Sample records for grazing final technical

  1. 7 CFR 610.32 - Technical assistance furnished.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation of Private Grazing Land... managers to plan and implement resource conservation on grazing land. The objective of planning on grazing...

  2. 7 CFR 610.32 - Technical assistance furnished.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation of Private Grazing Land... managers to plan and implement resource conservation on grazing land. The objective of planning on grazing...

  3. 7 CFR 610.32 - Technical assistance furnished.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation of Private Grazing Land... managers to plan and implement resource conservation on grazing land. The objective of planning on grazing...

  4. 7 CFR 610.32 - Technical assistance furnished.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation of Private Grazing Land... managers to plan and implement resource conservation on grazing land. The objective of planning on grazing...

  5. 7 CFR 610.32 - Technical assistance furnished.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation of Private Grazing Land... managers to plan and implement resource conservation on grazing land. The objective of planning on grazing...

  6. Livestock impacts for management of reclaimed land at Navajo Mine: The decision-making process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, O.J.; Grogan, S.; Gadzia, K.L.

    1997-12-31

    Livestock grazing is the post-mining use for reclaimed land at Navajo Mine, a large surface coal mine on the Navajo Nation in northwest New Mexico. The Navajo Mine Grazing Management Program (GMP) uses holistic management on approximately 2,083 ha of reclaimed land to plan for final liability release and return of the land to the Navajo Nation, and to minimize the potential for post-release liability. The GMP began in 1991 to establish that livestock grazing on the reclaimed land is sustainable. Assuming that sustainability requires alternatives to conventional land management practices, the GMP created a Management Team consisting of companymore » staff, local, Navajo Nation, and Federal government officials, and technical advisors. Community members contributed to the formation of a holistic goal for the GMP that articulates their values and their desire for sustainable grazing. Major decisions (e.g., artificial insemination, water supply, supplemental feed) are tested against the goal. Biological changes in the land and the grazing animals are monitored daily to provide early feedback to managers, and annually to document the results of grazing. To date, the land has shown resilience to grazing and the animals have generally prospered. Community participation in the GMP and public statements of support by local officials indicate that the GMP`s strategy is likely to succeed.« less

  7. Projected use of grazed forages in the United States: 2000 to 2050: A technical document supporting the 2000 USDA Forest Service RPA Assessment

    Treesearch

    Larry W. van Tassell; E. Tom Bartlett; John E. Mitchell

    2001-01-01

    Scenario analysis techniques were used to combine projections from 35 grazed forage experts to estimate future forage demand scenarios and examine factors that are anticipated to impact the use of grazed forages in the South, North, and West Regions of the United States. The amount of land available for forage production is projected to decrease in all regions while...

  8. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a... other authorization from the Bureau of Land Management, is prohibited and constitutes trespass... in the notice will be deemed to have been willful. (3) Where the owner of the trespassing livestock...

  9. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a... other authorization from the Bureau of Land Management, is prohibited and constitutes trespass... in the notice will be deemed to have been willful. (3) Where the owner of the trespassing livestock...

  10. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a... other authorization from the Bureau of Land Management, is prohibited and constitutes trespass... in the notice will be deemed to have been willful. (3) Where the owner of the trespassing livestock...

  11. 43 CFR 9239.3 - Grazing, Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.3 Grazing, Alaska. (a... other authorization from the Bureau of Land Management, is prohibited and constitutes trespass... in the notice will be deemed to have been willful. (3) Where the owner of the trespassing livestock...

  12. Technical Note: Daily variation in intake of a salt-limited supplement by grazing steers

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop and test an automated supplement intake measurement system (SmartFeed, SF) in grazing trials. The SF was developed by C-lock Inc., (Rapid City, SD), and was designed using a stainless steel feed bin with load cells and an radio frequency identification ...

  13. Interactions among livestock grazing, vegetation type, and fire behavior in the Murphy Wildland Fire Complex in Idaho and Nevada, July 2007

    USGS Publications Warehouse

    Launchbaugh, Karen; Brammer, Bob; Brooks, Matthew L.; Bunting, Stephen C.; Clark, Patrick; Davison, Jay; Fleming, Mark; Kay, Ron; Pellant, Mike; Pyke, David A.

    2008-01-01

    A series of wildland fires were ignited by lightning in sagebrush and grassland communities near the Idaho-Nevada border southwest of Twin Falls, Idaho in July 2007. The fires burned for over two weeks and encompassed more than 650,000 acres. A team of scientists, habitat specialists, and land managers was called together by Tom Dyer, Idaho BLM State Director, to examine initial information from the Murphy Wildland Fire Complex in relation to plant communities and patterns of livestock grazing. Three approaches were used to examine this topic: (1) identify potential for livestock grazing to modify fuel loads and affect fire behavior using fire models applied to various vegetation types, fuel loads, and fire conditions; (2) compare levels of fuel consumed within and among major vegetation types; and (3) examine several observed lines of difference and discontinuity in fuel consumed to determine what factors created these contrasts. The team found that much of the Murphy Wildland Fire Complex burned under extreme fuel and weather conditions that likely overshadowed livestock grazing as a factor influencing fire extent and fuel consumption in many areas where these fires burned. Differences and abrupt contrast lines in the level of fuels consumed were affected mostly by the plant communities that existed on a site before fire. A few abrupt contrasts in burn severity coincided with apparent differences in grazing patterns of livestock, observed as fence-line contrasts. Fire modeling revealed that grazing in grassland vegetation can reduce surface rate of spread and fire-line intensity to a greater extent than in shrubland types. Under extreme fire conditions (low fuel moisture, high temperatures, and gusty winds), grazing applied at moderate utilization levels has limited or negligible effects on fire behavior. However, when weather and fuel-moisture conditions are less extreme, grazing may reduce the rate of spread and intensity of fires allowing for patchy burns with low levels of fuel consumption. The team suggested that targeted grazing to accomplish fuel objectives holds promise but requires detailed planning that includes clearly defined goals for fuel modification and appropriate monitoring to assess effectiveness. It was recommended that a pilot plan be devised to strategically place grazed blocks across a landscape to create fuel-reduction bands capable of influencing fire behavior. Also suggested was the development of a general technical report that highlights information and examples of how livestock grazing influences fire extent, severity, and intensity. Finally, the team encouraged continued research and monitoring of the effects of the Murphy Wildland Fire Complex. Much more can be learned from the effects of this extensive fire complex that may offer insight for future management decisions.

  14. Grazing and Rangeland Development for Livestock Production. A Handbook for Volunteers. Agriculture Technology for Developing Countries. Appropriate Technologies for Development. Reprint R-47.

    ERIC Educational Resources Information Center

    Sprague, Howard B.; And Others

    This handbook, developed for training Peace Corps volunteers, reviews the basic principles that underlie sound grazing land management and indicates the application of these principles for livestock production in the tropics and subtropics. The handbook is made up of three technical series bulletins. The first bulletin covers management of…

  15. 75 FR 7153 - National Organic Program; Access to Pasture (Livestock)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-17

    ...This final rule amends livestock and related provisions of the NOP regulations. Under the NOP, the Agricultural Marketing Service (AMS) oversees national standards for the production and handling of organically produced agricultural products. AMS has taken this action to ensure that NOP livestock production regulations have sufficient specificity and clarity to enable AMS and accredited certifying agents to efficiently administer the NOP and to facilitate and improve compliance and enforcement. This action is also intended to satisfy consumer expectations that ruminant livestock animals graze on pastures during the grazing season. This action provides clarification and specificity to the livestock feed and living conditions provisions and establishes a pasture practice standard for ruminant animals. In doing so, producers are required to: provide year-round access for all animals to the outdoors, recognize pasture as a crop, establish a functioning management plan for pasture, incorporate the pasture management plan into their organic system plan (OSP), provide ruminants with pasture throughout the grazing season for their geographical location, and ensure ruminants derive not less than an average of 30 percent of their dry matter intake (DMI) requirement from pasture grazed over the course of the grazing season. The proposed requirements for fencing of water bodies and providing water at all times, indoors and outdoors, and the requirement for a sacrificial pasture have been deleted in this final rule. In addition, the proposed amendment to the origin of livestock section has been deleted in this final rule as issues pertaining to that topic will be reviewed and evaluated separately from this action. This final rule requires that producers maintain ruminant slaughter stock on pasture for each day that the finishing period corresponds with the grazing season for the geographical location. However, this rule exempts ruminant slaughter stock from the 30 percent DMI from grazing requirement during the finishing period. Although we are issuing this as a final rule, we are requesting comments on the exceptions for finish feeding of ruminant slaughter stock, as discussed below under ``Livestock living conditions--Changes based on comments.'' The agency is providing an additional 60 day period to receive comments on provision Sec. 205.239(d).

  16. Simulated grazing responses on the proposed prairies National Park

    NASA Astrophysics Data System (ADS)

    Parton, William J.; Wright, R. Gerald; Risser, Paul G.

    1980-03-01

    The tallgrass prairie version of the ELM Grassland Model was used to evaluate the potential impact of establishing a tallgrass prairie National Park in the Flint Hills region of Kansas. This total ecosystem model simulates ( a) the flow of water, heat, nitrogen, and phosphorus through the ecosystem and( b) the biomass dynamics of plants and consumers. It was specifically developed to study the effects of levels and types of herbivory, climatic variation, and fertilization upon grassland ecosystems. The model was used to simulate the impact of building up herds of bison, elk, antelope, and wolves on a tallgrass prairie. The results show that the grazing levels in the park should not be decreased below the prepark grazing levels (moderate grazing with cattle) and that the final grazing levels in the park could be maintained at a slightly higher level than the prepark grazing levels.

  17. Economic modelling of grazing management against gastrointestinal nematodes in dairy cattle.

    PubMed

    van der Voort, M; Van Meensel, J; Lauwers, L; de Haan, M H A; Evers, A G; Van Huylenbroeck, G; Charlier, J

    2017-03-15

    Grazing management (GM) interventions, such as reducing the grazing time or mowing pasture before grazing, have been proposed to limit the exposure to gastrointestinal (GI) nematode infections in grazed livestock. However, the farm-level economic effects of these interventions have not yet been assessed. In this paper, the economic effects of three GM interventions in adult dairy cattle were modelled for a set of Flemish farms: later turnout on pasture (GM1), earlier housing near the end of the grazing season (GM2), and reducing the daily grazing time (GM3). Farm accountancy data were linked to Ostertagia ostertagi bulk tank milk ELISA results and GM data for 137 farms. The economic effects of the GM interventions were investigated through a combination of efficiency analysis and a whole-farm simulation model. Modelling of GM1, GM2 and GM3 resulted in a marginal economic effect of € 8.36, € -9.05 and € -53.37 per cow per year, respectively. The results suggest that the dairy farms can improve their economic performance by postponing the turnout date, but that advancing the housing date or reducing daily grazing time mostly leads to a lower net economic farm performance. Overall, the GM interventions resulted in a higher technical efficiency and milk production but these benefits were offset by increased feed costs as a result of higher maintenance and cultivation costs. Because the results differed highly between farms, GM interventions need to be evaluated at the individual level for appropriate decision support. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A brief history of botulism in South Africa.

    PubMed

    Cameron, C M

    2009-03-01

    When looking back into the history of botulism and contemplating the final understanding of the syndrome and the ultimate solutions, there are four facets that stand out clearly. The first is that much of the solution was guided by astute observations, curious travellers, committed veterinarians and particularly farmers themselves who were able to relate the occurrence of the condition to climatic and grazing conditions. Secondly, there was the identification of the osteophagia and pica syndrome which led to the feeding of bone-meal as a successful mitigating measure as well as the establishment that botulism was not due to a plant poisoning. Thirdly, the solution of the problem depended on the integration of experience and knowledge from diverse disciplines such as soil science, animal behaviour and husbandry, nutrition, botany and ultimately advanced bacteriology and the science of immunology. Finally it required the technical advancement to produce toxoids in large quantities and formulate effective aluminium hydroxide precipitated and oil emulsion vaccines.

  19. Deployment Area Selection and Land Withdrawal/Acquisition. M-X/MPS (M-X/Multiple Protective Shelter) Environmental Technical Report. Grazing.

    DTIC Science & Technology

    1981-10-02

    is federally owned, and 73 percent of this area is grazed. This federal land provides about 75 percent of the feed required by beef cattle and about...capacity, has increased ten to fifteenfold. The animal unit (AU) of livestock feeding capacity differs from the AUM. An animal unit is a hypothetical...Ranch and farmland in Texas/New Mexico provides both forage and feed grains; the equivalent number of animals a ranch or farm can support is measured in

  20. DMSP and DMS dynamics and microzooplankton grazing in the Labrador Sea: application of the dilution technique

    NASA Astrophysics Data System (ADS)

    Wolfe, Gordon V.; Levasseur, Maurice; Cantin, Guy; Michaud, Sonia

    2000-12-01

    We adapted the dilution technique to study microzooplankton grazing of algal dimethylsulfoniopropionate (DMSP) vs. Chl a, and to estimate the impact of microzooplankton grazing on dimethyl sulfide (DMS) production in the Labrador Sea. Phytoplankton numbers were dominated by autotrophic nanoflagellates in the Labrador basin, but diatoms and colonial Phaeocystis pouchetii contributed significantly to phytomass at several high chlorophyll stations and on the Newfoundland and Greenland shelfs. Throughout the region, growth of algal Chl a and DMSP was generally high (0.2-1 d -1), but grazing rates were lower and more variable, characteristic of the early spring bloom period. Production and consumption of Chl a vs. DMSP followed no clear pattern, and sometimes diverged greatly, likely because of their differing distributions among algal prey taxa and size class. In several experiments where Phaeocystis was abundant, we observed DMS production proportional to grazing rate, and we found clear evidence of DMS production by this haptophyte following physical stress such as sparging or filtration. It is possible that grazing-activated DMSP cleavage by Phaeocystis contributes to grazer deterrence: protozoa and copepods apparently avoided healthy colonies (as judged by relative growth and grazing rates of Chl a and DMSP), and grazing of Phaeocystis was significant only at one station where cells were in poor condition. Although we hoped to examine selective grazing on or against DMSP-containing algal prey, the dilution technique cannot differentiate selective ingestion and varying digestion rates of Chl a and DMSP. We also found that the dilution method alone was poorly suited for assessing the impact of grazing on dissolved sulfur pools, because of rapid microbial consumption and the artifactual release of DMSP and DMS during filtration. Measuring and understanding the many processes affecting organosulfur cycling by the microbial food web in natural populations remain a technical challenge that will likely require a combination of techniques to address.

  1. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Cow Creek Watersheds Grazing Permit Renewal, Owyhee County, ID AGENCY: Bureau of Land Management... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  2. Investigation of the Relationship between Land Use and Wildlife Abundance. Volume I. Literature Survey.

    DTIC Science & Technology

    1980-06-01

    Grazing and the Livestock Industry. In: Brokaw, Howard P. Wildlife and America. Council on Environmental Quality, U.S. Fish and Wildlife Service...Environmental Impact Studies of the Navajo and Kaiparowits Power Plants. Second Annual Report. 1 June 1972 - 31 May 1973. National Technical Information Service... Navajo and Kaiparowits Power Plants. Fourth Annual Report. 1 June 1974 - 31 May 1975. National Technical Information Service, Springfield, VA 22161. L

  3. 7 CFR 1415.5 - Land eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... State Technical Committee, determines that it is compatible with grazing uses and related conservation values, and— (i) Could provide habitat for animal or plant populations of significant ecological value if... conservation priorities. (c) Incidental lands, in conjunction with eligible land, may also be considered for...

  4. 7 CFR 1415.5 - Land eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... State Technical Committee, determines that it is compatible with grazing uses and related conservation values, and (i) Could provide habitat for animal or plant populations of significant ecological value if... conservation priorities. (c) Incidental lands, in conjunction with eligible land, may also be considered for...

  5. 7 CFR 1415.5 - Land eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... State Technical Committee, determines that it is compatible with grazing uses and related conservation values, and (i) Could provide habitat for animal or plant populations of significant ecological value if... conservation priorities. (c) Incidental lands, in conjunction with eligible land, may also be considered for...

  6. 7 CFR 1415.5 - Land eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... State Technical Committee, determines that it is compatible with grazing uses and related conservation values, and (i) Could provide habitat for animal or plant populations of significant ecological value if... conservation priorities. (c) Incidental lands, in conjunction with eligible land, may also be considered for...

  7. 7 CFR 1415.5 - Land eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... State Technical Committee, determines that it is compatible with grazing uses and related conservation values, and (i) Could provide habitat for animal or plant populations of significant ecological value if... conservation priorities. (c) Incidental lands, in conjunction with eligible land, may also be considered for...

  8. Ecology of grazing lawns in Africa.

    PubMed

    Hempson, Gareth P; Archibald, Sally; Bond, William J; Ellis, Roger P; Grant, Cornelia C; Kruger, Fred J; Kruger, Laurence M; Moxley, Courtney; Owen-Smith, Norman; Peel, Mike J S; Smit, Izak P J; Vickers, Karen J

    2015-08-01

    Grazing lawns are a distinct grassland community type, characterised by short-stature and with their persistence and spread promoted by grazing. In Africa, they reveal a long co-evolutionary history of grasses and large mammal grazers. The attractiveness to grazers of a low-biomass sward lies in the relatively high quality of forage, largely due to the low proportion of stem material in the sward; this encourages repeat grazing that concomitantly suppresses tall-grass growth forms that would otherwise outcompete lawn species for light. Regular grazing that prevents shading and maintains sward quality is thus the cornerstone of grazing lawn dynamics. The strong interplay between abiotic conditions and disturbance factors, which are central to grazing lawn existence, can also cause these systems to be highly dynamic. Here we identify differences in growth form among grazing lawn grass species, and assess how compositional differences among lawn types, as well as environmental variables, influence their maintenance requirements (i.e. grazing frequency) and vulnerability to degradation. We also make a clear distinction between the processes of lawn establishment and lawn maintenance. Rainfall, soil nutrient status, grazer community composition and fire regime have strong and interactive influences on both processes. However, factors that concentrate grazing pressure (e.g. nutrient hotspots and sodic sites) have more bearing on where lawns establish. Similarly, we discuss the relevance of enhanced rates of nitrogen cycling and of sodium levels to lawn maintenance. Grazer community composition and density has considerable significance to grazing lawn dynamics; not all grazers are adapted to foraging on short-grass swards, and differences in body size and relative mouth dimensions determine which species are able to convert tall-grass swards into grazing lawns under different conditions. Hence, we evaluate the roles of different grazers in lawn dynamics, as well as the benefits that grazer populations derive from having access to grazing lawns. The effects of grazing lawns can extend well beyond their borders, due to their influence on grazer densities, behaviour and movements as well as fire spread, intensity and frequency. Variation in the area and proportion of a landscape that is grazing lawn can thus have a profound impact on system dynamics. We provide a conceptual model that summarises grazing lawn dynamics, and identify a rainfall range where we predict grazing lawns to be most prevalent. We also examine the biodiversity associated with grazing lawn systems, and consider their functional contribution to the conservation of this biodiversity. Finally, we assess the utility of grazing lawns as a resource in a rangeland context. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  9. Effect of morning vs. afternoon grazing on intramuscular fatty acid composition in lamb.

    PubMed

    Vasta, Valentina; Pagano, Renato Italo; Luciano, Giuseppe; Scerra, Manuel; Caparra, Pasquale; Foti, Francesco; Cilione, Caterina; Biondi, Luisa; Priolo, Alessandro; Avondo, Marcella

    2012-01-01

    The aim of this study was to assess whether different grazing management affect animal performance and meat fatty acid composition. Thirty-five lambs were divided into three groups: 12 lambs grazed from 9 am to 5 pm (8 h group); 11 lambs grazed from 9 am to 1 pm (4hAM group) and 12 lambs grazed from 1 pm to 5 pm (4hPM group). The trial was conducted over 72 days. The 8 h lambs had greater DMI (P<0.0005) and final body weight (P<0.05) than the 4hPM and 4hAM lambs while carcass weight was not different between the three groups. The meat of the 4hPM lambs contained greater (P<0.05) percentages of polyunsaturated fatty acids, C18:2 cis-9 trans-11 and lower saturated fatty acids and C18:0 than the meat of the 8 h and 4hAM lambs. It is concluded that allowing lambs to graze during the afternoon rather than during 8 h does not compromise the carcass yield and results in a healthier meat fatty acid profile. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Final Environmental Assessment for the Semiannual Joint Integrated Fires Exercises at Avon Park Air Force Range, Florida

    DTIC Science & Technology

    2006-04-01

    spring that would have the potential to create wildfires. 3.11 Grazing Management : All alternatives would have minimal impact to grazing...3.12 Invasive Plant Management : All alternatives would have minimal impact to management . 3.13 Timber Management : All alternatives would have...food and fuel within the local communities. 3.18 Coastal Zone Management : The alternatives would be consistent with the Florida Coastal Zone

  11. Cow and calf performance on Coastal or Tifton 85 Bermudagrass pastures with aeschynomene creep-grazing paddocks.

    PubMed

    Corriher, V A; Hill, G M; Andrae, J G; Froetschel, M A; Mullinix, B G

    2007-10-01

    Cow and calf performance was determined in a 2-yr, 2 x 2 factorial, grazing experiment using Coastal or Tifton 85 (T85) replicated Bermudagrass pastures (4 pastures each; each pasture 4.86 ha), without or with aeschynomene creep-grazing paddocks (n = 4, 0.202 ha each, planted in May of each year, 13.44 kg/ha). On June 10, 2004, and June 8, 2005, 96 winter-calving beef "tester" cows and their calves were grouped by cow breed (9 Angus and 3 Polled Hereford/group), initial cow BW (592.9 +/- 70.1 kg, 2-yr mean), age of dam, calf breed (Angus, Polled Hereford, or Angus x Polled Hereford), calf sex, initial calf age (117 +/- 20.1 d, 2-yr mean), and initial calf BW (161.3 +/- 30.4 kg) and were randomly assigned to pastures. Additional cow-calf pairs and open cows were added as the forage increased during the season. Forage mass was similar for all treatment pastures (P > 0.70; 2-yr mean, 6,939 vs. 6,628 kg/ha, Coastal vs. T85; 6,664 vs. 6,896 kg/ha, no creep grazing vs. creep grazing). Main effect interactions did not occur for performance variables (P > 0.10; 2-yr means), and year affected only the initial and final BW of the calves and cows. The 91-d tester calf ADG was greater for calves grazing T85 than Coastal (0.94 vs. 0.79 kg; P < 0.01), and for calves creep grazing aeschynomene compared with calves without creep grazing (0.90 vs. 0.82 kg; P < 0.03). Calf 205-d adjusted weaning weights were increased for calves grazing T85 compared with Coastal (252.9 vs. 240.3 kg; P < 0.01) and for calves with access to creep grazing (249.9 vs. 243.3 kg; P < 0.05). The IVDMD of esophageal masticate from pastures had a forage x creep grazing interaction (P < 0.05; Coastal, no creep grazing = 57.4%; Coastal, creep grazing = 52.1%; T85, no creep grazing = 59.1%; T85, creep grazing = 60.0%), and IVDMD was greater (P < 0.05) for T85 than for Coastal pastures. Cows were milked in August 2004, and in June and August 2005, with variable milk yields on treatments, but increased milk protein (P < 0.05) for cows grazing T85 compared with Coastal pastures in August each year, contributing to increased calf gains on T85 pastures. These results complement previous research with T85 and indicate increased forage quality and performance of cattle grazing T85 pastures. Calf gains on T85 pastures and for calves on creep-grazed aeschynomene paddocks were high enough to influence the efficiency of cow-calf operations.

  12. TECHNICAL NOTE: Effect of bait delivery interval in an automated head-chamber system on respiration gas estimates when cattle are grazing rangeland

    USDA-ARS?s Scientific Manuscript database

    Agricultural methane emissions account for approximately 43% of all anthropogenic methane emissions and the majority of agricultural CH4 emissions are attributed to enteric fermentation within ruminant livestock, therefor interest is heightened in quantifying and mitigating this source. An automate...

  13. Analysis of farmers' willingness to participate in pasture grazing programs: Results from a discrete choice experiment with German dairy farmers.

    PubMed

    Danne, M; Musshoff, O

    2017-09-01

    Over the last decades, the usage of pasture for grazing of dairy cows has decreased considerably. Pasture grazing programs initiated by dairy companies try to counteract this trend. The present paper investigates farmers' willingness to participate in such grazing programs. A special aim was to quantify the price premiums farmers require for program participation and to identify determinants influencing the premium level. The empirical analysis is based on a discrete choice experiment with 293 German dairy farmers. Models are estimated in terms of willingness to accept. It was found that farmers have no substantial preference for whether the pasture grazing program is financed by the food industry, a governmental scheme, or the dairy company. However, an extension of the annual or daily grazing period results in a decreasing willingness of farmers to participate in a pasture grazing program. In addition, farmers decline the option of a feeding standard prescribing the use of only green fodder when offered an alternative program that merely reduces the amount of concentrated feed or maize silage in the diet. Farmers' with an aversion toward program participation have a significant higher price demand for fulfilling the program requirements. Furthermore, the required price premiums increase with growing milk yields and a greater number of cows kept on the farm. However, if the availability of pasture is high, farmers are more likely to participate. The estimated price premiums and factors influencing farmers' willingness to participate found by this study should be considered by dairies and policymakers to gain insights into the design of possible pasture grazing programs from the perspective of farmers. Thereby, paying price premiums to farmers may increase the attractiveness of pasture grazing, which could finally result in an extended usage of pasture grazing. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. High intensity, short duration rotational grazing on reclaimed cool season fescue/legume pastures: I. System development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, W.R.; Carlson, K.E.

    The Pittsburg & Midway Coal Mining Co.`s ({open_quotes}P&M{close_quotes}) Midway Mine lies 50 miles south of Kansas City, Kansas, straddling the border of Kansas and Missouri. P&M actively mined the area until 1989, when the mine was closed and reclaimed. Approximately 3,750 acres of surface mined land were topsoiled and revegetated to cool season fescue/legume pasture. Various pasture management methods are being utilized to meet reclamation success standards and achieve final bond release. The effectiveness and costs of various cool season fescue/legume pasture management methods are evaluated and contrasted. These methods include sharecropping, bush hogging, burning and livestock grazing. It presentsmore » guidelines used to develop a site specific rotational livestock grazing programs with land owners or contractors, and local, state and federal agencies. Rotational grazing uses both cow/calf or feeder livestock operations. Key managerial elements used to control grazing activities, either by the landowner or a contractor, are reviewed. Methods used to determine stocking levels for successful rotational grazing on this type of pasture are presented. Rotational grazing of livestock has proven to be the most effective method for managing established cool season fescue/legume pastures at this site. Initial stocking rates of 1 A.U.M. per 5 acres have been modified to a current stocking rate of 1 A.U.M. per 2.5 acres. Supporting physical and chemical data are presented and discussed.« less

  15. Supporting the extensive dairy sheep smallholders of the semi-arid region of Crete through technical intervention.

    PubMed

    Volanis, M; Stefanakis, A; Hadjigeorgiou, I; Zoiopoulos, P

    2007-06-01

    The objective of this field study was to depict the extensive system of dairy sheep farming in the semi-arid environment of the island of Crete and to assess the potential margins of improvement through technical intervention. Forty-three family-run farms keeping a total of 13,870 sheep were surveyed in seven representative areas of the island. Several parameters were dealt with, concerning socio-economy, flock management and productivity. Study areas differed widely regarding feeds supplied per sheep, land cultivated for feeds, grazing land utilized and housing space. A range of parameters were recorded on flock size and their production characteristics such as births, fertility and number of lambs weaned. Milk yield and parameters associated with milk quality, such as somatic cell counts and total microbial flora, were also recorded. Technical intervention was directed towards removal of non-productive animals, programming of matings, balancing of diets, management of grazing lands and health care. Ewe fertility and numbers of lambs weaned per ewe, as well as harvested milk and milk quality (based on somatic cell counts and microbial load of milk) were also significantly improved. Information derived from this study stresses the important role of extension services to small farm sustainability and contributes to our knowledge of the dairy sheep farming systems in countries around the Mediterranean and elsewhere.

  16. Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination

    NASA Astrophysics Data System (ADS)

    Tonon, D.; Moers, E. M. T.; Hirschberg, A.

    2013-04-01

    Well known examples of acoustical dampers are the aero-engine liners, the IC-engine exhaust mufflers, and the liners in combustion chambers. These devices comprise wall perforations, responsible for their sound absorbing features. Understanding the effect of the flow on the acoustic properties of a perforation is essential for the design of acoustic dampers. In the present work the effect of a grazing-bias flow combination on the impedance of slit shaped wall perforations is experimentally investigated by means of a multi-microphone impedance tube. Measurements are carried out for perforation geometries relevant for in technical applications. The focus of the experiments is on the low Strouhal number (quasi-steady) behavior. Analytical models of the steady flow and of the low frequency aeroacoustic behavior of a two-dimensional wall perforation are proposed for the case of a bias flow directed from the grazing flow towards the opposite side of the perforated wall. These theoretical results compare favorably with the experiments, when a semi-empirical correction is used to obtain the correct limit for pure bias flow.

  17. Monitoring of livestock grazing effects on Bureau of Land Management land

    USGS Publications Warehouse

    Veblen, Kari E.; Pyke, David A.; Aldridge, Cameron L.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2013-01-01

    Public land management agencies, such as the Bureau of Land Management (BLM), are charged with managing rangelands throughout the western United States for multiple uses, such as livestock grazing and conservation of sensitive species and their habitats. Monitoring of condition and trends of these rangelands, particularly with respect to effects of livestock grazing, provides critical information for effective management of these multiuse landscapes. We therefore investigated the availability of livestock grazing-related quantitative monitoring data and qualitative region-specific Land Health Standards (LHS) data across BLM grazing allotments in the western United States. We then queried university and federal rangeland science experts about how best to prioritize rangeland monitoring activities. We found that the most commonly available monitoring data were permittee-reported livestock numbers and season-of-use data (71% of allotments) followed by repeat photo points (58%), estimates of forage utilization (52%), and, finally, quantitative vegetation measurements (37%). Of the 57% of allotments in which LHS had been evaluated as of 2007, the BLM indicated 15% had failed to meet LHS due to livestock grazing. A full complement of all types of monitoring data, however, existed for only 27% of those 15%. Our data inspections, as well as conversations with rangeland experts, indicated a need for greater emphasis on collection of grazing-related monitoring data, particularly ground cover. Prioritization of where monitoring activities should be focused, along with creation of regional monitoring teams, may help improve monitoring. Overall, increased emphasis on monitoring of BLM rangelands will require commitment at multiple institutional levels.

  18. Assessment of water resource potential for common use of cow and goat by GIS (Case study: Boroujerd Rangeland, Sarab Sefid, Iran)

    NASA Astrophysics Data System (ADS)

    Ariapour, A.; Karami, K.; Sadr, A.

    2014-06-01

    One of the most important factors to sustainability utilization of natural potential by rangeland grazing suitability is water resources suitability. This study is a model for quantitative, qualitative and spatial distance assessment of water resource's propriety for goat and cow grazing based on geographic information systems (GIS) in Boroujerd Sarab Sefid rangeland, Lorestan province, Iran 2013. In this research from combining three factors such as quantity, quality and water resource's distances; the final model of degree of propriety of water resources for goat and cow grazing is characterized. Results showed that slope factor was the reason of limitation, and it is considered as a limiting factor in propriety of water resources, so in terms of access to water resources for goat grazing, 4856.4 ha (100%) located in S1 classes and for cow grazing, 4023.14 ha (68.6%) located in S1(suitability) classes, 1,187 ha (20.24%) in S2 classes and 654.8 ha (11.16%) located in S3 classes, respectively for both. So according to the results the rangelands in this region are most suitable for goat because of terrain and weather but this, in combination with, cow hasbandry will allow diversity of economic production and stability of incomes.

  19. Soil intake of lactating dairy cows in intensive strip grazing systems.

    PubMed

    Jurjanz, S; Feidt, C; Pérez-Prieto, L A; Ribeiro Filho, H M N; Rychen, G; Delagarde, R

    2012-08-01

    Involuntary soil intake by cows on pasture can be a potential route of entry for pollutants into the food chain. Therefore, it appears necessary to know and quantify factors affecting soil intake in order to ensure the food safety in outside rearing systems. Thus, soil intake was determined in two Latin square trials with 24 and 12 lactating dairy cows. In Trial 1, the effect of pasture allowance (20 v. 35 kg dry matter (DM) above ground level/cow daily) was studied for two sward types (pure perennial ryegrass v. mixed perennial ryegrass-white clover) in spring. In Trial 2, the effect of pasture allowance (40 v. 65 kg DM above ground level/cow daily) was studied at two supplementation levels (0 or 8 kg DM of a maize silage-based supplement) in autumn. Soil intake was determined by the method based on acid-insoluble ash used as an internal marker. The daily dry soil intake ranged, between treatments, from 0.17 to 0.83 kg per cow in Trial 1 and from 0.15 to 0.85 kg per cow in Trial 2, reaching up to 1.3 kg during some periods. In both trials, soil intake increased with decreasing pasture allowance, by 0.46 and 0.15 kg in Trials 1 and 2, respectively. In Trial 1, this pasture allowance effect was greater on mixed swards than on pure ryegrass swards (0.66 v. 0.26 kg reduction of daily soil intake between medium and low pasture allowance, respectively). In Trial 2, the pasture allowance effect was similar at both supplementation levels. In Trial 2, supplemented cows ate much less soil than unsupplemented cows (0.20 v. 0.75 kg/day, respectively). Differences in soil intake between trials and treatments can be related to grazing conditions, particularly pre-grazing and post-grazing sward height, determining at least in part the time spent grazing close to the ground. A post-grazing sward height lower than 50 mm can be considered as a critical threshold. Finally, a dietary supplement and a low grazing pressure, that is, high pasture allowance increasing post-grazing sward height, would efficiently limit the risk for high level of soil intake, especially when grazing conditions are difficult. Pre-grazing and post-grazing sward heights, as well as faecal crude ash concentration appear to be simple and practical tools for evaluating the risk for critical soil intake in grazing dairy cows.

  20. Estimating the greenhouse gas fluxes of European grasslands with a process-based model: 1. Model evaluation from in situ measurements

    NASA Astrophysics Data System (ADS)

    Vuichard, Nicolas; Soussana, Jean-FrançOis; Ciais, Philippe; Viovy, Nicolas; Ammann, Christof; Calanca, Pierluigi; Clifton-Brown, John; Fuhrer, Jürg; Jones, Mike; Martin, CéCile

    2007-03-01

    We improved a process-oriented biogeochemical model of carbon and nitrogen cycling in grasslands and tested it against in situ measurements of biomass and CO2 and CH4 fluxes at five European grassland sites. The new version of the model (PASIM) calculates the growth and senescence of aboveground vegetation biomass accounting for sporadic removals when the grassland is cut and for continuous removals when it is grazed. Limitations induced by high leaf area index (LAI), soil water deficits and aging of leaves are also included. We added to this a simple empirical formulation to account for the detrimental impact on vegetation of trampling and excreta by grazing animals. Finally, a more realistic methane emission module than is currently used was introduced on the basis of the quality of the animals' diet. Evaluation of this improved version of PASIM is performed at (1) Laqueuille, France, on grassland continuously grazed by cattle with two plots of intensive and extensive grazing intensities, (2) Oensingen, Switzerland, on cut grassland with two fertilized and nonfertilized plots, and (3) Carlow, Ireland, on grassland that is both cut and grazed by cattle during the growing season. In addition, we compared the modeled animal CH4 emissions with in situ measurements on cattle for two grazing intensities at the grazed grassland site of Laqueuille. Altogether, when all improvements to the PASIM model are included, we found that the new parameterizations resulted into a better fit to the observed seasonal cycle of biomass and of measured CO2 and CH4 fluxes. However, the large uncertainties in measurements of biomass and LAI make simulation of biomass dynamics difficult to make. Also simulations for cut grassland are better than for grazed swards. This work paves the way for simulating greenhouse gas fluxes over grasslands in a spatially explicit manner, in order to quantify and understand the past, present and future role of grasslands in the greenhouse gas budget of the European continent.

  1. Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance

    NASA Astrophysics Data System (ADS)

    Liu, Yongbao; Wang, Qiang; Xu, Huidong

    2017-07-01

    The smooth bifurcation and grazing non-smooth bifurcation of periodic motion of a three-degree-of-freedom vibro-impact system with clearance are studied in this paper. Firstly, a periodic solution of vibro-impact system is solved and a six-dimensional Poincaré map is established. Then, for the six-dimensional Poincaré map, the analytic expressions of all eigenvalues of Jacobi matrix with respect to parameters are unavailable. This implies that with application of the classical critical criterion described by the properties of eigenvalues, we have to numerically compute eigenvalues point by point and check their properties to search for the bifurcation points. Such the numerical calculation is a laborious job in the process of determining bifurcation points. To overcome the difficulty that originates from the classical bifurcation criteria, the explicit critical criteria without using eigenvalues calculation of high-dimensional map are applied to determine bifurcation points of Co-dimension-one period doubling bifurcation and Co-dimension-one Neimark-Sacker bifurcation and Co-dimension-two Flip-Neimark-Sacker bifurcation, and then local dynamical behaviors of these bifurcations are analyzed. Moreover, the directions of period doubling bifurcation and Neimark-Sacker bifurcation are analyzed by center manifold reduction theory and normal form approach. Finally, the existence of the grazing periodic motion of the vibro-impact system is analyzed and the grazing bifurcation point is obtained, the discontinuous grazing bifurcation behavior is studied based on the compound normal form map near the grazing point, the discontinuous jumping phenomenon and co-existing multiple solutions near the grazing bifurcation point are revealed.

  2. A spatial risk assessment of bighorn sheep extirpation by grazing domestic sheep on public lands.

    PubMed

    Carpenter, Tim E; Coggins, Victor L; McCarthy, Clinton; O'Brien, Chans S; O'Brien, Joshua M; Schommer, Timothy J

    2014-04-01

    Bighorn sheep currently occupy just 30% of their historic distribution, and persist in populations less than 5% as abundant overall as their early 19th century counterparts. Present-day recovery of bighorn sheep populations is in large part limited by periodic outbreaks of respiratory disease, which can be transmitted to bighorn sheep via contact with domestic sheep grazing in their vicinity. In order to assess the viability of bighorn sheep populations on the Payette National Forest (PNF) under several alternative proposals for domestic sheep grazing, we developed a series of interlinked models. Using telemetry and habitat data, we characterized herd home ranges and foray movements of bighorn sheep from their home ranges. Combining foray model movement estimates with known domestic sheep grazing areas (allotments), a Risk of Contact Model estimated bighorn sheep contact rates with domestic sheep allotments. Finally, we used demographic and epidemiologic data to construct population and disease transmission models (Disease Model), which we used to estimate bighorn sheep persistence under each alternative grazing scenario. Depending on the probability of disease transmission following interspecies contact, extirpation probabilities for the seven bighorn sheep herds examined here ranged from 20% to 100%. The Disease Model allowed us to assess the probabilities that varied domestic sheep management scenarios would support persistent populations of free-ranging bighorn sheep. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. 75 FR 38539 - Notice of Availability of Final Supplemental Environmental Impact Statement Updating Cumulative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... impacts to air quality, minerals, Native American and cultural resources, water, vegetation, grazing..., including construction of five shafts to access the ore bodies, shaft hoists, a waste rock disposal facility...

  4. 77 FR 47660 - Attwater Prairie Chicken National Wildlife Refuge, Austin and Colorado Counties, TX; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ...: Combination of planting Same as Alternative A; Same as Alternative B; Prairie Restoration. native grasses... production restoration. produce native grass on the Refuge; grazing seed to increase the bison only. number...

  5. Preliminary Results Obtained in Integrated Safety Analysis of NASA Aviation Safety Program Technologies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from January 1, 2001 through March 31, 2001 available on the NASA Aeronautics and Space Database. Contents include 1) Cognitive Task Analysis; 2) RTO Educational Notes; 3) The Capability of Virtual Reality to Meet Military Requirements; 4) Aging Engines, Avionics, Subsystems and Helicopters; 5) RTO Meeting Proceedings; 6) RTO Technical Reports; 7) Low Grazing Angle Clutter...; 8) Verification and Validation Data for Computational Unsteady Aerodynamics; 9) Space Observation Technology; 10) The Human Factor in System Reliability...; 11) Flight Control Design...; 12) Commercial Off-the-Shelf Products in Defense Applications.

  6. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    PubMed Central

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  7. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness.

    PubMed

    Nusslé, Sébastien; Matthews, Kathleen R; Carlson, Stephanie M

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two "resting" meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a "resting" state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.

