approaches. Objective To use VBM to investigate gray matter differences in schizophrenia in a sample significantly larger than any published to date, and to increase statistical power sufficiently to reveal differences missed in smaller analyses. Methods Magnetic resonance whole brain images were acquired from four geographic sites, all using the same model 1.5T scanner and software version, and combined to form a sample of 200 patients with both first episode and chronic schizophrenia and 200 healthy controls, matched for age, gender and scanner location. Gray matter concentration was assessed and compared using optimized VBM. Results Compared to the healthy controls, schizophrenia patients showed significantly less gray matter concentration in multiple cortical and subcortical regions, some previously unreported. Overall, we found lower concentrations of gray matter in regions identified in prior studies, most of which reported only subsets of the affected areas. Conclusions Gray matter differences in schizophrenia are most comprehensively elucidated using a large, diverse and representative sample. PMID:18378428
Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie
2016-09-01
Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies.
Samson, Andrea C.; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F.; Hennig-Fast, Kristina; Meindl, Thomas
2013-01-01
Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration. PMID:23825652
Nuruddin, Syed; Bruchhage, Muriel; Ropstad, Erik; Krogenæs, Anette; Evans, Neil P; Robinson, Jane E; Endestad, Tor; Westlye, Lars T; Madison, Cindee; Haraldsen, Ira Ronit Hebold
2013-10-01
In many species sexual dimorphisms in brain structures and functions have been documented. In ovine model, we have previously demonstrated that peri-pubertal pharmacological blockade of gonadotropin releasing hormone (GnRH) action increased sex-differences of executive emotional behavior. The structural substrate of this behavioral alteration however is unknown. In this magnetic resonance image (MRI) study on the same animals, we investigated the effects of GnRH agonist (GnRHa) treatment on the volume of total brain, hippocampus and amygdala. In total 41 brains (17 treated; 10 females and 7 males, and 24 controls; 11 females and 13 males) were included in the MRI study. Image acquisition was performed with 3-T MRI scanner. Segmentation of the amygdala and the hippocampus was done by manual tracing and total gray and white matter volumes were estimated by means of automated brain volume segmentation of the individual T2-weighted MRI volumes. Statistical comparisons were performed with general linear models. Highly significant GnRHa treatment effects were found on the volume of left and right amygdala, indicating larger amygdalae in treated animals. Significant sex differences were found for total gray matter and right amygdala, indicating larger volumes in male compared to female animals. Additionally, we observed a significant interaction between sex and treatment on left amygdala volume, indicating stronger effects of treatment in female compared to male animals. The effects of GnRHa treatment on amygdala volumes indicate that increasing GnRH concentration during puberty may have an important impact on normal brain development in mammals. These novel findings substantiate the need for further studies investigating potential neurobiological side effects of GnRHa treatment on the brains of young animals and humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Physical activity and hippocampal volume in middle-aged patients with type 1 diabetes.
Nunley, Karen A; Leckie, Regina L; Orchard, Trevor J; Costacou, Tina; Aizenstein, Howard J; Jennings, J Richard; Erickson, Kirk I; Rosano, Caterina
2017-04-18
To examine the cross-sectional association between physical activity (PA) and hippocampal volume in middle-aged adults with childhood-onset type 1 diabetes (T1D), and whether hyperglycemia and insulin sensitivity contribute to this relationship. We analyzed neuroimaging and self-reported PA data from 79 adults with T1D from the Pittsburgh Epidemiology of Diabetes Complications Study (mean age 50 years, mean duration 41 years) and 122 similarly aged adults without T1D (mean age 48 years). Linear regression models, controlling for intracranial volume, sex, education, and age, tested associations between PA and gray matter volumes of hippocampi and total brain in the 2 groups. For the T1D group, models further controlled for hyperglycemia and glucose disposal rate, a measure of insulin sensitivity. PA was significantly lower in the T1D than in the non-T1D group (median [interquartile range] 952 kcal [420-2,044] vs 1,614 kcal [588-3,091], respectively). Higher PA was significantly associated with larger hippocampi for T1D, but not for non-T1D (standardized β [ p values] from regression models adjusted for intracranial volume, sex, age, and education: 0.270 [ p < 0.001] and 0.098 [ p = 0.12], respectively). Neither hyperglycemia nor glucose disposal rate substantially modified this association. Relationships between PA and total brain gray matter volume were similar. A cross-sectional association between higher PA and larger hippocampi is already detectable by middle age for these patients with T1D, and it appears robust to chronic hyperglycemia and insulin sensitivity. Proof-of-concept studies should investigate whether increasing PA preserves hippocampal volume and the mechanisms underlying the effects of PA on hippocampal volume. © 2017 American Academy of Neurology.