  8. Study of lobster eye optics with iridium coated x-ray mirrors for a rocket experiment

    NASA Astrophysics Data System (ADS)

    Stehlikova, Veronika; Urban, Martin; Nentvich, Ondrej; Inneman, Adolf; Döhring, Thorsten; Probst, Anne-Catherine

    2017-05-01

    In the field of astronomical X-ray telescopes, different types of optics based on grazing incidence mirrors can be used. This contribution describes the special design of a lobster-eye optics in Schmidt's arrangement, which uses dual reflection to increase the collecting area. The individual mirrors of this wide-field telescope are made of at silicon wafers coated with reflecting iridium layers. This iridium coatings have some advantages compared to more common gold layers as is shown in corresponding simulations. The iridium coating process for the X-ray mirrors was developed within a cooperation of the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague. Different mirror parameters essential for a proper function of the X-ray optics, like the surface microroughness and the problematic of a good adhesion quality of the coatings were studied. After integration of the individual mirrors into the final lobster-eye optics and the corresponding space qualification testing it is planned to fly the telescope in a recently proposed NASA rocket experiment.

  9. VLF/LF (Very Low Frequency/Low Frequency) Reflection Properties of the Low Latitude Ionosphere

    DTIC Science & Technology

    1988-02-04

    pleasure for the U.S. personnel. Although it is virtually impossible to mention all the individuals who contributed, we wish to especially ... Educacional da Regiao de Blumenau (FURB), who planned the day-to-day experimental efforts and who provided valuable technical Insight and guidance to all...or more grazing incidence angle, with the trend being especially pronounced in the daytime. Figure 23 shows 20 kHz reflectiont coefficients derived

  10. A technical framework for implementing aquatic ecosystem loading limits (TMDLs) to reduce selenium pollution from phosphate mining wastes on Caribou National Forest, Idaho

    Treesearch

    A. Dennis Lemly

    2001-01-01

    Beginning in 1996, selenium associated with phosphate mining on Caribou National Forest (CNF) was implicated as the cause of death to horses and sheep grazing on private land adjacent to the national forest. In response to these concerns, the Forest Service began a monitoring study to determine selenium concentrations in and around the mine sites. By 1998, the study...

  11. 75 FR 18547 - Notice of Availability of the Record of Decision for the Carrizo Plain National Monument Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... provisions to provide access for vehicles operated by people with physical handicaps. Finally, language was clarified regarding grazing and mineral rights. Three protests were received during the 30-day protest...

  12. The study of the physics of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    The observations of comet P/Holmes 1892III, exhibiting two 8 to 10 magnitude bursts, were carefully analyzed. The phenomena are consistent with the grazing encounter of a small satellite with the nucleus. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3 hr and inclination nearly 180 deg. After the final encounter, the spin period was essentially unchanged, but two areas became active, separated some 164 deg in longitude on the nucleus. After the first burst the total magnitude fell less than two magnitudes, while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst (barely naked eye at maximum) while the nucleus frequently stellar after the first day. It seems reasonable to conclude that the grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  13. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  14. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    PubMed

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  15. Quantitative characterization of the regressive ecological succession by fractal analysis of plant spatial patterns

    USGS Publications Warehouse

    Alados, C.L.; Pueyo, Y.; Giner, M.L.; Navarro, T.; Escos, J.; Barroso, F.; Cabezudo, B.; Emlen, J.M.

    2003-01-01

    We studied the effect of grazing on the degree of regression of successional vegetation dynamic in a semi-arid Mediterranean matorral. We quantified the spatial distribution patterns of the vegetation by fractal analyses, using the fractal information dimension and spatial autocorrelation measured by detrended fluctuation analyses (DFA). It is the first time that fractal analysis of plant spatial patterns has been used to characterize the regressive ecological succession. Plant spatial patterns were compared over a long-term grazing gradient (low, medium and heavy grazing pressure) and on ungrazed sites for two different plant communities: A middle dense matorral of Chamaerops and Periploca at Sabinar-Romeral and a middle dense matorral of Chamaerops, Rhamnus and Ulex at Requena-Montano. The two communities differed also in the microclimatic characteristics (sea oriented at the Sabinar-Romeral site and inland oriented at the Requena-Montano site). The information fractal dimension increased as we moved from a middle dense matorral to discontinuous and scattered matorral and, finally to the late regressive succession, at Stipa steppe stage. At this stage a drastic change in the fractal dimension revealed a change in the vegetation structure, accurately indicating end successional vegetation stages. Long-term correlation analysis (DFA) revealed that an increase in grazing pressure leads to unpredictability (randomness) in species distributions, a reduction in diversity, and an increase in cover of the regressive successional species, e.g. Stipa tenacissima L. These comparisons provide a quantitative characterization of the successional dynamic of plant spatial patterns in response to grazing perturbation gradient. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. Evidence based review: positive versus negative effects of livestock grazing on wildlife. What do we really know?

    NASA Astrophysics Data System (ADS)

    Schieltz, Jennifer M.; Rubenstein, Daniel I.

    2016-11-01

    More than a quarter of earth’s land surface is used for grazing domestic livestock. Livestock grazing is generally assumed to negatively affect wildlife, however, a number of studies have found positive impacts as well. We conducted an evidence-based review of the existing literature using a series of livestock- and wildlife-related search words to systematically query Google Scholar and Web of Science. A total of 807 sources were included in the final list, including 646 primary sources which reported original data. The majority of studies were conducted in North America (338) or Europe (123), with many fewer from Africa (57), Australia (54), Central/South America (43), or Asia (31). Most studies examined birds (330) and mammals (262), with fewer including reptiles (91) or amphibians (58). We extracted further information from studies that included mammals on positive, negative, and neutral effects of livestock grazing on mammals. We found that livestock change vegetation structure and cover in ways important to small mammals, while ungulates may be affected more by interference competition and changes in forage quantity and quality. Community-level total abundance of small mammals typically declines with grazing. Species richness of small mammals either declines or stays the same, as many studies found a change in species composition from ungrazed to grazed sites while the number of species remained similar. Individual species responses of small mammals vary. Voles, harvest mice, cotton rats, and shrews show consistently negative responses to grazing while deer mice, kangaroo rats, ground squirrels, and lagomorphs show positive or variable responses. In general, species adapted to open habitats are often positively affected by grazing, while species needing denser cover are negatively affected. Studies of wild ungulates are more variable in methodology and quality than those for small mammals. We found more negative (n = 86) than positive (n = 34) ungulate responses overall, however, most studies have been on browsers and mixed feeders, namely deer and elk, and there is little available data for other groups. Although data is limited, several of the grazing species in Africa may show a trend toward positive responses, suggesting possible facilitation. For a number of species, responses varied by season. We find a strong need for additional research on ungulates of varying diets and body sizes, especially in the developing world, and across longer time scales to examine possible tradeoffs between competition and facilitation from livestock.

  17. The influence of grazing on high mountain soils in the Eastern Pamirs/Tajikistan

    NASA Astrophysics Data System (ADS)

    Bimüller, Carolin; Samimi, Cyrus; Zech, Michael; André Vanselow, Kim; Bäumler, Rupert; Dotter, Desiree

    2010-05-01

    Animal husbandry is the most important economic branch in the high mountain deserts of the Eastern Pamirs, a peripheral and ecologically unprivileged region in the east of Tajikistan. During the Soviet era the transhumant pasture rotation was strongly supported and transport to the partially remote summer pastures was organized. With the dissolution of the USSR and the independence of Tajikistan the subsidies ended. This resulted in significant structural alterations in the political and socioeconomic frame conditions for the whole district, including strong changes concerning pasture use. In this context our study focuses on the impact of grazing yaks, sheep and goats on the high mountain soils under the changing land use patterns of pastoralists due to transformation processes in the Eastern Pamirs of Tajikistan. The soil parameters organic carbon, nitrogen, humus and C/N-ratio were measured in the laboratory. Furthermore, the isotope signatures delta13C and delta15N were analysed. These factors are valuable traits to consider the grazing impact. Data mining was done using multivariate statistical methods. Finally, a link between vegetation and soils was presented using a Detrended Correspondence Analysis (DCA) as an indirect ordination method. The results show that soil properties strongly influence the small-scale vegetation patterns. Furthermore, they are strongly dependent on the level of grazing intensity within the different ecosystems. Controlling ecological factors trace through the biosphere and pedosphere respectively in an interactive way. Grazing could therefore be examined as only one of a multitude of ecological factors influencing soil parameters. The major findings indicate significantly low correlations between grazing intensity and a higher Corg and N content and C/N-ratio as well as humus quality. Hence, the study area can be described as a sink under current land use conditions for carbon. The 15N-values are strongly related to the influence of grazing. This reflects the opening of the N-cycle. The results of this study confirm that pastoralism is a well adopted land use method in the Eastern Pamirs. Further research is encouraged in order to better quantify the effects of changing land use on nutrient cycles and possible carbon sinks regarding climate change.

  18. Estimation of grazing-induced erosion through remote-sensing technologies in the Autonomous Province of Trento, Northern Italy

    NASA Astrophysics Data System (ADS)

    Torresani, Loris; Prosdocimi, Massimo; Masin, Roberta; Penasa, Mauro; Tarolli, Paolo

    2017-04-01

    Grassland and pasturelands cover a vast portion of the Earth surface and are vital for biodiversity richness, environmental protection and feed resources for livestock. Overgrazing is considered one of the major causes of soil degradation worldwide, mainly in pasturelands grazed by domestic animals. Therefore, an in-depth investigation to better quantify the effects of overgrazing in terms of soil loss is needed. At this regard, this work aims to estimate the volume of eroded materials caused by mismanagement of grazing areas in the whole Autonomous Province of Trento (Northern Italy). To achieve this goal, the first step dealt with the analysis of the entire provincial area by means of freely available aerial images, which allowed the identification and accurate mapping of every eroded area caused by grazing animals. The terrestrial digital photogrammetric technique, namely Structure from Motion (SfM), was then applied to obtain high-resolution Digital Surface Models (DSMs) of two representative eroded areas. By having the pre-event surface conditions, DSMs of difference, namely DoDs, was computed to estimate the erosion volume and the average depth of erosion for both areas. The average depths obtained from the DoDs were compared and validated by measures taken in the field. A large amount of depth measures from different sites were then collected to obtain a reference value for the whole province. This value was used as reference depth for calculating the eroded volume in the whole province. In the final stage, the Connectivity Index (CI) was adopted to analyse the existing connection between the eroded areas and the channel network. This work highlighted that SfM can be a solid low-cost technique for the low-cost and fast quantification of eroded soil due to grazing. It can also be used as a strategic instrument for improving the grazing management system at large scales, with the goal of reducing the risk of pastureland degradation.

  19. Note: Setup for chemical atmospheric control during in situ grazing incidence X-ray scattering of printed thin films

    DOE PAGES

    Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...

    2017-06-01

    In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less

  20. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alan H.

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  1. Top–down effects of a grazing, omnivorous minnow ( Campostoma anomalum) on stream microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veach, Allison M.; Troia, Matthew; Jumpponen, Ari

    We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less

  2. Top–down effects of a grazing, omnivorous minnow ( Campostoma anomalum) on stream microbial communities

    DOE PAGES

    Veach, Allison M.; Troia, Matthew; Jumpponen, Ari; ...

    2017-12-21

    We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less

  3. Influence of high-altitude grazing on bone metabolism of growing sheep.

    PubMed

    Liesegang, A; Hüttenmoser, D; Risteli, J; Leiber, F; Kreuzer, M; Wanner, M

    2013-02-01

    The objective of this study was to identify the effect of high alpine grazing, associated with varying pasture grass qualities and more pronounced exercise on typically steep slopes, on bone metabolism by improving bone density and enhancing bone turnover in growing sheep. Twenty-four 5-month-old sheep were randomly assigned to two groups. One group was kept at high altitude (HA; 2000-2200 m a.s.l.) for 3 months, and the other group (C; control) remained in the lowlands (400 m a.s.l.). Both groups were kept in grazing pastures with access to good-quality swards. Before the start of the experiment, blood samples were taken, the sheep were weighed, and the left metatarsus of each animal was analysed by quantitative computer tomography. After 1 month, blood samples were taken and body weight was measured, followed by biweekly sampling. Finally, the animals were slaughtered, and the bones were collected for analysis of various bone parameters. Body weight development did not differ between the groups. Concentrations of 25-OH-Vitamin D, carboxy-terminal telopeptide of type I collagen and activities of bone-specific alkaline phosphatase were always higher in the HA group than in the C group, except on the last two sampling dates. Bone mineral content and density increased in both groups during the experiment, but more intensively in the HA group. In addition, the cortical thickness of the HA group increased. The present study demonstrates an increase in bone turnover and mineral content of the bones of the growing sheep grazing in high alpine pastures. The factors associated with HA grazing, therefore, clearly seem to improve bone composition. © 2011 Blackwell Verlag GmbH.

  4. Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Deaton, A. W.

    1990-01-01

    The optimization of trajectories for coplaner, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO) is examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized. First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, dynamic pressure, and heating rate. Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for the lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.

  5. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2013-01-01 2013-01-01 false Contents of applications; technical information in final...

  6. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2012-01-01 2012-01-01 false Contents of applications; technical information in final...

  7. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2014-01-01 2014-01-01 false Contents of applications; technical information in final...

  8. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis...) Information sufficient to demonstrate compliance with the applicable requirements regarding testing, analysis... 10 Energy 2 2011-01-01 2011-01-01 false Contents of applications; technical information in final...

  9. Analysis of Coherent Microwave Data Collected on the Ocean Over Two Decades

    DTIC Science & Technology

    2011-11-14

    code) 14-11-2011 Final Report 1 Dec 2009 to 30 Sep 2011 Final Report: Analysis of Coherent Microwave Data Collected on the Ocean over Two Decades...None The objective of this project was to perform further analysis of data sets that had been collected over the past two decades. To this...and can cause cross sections at HH to exceed those at VV in disagreement with composite surface theory, 3) Shadowing is not a factor in low-grazing

  10. Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season

    PubMed Central

    Murillo, M.; Herrera, E.; Ruiz, O.; Reyes, O.; Carrete, F. O.; Gutierrez, H.

    2016-01-01

    Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers (204±5 kg initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers (BW = 350±3 kg) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen (NH3-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns. PMID:26954168

  11. Effect of Supplemental Corn Dried Distillers Grains with Solubles Fed to Beef Steers Grazing Native Rangeland during the Forage Dormant Season.

    PubMed

    Murillo, M; Herrera, E; Ruiz, O; Reyes, O; Carrete, F O; Gutierrez, H

    2016-05-01

    Two experiments were conducted to evaluate the effects of the level of corn dry distillers grains with solubles (CDDGS) supplementation on growing performance, blood metabolites, digestion characteristics and ruminal fermentation patterns in steers grazing dormant forage. In Exp. 1, of growth performance, 120 steers (204±5 kg initial body weight [BW]) were distributed randomly into 3 groups (each of 40 steers), which were provided with the following levels of CDDGS supplement: 0%, 0.25%, or 0.50% BW. All groups of steers were grazed for 30 days in each of 3 grazing periods (March, April, and May). Approximately 1,000 ha of the land was divided with electric fencing into 3 equally sized pastures (333 ha in size). Blood samples were collected monthly from 20 steers in each grazing group for analysis of glucose (G), urea-nitrogen (UN) and non-esterified fatty acids. Final BW, average daily gain (ADG) and supplement conversion (CDDGS-C) increased with increasing levels of CDDGS supplementation (p<0.05).The CDDGS supplementation also increased the plasma G and UN concentrations (p<0.05). In Exp. 2, of digestive metabolism, 9 ruminally cannulated steers (BW = 350±3 kg) were distributed, following a completely randomized design, into groups of three in each pasture. The ruminally cannulated steers were provided the same levels of CDDGS supplementation as in the growing performance study (0%, 0.25%, and 0.50% BW), and they grazed along with the other 40 steers throughout the grazing periods. The dry matter intake, crude protein intake, neutral detergent fiber intake (NDFI), apparent digestibility of dry matter (ADDM), crude protein (ADCP) and neutral detergent fiber (ADNDF) increased with increasing levels of CDDGS supplementation (p<0.05). The ruminal degradation rates of CP (kdCP), NDF (kdNDF) and passage rate (kp) also increased with increasing levels of CDDGS supplementation (p<0.05). Ruminal ammonia nitrogen (NH3-N) and propionate concentrations also increased with increasing levels of CDDGS supplementation (p<0.05). However, acetate concentrations decreased with increasing levels of CDDGS supplementation (p<0.05). Liquid dilution rate increased with increasing levels of CDDGS supplementation but ruminal liquid volume decreased (p<0.05). On the basis of these findings, we can conclude that CDDGS supplementation enhanced the productive performance of cattle grazing native rangeland without negatively affecting forage intake, glucose and urea-nitrogen blood concentrations, ruminal degradation and ruminal fermentation patterns.

  12. A participative approach to develop sustainability indicators for dehesa agroforestry farms.

    PubMed

    Escribano, M; Díaz-Caro, C; Mesias, F J

    2018-05-29

    This paper provides a list of specific indicators that will allow the managers of dehesa farms to assess their sustainability in an easy and reliable way. To this end a Delphi analysis has been carried out with a group of experts in agroforestry systems and sustainability. A total of 30 experts from public institutions, farming, research bodies, environmental and rural development associations, agricultural organizations and companies took part in the study which intended to design a set of sustainability indicators adapted to dehesa agroforestry systems. The experts scored 83 original indicators related to the basic pillars of sustainability (environmental, social and economic) through a two-round procedure. Finally, 24 indicators were selected based on their importance and the consensus achieved. From an environmental point of view, and in line with its significance for dehesa ecosystems, it has been observed that "Stocking rate" is the indicator with greater relevance. Within the economic pillar, "Farm profitability" is the most important indicator, while regarding the technical indicators "Percentage of animal diet based on grazing" is the one that got the highest score. Finally, the "Degree of job satisfaction" and the "Generational renewal" were the most relevant labor indicators. It is considered that the Delphi approach used in this research settles some of the flaws of other sustainability models, such as the adaptation to the system to be studied and the involvement of stakeholders in the design. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Differential impact of Limnoperna fortunei-herbicide interaction between Roundup Max® and glyphosate on freshwater microscopic communities.

    PubMed

    Gattás, F; Vinocur, A; Graziano, M; Dos Santos Afonso, M; Pizarro, H; Cataldo, D

    2016-09-01

    Multiple anthropogenic stressors act simultaneously on the environment, with consequences different from those caused by single-stressor exposure. We investigated how the combination of the invasive mussel Limnoperna fortunei and a widely applied herbicide, Roundup Max®, affected freshwater microscopic communities and water quality. Further, we compared these results with those induced by the combination of the mussel and technical-grade glyphosate. We carried out a 34-day experiment in outdoor mesocosms, applying the following six treatments: 6 mg L(-1) of technical-grade glyphosate (G), the equivalent concentration of glyphosate in Roundup Max® (R), 100 mussels (M), the combination of mussels and herbicide either in the technical-grade or formulated form (MG and MR, respectively), and control (C). Herbicides significantly increased total phosphorus in water; R and MR showed greater initial total nitrogen and ammonium. R increased picoplankton abundance and caused an eightfold increase in phytoplankton, with high turbidity values; G had a lower effect on these variables. Herbicide-mussel combination induced an accelerated dissipation of glyphosate in water (MG 6.36 ± 0.83 mg G g DW(-1) day(-1) and MR 5.16 ± 1.26 mg G g DW(-1) day(-1)). A synergistic effect on ammonium was observed in MR but not in MG. MR and MG had an antagonistic effect on phytoplankton, which showed a drastic reduction due to grazing, as revealed by M. We provide evidence of differential effects of Roundup Max® and technical-grade glyphosate over water quality and microscopic communities, and in combination with mussels. However, in the combination of mussels and herbicides, mussels seem to play a leading role. In the presence of L. fortunei, the effects of higher nutrient availability provided by herbicides addition were counteracted by the filtration activity of mussels, which released nutrients, grazed on picoplankton and phytoplankton, and boosted the development of other primary producers, periphyton and metaphyton.

  14. Deposition of steeply infalling debris around white dwarf stars

    NASA Astrophysics Data System (ADS)

    Brown, John C.; Veras, Dimitri; Gänsicke, Boris T.

    2017-06-01

    High-metallicity pollution is common in white dwarf (WD) stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to WD systems. We find that the evolution of cm-to-km size (a0) infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any WD, and apply the algorithm to four limiting combinations of hot versus cool (young/old) WDs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (I) Total sublimation above the photosphere befalls all small infallers across the entire WD temperature (TWD) range, the threshold size rising with TWD and 100× larger for rock than snow. (II) All very large objects fragment tidally regardless of TWD: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103-3 × 104 cm across all WD cooling ages. (III) A considerable range of a0 avoids fragmentation and total sublimation, yielding impacts or grazes with cold WDs. This range rapidly narrows with increasing TWD, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  15. An investigation of the diffraction of an acoustic plane wave by a curved surface of finite impedance. Ph.D. Thesis Final Technical Report, 1 Feb. 1985 - 1 Sep. 1989

    NASA Technical Reports Server (NTRS)

    Kearns, James A.

    1989-01-01

    Phenomena associated with long range propagation of sound over irregular topography motivated this work, which was to analyze the diffraction effects which would occur near the tops of hills and ridges. The diffraction of a high frequency plane wave due to its grazing of a two-dimensional curved surface of finite impedance was also studied. Laboratory scale models were constructed and measurements were made of the field on, above, and behind either of two curved surfaces possessing distinctly different impedances; that is, one was soft while the other was hard. The experimental technique consisted of simultaneously measuring the pressure at a reference point and at a field point due to a transient pulse generated by an electric spark. The pressure waveforms were digitized and processed. The ratio of the discrete Fourier transforms of the two waveforms provided an estimate of the insertion loss between them. The results of the measurements were compared with the predictions of a theory which was derived by Pierce using the method of Matched Asymptotic Expansions (MAE). The predictions relied upon the experimental evaluation of the impedance of each surface at grazing angles of incidence. This evaluation was achieved by a fairly standard technique involving empirical models of various generic types of surfaces. An example was shown of the important role that the structural intricacies of a surface play in the determination of an appropriate model. The comparison between the measurements and predictions indicated that the theory gives an excellent description of the field anywhere near a curved surface. Further, with a simple modification, the theory was also shown to give nearly as good of a description of the field surrounding a curved surface even at distances far behind the surface yet near the line of sight.

  16. High Energy Astronomy Observatory, Mission C, Phase A. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Technical data, and experiment and spacecraft alternatives are presented in support of the HEAO-C, whose primary objective is a detailed study of the more interesting high energy sources, using grazing incidence X-ray telescopes and a spacecraft pointing accuracy of + or - 1 arc minute. The analyses presented cover the mission analysis and launch vehicle; thermal control trade studies and supporting analyses; attitude sensing and control analyses; electrical systems; and reliability analysis. The alternate experiments which were considered are listed, and the advantages and disadvantages of several alternate observatory configurations are assessed.

  17. Effects of past and present livestock grazing on herpetofauna in a landscape-scale experiment.

    PubMed

    Kay, Geoffrey M; Mortelliti, Alessio; Tulloch, Ayesha; Barton, Philip; Florance, Daniel; Cunningham, Saul A; Lindenmayer, David B

    2017-04-01

    Livestock grazing is the most widespread land use on Earth and can have negative effects on biodiversity. Yet, many of the mechanisms by which grazing leads to changes in biodiversity remain unresolved. One reason is that conventional grazing studies often target broad treatments rather than specific parameters of grazing (e.g., intensity, duration, and frequency) or fail to account for historical grazing effects. We conducted a landscape-scale replicated grazing experiment (15,000 km 2 , 97 sites) to examine the impact of past grazing management and current grazing regimes (intensity, duration, and frequency) on a community of ground-dwelling herpetofauna (39 species). We analyzed community variables (species richness and composition) for all species and built multiseason patch-occupancy models to predict local colonization and extinction for the 7 most abundant species. Past grazing practices did not influence community richness but did affect community composition and patch colonization and extinction for 4 of 7 species. Present grazing parameters did not influence community richness or composition, but 6 of the 7 target species were affected by at least one grazing parameter. Grazing frequency had the most consistent influence, positively affecting 3 of 7 species (increased colonization or decreased extinction). Past grazing practice affected community composition and population dynamics in some species in different ways, which suggests that conservation planners should examine the different grazing histories of an area. Species responded differently to specific current grazing practices; thus, incentive programs that apply a diversity of approaches rather than focusing on a change such as reduced grazing intensity should be considered. Based on our findings, we suggest that determining fine-scale grazing attributes is essential for advancing grazing as a conservation strategy. © 2016 Society for Conservation Biology.

  18. Henry Taube and Coordination Chemistry

    Science.gov Websites

    Shifts Caused by Cr++ in Aqueous Solutions, DOE Technical Report, 1962 Reactions of Solvated Ions Final Report, DOE Technical Report, 1962 Isotopic Discrimination of Some Solutes in Liquid Ammonia, DOE Technical Report, 1966 Final Technical Report of Research, DOE Technical Report, 1972 Top Additional Web

  19. George A. Olah, Carbocation and Hydrocarbon Chemistry

    Science.gov Websites

    . Final Technical Report. [HF:BF{sub 2}/H{sub 2}] , DOE Technical Report, 1980 Superacid Catalyzed Coal Conversion Chemistry. 1st and 2nd Quarterly Technical Progress Reports, September 1, 1983-March 30, 1984 , DOE Technical Report, 1984 Superacid Catalyzed Coal Conversion Chemistry. Final Technical Report

  20. The Effect of Different Type of Herbivores, Grazing Types and Grazing Intensities on Alpine Basiphillous Vegetation of the Romanian Carpathians

    NASA Astrophysics Data System (ADS)

    Ballová, Zuzana; Pekárik, Ladislav; Šibík, Jozef

    2017-04-01

    The major purpose of the present study was to test the hypothesis that there are significant differences in vegetation structure, plant species composition, and soil chemical properties in relation to type of grazing animals, various levels of grazing intensity and grazing type, and if potential differences alter with ecosystem productivity (increase in more productive ecosystems). The study was conducted in three mountain ranges of the Romanian Carpathians with a predominance of alkaline substrates (the Bucegi Mts, the Little Retezat Mts and the Ceahlău Massif). Statistical analyses were performed in R statistical software environment. The effects of grazing animals (cattle, horses and sheep), grazing types (fence, regular, irregular) and grazing intensity (low, medium, high) on the community structure were tested using ordination methods. In the case of soil properties, General Linear Mixed Model was applied. Special statistical approach eliminated the differences between the examined mountains and sites. Type of grazing animal does not significantly influence species cover but it is related to specific species occurrence. According to our results, grazing horses had similar effects as cattle compared to sheep. Grazing in restricted areas (surrounded by fence) and regular unrestricted grazing were more similar if compared to irregular grazing. When comparing the intensity of grazing, high and medium intensity were more similar to each other than to the low intensity grazing. Cattle grazed sites had significantly higher lichens cover, while the sheep patches were covered with increased overall herb layer (forbs, graminoids and low shrubs together). Medium grazing intensity decreased the lichens cover, cover of overall herb layer, and total vegetation cover compared to high and low grazing intensity. Grazing type had important impact on the lichens cover and cover of overall herb layer. The lichens cover appeared to decrease while the cover of overall herb layer increased the most in restricted areas compared to irregularly and regularly grazed sites. When analyzing soil properties, Generalized mixed models revealed reliable results in the differences among categories of grazing types and intensity. These differences were only noticeable in calcium concentration being calcium the most decreased by medium grazing intensity and the most increased by irregular grazing. Grazing had significant effects on individual plant species occurrences and covers. Horses decreased presence of Anthoxanthum odoratum and regular grazing sites as well as fences had significantly higher occurrence of trampling tolerant species Nardus stricta compared to sites with irregular grazing. The type of grazing herbivores influenced covers of Agrostis capillaris, A. rupestris, Campanula rotundifolia, Festuca supina, Luzula multiflora, and Ranunculus pseudomontanus. The grazing types significantly altered covers of Agrostis capillaris, Alchemilla sp. div., Campanula rotundifolia, Festuca supina, Luzula multiflora, Nardus stricta, and Potentilla ternata (Potentilla aurea subsp. chrysocraspeda). The intensity of grazing had important impact on covers of Agrostis rupestris, Alchemilla sp. div., Campanula rotundifolia, Festuca supina, Luzula multiflora, Poa alpina, Potentilla ternata, and Ranunculus pseudomontanus. Key words: alpine meadows; pastures; GLMM; NMDS; (nested) PERMANOVA

  1. Alfalfa weevil (Coleoptera:Curculionidae) management in alfalfa by spring grazing with cattle.

    PubMed

    Buntin, G D; Bouton, J H

    1996-12-01

    The effect of continuous, intensive grazing by cattle in the 1st alfalfa growth cycle on larval densities of the alfalfa weevil, Hyera postica (Gyllenhal), was evaluated in "Alfagraze' and "Apollo' alfalfa, which are tolerant and not tolerant to grazing, respectively. In small-cage exclusion trials, grazing reduced larval numbers in 1991 by 65% in Alfagraze and by 32% in Apollo. Larval numbers in 1992 were low (< or = 0.6 larvae per stem) and were not reduced significantly by grazing. Grazing and use of early insecticide treatments of permethrin or carbofuran at low rates with < or = 7-d grazing restrictions to suppress larval numbers before grazing also were examined in large-plot exclusion trails in 1993 and 1994. Grazing reduced larval densities by 60% in 1993 and 45% in 1994 during a 3-wk period beginning 3 wk after grazing was initiated. However, alfalfa weevil larvae caused moderate leaf injury in 1993 and severe injury in 1994 before grazing reduced larval numbers. Use of permethrin at 0.11 kg (AI)/ha or carbofuran or chlorpyrifos at 0.28 kg (AI)/ha effectively reduced larval numbers and prevented leaf injury before grazing began. Therefore, a combination of an early application of an insecticide treatment with a short grazing restriction followed by continuous grazing will control alfalfa weevil larvae while allowing cattle to graze and directly use forage of grazing-tolerant alfalfa.

  2. Farm-level risk factors for Fasciola hepatica infection in Danish dairy cattle as evaluated by two diagnostic methods.

    PubMed

    Takeuchi-Storm, Nao; Denwood, Matthew; Hansen, Tina Vicky Alstrup; Halasa, Tariq; Rattenborg, Erik; Boes, Jaap; Enemark, Heidi Larsen; Thamsborg, Stig Milan

    2017-11-09

    The prevalence of bovine fasciolosis in Denmark is increasing but appropriate guidelines for control are currently lacking. In order to help develop a control strategy for liver fluke, a risk factor study of farm management factors was conducted and the utility of bulk tank milk (BTM ELISA) as a tool for diagnosis in Danish dairy cattle farms was assessed. This case-control study aimed to identify farm-level risk factors for fasciolosis in Danish dairy farms (> 50 animals slaughtered in 2013) using two diagnostic methods: recordings of liver condemnation at slaughter, and farm-level Fasciola hepatica antibody levels in BTM. A case farm was defined as having a minimum of 3 incidents of liver condemnation due to liver fluke at slaughter (in any age group) during 2013, and control farms were located within 10 km of at least one case farm and had no history of liver condemnation due to liver fluke during 2011-2013. The selected farmers were interviewed over telephone about grazing and control practices, and BTM from these farms was collected and analysed by ELISA in 2014. The final complete dataset consisting of 131 case and 63 control farms was analysed using logistic regression. Heifers grazing on wet pastures, dry cows grazing on wet pastures, herd size, breed and concurrent beef cattle production were identified as risk factors associated with being classified as a case farm. With the categorised BTM ELISA result as the response variable, heifers grazing on wet pastures, dry cows grazing on wet pastures, and purchase of cows were identified as risk factors. Within the case and control groups, 74.8 and 12.7% of farms were positive for fasciolosis on BTM ELISA, respectively. The differences are likely to be related to the detection limit of the farm-level prevalence by the BTM ELISA test, time span between slaughter data and BTM, and the relatively low sensitivity of liver inspection at slaughter. Control of bovine fasciolosis in Denmark should target heifers and dry cows through grazing management and appropriate anthelmintic treatment, and BTM ELISA can be a useful diagnostic tool for fasciolosis in Danish dairy farms.

  3. Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe.

    PubMed

    Ren, Haiyan; Taube, Friedhelm; Stein, Claudia; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin

    2018-01-01

    Many biodiversity experiments have demonstrated that plant diversity can stabilize productivity in experimental grasslands. However, less is known about how diversity-stability relationships are mediated by grazing. Grazing is known for causing species losses, but its effects on plant functional groups (PFGs) composition and species asynchrony, which are closely correlated with ecosystem stability, remain unclear. We conducted a six-year grazing experiment in a semi-arid steppe, using seven levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep per hectare) and two grazing systems (i.e., a traditional, continuous grazing system during the growing period (TGS), and a mixed one rotating grazing and mowing annually (MGS)), to examine the effects of grazing system and grazing intensity on the abundance and composition of PFGs and diversity-stability relationships. Ecosystem stability was similar between mixed and continuous grazing treatments. However, within the two grazing systems, stability was maintained through different pathways, that is, along with grazing intensity, persistence biomass variations in MGS, and compensatory interactions of PFGs in their biomass variations in TGS. Ecosystem temporal stability was not decreased by species loss but rather remain unchanged by the strong compensatory effects between PFGs, or a higher grazing-induced decrease in species asynchrony at higher diversity, and a higher grazing-induced increase in the temporal variation of productivity in diverse communities. Ecosystem stability of aboveground net primary production was not related to species richness in both grazing systems. High grazing intensity weakened the temporal stabilizing effects of diversity in this semi-arid grassland. Our results demonstrate that the productivity of dominant PFGs is more important than species richness for maximizing stability in this system. This study distinguishes grazing intensity and grazing system from diversity effects on the temporal stability, highlighting the need to better understand how grazing regulates ecosystem stability, plant diversity, and their synergic relationships.

  4. Implementation and Validation of an Impedance Eduction Technique

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Gerhold, Carl H.

    2011-01-01

    Implementation of a pressure gradient method of impedance eduction in two NASA Langley flow ducts is described. The Grazing Flow Impedance Tube only supports plane-wave sources, while the Curved Duct Test Rig supports sources that contain higher-order modes. Multiple exercises are used to validate this new impedance eduction method. First, synthesized data for a hard wall insert and a conventional liner mounted in the Grazing Flow Impedance Tube are used as input to the two impedance eduction methods, the pressure gradient method and a previously validated wall pressure method. Comparisons between the two results are excellent. Next, data measured in the Grazing Flow Impedance Tube are used as input to both methods. Results from the two methods compare quite favorably for sufficiently low Mach numbers but this comparison degrades at Mach 0.5, especially when the hard wall insert is used. Finally, data measured with a hard wall insert mounted in the Curved Duct Test Rig are used as input to the pressure gradient method. Significant deviation from the known solution is observed, which is believed to be largely due to 3-D effects in this flow duct. Potential solutions to this issue are currently being explored.

  5. 77 FR 46306 - Fluxapyroxad; Pesticide Tolerances Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...; Pesticide Tolerances Technical Amendment AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule; technical amendment. SUMMARY: EPA issued a final rule in the Federal Register of May 14, 2012, concerning.... Inadvertently, the terminology for the oilseed crop group and for dried plums was incorrect. This technical...

  6. Meta-analysis of the effect of pregrazing pasture mass on pasture intake, milk production, and grazing behavior of dairy cows strip-grazing temperate grasslands.

    PubMed

    Pérez-Prieto, L A; Delagarde, R

    2012-09-01

    Grazing management is a key factor in pasture-based dairy systems, which can be improved given advanced knowledge of the effects of pregrazing pasture mass (PM) on the performance of dairy cows. The aim of this study was to quantify the effects of PM on the pasture intake, milk production, milk composition, and grazing behavior of strip- or rotational-grazing dairy cows, based on a meta-analysis of published research papers. A database was created that included experiments in which the effects of PM on pasture intake and milk production of dairy cows were studied. Papers were selected only if at least 2 PM were compared under similar experimental conditions, particularly the same pasture allowance (SPA). The final database included 15 papers with 27 PM comparisons. For analytical purposes, the database was subdivided into 3 subsets that varied according to the estimation height at which pasture allowance was determined; that is, where PM were compared at the SPA above ground level (SPA(0) subset), above 2 to 3 cm (SPA(3) subset), and above 4 to 5 cm (SPA(5) subset). Statistical analyses were conducted on the entire database (global analysis) and within each subset using linear model procedures. An interaction between PM and estimation height was found for pasture intake and milk production in the global analysis. On the basis of the predictive equations, pasture intake increased by 1.58 kg of dry matter/d per tonne increase in PM when PM were compared at SPA(0), was not affected by PM when PM were compared at SPA(3), and decreased by 0.65 kg of dry matter/d per tonne increase in PM when PM were compared at SPA(5). This is consistent with the effect of PM on milk production, which was positive and negative (1.04 and -0.79 kg/t of PM, respectively) when PM were compared at SPA(0) and SPA(5), respectively. Grazing time was only slightly affected by PM, irrespective of estimation height, because the effect of PM on pasture intake was mainly dependent on the variation in pasture intake rate. Pasture intake rate increased with increasing PM at SPA(0) but decreased with increasing PM at SPA(5). This meta-analysis clearly demonstrates that the effects of PM on pasture intake, milk production, and behavior of strip-grazing dairy cows depend largely on the height at which the PM and pasture allowance are measured. These results have methodological implications for future grazing research because it can be recommended that PM be compared at similar levels of pasture availability (i.e., at the same pasture allowance above 2 to 3 cm) to avoid possible misinterpretations of results. They also reveal the benefits of improving grazing management and intake prediction through modeling in pasture-based dairy systems. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Veblen, Kari E.; Pyke, David A.; Jones, Christopher A.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and synthesize recommendations from federal and university rangeland science experts about how BLM might prioritize collection of different types of livestock grazing-related natural resource data. 4. Investigate whether range-wide datasets (Objective 1) could be used in conjunction with remotely sensed imagery to identify across broad scales (a) allotments potentially not meeting BLM Land Health Standards (LHS) and (b) allotments in which unmet standards might be attributable to livestock grazing. Objective 1: We identified four datasets that potentially could be used for analyses of livestock grazing effects on sagebrush ecosystems. First, we obtained the most current spatial data (typically up to 2007, 2008, or 2009) for all BLM allotments and compiled data into a coarse, topologically enforced dataset that delineated grazing allotment boundaries. Second, we obtained LHS evaluation data (as of 2007) for all allotments across all districts and regions; these data included date of most recent evaluation, BLM determinations of whether region-specific standards were met, and whether BLM deemed livestock to have contributed to any unmet standards. Third, we examined grazing records of three types: Actual Use (permittee-reported), Billed Use (BLM-reported), and Permitted Use (legally authorized). Finally, we explored the possibility of using existing Natural Resources Conservation Service (NRCS) Ecological Site Description (ESD) data to make up-to-date estimates of production and forage availability on BLM allotments. Objective 2: We investigated the availability of BLM livestock grazing-related monitoring data and the status of LHS across 310 randomly selected allotments in 13 BLM field offices. We found that, relative to other data types, the most commonly available monitoring data were Actual Use numbers (permittee-reported livestock numbers and season-of-use), followed by Photo Point, forage Utilization, and finally, Vegetation Trend measurement data. Data availability and frequency of data collection varied across allotments and field offices. Analysis of the BLM's LHS data indicated 67 percent of allotments analyzed were meeting standards. For those not meeting standards, livestock were considered the causal factor in 45 percent of cases (about 15 percent of all allotments). Objective 3: We sought input from 42 university and federal rangeland science experts about how best to prioritize rangeland monitoring activities associated with ascertaining livestock impacts on vegetation resources. When we presented a hypothetical scenario to these scientists and asked them to prioritize monitoring activities, the most common response was to measure ground and vegetation cover, a variable that in many cases (10 of 13 field offices sampled) BLM had already identified as a monitoring priority. Experts identified several other traditional (for example, photo points) and emerging approaches (for example, high-resolution aerial photography) to monitoring. Objective 4: We used spatial allotment data (described in Objective 1) and remotely sensed vegetation data (sagebrush cover, herbaceous vegetation cover, litter and bare soil) to assess differences in allotment LHS status ("Not met" vs. "Met"; if "Not met" - livestock-caused vs. not). We then developed logistic regression models, using vegetation variables to predict LHS status of BLM allotments in sagebrush steppe habitats in Wyoming and portions of Montana and Colorado. In general, we found that more consistent data collection at the local level might improve suitability of data for broad-scale analyses of livestock impacts. As is, data collection methodologies varied across field offices and States, and we did not find any local-level monitoring data (Actual Use, Utilization, Vegetation Trend) that had been collected consistently enough over time or space for range-wide analyses. Moreover, continued and improved emphasis on monitoring also may aid local management decisions, particularly with respect to effects of livestock grazing. Rangeland science experts identified ground cover as a high monitoring priority for assessing range condition and emphasized the importance of tracking livestock numbers and grazing dates. Ultimately, the most effective monitoring program may entail both increased data collection effort and the integration of alternative monitoring approaches (for example, remote sensing or monitoring teams). In the course of our study, we identified three additional datasets that could potentially be used for range-wide analyses: spatial allotment boundary data for all BLM allotments range-wide, LHS evaluations of BLM allotments, and livestock use data (livestock numbers and grazing dates). It may be possible to use these spatial datasets to help prioritize monitoring activities over the extensive land areas managed by BLM. We present an example of how we used spatial allotment boundary data and LHS data to test whether remotely sensed vegetation characteristics could be used to predict which allotments met or did not meet LHS. This approach may be further improved by the results of current efforts by BLM to test whether more intensive (higher resolution) LHS assessments more accurately describe land health status. Standardized data collection in more ecologically meaningful land units may improve our ability to use local-level data for broad-scale analyses.

  8. The effects of timing of grazing on plant and arthropod communities in high-elevation grasslands.

    PubMed

    Davis, Stacy C; Burkle, Laura A; Cross, Wyatt F; Cutting, Kyle A

    2014-01-01

    Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season.

  9. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear advantage of the smaller-seeded species over the larger-seeded species with increases in the grazing level.

  10. Streambank response to simulated grazing

    Treesearch

    Warren P. Clary; John W. Kinney

    2000-01-01

    Simulated grazing techniques were used to investigate livestock impacts on structural characteristics of streambanks. The treatments consisted of no grazing, moderate early summer grazing, moderate mid summer grazing, and heavy season-long grazing. The heavy season-long treatment resulted in a 11.5 cm depression of the streambank surface, while the moderate treatments...

  11. 25 CFR 167.11 - Tenure of grazing permits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tenure of grazing permits. (a) All active regular grazing permits shall be for one year and shall be... § 167.8 may become a livestock operator by obtaining an active grazing permit through negotiability or... handle each matter of unused grazing permit or portions of grazing permits on individual merits. Where...

  12. Effect of Grazing on Plant Attributes and Hydrological Properties in the Sloping Lands of the East African Highlands

    NASA Astrophysics Data System (ADS)

    Taddese, Girma; Saleem, M. A. Mohamed; Astatke, Abyie; Ayaleneh, Wagnew

    2002-09-01

    Extending livestock grazing to the steep slopes has led to unstable grazing systems in the East African Highlands, and new solutions and approaches are needed to ameliorate the current situation. This work was aimed at studying the effect of livestock grazing on plant attributes and hydrological properties. The study was conducted from 1996 to 2000 at the International Livestock Research Institute at Debre Ziet Research Station. Two sites were selected: one at 0-4% slope, and the other at 4-8% slope. The treatments were: (1) no grazing (control); (2) light grazing, 0.6 animal unit months per hectare (aum/ha); (3) moderate grazing, 1.8 aum/ha; (4) heavy grazing, 3.0 aum/ha; (5) very heavy grazing, 4.2 aum/ha; (6) initially plowed and continuously very heavily grazed, 4.2 aum/ha. The result showed that species richness, infiltration rate, bare ground, and soil loss significantly varied with grazing pressure. Species richness was higher in grazed plots compared to nongrazed plots. Biomass yield improved on heavily grazed plots as cow dung accumulated over years. Cynodon dactylon plant species persisted with livestock grazing pressure in both sites. Infiltration rate improved and soil erosion declined in all treatments after the first year.

  13. Optimising stocking rate and grazing management to enhance environmental and production outcomes for native temperate grasslands

    NASA Astrophysics Data System (ADS)

    Badgery, Warwick; Zhang, Yingjun; Huang, Ding; Broadfoot, Kim; Kemp, David; Mitchell, David

    2015-04-01

    Stocking rate and grazing management can be altered to enhance the sustainable production of grasslands but the relative influence of each has not often been determined for native temperate grasslands. Grazing management can range from seasonal rests through to intensive rotational grazing involving >30 paddocks. In large scale grazing, it can be difficult to segregate the influence of grazing pressure from the timing of utilisation. Moreover, relative grazing pressure can change between years as seasonal conditions influence grassland production compared to the relative constant requirements of animals. This paper reports on two studies in temperate native grasslands of northern China and south eastern Australia that examined stocking rate and regionally relevant grazing management strategies. In China, the grazing experiment involved combinations of a rest, moderate or heavy grazing pressure of sheep in spring, then moderate or heavy grazing in summer and autumn. Moderate grazing pressure at 50% of the current district average, resulted in the better balance between maintaining productive and diverse grasslands, a profitable livestock system, and mitigation of greenhouse gases through increased soil carbon, methane uptake by the soil, and efficient methane emissions per unit of weight gain. Spring rests best maintained a desirable grassland composition, but had few other benefits and reduced livestock productivity due to lower feed quality from grazing later in the season. In Australia, the grazing experiment compared continuous grazing to flexible 4- and 20-paddock rotational grazing systems with sheep. Stocking rates were adjusted between systems biannually based on the average herbage mass of the grassland. No treatment degraded the perennial pasture composition, but ground cover was maintained at higher levels in the 20-paddock system even though this treatment had a higher stocking rate. Overall there was little difference in livestock production (e.g. kg lamb/ha), because individual animal performance was greater for continuous grazing than higher intensity grazing systems (4-Paddock and 20-Paddock). Differences in SOC, CO2 flux and erosion were determined by landscape position rather than grazing treatment. To remove the confounding influences of stocking rate and grazing management, the Ausfarm biophysical model, calibrated to the experimental treatments, examined the interaction between grazing management and stocking rates. Ground cover and profitability were similar between grazing systems at lower stocking rates (3 ewes per ha), but continuous grazing had higher profitability and lower ground cover above the optimum stocking rate of 4 ewes per ha. The findings of these two studies suggest that optimising stocking rate is more important than grazing management for a sustainable and profitable grazing system. Grazing management can further enhance environmental outcomes for an optimal stocking rate, but the findings from the Chinese study particularly highlight the need to look at multiple ecosystem services, when optimising systems. The Australian study also suggests the optimum stocking rate is dependent on the intensity of grazing management. Further work is required to understand the influence of landscape on grassland production and how stocking rates and grazing management can be sustainably optimised for different landscape areas to utilise this variation more effectively.

  14. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands

    Treesearch

    J.D. Reeder; G.E. Schuman

    2001-01-01

    We evaluated the effects of livestock grazing on C content of the plant-soil system (to 60 cm) of two semi-arid grasslands: a mixed-grass prairie (grazed 12 years), and a short-grass steppe (grazed 56 years). Grazing treatments included season-long grazing at heavy and light stocking rates, and non-grazed exclosures. Significantly higher soil C (0-30cm) was measured in...

  15. Does pulse-grazing influence within- and between-grazing season dietary quality of yearling steers in shortgrass steppe?

    USDA-ARS?s Scientific Manuscript database

    Pulse-grazing, high stock density with short grazing periods (weeks) followed by long (months to > 1 year) rest periods, is a grazing management strategy posited to decrease preferential selection by cattle and increase utilization of forage, but influences on dietary quality of grazing animals in s...

  16. Effects of grazing intensity and chemical seedhead suppression on steers grazing tall fescue pastures

    USDA-ARS?s Scientific Manuscript database

    The first year of a 2 yr grazing study was conducted to evaluate use of Chaparral™ to suppress reproductive growth in tall fescue grazed with low and moderate grazing intensities. Chaparral applications (0 and 2.0 oz/acre) and grazing intensities were arranged as RCBD with three replications. Variab...

  17. 43 CFR 4130.5 - Free-use grazing permits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Free-use grazing permits. 4130.5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA Authorizing Grazing Use § 4130.5 Free-use grazing permits. (a) A free-use grazing permit shall be issued to...

  18. 43 CFR 4130.5 - Free-use grazing permits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Free-use grazing permits. 4130.5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA Authorizing Grazing Use § 4130.5 Free-use grazing permits. (a) A free-use grazing permit shall be issued to...

  19. 43 CFR 4130.5 - Free-use grazing permits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Free-use grazing permits. 4130.5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA Authorizing Grazing Use § 4130.5 Free-use grazing permits. (a) A free-use grazing permit shall be issued to...

  20. 43 CFR 4130.5 - Free-use grazing permits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Free-use grazing permits. 4130.5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) GRAZING ADMINISTRATION-EXCLUSIVE OF ALASKA Authorizing Grazing Use § 4130.5 Free-use grazing permits. (a) A free-use grazing permit shall be issued to...

  1. Transitions and coexistence along a grazing gradient in the Eurasian steppe

    NASA Astrophysics Data System (ADS)

    Ren, Haiyan; Taube, Friedelm; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin

    2017-04-01

    Ecological resilience theory has often been applied to explain species coexistence and range condition assessment of various community states and to explicate the dynamics of ecosystems. Grazing is a primary disturbance that can alter rangeland resilience by causing hard-to-reverse transitions in grasslands. Yet, how grazing affects the coexistence of plant functional group (PFG) and transition remains unclear. We conducted a six-year grazing experiment in a typical steppe of Inner Mongolia, using seven grazing intensities (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 sheep/ hectare) and two grazing systems (i.e. a continuous annual grazing as in the traditional grazing system, and a mixed grazing system combining grazing and haymaking), to examine grazing effects on plant functional group shifts and species coexistence in the semi-arid grassland system. Our results indicate that the relative richness of dominant bunchgrasses and forbs had a compensatory coexistence at all grazing intensities, and the richness of rhizomatous grasses fluctuated but was persistent. The relative productivity of dominant bunchgrasses and rhizomatous grasses had compensatory interactions with grazing intensity and grazing system. Dominant bunchgrasses and rhizomatous grasses resist grazing effects by using their dominant species functional traits: high specific leaf area and low leaf nitrogen content. Our results suggest that: 1. Stabilizing mechanisms beyond grazing management are more important in determining plant functional group coexistence and ecological resilience. 2. Plant functional group composition is more important in influencing ecosystem functioning than diversity. 3. Ecosystem resilience at a given level is related to the biomass of dominant PFG, which is determined by a balanced shift between dominant species biomass. The relatively even ecosystem resilience along the grazing gradient is attributed to the compensatory interactions of dominant species in their biomass variations. Community stability may rely on constantly regulating internal PFGs composition to maintain functional stability in grassland ecosystems. In the semi-arid grassland system, environmental factors mediate grazing effects on PFG transition, leading to homogeneous grassland dominated by bunchgrass.

  2. [Evaluation and selection of species diversity index under grazing disturbance in alpine mea-dow].

    PubMed

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Hua, Li Min

    2017-06-18

    The research selected the plots of six grazing intensities in an alpine meadow in north-eastern Tibet Plateau in four years (2012-2015) and studied the relation between ten species diversity indexes, including two measured indexes (Richness and Abundance) in field and two indexes of each dominance, evenness, richness, integrated indexes, and grazing intensity as well as grazing time aiming at scientific selection of biodiversity index under grazing disturbance. The results indicated that the abundance was a better index than importance value to calculate biodiversity level because it was more sensitive to grazing disturbance. Dominance indexes, including Berger-Parker and Dominance, were not sensitive to grazing intensity and grazing time because they could not clarify the effect of grazing disturbance on dominant species in plant community. Evenness indexes, including Equitability and Evenness, had not relation with grazing intensity, however, the evenness index had a negative correlation with grazing time and it was not influenced by occasional species as well as the variation coefficient of species abundance. Hereby, the evenness index could be chosen for studying evenness change at temporal scale. Richness indexes, including Menhinick and Margalef, had no relation with grazing time, however, the Margalef index had a positive correlation with grazing intensity and the index was not influenced by occasional species. Integrated index, including Shannon and Simpson indexes, had no relation with grazing intensity, however, the Shannon index had a significant positive correlation with species richness and abundance and the index was not influenced by occasional species, and it significantly increased along grazing time. Hereby, Shannon index could be used as an index of studying plant species diversity in long-term. In ten diversity indexes, only the measured indexes in field, including richness and abundance, were signifi-cantly negatively correlated with grazing intensity, and positively correlated with grazing time, and the two indexes were not influenced by occasional species. Hereby, the combination of species richness and abundance mea-sured in field could be considered as the most important indexes for studying plant species diversity under grazing disturbance. Besides, the selection of biodiversity indexes must consider the spatial-temporal feature of grazing, diversity components and research purpose.

  3. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.

    PubMed

    Wims, C M; Delaby, L; Boland, T M; O'Donovan, M

    2014-01-01

    A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.

  4. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-01-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass (M/C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  5. The propulsive capability of explosives heavily loaded with inert materials

    NASA Astrophysics Data System (ADS)

    Loiseau, J.; Georges, W.; Frost, D. L.; Higgins, A. J.

    2018-07-01

    The effect of inert dilution on the accelerating ability of high explosives for both grazing and normal detonations was studied. The explosives considered were: (1) neat, amine-sensitized nitromethane (NM), (2) packed beds of glass, steel, or tungsten particles saturated with amine-sensitized NM, (3) NM gelled with PMMA containing dispersed glass microballoons, (4) NM gelled with PMMA containing glass microballoons and steel particles, and (5) C-4 containing varying mass fractions of glass or steel particles. Flyer velocity was measured via photonic Doppler velocimetry, and the results were analysed using a Gurney model augmented to include the influence of the diluent. Reduction in accelerating ability with increasing dilution for the amine-sensitized NM, gelled NM, and C-4 was measured experimentally. Variation of flyer terminal velocity with the ratio of flyer mass to charge mass ( M/ C) was measured for both grazing and normally incident detonations in gelled NM containing 10% microballoons by mass and for steel beads saturated with amine-sensitized NM. Finally, flyer velocity was measured in grazing versus normal loading for a number of explosive admixtures. The augmented Gurney model predicted the effect of dilution on accelerating ability and the scaling of flyer velocity with M/ C for mixtures containing low-density diluents. The augmented Gurney model failed to predict the scaling of flyer velocity with M/ C for mixtures heavily loaded with dense diluents. In all cases, normally incident detonations propelled flyers to higher velocity than the equivalent grazing detonations because of material velocity imparted by the incident shock wave and momentum/energy transfer from the slapper used to uniformly initiate the charge.

  6. The relative roles of climate and land use in the degradation of a terrestrial ecosystem: a case study from Kjarardalur, West Iceland

    NASA Astrophysics Data System (ADS)

    Erlendsson, Egill; Gísladóttir, Guðrún

    2016-04-01

    Around AD 870 the virgin environment of Iceland became populated by humans and mammal land herbivores. Since then, the island has lost nearly all of its native birch woodland, resulting in dramatic degradation of landscapes and ecosystems, attributed mainly to over-exploitation of woodlands and late-medieval climate deterioration. As part of policy making in agriculture, a heated debate is ongoing over limitations to sheep grazing in pastures suffering from long-term degradation. In this context the history of climate and land use is of great importance. Those who consider grazing a minimal attribute to land degradation argue that the harsh climate conditions of the little ice age are the primary mechanism behind the current degraded landscape. Others err on the side of caution and propose a careful approach to grazing. This study forms a contribution to the historical context of the impact of grazing upon the Icelandic terrestrial ecosystem. Using the analyses of pollen and spores from coprophilous fungi as principal methods, we present data about historical environmental change from within two different land holdings in Kjarardalur Valley, West Iceland. One dataset comes from within a landholding governed by the chieftain farm Reykholt, the other comes from within the land of the indipendent farm, Norðtunga. In the past the valley was used primarily as a pasture, associated with shielings (organised seasonal grazing). Pollen data from the pasture in Kjarardalur Valley, West Iceland, demonstrate a rapid loss of birch (Betula pubescens) woodland from grazing areas owned by the major farm and institution, Reykholt. The suppressive nature of grazing is demonstrated by the expansion of woodland as soon when animal stocks are reduced, probably as a consequence of the bubonic plague after AD 1402. Resumed exploitation of resources eventually depleted all birch woodland from the Reykholt landholding and precipitated soil erosion. The trajectory of environmental change in the adjacent woodland belonging to the independent farm, Norðtunga is quite different. There woodland and landscape stability recovered from an initial period of decline and survived throughout the 11 centuries of land use and unfavourable climate during the little ice age. After c. AD 1700 a significant rise in livestock numbers, particularly sheep, caused a decline in the remaining woodland at both sites. In the case of the Reykholt land holding this led to the final depletion of birch woodland. The research shows that careful land management, perhaps resulting from secular ownership of land, could have minimised the deterioration of terrestrial ecosystems.

  7. Forage choice in pasturelands: Influence on cattle foraging behavior and performance.

    PubMed

    Villalba, J J; Cabassu, R; Gunter, S A

    2015-04-01

    We determined if combinations of adjacent pastures of 3 forage species led to complementary relationships that influenced animal behavior and performance over monocultures. Grazing bouts, behavioral levels of activity, blood urea N (BUN), chemical composition of feces, BW, and herbage biomass before and after grazing were monitored when beef calves strip-grazed 3 replications of 4 treatments from June 14 through August 23, 2013 (9 animals/treatment). Animals grazed monocultures of: 1) tall fescue (TF), 2) alfalfa (ALF), 3) sainfoin (SAN), or 4) a choice of strips of forages TF, ALF, and SAN (CHOICE). The lowest and greatest incidence of foraging bouts occurred for cattle in CHOICE and SAN, respectively (P < 0.01). Animals in CHOICE grazed SAN > ALF > TF (P < 0.01). Animals on TF and CHOICE took greater number of steps than animals grazing a monocultures of either legume (P = 0.01). Calves in TF had lower BUN (P < 0.01) and fecal CP concentration (P < 0.01) than calves grazing the remaining treatments, whereas animals in SAN showed the greatest concentrations of fecal CP (P < 0.01). Fecal NDF concentration was the greatest for animals grazing TF and the lowest for animals grazing SAN (P < 0.01), whereas fecal ADF concentration was greater for animals grazing TF and SAN than for animals grazing CHOICE and ALF (P = 0.02). Calcium, Mg, and Zn concentrations were the lowest in feces from calves grazing TF and the greatest for calves grazing a monoculture of either legume (P < 0.05). When averaging both periods, animals grazing SAN, ALF, or CHOICE gained more BW than animals grazing TF (P < 0.01). Thus, calves in CHOICE incorporated tall fescue into their diets, were more active, and displayed a lower number of grazing bouts than calves grazing monoculture of either legume. Herbage diversity may lead to levels of ADG comparable to legume monocultures with the potential benefit of maintaining plant species diversity in pasturelands.

  8. 32 CFR 37.895 - How is the final performance report to be sent to the Defense Technical Information Center?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... How is the final performance report to be sent to the Defense Technical Information Center? (a... 32 National Defense 1 2014-07-01 2014-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of...

  9. 32 CFR 37.895 - How is the final performance report to be sent to the Defense Technical Information Center?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... How is the final performance report to be sent to the Defense Technical Information Center? (a... 32 National Defense 1 2011-07-01 2011-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of...

  10. 32 CFR 37.895 - How is the final performance report to be sent to the Defense Technical Information Center?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... How is the final performance report to be sent to the Defense Technical Information Center? (a... 32 National Defense 1 2013-07-01 2013-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of...

  11. 32 CFR 37.895 - How is the final performance report to be sent to the Defense Technical Information Center?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false How is the final performance report to be sent to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of... How is the final performance report to be sent to the Defense Technical Information Center? (a...

  12. Combined effects of climatic gradient and domestic livestock grazing on reptile community structure in a heterogeneous agroecosystem.

    PubMed

    Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron

    2016-01-01

    Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.

  13. Phytoplankton growth balanced by clam and zooplankton grazing and net transport into the low-salinity zone of the San Francisco Estuary

    USGS Publications Warehouse

    Kimmerer, Wim J.; Thompson, Janet K.

    2014-01-01

    We estimated the influence of planktonic and benthic grazing on phytoplankton in the strongly tidal, river-dominated northern San Francisco Estuary using data from an intensive study of the low salinity foodweb in 2006–2008 supplemented with long-term monitoring data. A drop in chlorophyll concentration in 1987 had previously been linked to grazing by the introduced clam Potamocorbula amurensis, but numerous changes in the estuary may be linked to the continued low chlorophyll. We asked whether phytoplankton continued to be suppressed by grazing and what proportion of the grazing was by benthic bivalves. A mass balance of phytoplankton biomass included estimates of primary production and grazing by microzooplankton, mesozooplankton, and clams. Grazing persistently exceeded net phytoplankton growth especially for larger cells, and grazing by microzooplankton often exceeded that by clams. A subsidy of phytoplankton from other regions roughly balanced the excess of grazing over growth. Thus, the influence of bivalve grazing on phytoplankton biomass can be understood only in the context of limits on phytoplankton growth, total grazing, and transport.

  14. Instability of development and fractal architecture in dryland plants as an index of grazing pressure

    USGS Publications Warehouse

    Alados, C.L.; Emlen, J.M.; Wachocki, B.; Freeman, D.C.

    1998-01-01

    Developmental instability has been used to monitor the well-being of natural populations exposed to physical, chemical and biological stressors. Here, we use developmental instability to assess the impact of grazing on Chrysothamnus greenii and Seriphidium novumshrubs, and Oryzopsis hymenoidesgrass, common in the arid intermountain west of the U.S.A. Statistical noise in allometric relations was used as an indicator of developmental instability arising from grazing-induced stress. Unpalatable species that are not grazed (Chrysothamnus greenii) or species that are dormant during the winter–spring grazing period (Oryzopsis hymenoides) show lower allometric variability under high grazing pressure. Palatable species (Seriphidium novum) exhibit high developmental instability under low and high grazing pressure. Grazing pressure imposed by presumably co-adapted wild herbivores enhances developmental stability in species habituated to moderate grazing, likeOryzopsis hymenoides, but stresses plants such as Chrysothamnus greenii that prefer disturbed environments. These grazing effects are probably due to the impact grazing has on competitive relationships and not to the direct action of the herbivore on the plants.

  15. Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem.

    PubMed

    Bai, Gegenbaoleer; Bao, Yuying; Du, Guoxin; Qi, Yunlong

    2013-05-01

    The impact of rest grazing on arbuscular mycorrhizal fungi (AMF) and the interactions of AMF with vegetation and soil parameters under rest grazing condition were investigated between spring and late summer in a desert steppe ecosystem with different grazing managements (rest grazing with different lengths of resting period, banned or continuous grazing) in Inner Mongolia, China. AMF diversity and colonization, vegetation biomass, soil properties and soil phosphatase activity were examined. In rest grazing areas of 60 days, AMF spore number and diversity index at a 0-10 cm soil depth as well as vesicular and hyphal colonization rates were higher compared with other grazing treatments. In addition, soil organic matter and total N contents were highest and soil alkaline phosphatase was most active under 60-day rest grazing. In August and September, these areas also had the highest amount of aboveground vegetation. The results indicated that resting grazing for an appropriate period of time in spring has a positive effect on AMF sporulation, colonization and diversity, and that under rest grazing conditions, AMF parameters are positively correlated with some soil characteristics.

  16. Effect of grazing on methane uptake from Eurasian steppe of China.

    PubMed

    Tang, Shiming; Zhang, Yujuan; Zhai, Xiajie; Wilkes, Andreas; Wang, Chengjie; Wang, Kun

    2018-03-20

    The effects of grazing on soil methane (CH 4 ) uptake in steppe ecosystems are important for understanding carbon sequestration and cycling because the role of grassland soil for CH 4 uptake can have major impacts at the global level. Here, a meta-analysis of 27 individual studies was carried out to assess the response patterns of soil CH 4 uptake to grazing in steppe ecosystems of China. The weighted log response ratio was used to assess the effect size. We found that heavy grazing significantly depressed soil CH 4 uptake by 36.47%, but light and moderate grazing had no significant effects in grassland ecosystem. The response of grassland soil CH 4 uptake to grazing also was found to depend upon grazing intensity, grazing duration and climatic types. The increase in soil temperature and reduced aboveground biomass and soil moisture induced by heavy grazing may be the major regulators of the soil CH 4 uptake. These findings imply that grazing effects on soil CH 4 uptake are highly context-specific and that grazing in different grasslands might be managed differently to help mitigate greenhouse gas emissions.

  17. Riparian-fisheries habitat responses to late spring cattle grazing

    Treesearch

    Warren P. Clary; John W. Kinney

    2000-01-01

    A grazing study was conducted on a cold, mountain meadow riparian system in central Idaho in response to cattle grazing-salmonid fisheries conflicts. Six pastures were established along a 3rd order, 2 to 3 m wide stream to study the effects on fisheries habitat of no grazing, light grazing (20 to 25% use), and medium grazing (35 to 50%) during late June. Most...

  18. Grazing-induced changes in muscle microRNA-206 and -208b expression in association with myogenic gene expression in cattle.

    PubMed

    Horikawa, Akihiko; Ogasawara, Hideki; Okada, Kaito; Kobayashi, Misato; Muroya, Susumu; Hojito, Masayuki

    2015-11-01

    To investigate the roles of microRNAs (miRNAs) in muscle type conversion, the effects of 4 months of grazing on the expression levels of miRNAs and mRNAs associated with skeletal muscle development were analyzed by quantitative RT-PCR using the Biceps femoris muscle of Japanese Shorthorn cattle. After 4 months of grazing, the expression of muscle fiber type-associated miR-208b was higher in the grazed cattle than in the housed. In concordance with the pattern in miR-208b expression, the expression of MyoD, a myogenic regulatory factor associated with the shifting of muscle property to the fast type, was lower in the grazed cattle after 4 months of grazing than in the housed cattle. In addition, the expression of MyHC-2x (a fast type) was higher in the housed cattle than in the grazed, after 4 months of grazing. During the grazing period, miR-206 expression decreased in the housed cattle, whereas expression in the grazed cattle did not change, but rather remained higher than that of the housed cattle even at 3 months after the grazing ended. These miRNAs including miR-206 persisting with muscles of grazed cattle may be associated with regulation of muscle gene expression during skeletal muscle adaptation to grazing. © 2015 Japanese Society of Animal Science.

  19. Herbage intake and ruminal digestion of dairy cows grazed on perennial ryegrass pasture either in the morning or evening.

    PubMed

    Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji

    2016-08-01

    This study aimed to clarify diurnal fluctuations of herbage intake, ruminal fermentation of herbage carbohydrates and proteins, and digesta particulate weight in the rumen of grazing dairy cows. Six ruminally cannulated, non-lactating dairy cows were grazed on perennial ryegrass/white clover pasture either in the morning (04.00 to 08.00 hours) or the evening (16.00 to 20.00 hours). Cows grazed in the evening spent more time (P < 0.01) and consumed more herbage (P < 0.01) compared with cows grazed in the morning. Higher (P < 0.05) daily mean concentrations of total volatile fatty acid, propionate and n-butyrate in rumen fluid were observed for cows grazed in the evening compared with cows grazed in the morning. Although cows grazed in the evening ingested more crude protein compared with cows grazed in the morning, no significant difference in NH3 -N concentration in rumen fluid was observed between them. The ratio of purine-derivative concentration to creatinine concentrations was higher (P < 0.01) in the urine of cows grazed in the evening than in cows grazed in the morning. These results clearly indicated that evening grazing was advantageous for dairy cows compared with morning grazing, in terms of ruminal fermentable energy intake and nitrogen utilization efficiency. © 2015 Japanese Society of Animal Science.

  20. Effects of Yak grazing on plant community characteristics of meadow grasslands in the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Chai, Linrong; Hou, Fujiang; Bowatte, Saman; Cheng, Yunxiang

    2017-04-01

    The Qinghai-Tibetan Plateau (QTP) is an important part of the global terrestrial ecosystem that provides many ecological roles such as biodiversity protection, upper watersheds for large rivers, circulation of materials, energy balance and provision of forage and habitat for livestock and wildlife. Approximately 40% of the QTP is alpine meadow grasslands and yak farming is one of the dominant land use activities. In recent years, the rapid increase in the number of yaks grazing on meadow grasslands has raised concerns about grassland degradation. In this study we examined the effects of yak grazing on the grassland community characteristics to evaluate the degradation potential of alpine meadow in the QTP. The experiment was carried out on three farms, in close proximity to each other, that were operating at different grazing intensities in Maqu county (N35°58', E101°53', altitude 3650m) of the QTP in the Gansu province in China. We tested 4 levels of yak grazing intensities; control (no grazing), light (2.6yak/ha), moderate (3.5yak/ha) and high (6.5yak/ha ). We hypothesized that greater intensity of grazing would significantly impact the plant community characteristics through trampling effects above and below ground. We found grazing significantly (P<0.05) impacted the above and below ground biomass. Above ground biomass was highest in the non grazed area and lowest in the high grazing farm. In contrast, below ground biomass was significantly greater (p<0.05) in the moderate grazing farm compared to the non grazed area. The plant community density and the proportion of edible grass biomass were not significantly affected by the grazing treatments. The species richness was significantly reduced (p<0.05) in the moderate and high intensity grazing farms compared to the non grazed area. The soil moisture at 0-10 cm depth was significantly lower at the high grazing intensity farm compared to the non grazed area and in contrast soil temperature was significantly higher. Our results indicate that increasing the yak grazing pressure affected the plant community characteristics in alpine meadow in the QTP, indicating a potential for grassland degradation to occur in future. Therefore, further comprehensive research is warranted. Key words: Qinghai-Tibetan Plateau; Yak grazing; Alpine meadow; Maqu county

  1. Effect of alternate and simultaneous grazing on endoparasite infection in sheep and cattle.

    PubMed

    Brito, Daiana Lima; Dallago, Bruno Stéfano Lima; Louvandini, Helder; dos Santos, Viviane Rodrigues Verdolin; Torres, Sonia Emília Figueirêdo de Araújo; Gomes, Edgard Franco; do Amarante, Alessandro Francisco Talamini; de Melo, Cristiano Barros; McManus, Concepta Margaret

    2013-01-01

    This experiment was carried out on 8 ha of Panicum maximum cv. Tanzania pastures, with rotational grazing consisting of 7 days of occupation and 21 days of rest. Four treatments were evaluated: cattle grazing alone (BOV), sheep grazing alone (OVI), cattle and sheep grazing simultaneously (SIM) and cattle grazing followed by sheep (alternate - ALT). Twenty heifers and 30 male Santa Inês lambs were used. Fecal egg count (FEC) and fecal cultures were carried out. Blood was also collected to examine red and white cell series, total plasma protein (TPP), albumin and hemoglobin. FEC and estimated nematode pathogenicity index in sheep were lower in the SIM treatment. The Haemonchus spp. proportion was higher in isolated grazing systems. For sheep, mixed grazing was shown to reduce endoparasite infection, and SIM was better than ALT. For cattle, no difference between grazing systems was seen. Therefore, simultaneous grazing (sheep and cattle) may be a tool for reducing the need for anthelmintic treatments in sheep.

  2. Shaping the Herders' "Mental Maps": Participatory Mapping with Pastoralists' to Understand Their Grazing Area Differentiation and Characterization

    NASA Astrophysics Data System (ADS)

    Wario, Hussein T.; Roba, Hassan G.; Kaufmann, Brigitte

    2015-09-01

    Understanding the perception of environmental resources by the users is an important element in planning its sustainable use and management. Pastoralist communities manage their vast grazing territories and exploit resource variability through strategic mobility. However, the knowledge on which pastoralists' resource management is based and their perception of the grazing areas has received limited attention. To improve this understanding and to document this knowledge in a way that can be communicated with `outsiders', we adopted a participatory mapping approach using satellite imagery to explore how Borana pastoralists of southern Ethiopia differentiated and characterized their grazing areas. The Borana herders conceptualized their grazing areas as set of distinctive grazing units each having specific names and characteristics. The precise location and the borders of each grazing unit were identified on the satellite image. In naming of the grazing units, the main differentiating criteria were landforms, vegetation types, prevalence of wildlife species, and manmade features. Based on the dominant soil type, the grazing units were aggregated into seasonal grazing areas that were described using factors such as soil drainage properties, extent of woody cover, main grass species, and prevalence of ecto-parasites. Pastoralists ranking of the seasonal grazing areas according to their suitability for cattle grazing matched with vegetation assessment results on the abundance of desirable fodder varieties. Approaching grazing area differentiation from the pastoralists' perspectives improves the understanding of rangeland characteristics that pastoralists considered important in their grazing management and visualization of their mental representation in digital maps eases communication of this knowledge.

  3. Are There Consistent Grazing Indicators in Drylands? Testing Plant Functional Types of Various Complexity in South Africa’s Grassland and Savanna Biomes

    PubMed Central

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A.; Oomen, Roelof J.; du Preez, Chris C.; Ruppert, Jan C.; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants’ functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa’s grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful for identifying ecological indicators in other ecosystems. PMID:25111802

  4. Are there consistent grazing indicators in Drylands? Testing plant functional types of various complexity in South Africa's Grassland and Savanna Biomes.

    PubMed

    Linstädter, Anja; Schellberg, Jürgen; Brüser, Katharina; Moreno García, Cristian A; Oomen, Roelof J; du Preez, Chris C; Ruppert, Jan C; Ewert, Frank

    2014-01-01

    Despite our growing knowledge on plants' functional responses to grazing, there is no consensus if an optimum level of functional aggregation exists for detecting grazing effects in drylands. With a comparative approach we searched for plant functional types (PFTs) with a consistent response to grazing across two areas differing in climatic aridity, situated in South Africa's grassland and savanna biomes. We aggregated herbaceous species into PFTs, using hierarchical combinations of traits (from single- to three-trait PFTs). Traits relate to life history, growth form and leaf width. We first confirmed that soil and grazing gradients were largely independent from each other, and then searched in each biome for PFTs with a sensitive response to grazing, avoiding confounding with soil conditions. We found no response consistency, but biome-specific optimum aggregation levels. Three-trait PFTs (e.g. broad-leaved perennial grasses) and two-trait PFTs (e.g. perennial grasses) performed best as indicators of grazing effects in the semi-arid grassland and in the arid savanna biome, respectively. Some PFTs increased with grazing pressure in the grassland, but decreased in the savanna. We applied biome-specific grazing indicators to evaluate if differences in grazing management related to land tenure (communal versus freehold) had effects on vegetation. Tenure effects were small, which we mainly attributed to large variability in grazing pressure across farms. We conclude that the striking lack of generalizable PFT responses to grazing is due to a convergence of aridity and grazing effects, and unlikely to be overcome by more refined classification approaches. Hence, PFTs with an opposite response to grazing in the two biomes rather have a unimodal response along a gradient of additive forces of aridity and grazing. The study advocates for hierarchical trait combinations to identify localized indicator sets for grazing effects. Its methodological approach may also be useful for identifying ecological indicators in other ecosystems.

  5. Data resources for range-wide assessment of livestock grazing across the sagebrush biome

    USGS Publications Warehouse

    Assal, T.J.; Veblen, K.E.; Farinha, M.A.; Aldridge, Cameron L.; Casazza, Michael L.; Pyke, D.A.

    2012-01-01

    The data contained in this series were compiled, modified, and analyzed for the U.S. Geological Survey (USGS) report "Range-Wide Assessment of Livestock Grazing Across the Sagebrush Biome." This report can be accessed through the USGS Publications Warehouse (online linkage: http://pubs.usgs.gov/of/2011/1263/). The dataset contains spatial and tabular data related to Bureau of Land Management (BLM) Grazing Allotments. We reviewed the BLM national grazing allotment spatial dataset available from the GeoCommunicator National Integrated Land System (NILS) website in 2007 (http://www.geocommunicator.gov). We identified several limitations in those data and learned that some BLM State and/or field offices had updated their spatial data to rectify these limitations, but maintained the data outside of NILS. We contacted appropriate BLM offices (State or field, 25 in all) to obtain the most recent data, assessed the data, established a data development protocol, and compiled data into a topologically enforced dataset throughout the area of interest for this project (that is, the pre-settlement distribution of Greater Sage-Grouse in the Western United States). The final database includes three spatial datasets: Allotments (BLM Grazing Allotments), OUT_Polygons (nonallotment polygons used to ensure topology), and Duplicate_Polygon_Allotments. See Appendix 1 of the aforementioned report for complete methods. The tabular data presented here consists of information synthesized by the Land Health Standard (LHS) analysis (Appendix 2), and data obtained from the BLM Rangeland Administration System (http://www.blm.gov/ras/). In 2008, available LHS data for all allotments in all regions were compiled by BLM in response to a Freedom of Information Act (FOIA) request made by a private organization. The BLM provided us with a copy of these data. These data provided three major types of information that were of interest: (1) date(s) (if any) of the most recent LHS evaluation for each allotment; (2) whether if evaluated, each region-specific standard (3–8 LHS depending on region) had been met on a given allotment; and (3) whether livestock contributed to any of these standards not being met. A description of how we processed the original data to prepare for analysis is described in Appendix 2, and the synthesized dataset can be found in the table "lhs_x_walk." Permitted use dates, livestock type (horse, sheep or cattle), number of livestock, and Animal Unit Months [the number of animal units (1,000-pound animal equivalents) that can be grazed for 31 days with the available forage in a sustainable manner] are the legal maximum grazing amounts for a given allotment, and legal adjustments to these numbers occur infrequently. We summarized permitted use by BLM allotment in the table "Permitted_Use." Billed use records are used for calculations of permittees' annual grazing bills. We summarized billed use by allotment for BLM grazing year in the table "Billed_Use." All three tables can be joined with the allotment spatial data in a geographic information system (GIS) environment, using the IDENT attribute as the primary key.

  6. Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism.

    PubMed

    Papaleo Mazzucco, J; Goszczynski, D E; Ripoli, M V; Melucci, L M; Pardo, A M; Colatto, E; Rogberg-Muñoz, A; Mezzadra, C A; Depetris, G J; Giovambattista, G; Villarreal, E L

    2016-04-01

    Grazing steers from Angus and Hereford breeds, their cross-breeds and a three-way cross-breed (Limousin × Angus-Hereford) were measured for growth, carcass and meat quality traits. Breed effects were studied, and the association of SNPs with fat deposition and fatty acid (FA) composition (leptin, melanocortin-4 receptor, stearoyl-CoA desaturase, FA synthase and thyroglobulin) was tested. Limousin cross-breed showed the greatest final body weight, ultrasound rib eye area, dressing percentage, carcass and leg length, and the lowest backfat thickness and intramuscular fat content. Genetic groups had similar pH, shear force, cooking loss, L* and b* and n-6:n-3 ratio. Meat from 1/2-Angus presented greater a* than Limousin cross-breed. Whereas Angus had the highest total SFA content, Hereford had the lowest total SFA and the highest total MUFA. Limousin cross-breed had greater content of several individual PUFAs, total PUFA, n-6 and n-3 FA than Angus and 1/2-Angus. Leptin and FA synthase were associated with some FAs, supporting their influence over fat metabolism for grazing animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle.

    PubMed

    Boyard, C; Barnouin, J; Gasqui, P; Vourc'h, G

    2007-07-01

    Although Ixodes ricinus ticks are mainly associated with woodland, they are also present in open habitat such as pastures. The distribution of nymphal I. ricinus was monitored by drag sampling the vegetation in May-June 2003 on 61 grazed permanent pastures for cattle located in central France. After selecting explanatory variables from among a set of 155, tick abundance was modelled on the perimeter of the pasture using a negative binomial model that took into account data overdispersion. An abundant tree layer at the perimeter of the pasture associated with a high humidity before sampling greatly enhanced the average number of captured I. ricinus nymphs. The presence of apple or cherry trees around the pasture perimeter, the presence of trees or bushes at the pasture edge, woodland around the pasture and a high number of I. ricinus nymphs in the nearest woodland to the pasture were also favourable to nymph abundance in the pasture. The study highlighted that woodland vegetation associated with humidity and the presence of attractive foraging areas for tick hosts around the pasture played a key role in the abundance of I. ricinus. Finally, the results raised the question of whether and how transfer of ticks between woodland and grazed pastures occurs.

  8. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.

    PubMed

    Bettarel, Y; Amblard, C; Sime-Ngando, T; Carrias, J-F; Sargos, D; Garabétian, F; Lavandier, P

    2003-02-01

    Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.

  9. A Survey of the Educational and Training Needs of the Pastoral Industry of South Australia. Final Report.

    ERIC Educational Resources Information Center

    Raftery, John; And Others

    In late 1979 and 1980 a survey was conducted of 207 pastoral lease owners and managers in the north of South Australia to determine their education and training requirements. The pastoral industry grazes sheep and cattle on native pastures and shrubs, is beset by widely fluctuating rainfall and production, sells its products of wool and meat on a…

  10. 43 CFR 4110.3 - Changes in grazing preference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Changes in grazing preference. 4110.3... Qualifications and Preference § 4110.3 Changes in grazing preference. (a) The authorized officer will periodically review the grazing preference specified in a grazing permit or lease and make changes in the...