Kaag, A M; Schulte, M H J; Jansen, J M; van Wingen, G; Homberg, J; van den Brink, W; Wiers, R W; Schmaal, L; Goudriaan, A E; Reneman, L
2018-06-01
Neuroimaging studies have demonstrated gray matter (GM) volume abnormalities in substance users. While the majority of substance users are polysubstance users, very little is known about the relation between GM volume abnormalities and polysubstance use. In this study we assessed the relation between GM volume, and the use of alcohol, tobacco, cocaine and cannabis as well as the total number of substances used, in a sample of 169 males: 15 non-substance users, 89 moderate drinkers, 27 moderate drinkers who also smoke tobacco, 13 moderate drinkers who also smoke tobacco and use cocaine, 10 heavy drinkers who smoke tobacco and use cocaine and 15 heavy drinkers who smoke tobacco, cannabis and use cocaine. Regression analyses showed that there was a negative relation between the number of substances used and volume of the dorsal medial prefrontal cortex (mPFC) and the ventral mPFC. Without controlling for the use of other substances, the volume of the dorsal mPFC was negatively associated with the use of alcohol, tobacco, and cocaine. After controlling for the use of other substances, a negative relation was found between tobacco and cocaine and volume of the thalami and ventrolateral PFC, respectively. These findings indicate that mPFC alterations may not be substance-specific, but rather related to the number of substances used, whereas, thalamic and ventrolateral PFC pathology is specifically associated with tobacco and cocaine use, respectively. These findings are important, as the differential alterations in GM volume may underlie different cognitive deficits associated with substance use disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.
Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie
2015-05-01
The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variability in Perisylvian Brain Anatomy in Healthy Adults
ERIC Educational Resources Information Center
Knaus, Tracey A.; Bollich, Angela M.; Corey, David M.; Lemen, Lisa C.; Foundas, Anne L.
2006-01-01
Gray matter volumes of Heschl's gyrus (HG), planum temporale (PT), pars triangularis (PTR), and pars opercularis were measured on MRI in 48 healthy right-handers. There was the expected leftward PT asymmetry in 70.8%, and leftward PTR asymmetry in 64.6% of the sample. When asymmetry patterns within individuals were examined, there was not one…
ERIC Educational Resources Information Center
Li, Weiwei; Yang, Wenjing; Li, Wenfu; Li, Yadan; Wei, Dongtao; Li, Huimin; Qiu, Jiang; Zhang, Qinglin
2015-01-01
Creative persons play an important role in technical innovation and social progress. There is little research on the neural correlates with researchers with high academic achievement. We used a combined structural (regional gray matter volume, rGMV) and functional (resting-state functional connectivity analysis, rsFC) approach to examine the…
Bodini, Benedetta; Khaleeli, Zhaleh; Cercignani, Mara; Miller, David H; Thompson, Alan J; Ciccarelli, Olga
2009-09-01
We investigated the relationship between the damage occurring in the brain normal-appearing white matter (NAWM) and in the gray matter (GM) in patients with early Primary Progressive multiple sclerosis (PPMS), using Tract-Based Spatial Statistics (TBSS) and an optimized voxel-based morphometry (VBM) approach. Thirty-five patients with early PPMS underwent diffusion tensor and conventional imaging and were clinically assessed. TBSS and VBM were employed to localize regions of lower fractional anisotropy (FA) and lower GM volume in patients compared with controls. Areas of anatomical and quantitative correlation between NAWM and GM damage were detected. Multiple regression analyses were performed to investigate whether NAWM FA or GM volume of regions correlated with clinical scores independently from the other and from age and gender. In patients, we found 11 brain regions that showed an anatomical correspondence between reduced NAWM FA and GM atrophy; of these, four showed a quantitative correlation (i.e., the right sensory motor region with the adjacent corticospinal tract, the left and right thalamus with the corresponding thalamic radiations and the left insula with the adjacent WM). Either the NAWM FA or the GM volume in each of these regions correlated with disability. These results demonstrate a link between the pathological processes occurring in the NAWM and in the GM in PPMS in specific, clinically relevant brain areas. Longitudinal studies will determine whether the GM atrophy precedes or follows the NAWM damage. The methodology that we described may be useful to investigate other neurological disorders affecting both the WM and the GM. 2009 Wiley-Liss, Inc.