  11. Fall and spring grazing influence fire ignitability and initial spread in shrub steppe communities

    USDA-ARS?s Scientific Manuscript database

    The interaction between grazing and fire influences ecosystems around the world. However, relatively little is known about the influence of grazing on fire, in particular ignition and initial spread and how it varies by grazing management differences. We investigated effects of fall grazing, spring...

  12. 36 CFR 293.7 - Grazing of livestock.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Grazing of livestock. 293.7...-PRIMITIVE AREAS § 293.7 Grazing of livestock. (a) The grazing of livestock, where such use was established..., shall be permitted to continue under the general regulations covering grazing of livestock on the...

  13. 76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...

  14. The impact of grazing on plant fractal architecture and fitness of a mediterranean shrub (Anthyllis cytisoidesL.)

    USGS Publications Warehouse

    Escos, J.; Alados, C.L.; Emlen, J.M.

    1997-01-01

    1. We examined natural grazing by livestock (sheep and goats) on Albaida Anthyllis cytisoides L. with the aim of determining whether variation in the allometric relationships between plant parts provides a sensitive indicator of the impact of grazing.2. The intra-individual variation in translatory symmetry with scale and increased complexity of fractal structures reflect environmental disturbance under heavy grazing pressure and lack of grazing.3. Fitness consequences of grazing were also investigated. Grazing promotes growth and adult survival, and a drop in seed production as a consequence of consumption. In spite of that, total inclusive fitness (population rate of change) tends to increase with grazing.4. Moderate grazing, while promoting growth, also enhances stability of vegetative structures. The favourable effect of moderate levels of herbivory on A. cytisoides is reflected in the homeostatic maintenance of its translatory symmetry and in the increased complexity of its fractal structures.

  15. The occurrence and significance to animal health of salmonellas in sewage and sewage sludges.

    PubMed Central

    Jones, P. W.; Rennison, L. M.; Lewin, V. H.; Redhead, D. L.

    1980-01-01

    A total of 882 samples of settled sewage, sewage sludges and final effluents from eight sewage treatment plants were examined for the presence of salmonellas. Of these samples 68% were positive, isolations being made most frequently from settled sewage (85%), raw sludge (87%) and anaerobically digested sludge (96%). Fewer isolations were made from final effluent (24%) and processed sludges (58%). Samples usually contained less than 200 salmonellas/100 ml and arguments are presented that such concentrations should not lead to disease in animals if suitable grazing restrictions are followed. PMID:6985928

  16. Grazing impacts on soil carbon fractions and soil water dynamics in subalpine ecosystems

    NASA Astrophysics Data System (ADS)

    Gill, R. A.

    2005-12-01

    The mountain lands of the intermountain west are vital to the wellbeing of human communities in the adjacent valleys, providing these communities with water, important summer forage for wildlife and domestic livestock, and possibly the sequestration of anthropogenic carbon. In this work, I build on a 90-year old grazing experiment in mountain meadows on the Wasatch Plateau in central Utah. Long-term grazing significantly reduced aboveground net primary production (ANPP) in all years compared with plots within grazing exclosures, even though these plots were not grazed during the study period. Livestock grazing had no impacts on total soil C or particulate organic matter stocks, although grazing did alter soil C chemistry and soil water dynamics. Grazing significantly increased the proportion of total soil C stocks that were potentially mineralizable in the laboratory. Volumetric soil moisture was consistently higher in ungrazed plots than grazed plots. In addition, there was a 0.5-1% increase in ^13C in grazed plots compared to paired ungrazed plots, supporting the conclusion that grazing significantly increases periods of water stress. Because grazing has resulted in an accumulation of easily decomposable organic material, if temperatures warm and summer precipitation increases as is anticipated, these soils may become net sources of carbon to the atmosphere creating a positive feedback between climate change and atmospheric CO2.

  17. Effect of water-soluble carbohydrate content in orchardgrass pasture on grazing time and rumen fermentation in dairy cows.

    PubMed

    Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji

    2016-09-01

    Two experiments were conducted to clarify the effect of water-soluble carbohydrate (WSC) content in orchardgrass pasture on the diurnal distribution of grazing time. Six ruminally cannulated, non-lactating dairy cows were grazed on either of two pastures with different orchardgrass cultivars containing low WSC (LWSC; cultivar: 'Hokkai 28') or high WSC (HWSC; cultivar: 'Harunemidori'). The cows were grazed in morning and evening sessions in experiment 1, whereas the cows were grazed throughout the day in experiment 2. In experiment 1, grazing time of the cows on HWSC was longer than that of the cows on LWSC (P < 0.01). This difference was larger in the morning session than in the evening session (pasture × grazing session: P < 0.05). Effects on herbage intake were similar to those on grazing time. In experiment 2, daily total grazing time was longer for the cows on HWSC than for those on LWSC (P < 0.05). The cows on HWSC spent a longer time grazing than those on LWSC in the morning between 03.00 and 09.00 hours (P < 0.01). The results indicated that prolonged grazing time in the period between dawn and early morning could increase daily herbage intake in cows grazed on pastures of orchardgrass cultivars with high-WSC content. © 2015 Japanese Society of Animal Science.

  18. Minnesota Deaf-Blind Technical Assistance Project. Final Report.

    ERIC Educational Resources Information Center

    Kloos, Eric

    This final report describes activities and accomplishments of the 3-year federally supported Minnesota Deaf-Blind Technical Assistance Project. The project provided training and technical assistance, information sharing, and support services to families of children with deaf-blindness. Activities and accomplishments included: collaboration with…

  19. 75 FR 56857 - Pilot, Flight Instructor, and Pilot School Certification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... of part 141. Discussion of Technical Amendment Section 141.5(d) establishes the quality of training... Certification AGENCY: Federal Aviation Administration, DOT. ACTION: Final rule; technical amendment. SUMMARY: The Federal Aviation Administration (FAA) is making minor technical changes to a final rule published...

  20. 36 CFR 222.4 - Changes in grazing permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RANGE MANAGEMENT Grazing and Livestock Use on the National Forest System § 222.4 Changes in grazing... use permits in whole or in part as follows: (1) Cancel permits where lands grazed under the permit are... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Changes in grazing permits...

  1. 25 CFR 161.207 - What livestock are authorized to graze?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What livestock are authorized to graze? 161.207 Section... LANDS GRAZING PERMITS General Provisions § 161.207 What livestock are authorized to graze? The following livestock are authorized to graze on the Navajo Partitioned Lands: horses, cattle, sheep, goats, mules...

  2. Impact of Daily Grazing Time on Dairy Cow Welfare—Results of the Welfare Quality® Protocol

    PubMed Central

    Wagner, Kathrin; Brinkmann, Jan; March, Solveig; Hinterstoißer, Peter; Warnecke, Sylvia; Schüler, Maximilian; Paulsen, Hans Marten

    2017-01-01

    Simple Summary It is often presumed that grazing dairy cows experience better welfare than those that are housed all year round. But is this really the case? In this study, we wanted to find out whether the daily amount of time cows spent on pasture affected their welfare. We used the Welfare Quality® assessment protocol for dairy cattle to measure cow welfare on 32 farms (organic and conventional) once in winter (=housing period) and once in summer (=grazing period, if provided). Farms were grouped according to daily grazing time (‘minor/zero’, ‘medium’, and ‘high’). In farms with grazing, overall welfare improved from winter to summer, whereas the situation in minor/zero grazing farms remained largely unchanged. While we found no overall effect of the amount of daily grazing time on cow welfare, the individual measures “% of cows with hairless patches” and “% of lame cows” received better scores in the high grazing farms. However, other measures e.g., related to water provision, scored worse in the grazing farms in summer as opposed to winter. We conclude that grazing offers a high potential to enhance dairy cow welfare during summer. However, beneficial effects are not guaranteed when the overall management does not satisfy the cows´ needs. Abstract Grazing provides livestock better opportunities to act out their species-specific behavior compared to restrictive stable conditions. The aim of the present study was to examine the effects of daily grazing time on welfare of dairy cows in organic and conventional farms based on the Welfare Quality® assessment protocol for dairy cattle (WQ®). Therefore, we applied the WQ® on 32 dairy farms (classified in 3 groups: Group 0, minor/zero grazing, n = 14; Group 1, medium grazing, n = 10; Group 2, high grazing, n = 8). We assessed the status of animal welfare once in winter and once in summer. For statistical analyses we used mixed models for repeated measures, with group, season, and their interaction as fixed factors. At the WQ® criteria level, five out of nine examined criteria improved in farms with grazing between winter and summer. In contrast, the welfare situation in minor/zero grazing farms remained largely unchanged. At the level of WQ® measures, only the individual parameters “% of cows with hairless patches” and “% of lame cows” were affected positively by high grazing. Grazing offers a potential to enhance welfare of dairy cows during the summer season, while beneficial effects are not guaranteed when management does not satisfy the animals´ needs. PMID:29271918

  3. Drivers of Bird Species Richness within Moist High-Altitude Grasslands in Eastern South Africa

    PubMed Central

    Smit-Robinson, Hanneline; Underhill, Les G.; Altwegg, Res

    2016-01-01

    Moist high-altitude grasslands in South Africa are renowned for high avifaunal diversity and are priority areas for conservation. Conservation management of these areas conflicts with management for other uses, such as intensive livestock agriculture, which requires annual burning and leads to heavy grazing. Recently the area has become target for water storage schemes and renewable electricity energy projects. There is therefore an urgent need to investigate environmental factors and habitat factors that affect bird species richness in order to optimise management of those areas set aside for conservation. A particularly good opportunity to study these issues arose at Ingula in the eastern South African high-altitude grasslands. An area that had been subject to intense grazing was bought by the national power utility that constructed a pumped storage scheme on part of the land and set aside the rest for bird conservation. Since the new management took over in 2005 the area has been mostly annually burned with relatively little grazing. The new management seeks scientific advice on how to maintain avian species richness of the study area. We collected bird occurrence and vegetation data along random transects between 2006 and 2010 to monitor the impact of the new management, and to study the effect of the habitat changes on bird species richness. To achieve these, we convert bird transect data to presence only data to investigate how bird species richness were related to key transect vegetation attributes under this new grassland management. First we used generalised linear mixed models, to examine changes in vegetation grass height and cover and between burned and unburned habitats. Secondly, we examined how total bird species richness varied across seasons and years. And finally we investigated which habitat vegetation attributes were correlated with species richness of a group of grassland depended bird species only. Transects that were burned showed a larger decrease in vegetation cover compared to transects that were not burned. Grass height increased over time. Bird species richness was highest in summer compared to other seasons and increased over time. Overall bird species richness increased over the three summer surveys but species richness of birds that prefer heavily grazed habitat showed little change over the three years. Changes in bird species richness were best explained by the model with grass height for combined species richness of grassland depended birds but also for birds that prefer heavy grazing when treated alone. On one hand birds that prefer moderate grazing were best explained by a null model. However, overall bird species richness was better positively correlated to grass height than grass cover or dead grass. We conclude that frequent burning alone with relatively reduced grazing led to higher but less dense grass, which benefited some species and disadvantaged others. We suggest that management of this grassland use combination of fire and grazing and leave some areas unburned to accommodates birds of various habitat needs. PMID:27706186

  4. Drivers of Bird Species Richness within Moist High-Altitude Grasslands in Eastern South Africa.

    PubMed

    Maphisa, David H; Smit-Robinson, Hanneline; Underhill, Les G; Altwegg, Res

    2016-01-01

    Moist high-altitude grasslands in South Africa are renowned for high avifaunal diversity and are priority areas for conservation. Conservation management of these areas conflicts with management for other uses, such as intensive livestock agriculture, which requires annual burning and leads to heavy grazing. Recently the area has become target for water storage schemes and renewable electricity energy projects. There is therefore an urgent need to investigate environmental factors and habitat factors that affect bird species richness in order to optimise management of those areas set aside for conservation. A particularly good opportunity to study these issues arose at Ingula in the eastern South African high-altitude grasslands. An area that had been subject to intense grazing was bought by the national power utility that constructed a pumped storage scheme on part of the land and set aside the rest for bird conservation. Since the new management took over in 2005 the area has been mostly annually burned with relatively little grazing. The new management seeks scientific advice on how to maintain avian species richness of the study area. We collected bird occurrence and vegetation data along random transects between 2006 and 2010 to monitor the impact of the new management, and to study the effect of the habitat changes on bird species richness. To achieve these, we convert bird transect data to presence only data to investigate how bird species richness were related to key transect vegetation attributes under this new grassland management. First we used generalised linear mixed models, to examine changes in vegetation grass height and cover and between burned and unburned habitats. Secondly, we examined how total bird species richness varied across seasons and years. And finally we investigated which habitat vegetation attributes were correlated with species richness of a group of grassland depended bird species only. Transects that were burned showed a larger decrease in vegetation cover compared to transects that were not burned. Grass height increased over time. Bird species richness was highest in summer compared to other seasons and increased over time. Overall bird species richness increased over the three summer surveys but species richness of birds that prefer heavily grazed habitat showed little change over the three years. Changes in bird species richness were best explained by the model with grass height for combined species richness of grassland depended birds but also for birds that prefer heavy grazing when treated alone. On one hand birds that prefer moderate grazing were best explained by a null model. However, overall bird species richness was better positively correlated to grass height than grass cover or dead grass. We conclude that frequent burning alone with relatively reduced grazing led to higher but less dense grass, which benefited some species and disadvantaged others. We suggest that management of this grassland use combination of fire and grazing and leave some areas unburned to accommodates birds of various habitat needs.

  5. The influence of grazing on surface climatological variables of tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Seastedt, T. R.; Dyer, M. I.; Turner, Clarence L.

    1992-01-01

    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables.

  6. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China.

    PubMed

    Zhang, Jing; Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Lian, Jie; Yue, Xiyuan

    2017-05-01

    Understanding the responses of vegetation characteristics and soil properties to grazing disturbance is useful for grassland ecosystem restoration and management in semiarid areas. Here, we examined the effects of long-term grazing on vegetation characteristics, soil properties, and their relationships across four grassland types (meadow, Stipa steppe, scattered tree grassland, and sandy grassland) in the Horqin grassland, northern China. Our results showed that grazing greatly decreased vegetation cover, aboveground plant biomass, and root biomass in all four grassland types. Plant cover and aboveground biomass of perennials were decreased by grazing in all four grasslands, whereas grazing increased the cover and biomass of shrubs in Stipa steppe and of annuals in scattered tree grassland. Grazing decreased soil carbon and nitrogen content in Stipa steppe and scattered tree grassland, whereas soil bulk density showed the opposite trend. Long-term grazing significantly decreased soil pH and electrical conductivity (EC) in annual-dominated sandy grassland. Soil moisture in fenced and grazed grasslands decreased in the following order of meadow, Stipa steppe, scattered tree grassland, and sandy grassland. Correlation analyses showed that aboveground plant biomass was significantly positively associated with the soil carbon and nitrogen content in grazed and fenced grasslands. Species richness was significantly positively correlated with soil bulk density, moisture, EC, and pH in fenced grasslands, but no relationship was detected in grazed grasslands. These results suggest that the soil carbon and nitrogen content significantly maintains ecosystem function in both fenced and grazed grasslands. However, grazing may eliminate the association of species richness with soil properties in semiarid grasslands.

  7. Micro-zooplankton grazing as a means of fecal bacteria removal in stormwater BMPs.

    PubMed

    Burtchett, Jade M; Mallin, Michael A; Cahoon, Lawrence B

    2017-06-01

    A priority for environmental managers is control of stormwater runoff pollution, especially fecal microbial pollution. This research was designed to determine if fecal bacterial grazing by micro-zooplankton is a significant control on fecal bacteria in aquatic best management practices (BMPs); if grazing differs between a wet detention pond and a constructed wetland; and if environmental factors enhance grazing. Both 3-day grazing tests and 24-h dilution assays were used to determine grazing differences between the two types of BMP. Micro-zooplankton grazing was a stronger bacteria removal mechanism in stormwater wetlands rich in aquatic vegetation compared to a standard wet detention pond, although grazing was important in detention ponds as well. Our experiments indicated that the majority of grazers that fed on fecal bacteria were <20 μm in size. Grazing rates were positively correlated with fecal coliform abundance and increased water temperatures. Enumeration of grazers demonstrated that protozoans were significantly more abundant among wetland vegetation than in open water, and open wetland waters contained more flagellates and dinoflagellates than open wet detention pond waters. Grazing on fecal bacteria in BMPs is enhanced by aquatic vegetation, and grazing in aquatic BMPs in warmer climates should be greater than in cooler climates.

  8. Transcriptome responses in alfalfa associated with tolerance to intensive animal grazing

    PubMed Central

    Wang, Junjie; Zhao, Yan; Ray, Ian; Song, Mingzhou

    2016-01-01

    Tolerance of alfalfa (Medicago sativa L.) to animal grazing varies widely within the species. However, the molecular mechanisms influencing the grazing tolerant phenotype remain uncharacterized. The objective of this study was to identify genes and pathways that control grazing response in alfalfa. We analyzed whole-plant de novo transcriptomes from grazing tolerant and intolerant populations of M. sativa ssp. falcata subjected to grazing by sheep. Among the Gene Ontology terms which were identified as grazing responsive in the tolerant plants and differentially enriched between the tolerant and intolerant populations (both grazed), most were associated with the ribosome and translation-related activities, cell wall processes, and response to oxygen levels. Twenty-one grazing responsive pathways were identified that also exhibited differential expression between the tolerant and intolerant populations. These pathways were associated with secondary metabolite production, primary carbohydrate metabolic pathways, shikimate derivative dependent pathways, ribosomal subunit composition, hormone signaling, wound response, cell wall formation, and anti-oxidant defense. Sequence polymorphisms were detected among several differentially expressed homologous transcripts between the tolerant and intolerant populations. These differentially responsive genes and pathways constitute potential response mechanisms for grazing tolerance in alfalfa. They also provide potential targets for molecular breeding efforts to develop grazing-tolerant cultivars of alfalfa. PMID:26763747

  9. Profitability of grazing versus mechanical forage harvesting on New York dairy farms.

    PubMed

    Gloy, B A; Tauer, L W; Knoblauch, W

    2002-09-01

    The profitability of rotational grazing versus mechanical harvesting of forages was estimated using data from 237 nongrazing and 57 grazing farms participating in the New York farm business summary program in the year 2000. The objective was to perform an empirical comparison of the profitability of grazing versus mechanical forage harvesting systems. A regression analysis technique that controls for treatment selection bias is used to determine the impact of grazing on the rate of return on assets. This is accomplished by joint maximum likelihood estimation of a probit adoption function and a profit function. The results indicate that treatment selection does not have an important impact on the estimate of the profitability of grazing. There were wide ranges and overlap of profitability among herds using the two systems. However, other things equal, farmers utilizing grazing systems were at least if not more profitable than farmers not using grazing systems. After controlling for the factors influencing the decision to graze, we found that herd size, rate of milk production per cow, and prices received for milk have a strong positive impact on profitability. Farmers who perceive potential lifestyle benefits that might be obtained by implementing a grazing system likely do not have to pay an income penalty for adopting a grazing system.

  10. 77 FR 29247 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ...). ACTION: Final rule; technical amendments. SUMMARY: This final rule makes technical amendments to Federal... advanced air bag requirements. As written now, the general warning label requirements contain an explicit... equipment requirements for restraint systems. This document makes technical amendments to several of the...

  11. Productive and Economic Responses in Grazing Dairy Cows to Grain Supplementation on Family Farms in the South of Brazil

    PubMed Central

    Pinheiro Machado Filho, Luiz Carlos; D’Ávila, Leandro Martins; da Silva Kazama, Daniele Cristina; Bento, Lauana Luiza; Kuhnen, Shirley

    2014-01-01

    Simple Summary In the South of Brazil, as in many regions where dairy production is pasture-based, the use of concentrate to supplement cattle diet frequently does not follow technical guidelines. This may result in inefficient management, with increased cost of production and lower pasture intake. In this study, small amounts of an energy supplement proved to be more economically efficient than a high protein commercial concentrate, despite a decrease in milk productivity. The cows were able to compensate for the lower levels of protein in the supplement with selective grazing for high protein plants. The quality of the milk was unaffected by the treatment. Abstract Pasture-based dairy production has been a major source of income for most family farms in the south of Brazil. Increasing milk prices have spurred an increase in grain supplementation, which has been poorly implemented, resulting in low levels of efficiency. To evaluate the consequences of supplementation on milk production and composition, grazing behavior and economic return, the widely used grain management system (CC-commercial concentrate, containing 21% CP, offered at 1 kg per 3.7 L of milk) was compared with an energy supplement (GC-ground corn, with 9.5% CP, offered at 0.4% of live weight). Ten Holstein cows were paired into two groups, and subjected to the two treatments in a crossover design. The cows remained in the same grazing group, and the grain supplement was offered individually at milking time and consumed completely. Each experimental period lasted 14 days, with 10 days for diet adaptation and four days for data collection; individual milk production and samples were collected to determine levels of fat, protein, lactose, carotenoids, vitamin A and N-urea. Grazing behavior was observed (scans every 5 min) in the first 4 h after the morning milking, and chemical composition of hand plucked samples of forage were measured. The cost of the supplement and profitability per treatment were calculated. Cows supplemented with GC consumed herbage with higher crude protein (CP: 16.23 vs. 14.62%; p < 0.05), had higher biting rate (44.21 vs. 39.54 bites/min; p < 0.03) and grazing time (22.20 vs. 20.55 scans; p < 0.05) than when receiving CC. There were no differences in milk composition between treatments (p > 0.05). However, higher concentrations of β-carotene and total carotenoids were detected in the milk of cows at 70–164 days of lactation, compared to <70 days of lactation (p < 0.05). Milk production was higher (13.19 vs. 11.59 kg/day; p < 0.05) when cows consumed CC, but resulted in lower profitability compared to GC (US$ 4.39 vs. US$ 4.83/cow per day). Our results show that higher productivity does not necessarily improve profitability. Cows receiving supplement with lower levels of protein were able to adjust their grazing behavior to meet their protein needs and this level of diet modification did not alter milk composition. PMID:26480318

  12. Effects of Introduced Grasses, Grazing and Fire on Regional Biogeochemistry in Hawaii

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Asner, G. P.

    2003-12-01

    African grasses introduced for grazing have expanded in geographic extent in mesic tropical systems of Hawaii and other regions of the world. Grassland expansion leads to increases in fire frequency, speeding woodland and forest destruction at greater geographic scales than occurs with grazing alone. At Pu'uwa'awa'a Ranch, Hawaii, restoration of the native woodland habitat has become a critical objective following the introduction and dominance of the African grass species Pennisetum clandestinum and P. setaceum. Grazing and grass-fueled fires have destroyed over 60% of the original forest. To stabilize these communities, managers must balance the combined effects of grazing and fire. Grazing reduces the recruitment success of native tropical trees, but grazing also reduces fire risk by moderating grass fuel conditions and restricting the extent and density of the most flammable grass species. Our study focuses on two questions: (1) What grazing intensity is necessary to change the fire conditions of a region given in situ soil and precipitation conditions? (2) Have long-term grazing conditions altered soil carbon and nitrogen stocks? We used high resolution imaging spectrometer data to measure photosynthetic and non-photosynthetic vegetation cover, analysis of soil carbon and nitrogen stocks, and measurements of plant community composition along gradients in grazing intensity. P. setaceum, the more flammable alien grass, was dominant where grazing intensity was low and at lower elevations where precipitation is low. The less flammable grass, P. clandestinum, occurred in regions of high grazing intensity and higher precipitation. Grazing influenced the dominance of P. setaceum and P. clandestinum only where precipitation and soil characteristics were suitable for both grasses to occur. At suitable sites, grazing reduced fire conditions through a species sift towards P. clandestinum. Soil carbon and nitrogen stocks decreased with grazing intensity, which was correlated with the fractional cover of P. setaceum. Soil carbon also increased with precipitation. These results show how grazing impacts fire conditions and soil chemistry through changes in species composition, and not through removal of carbon inputs (direct removal of biomass).

  13. Grazing Affects Exosomal Circulating MicroRNAs in Cattle

    PubMed Central

    Muroya, Susumu; Ogasawara, Hideki; Hojito, Masayuki

    2015-01-01

    Circulating microRNAs (c-miRNAs) are associated with physiological adaptation to acute and chronic aerobic exercise in humans. To investigate the potential effect of grazing movement on miRNA circulation in cattle, here we profiled miRNA expression in centrifugally prepared exosomes from the plasma of both grazing and housed Japanese Shorthorn cattle. Microarray analysis of the c-miRNAs resulted in detection of a total of 231 bovine exosomal miRNAs in the plasma, with a constant expression level of let-7g across the duration and cattle groups. Expression of muscle-specific miRNAs such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-499 were undetectable, suggesting the mildness of grazing movement as exercise. According to validation by quantitative RT-PCR, the circulating miR-150 level in the grazing cattle normalized by the endogenous let-7g level was down-regulated after 2 and 4 months of grazing (P < 0.05), and then its levels in housed and grazing cattle equalized when the grazing cattle were returned to a housed situation. Likewise, the levels of miR-19b, miR-148a, miR-221, miR-223, miR-320a, miR-361, and miR-486 were temporarily lowered in the cattle at 1 and/or 2 month of grazing compared to those of the housed cattle (P < 0.05). In contrast, the miR-451 level was up-regulated in the grazing cattle at 2 months of grazing (P = 0.044). The elevation of miR-451 level in the plasma was coincident with that in the biceps femoris muscle of the grazing cattle (P = 0.008), which suggests the secretion or intake of miR-451 between skeletal muscle cells and circulation during grazing. These results revealed that exosomal c-miRNAs in cattle were affected by grazing, suggesting their usefulness as molecular grazing markers and functions in physiological adaptation of grazing cattle associated with endocytosis, focal adhesion, axon guidance, and a variety of intracellular signaling, as predicted by bioinformatic analysis. PMID:26308447

  14. Impact of processing on in vitro digestion of milk from grazing organic and confined conventional herds

    USDA-ARS?s Scientific Manuscript database

    Debate on differences between milk from grazing and non-grazing cows has not addressed the effects that standard processing may have on milk digestibility. In this study, raw milk from grazing organic (ORG) and non-grazing conventional (CONV) herds was adjusted to 0 and 3.25% fat and processed as fo...

  15. 7 CFR 760.305 - Eligible grazing losses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... grazing losses. (a) A grazing loss due to drought is eligible for LFP only if the grazing loss for the... of grazing land or pastureland for the county, rated by the U.S. Drought Monitor as having a: (i) D2 (severe drought) intensity in any area of the county for at least 8 consecutive weeks during the normal...

  16. 7 CFR 760.305 - Eligible grazing losses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... grazing losses. (a) A grazing loss due to drought is eligible for LFP only if the grazing loss for the... of grazing land or pastureland for the county, rated by the U.S. Drought Monitor as having a: (i) D2 (severe drought) intensity in any area of the county for at least 8 consecutive weeks during the normal...

  17. 7 CFR 760.305 - Eligible grazing losses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... grazing losses. (a) A grazing loss due to drought is eligible for LFP only if the grazing loss for the... of grazing land or pastureland for the county, rated by the U.S. Drought Monitor as having a: (i) D2 (severe drought) intensity in any area of the county for at least 8 consecutive weeks during the normal...

  18. 7 CFR 760.305 - Eligible grazing losses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... grazing losses. (a) A grazing loss due to drought is eligible for LFP only if the grazing loss for the... of grazing land or pastureland for the county, rated by the U.S. Drought Monitor as having a: (i) D2 (severe drought) intensity in any area of the county for at least 8 consecutive weeks during the normal...

  19. Livestock grazing not detrimental to meadow wildflowers

    Treesearch

    Raymond D. Ratliff

    1972-01-01

    Wildflower growth, meadow conditions, and grazing methods were compared in the Bogard area, Lassen National Forest, northeastern California. The two grazing methods were rest-rotation, in which range units are periodically rested from grazing, and free-choice, in which range units are not provided any rest periods from use. The results suggest that grazing per se need...

  20. Response of mountain meadows to grazing by recreational pack stock

    USGS Publications Warehouse

    Cole, David N.; Van Wagtendonk, Jan W.; McClaran, Mitchel P.; Moore, Peggy E.; McDougald, Neil K.

    2004-01-01

    Effects of recreational pack stock grazing on mountain meadows in Yosemite National Park were assessed in a 5-year study. Yosemite is a designated wilderness, to be managed such that its natural conditions are preserved. Studies were conducted in 3 characteristic meadow types: shorthair sedge (Carex filifolia Nutt.), Brewer's reed grass (Calamagrostis breweri Thurber), and tufted hairgrass [Deschampsia cespitosa (L.) Beauv.]. Horses and mules grazed experimental plots at intensities of 15 to 69% utilization for 4 seasons. In all 3 meadows, grazing caused decreases in productivity. The mean reduction after 4 years of grazing was 18% in the shorthair sedge meadow, 17% in the Brewer's reed grass meadow, and 22% in the tufted hairgrass meadow. Grazing also caused shifts in basal groundcover (usually a reduction in vegetation cover and increase in bare soil cover), and changes in species composition. Productivity and vegetation cover decreased as percent utilization increased, while bare soil cover increased as utilization increased. Changes in species composition were less predictably related to differences in grazing intensity. Passive management of grazing is insufficient in wilderness areas that are regularly used by groups with recreational stock. Wilderness managers need to monitor meadow conditions and the grazing intensities that occur. Our study suggests that biomass and ground cover are more sensitive indicators of grazing impact than species composition. Managers must make decisions about maximum acceptable levels of grazing impact and then develop guidelines for maximum use levels, based on data such as ours that relates grazing intensity to meadow response.

  1. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?

    PubMed Central

    Yan, Yan

    2015-01-01

    Overgrazing is considered one of the key disturbance factors that results in alpine grassland degradation in Tibet. Grazing exclusion by fencing has been widely used as an approach to restore degraded grasslands in Tibet since 2004. Is the grazing exclusion management strategy effective for the vegetation restoration of degraded alpine grasslands? Three alpine grassland types were selected in Tibet to investigate the effect of grazing exclusion on plant community structure and biomass. Our results showed that species biodiversity indicators, including the Pielou evenness index, the Shannon–Wiener diversity index, and the Simpson dominance index, did not significantly change under grazing exclusion conditions. In contrast, the total vegetation cover, the mean vegetation height of the community, and the aboveground biomass were significantly higher in the grazing exclusion grasslands than in the free grazed grasslands. These results indicated that grazing exclusion is an effective measure for maintaining community stability and improving aboveground vegetation growth in alpine grasslands. However, the statistical analysis showed that the growing season precipitation (GSP) plays a more important role than grazing exclusion in which influence on vegetation in alpine grasslands. In addition, because the results of the present study come from short term (6–8 years) grazing exclusion, it is still uncertain whether these improvements will be continuable if grazing exclusion is continuously implemented. Therefore, the assessments of the ecological effects of the grazing exclusion management strategy on degraded alpine grasslands in Tibet still need long term continued research. PMID:26157607

  2. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?

    PubMed

    Yan, Yan; Lu, Xuyang

    2015-01-01

    Overgrazing is considered one of the key disturbance factors that results in alpine grassland degradation in Tibet. Grazing exclusion by fencing has been widely used as an approach to restore degraded grasslands in Tibet since 2004. Is the grazing exclusion management strategy effective for the vegetation restoration of degraded alpine grasslands? Three alpine grassland types were selected in Tibet to investigate the effect of grazing exclusion on plant community structure and biomass. Our results showed that species biodiversity indicators, including the Pielou evenness index, the Shannon-Wiener diversity index, and the Simpson dominance index, did not significantly change under grazing exclusion conditions. In contrast, the total vegetation cover, the mean vegetation height of the community, and the aboveground biomass were significantly higher in the grazing exclusion grasslands than in the free grazed grasslands. These results indicated that grazing exclusion is an effective measure for maintaining community stability and improving aboveground vegetation growth in alpine grasslands. However, the statistical analysis showed that the growing season precipitation (GSP) plays a more important role than grazing exclusion in which influence on vegetation in alpine grasslands. In addition, because the results of the present study come from short term (6-8 years) grazing exclusion, it is still uncertain whether these improvements will be continuable if grazing exclusion is continuously implemented. Therefore, the assessments of the ecological effects of the grazing exclusion management strategy on degraded alpine grasslands in Tibet still need long term continued research.

  3. Patterns in Greater Sage-grouse population dynamics correspond with public grazing records at broad scales.

    PubMed

    Monroe, Adrian P; Aldridge, Cameron L; Assal, Timothy J; Veblen, Kari E; Pyke, David A; Casazza, Michael L

    2017-06-01

    Human land use, such as livestock grazing, can have profound yet varied effects on wildlife interacting within common ecosystems, yet our understanding of land-use effects is often generalized from short-term, local studies that may not correspond with trends at broader scales. Here we used public land records to characterize livestock grazing across Wyoming, USA, and we used Greater Sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. With annual counts of male Sage-grouse from 743 leks (breeding display sites) during 2004-2014, we modeled population trends in response to grazing level (represented by a relative grazing index) and timing across a gradient in vegetation productivity as measured by the Normalized Vegetation Difference Index (NDVI). We found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods. We also found support for the hypothesis that effects of grazing management vary with local vegetation productivity. These results illustrate the importance of broad-scale analyses by revealing patterns in Sage-grouse population trends that may not be inferred from studies at finer scales, and could inform sustainable grazing management in these ecosystems. © 2017 by the Ecological Society of America.

  4. Patterns in Greater Sage-grouse population dynamics correspond with public grazing records at broad scales

    USGS Publications Warehouse

    Monroe, Adrian; Aldridge, Cameron L.; Assal, Timothy J.; Veblen, Kari E.; Pyke, David A.; Casazza, Michael L.

    2017-01-01

    Human land use, such as livestock grazing, can have profound yet varied effects on wildlife interacting within common ecosystems, yet our understanding of land-use effects is often generalized from short-term, local studies that may not correspond with trends at broader scales. Here we used public land records to characterize livestock grazing across Wyoming, USA, and we used Greater Sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. With annual counts of male Sage-grouse from 743 leks (breeding display sites) during 2004–2014, we modeled population trends in response to grazing level (represented by a relative grazing index) and timing across a gradient in vegetation productivity as measured by the Normalized Vegetation Difference Index (NDVI). We found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods. We also found support for the hypothesis that effects of grazing management vary with local vegetation productivity. These results illustrate the importance of broad-scale analyses by revealing patterns in Sage-grouse population trends that may not be inferred from studies at finer scales, and could inform sustainable grazing management in these ecosystems.

  5. Feedback dynamics of grazing lawns: Coupling vegetation change with animal growth

    USGS Publications Warehouse

    Person, Brian T.; Herzog, M.P.; Ruess, Roger W.; Sedinger, J.S.; Anthony, R. Michael; Babcock, C.A.

    2003-01-01

    We studied the effects of grazing by Black Brant (Branta bernicla nigricans) geese (hereafter Brant) on plant community zonation and gosling growth between 1987 and 2000 at a nesting colony in southwestern Alaska. The preferred forage of Brant, Carex subspathacea, is only found as a grazing lawn. An alternate forage species, C. ramenskii, exists primarily as meadow but also forms grazing lawns when heavily grazed. We mowed plots of ungrazed C. ramenskii meadows to create swards that Brant could select and maintain as grazing lawns. Fecal counts were higher on mowed plots than on control plots in the year after plots were mowed. Both nutritional quality and aboveground biomass of C. ramenskii in mowed plots were similar to that of C. subspathacea grazing lawns. The areal extent of grazing lawns depends in part on the population size of Brant. High Brant populations can increase the areal extent of grazing lawns, which favors the growth of goslings. Grazing lawns increased from 3% to 8% of surface area as the areal extent of C. ramenskii meadows declined between 1991 and 1999. Gosling mass was lower early in this time period due to density dependent effects. As the goose population stabilized, and area of grazing lawns increased, gosling mass increased between 1993 and 1999. Because larger goslings have increased survival, higher probability of breeding, and higher fecundity, herbivore-mediated changes in the distribution grazing lawn extent may result in a numerical increase of the population within the next two decades.

  6. Quantification of uncertainties in global grazing systems assessment

    NASA Astrophysics Data System (ADS)

    Fetzel, T.; Havlik, P.; Herrero, M.; Kaplan, J. O.; Kastner, T.; Kroisleitner, C.; Rolinski, S.; Searchinger, T.; Van Bodegom, P. M.; Wirsenius, S.; Erb, K.-H.

    2017-07-01

    Livestock systems play a key role in global sustainability challenges like food security and climate change, yet many unknowns and large uncertainties prevail. We present a systematic, spatially explicit assessment of uncertainties related to grazing intensity (GI), a key metric for assessing ecological impacts of grazing, by combining existing data sets on (a) grazing feed intake, (b) the spatial distribution of livestock, (c) the extent of grazing land, and (d) its net primary productivity (NPP). An analysis of the resulting 96 maps implies that on average 15% of the grazing land NPP is consumed by livestock. GI is low in most of the world's grazing lands, but hotspots of very high GI prevail in 1% of the total grazing area. The agreement between GI maps is good on one fifth of the world's grazing area, while on the remainder, it is low to very low. Largest uncertainties are found in global drylands and where grazing land bears trees (e.g., the Amazon basin or the Taiga belt). In some regions like India or Western Europe, massive uncertainties even result in GI > 100% estimates. Our sensitivity analysis indicates that the input data for NPP, animal distribution, and grazing area contribute about equally to the total variability in GI maps, while grazing feed intake is a less critical variable. We argue that a general improvement in quality of the available global level data sets is a precondition for improving the understanding of the role of livestock systems in the context of global environmental change or food security.

  7. Willow establishment in relation to cattle grazing on an eastern Oregon stream

    Treesearch

    Nancy L. Shaw; Warren P. Clary

    1996-01-01

    Natural regeneration and growth of coyote willow (Salix exigua Nutt. ssp. exigua) and whiplash willow (S. lasiandra Bemth. var. caudata [Nutt.] Sudw.) were monitored from 1987 to 1993 on a low-elevation eastern Oregon stream degraded by more than a century of heavy livestock grazing. Treatments were no grazing, moderate spring grazing, moderate fall grazing, and...

  8. Improved grazing management may increase soil carbon sequestration in temperate steppe

    NASA Astrophysics Data System (ADS)

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue

    2015-07-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  9. Improved grazing management may increase soil carbon sequestration in temperate steppe.

    PubMed

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue

    2015-07-03

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  10. Responses of microbial respiration in grazed and ungrazed grasslands to glucose addition

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Liu, Qianyuan; Pang, Rui

    2017-04-01

    Grazing can change species composition, alter soil properties, and thus modify microbial activities, affecting biogeochemical processes in grasslands. However, it remains unclear how microbial respiration in grazed and ungrazed grasslands responds to glucose addition. Here we hypothesize that microbial respiration in grazed grasslands will respond more strongly to glucose addition than in ungrazed grasslands because moderate grazing can enhance microbial activity. To examine the hypothesis above, we collected the upper 10 cm soil from grazed and ungrazed grasslands at five sites of China. Three sites (Hulunbuir 1, Hulunbuir 2 and Xielingele) were located in Inner Mongolia and two in the Tibet Plateau) Soils were incubated with low glucose input (50% MBC), high glucose input (150% MBC), and water for 60 days in 21oC. CO2 released from soil was trapped with 1 M NaOH. The results showed that the effect of grazing on microbial respiration has two distinct patterns, depending on soil types and addition amount. After glucose addition, cumulative CO2 efflux from grazed soils was significantly higher than from ungrazed soils in two temperate grasslands (Hulunbuir 1 and Xielingele). This may be ascribed to that moderate grazing promoted microbial activity. On the contrary, microbial respirations from grazed soils were lower than ungrazed soils in two alpine meadows of Haibei and Dangxiong and in Hulunbuir 2. This effect of grazing was not obvious in Hulunbeier 2 soils at low carbon addition level. Grazing may decrease soil organic carbon, nitrogen availability and thus microbial activity in alpine grasslands. These findings indicate that soil microorganisms could have different adaptation mechanisms to grazing in temperate and alpine grasslands.

  11. Testing functional trait-based mechanisms underpinning plant responses to grazing and linkages to ecosystem functioning in grasslands

    NASA Astrophysics Data System (ADS)

    Zheng, S. X.; Li, W. H.; Lan, Z. C.; Ren, H. Y.; Wang, K. B.; Bai, Y. F.

    2014-09-01

    Abundant evidence has shown that grazing alters plant functional traits, ecological strategies, community structure, and ecosystem functioning of grasslands. Few studies, however, have examined how plant responses to grazing are mediated by resource availability and functional group identity. We test functional trait-based mechanisms underlying the responses of different life forms to grazing and linkages to ecosystem functioning along a soil moisture gradient in the Inner Mongolia grassland. A principal component analysis (PCA) based on 9 traits × 276 species matrix showed that the plant size spectrum (i.e., individual biomass), leaf economics spectrum (leaf N content and leaf density), and light competition spectrum (height and stem-leaf biomass ratio) distinguished plant species responses to grazing. The three life forms exhibited differential strategies as indicated by trait responses to grazing. The annuals and biennials adopted grazing-tolerant strategies associated with high growth rate, reflected by high leaf N content and specific leaf area. The perennial grasses exhibited grazing-tolerant strategies associated with great regrowth capacity and high palatability scores, whereas perennial forbs showed grazing-avoidant strategies with short stature and low palatability scores. In addition, the dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization. Grazing increased the relative abundance of perennial forbs with low palatability in the wet and fertile meadow, but it promoted perennial grasses with high palatability in the dry and infertile typical steppe. Our findings suggest that the effects of grazing on plant functional traits are dependent on both the abiotic (e.g., soil moisture) and biotic (e.g., plant functional group identity and composition) factors. Grazing-induced shifts in functional group composition are largely dependent on resource availability, particularly water availability.

  12. Application of Biot Theory to the Study of Acoustic Reflection from Sediments

    DTIC Science & Technology

    1992-09-08

    of bottom loss at all frequencies. To predict propagation loss, a multipath expansion propagation model [15] was used. The sound velocity profile in...public release; distribution unlimited. 13. AISTRACT (Maximum 200 wovov Wave Propagation in fluid-saturated poroelastic media may be described using...of grazing angle and frequency is compared against the more common fluid-fluid and fluid-solid interface models . Finally, shallow water propagation

  13. Grazing disturbance increases transient but decreases persistent soil seed bank.

    PubMed

    Ma, Miaojun; Walck, Jeffrey L; Ma, Zhen; Wang, Lipei; Du, Guozhen

    2018-04-30

    Very few studies have examined whether the impacts of grazing disturbance on soil seed banks occur directly or indirectly through aboveground vegetation and soil properties. The potential role of the seed bank in alpine wetland restoration is also unknown. We used SEM (structural equation modeling) to explore the direct effect of grazing disturbance on the seed bank and the indirect effect through aboveground vegetation and soil properties. We also studied the role of the seed bank on the restoration potential in wetlands with various grazing intensities: low (fenced, winter grazed only), medium (seasonally grazed), and high (whole-year grazed). For the seed bank, species richness and density per plot showed no difference among grazing intensities for each depth (0-5, 5-10, 10-15 cm) and for the whole depth (0-15 cm) in spring and summer. There was no direct effect of grazing disturbance on seed bank richness and density both in spring and summer, and also no indirect effect on the seed bank through its direct effect on vegetation richness and abundance. Grazing disturbance indirectly increased spring seed bank density but decreased summer seed bank density through its direct effect (negative correlation) on soil moisture and total nitrogen and its indirect effect on vegetation abundance. Species composition of the vegetation changed with grazing regime, but that of the seed bank did not. An increased trend of similarity between the seed bank and aboveground vegetation with increased grazing disturbance was found in the shallow depth and in the whole depth only in spring. Although there was almost no change in seed bank size with grazing intensities, grazing disturbance increased the quantity of transient seeds but decreased persistent seeds. Persistent seeds stored in the soil could play a crucial role in vegetation regeneration and in restoration of degraded wetland ecosystems. The seed bank should be an integral part of alpine wetland restoration programs. © 2018 by the Ecological Society of America.

  14. Simulating grazing practices in a complete livestock system model: estimating soil carbon storage and greenhouse gas emissions in grazed versus un-grazed agroecosystems using the Manure-DNDC model

    NASA Astrophysics Data System (ADS)

    Campbell, E. E.; Dorich, C.; Contosta, A.; Varner, R. K.

    2017-12-01

    In livestock agroecosystems, the combined contributions of enteric fermentation, manure management, and livestock grazing and/or feed production play an important role in agroecosystem carbon (C) storage and GHG losses, with complete livestock system models acting as important tools to evaluate the full impacts of these complex systems. The Manure-DeNitrification-DeComposition (DNDC) model is one such example, simulating impacts on C and nitrogen cycling, estimating methane, carbon dioxide, nitrous oxide, and ammonium dynamics in fields, manure storage, and enteric emissions. This allows the evaluation of differences in GHG and soil C impacts between conventional and organic dairy production systems, which differ in their use of grazed pasture versus confined feeding operations. However, Manure-DNDC has received limited testing in representing variations in grazed pasture management (i.e. intensive rotational grazing versus standard grazing practices). Using a set of forage biomass, soil C, and GHG emissions data collected at four sites across New England, we parameterized and validated Manure-DNDC estimations of GHG emissions and soil C in grazed versus un-grazed systems. Soil observations from these sites showed little effect from grazing practices, but larger soil carbon differences between farms. This may be due to spatial variation in SOC, making it difficult to measure and model, or due to controls of edaphic properties that make management moot. However, to further address these questions, model development will be needed to improve Manure-DNDC simulation of rotational grazing, as high stocking density grazing over short periods resulted in forage not re-growing sufficiently within the model. Furthermore, model simulations did not account for variation in interactions between livestock and soil given variability in field microclimates, perhaps requiring simulations that divide a single field into multiple paddocks to move towards more accurate evaluation of grazing management used in dairy operations in cool season pastures.

  15. Effects of Chicory/Perennial Ryegrass Swards Compared with Perennial Ryegrass Swards on the Performance and Carcass Quality of Grazing Beef Steers

    PubMed Central

    Marley, Christina L.; Fychan, Rhun; Davies, John W.; Scollan, Nigel D.; Richardson, R. Ian; Theobald, Vince J.; Genever, Elizabeth; Forbes, Andy B.; Sanderson, Ruth

    2014-01-01

    An experiment investigated whether the inclusion of chicory (Cichorium intybus) in swards grazed by beef steers altered their performance, carcass characteristics or parasitism when compared to steers grazing perennial ryegrass (Lolium perenne). Triplicate 2-ha plots were established with a chicory/ryegrass mix or ryegrass control. Forty-eight Belgian Blue-cross steers were used in the first grazing season and a core group (n = 36) were retained for finishing in the second grazing season. The experiment comprised of a standardisation and measurement period. During standardisation, steers grazed a ryegrass/white clover pasture as one group. Animals were allocated to treatment on the basis of liveweight, body condition and faecal egg counts (FEC) determined 7 days prior to the measurement period. The measurement period ran from 25 May until 28 September 2010 and 12 April until 11 October 2011in the first and second grazing year. Steers were weighed every 14 days at pasture or 28 days during housing. In the first grazing year, faecal samples were collected for FEC and parasite cultures. At the end of the first grazing year, individual blood samples were taken to determine O. ostertagi antibody and plasma pepsinogen levels. During winter, animals were housed as one group and fed silage. In the second grazing year, steers were slaughtered when deemed to reach fat class 3. Data on steer performance showed no differences in daily live-weight gain which averaged 1.04 kg/day. The conformation, fat grade and killing out proportion of beef steers grazing chicory/ryegrass or ryegrass were not found to differ. No differences in FEC, O. ostertagi antibody or plasma pepsinogen levels of beef steers grazing either chicory/ryegrass or ryegrass were observed. Overall, there were no detrimental effects of including chicory in swards grazed by beef cattle on their performance, carcass characteristics or helminth parasitism, when compared with steers grazing ryegrass. PMID:24489708

  16. Influence of elk grazing on soil properties in Rocky Mountain National Park

    USGS Publications Warehouse

    Binkley, Dan; Singer, F.; Kaye, M.; Rochelle, R.

    2003-01-01

    We used three 35-year exclosures to examine the effects of high elk populations on a variety of soil properties in three vegetation types: upland sagebrush, aspen, and meadow. Grazing and hoof action by elk significantly increased bulk density (from 0.87 kg/l ungrazed to 0.94 kg/l grazed), with greater effects on soils with fewer rocks. Grazing substantially reduced extractable calcium, magnesium, potassium and phosphorus in the sagebrush type, but not in the aspen or meadow types. The only grazing effect on pH came in aspen types, where grazing prevented aspen establishment, and kept soil pH about 0.7 units higher than under aspen inside the exclosures. Grazing had no overall effect on total soil C and N across all exclosures and vegetation types. The availability of soil nitrogen, indexed by in-field resin bags and net mineralization in soil cores, showed little overall effect of grazing. Limited data on soil leaching indicated a possibility of strong increases in nitrate leaching with grazing for an aspen vegetation type at one exclosure. Although we found little effect of grazing on soil N supply, we note that N fertilization doubled the production of grasses and shrubs; if grazing eventually led to changes in soil N supply, species composition and growth would likely change. ?? 2003 Elsevier B.V. All rights reserved.

  17. Chicken Farming in Grassland Increases Environmental Sustainability and Economic Efficiency

    PubMed Central

    Liu, Meizhen; Wang, Bingxue; Osborne, Colin P.; Jiang, Gaoming

    2013-01-01

    Background Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities. Methodology/Principal Findings A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m−2 for grazing sheep to 84 g m−2 for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (p<0.01). Compared with traditional sheep grazing, chicken farming significantly improved soil surface water content (0–10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0–10 cm soil layer by 35% of the control (p<0.05). Most importantly, the economic income of local herdsmen has been raised about six times compared with the traditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities. Conclusion/Significance Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China. PMID:23372678

  18. Chicken farming in grassland increases environmental sustainability and economic efficiency.

    PubMed

    Liu, Meizhen; Wang, Bingxue; Osborne, Colin P; Jiang, Gaoming

    2013-01-01

    Grassland degradation caused by overgrazing poses a threat to both animal husbandry and environmental sustainability in most semi-arid areas especially north China. Although the Chinese Government has made huge efforts to restore degraded grasslands, a considerable attempt has unfortunately failed due to an inadequate consideration of economic benefits to local communities. A controlled field experiment was conducted to test our hypothesis that utilizing natural grasslands as both habitat and feed resources for chickens and replacing the traditional husbandry system with chicken farming would increase environmental sustainability and raise income. Aboveground plant biomass elevated from 25 g m(-2) for grazing sheep to 84 g m(-2) for chicken farming. In contrast to the fenced (unstocked) grassland, chicken farming did not significantly decrease aboveground plant biomass, but did increase the root biomass by 60% (p<0.01). Compared with traditional sheep grazing, chicken farming significantly improved soil surface water content (0-10 cm), from 5% to 15%. Chicken farming did not affect the soil bulk density, while the traditional sheep grazing increased the soil bulk density in the 0-10 cm soil layer by 35% of the control (p<0.05). Most importantly, the economic income of local herdsmen has been raised about six times compared with the traditional practice of raising sheep. Ecologically, such an innovative solution allowed large degraded grasslands to naturally regenerate. Grasslands also provided a high quality organic poultry product which could be marketed in big cities. Chicken farming is an innovative alternative strategy for increasing environmental sustainability and economic income, rather than a challenge to the traditional nomadic pastoral system. Our approach might be technically applicable to other large degraded grasslands of the world, especially in China.

  19. 25 CFR 166.307 - Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Will the grazing capacity be increased if I graze adjacent trust or non-trust rangelands not covered by the permit? 166.307 Section 166.307 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management...

  20. Spatial relationship with the grazing pressure and alpine grassland degradation base on the GPS tracing experiment: a case study in the source region of Yellow River

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhang, Y.

    2014-12-01

    It is hard to distinguish the affects from the human activities and climate change on the grassland degradation, especially to quantification the human activities. Grazing is the main kind of human activities on the alpine grassland. To investigate the relationship of the grazing activities and grassland degradation will help the understanding of the effects of human impacts. A GPS tracing experiment was designed to tracing the activities of the Yaks. The spatial distribution of the grazing pressure was simulated under Geographic Information System. The biomass distribution and grazing pressure was compared to judge the distribution of overgrazing. The main research results are: (1) The tracing experiment could record the track of the Yaks very well, and it could be a good tool for the quantification research of grazing pressure. (2) The grazing activities have good relationship with vegetation, residents and landform. The worse vegetation is, the grazing time is longer and the radius is bigger. The closer to the residents, the grazing intensive is higher. The grazing route is influenced by the landform. Usually the herds would like to choose the least cost way. And the grazing intensive is higher in sunny slope. (3) The grazing probability is higher while the elevation is lower and the vegetation is better. The numbers of livestock of different villages determine the spatial distribution of the grazing pressure but it has very big heterogeneity in the same village. It seems the forage is enough in the research area since the available biomass is about 1190058t and the total demand is only 603700t. But because of the heterogeneity of the grazing pressure, there are still overgrazing in some villages. The area of overgrazing is 6 percent in the winter rangeland and 11 percent in summer rangeland. It is important to take care of the spatial heterogeneity of the grazing pressure and grass production in the management of the grassland ecosystem. It should improve the calculation method of the stock capacity to avoid the overrating of it. To arrange the livestock reasonably is the guarantee of the sustainable development in this region.

  1. Grazing limits natural biological controls of woody encroachment in Inner Mongolia Steppe

    PubMed Central

    Guo, Hongyu; Guan, Linjing; Wang, Yinhua; Xie, Lina; Prather, Chelse M.; Liu, Chunguang

    2017-01-01

    ABSTRACT Woody encroachment in grasslands has become increasingly problematic globally. Grazing by domestic animals can facilitate woody encroachment by reducing competition from herbaceous plants and fire frequency. Herbivorous insects and parasitic plants can each exert forces that result in the natural biological control of encroaching woody plants through reducing seeding of their host woody plants. However, the interplay of grazing and dynamics of herbivorous insects or parasitic plants, and its effects on the potential biological control of woody encroachment in grasslands remains unclear. We investigated the flower and pod damage by herbivorous insects, and the infection rates of a parasitic plant on the shrub Caragana microphylla, which is currently encroaching in Inner Mongolia Steppe, under different grazing management treatments (33-year non-grazed, 7-year non-grazed, currently grazed). Our results showed that Caragana biomass was highest at the currently grazed site, and lowest at the 33-year non-grazed site. Herbaceous plant biomass followed the opposite pattern, suggesting that grazing is indeed facilitating the encroachment of Caragana plants in Inner Mongolia Steppe. Grazing also reduced the abundance of herbivorous insects per Caragana flower, numbers of flowers and pods damaged by insect herbivores, and the infection rates of the parasitic plant on Caragana plants. Our results suggest that grazing may facilitate woody encroachment in grasslands not only through canonical mechanisms (e.g. competitive release via feeding on grasses, reductions in fires, etc.), but also by limiting natural biological controls of woody plants (herbivorous insects and parasitic plants). Thus, management efforts must focus on preventing overgrazing to better protect grassland ecosystems from woody encroachment. PMID:28912357

  2. Successive sheep grazing reduces population density of Brandt's voles in steppe grassland by altering food resources: a large manipulative experiment.

    PubMed

    Li, Guoliang; Yin, Baofa; Wan, Xinrong; Wei, Wanhong; Wang, Guiming; Krebs, Charles J; Zhang, Zhibin

    2016-01-01

    Livestock grazing has shaped grassland ecosystems around the world. Previous studies indicated grazing showed various impacts on small rodents; however, most studies were conducted over 1-2 years without controlling for confounding factors such as immigration/emigration and predation in rodents. Brandt's voles (Lasiopodomys brandtii) are generally recognized as pests because of food overlap with domestic herbivores, but are also important for biodiversity conservation because they provide nests or food to many birds. Fully understanding the ecological relationship between domestic herbivores and small mammals is essential to making ecosystem management decisions. To address these needs, we carried out a field experiment during the period 2010-2013 to assess the effects of sheep grazing on vegetation and the population density of Brandt's voles along a gradient of three grazing intensities by using 12 large-scale enclosures. Responses of Brandt's voles to livestock grazing varied with grazing intensity and year. As compared to the control group, sheep grazing had no effect on vole abundance in the first year but an overall negative effect on vole abundance in the following 3 years. Successive grazing caused decreases in survival and male body mass of voles, but had no significant effect on fecundity. Negative effects of grazing were associated with a grazing-induced deterioration in both food quantity (reflected by biomass and cover of less-preferred plants), and food quality (measured by tannin and total phenol content). Our findings highlight the urgent need for more flexible management of yearly rotational grazing to optimize livestock production while maintaining species diversity and ecosystem health.

  3. Genetic strain and diet effects on grazing behavior, pasture intake, and milk production.

    PubMed

    Sheahan, A J; Kolver, E S; Roche, J R

    2011-07-01

    Understanding how dairy cows adjust their grazing behavior in response to feed supplements is important for the development of management strategies that optimize profit from supplementation. New Zealand Holstein-Friesian (HF) cows have been selected for milk production on a predominantly pasture-based diet; in comparison, HF cows of North American (NA) ancestry have been selected almost exclusively for milk yield and fed diets high in nonfiber carbohydrates (NFC). We hypothesized, therefore, that supplementation would have differing effects on grazing behavior, pasture dry matter intake (DMI), and milk production in these genetic strains at peak, mid, and late lactation. A study was conducted over 2 consecutive lactations, with NA and NZ cows randomly allocated at calving to 0, 3, or 6 kg of dry matter/day concentrate plus unrestricted access to pasture. Pasture DMI, milk production, and grazing behavior were recorded at peak, mid, and late lactation. Concentrates were fed in equal amounts at morning and afternoon milking. The NA cows produced more milk and milk components, and had a greater pasture DMI, despite spending less time grazing. Declines in time spent grazing and pasture DMI were associated with increasing concentrate DMI. Grazing behavior following morning supplementation was different from that recorded following afternoon supplementation. Grazing ceased following morning supplementation before rumen fill could be a limiting factor, and the length of the grazing interval was inversely proportional to the amount of concentrate offered; these results suggest that physiological rather than physical stimuli were responsible for grazing cessation. The decrease in time spent grazing with increasing concentrate DMI is consistent with changes in neuroendocrine factors secreted in response to the presence of food in the digestive tract or with circulating products of digestion. After afternoon supplementation, sunset signaled the end of grazing irrespective of stage of lactation, timing of sunset, or supplementation status, suggesting that photoperiod influenced grazing behavior. Results confirmed changes in grazing behavior, an associated reduction in pasture DMI, and an increase in milk production when cows consume increasing amounts of concentrates. However, as the effect of supplement on grazing behavior differed between morning and afternoon supplementation, further research is required to better understand the factors controlling grazing behavior, to allow improved milk production responses to supplementary feeding. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Grazing by reindeer in subarctic coniferous forests - how it is affecting three main greenhouse gas emissions from soils.

    NASA Astrophysics Data System (ADS)

    Köster, Kajar; Köster, Egle; Berninger, Frank; Pumpanen, Jukka

    2017-04-01

    Reindeer (Rangifer tarandus L.) are the most important large mammalian herbivores in the northern ecosystems, strongly affecting Arctic lichen dominated ecosystems. Changes caused by reindeer in vegetation have indirect effects on physical features of the soil e.g. soil microclimate, root biomass and also on soil carbon dynamics, and little is known about reindeer and their impact on greenhouse gas (GHG) emissions between the soil and atmosphere. In a field experiment in northern boreal subarctic coniferous forests in Finnish Lapland, we investigated the influence of reindeer grazing on soil GHG (CO2, CH4 and N2O) fluxes, ground vegetation coverage and biomass, soil temperature and water content. The study was carried out in the growing season of the year 2014. We established the experiment as a split plot experiment with 2 blocks and 5 sub-plots per treatment that were divided into grazed and non-grazed parts, separated with a fence. The sample plots are located along the borderline between Finland and Russia, where the non-grazed area was excluded from reindeer already in 1918, to prevent the Finnish reindeer from going to the Russian side and there are not many reindeer on Russian side of the area. Our study showed that grazing by reindeer significantly affected lichen and moss biomasses. Lichen biomass was significantly lower in the grazed. We also observed that when lichens were removed, mosses were quickly overtaking the areas and moss biomass was significantly higher in grazed areas compared to non-grazed areas. Our results indicated that grazing by reindeer in the northern boreal subarctic forests affects the GHG emissions from the forest floor and these emissions largely depend on changes in vegetation composition. Soil was always a source of CO2in our study, and soil CO2 emissions were significantly smaller in non-grazed areas compared to grazed areas. The soils in our study areas were CH4 sinks through entire measurement period, and grazed areas consumed more CH4 compared to non-grazed areas. We also observed that the N2O emissions were significantly affected by moss biomass and soil temperature. Non-grazed areas with lower moss biomass and soil temperature were a small sink of N2O while the total fluxes remained around zero in the grazed areas.

  5. Impact of livestock grazing on abundance of Miridae and Reduviidae (Hemiptera) in crested wheatgrass pastures.

    PubMed

    O'Neill, Kevin M; Blodgett, Sue; Olson, Bret E; Miller, Richard S

    2008-04-01

    Miridae of the genera Labops and Irbisia, collectively referred to as "black grass bugs," can cause significant damage to wheatgrasses (Poaceae) of several genera on western North American rangeland. Another mirid in the same area, Capsus cinctus (Kolenati), causes damage to bluegrass (Poa spp.). Previous studies suggest that grazing management may reduce mirid populations on rangeland by eliminating preferred oviposition sites and reducing accumulations of litter that provide diurnal refuges for nymphs. We tested the hypothesis that grazing reduces mirid populations, along with those of Reduviidae, during a controlled grazing experiment. Densities of mirids and reduviids declined with increasing intensity of grazing, even though grazing occurred after the peak of mirid abundance each year. This suggests that declines in hemipteran densities resulted from grazing that occurred during previous years, perhaps because the most heavily grazed plots had the least plant litter. The results further confirm that grazing has the potential to control black grass bug populations, although the benefits could be potentially offset by negative impacts on beneficial insects such as reduviids.

  6. Using dual-purpose crops in sheep-grazing systems.

    PubMed

    Dove, Hugh; Kirkegaard, John

    2014-05-01

    The utilisation of dual-purpose crops, especially wheat and canola grown for forage and grain production in sheep-grazing systems, is reviewed. When sown early and grazed in winter before stem elongation, later-maturing wheat and canola crops can be grazed with little impact on grain yield. Recent research has sought to develop crop- and grazing-management strategies for dual-purpose crops. Aspects examined have been grazing effects on crop growth, recovery and yield development along with an understanding of the grazing value of the crop fodder, its implications for animal nutrition and grazing management to maximise live-weight gain. By alleviating the winter 'feed gap', the increase in winter stocking rate afforded by grazing crops allows crop and livestock production to be increased simultaneously on the same farm. Integration of dual-purpose wheat with canola on mixed farms provides further systems advantages related to widened operational windows, weed and disease control and risk management. Dual-purpose crops are an innovation that has potential to assist in addressing the global food-security challenge. © 2013 Society of Chemical Industry.

  7. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Final Waivers and... American Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84.101A. SUMMARY: For 60-month projects funded in fiscal year (FY) 2007 under the Native American Career...

  8. The cost of feeding bred dairy heifers on native warm-season grasses and harvested feedstuffs.

    PubMed

    Lowe, J K; Boyer, C N; Griffith, A P; Waller, J C; Bates, G E; Keyser, P D; Larson, J A; Holcomb, E

    2016-01-01

    Heifer rearing is one of the largest production expenses for dairy cattle operations, which is one reason milking operations outsource heifer rearing to custom developers. The cost of harvested feedstuffs is a major expense in heifer rearing. A possible way to lower feed costs is to graze dairy heifers, but little research exists on this topic in the mid-south United States. The objectives of this research were to determine the cost of feeding bred dairy heifers grazing native warm-season grasses (NWSG), with and without legumes, and compare the cost of grazing with the cost of rearing heifers using 3 traditional rations. The 3 rations were corn silage with soybean meal, corn silage with dry distillers grain, and a wet distillers grain-based ration. Bred Holstein heifers between 15- and 20-mo-old continuously grazed switchgrass (SG), SG with red clover (SG+RC), a big bluestem and Indiangrass mixture (BBIG), and BBIG with red clover (BBIG+RC) in Tennessee during the summer months. Total grazing days were calculated for each NWSG to determine the average cost/animal per grazing day. The average daily gain (ADG) was calculated for each NWSG to develop 3 harvested feed rations that would result in the same ADG over the same number of grazing day as each NWSG treatment. The average cost/animal per grazing day was lowest for SG ($0.48/animal/grazing d) and highest for BBIG+RC ($1.10/animal/grazing d). For both BBIG and SG, legumes increased the average cost/animal per grazing day because grazing days did not increase enough to account for the additional cost of the legumes. No difference was observed in ADG for heifers grazing BBIG (0.85 kg/d) and BBIG+RC (0.94 kg/d), and no difference was observed in ADG for heifers grazing SG (0.71 kg/d) and SG+RC (0.70 kg/d). However, the ADG for heifers grazing SG and SG+RC was lower than the ADG for heifers grazing either BBIG or BBIG+RC. The average cost/animal per grazing day was lower for all NWSG treatments than the average cost/animal per day for all comparable feed rations at a low, average, and high yardage fee. Results of this study suggest that SG was the most cost-effective NWSG alternative to harvested feeds for bred dairy heifer rearing. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Final Scientific and Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL..., including recommendations and conclusions based on the experience and results obtained. The final report...

  10. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity

    PubMed Central

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-01-01

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance–resistance strategies to grazing and mixed acquisitive–conservative strategies in resource utilization. PMID:26655858

  11. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity.

    PubMed

    Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo

    2015-12-11

    Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization.

  12. Long-term effects of grazing and topography on extra-radical hyphae of arbuscular mycorrhizal fungi in semi-arid grasslands.

    PubMed

    Ren, Haiyan; Gui, Weiyang; Bai, Yongfei; Stein, Claudia; Rodrigues, Jorge L M; Wilson, Gail W T; Cobb, Adam B; Zhang, Yingjun; Yang, Gaowen

    2018-02-01

    Grazing and topography have drastic effects on plant communities and soil properties. These effects are thought to influence arbuscular mycorrhizal (AM) fungi. However, the simultaneous impacts of grazing pressure (sheep ha -1 ) and topography on plant and soil factors and their relationship to the production of extra-radical AM hyphae are not well understood. Our 10-year study assessed relationships between grazing, plant species richness, aboveground plant productivity, soil nutrients, edaphic properties, and AM hyphal length density (HLD) in different topographic areas (flat or sloped). We found HLD linearly declined with increasing grazing pressure (1.5-9.0 sheep ha -1 ) in sloped areas, but HLD was greatest at moderate grazing pressure (4.5 sheep ha -1 ) in flat areas. Structural equation modeling indicates grazing reduces HLD by altering soil nutrient dynamics in sloped areas, but non-linearly influences HLD through plant community and edaphic changes in flat areas. Our findings highlight how topography influences key plant and soil factors, thus regulating the effects of grazing pressure on extra-radical hyphal production of AM fungi in grasslands. Understanding how grazing and topography influence AM fungi in semi-arid grasslands is vital, as globally, severe human population pressure and increasing demand for food aggravate the grazing intensity in grasslands.

  13. Fire and grazing regulate belowground processes in tallgrass prairie

    USGS Publications Warehouse

    Johnson, Loretta C.; Matchett, John R.

    2001-01-01

    In tallgrass prairie, belowground processes are even more important than in forested systems because aboveground biomass and standing dead litter are periodically removed by frequent fires or grazers. Thus, studies that address factors regulating belowground processes are especially relevant for tallgrass prairie. We predicted that effects of grazing and burning differ belowground and that changes in root productivity caused by burning or grazing provide feedback that affects ecosystem fluxes of C and N. These differences in belowground response should be driven largely by changes in N dynamics and the degree to which burning and grazing affect the pathway and magnitude of N loss and the degree of N limitation in these systems. Fire, the major pathway of N loss in ungrazed tallgrass prairie, should result in reduced net N mineralization and N availability. We expected plants to compensate for increased N limitation by increasing their allocation to roots, as manifested in increased soil respiration and C cycling belowground. In contrast, grazing conserves N in the ecosystem by redistributing the N once contained in grass to labile forms in urine and dung. Thus, we predicted that grazing should increase N cycling rates and N availability to plants. Consequently, grazed plants should be less N limited and should allocate less C to roots and more to shoots. This, in turn, should decrease belowground C cycling, manifested as reduced soil CO2 flux.We explored the roles of grazing and burning on root growth in experimental watersheds at Konza Prairie, Kansas, USA. To assess effects of fire on root productivity, we installed root ingrowth cores in two watersheds without grazers that differ in fire frequency: annually vs. infrequently burned (four years since the last fire). To assess effects of grazing, we installed root ingrowth cores in an annually burned watershed grazed by bison and in fenced controls (exclosures). Within bison “grazing lawns,” root ingrowth cores were installed in lightly and heavily grazed patches. Concurrently, we measured in situ rates of net N mineralization and soil respiration as indices of soil N and C cycling.Annual burning resulted in a 25% increase in root growth compared to the unburned watershed (four years since last fire), as plants compensated for N limitation by increasing allocation to roots. Grazing had the opposite effect: it decreased root growth, especially in heavily grazed patches (∼30% less than in fenced controls). Grazing by ungulates increased N cycling and availability. Therefore, grazed plants, instead of being N limited, experienced C limitation as shoots regrew and plants allocated less C to roots. Interestingly, root ingrowth on the long-term unburned watershed was as low as in lightly grazed patches in the grazed watershed. Thus, seemingly disparate treatments such as infrequent burning (characterized by accumulation of detritus aboveground) and grazing (periodic biomass removal) both had higher levels of N availability than annually burned prairie in the absence of grazers. Root growth in unburned and grazed watersheds must be limited by resources other than N (e.g., C in grazing lawns or light in infrequently burned prairie).Burning and grazing also altered root tissue chemistry in contrasting ways that further accentuated the root growth differences caused by these treatments. Frequent fires lowered substrate quality of roots (C:N = 60), thus increasing N limitation. In contrast, grazing and infrequent burning improved root tissue quality (C:N = 40), promoting faster cycling of N. These large differences in root growth and tissue chemistry can result in profound ecosystem-level changes. Grazing increased net N mineralization rates from 87% to 617% compared to watersheds without grazers, whereas annual burning decreased it by ∼50% compared to unburned prairie. Although grazing speeded up N cycling, it reduced soil respiration by 50% compared to fenced controls, presumably because of reduced root mass. On the other hand, annual burning increased soil respiration, presumably because of increased root biomass. Ultimately, differences in the quantity and quality of roots provide feedback to affect C and N cycling and help to maintain and even promote the fundamental differences in N cycling between burning and grazing in tallgrass prairie.

  14. Coosa River Storage Annex, Talladega, Alabama Environmental Investigation, Final Management and Resources Utilization Plan

    DTIC Science & Technology

    1991-02-01

    to adequately assess the health and environmental risks associated with the closure and transfer of the Annex forI other use; and 3) identification of...1990); Draft Final Technical Plan, Draft Final Sampling Design Plan and Draft Final Health and Safety Plan, USATHAMA, June 1990. 2.1.2 Draft Final...Final Technical Plan, Sampling Design Plan and Health and Safety Plan) supplied by USATHAMA. The estimate may be revised, with USATHAMA approval, as

  15. Grazing limits natural biological controls of woody encroachment in Inner Mongolia Steppe.

    PubMed

    Guo, Hongyu; Guan, Linjing; Wang, Yinhua; Xie, Lina; Prather, Chelse M; Liu, Chunguang; Ma, Chengcang

    2017-10-15

    Woody encroachment in grasslands has become increasingly problematic globally. Grazing by domestic animals can facilitate woody encroachment by reducing competition from herbaceous plants and fire frequency. Herbivorous insects and parasitic plants can each exert forces that result in the natural biological control of encroaching woody plants through reducing seeding of their host woody plants. However, the interplay of grazing and dynamics of herbivorous insects or parasitic plants, and its effects on the potential biological control of woody encroachment in grasslands remains unclear. We investigated the flower and pod damage by herbivorous insects, and the infection rates of a parasitic plant on the shrub Caragana microphylla , which is currently encroaching in Inner Mongolia Steppe, under different grazing management treatments (33-year non-grazed, 7-year non-grazed, currently grazed). Our results showed that Caragana biomass was highest at the currently grazed site, and lowest at the 33-year non-grazed site. Herbaceous plant biomass followed the opposite pattern, suggesting that grazing is indeed facilitating the encroachment of Caragana plants in Inner Mongolia Steppe. Grazing also reduced the abundance of herbivorous insects per Caragana flower, numbers of flowers and pods damaged by insect herbivores, and the infection rates of the parasitic plant on Caragana plants. Our results suggest that grazing may facilitate woody encroachment in grasslands not only through canonical mechanisms (e.g. competitive release via feeding on grasses, reductions in fires, etc.), but also by limiting natural biological controls of woody plants (herbivorous insects and parasitic plants). Thus, management efforts must focus on preventing overgrazing to better protect grassland ecosystems from woody encroachment. © 2017. Published by The Company of Biologists Ltd.

  16. Grazing effects on species composition in different vegetation types (La Palma, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Arévalo, J. R.; de Nascimento, L.; Fernández-Lugo, S.; Mata, J.; Bermejo, L.

    2011-05-01

    Grazing management is probably one of the most extensive land uses, but its effects on plant communities have in many cases been revealed to be contradictory. Some authors have related these contradictions to the stochastic character of grazing systems. Because of that, it is necessary to implement specific analyses of grazing effects on each community, especially in natural protected areas, in order to provide the best information to managers. We studied the effects of grazing on the species composition of the main vegetation types where it takes place (grasslands, shrublands and pine forests) on the island of La Palma, Canary Islands. We used the point-quadrat intersect method to study the species composition of grazed and ungrazed areas, which also were characterized by their altitude, distance to farms, distance to settlements, year of sampling, herbaceous aboveground biomass and soil organic matter. The variables organic matter, productivity and species richness were not significantly affected by grazing. The species composition of the analyzed plant communities was affected more by variables such as altitude or distance to farms than by extensive grazing that has been traditionally carried out on the island of La Palma involving certain practices such as continuous monitoring of animals by goat keepers, medium stocking rates adjusted to the availability of natural pastures, supplementation during the dry season using local forage shrubs or mown pastures and rotating animals within grazing areas Although some studies have shown a negative effect of grazing on endangered plant species, these results cannot be freely extrapolated to the traditional grazing systems that exert a low pressure on plant communities (as has been found in this study). We consider extensive grazing as a viable way of ensuring sustainable management of the studied ecosystems.

  17. Eaten Out of House and Home: Impacts of Grazing on Ground-Dwelling Reptiles in Australian Grasslands and Grassy Woodlands

    PubMed Central

    Howland, Brett; Stojanovic, Dejan; Gordon, Iain J.; Manning, Adrian D.; Fletcher, Don; Lindenmayer, David B.

    2014-01-01

    Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing. PMID:25501680

  18. Eaten out of house and home: impacts of grazing on ground-dwelling reptiles in Australian grasslands and grassy woodlands.

    PubMed

    Howland, Brett; Stojanovic, Dejan; Gordon, Iain J; Manning, Adrian D; Fletcher, Don; Lindenmayer, David B

    2014-01-01

    Large mammalian grazers can alter the biotic and abiotic features of their environment through their impacts on vegetation. Grazing at moderate intensity has been recommended for biodiversity conservation. Few studies, however, have empirically tested the benefits of moderate grazing intensity in systems dominated by native grazers. Here we investigated the relationship between (1) density of native eastern grey kangaroos, Macropus giganteus, and grass structure, and (2) grass structure and reptiles (i.e. abundance, richness, diversity and occurrence) across 18 grassland and grassy Eucalyptus woodland properties in south-eastern Australia. There was a strong negative relationship between kangaroo density and grass structure after controlling for tree canopy cover. We therefore used grass structure as a surrogate for grazing intensity. Changes in grazing intensity (i.e. grass structure) significantly affected reptile abundance, reptile species richness, reptile species diversity, and the occurrence of several ground-dwelling reptiles. Reptile abundance, species richness and diversity were highest where grazing intensity was low. Importantly, no species of reptile was more likely to occur at high grazing intensities. Legless lizards (Delma impar, D. inornata) were more likely to be detected in areas subject to moderate grazing intensity, whereas one species (Hemiergis talbingoensis) was less likely to be detected in areas subject to intense grazing and three species (Menetia greyii, Morethia boulengeri, and Lampropholis delicata) did not appear to be affected by grazing intensity. Our data indicate that to maximize reptile abundance, species richness, species diversity, and occurrence of several individual species of reptile, managers will need to subject different areas of the landscape to moderate and low grazing intensities and limit the occurrence and extent of high grazing.

  19. How grazing and soil quality affect native and exotic plant diversity in Rocky Mountain grasslands

    USGS Publications Warehouse

    Stohlgren, T.J.; Schell, L.D.; Vanden, Heuvel B.

    1999-01-01

    We used multiscale plots to sample vascular plant diversity and soil characteristics in and adjacent to 26 long-term grazing exclosure sites in Colorado, Wyoming, Montana, and South Dakota, USA. The exclosures were 7-60 yr old (31.2 ?? 2.5 yr, mean ?? 1 SE). Plots were also randomly placed in the broader landscape in open rangeland in the same vegetation type at each site to assess spatial variation in grazed landscapes. Consistent sampling in the nine National Parks, Wildlife Refuges, and other management units yielded data from 78 1000-m2 plots and 780 1-m2 subplots. We hypothesized that native species richness would be lower in the exclosures than in grazed sites, due to competitive exclusion in the absence of grazing. We also hypothesized that grazed sites would have higher native and exotic species richness compared to ungrazed areas, due to disturbance (i.e., the intermediate-disturbance hypothesis) and the conventional wisdom that grazing may accelerate weed invasion. Both hypotheses were soundly rejected. Although native species richness in 1-m2 subplots was significantly higher (P < 0.05) in grazed sites, we found nearly identical native or exotic species richness in 1000-m2 plots in exclosures (31.5 ?? 2.5 native and 3.1 ?? 0.5 exotic species), adjacent grazed plots (32.6 ?? 2.8 native and 3.2 ?? 0.6 exotic species), and randomly selected grazed plots (31.6 ?? 2.9 native and 3.2 ?? 0.6 exotic species). We found no significant differences in species diversity (Hill's diversity indices, N1 and N2), evenness (Hill's ratio of evenness, E5), cover of various life-forms (grasses, forbs, and shrubs), soil texture, or soil percentage of N and C between grazed and ungrazed sites at the 1000-m2 plot scale. The species lists of the long-ungrazed and adjacent grazed plots overlapped just 57.9 ?? 2.8%. This difference in species composition is commonly attributed solely to the difference in grazing regimes. However, the species lists between pairs of grazed plots (adjacent and distant 1000-m2 plots) in the same vegetation type overlapped just 48.6 ?? 3.6%, and the ungrazed plots and distant grazed plots overlapped 49.4 ?? 3.6%. Differences in vegetation and soils between grazed and ungrazed sites were minimal in most cases, but soil characteristics and elevation were strongly correlated with native and exotic plant diversity in the study region. For the 78 1000-m2 plots, 59.4% of the variance in total species richness was explained by percentage of silt (coefficient = 0.647, t = 5.107, P < 0.001), elevation (coefficient = 0.012, t = 5.084, P < 0.001), and total foliar cover (coefficient = 0.110, t = 2.104, P < 0.039). Only 12.8% of the variance in exotic species cover (log10cover) was explained by percentage of clay (coefficient = -0.011, t = -2.878, P < 0.005), native species richness (coefficient = -0.011, t = -2.156, P < 0.034), and log10N (coefficient = 2.827, t = 1.860, P < 0.067). Native species cover and exotic species richness and frequency were also significantly positively correlated with percentage of soil N at the 1000-m2 plot scale. Our research led to five broad generalizations about current levels of grazing in these Rocky Mountain grasslands: (1) grazing probably has little effect on native species richness at landscape scales; (2) grazing probably has little effect on the accelerated spread of most exotic plant species at landscape scales; (3) grazing affects local plant species and life-form composition and cover, but spatial variation is considerable; (4) soil characteristics, climate, and disturbances may have a greater effect on plant species diversity than do current levels of grazing; and (5) few plant species show consistent, directional responses to grazing or cessation of grazing.

  20. Deposition of steeply infalling debris - pebbles, boulders, snowballs, asteroids, comets - around stars

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Veras, D.; Gänsicke, B. T.

    2017-09-01

    When Comet Lovejoy plunged into the Sun, and survived, questions arose about the physics of infall of small bodies. [1,2] has already described this infall in detail. However, a more general analysis for any type of star has been missing. [3] generalized previous studies, with specific applications to white dwarfs. High-metallicity pollution is common in white dwarf stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to white dwarf systems. We find that the evolution of cm-to-km size infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any white dwarf, and apply the algorithm to four limiting combinations of hot versus cool (young/old) white dwarfs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (i) Total sublimation above the photosphere befalls all small infallers across the entire white dwarf temperature range, the threshold size rising with it and 100× larger for rock than snow. (ii) All very large objects fragment tidally regardless of temperature: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103 - 3 × 104 cm across all white dwarf cooling ages. (iii) A considerable range of infaller sizes avoids fragmentation and total sublimation, yielding impacts or grazes with cold white dwarfs. This range rapidly narrows with increasing temperature, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  1. Density and success of bird nests relative to grazing on western Montana grasslands

    USGS Publications Warehouse

    Fondell, Thomas F.; Ball, I.J.