Tuerk, Carola; Zhang, Haobo; Sachdev, Perminder; Lord, Stephen R; Brodaty, Henry; Wen, Wei; Delbaere, Kim
2016-01-01
Concern about falling is common in older people. Various related psychological constructs as well as poor balance and slow gait have been associated with decreased gray matter (GM) volume in old age. The current study investigates the association between concern about falling and voxel-wise GM volumes. A total of 281 community-dwelling older people aged 70-90 years underwent structural magnetic resonance imaging. Concern about falling was assessed using Falls Efficacy Scale-International (FES-I). For each participant, voxel-wise GM volumes were generated with voxel-based morphometry and regressed on raw FES-I scores (p < .05 family-wise error corrected on cluster level). FES-I scores were negatively correlated with total brain volume (r = -.212; p ≤ .001), GM volume (r = -.210; p ≤ .001), and white matter volume (r = -.155; p ≤ .001). Voxel-based morphometry analysis revealed significant negative associations between FES-I and GM volumes of (i) left cerebellum and bilateral inferior occipital gyrus (voxels-in-cluster = 2,981; p < .001) and (ii) bilateral superior frontal gyrus and left supplementary motor area (voxels-in-cluster = 1,900; p = .004). Additional adjustment for vision and physical fall risk did not alter these associations. After adjustment for anxiety, only left cerebellum and bilateral inferior occipital gyrus remained negatively associated with FES-I scores (voxels-in-cluster = 2,426; p < .001). Adjustment for neuroticism removed all associations between FES-I and GM volumes. Our study findings show that concern about falling is negatively associated with brain volumes in areas important for emotional control and for motor control, executive functions and visual processing in a large sample of older men and women. Regression analyses suggest that these relationships were primarily accounted for by psychological factors (generalized anxiety and neuroticism) and not by physical fall risk or vision. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Superior Temporal Gyrus Volume Abnormalities and Thought Disorder in Left-Handed Schizophrenic Men
Holinger, Dorothy P.; Shenton, Martha E.; Wible, Cynthia G.; Donnino, Robert; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.
2010-01-01
Objective Studies of schizophrenia have not clearly defined handedness as a differentiating variable. Moreover, the relationship between thought disorder and anatomical anomalies has not been studied extensively in left-handed schizophrenic men. The twofold purpose of this study was to investigate gray matter volumes in the superior temporal gyrus of the temporal lobe (left and right hemispheres) in left-handed schizophrenic men and left-handed comparison men, in order to determine whether thought disorder in the left-handed schizophrenic men correlated with tissue volume abnormalities. Method Left-handed male patients (N=8) with DSM-III-R diagnoses of schizophrenia were compared with left-handed comparison men (N=10) matched for age, socioeconomic status, and IQ. Magnetic resonance imaging (MRI) with a 1.5-T magnet was used to obtain scans, which consisted of contiguous 1.5-mm slices of the whole brain. MRI analyses (as previously defined by the authors) included the anterior, posterior, and total superior temporal gyrus in both the left and right hemispheres. Results There were three significant findings regarding the left-handed schizophrenic men: 1) bilaterally smaller gray matter volumes in the posterior superior temporal gyrus (16% smaller on the right, 15% smaller on the left); 2) a smaller volume on the right side of the total superior temporal gyrus; and 3) a positive correlation between thought disorder and tissue volume in the right anterior superior temporal gyrus. Conclusions These results suggest that expression of brain pathology differs between left-handed and right-handed schizophrenic men and that the pathology is related to cognitive disturbance. PMID:10553736
Bilello, Michel; Doshi, Jimit; Nabavizadeh, S. Ali; Toledo, Jon B.; Erus, Guray; Xie, Sharon X.; Trojanowski, John Q.; Han, Xiaoyan; Davatzikos, Christos
2015-01-01
Background Vascular risk factors are increasingly recognized as risks factors for Alzheimer’s disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. Objective To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Methods Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. Results CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Conclusion Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly. PMID:26402108
Bilello, Michel; Doshi, Jimit; Nabavizadeh, S Ali; Toledo, Jon B; Erus, Guray; Xie, Sharon X; Trojanowski, John Q; Han, Xiaoyan; Davatzikos, Christos
2015-01-01
Vascular risk factors are increasingly recognized as risks factors for Alzheimer's disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function, or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly.