    2004-01-01

    Grassland birds are declining at a faster rate than any other group of North American bird species. Livestock grazing is the primary economic use of grasslands in the western United States, but the effects of this use on distribution and productivity of grassland birds are unclear. We examined nest density and success of ground-nesting birds on grazed and ungrazed grasslands in western Montana. In comparison to grazed plots, ungrazed plots had reduced forb cover, increased litter cover, increased litter depth, and increased visual obstruction readings (VOR) of vegetation. Nest density among 10 of 11 common bird species was most strongly correlated with VOR of plots, and greatest nest density for each species occurred where mean VOR of the plot was similar to mean VOR at nests. Additionally, all bird species were relatively consistent in their choice of VOR at nests despite substantial differences in VOR among plots. We suggest that birds selected plots based in part on availability of suitable nest sites and that variation in nest density relative to grazing reflected the effect of grazing on availability of nest sites. Nest success was similar between grazed plots and ungrazed plots for two species but was lower for nests on grazed plots than on ungrazed plots for two other species because of increased rates of predation, trampling, or parasitism by brown-headed cowbirds (Molothrus ater). Other species nested almost exclusively on ungrazed plots (six species) or grazed plots (one species), precluding evaluation of the effects of grazing on nest success. We demonstrate that each species in a diverse suite of ground-nesting birds preferentially used certain habitats for nesting and that grazing altered availability of preferred nesting habitats through changes in vegetation structure and plant species composition. We also show that grazing directly or indirectly predisposed some bird species to increased nesting mortality. Management alternatives that avoid intensive grazing during the breeding season would be expected to benefit many grassland bird species.

  2. Traditional cattle grazing in a mosaic alkali landscape: effects on grassland biodiversity along a moisture gradient.

    PubMed

    Török, Péter; Valkó, Orsolya; Deák, Balázs; Kelemen, András; Tóthmérész, Béla

    2014-01-01

    Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i) How does cattle grazing affect species composition and diversity of the grasslands? (ii) What are the effects of grazing on short-lived and perennial noxious species? (iii) Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands) was sampled from 2006-2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable livestock type.

  3. Interactions of Grazing History, Cattle Removal and Time since Rain Drive Divergent Short-Term Responses by Desert Biota

    PubMed Central

    Frank, Anke S. K.; Dickman, Chris R.; Wardle, Glenda M.; Greenville, Aaron C.

    2013-01-01

    Arid grasslands are used worldwide for grazing by domestic livestock, generating debate about how this pastoral enterprise may influence native desert biota. One approach to resolving this question is to experimentally reduce livestock numbers and measure the effects. However, a key challenge in doing this is that historical grazing impacts are likely to be cumulative and may therefore confound comparisons of the short-term responses of desert biota to changes in stocking levels. Arid areas are also subject to infrequent flooding rainfalls that drive productivity and dramatically alter abundances of flora and fauna. We took advantage of an opportunity to study the recent effects of a property-scale cattle removal on two properties with similarly varied grazing histories in central Australia. Following the removal of cattle in 2006 and before and after a significant rainfall event at the beginning of 2007, we sampled vegetation and small vertebrates on eight occasions until October 2008. Our results revealed significant interactions of time of survey with both grazing history and grazing removal for vascular plants, small mammals and reptiles. The mammals exhibited a three-way interaction of time, grazing history and grazing removal, thus highlighting the importance of careful sampling designs and timing for future monitoring. The strongest response to the cessation of grazing after two years was depressed reproductive output of plants in areas where cattle continued to graze. Our results confirm that neither vegetation nor small vertebrates necessarily respond immediately to the removal of livestock, but that rainfall events and cumulative grazing history are key determinants of floral and faunal performance in grassland landscapes with low and variable rainfall. We suggest that improved assessments could be made of the health of arid grazing environments if long-term monitoring were implemented to track the complex interactions that influence how native biota respond to grazing. PMID:23874635

  4. Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China.

    PubMed

    Zhang, Yingjun; Huang, Ding; Badgery, Warwick B; Kemp, David R; Chen, Wenqing; Wang, Xiaoya; Liu, Nan

    2015-11-10

    Degradation by overgrazing is common in many areas of the world and optimising grassland functions depends upon finding suitable grazing tactics. This four-year study on the northern China steppe investigated combinations of rest, moderate or heavy grazing pressure early in the summer growing season, then moderate or heavy grazing in the mid and late season. Results showed that moderate grazing pressure (~550 sheep equivalent (SE) grazing days ha(-1) year(-1)) gave the optimal balance between maintaining a productive and diverse grassland, a profitable livestock system, and greenhouse gas mitigation. Further analyses identified that more conservative stocking (~400 SE grazing days ha(-1) year(-1)) maintained a desirable Leymus chinensis composition and achieved a higher live weight gain of sheep. Early summer rest best maintained a desirable grassland composition, but had few other benefits and reduced incomes. These findings demonstrate that reducing grazing pressure to half the current district stocking rates can deliver improved ecosystem services (lower greenhouse gases and improved grassland composition) while sustaining herder incomes.

  5. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    NASA Astrophysics Data System (ADS)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past several decades (e.g., land-use change, timber exploitation, and air pollution). However, regional evaluations that account for all of the local disturbances have been difficult. Data from field measurements play a pivotal role in comparing model simulations with observations.

  6. Forage and breed effects on behavior and temperament of pregnant beef heifers

    PubMed Central

    2013-01-01

    Background Integration of behavioral observations with traditional selection schemes may lead to enhanced animal well-being and more profitable forage-based cattle production systems. Brahman-influenced (BR; n = 64) and Gelbvieh × Angus (GA; n = 64) heifers consumed either toxic endophyte-infected tall fescue (E+) or one of two nontoxic endophyte-infected tall fescue (NT) cultivars during two yr. Heifers were weighed at midpoint and termination of grazing. Grazing behavior (grazing, resting in the shade, lying, or standing without grazing) was recorded (n = 13 visual observations per yr in June and July) for each pasture. During yr 2, exit velocity (EV) and serum prolactin (PRL) were determined. Results Grazing behavior was influenced (P < 0.05) by an interaction between fescue cultivar and breed type. Gelbvieh × Angus heifers assigned to E+ pastures had the lowest percentage of animals grazing and the largest percentage of animals resting in the shade. Brahman-influenced heifers had faster EV (P < 0.001) than GA heifers (0.52 vs. 0.74 ± 0.04 s/m, respectively). Body weight (BW) was affected (P < 0.01) by an interaction of tall fescue cultivar and d, and an interaction of tall fescue cultivar and breed type. Heifers grazing NT pastures were heavier (P < 0.01) than heifers grazing E+ pastures at midpoint and termination. Gelbvieh × Angus heifers grazing NT pastures were heavier (P < 0.01) than GA and BR heifers grazing E+ and BR heifers grazing NT pastures. An interaction of forage cultivar and breed type occurred on serum PRL (P < 0.01). Conclusion Collectively fescue cultivar, EV, and concentrations of serum PRL were associated with grazing behavior. Heifers grazing NT pastures were observed to be grazing more than heifers assigned to E+ pastures, regardless of breed type, which may have contributed to changes in BW and average daily gain (ADG) in heifers. Integration of behavioral observations along with traditional selection schemes may lead to enhanced animal well-being and more profitable forage-based cattle production systems. PMID:23710543

  7. Livestock Grazing as a Driver of Vernal Pool Ecohydrology

    NASA Astrophysics Data System (ADS)

    Michaels, J.; McCarten, N. F.

    2017-12-01

    Vernal pools are seasonal wetlands that host rare plant communities of high conservation priority. Plant community composition is largely driven by pool hydroperiod. A previous study found that vernal pools grazed by livestock had longer hydroperiods compared with pools excluded from grazing for 10 years, and suggests that livestock grazing can be used to protect plant diversity. It is important to assess whether observed differences are due to the grazing or due to water balance variables including upland discharge into or out of the pools since no a priori measurements were made of the hydrology prior to grazing. To address this question, in 2016 we compared 15 pools that have been grazed continuously and 15 pools that have been fenced off for over 40 years at a site in Sacramento County. We paired pools based on abiotic characteristics (size, shape, slope, soil type) to minimize natural variation. We sampled vegetation and water depth using Solinst level loggers. We found that plant diversity and average hydroperiod was significantly higher in the grazed pools. We are currently measuring groundwater connectivity and upland inputs in order to compare the relative strength of livestock grazing as a driver of hydroperiod to these other drivers.

  8. Microzooplankton grazing and selective feeding during bloom periods in the Tolo Harbour area as revealed by HPLC pigment analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiangjiang; Tang, Chi Hung; Wong, Chong Kim

    2014-07-01

    Dilution experiments were conducted to investigate microzooplankton grazing impact on phytoplankton of different taxonomic groups and size fractions (< 5, 5-20, 20-200 μm) during spring and summer bloom periods at two different sites (inner Tolo Harbour and Tolo Channel) in the Tolo Harbour area, the northeastern coastal area of Hong Kong. Experiments combined with HPLC pigment analysis in three phytoplankton size fractions measured pigment and size specific phytoplankton growth rates and microzooplankton grazing rates. Pigment-specific phytoplankton growth rates ranged between 0.08 and 3.53 d- 1, while specific grazing rates of microzooplankton ranged between 0.07 and 2.82 d- 1. Highest specific rates of phytoplankton growth and microzooplankton grazing were both measured in fucoxanthin in 5-20 μm size fraction in inner Tolo Harbour in summer, which coincided with the occurrence of diatom bloom. Results showed significant correlations between phytoplankton growth and microzooplankton grazing rates. Microzooplankton placed high grazing pressure on phytoplankton community. High microzooplankton grazing impact on alloxanthin (2.63-5.13) suggested strong selection toward cryptophytes. Our results provided no evidence for size selective grazing on phytoplankton by microzooplankton.

  9. Using packrat middens to assess grazing effects on vegetation change

    USGS Publications Warehouse

    Fisher, J.; Cole, K.L.; Anderson, R. Scott

    2009-01-01

    Research on grazing effects usually compares the same sites through time or grazed and ungrazed sites over the same time period. Both approaches are complicated in arid environments where grazing can have a long undocumented history and landscapes can be spatially heterogenous. This work employs both approaches simultaneously by comparing grazed and ungrazed samples through both time and space using fossil plant macrofossils and pollen from packrat middens. A series of 27 middens, spanning from 995 yr BP to the present, were collected from Glen Canyon in southeastern Utah, USA. These middens detail vegetation change just prior to, and following, the historical introduction of domesticated grazers and also compares assemblages from nearby ungrazable mesas. Pre-grazing middens, and modern middens from ungrazed areas, record more native grasses, native herbs, and native shrubs such as Rhus trilobata, Amelanchier utahensis, and Shepherdia rotundifolia than modern middens from grazed areas. Ordinations demonstrate that site-to-site variability is more important than any temporal changes, making selection of comparable grazed versus ungrazed study treatments difficult. But within similar sites, the changes through time show that grazing lowered the number of taxa recorded, and lessened the pre-existing site differences, homogenizing the resultant plant associations in this desert grassland.

  10. Grazing-Angle Fourier Transform Infrared Spectroscopy for Surface Cleanliness Verification

    DTIC Science & Technology

    2003-03-01

    coating. 34 North Island personnel were also interested in using the portable FTIR instrument to detect a trivalent chromium conversion coating on... trivalent chromium coating on aluminum panels. 35 Following the successful field-test at NADEP North Island in December 2000, a second demonstration of...contaminated, the panels were allowed to dry under a fume hood to evaporate the solvent. They were then placed in a desiccator for final drying. This

  11. The economic cost of noxious weeds on Montana grazing lands

    USDA-ARS?s Scientific Manuscript database

    We distributed a 16-question survey concerning noxious weed abundances, impacts and management to livestock producers grazing on privately-owned or leased grazing lands in Montana. The noxious weeds most commonly reported as being present on respondents’ grazing units were Canada thistle (64% of gra...

  12. 50 CFR 35.9 - Livestock grazing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Livestock grazing. 35.9 Section 35.9... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.9 Livestock grazing. (a) The grazing of livestock, where established prior to the date of legislation which designates...

  13. Grazing management options in meeting objectives of grazing experiments

    USDA-ARS?s Scientific Manuscript database

    Decisions on which grazing management option to use in grazing experiments can be critical in meeting research objectives and generating information for the scientific community or technologies that meets the needs of forage-based enterprises. It is necessary to have an understanding of animal per...

  14. Livestock grazing, wildlife habitat, and rangeland values

    Treesearch

    Paul R. Krausman; David E. Naugle; Michael R. Frisina; Rick Northrup; Vernon C. Bleich; William M. Block; Mark C. Wallace; Jeffrey D. Wright

    2009-01-01

    Livestock managers make and implement grazing management decisions to achieve a variety of objectives including livestock production, sustainable grazing, and wildlife habitat enhancement. Assessed values of grazing lands and ranches are often based on aesthetics and wildlife habitat or recreational values, which can exceed agricultural values, thus providing...

  15. The impact of cattle and goats grazing on vegetation in oak stands of varying coppicing age

    NASA Astrophysics Data System (ADS)

    Papachristou, Thomas G.; Platis, Panayiotis D.

    2011-01-01

    The effects of cattle and goats grazing on oak shoot growth and herbaceous vegetation in three oak forest stands with different coppicing age (1, 4 and 7 yrs after the clear cutting) were investigated. In April 1997, an experimental area was chosen with three forest stands, which were clear cut in 1996 (CL1996), 1993 (CL1993), and 1990 (CL1990). All stands were grazed by cattle and goats after they were clear cut. In each forest stand, five 10 m × 10 m paired plots were located, which represented grazed and protected patches. Herbage biomass within protected and grazed plots was measured four times each year (spring: May-June, summer: July-August, autumn: September-October, and winter: November-December). Behavioural observations on grazing animals were conducted in the same periods. In both protected and open plots the height and basal diameter of all oak shoots on 5 preselected stumps were measured at the end of five growing periods from 1997 to 2001. All forest stands carried a similar amount of available herbage (averaged over forest stands and growing season, 2614 kg/ha). Grazing animals removed on average 1057 kg/ha throughout the growing period. Cattle mainly consumed herbage (97% of bites) while goats consumed a mixture of oak browse (41% bites), herbaceous species (34% bites), and other woody species browse (25% bites). The height, diameter and volume of oak shoots were affected by grazing. The three forest stands had similar shoot heights in the protected plots in 2001 after 5 years of grazing protection. The volume of oak shoots of the grazed plots were 146.7 cm3 for CL1996, 232.9 cm3 for CL1993, and 239.1 cm3 for CL1990 in 2001 (i.e. 5, 8, and 11 years grazing after the clear cuttings, respectively). The protected plots carried greater volumes of oak shoots, CL1996: 496.0 cm3 (few months grazing before protection), CL1993: 690.0 cm3 (4 years grazing before protection), and CL1990: 344.0 cm3 (7 years grazing before protection). In conclusion, almost half of the herbaceous vegetation was removed through grazing but it had no positive effect on the growth rate of oak shoots. It seems that goats, which selected almost half of their diet from oak shoots, are responsible for that relative negative growth of shoots. However, cattle grazed only herbs and may therefore control herbaceous vegetation.

  16. Grazing reduces soil greenhouse gas fluxes in global grasslands: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Tang, Shiming; Tian, Dashuan; Niu, Shuli

    2017-04-01

    Grazing causes a worldwide degradation in grassland and likely alters soil greenhouse gas fluxes (GHGs). However, the general patterns of grazing-induced changes in grassland soil GHGs and the underlying mechanisms remain unclear. Thus, we synthesized 63 independent experiments in global grasslands that examined grazing impacts on soil GHGs (CO2, CH4 and N2O). We found that grazing with light or moderate intensity did not significantly influence soil GHGs, but consistently depressed them under heavy grazing, reducing CO2 emission by 10.55%, CH4 uptake by 19.24% and N2O emission by 28.04%. The reduction in soil CO2 was mainly due to decreased activity in roots and microbes (soil respiration per unit root and microbial biomass), which was suppressed by less water availability due to higher soil temperature induced by lower community cover under heavy grazing. N2O emission decreased with grazing-caused decline in soil total N. The inhibitory effect on methanotroph activities by water stress is responsible for the decreased CH4 uptake. Furthermore, grazing duration and precipitation also influenced the direction and magnitude of responses in GHGs fluxes. Overall, our results indicate that the reduction in soil CO2 and N2O emission under heavy grazing is partially compensated by the decrease in CH4 uptake, which is mainly regulated by variations in soil moisture.

  17. Developmental instability and fitness in Periploca laevigata experiencing grazing disturbance

    USGS Publications Warehouse

    Alados, C.L.; Giner, M.L.; Dehesa, L.; Escos, J.; Barroso, F.; Emlen, J.M.; Freeman, D.C.

    2002-01-01

    We investigated the sensitivity of developmental instability measurements (leaf fluctuating asymmetry, floral radial asymmetry, and shoot translational asymmetry) to a long‐standing natural stress (grazing) in a palatable tannin‐producing shrub (Periploca laevigata Aiton). We also assessed the relationship between these measures of developmental instability and fitness components (growth and floral production). Developmental instability, measured by translational asymmetry, was the most accurate estimator of a plant’s condition and, consequently, environmental stress. Plants with less translational asymmetry grew more and produced more flowers. Plants from the medium‐grazed population were developmentally more stable, as estimated by translational and floral asymmetry, than either more heavily or more lightly grazed populations. Leaf fluctuating asymmetry was positively correlated with tannin concentration. The pattern of internode growth also responded to grazing impact. Plants under medium to heavy grazing pressure accelerated early growth and consequently escaped herbivory later in the season, i.e., at the beginning of the spring, when grazing activity was concentrated in herbaceous plants. Periploca laevigata accelerated growth and finished growing sooner than in the other grazing treatment. Thus, its annual growth was more mature and less palatable later in the season when grazers typically concentrate on shrubs. The reduction of developmental instability under medium grazing is interpreted as a direct effect of grazing and not as the release from competition.

  18. Effects of grazing on nesting by upland sandpipers in southcentral North Dakota

    USGS Publications Warehouse

    Bowen, Bonnie S.; Kruse, Arnold D.

    1993-01-01

    Grazing by livestock is often used to reduce litter, improve plant vigor, and alter plant species composition, but additional information is needed on the effects of these management practices on upland-nesting birds. Thus, we conducted an experimental study of the effect of grazing on nest density and nest success of upland sandpipers (Bartramia longicauda) in southcentral North Dakota from 1981 to 1987. Our experimental design consisted of 4 treatments and 1 control, each applied to 1 field in each of 3 study areas. The treatments represented options available to grassland managers: spring grazing, autumn grazing, autumn-and-spring grazing, season-long grazing, and control (ungrazed during the study). Nests (n = 342) were found by searching study areas with a cable-chain drag. Nest density was lower (P = 0.006) for treatments where cattle were present (spring, autumn-and-spring, and season-long) than where cattle were not present (autumn and control) during the nesting season. We concluded that grazing during the nesting season reduced the nest density of upland sandpipers. Nest success varied among years (P = 0.01) and was low in the first year of grazing and higher at the end of the study period. We found little evidence that the grazing treatment influenced nest success. We recommend that public lands with breeding populations of upland sandpipers include a complex of fields under various management practices, including fields undisturbed during the nesting season.

  19. Impacts of cattle grazing on spatio-temporal variability of soil moisture and above-ground live plant biomass in mixed grasslands

    NASA Astrophysics Data System (ADS)

    Virk, Ravinder

    Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB heterogeneity over time was observed for heavy grazing intensity. All grazing intensities showed decrease in spatial range (patch size) over time indicating that grazing is a patchy process. The study demonstrates that cattle grazing with variable intensity can maintain and change the spatial patterns of vegetation in the studied region. Using a modelling approach, the relative degrees to which grazing intensity and soil properties affect grassland productivity and carbon dynamics at longer time-periods were investigated. Both grass productivity and carbon dynamics are sensitive to variability in soil texture and grazing intensity. Moderate grazing is predicted to be the best option in terms of maintaining sufficient heterogeneity to support species diversity, as well as for carbon management in the mixed grassland ecosystem.

  20. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.L.; Belnap, J.; Lamothe, P.

    2005-01-01

    Many soils in southeastern Utah are protected from surface disturbance by biological soil crusts that stabilize soils and reduce erosion by wind and water. When these crusts are disturbed by land use, soils become susceptible to erosion. In this study, we compare a never-grazed grassland in Canyonlands National Park with two historically grazed sites with similar geologic, geomorphic, and geochemical characteristics that were grazed from the late 1800s until 1974. We show that, despite almost 30 years without livestock grazing, surface soils in the historically grazed sites have 38-43% less silt, as well as 14-51% less total elemental soil Mg, Na, P, and Mn content relative to soils never exposed to livestock disturbances. Using magnetic measurement of soil magnetite content (a proxy for the stabilization of far-traveled eolian dust) we suggest that the differences in Mg, Na, P, and Mn are related to wind erosion of soil fine particles after the historical disturbance by livestock grazing. Historical grazing may also lead to changes in soil organic matter content including declines of 60-70% in surface soil C and N relative to the never-grazed sites. Collectively, the differences in soil C and N content and the evidence for substantial rock-derived nutrient loss to wind erosion implies that livestock grazing could have long-lasting effects on the soil fertility of native grasslands in this part of southeastern Utah. This study suggests that nutrient loss due to wind erosion of soils should be a consideration for management decisions related to the long-term sustainability of grazing operations in arid environments.

  1. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the highest expenses in beef cattle production. Senior research investigating the impact of livestock integration and multi-species cover crop grown within the crop rotation is studying changes in soil attributes resulting from the crop-animal integration by measuring bulk density and in-season soil fertility in the crop rotation. These responses are further contrasted with results from within the crop rotation and responses from perennial native range. Students that become engaged in the research represent a broad cross section of the consuming public and include high school junior and senior students, college undergraduate students that conduct research projects, postdoctoral research scientists engaged in senior level research, agricultural extension educators, and finally, farmer and rancher businessmen. The integrated nature of the research provides a wealth of learning opportunities for these various groups. For the high school students, visits to the living laboratory increase awareness and introduces students to a potential career path in agriculture, natural resource fields, and the many allied vocational fields that support agriculture. When college undergraduate students visit the living laboratory, they seek to address a researchable question or a problem in agriculture, while fulfilling requirements for graduation by conducting a research project. Because postdoctoral students want to be actively engaged in research and advanced learning, they are interested in conducting research in the living laboratory that can be published in peer reviewed journals. Agricultural extension educators, who advise farmers and ranchers, are looking for research results from the living laboratory that can be convey to their constituents. Farmers and ranchers participate in workshop events that give them face-to-face learning opportunities that they can use to effect change in their farm and ranch businesses. Each of these demographic groups are unique in their interest in the interaction between agricultural production and soil science. The authors will describe and discuss how each of these very different research consumers have been assisted during their experience and involvement in the living laboratory.

  2. Estimating influence of stocking regimes on livestock grazing distributions

    Treesearch

    Matthew J. Rinella; Marty Vavra; Bridgett J. Naylor; Jennifer M. Boyd

    2011-01-01

    Livestock often concentrate grazing in particular regions of landscapes while partly or wholly avoiding other regions. Dispersing livestock from the heavily grazed regions is a central challenge in grazing land management. Position data gathered from GPS-collared livestock hold potential for increasing knowledge of factors driving livestock aggregation patterns, but...

  3. 36 CFR 222.53 - Grazing fees in the East-noncompetitive procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... livestock grazing use and occupancy on National Forest System (NFS) lands in the States of New York..., fair market value procedures. These rules do not apply to grazing fees on National Forest System lands... permittees in the Eastern and Southern Regions on National Forest System lands, including grazing...

  4. Grazing history effects on rangeland biomass, cover and diversity responses to fire and grazing utilization

    USDA-ARS?s Scientific Manuscript database

    Exclusion of large grazers from rangelands that evolved with significant grazing pressure can alter natural processes and may have legacy effects by changing magnitude or direction of community responses to subsequent disturbance. Three moderately grazed pastures were paired with 12-ha areas that h...

  5. 77 FR 50589 - Agreements and Memoranda of Understanding Between the Food and Drug Administration and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...: Final rule. SUMMARY: This final rule makes technical changes that will update a requirement that many of the written agreements and memoranda of understanding (MOUs) between the Food and Drug Administration.... This final rule, accordingly, eliminates it. We are making these technical changes to conserve Agency...

  6. 77 FR 30514 - Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native Hawaiian Career and Technical Education Program; Final Waiver and.... ACTION: Notice. Overview Information Final Waiver and Extension of Project Period for the Native Hawaiian.... SUMMARY: For 36-month projects funded in fiscal year (FY) 2009 under the Native Hawaiian Career and...

  7. Antibiotic resistance in the wild: an eco-evolutionary perspective.

    PubMed

    Hiltunen, Teppo; Virta, Marko; Laine, Anna-Liisa

    2017-01-19

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Authors.

  8. Antibiotic resistance in the wild: an eco-evolutionary perspective

    PubMed Central

    Virta, Marko

    2017-01-01

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920384

  9. 2004 annual progress report: Stratton Sagebrush Hydrology Study Area: Establishment of a long-term research site in a high-elevation sagebrush steppe

    USGS Publications Warehouse

    Schoenecker, Kate; Lange, Bob; Calton, Mike

    2005-01-01

    A third goal was to evaluate grazing management after a prescribed burn. The BLM widely uses prescribed burns as a tool for land management and grazing management. In general, BLM policy restricts grazing after a wildfire for two or more years. Some BLM offices allow no grazing after a wildfire or prescribed treatment for at least two years. Conversely, the RFO often allows grazing following a prescribed burn directly after the peak growing season the following year. This procedure is used for two years post-burn, after which grazing management is directed by local conditions and goals. We are investigating this practice to evaluate the effects on plant production and nutrient cycling. The RFO specifically wants to know if there are negative effects from grazing one season after a prescribed burn. 

  10. Steers grazing of a rye cover crop influences growth of rye and no-till cotton

    USDA-ARS?s Scientific Manuscript database

    Small grain cover crops offer opportunities for grazing but effects on following row crops are not well understood. From 1999 through 2008, stocker steers sequence grazed small grains in a 2-paddock rye-cotton-wheat-fallow- rye rotation. Treatments imposed on rye included 1) zero-grazing from 1999; ...

  11. Home on the range: might the cattle peacefully graze?

    Treesearch

    Sally Duncan

    1999-01-01

    Grazing and how it impacts the landscape is a concern for public and private land managers. This issue of "Science Findings" examines the issue of cattle and grazing and provides some background, perspective, and research results on various grazing systems. Researchers Jim McIver, of the Forest Service's Blue Mountains Natural Resources Institute, and...

  12. Managing grazing of riparian areas in the Intermountain Region

    Treesearch

    Warren P. Clary; Bert F. Webster

    1989-01-01

    Concern about livestock grazing in riparian habitats and its effect upon riparian-dependent resources has resulted in numerous controversies about the appropriate management approach. This document provides guidance for grazing of riparian areas in a manner that should reduce both nonpoint source pollution and potential grazing impacts on other riparian-dependent...

  13. How Does “Hunger” Level Impact Grazing Behavior?

    USDA-ARS?s Scientific Manuscript database

    Grazing behavior can be influenced through feeding and grazing management decisions. Research at our USDA-ARS lab showed that ruminal fill, or how ‘hungry’ the cow is, can affect grazing behavior. Cows that had less ruminal fill took a bigger bite that was shallow and wide, compared to a ‘full’ cow ...

  14. 75 FR 18144 - Kemmerer Ranger District, Bridger-Teton National Forest, Wyoming Kemmerer Grazing and Rangeland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ..., Wyoming Kemmerer Grazing and Rangeland Vegetation Management Project AGENCY: Forest Service, USDA. ACTION... appropriate within the project area. If livestock grazing is re-authorized then the adaptive management... allowed to continue to graze on 16 allotments within the project area, and if so, under what management...

  15. 25 CFR 166.305 - When is grazing capacity determined?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false When is grazing capacity determined? 166.305 Section 166.305 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.305 When is grazing capacity determined? Before we grant, modify, or...

  16. 36 CFR 251.103 - Mediation of term grazing permit disputes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Mediation of term grazing... Lands § 251.103 Mediation of term grazing permit disputes. (a) Decisions subject to mediation. In those States with Department of Agriculture certified mediation programs, any holder of a term grazing permit...

  17. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  18. Short-term winter wheat (Triticum aestivum L.) cover crop grazing influence on calf growth, grain yield, and soil properties

    USDA-ARS?s Scientific Manuscript database

    Winter cover cropping has many agronomic benefits and can provide forages base for spring livestock grazing. Winter cover crop grazing has shown immediate economic benefits through increased animal production. Winter wheat pasture grazing is common in beef cow-calf production and stocker operations....

  19. Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China

    PubMed Central

    Zhang, Yingjun; Huang, Ding; Badgery, Warwick B.; Kemp, David R.; Chen, Wenqing; Wang, Xiaoya; Liu, Nan

    2015-01-01

    Degradation by overgrazing is common in many areas of the world and optimising grassland functions depends upon finding suitable grazing tactics. This four-year study on the northern China steppe investigated combinations of rest, moderate or heavy grazing pressure early in the summer growing season, then moderate or heavy grazing in the mid and late season. Results showed that moderate grazing pressure (~550 sheep equivalent (SE) grazing days ha−1 year−1) gave the optimal balance between maintaining a productive and diverse grassland, a profitable livestock system, and greenhouse gas mitigation. Further analyses identified that more conservative stocking (~400 SE grazing days ha−1 year−1) maintained a desirable Leymus chinensis composition and achieved a higher live weight gain of sheep. Early summer rest best maintained a desirable grassland composition, but had few other benefits and reduced incomes. These findings demonstrate that reducing grazing pressure to half the current district stocking rates can deliver improved ecosystem services (lower greenhouse gases and improved grassland composition) while sustaining herder incomes. PMID:26553566

  20. Effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows grazed on perennial ryegrass pasture.

    PubMed

    Ueda, Koichiro; Mitani, Tomohiro; Kondo, Seiji

    2016-10-01

    Two experiments were conducted to elucidate the effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows. In experiment 1, nine lactating cows were grazed in the morning and evening sessions (2.5 h each). The cows were allocated to treatments of three concentrate allotment levels before the evening grazing session by altering proportions to daily total offered; 25%, 50% and 75%. Daily herbage dry matter intake quadratically decreased with increasing the concentrate allotment levels (P < 0.05). Nitrogen utilization was similar among treatments. To investigate diurnal changes in rumen fermentation, a second experiment was conducted where six ruminally cannulated non-lactating dairy cows grazed in the morning and evening sessions (3 h each) were subjected to the same treatments as experiment 1. Total volatile fatty acid concentration in the rumen linearly increased with increasing the concentrate allotment levels throughout the pre-evening grazing session to the post-morning grazing session (P < 0.01). The results indicate that dairy cows reduce daily herbage intake but do not alter nitrogen utilization with increasing concentrate allotment before evening grazing. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  1. Experimental evidence that livestock grazing intensity affects the activity of a generalist predator

    NASA Astrophysics Data System (ADS)

    Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve

    2013-05-01

    Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.

  2. Grazing effects on aboveground primary production and root biomass of early-seral, mid-seral, and undisturbed semiarid grassland

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.

    2013-01-01

    Annual/perennial and tall/short plant species differentially dominate early to late successional shortgrass steppe communities. Plant species can have different ratios of above-/below-ground biomass distributions and this can be modified by precipitation and grazing. We compared grazing effects on aboveground production and root biomass in early- and mid-seral fields and undisturbed shortgrass steppe. Production averaged across four years and grazed and ungrazed treatments were 246, 134, and 102 g m−2 yr−1 for the early-, mid-seral, and native sites, respectively, while root biomass averaged 358, 560, and 981 g m−2, respectively. Early- and mid-seral communities provided complimentary forage supplies but at the cost of root biomass. Grazing increased, decreased, or had no effect on aboveground production in early-, mid-seral, and native communities, and had no effect on roots in any. Grazing had some negative effects on early spring forage species, but not in the annual dominated early-seral community. Dominant species increased with grazing in native communities with a long evolutionary history of grazing by large herbivores, but had no effects on the same species in mid-seral communities. Effects of grazing in native communities in a region cannot necessarily be used to predict effects at other seral stages.

  3. Morphological and physiological responses of seagrasses (Alismatales) to grazers (Testudines: Cheloniidae) and the role of these responses as grazing patch abandonment cues.

    PubMed

    Lacey, Elizabeth A; Collado-Vides, Ligia; Fourqurean, James W

    2014-12-01

    Green sea turtles, Chelonia mydas, are grazers influencing the distribution of seagrass within shallow coastal ecosystems, yet the drivers behind C. mydas patch use within seagrass beds are largely unknown. Current theories center on food quality (nutrient content) as the plant responds to grazing disturbances; however, no study has monitored these parameters in a natural setting without grazer manipulation. To determine the morphological and physiological responses potentially influencing seagrass recovery from grazing disturbances, seagrasses were monitored for one year under three different grazing scenarios (turtle grazed, fish grazed and ungrazed) in a tropical ecosystem in Akumal Bay, Quintana Roo, Mexico. Significantly less soluble carbohydrates and increased nitrogen and phosphorus content in Thalassia testudinum were indicative of the stresses placed on seagrasses during herbivory. To determine if these physiological responses were the drivers of the heterogeneous grazing behavior by C. mydas recorded in Akumal Bay, patches were mapped and monitored over a six-month interval. The abandoned patches had the lowest standing crop rather than leaf nutrient or rhi- zome soluble carbohydrate content. This suggests a modified Giving Up Density (GUD) behavior: the critical threshold where cost of continued grazing does not provide minimum nutrients, therefore, new patches must be utilized, explains resource abandonment and mechanism behind C. mydas grazing. This study is the first to apply GUD theory, often applied in terrestrial literature, to explain marine herbivore grazing behavior.

  4. Reversing a tree regeneration crisis in an endangered ecoregion.

    PubMed

    Fischer, Joern; Stott, Jenny; Zerger, Andre; Warren, Garth; Sherren, Kate; Forrester, Robert I

    2009-06-23

    Global food demand is growing rapidly. Livestock grazing can provide a valuable source of protein, but conventional grazing is often unsustainable. We studied an 800,000-ha section of a threatened ecoregion in southeastern Australia. Conventional management in the region involves continuous livestock grazing with few rest periods and regular fertilizer application. By using remotely sensed data on tree cover and extensive field data on livestock grazing regimes, soil chemistry, tree diameters, and tree regeneration, we show that the region is facing a tree regeneration crisis. Under conventional management, across the region, millions of hectares of land currently supporting tens of millions of trees will be treeless within decades from now. This would have severe negative ramifications for biodiversity and key ecosystem services, including water infiltration and shade provision for livestock. However, we identified an unexpected win-win solution for tree regeneration and commercial grazing. A relatively new practice in the region is fast-rotational grazing, characterized by prolonged rest periods in between short, intensive grazing events. The probability of regeneration under fast-rotational grazing was up to 4-fold higher than under conventional grazing, and it did not differ significantly from the probability of regeneration in ungrazed areas. In addition, trees were more likely to regenerate where soil nutrient levels were low. These findings suggest that the tree regeneration crisis can be reversed by applying low-input, fast-rotational grazing. New policy settings supporting these practices could signal a turning point for the region, from ecological decline to ecological recovery.

  5. Reversing a tree regeneration crisis in an endangered ecoregion

    PubMed Central

    Fischer, Joern; Stott, Jenny; Zerger, Andre; Warren, Garth; Sherren, Kate; Forrester, Robert I.

    2009-01-01

    Global food demand is growing rapidly. Livestock grazing can provide a valuable source of protein, but conventional grazing is often unsustainable. We studied an 800,000-ha section of a threatened ecoregion in southeastern Australia. Conventional management in the region involves continuous livestock grazing with few rest periods and regular fertilizer application. By using remotely sensed data on tree cover and extensive field data on livestock grazing regimes, soil chemistry, tree diameters, and tree regeneration, we show that the region is facing a tree regeneration crisis. Under conventional management, across the region, millions of hectares of land currently supporting tens of millions of trees will be treeless within decades from now. This would have severe negative ramifications for biodiversity and key ecosystem services, including water infiltration and shade provision for livestock. However, we identified an unexpected win–win solution for tree regeneration and commercial grazing. A relatively new practice in the region is fast-rotational grazing, characterized by prolonged rest periods in between short, intensive grazing events. The probability of regeneration under fast-rotational grazing was up to 4-fold higher than under conventional grazing, and it did not differ significantly from the probability of regeneration in ungrazed areas. In addition, trees were more likely to regenerate where soil nutrient levels were low. These findings suggest that the tree regeneration crisis can be reversed by applying low-input, fast-rotational grazing. New policy settings supporting these practices could signal a turning point for the region, from ecological decline to ecological recovery. PMID:19497886

  6. Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of northern china.

    PubMed

    Xu, Min-Yun; Xie, Fan; Wang, Kun

    2014-01-01

    Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0-50 cm were highest under UG (13.3 kg C m-2 and 1.69 kg N m-2) and lowest under HG (9.8 kg C m-2 and 1.22 kg N m-2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm-2) than under other treatments (725-731 kg N hm-2) in the 0-50 cm. Our results indicate that the pasture management of "take half-leave half" has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region.

  7. Do microzooplankton grazers control biomass of large-phytoplankton in the northern Bering and Chukchi Seas?

    NASA Astrophysics Data System (ADS)

    Krause, J. W.; Lomas, M. W.

    2017-12-01

    In high-latitude environments like the northern Bering and Chukchi Seas, microzooplankton and phytoplankton biomass can be tightly coupled. Microzooplankton consumption of primary production decreases the efficiency of transfer to higher trophic levels by increasing the number of food web steps and compounding losses from respiration. Thus, the balance of phytoplankton growth and microzooplankton grazing directly affects the availability of primary production to support higher-trophic processes (e.g. fisheries productivity). Despite compelling qualitative observations, there are no quantitative data demonstrating that larger phytoplankton (e.g. diatoms) growth is balanced by microzooplankton grazing in the northern Bering and Chukchi Seas. We report the first size-fractionated data for phytoplankton growth and grazing loss rates from microzooplankton in these regions during late spring 2017. Within the small size fraction (<5 µm), nearly all experiments showed strong microzooplankton grazing control of phytoplankton growth. For the larger phytoplankton size fraction (>5 µm), which was presumably dominated by diatoms, less than 33% of experiments showed a potential control of growth by grazing and among these even fewer showed grazing rates statistically different from zero. In the few cases where there was a significant grazing rate, a negative correlation was observed between the microzooplankton grazing rate on large phytoplankton and chlorophyll in that size fraction; a similar negative trend was observed for these same grazing rates on large cells versus biogenic silica concentration (an independent metric of diatom biomass). These data show that the growth of large phytoplankton (e.g. diatoms) was typically decoupled from microzooplankton grazing losses, suggesting that at most stations a high proportion of this phytoplankton productivity escapes microzooplankton grazing and is available for consumption by higher trophic organisms.

  8. Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture.

    PubMed

    Gomez-Casanovas, Nuria; DeLucia, Nicholas J; Bernacchi, Carl J; Boughton, Elizabeth H; Sparks, Jed P; Chamberlain, Samuel D; DeLucia, Evan H

    2018-03-01

    The impact of grazing on C fluxes from pastures in subtropical and tropical regions and on the environment is uncertain, although these systems account for a substantial portion of global C storage. We investigated how cattle grazing influences net ecosystem CO 2 and CH 4 exchange in subtropical pastures using the eddy covariance technique. Measurements were made over several wet-dry seasonal cycles in a grazed pasture, and in an adjacent pasture during the first three years of grazer exclusion. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing decreased ecosystem respiration (R eco ) and gross primary productivity (GPP). As the decrease in R eco was larger than the reduction in GPP, grazing consistently increased the net CO 2 sink strength of subtropical pastures (55, 219 and 187 more C/m 2 in 2013, 2014, and 2015). Enteric ruminant fermentation and increased soil wetness due to grazers, increased total net ecosystem CH 4 emissions in grazed relative to ungrazed pasture (27-80%). Unlike temperate, arid, and semiarid pastures, where differences in CH 4 emissions between grazed and ungrazed pastures are mainly driven by enteric ruminant fermentation, our results showed that the effect of grazing on soil CH 4 emissions can be greater than CH 4 produced by cattle. Thus, our results suggest that the interactions between grazers and soil hydrology affecting soil CH 4 emissions play an important role in determining the environmental impacts of this management practice in a subtropical pasture. Although grazing increased total net ecosystem CH 4 emissions and removed aboveground biomass, it increased the net storage of C and decreased the global warming potential associated with C fluxes of pasture by increasing its net CO 2 sink strength. © 2017 by the Ecological Society of America.