Quantification of brain tissue through incorporation of partial volume effects
NASA Astrophysics Data System (ADS)
Gage, Howard D.; Santago, Peter, II; Snyder, Wesley E.
1992-06-01
This research addresses the problem of automatically quantifying the various types of brain tissue, CSF, white matter, and gray matter, using T1-weighted magnetic resonance images. The method employs a statistical model of the noise and partial volume effect and fits the derived probability density function to that of the data. Following this fit, the optimal decision points can be found for the materials and thus they can be quantified. Emphasis is placed on repeatable results for which a confidence in the solution might be measured. Results are presented assuming a single Gaussian noise source and a uniform distribution of partial volume pixels for both simulated and actual data. Thus far results have been mixed, with no clear advantage being shown in taking into account partial volume effects. Due to the fitting problem being ill-conditioned, it is not yet clear whether these results are due to problems with the model or the method of solution.
Freedman, Barry I; Divers, Jasmin; Whitlow, Christopher T; Bowden, Donald W; Palmer, Nicholette D; Smith, S Carrie; Xu, Jianzhao; Register, Thomas C; Carr, J Jeffrey; Wagner, Benjamin C; Williamson, Jeff D; Sink, Kaycee M; Maldjian, Joseph A
2015-11-01
Relative to European Americans, African Americans manifest lower levels of computed tomography-based calcified atherosclerotic plaque (CP), a measure of subclinical cardiovascular disease (CVD). Potential relationships between CP and cerebral structure are poorly defined in the African American population. We assessed associations among glycemic control, inflammation, and CP with cerebral structure on MRI and with cognitive performance in 268 high-risk African Americans with type 2 diabetes. Associations among hemoglobin A1c (HbA1c), C-reactive protein (CRP), and CP in coronary arteries, carotid arteries, and the aorta with MRI volumetric analysis (white matter volume, gray matter volume [GMV], cerebrospinal fluid volume, and white matter lesion volume) were assessed using generalized linear models adjusted for age, sex, African ancestry proportion, smoking, BMI, use of statins, HbA1c, hypertension, and prior CVD. Participants were 63.4% female with mean (SD) age of 59.8 years (9.2), diabetes duration of 14.5 years (7.6), HbA1c of 7.95% (1.9), estimated glomerular filtration rate of 86.6 mL/min/1.73 m(2) (24.6), and coronary artery CP mass score of 215 mg (502). In fully adjusted models, GMV was inversely associated with coronary artery CP (parameter estimate [β] -0.47 [SE 0.15], P = 0.002; carotid artery CP (β -1.92 [SE 0.62], P = 0.002; and aorta CP [β -0.10 [SE 0.03] P = 0.002), whereas HbA1c and CRP did not associate with cerebral volumes. Coronary artery CP also associated with poorer global cognitive function on the Montreal Cognitive Assessment. Subclinical atherosclerosis was associated with smaller GMV and poorer cognitive performance in African Americans with diabetes. Cardioprotective strategies could preserve GMV and cognitive function in high-risk African Americans with diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Alcohol and Drug Use and the Developing Brain
Gray, Kevin M.