  9. Mixed Grazing Systems Benefit both Upland Biodiversity and Livestock Production

    PubMed Central

    Fraser, Mariecia D.; Moorby, Jon M.; Vale, James E.; Evans, Darren M.

    2014-01-01

    Background With world food demand expected to double by 2050, identifying farming systems that benefit both agricultural production and biodiversity is a fundamentally important challenge for the 21st century, but this has to be achieved in a sustainable way. Livestock grazing management directly influences both economic outputs and biodiversity on upland farms while contributing to potentially damaging greenhouse gas emissions, yet no study has attempted to address these impacts simultaneously. Methods Using a replicated, landscape-scale field experiment consisting of five management ‘systems’ we tested the effects of progressively altering elements within an upland farming system, viz i) incorporating cattle grazing into an upland sheep system, ii) integrating grazing of semi-natural rough grazing into a mixed grazing system based on improved pasture, iii) altering the stocking ratio within a mixed grazing system, and iv) replacing modern crossbred cattle with a traditional breed. We quantified the impacts on livestock productivity and numbers of birds and butterflies over four years. Results, Conclusion and Significance We found that management systems incorporating mixed grazing with cattle improve livestock productivity and reduce methane emissions relative to sheep only systems. Systems that also included semi-natural rough grazing consistently supported more species of birds and butterflies, and it was possible to incorporate bouts of summer grazing of these pastures by cattle to meet habitat management prescriptions without compromising cattle performance overall. We found no evidence that the system incorporating a cattle breed popular as a conservation grazer was any better for bird and butterfly species richness than those based on a mainstream breed, yet methane emissions from such a system were predicted to be higher. We have demonstrated that mixed upland grazing systems not only improve livestock production, but also benefit biodiversity, suggesting a ‘win-win’ solution for farmers and conservationists. PMID:24551216

  10. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment

    USGS Publications Warehouse

    Milchunas, Daniel G.; Vandever, Mark W.; Ball, Leonard O.; Hyberg, Skip

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat–fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of research.

  11. Mixed grazing systems benefit both upland biodiversity and livestock production.

    PubMed

    Fraser, Mariecia D; Moorby, Jon M; Vale, James E; Evans, Darren M

    2014-01-01

    With world food demand expected to double by 2050, identifying farming systems that benefit both agricultural production and biodiversity is a fundamentally important challenge for the 21(st) century, but this has to be achieved in a sustainable way. Livestock grazing management directly influences both economic outputs and biodiversity on upland farms while contributing to potentially damaging greenhouse gas emissions, yet no study has attempted to address these impacts simultaneously. Using a replicated, landscape-scale field experiment consisting of five management 'systems' we tested the effects of progressively altering elements within an upland farming system, viz i) incorporating cattle grazing into an upland sheep system, ii) integrating grazing of semi-natural rough grazing into a mixed grazing system based on improved pasture, iii) altering the stocking ratio within a mixed grazing system, and iv) replacing modern crossbred cattle with a traditional breed. We quantified the impacts on livestock productivity and numbers of birds and butterflies over four years. We found that management systems incorporating mixed grazing with cattle improve livestock productivity and reduce methane emissions relative to sheep only systems. Systems that also included semi-natural rough grazing consistently supported more species of birds and butterflies, and it was possible to incorporate bouts of summer grazing of these pastures by cattle to meet habitat management prescriptions without compromising cattle performance overall. We found no evidence that the system incorporating a cattle breed popular as a conservation grazer was any better for bird and butterfly species richness than those based on a mainstream breed, yet methane emissions from such a system were predicted to be higher. We have demonstrated that mixed upland grazing systems not only improve livestock production, but also benefit biodiversity, suggesting a 'win-win' solution for farmers and conservationists.

  12. Aridity and grazing as convergent selective forces: an experiment with an Arid Chaco bunchgrass.

    PubMed

    Quiroga, R Emiliano; Golluscio, Rodolfo A; Blanco, Lisandro J; Fernández, Roberto J

    2010-10-01

    It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history (semiarid/ subhumid x heavily grazed/lightly grazed), established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot: root ratio and a higher resource allocation to reserves (starch) in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller (and with more erect tillers) than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure history environments for selecting drought-resistant ones.

  13. The effect of grazing exclusion over time on structure, biodiversity, and regeneration of high nature value farmland ecosystems in Europe.

    PubMed

    Listopad, Claudia M C S; Köbel, Melanie; Príncipe, Adriana; Gonçalves, Paula; Branquinho, Cristina

    2018-01-01

    Climate change and increasing socio-economic pressure is placing many ecosystems of high ecological and economic value at risk. This is particularly urgent in dryland ecosystems, such as the montado, a multifunctional savannah-like system heavily modeled by grazing. There is still an ongoing debate about the trade-offs between livestock grazing and the potential for ecosystem regeneration. While it is consensual that overgrazing hinders the development of the shrubs and trees in this system, the effects of undergrazing or grazing exclusion are unclear. This study provides the unique opportunity to study the impact of grazing on compositional and structural biodiversity by examining the ecological chronosequence in a long-term ecological research site, located in Portugal, where grazing exclusion was controlled for over 15years. As the threat of intensification persists, even in areas where climate shifts are evident, there is a critical need to understand if and how the montado might recover by removing grazing pressure. We evaluate succession on structural and compositional diversity after grazing pressure is removed from the landscape at 5, 10, and 15years post-cattle exclusion and contrast it with currently grazed plots. A LiDAR-derived structural diversity index (LHDI), a surrogate of ecosystem structure and function first developed for the pine-grassland woodland systems, is used to quantify the impact of grazing exclusion on structure and natural regeneration. The distribution of the vegetation, particularly those of the herbaceous and shrub strata (>10≤150cm), presents statistically significant changes. The LHDI closely mimics the compositional biodiversity of the shrubs, with an increase in diversity with increased years without grazing. Under present climate conditions, both shrub regeneration and the establishment of tree saplings were strongly promoted by grazing exclusion, which has important management implications for the long-term sustainability of montado systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. FORAGES AND PASTURES SYMPOSIUM: Improving soil health and productivity on grasslands using managed grazing of livestock.

    PubMed

    Russell, J R; Bisinger, J J

    2015-06-01

    Beyond grazing, managed grasslands provide ecological services that may offer economic incentives for multifunctional use. Increasing biodiversity of plant communities may maximize net primary production by optimizing utilization of available light, water, and nutrient resources; enhance production stability in response to climatic stress; reduce invasion of exotic species; increase soil OM; reduce nutrient leaching or loading in surface runoff; and provide wildlife habitat. Strategically managed grazing may increase biodiversity of cool-season pastures by creating disturbance in plant communities through herbivory, treading, nutrient cycling, and plant seed dispersal. Soil OM will increase carbon and nutrient sequestration and water-holding capacity of soils and is greater in grazed pastures than nongrazed grasslands or land used for row crop or hay production. However, results of studies evaluating the effects of different grazing management systems on soil OM are limited and inconsistent. Although roots and organic residues of pasture forages create soil macropores that reduce soil compaction, grazing has increased soil bulk density or penetration resistance regardless of stocking rates or systems. But the effects of the duration of grazing and rest periods on soil compaction need further evaluation. Because vegetative cover dissipates the energy of falling raindrops and plant stems and tillers reduce the rate of surface water flow, managing grazing to maintain adequate vegetative cover will minimize the effects of treading on water infiltration in both upland and riparian locations. Through increased diversity of the plant community with alterations of habitat structure, grazing systems can be developed that enhance habitat for wildlife and insect pollinators. Although grazing management may enhance the ecological services provided by grasslands, environmental responses are controlled by variations in climate, soil, landscape position, and plant community resulting in considerable spatial and temporal variation in the responses. Furthermore, a single grazing management system may not maximize livestock productivity and each of the potential ecological services provided by grasslands. Therefore, production and ecological goals must be integrated to identify the optimal grazing management system.

  15. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Epstein, H. E.; Walker, D. A.

    2009-12-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world’s largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model (ArcVeg) to evaluate how two factors (soil organic nitrogen [SON] levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (High Arctic), D (northern Low Arctic) and E (southern Low Arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 °C caused an increase of 665 g/m2 in total biomass at the high SON site in subzone E, while only 298 g/m2 in the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g/m2 in the high SON site in contrast to 184 g/m2 in the low SON site in subzone E. When comparing low grazing to high grazing effects on soil organic nitrogen pools over time (Figure 1), higher grazing frequency led to either slower SON accumulation rates or more rapid SON depletion rates. Warming accentuated these differences caused by grazing, suggesting the interaction between grazing and warming may yield greater differences in SON levels across sites. Our results suggest that low SON and grazing may limit plant response to climate change. Interactions among bioclimate subzones, soils, grazing and warming significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  16. 2005 v4.3 Technical Support Document

    EPA Pesticide Factsheets

    Emissions Modeling for the Final Mercury and Air Toxics Standards Technical Support Document describes how updated 2005 NEI, version 2 emissions were processed for air quality modeling in support of the final Mercury and Air Toxics Standards (MATS).

  17. Effects of co-grazing dairy heifers with goats on animal performance, dry matter yield, and pasture forage composition.

    PubMed

    Dennis, T S; Unruh-Snyder, L J; Neary, M K; Nennich, T D

    2012-12-01

    Mixed livestock grazing can offer an alternative management system for rearing dairy replacement heifers (Bos taurus). A 2-yr study was conducted during 2009 (yr 1) and 2010 (yr 2) to determine the effects of co-grazing Holstein heifers under rotational stocking with Boer × Kiko goats on animal performance, pasture DM yield, and botanical composition. Each year, 24 heifers (134 ± 6 d of age and 147.4 ± 31.2 kg BW in yr 1; 166 ± 11 d of age and 168.0 ± 27.6 kg BW in yr 2) and 6 goats (2 yr old and 39.7 ± 16.2 kg BW in yr 1; 1 yr old and 33.7 ± 7.4 kg BW in yr 2) were divided into 6 paddocks with 4 heifers and 2 goats, where applicable, per group. Low endophyte-infected tall fescue (Festuca arundinacea Schreb.) and white clover (Trifolium repens L.) pastures were used to evaluate 2 grazing strategies (heifers grazed alone [HO] or heifers co-grazed with goats [HG]). In addition, 6 goats were assigned to 2 paddocks and grazed alone (GO) each year to estimate goat pasture forage intake and compare Haemonchus contortus infection to co-grazed goats. Forage samples were taken monthly to assess DM yield and botanical composition. Samples collected for botanical composition were manually sorted into grass, legume, and weed species. Forage DMI was estimated using a rising plate meter before and after grazing. Heifer BW at the conclusion of yr 1 and yr 2 did not differ between HO and HG (P = 0.40 and P = 0.12, respectively). Likewise, overall ADG did not differ between HO and HG, averaging 0.65 kg/d and 0.63 kg/d over both grazing seasons (P = 0.70). Grazing strategy did not affect forage or total DMI in yr 1; however, HO consumed 2.3 kg/d more forage DM than HG (P < 0.01), resulting in greater total DMI for HO in yr 2 (P < 0.01). Heights at the hip and withers were greater for HO than for HG during both grazing seasons (P < 0.05). Weed presence did not differ between grazing strategies over both grazing seasons as determined by manual harvesting, but visual estimation of botanical composition at the end of yr 2 showed that HO paddocks had 3.5 times more weed presence than HG pastures (P < 0.01). Within the confines of this study, co-grazing did not affect overall heifer BW gain, but it decreased DMI, suggesting that dairy heifers can be co-grazed with goats without negative effects on ADG or feed efficiency.

  18. The Center for Space Telemetering and Telecommunications Systems

    NASA Technical Reports Server (NTRS)

    Horan, S.; DeLeon, P.; Borah, D.; Lyman, R.

    2003-01-01

    This report comprises the final technical report for the research grant 'Center for Space Telemetering and Telecommunications Systems' sponsored by the National Aeronautics and Space Administration's Goddard Space Flight Center. The grant activities are broken down into the following technology areas: (1) Space Protocol Testing; (2) Autonomous Reconfiguration of Ground Station Receivers; (3) Satellite Cluster Communications; and (4) Bandwidth Efficient Modulation. The grant activity produced a number of technical reports and papers that were communicated to NASA as they were generated. This final report contains the final summary papers or final technical report conclusions for each of the project areas. Additionally, the grant supported students who made progress towards their degrees while working on the research.

  19. 25 CFR 166.306 - Can the BIA adjust the grazing capacity?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can the BIA adjust the grazing capacity? 166.306 Section 166.306 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.306 Can the BIA adjust the grazing capacity? Yes. In consultation...

  20. 25 CFR 166.301 - How is Indian land for grazing purposes described?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How is Indian land for grazing purposes described? 166.301 Section 166.301 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.301 How is Indian land for grazing purposes described...

  1. 25 CFR 161.300 - When is a permit needed to authorize grazing use?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false When is a permit needed to authorize grazing use? 161.300 Section 161.300 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER NAVAJO PARTITIONED LANDS GRAZING PERMITS Permit Requirements § 161.300 When is a permit needed to authorize grazing...

  2. Milk yield and somatic cell score of northeastern United States organic dairy farms during the grazing and non-grazing seasons

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate milk yield and composition of organically-certified dairy herds during grazing season (GS) and non-grazing season (NGS) in the Northeast region of the United States. Dairy Herd Improvement records of Holstein, Jersey, and Holstein-Jersey crossbred cows fro...

  3. A narrower gap of grazing intensity. Reply to Fetzel et al. 2017. Seasonality constrains to livestock grazing intensity

    USDA-ARS?s Scientific Manuscript database

    Fetzel et al. (2017) globally mapped the gap between observed and potential grazing intensity (GI): the ratio between consumption by livestock and ANPP. Fetzel et al. (2017) estimated grazing land, forage production and livestock demand at a half-degree resolution. They mapped GI below 15% for most ...

  4. 25 CFR 166.400 - Who establishes grazing rental rates?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... rental rate that is less or more than the grazing rental rate established by us. We will assist a tribe... under paragraph (a) of this section. (c) Indian landowners may give us written authority to grant... grazing rental rate set by us; or (2) Below the grazing rental rate set by us, subject to our approval...

  5. Promotion of the Equal Access of Girls and Women to Technical and Vocational Education. Studies on Technical and Vocational Education 7.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This monograph includes the final report of the International Expert Meeting on the Promotion of Equal Access of Girls and Women to Technical and Vocational Education (TVE) held in Seoul, Republic of Korea, and country discussion papers. The final report is composed of an introduction that proposes that many Member States require special measures…

  6. Biological Control Agents of Hydrilla Verticillata; Final Report on Surveys in East Africa, 1981-1984.

    DTIC Science & Technology

    1986-07-01

    terminal buds, attributable to insect feeding, but no causative agent was found. Some stems had obviously been grazed by fish, probably Tilapia ziulii...dispersal of the phytophagous Tilapia zillii through much of the region may also have played a part in stressing the plant. However, it seems...in nutrients. Most have high populations of depauperate Tilapia and, possibly as a result, are seemingly devoid of sub- 4merged vegetation. Pistia was

  7. Air Quality Modeling Technical Support Document for the Final Cross State Air Pollution Rule Update

    EPA Pesticide Factsheets

    In this technical support document (TSD) we describe the air quality modeling performed to support the final Cross State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS).

  8. 7 CFR 614.7 - Preliminary technical determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Preliminary technical determinations. 614.7 Section... Preliminary technical determinations. (a) A preliminary technical determination becomes final 30 days after... purpose of gathering additional information and discussing the facts relating to the preliminary technical...

  9. Response of Vegetation and Soil Carbon and Nitrogen Storage to Grazing Intensity in Semi-Arid Grasslands in the Agro-Pastoral Zone of Northern China

    PubMed Central

    Xu, Min-yun; Xie, Fan; Wang, Kun

    2014-01-01

    Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0–50 cm were highest under UG (13.3 kg C m−2 and 1.69 kg N m−2) and lowest under HG (9.8 kg C m−2 and 1.22 kg N m−2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm−2) than under other treatments (725–731 kg N hm−2) in the 0–50 cm. Our results indicate that the pasture management of “take half-leave half” has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region. PMID:24819162

  10. Western land managers will need all available tools for adapting to climate change, including grazing: a critique of Beschta et al.

    PubMed

    Svejcar, Tony; Boyd, Chad; Davies, Kirk; Madsen, Matthew; Bates, Jon; Sheley, Roger; Marlow, Clayton; Bohnert, David; Borman, Mike; Mata-Gonzàlez, Ricardo; Buckhouse, John; Stringham, Tamzen; Perryman, Barry; Swanson, Sherman; Tate, Kenneth; George, Mel; Ruyle, George; Roundy, Bruce; Call, Chris; Jensen, Kevin; Launchbaugh, Karen; Gearhart, Amanda; Vermeire, Lance; Tanaka, John; Derner, Justin; Frasier, Gary; Havstad, Kris

    2014-06-01

    In a previous article, Beschta et al. (Environ Manag 51(2):474-491, 2013) argue that grazing by large ungulates (both native and domestic) should be eliminated or greatly reduced on western public lands to reduce potential climate change impacts. The authors did not present a balanced synthesis of the scientific literature, and their publication is more of an opinion article. Their conclusions do not reflect the complexities associated with herbivore grazing. Because grazing is a complex ecological process, synthesis of the scientific literature can be a challenge. Legacy effects of uncontrolled grazing during the homestead era further complicate analysis of current grazing impacts. Interactions of climate change and grazing will depend on the specific situation. For example, increasing atmospheric CO₂ and temperatures may increase accumulation of fine fuels (primarily grasses) and thus increase wildfire risk. Prescribed grazing by livestock is one of the few management tools available for reducing fine fuel accumulation. While there are certainly points on the landscape where herbivore impacts can be identified, there are also vast grazed areas where impacts are minimal. Broad scale reduction of domestic and wild herbivores to help native plant communities cope with climate change will be unnecessary because over the past 20-50 years land managers have actively sought to bring populations of native and domestic herbivores in balance with the potential of vegetation and soils. To cope with a changing climate, land managers will need access to all available vegetation management tools, including grazing.

  11. Effect of total mixed ration composition and daily grazing pattern on milk production, composition and fatty acids profile of dairy cows.

    PubMed

    Hernández-Ortega, Martha; Martínez-Fernández, Adela; Soldado, Ana; González, Amelia; Arriaga-Jordán, Carlos M; Argamentería, Alejandro; de la Roza-Delgado, Begoña; Vicente, Fernando

    2014-11-01

    The possibilities of using high quality pastures in conjunction with total mixed ration (TMR) during the grazing season have been examined. An experiment with sixteen Holstein cows blocked and randomly assigned to four treatments in a factorial arrangement was conducted in order to evaluate the influence of grazing time of day (day or night) and type of silage (maize or Italian ryegrass) included in the TMR of dairy cows grazing 12 h daily on milk yield, composition and fatty acid profile. The silage type had no effect on the dry matter intake, milk yield and fat and protein proportions. However, cows grazing during the night ate more grass than cows grazing during the day (8·53 vs. 5·65 kg DM/d; P<0·05). No differences were seen between grazing-time with respect to milk production, fat and protein contents. However, the proportion of polyunsaturated fatty acid was higher in milk of dairy cows grazing at night-time than grazing at day-time, especially 18:2n-6 (2·37 vs. 2·12 g/100 g FA respectively, P<0·05) and 18:2cis9trans11 (2·08 vs. 1·74 g/100 g FA respectively, P<0·05).

  12. Livestock grazing for management of reclaimed land at Navajo Mine: Animal response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, D.C.; Gadzia, K.L.; Raisbeck, M.F.

    1997-12-31

    Livestock responses dining grazing of reclaimed land were monitored at the Navajo Mine since 1994. The Navajo Mine Grazing Management Program (GNP) began in 1991 to prepare for bond release and return of reclaimed land to the Navajo Nation by demonstrating the ability of the land to sustain the post-mining land use of livestock grazing. Local Navajos, whose livestock are used in the GMP, are interested in the ability of the land to sustain their livestock. Sustainable livestock grazing implies the ability of animals to thrive, successfully reproduce and maintain the health of the land. Daily care and monitoring ofmore » livestock health was carried out by herders hired by the mining company. General animal health parameters including blood selenium levels were monitored quarterly. Livestock responses to grazing reclaimed land have been largely positive. Cows have produced healthy offspring and owners indicate satisfaction with calf size, and overall performance of the cows. Selenium and other blood testing parameters indicate no adverse effect on animal health to date. Hazards associated with reclamation and ongoing mining activities are important considerations for lands being reclaimed for livestock grazing as a post-mining land use and must be monitored carefully during any grazing program. Preliminary results indicate that planned grazing by cattle on reclaimed land at Navajo Mine is feasible and does not adversely affect animal health.« less

  13. Solid-state 13C NMR experiments reveal effects of aggregate size on the chemical composition of particulate organic matter in grazed steppe soils

    NASA Astrophysics Data System (ADS)

    Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2009-04-01

    Grazing is one of the most important factors that may reduce soil organic matter (SOM) stocks and subsequently deteriorate aggregate stability in grassland topsoils. Land use management and grazing reduction are assumed to increase the input of OM, improve the soil aggregation and change species composition of vegetation (changes depth of OM input). Many studies have evaluated the impact of grazing cessation on SOM quantity. But until today little is known about the impact of grazing cessation on the chemical quality of SOM in density fractions, aggregate size classes and different horizons. The central aim of this study was to analyse the quality of SOM fractions in differently sized aggregates and horizons as affected by increased inputs of organic matter due to grazing exclusion. We applied a combined aggregate size, density and particle size fractionation procedure to sandy steppe topsoils with different organic matter inputs due to different grazing intensities (continuously grazed = Cg, winter grazing = Wg, ungrazed since 1999 = Ug99, ungrazed since 1979 = Ug79). Three different particulate organic matter (POM; free POM, in aggregate occluded POM and small in aggregate occluded POM) and seven mineral-associated organic matter fractions were separated for each of three aggregate size classes (coarse = 2000-6300 m, medium = 630-2000 m and fine =

  14. Grazing in central hardwood forests

    Treesearch

    Robert A. McQuilkin; Harold Scholten

    1989-01-01

    Woodland grazing is a major forestry and land management problem in parts of the central hardwood region. Most forest grazing is by cattle and, to a lesser extent, hogs in woodlands adjacent to pastures or feedlots. The practice is particularly common in the cattle producing areas of the Corn Belt where often 50 percent or more of the upland forest is grazed. Woodland...

  15. Grazing behavior and production characteristics among cows differing in residual feed intake while grazing late season Idaho rangeland

    USDA-ARS?s Scientific Manuscript database

    The objectives were to determine if cows classified as either low- or high-residual feed intake (LRFI or HRFI) differed in BW, BCS, and winter grazing activity over time. Thirty Hereford x Angus (LRFI = 16; HRFI = 14) 2-year-old cows grazed sagebrush-steppe for 78 d beginning 29 September 2016. Body...

  16. Sequence Grazing of Perennial and Annual Cool-Season Grasses to Extend the Grazing Season for Stocker Calves

    USDA-ARS?s Scientific Manuscript database

    Grazing of cool-season grasses by beef calves before entry into the feedlot for finishing is an important component of the US beef production system. The length of time in the feedlot and the quantity of feed grain required to reach market BW would be reduced if more BW was gained during the grazing...

  17. Responses of plant communities to grazing in the southwestern United States

    Treesearch

    Daniel G. Milchunas

    2006-01-01

    Grazing by wild and domestic mammals can have small to large effects on plant communities, depending on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant communities of the southwestern U.S. in terms of plant species...

  18. Prescribed grazing for management of invasive vegetation in a hardwood forest understory

    Treesearch

    Ronald A. Rathfon; Songlin Fei; Jason Tower; Kenneth Andries; Michael Neary

    2014-01-01

    Land managers considering prescribed grazing (PG) face a lack of information on animal stocking rates, timing of grazing, and duration of grazing to achieve desired conditions in natural ecosystems under invasion stress from a variety of nonnative invasive plant (NNIP) species. In this study we tested PG treatments using goats for reducing NNIP brush species and...

  19. Effects of grazing management treatment on grassland plant communities and prairie grouse habitat

    Treesearch

    Llewellyn L. Manske; William T. Barker; Mario E. Biondini

    1988-01-01

    Seasonlong grazing treatments show no benefit to grass basal cover and visual obstruction is not adequate. Pastures with one grazing period in mid season show no positive change in grass basal cover but have better visual obstruction than seasonlong. Deferred grazing decreases basal cover of warm season grasses and visual obstruction reduced to inadequate levels the...

  20. Disentangling niche competition from grazing mortality in phytoplankton dilution experiments

    PubMed Central

    Weitz, Joshua S.

    2017-01-01

    The dilution method is the principal tool used to infer in situ microzooplankton grazing rates. However, grazing is the only mortality process considered in the theoretical model underlying the interpretation of dilution method experiments. Here we evaluate the robustness of mortality estimates inferred from dilution experiments when there is concurrent niche competition amongst phytoplankton. Using a combination of mathematical analysis and numerical simulations, we find that grazing rates may be overestimated—the degree of overestimation is related to the importance of niche competition relative to microzooplankton grazing. In response, we propose a conceptual method to disentangle the effects of niche competition and grazing by diluting out microzooplankton, but not phytoplankton. Our theoretical results suggest this revised “Z-dilution” method can robustly infer grazing mortality, regardless of the dominant phytoplankton mortality driver in our system. Further, we show it is possible to independently estimate both grazing mortality and niche competition if the classical and Z-dilution methods can be used in tandem. We discuss the significance of these results for quantifying phytoplankton mortality rates; and the feasibility of implementing the Z-dilution method in practice, whether in model systems or in complex communities with overlap in the size distributions of phytoplankton and microzooplankton. PMID:28505212

  1. Effect of Grazing Behavior on Weight Regain Post-Bariatric Surgery: A Systematic Review.

    PubMed

    Pizato, Nathalia; Botelho, Patrícia B; Gonçalves, Vivian S S; Dutra, Eliane S; de Carvalho, Kênia M B

    2017-12-05

    Grazing, a type of maladaptive eating behavior, has been associated with poor weight outcomes in bariatric patients. The purpose of this study was to conduct a systematic review of the association between grazing behavior and weight regain post-bariatric surgery. Literature searches, study selection, design of the method, and quality appraisal were carried out by two independent authors. The search strategy was performed until October 2017 in Medline, Embase, Cochrane, Lilacs, Scopus, Web of Science, Google Scholar, ProQuest Dissertation & Theses, and Open Grey. Of a total of 3764 articles, five papers met the inclusion criteria (four original articles and one thesis), comprising 994 subjects, mostly women. The prevalence of grazing behavior ranged from 16.6 to 46.6%, and the highest prevalence of significant weight regain was 47%. The association between grazing and weight regain was observed in four of the five evaluated studies. Our findings support an association between grazing behavior and weight regain after bariatric surgery, regardless of surgery type and contextual concept of grazing. Further studies are needed to confirm the clarity of the real prevalence and interfering factors related to grazing behavior and weight outcomes.

  2. The Role of Cell Morphotype in Protist Grazing on the Model Diatom Phaeodactylum tricornutum

    NASA Astrophysics Data System (ADS)

    Beaudoin, D.; Johnson, M. D.; Tirichine, L.; Rastogi, A.; Bowler, C.

    2016-02-01

    Microzooplankton grazing is the single greatest loss to daily primary production in the oceans. Factors such as prey quality, chemical defense, and morphology are known to play important roles in mediating interactions with protist grazers. However, for most phytoplankton species we lack a mechanistic understanding of variables that modulate grazing and their relative importance. Here we test the hypothesis that morphological complexity acts to decrease grazing rates of microzooplankton predators, using strains of Phaeodactylum tricornutum with distinct morphotypes (oval, fusiform, and triradiate). Specifically we expected to find lower grazing on the triradiate morphotype. In experiments with predominantly uniform morphotypes, our results demonstrate that grazing by the heterotrophic dinoflagellate Oxyrrhis marina was surprisingly greatest on triradiate P. tricornutum, while oval and fusiform morphotypes revealed lower rates. Furthermore, the triradiate morphotype also supported higher growth rates of O. marina. We are currently investigating the role of grazing on morphotype frequency in P. tricornutum strains with mixed phenotypes. Chemical factors, such as prey nutritional content, and oxylipin profiles are also being investigated. Collectively, these experiments will help to determine the role of intraspecific phenotypes in predator-prey interactions, and how grazing helps to shape morphotype frequency in prey populations.

  3. Effect of grazing flow on the acoustic impedance of Helmholtz resonators consisting of single and clustered orifices

    NASA Technical Reports Server (NTRS)

    Hersch, A. S.; Walker, B.

    1979-01-01

    A semiempirical fluid mechanical model is derived for the acoustic behavior of thin-walled single orifice Helmholtz resonators in a grazing flow environment. The incident and cavity sound fields are connected in terms of an orifice discharge coefficient whose values are determined experimentally using the two-microphone method. Measurements show that at high grazing flow speeds, acoustical resistance is almost linearly proportional to the grazing flow speed and almost independent of incident sound pressure. The corresponding values of reactance are much smaller and tend towards zero. For thicker-walled orifice plates, resistance and reactance were observed to be less sensitive to grazing flow as the ratio of plate thickness to orifice diameter increased. Loud tones were observed to radiate from a single orifice Helmholtz resonator due to interaction between the grazing flow shear layer and the resonator cavity. Measurements showed that the tones radiated at a Strouhal number equal to 0.26. The effects of grazing flow on the impedance of Helmholtz resonators consisting of clusters of orifices was also studied. In general, both resistance and reaction were found to be virtually independent of orifice relative spacing and number. These findings are valid with and without grazing flow.

  4. Grazing preference and utilization of soil fungi by Folsomia candida (Collembola)

    NASA Astrophysics Data System (ADS)

    Hedenec, Petr; Frouz, Jan

    2016-04-01

    Soil fungi are important food resources for soil fauna. Here we ask whether the collembolan Folsomia candida shows selectivity in grazing between four saprophytic fungi (Penicillium chrysogenum, Penicillium expansum, Absidia glauca, and Cladosporium herbarum), whether grazing preference corresponds to effects on collembolan reproduction, and whether the effects of fungi on grazing and reproduction depends on the fungal substrate, which included three kinds of litter (Alnus glutinosa, Salix caprea, and Quercus robur) and one kind of agar (yeast extract). On agar, Cladosporium herbarum and Absidia glauca were the most preferred fungi and supported the highest collembolan reproduction. On fungal-colonized litter, grazing preference was more affected by litter type than by fungal species whereas collembolan reproduction was affected by both litter type and fungal species. On fungal-colonized litter, the litter type that was most preferred for grazing did not support the highest reproduction, i.e., there was an inconsistency between food preference and suitability. Alder and willow were preferred over oak for grazing, but alder supported the least reproduction.

  5. Relating vegetation condition to grazing management systems in the central Keiskamma catchment, Eastern Cape Province, South Africa

    NASA Astrophysics Data System (ADS)

    Kakembo, Vincent; Ndou, Naledzani

    2017-04-01

    An investigation of the temporal changes in vegetation condition across the communal villages of the central Keiskamma catchment, Eastern Cape Province, in relation to local grazing management systems was conducted. Landsat TM images of 1984 and 1999, in conjunction with SPOT imagery of 2011 were used to assess the spatial trends in vegetation. Information regarding the functionality of local grazing management structures was obtained through structured interviews. Vegetation condition was related to grazing management systems using the logistic regression in Idrisi Selva remote sensing software. Analysis of vegetation condition trends revealed a consistent deterioration of vegetation condition in villages with weak grazing management systems. A statistically significant correlation between vegetation condition and grazing management systems was identified. High levels of vegetation degradation were associated with villages that did not adhere to sound grazing management practices. The introduction of another layer governance in the form of elected municipal committees weakened traditional village management structures. Strengthening traditional management committees should be the point of departure for vegetation restoration.

  6. Collection methods, data compilation, and lessons learned from a study of stream geomorphology associated with riparian cattle grazing along the Fever River, University of Wisconsin- Platteville Pioneer Farm, Wisconsin, 2004–11

    USGS Publications Warehouse

    Peppler, Marie C.; Fitzpatrick, Faith A.

    2018-03-09

    Stream geomorphic characteristics were monitored along a 0.8-mile reach of the Fever River in the Driftless Area of southwestern Wisconsin from 2004 to 2011 where cattle grazed in paddocks along the riverbank at the University of Wisconsin-Platteville’s Pioneer Farm. The study reach encompassed seven paddocks that covered a total of 30 acres on both sides of the river. Monitoring data included channel crosssection surveys, eroding bank measurements and photograph points, erosion-pin measurements, longitudinal profile surveys, measurements of the volume of soft sediment in the channel, and repeated time-lapse photographs. Characteristics were summarized into subreaches by use of a geographic information system. From 2004 to 2007, baseline monitoring was done to identify geomorphic conditions prior to evaluating the effects of management alternatives for riparian grazing. Subsequent to the full-scale baseline monitoring, additional data were collected from 2007 to 2011. Samples of eroding bank and in-channel soft sediment were collected and analyzed for dry bulk density in 2008 for use in a sediment budget. One of the pastures was excluded from cattle grazing in the fall of 2007; in 2009 channel cross sections, longitudinal profiles, erosion-pin measurements, photographs, and a soft sediment survey were again collected along the full 0.8-mile reach for a comparison to baseline monitoring data. Channel cross sections were surveyed a final time in 2011. Lessons learned from bank monitoring with erosion pins were most numerous and included the need for consistent tracking of each pin and whether there was deposition or erosion, timing of measurements and bank conditions during measurements (frozen, postflood), and awareness of pins loosening in place. Repeated freezing and thawing of banks and consequential mass wasting and jointing enhance fluvial erosion. Monitoring equipment in the paddocks was kept flush to the ground or located high on posts to avoid injuring the cattle.

  7. Predicting Lameness in Sheep Activity Using Tri-Axial Acceleration Signals

    PubMed Central

    Barwick, Jamie; Lamb, David; Dobos, Robin; Schneider, Derek; Welch, Mitchell; Trotter, Mark

    2018-01-01

    Simple Summary Monitoring livestock farmed under extensive conditions is challenging and this is particularly difficult when observing animal behaviour at an individual level. Lameness is a disease symptom that has traditionally relied on visual inspection to detect those animals with an abnormal walking pattern. More recently, accelerometer sensors have been used in other livestock industries to detect lame animals. These devices are able to record changes in activity intensity, allowing us to differentiate between a grazing, walking, and resting animal. Using these on-animal sensors, grazing, standing, walking, and lame walking were accurately detected from an ear attached sensor. With further development, this classification algorithm could be linked with an automatic livestock monitoring system to provide real time information on individual health status, something that is practically not possible under current extensive livestock production systems. Abstract Lameness is a clinical symptom associated with a number of sheep diseases around the world, having adverse effects on weight gain, fertility, and lamb birth weight, and increasing the risk of secondary diseases. Current methods to identify lame animals rely on labour intensive visual inspection. The aim of this current study was to determine the ability of a collar, leg, and ear attached tri-axial accelerometer to discriminate between sound and lame gait movement in sheep. Data were separated into 10 s mutually exclusive behaviour epochs and subjected to Quadratic Discriminant Analysis (QDA). Initial analysis showed the high misclassification of lame grazing events with sound grazing and standing from all deployment modes. The final classification model, which included lame walking and all sound activity classes, yielded a prediction accuracy for lame locomotion of 82%, 35%, and 87% for the ear, collar, and leg deployments, respectively. Misclassification of sound walking with lame walking within the leg accelerometer dataset highlights the superiority of an ear mode of attachment for the classification of lame gait characteristics based on time series accelerometer data. PMID:29324700

  8. Programs of Study as a State Policy Mandate: A Longitudinal Study of the South Carolina Personal Pathways to Success Initiative. Final Technical Report: Major Findings and Implications

    ERIC Educational Resources Information Center

    Hammond, Cathy; Drew, Sam F.; Withington, Cairen; Griffith, Cathy; Swiger, Caroline M.; Mobley, Catherine; Sharp, Julia L.; Stringfield, Samuel C.; Stipanovic, Natalie; Daugherty, Lindsay

    2013-01-01

    This is the final technical report from the National Research Center for Career and Technical Education's (NRCCTE's) five-year longitudinal study of South Carolina's Personal Pathway to Success initiative, which was authorized by the state's Education and Economic Development Act (EEDA) in 2005. NRCCTE-affiliated researchers at the National…

  9. Livestock grazing and the desert tortoise in the Mojave Desert

    USGS Publications Warehouse

    Oldemeyer, John L.

    1994-01-01

    A large part of the Mojave Desert is not in pristine condition, and some current conditions can be related to past grazing-management practices. No information could be found on densities of the desert tortoise (Gopherus agassizii) or on vegetative conditions of areas that had not been grazed to allow managers a comparison of range conditions with data on tortoises. Experimental information to assess the effect of livestock grazing on tortoises is lacking, and researchers have not yet examined whether the forage that remains after grazing is sufficient to meet the nutritional needs of desert tortoises.

  10. Soil and agronomic factors associated with cadmium accumulations in kidneys of grazing sheep.

    PubMed

    Morcombe, P W; Petterson, D S; Ross, P J; Edwards, J R

    1994-12-01

    Mean concentration of cadmium (Cd) in kidneys of hogget sheep from 67 flocks grazing in the Agricultural Region of Western Australia was tested for association with soil, pastoral, climatic and nutritional factors. Hoggets grazing pastures on acidic soils and soils with a sandy-textured surface had higher Cd concentrations in kidneys than hoggets grazing pastures on more alkaline soils or soils with a clay-textured surface. Application of more than 100 kg of phosphatic fertiliser during the past 3 years to loamy soils was also associated with greater Cd concentration in kidneys of the grazing animals.

  11. Dairy cows increase ingestive mastication and reduce ruminative chewing when grazing chicory and plantain.

    PubMed

    Gregorini, P; Minnee, E M K; Griffiths, W; Lee, J M

    2013-01-01

    Although the nutritive value of chicory (Cichorium intybus L.) and plantain (Plantago lanceolata L.) has been thoroughly studied, little is known about the grazing behavior of cattle feeding on chicory and plantain swards. The objective of the present study was to assess and describe the grazing behavior of dairy cows as affected by dietary proportions of chicory and plantain fed as monocultures for part of the day. Ninety Holstein-Friesian cows (489±42 kg of body weight; 4.1±0.3 body condition score, and 216±15 d in milk) were randomly assigned to 15 groups (6 cows per group) and grazed according to 7 treatments: control (CTL, 3 groups), perennial ryegrass (Lolium perenne L.) dominant sward (24-h pasture strip); 3 chicory treatments comprising 20, 40, and 60% of the diet, strip-grazing a monoculture of chicory to a fixed postgrazing residual before strip-grazing a perennial ryegrass dominant sward (2 groups of cows per treatment); and 3 plantain treatments comprising 20, 40, and 60% of the diet, strip-grazing a monoculture of plantain to a fixed postgrazing residual before strip-grazing a perennial ryegrass dominant sward (2 groups of cows per treatment). Four focal animals per group were equipped with 3-dimensional motion sensors, which provided the number of steps taken at each minute of the day. These cows were also fitted with automatic jaw-movement recorders that identified bites, mastication during ingestion, chewing during rumination, and determined grazing, rumination and idling times and bouts. Daily grazing time and bouts were not affected by treatments but rumination time differed and was reduced by up to 90 min when cows were allocated to chicory and plantain as 60% of their diet. Ruminative chewing was reduced in cows grazing chicory and plantain by up to 20% in cows allocated to the 60% treatments. Compared with perennial ryegrass, as the dietary proportion of chicory and plantain increased, cows spent more time idling and less time ruminating, and increased ingestive mastications 5 and 3 times for chicory and plantain, respectively. Cows allocated to chicory and plantain reduced bite rate and bites per grazing step linearly, and increased the number of mastications per bite of pasture dry matter intake while grazing pasture after having grazed chicory and plantain. These results indicate that cows grazing chicory and plantain masticate more during ingestion and reduce rumination time and chewing. They also suggest that chicory presents greater constraints to ingestion than does plantain. Thus, although chicory has been considered to have a greater nutritive value than plantain, its overall feeding value may be no greater than that of plantain. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Altered behavior in spotted hyenas associated with increased human activity

    USGS Publications Warehouse

    Boydston, Erin E.; Kapheim, Karen M.; Watts, Heather E.; Szykman, Micaela; Holekamp, Kay E.