2016-01-01
Adolescence is an important neurodevelopmental period marked by rapidly escalating rates of alcohol and drug use. Over the past decade, research has attempted to disentangle pre- and post-substance use effects on brain development by using sophisticated longitudinal designs. This review focuses on recent, prospective studies and addresses the following important questions: (1) what neuropsychological and neural features predate adolescent substance use, making youth more vulnerable to engage in heavy alcohol or drug use, and (2) how does heavy alcohol and drug use affect normal neural development and cognitive functioning? Findings suggest that pre-existing neural features that relate to increased substance use during adolescence include poorer neuropsychological functioning on tests of inhibition and working memory, smaller gray and white matter volume, changes in white matter integrity, and altered brain activation during inhibition, working memory, reward, and resting state. After substance use is initiated, alcohol and marijuana use are associated with poorer cognitive functioning on tests of verbal memory, visuospatial functioning, psychomotor speed, working memory, attention, cognitive control, and overall IQ. Heavy alcohol use during adolescence is related to accelerated decreases in gray matter and attenuated increases in white matter volume, as well as increased brain activation during tasks of inhibition and working memory, relative to controls. Larger longitudinal studies with more diverse samples are needed to better understand the interactive effects of alcohol, marijuana, and other substances, as well as the role of sex, co-occurring psychopathology, genetics, sleep, and age of initiation on substance use. PMID:26984684
Fuentes, Paola; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rosell, Patricia; Costumero, Víctor; Ávila, César
2012-09-01
The Behavioral Inhibition System (BIS) is described in Gray's Reinforcement Sensitivity Theory as a hypothetical construct that mediates anxiety in animals and humans. The neuroanatomical correlates of this system are not fully clear, although they are known to involve the amygdala, the septohippocampal system, and the prefrontal cortex. Previous neuroimaging research has related individual differences in BIS with regional volume and functional variations in the prefrontal cortex, amygdala, and hippocampal formation. The aim of the present work was to study BIS-related individual differences and their relationship with brain regional volume. BIS sensitivity was assessed through the BIS/BAS questionnaire in a sample of male participants (N = 114), and the scores were correlated with brain regional volume in a voxel-based morphometry analysis. The results show a negative correlation between the BIS and the volume of the right and medial orbitofrontal cortices and the precuneus. Our results and previous findings suggest that individual differences in anxiety-related personality traits and their related psychopathology may be associated with reduced brain volume in certain structures relating to emotional control (i.e., the orbitofrontal cortex) and self-consciousness (i.e., the precuneus), as shown by our results.
Ex-vivo quantitative susceptibility mapping of human brain hemispheres
Kotrotsou, Aikaterini; Tamhane, Ashish A.; Dawe, Robert J.; Kapasi, Alifiya; Leurgans, Sue E.; Schneider, Julie A.; Bennett, David A.; Arfanakis, Konstantinos
2017-01-01
Ex-vivo brain quantitative susceptibility mapping (QSM) allows investigation of brain characteristics at essentially the same point in time as histopathologic examination, and therefore has the potential to become an important tool for determining the role of QSM as a diagnostic and monitoring tool of age-related neuropathologies. In order to be able to translate the ex-vivo QSM findings to in-vivo, it is crucial to understand the effects of death and chemical fixation on brain magnetic susceptibility measurements collected ex-vivo. Thus, the objective of this work was twofold: a) to assess the behavior of magnetic susceptibility in both gray and white matter of human brain hemispheres as a function of time postmortem, and b) to establish the relationship between in-vivo and ex-vivo gray matter susceptibility measurements on the same hemispheres. Five brain hemispheres from community-dwelling older adults were imaged ex-vivo with QSM on a weekly basis for six weeks postmortem, and the longitudinal behavior of ex-vivo magnetic susceptibility in both gray and white matter was assessed. The relationship between in-vivo and ex-vivo gray matter susceptibility measurements was investigated using QSM data from eleven older adults imaged both antemortem and postmortem. No systematic change in ex-vivo magnetic susceptibility of gray or white matter was observed over time postmortem. Additionally, it was demonstrated that, gray matter magnetic susceptibility measured ex-vivo may be well modeled as a linear function of susceptibility measured in-vivo. In conclusion, magnetic susceptibility in gray and white matter measured ex-vivo with QSM does not systematically change in the first six weeks after death. This information is important for future cross-sectional ex-vivo QSM studies of hemispheres imaged at different postmortem intervals. Furthermore, the linear relationship between in-vivo and ex-vivo gray matter magnetic susceptibility suggests that ex-vivo QSM captures information linked to antemortem gray matter magnetic susceptibility, which is important for translation of ex-vivo QSM findings to in-vivo. PMID:29261693
Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E
2017-09-01
Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zeng, Ling-Li; Long, Lili; Shen, Hui; Fang, Peng; Song, Yanmin; Zhang, Linlin; Xu, Lin; Gong, Jian; Zhang, Yunci; Zhang, Yong; Xiao, Bo; Hu, Dewen
2015-10-01
Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.
White-matter functional networks changes in patients with schizophrenia.
Jiang, Yuchao; Luo, Cheng; Li, Xuan; Li, Yingjia; Yang, Hang; Li, Jianfu; Chang, Xin; Li, Hechun; Yang, Huanghao; Wang, Jijun; Duan, Mingjun; Yao, Dezhong
2018-04-13
Resting-state functional MRI (rsfMRI) is a useful technique for investigating the functional organization of human gray-matter in neuroscience and neuropsychiatry. Nevertheless, most studies have demonstrated the functional connectivity and/or task-related functional activity in the gray-matter. White-matter functional networks have been investigated in healthy subjects. Schizophrenia has been hypothesized to be a brain disorder involving insufficient or ineffective communication associated with white-matter abnormalities. However, previous studies have mainly examined the structural architecture of white-matter using MRI or diffusion tensor imaging and failed to uncover any dysfunctional connectivity within the white-matter on rsfMRI. The current study used rsfMRI to evaluate white-matter functional connectivity in a large cohort of ninety-seven schizophrenia patients and 126 healthy controls. Ten large-scale white-matter networks were identified by a cluster analysis of voxel-based white-matter functional connectivity and classified into superficial, middle and deep layers of networks. Evaluation of the spontaneous oscillation of white-matter networks and the functional connectivity between them showed that patients with schizophrenia had decreased amplitudes of low-frequency oscillation and increased functional connectivity in the superficial perception-motor networks. Additionally, we examined the interactions between white-matter and gray-matter networks. The superficial perception-motor white-matter network had decreased functional connectivity with the cortical perception-motor gray-matter networks. In contrast, the middle and deep white-matter networks had increased functional connectivity with the superficial perception-motor white-matter network and the cortical perception-motor gray-matter network. Thus, we presumed that the disrupted association between the gray-matter and white-matter networks in the perception-motor system may be compensated for through the middle-deep white-matter networks, which may be the foundation of the extensively disrupted connections in schizophrenia. Copyright © 2018 Elsevier Inc. All rights reserved.
Gray Matter Is Targeted in First-Attack Multiple Sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao
The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We foundmore » that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.« less
Papinutto, Nico; Schlaeger, Regina; Panara, Valentina; Zhu, Alyssa H; Caverzasi, Eduardo; Stern, William A; Hauser, Stephen L; Henry, Roland G
2015-01-01
The source of inter-subject variability and the influence of age and gender on morphometric characteristics of the spinal cord, such as the total cross-sectional area (TCA), the gray matter (GM) and white matter (WM) areas, currently remain under investigation. Understanding the effect of covariates such as age, gender, brain volumes, and skull- and vertebra-derived metrics on cervical and thoracic spinal cord TCA and GM areas in healthy subjects would be fundamental for exploring compartment specific changes in neurological diseases affecting the spinal cord. Using Magnetic Resonance Imaging at 3T we investigated 32 healthy subjects using a 2D phase sensitive inversion recovery sequence and we measured TCA, GM and WM areas at 4 cervical and thoracic levels of the spinal cord. We assessed age and gender relationships of cord measures and explored associations between cord measures and a) brain volumes and b) skull- and vertebra-derived metrics. Age and gender had a significant effect on TCA, WM and GM areas (with women and elderly having smaller values than men and younger people respectively), but not on the GM area/TCA ratio. The total intracranial volume and C3 vertebra dimensions showed the highest correlations with cord measures. When used in multi-regression models, they reduced cord areas group variability by approximately a third. Age and gender influences on cord measures and normalization strategies here presented might be of use in the study of compartment specific changes in various neurological diseases affecting the spinal cord.
ERIC Educational Resources Information Center
Almeida Montes, Luis Guillermo; Ricardo-Garcell, Josefina; De la Torre, Lazaro Barajas; Prado Alcantara, Hugo; Martinez Garcia, Reyna Beatriz; Avila Acosta, David; Fernandez Bouzas, Antonio
2011-01-01
Background: MRI studies have shown a decreased cerebellum volume in individuals with ADHD. However, most of these studies were conducted with male children, many of whom were medicated with stimulants. As such, unmedicated, non-White girls are underrepresented in such MRI studies. Objective: The aim of the present study was to compare the density…
Larger Brains in Medication Naive High-Functioning Subjects with Pervasive Developmental Disorder
ERIC Educational Resources Information Center
Palmen, Saskia J. M. C.; Pol, Hilleke E. Hulshoff; Kemner, Chantal; Schnack, Hugo G.; Janssen, Joost; Kahn, Rene S.; van Engeland, Herman
2004-01-01
Background: Are brain volumes of individuals with Pervasive Developmental Disorder (PDD) still enlarged in adolescence and adulthood, and if so, is this enlargement confined to the gray and/or the white matter and is it global or more prominent in specific brain regions. Methods: Brain MRI scans were made of 21 adolescents with PDD and 21 closely…
Yang, Xiao; Peng, Zugui; Ma, Xiaojuan; Meng, Yajing; Li, Mingli; Zhang, Jian; Song, Xiuliu; Liu, Ye; Fan, Huanhuan; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong
2017-05-30
This study was to explore the sex differences in clinical characteristics and brain gray matter volume (GMV) alterations in 29 male patients with major depressive disorder (MDDm), 53 female patients with MDD (MDDf), and in 29 male and 53 female matched healthy controls. Maps of GMV were constructed using magnetic resonance imaging data and compared between groups. We evaluated clinical symptoms using the Hamilton Rating Scale for Depression and obtained a total score and five syndrome scores. A two-factor ANCOVA model was specified using SPM8, with sex and diagnosis as the between-subject factors. We found that: (1) significant GMV increase in the left cerebellum and GMV reduction in the bilateral middle temporal gyrus and left ventral medial prefrontal gyrus occurred selectively in male patients, while the GMV reduction in the left lingual gyrus and dorsal medial prefrontal gyrus occurred selectively in female patients; (2) MDDf may have experienced more severe sleep disturbance than MDDm; and (3) the severity of sleep symptom could be predicted by the sex specific brain structural alterations in depressions. These findings suggest that sex specific anatomical alterations existed in MDD, and these alterations were associated with the clinical symptoms.
Exercise-induced neuroplasticity in human Parkinson's disease: What is the evidence telling us?
Hirsch, Mark A; Iyer, Sanjay S; Sanjak, Mohammed
2016-01-01
While animal models of exercise and PD have pushed the field forward, few studies have addressed exercise-induced neuroplasticity in human PD. As a first step toward promoting greater international collaboration on exercise-induced neuroplasticity in human PD, we present data on 8 human PD studies (published between 2008 and 2015) with 144 adults with PD of varying disease severity (Hoehn and Yahr stage 1 to stage 3), using various experimental (e.g., randomized controlled trial) and quasi-experimental designs on the effects of cognitive and physical activity on brain structure or function in PD. We focus on plasticity mechanisms of intervention-induced increases in maximal corticomotor excitability, exercise-induced changes in voxel-based gray matter volume changes and increases in exercise-induced serum levels of brain derived neurotrophic factor (BDNF). Finally, we provide a future perspective for promoting international, collaborative research on exercise-induced neuroplasticity in human PD. An emerging body of evidence suggests exercise triggers several plasticity related events in the human PD brain including corticomotor excitation, increases and decreases in gray matter volume and changes in BDNF levels. Copyright © 2015 Elsevier Ltd. All rights reserved.