    2003-01-01

    To investigate how anthropogenic activity might affect large carnivores, we studied the behaviour of spotted hyenas (Crocuta crocuta) during two time periods. From 1996 to 1998, we documented the ecological correlates of space utilization patterns exhibited by adult female hyenas defending a territory at the edge of a wildlife reserve in Kenya. Hyenas preferred areas near dense vegetation but appeared to avoid areas containing the greatest abundance of prey, perhaps because these were also the areas of most intensive livestock grazing. We then compared hyena behaviour observed in 1996–98 with that observed several years earlier and found many differences. Female hyenas in 1996–98 were found farther from dens, but closer to dense vegetation and to the edges of their territory, than in 1988–90. Recent females also had larger home ranges, travelled farther between consecutive sightings, and were more nocturnal than in 1988–90. Finally, hyenas occurred in smaller groups in 1996–98 than in 1988–90. We also found several changes in hyena demography between periods. We next attempted to explain differences observed between time periods by testing predictions of hypotheses invoking prey abundance, climate, interactions with lions, tourism and livestock grazing. Our data were consistent with the hypothesis that increased reliance on the reserve for livestock grazing was responsible for observed changes. That behavioural changes were not associated with decreased hyena population density suggests the behavioural plasticity typical of this species may protect it from extinction.

  13. A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques.

    PubMed

    Williams, M L; Mac Parthaláin, N; Brewer, P; James, W P J; Rose, M T

    2016-03-01

    A better understanding of the behavior of individual grazing dairy cattle will assist in improving productivity and welfare. Global positioning systems (GPS) applied to cows could provide a means of monitoring grazing herds while overcoming the substantial efforts required for manual observation. Any model of behavioral prediction using GPS needs to be accurate and robust by accounting for inter-cow variation as well as atmospheric effects. We evaluated the performance using a series of machine learning algorithms on GPS data collected from 40 pasture-based dairy cows over 4 mo. A feature extraction step was performed on the collected raw GPS data, which resulted in 43 different attributes. The evaluated behaviors were grazing, resting, and walking. Classifier learners were built using 10 times 10-fold cross validation and tested on an independent test set. Results were evaluated using a variety of statistical significance tests across all parameters. We found that final model selection depended upon level of performance and model complexity. The classifier learner deemed most suitable for this particular problem was JRip, a rule-based learner (classification accuracy=0.85; false positive rate=0.10; F-measure=0.76; area under the receiver operating curve=0.87). This model will be used in further studies to assess the behavior and welfare of pasture-based dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Direct Final Rule: Nonroad Diesel Technical Amendments and Tier 3 Technical Relief Provision

    EPA Pesticide Factsheets

    Rule making certain technical corrections to the rules establishing emission standards for nonroad diesel engines and amending those rules to provide manufacturers with a production technical relief provision for Tier 3 equipment.

  15. Indicators of grazing impact in Inner Mongolian steppe ecosystems

    NASA Astrophysics Data System (ADS)

    Blank, B.; Breuer, L.; Butterbach-Bahl, K.; Frede, H.-G.

    2009-04-01

    The DFG research group 536 MAGIM (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) investigates the influence of grazing intensity on matter and water cycles in grazed steppe ecosystems of Inner Mongolia. This Sino-German co-operation applies an interdisciplinary approach to investigate major ecosystem functions and how they are affected by grazing and overgrazing. Within the research group an indicator system is developed to systemize the feedback of ecosystem parameters to the influence of grazing and to analyse, which parameter or parameter group reacts most sensitively. Parameters were measured at up to five different grazing intensities (from ungrazed to heavy grazed) and are related to four thematic indicator groups (plant productivity, atmosphere, pedosphere, hydrosphere). The parameters were scaled to allow assessing the influence of grazing intensity between different sets of parameters. For this the average value of a parameter at the lowest grazing intensity (ungrazed) was set 100%, so that the values at the other intensities could be scaled scaled adequately. Then the difference between highest and lowest grazing intensity was determined. According to this difference the influence of grazing was characterized as weak (< 20% difference), medium (20-40%), strong (40-60%) and very strong (> 60%). Impact of grazing on the parameters will be marked as weak (w), medium (m), strong (s) and very strong (vs) in the text. The group plant productivity includes the vegetation parameters aboveground biomass and belowground biomass. Belowground biomass (s) was significantly different between grazing treatments with the highest value at the ungrazed site (399.00 g m-2 a-1) and the lowest at the heavy grazed site (208.00 g m-2 a-1). Aboveground biomass (m) ranged between 91.33-131.67 g m-2 a-1 and differed significantly between the ungrazed and the heavy grazed site, again with higher values at the ungrazed site (Gao et al. 2008). The group atmosphere consists of micrometeorological parameters, dust flux and deposition as measure of erosive processes and trace gas fluxes. Available energy and soil temperature were always significantly different between two simultaneously measured grazing intensities. Available energy was higher at the ungrazed site in all years measured (mean difference of about 19 W m-2). Soil temperature was lower at the ungrazed site (Ketzer et al. 2008). Dust deposition is important for the C and N balance in semi-arid grasslands and was investigated during the dust storm period from March to May. The largest matter deposition of C (vs) and N (vs) was measured at the ungrazed site with 328.7 (mg Corg m-2 d-1) and 30.30 (mg Nt m-2 d-1) on average. Heavy grazing resulted in average organic carbon and nitrogen deposition of 106.67 (mg Corg m-2 d-1) and 9.8 (mg N m-2 d-1) in average (Hoffmann et al. 2008). Wind driven soil deposition and erosion were influenced heavily by grazing. The critical vegetation cover is about 20-30%, at which net soil losses occur. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes (s) varied between 0.39 and 1.60 μg N2O-N m-2 h-1 (Holst et al. 2007). During all measuring periods, significantly lower mean soil CH4 uptake at moderate grazing (28 mg C m-2 h-1) as compared to ungrazed (56 μg C m-2 h-1) was found (Liu et al. 2007). The pedosphere indicator group includes soil chemical, soil physical and microbiological parameters. Organic carbon (s) and total N (s) concentrations decreased significantly with increasing grazing intensity. No effect of grazing on pH (w) or soil C/N ratio (w) was detected. Bulk density (m) significantly increased with increasing grazing intensity, from 0.94 g cm-3 at the ungrazed site to 1.28 g cm-3 at the heavily grazed site (Steffens et al. 2008). Also shear strength (m) increased with increasing grazing intensity (Zhao et al. 2007). Gross rates of N mineralization (vs) and nitrification (vs) determined at in situ soil moisture and soil temperature conditions were in a range of 0.5-4.1 mg N kg-1 soil dry weight day)1. In 2005, gross N turnover rates were significantly higher at the ungrazed plots than at the moderately and overgrazed plots (Holst et al. 2007). In the hydrosphere group soil water content (w) was the highest at the ungrazed site and lowest at the heavy grazed site. Compared with moderately grazed treatments, soil water content was little higher in ungrazed treatments after long dryness but lower under wet conditions. Water drop penetration time (s) was higher in the ungrazed plots showing a slight to strong water repellency than in the grazed plots (Zhao et al. 2007). References Gao, Y., Giese, M., Lin, S., Sattelmacher, B., Zhao, Y. and Brueck, H. Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. 2008. Plant and Soil DOI 10.1007/s11104-008-9579-3. Hoffmann, C., Funk, R., Li, Y. and Sommer, M. Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. 2008. Catena 75: 182-190. Holst, J., Liu, C., Brueggemann, N., Butterbach-Bahl, K., Zheng, X., Wang, Y., Han, S., Yao, Z., Yue, J. and Han, X. Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia as influenced by grazing intensity. 2007. Ecosystems. Ketzer, B., Bernhofer, Ch. and Liu, H. Sensitivity of micrometeorological measurements to detect surface characteristics of grasslands in Inner Mongolia. 2008. Int. J. Biometeorol. Liu, C., Holst, J., Brueggemann, N., Butterbach-Bahl, K., Yao, Z., Yue, J., Han, S., Han, X., Kruemmelbein, J., Horn, R. and Zheng, X. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. 2007. Journal of Atmospheric Environment doi:10.1016/j.atmosenv.2007.03.017. Steffens, M., Koelbl, A., Totsche, K. U. and Koegel-Knabner, I. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). 2008. Geoderma 143: 63-72. Zhao, Y., Peth, S., Kruemmelbein, J., Horn, R., Wang, Z., Steffens, M., Hoffmann, C. and Peng, X. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. 2007. Ecological Modelling 205: 241-254.

  16. Concentrate Supplement Modifies the Feeding Behavior of Simmental Cows Grazing in Two High Mountain Pastures

    PubMed Central

    Romanzin, Alberto; Piasentier, Edi

    2018-01-01

    Simple Summary Traditional Alpine husbandry systems require dairy cows to be grazing on mountain pasture during summer and kept indoors during the remaining part of the year. Nowadays, the pasture is not able to fully satisfy the nutritional requirements of cattle; therefore, the use of concentrates is frequently required. From their use, some issues arise: the cows tend to consume the concentrates at the expense of the grass; concentrates are competitive with human diets; concentrates decrease the environmental sustainability of farm. Therefore, in order to minimize their use, it is imperative to obtain data on the grazing behavior of cows. The aim of this study was to assess the effect of concentrate levels on the behavior of dairy cows during summer grazing in two pastures characterized by Poion alpinae and Seslerion caeruleae alliance. Cows were equipped with an electronic device to evaluate feeding behavior (grazing, rumination, and walking). In addition, the plant selection by animals was assessed. In Poion alpinae, a rich pasture, the increased supplement influenced the selectivity of the pasture species, while in Seslerion caeruleae, a poor pasture, supplementation resulted in a reduction in grazing times. The study highlights how the supplement level induced a different grazing behavior depending on pasture type. Abstract During grazing on Alpine pastures, the use of concentrates in dairy cows’ diet leads to a reduction of the environmental sustainability of farms, and influences the selective pressure on some plant species. In order to minimize the use of concentrates, it is imperative to obtain data on the grazing behavior of cows. The aim of this study was to assess the effect of concentrate levels on the behavior of dairy cows during grazing. One hundred and ten lactating Italian Simmental cows, that sequentially grazed two pastures characterized by Poion alpinae (Poion) and Seslerion caeruleae (Seslerion) alliance, were considered. For each pasture, eight cows were selected and assigned to two groups: High and Low, supplemented with 4 kg/head/d, and 1 kg/head/d of concentrate respectively. Cows were equipped with a noseband pressure sensor and a pedometer (RumiWatch system, ITIN-HOCH GmbH) to assess grazing, ruminating, and walking behavior. In addition, the plant selection of the animals was assessed. On Poion, increased supplement intake caused a more intense selection of legumes, without affecting feeding and walking times. On Seslerion, grazing time was higher in Low than High. Grazing management in alpine region must take into account the great variability of pastures that largely differ from a floristic and nutritional point of view. PMID:29772724

  17. Annual methane budgets of sheep grazing systems were regulated by grazing intensities in the temperate continental steppe: A two-year case study

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Zhong, Mengying; Zhu, Yuhao; Yang, Helong; Johnson, Douglas A.; Rong, Yuping

    2018-02-01

    Methane (CH4) emission from animal husbandry accounts for a large percentage of anthropogenic contributions to CH4 emissions. Fully understanding of grazing management effects on the CH4 budget is essential for mitigating CH4 emissions in the temperate grazing steppe systems. Annual CH4 budgets for the sheep grazed steppes at various grazing intensities, un-grazing (UG, 0 sheep ha-1year-1), defer grazing (DG, 1.0 sheep ha-1 year-1), moderate grazing (MG, 1.43 sheep ha-1year-1), and heavy grazing (HG, 2.43 sheep ha-1year-1) were assessed across 2012-2014 in the agro-pastoral region of northern China. Annual soil CH4 uptake averaged across 2012-2014 were 1.1 ± 0.1, 2.4 ± 0.2, 2.2 ± 0.2, and 1.3 ± 0.1 kg CH4-C ha-1 for UG, DG (only 2013-2014), MG and HG sites. Non-growing season CH4 uptake comprised 50.0 ± 4.3% of annual CH4 uptake in 2012-2013 and 37.7 ± 2.0% in 2013-2014. DG and MG significantly promoted annual soil CH4 uptake (P < 0.05), while there was no difference between HG and UG (P > 0.05). Bell-shaped relationship was presented between stocking rates and soil CH4 uptake (r2 = 0.59, P < 0.05). Annual soil CH4 uptake significant linearly and positively correlated with root biomass (r2 = 0.30, P < 0.05). Annual CH4 budgets for the grazed grasslands were -1.1 ± 0.1, 5.7 ± 0.6, 11.5 ± 1.5 and 15.5 ± 1.3 kg CH4-C ha-1 year-1 in UG, DG (only 2013-2014), MG and HG across 2012-2014. Soil CH4 uptake could offset 29.7 ± 5.6, 15.9 ± 4.3 and 6.8 ± 1.0% of total annual CH4 emissions from sheep, sheepfold and faeces in DG, MG, and HG. All grazed steppes are sources for atmospheric CH4 and the magnitude is regulated by grazing intensities. Sheep CH4 emissions for 1-g liveweight gain were 0.21, 0.32 and 0.37 g CH4-C in DG, MG and HG, respectively. DG is the recommended grazing management in this region to achieve greater herbage mass, higher sheep performance and lower CH4 emissions simultaneously.

  18. Effects of livestock grazing on morphology, hydrology and nutrient retention in four riparian/stream ecosystems, New Mexico, USA

    Treesearch

    James R. Thibault; Douglas L. Moyer; Clifford N. Dahm; H. Maurice Valett; Michael C. Marshall

    1999-01-01

    Land-use practices such as livestock grazing influence the structure and function of riparian/stream ecosystems. In New Mexico, four streams were selected to determine the impact of moderate livestock grazing on morphology, solute transport, and nutrient retention. Each stream contained a reach currently exposed to grazing and an exclosed, ungrazed reach. Channel width...

  19. Northern/Intermountain Regions' fish habitat inventory: Grazed, rested, and ungrazed reference stream reaches, Silver King Creek, California

    Treesearch

    C. Kerry Overton; Gwynne L. Chandler; Janice A. Pisano

    1994-01-01

    Stream reaches that have been rested from livestock grazing appear to have stable banks and more bank undercuts than grazed stream sections. Ungrazed reference streams that are similar in parent geology, precipitation, channel type, habitat types, drainage area, and stream width had greater bank stability values and lower width-todepth ratios than those of grazed and...

  20. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington.

    Treesearch

    John Beebe; Richard Everett; George Scherer; Carl. Davis

    2002-01-01

    Fertilizer applications and grazing exclusion were used as restoration strategies in degraded wet meadows in eastern Washington to grow biomass in the root systems where it could not be grazed. We used a split-block design to test vegetation responses to six fertilizer rates, eight fertilizer types, and three grazing treatments after three growing seasons. Little...

  1. Cow weights and calf production for pasture 12-C Lehmann lovegrass grazing trials, 1982 to 1993

    Treesearch

    Phil R. Ogden; E. Lamar Smith

    2003-01-01

    The purpose of the grazing trials described in this paper was to provide information to aid in the development of grazing management strategies where Lehmann lovegrass has become a dominant species. Seven pastures were utilized from 1984 to 1987 for a comparison of four yearlong stocking rates to seasonal grazing rotated through three pastures. A second trial, 1988 to...

  2. Productivity of cow-calf pairs grazing tall fescue pastures infected with either the wild-type endophyte or a nonergot alkaloid-producing endophyte strain, AR542.

    PubMed

    Watson, R H; McCann, M A; Parish, J A; Hoveland, C S; Thompson, F N; Bouton, J H

    2004-11-01

    The nonergot alkaloid-producing endo-phyte, AR542, has been shown to improve the persistence and yield of tall fescue pastures without causing the animal disorders commonly associated with tall fescue toxicosis. A 3-yr grazing study was conducted to compare effects of AR542-infected tall fescue pastures with wild type endophyte-infected (E+) tall fescue pastures on cow-calf performance. Replicated 7.3-ha pastures of each treatment were grazed by cow-calf pairs (16 pairs per pasture replication) each year from March to weaning in September. The cows were exposed to breeding on their respective pasture treatments from April 1 through June 15. The treatment groups were compared for reproductive performance, ADG, BCS, calf growth rate, and weaning weight. Blood samples were also collected for serum prolactin (PRL) analysis. There were no significant differences in calving rate (P = 0.98) or calving interval (P = 0.62) between pasture treatments. Cows that grazed the AR542 pastures subsequently gave birth to calves that were heavier (P < 0.05) than calves from cows that had grazed the E+ pastures. Cows grazing the AR542 pastures had higher (P < 0.05) BCS at the end of the grazing period, and had higher ADG during the grazing period. Calves raised on the AR542 pasture had higher (P < 0.05) ADG and weaning weights than calves of the same sex raised on the E+ pastures. Serum PRL concentrations were decreased (P < 0.05) in both cows and calves on the E+ pastures compared with serum PRL concentrations in cows and calves grazing the AR542 pastures. The results indicate that grazing tall fescue pastures infected with the AR542 endophyte may give significant advantages in cow-calf growth rates and BCS over grazing E+ pastures. However, there did not seem to be any benefit in reproductive performance in this trial. There was a small, but significant increase in birth weight in cows grazing AR542 pasture.

  3. Can Managed Grazing be Part of Healthy Agroecosystems? Impacts of Various Systems on Soil Water and other Ecosystem Services

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Basche, A.; Gonzalez, J.

    2016-12-01

    Due to the vast extent of grazing lands, value of grassland ecosystems, and environmental impacts of the agricultural sector, it is becoming increasingly important to understand to what extent managed grazing can be part of healthy agroecosystems. For example, grazing systems can degrade soils, pollute water, and result in substantial direct and indirect animal emissions. On the other hand, well-managed grasslands can store more carbon, support more biodiversity, and require fewer inputs than croplands or other land uses. Systems analyses are needed to evaluate how much grazing management (e.g., altering stocking rate intensity or regime, integrating versus separating crops and livestock, adopting silvopasture techniques) can affect agroecosystem properties and farm viability. As a result of climate change and likely increases to rainfall variability, the effects of grazing systems on soil water properties are particularly important. The primary goal of this study is to use meta-analytic techniques to better understand how changes to grazing systems affect soil water properties, focusing on soil water infiltration rates. Another goal is to conduct a literature survey to assess how similar changes to grazing have influenced other ecosystem services (e.g., soil carbon, farm profitability) and to identify gaps in knowledge. To date, our meta-analysis includes over 100 paired comparisons (>30 studies) related to grazing. The analysis is a subset of a broader study of agroecological practices that to date includes >350 paired observations. Preliminary results point to significant variability, but suggest that integrating livestock into croplands decreases infiltration (12%), whereas other changings to grazing (decreasing stocking rates, moving from continuous to rotational grazing, or converting to a silvopasture system) can improve infiltration (by an average of 223% including all practices). Findings also suggest that removing livestock tends to increase infiltration rates over time. In cases where infiltration rates are negatively affected by grazing, soil conservation practices such as planting perennials or rotating crops) might mitigate those effects. However, the magnitude of these effects may depend on variables such as time since management change and rainfall regime.

  4. Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian Grassland

    USGS Publications Warehouse

    Barger, N.N.; Ojima, D.S.; Belnap, J.; Shiping, W.; Yanfen, W.; Chen, Z.

    2004-01-01

    This study reports on changes in plant functional group composition, litter quality, and soil C and N mineralization dynamics from a 9-year sheep grazing study in Inner Mongolia. Addressed are these questions: 1) How does increasing grazing intensity affect plant community composition? 2) How does increasing grazing intensity alter soil C and N mineralization dynamics? 3) Do changes in soil C and N mineralization dynamics relate to changes in plant community composition via inputs of the quality or quantity of litter? Grazing plots were set up near the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) with 5 grazing intensities: 1.3, 2.7, 4.0, 5.3, and 6.7 sheep ha -1??yr-1. Plant cover was lower with increasing grazing intensity, which was primarily due to a dramatic decline in grasses, Carex duriuscula, and Artemisia frigida. Changes in litter mass and percentage organic C resulted in lower total C in the litter layer at 4.0 and 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Total litter N was lower at 5.3 sheep ha-1??yr-1 compared with 2.7 sheep ha -1??yr-1. Litter C:N ratios, an index of litter quality, were significantly lower at 4.0 sheep ha-1??yr -1 relative to 1.3 and 5.3 sheep ha-1??yr -1. Cumulative C mineralized after 16 days decreased with increasing grazing intensity. In contrast, net N mineralization (NH4+ + NO3-) after a 12-day incubation increased with increasing grazing intensity. Changes in C and N mineralization resulted in a narrowing of CO2-C:net Nminratios with increasing grazing intensity. Grazing explained 31% of the variability in the ratio of CO 2-C:net Nmin. The ratio of CO2-C:net N min was positively correlated with litter mass. Furthermore, there was a positive correlation between litter mass and A. frigida cover. Results suggest that as grazing intensity increases, microbes become more C limited resulting in decreased microbial growth and demand for N.

  5. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass () using data measured in indirect open-circuit respiration chambers.

    PubMed

    Zhao, Y G; O'Connell, N E; Yan, T

    2016-06-01

    Development of effective methane (CH) mitigation strategies for grazing sheep requires accurate prediction tools. The present study aimed to identify key parameters influencing enteric CH emissions and develop prediction equations for enteric CH emissions from sheep offered fresh grass. The data used were collected from 82 sheep offered fresh perennial ryegrass () as sole diets in 6 metabolism experiments (data from non-grass-only diets were not used). Sheep were from breeds of Highlander, Texel, Scottish Blackface, and Swaledale at the age of 5 to 18 mo and weighing from 24.5 to 62.7 kg. Grass was harvested daily from 6 swards on contrasting harvest dates (May to December). Before the commencement of each study, the experimental sward was harvested at a residual height of 4 cm and allowed to grow for 2 to 4 wk. The feeding trials commenced when the grass sward was suitable to zero grazing (average grass height = 15 cm), thus offering grass of a quality similar to what grazing animals would receive under routine grazing management. Sheep were housed in individual pens for 14 d and then moved to individual calorimeter chambers for 4 d. Feed intake, fecal and urine outputs, and CH emissions were measured during the final 4 d. Data were analyzed using the REML procedure to develop prediction equations for CH emissions. Linear and multiple prediction equations were developed using BW, DMI, GE intake (GEI), and grass chemical concentrations (DM, OM, water-soluble carbohydrates [WSC], NDF, ADF, nitrogen [N], GE, DE, and ME) as explanatory variables. The mean CH production was 21.1 g/kg DMI or 0.062 MJ/MJ GEI. Dry matter intake and GEI were much more accurate predictors for CH emissions than BW ( < 0.001, = 0.86 and = 0.87 vs. = 0.09, respectively). Adding grass DE and ME concentrations and grass nutrient concentrations (e.g., OM, N, GE, NDF, and WSC) to the relationships between DMI or GEI and CH emissions improved prediction accuracy with values increased to 0.93. Models based on farm-level data, for example, BW and grass nutrient (i.e., DM, GE, OM, and N) concentrations, were also developed and performed satisfactorily ( < 0.001, = 0.63). These models can contribute to improve prediction accuracy for enteric CH emissions from sheep grazing on ryegrass pasture.

  6. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem.

    PubMed

    Evju, Marianne; Austrheim, Gunnar; Halvorsen, Rune; Mysterud, Atle

    2009-08-01

    Herbivores shape plant communities through selective foraging. However, both herbivore selectivity and the plant's ability to tolerate or resist herbivory may depend on the density of herbivores. In an alpine ecosystem with a long history of grazing, plants are expected to respond to both enhanced and reduced grazing pressures, and the interaction between plant traits and changes in species abundance are expected to differ between the two types of alteration of grazing regime. To understand the mechanisms behind species response, we investigated the relationship between sheep selectivity (measured in situ), plant traits and experimentally derived measures of change in species abundance as a response to the enhancement (from low to high density) or cessation (from low to zero density) of sheep grazing pressure over a six-year time period for 22 abundant herb species in an alpine habitat in south Norway. Sheep selected large, late-flowering herbs with a low leaf C/N ratio. Species that increased in abundance in response to enhanced grazing pressure were generally small and had high root/shoot ratios, thus exhibiting traits that reflect both resistance (through avoidance) and tolerance (through regrowth capacity) strategies. The abundance of selected species remained stable during the study period, and also under the enhanced grazing pressure treatment. There was, however, a tendency for selected species to respond positively to cessation of grazing, although overall responses to cessation of grazing were much less pronounced than responses to enhanced grazing. Avoidance through short stature (probably associated with increased light availability through the removal of tall competitors) as well as a certain amount of regrowth capacity appear to be the main mechanisms behind a positive response to enhanced grazing pressure in this study. The plant trait perspective clearly improves our insight into the mechanisms behind observed changes in species abundance when the disturbance regime is altered.

  7. Effect of grazing on vegetation and soil of the heuweltjieveld in the Succulent Karoo, South Africa

    NASA Astrophysics Data System (ADS)

    Schmiedel, Ute; Röwer, Inga Ute; Luther-Mosebach, Jona; Dengler, Jürgen; Oldeland, Jens; Gröngröft, Alexander

    2016-11-01

    We asked how historical and recent grazing intensity affect the patchy landscape of the heuweltjieveld in the semi-arid biodiversity hotspot Succulent Karoo. The study was carried out on a communal farmland 80 km south-west of Springbok, in Namaqualand. Heuweltjies are roughly circular earth mounds that are regularly distributed in this landscape. We sampled plant species and life-form composition, diversity measures, habitat and soil variables in 100 m2 plots, placed in three visually distinguishable heuweltjie zones (centre, fringe, and matrix) and distributed across grazing camps with different recent and historic grazing intensities. Differences between heuweltjie zones were assessed with ANOVAs and multiple linear regressions. The effect of past and recent grazing intensity on soil and plant variables was analysed by Generalized Linear Models for each heuweltjie zone separately. The three zones constituted clearly distinguishable units in terms of vegetation and soil characteristics. Soil pH and cover of annual plants increased from matrix to centres, while total vegetation cover, species richness and perennial plant cover decreased in the same direction. Historic (pre-2000) grazing patterns had the strongest effects on fringes, showing the strongest soil and vegetation-related signs of overutilization with increased stocking density. Centres showed signs of overutilization irrespective of the stocking density. The much shorter exposure to recent grazing pattern (post-2000), which was nearly inverse to the historic grazing pattern, showed increase of vegetation cover (centres) and species richness (matrix) with recent grazing intensity. We interpret these effects as still visible responses of the lower grazing intensity in these camps during the historic period. No recovery under recent grazing was observed at any of the zones. We conclude that irrespective of their conducive growing conditions, once transformed to a disturbed state, heuweltjie centres recover slowly, whereas the less impacted soil and vegetation of fringes are more responsive than centres and matrix.

  8. Assessing herbivore foraging behavior with GPS collars in a semiarid grassland.

    PubMed

    Augustine, David J; Derner, Justin D

    2013-03-15

    Advances in global positioning system (GPS) technology have dramatically enhanced the ability to track and study distributions of free-ranging livestock. Understanding factors controlling the distribution of free-ranging livestock requires the ability to assess when and where they are foraging. For four years (2008-2011), we periodically collected GPS and activity sensor data together with direct observations of collared cattle grazing semiarid rangeland in eastern Colorado. From these data, we developed classification tree models that allowed us to discriminate between grazing and non-grazing activities. We evaluated: (1) which activity sensor measurements from the GPS collars were most valuable in predicting cattle foraging behavior, (2) the accuracy of binary (grazing, non-grazing) activity models vs. models with multiple activity categories (grazing, resting, traveling, mixed), and (3) the accuracy of models that are robust across years vs. models specific to a given year. A binary classification tree correctly removed 86.5% of the non-grazing locations, while correctly retaining 87.8% of the locations where the animal was grazing, for an overall misclassification rate of 12.9%. A classification tree that separated activity into four different categories yielded a greater misclassification rate of 16.0%. Distance travelled in a 5 minute interval and the proportion of the interval with the sensor indicating a head down position were the two most important variables predicting grazing activity. Fitting annual models of cattle foraging activity did not improve model accuracy compared to a single model based on all four years combined. This suggests that increased sample size was more valuable than accounting for interannual variation in foraging behavior associated with variation in forage production. Our models differ from previous assessments in semiarid rangeland of Israel and mesic pastures in the United States in terms of the value of different activity sensor measurements for identifying grazing activity, suggesting that the use of GPS collars to classify cattle grazing behavior will require calibrations specific to the environment and vegetation being studied.

  9. Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in Grassland establishment

    USGS Publications Warehouse

    Milchunas, D.G.; Vandever, M.W.; Ball, L.O.; Hyberg, S.

    2011-01-01

    The effects of grazing, mowing, and type of cover crop were evaluated in a previous winter wheat-fallow cropland seeded to grassland under the Conservation Reserve Program in eastern Colorado. Prior to seeding, the fallow strips were planted to forage sorghum or wheat in alternating strips (cover crops), with no grazing, moderate to heavy grazing, and mowing (grazing treatments) superimposed 4 yr after planting and studied for 3 yr. Plots previously in wheat had more annual and exotic species than sorghum plots. Concomitantly, there were much greater abundances of perennial native grass and all native species in sorghum than wheat cropped areas. The competitive advantage gained by seeded species in sorghum plots resulted in large increases in rhizomatous western wheatgrass. Sorghum is known to be allelopathic and is used in crop agriculture rotations to suppress weeds and increase crop yields, consistent with the responses of weed and desired native species in this study. Grazing treatment had relatively minor effects on basal and canopy cover composition of annual or exotic species versus perennial native grass or native species. Although grazing treatment never was a significant main effect, it occasionally modified cover crop or year effects. Opportunistic grazing reduced exotic cheatgrass by year 3 but also decreased the native palatable western wheatgrass. Mowing was a less effective weed control practice than grazing. Vegetative basal cover and aboveground primary production varied primarily with year. Common management practices for revegetation/restoration currently use herbicides and mowing as weed control practices and restrict grazing in all stages of development. Results suggest that allelopathic cover crop selection and opportunistic grazing can be effective alternative grass establishment and weed control practices. Susceptibility, resistance, and interactions of weed and seeded species to allelopathic cover species/cultivars may be a fruitful area of research. ?? 2011 Society for Range Management.

  10. Technical note: Validation of an ear-tag accelerometer sensor to determine rumination, eating, and activity behaviors of grazing dairy cattle.

    PubMed

    Pereira, G M; Heins, B J; Endres, M I

    2018-03-01

    The objective of this study was to validate an ear-tag accelerometer sensor (CowManager SensOor, Agis Automatisering BV, Harmelen, the Netherlands) using direct visual observations in a grazing dairy herd. Lactating crossbred cows (n = 24) were used for this experiment at the University of Minnesota West Central Research and Outreach Center grazing dairy (Morris, MN) during the summer of 2016. A single trained observer recorded behavior every minute for 6 h for each cow (24 cows × 6 h = 144 h of observation total). Direct visual observation was compared with sensor data during August and September 2016. The sensor detected and identified ear and head movements, and through algorithms the sensor classified each minute as one of the following behaviors: rumination, eating, not active, active, and high active. A 2-sided t-test was conducted with PROC TTEST of SAS (SAS Institute Inc., Cary, NC) to compare the percentage of time each cow's behavior was recorded by direct visual observation and sensor data. For total recorded time, the percentage of time of direct visual observation compared with sensor data was 17.9 and 19.1% for rumination, 52.8 and 51.9% for eating, 17.4 and 11.9% for not active, and 7.9 and 21.1% for active. Pearson correlations (PROC CORR of SAS) were used to evaluate associations between direct visual observations and sensor data. Furthermore, concordance correlation coefficient (CCC), bias correction factors, location shift, and scale shift (epiR package of R version 3.3.1; R Foundation for Statistical Computing, Vienna, Austria) were calculated to provide a measure of accuracy and precision. Correlations between visual observations for all 4 behaviors were highly to weakly correlated (rumination: r = 0.72, CCC = 0.71; eating: r = 0.88, CCC = 0.88; not active: r = 0.65, CCC = 0.52; and active: r = 0.20, CCC = 0.19) compared with sensor data. The results suggest that the sensor accurately monitors rumination and eating behavior of grazing dairy cattle. However, active behaviors may be more difficult for the sensor to record than others. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Herbage intake regulation and growth of rabbits raised on grasslands: back to basics and looking forward.

    PubMed

    Martin, G; Duprat, A; Goby, J-P; Theau, J-P; Roinsard, A; Descombes, M; Legendre, H; Gidenne, T

    2016-10-01

    Organic agriculture is developing worldwide, and organic rabbit production has developed within this context. It entails raising rabbits in moving cages or paddocks, which enables them to graze grasslands. As organic farmers currently lack basic technical information, the objective of this article is to characterize herbage intake, feed intake and the growth rate of rabbits raised on grasslands in different environmental and management contexts (weather conditions, grassland type and complete feed supplementation). Three experiments were performed with moving cages at an experimental station. From weaning, rabbits grazed a natural grassland, a tall fescue grassland and a sainfoin grassland in experiments 1, 2 and 3, respectively. Rabbit diets were supplemented with a complete pelleted feed limited to 69 g dry matter (DM)/rabbit per day in experiment 1 and 52 g DM/rabbit per day in experiments 2 and 3. Herbage allowance and fiber, DM and protein contents, as well as rabbit intake and live weight, were measured weekly. Mean herbage DM intake per rabbit per day differed significantly (P<0.001) between experiments. It was highest in experiment 1 (78.5 g DM/day) and was 43.9 and 51.2 g DM/day in experiments 2 and 3, respectively. Herbage allowance was the most significant determinant of herbage DM intake during grazing, followed by rabbit metabolic weight (live weight0.75) and herbage protein and fiber contents. Across experiments, a 10 g DM increase in herbage allowance and a 100 g increase in rabbit metabolic weight corresponded to a mean increase of 6.8 and 9.6 g of herbage DM intake, respectively. When including complete feed, daily mean DM intakes differed significantly among experiments (P<0.001), ranging from 96.1 g DM/rabbit per day in experiment 2 to 163.6 g DM/rabbit per day in experiment 1. Metabolic weight of rabbits raised on grasslands increased linearly over time in all three experiments, yielding daily mean growth rates of 26.2, 19.2 and 28.5 g/day in experiments 1, 2 and 3, respectively. The highest growth rate was obtained on the sainfoin grassland despite lower concentrate supplementation. Thus, it seems possible to reduce complete feed supplementation without reducing animal performance. This possibility requires improving our knowledge about organic rabbit production systems and especially grazing and animal health management.

  12. Combining Restricted Grazing and Nitrification Inhibitors to Reduce Nitrogen Leaching on New Zealand Dairy Farms.

    PubMed

    Romera, Alvaro J; Cichota, Rogerio; Beukes, Pierre C; Gregorini, Pablo; Snow, Val O; Vogeler, Iris

    2017-01-01

    Intensification of pastoral dairy systems often means more nitrogen (N) leaching. A number of mitigation strategies have been proposed to reduce or reverse this trend. The main strategies focus on reducing the urinary N load onto pastures or reducing the rate of nitrification once the urine has been deposited. Restricted grazing is an example of the former and the use of nitrification inhibitors an example of the latter. A relevant concern is the cost effectiveness of these strategies, independently and jointly. To address this concern, we employed a modeling approach to estimate N leaching with and without the use of these mitigation options from a typical grazing dairy farm in New Zealand. Three restricted grazing options were modeled with and without a nitrification inhibitor (dicyandiamide, DCD) and the results were compared with a baseline farm (no restricted grazing, no inhibitor). Applying DCD twice a year, closely following the cows after an autumn and winter grazing round, has the potential to reduce annualized and farm-scale N leaching by ∼12%, whereas restricted grazing had leaching reductions ranging from 23 to 32%, depending on the timing of restricted grazing. Combining the two strategies resulted in leaching reductions of 31 to 40%. The abatement cost per kilogram of N leaching reduction was NZ$50 with DCD, NZ$32 to 37 for restricted grazing, and NZ$40 to 46 when the two were combined. For the range analyzed, all treatments indicated similar cost per percentage unit of mitigated N leaching, demonstrating that restricted grazing and nitrification inhibitors can be effective when used concurrently. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity

    PubMed Central

    Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control. PMID:24223133

  14. Reproductive performance of ewes grazing lucerne during different periods around mating.

    PubMed

    Robertson, S M; Clayton, E H; Friend, M A

    2015-11-01

    High intake of lucerne pastures or feeding of other high quality diets during early pregnancy may increase embryo mortality, negating any benefit of improved nutrition on ovulation rate in ewes. This study was conducted to determine whether grazing ewes on lucerne (Medicago sativa) pastures for 7 days prior to and throughout joining would result in greater foetal numbers than if ewes were removed 7 days after the commencement of joining, or if ewes grazed senescent pasture throughout the joining period. Merino ewes (300) were allocated to two replicates of three treatments, grazing pastures between Days -7 and 36 of an unsynchronised, natural autumn joining. Grazing lucerne to Day 7 of joining resulted in 30% more (P<0.05) foetuses per ewe than grazing senescent pasture (1.60±0.07 and 1.31±0.07, respectively), and 19% more lambs marked per ewe joined. Extending grazing of lucerne past Day 7 of joining did not result in additional foetuses per ewe (1.61±0.06) in comparison with only grazing lucerne to Day 7 of joining. Greater than 80% of ewes mated during the first 14 days of joining, and the proportions of ewes returning to oestrus and re-mating (0.18±0.022) and of non-pregnant (0.09±0.017) ewes were similar (P>0.05) among all treatment groups, suggesting no differences between treatments in embryo mortality. Grazing naturally cycling ewes on lucerne prior to and during joinings in autumn is recommended as a means to increase the number of lambs born, although additional gains may not be obtained by grazing past day seven of joining. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Progress Report: Stratton Ecological Research Site - An Experimental Approach to Assess Effects of Various Grazing Treatments on Vegetation and Wildlife Communities Across Managed Burns and Habitat Controls

    USGS Publications Warehouse

    Erickson, Heidi J.; Aldridge, Cameron L.; Hobbs, N. Thompson

    2009-01-01

    Understanding how management practices affect wildlife is fundamental to wise decisions for conservation of public lands. Prescribed fire and grazing timing are two management tools frequently used within publicly owned sagebrush ecosystems. We conducted a variety of surveys in order to assess the impacts of grazing timing strategies (early summer before peak green-up, mid-summer at peak green-up, and late summer after peak green-up) in conjunction with prescribed fire on avian and small mammal populations in a high-elevation sagebrush ecosystem. Avian surveys resulted in a large detection sample size for three bird species: Brewer's sparrow (Spizella breweri), horned lark (Eremophila alpestris), and vesper sparrow (Pooecetes gramineus). Brewer's sparrows had the lowest number of detections within the mid-summer grazing treatment compared to early and late summer grazing treatments, while horned larks and vesper sparrows had higher detection frequencies within the late summer grazing treatment. Summer and fall sage-grouse (Centrocercus urophasianus) pellet counts revealed that the greatest over-winter and over-summer use by sage-grouse occurred within the early summer grazing treatment with minimal use of burn treatment areas across all grazing treatments. Deer-mice (Peromyscus maniculatus) represented approximately 90 percent of small mammals captured and were most prevalent within the mid-summer grazing treatment. Sagebrush cover was greatest within the mid-summer grazing treatment. We monitored 50 and 103 nests in 2007 and 2008, respectively. The apparent success rate for shrub-obligate nesting species was 58 percent in 2007 and 63 percent in 2008. This research will support management of sagebrush ecosystems by providing public land managers with direct comparisons of wildlife response to management regimes.

  16. 43 CFR 2530.0-3 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Juan County, Utah. (c) Executive Orders 6910 and 6964, Taylor Grazing Act of June 28, 1934. Public land... land within grazing districts established under section 1 of the Taylor Grazing Act of June 28, 1934...

  17. Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.

    PubMed

    McGregor, Hugh W; Legge, Sarah; Jones, Menna E; Johnson, Christopher N

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.

  18. Landscape Management of Fire and Grazing Regimes Alters the Fine-Scale Habitat Utilisation by Feral Cats

    PubMed Central

    McGregor, Hugh W.; Legge, Sarah; Jones, Menna E.; Johnson, Christopher N.

    2014-01-01

    Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores. PMID:25329902

  19. Do shrubs reduce the adverse effects of grazing on soil properties?

    USGS Publications Warehouse

    Eldridge, David J.; Beecham, Genevieve; Grace, James B.

    2015-01-01

    Increases in the density of woody plants are a global phenomenon in drylands, and large aggregations of shrubs, in particular, are regarded as being indicative of dysfunctional ecosystems. There is increasing evidence that overgrazing by livestock reduces ecosystem functions in shrublands, but that shrubs may buffer the negative effects of increasing grazing. We examined changes in water infiltration and nutrient concentrations in soils under shrubs and in their interspaces in shrublands in eastern Australia that varied in the intensity of livestock grazing. We used structural equation modelling to test whether shrubs might reduce the negative effects of overgrazing on infiltration and soil carbon and nitrogen (henceforth ‘soil nutrients’). Soils under shrubs and subject to low levels of grazing were more stable and had greater levels of soil nutrients. Shrubs had a direct positive effect on soil nutrients; but, grazing negatively affected nutrients by increasing soil bulk density. Structural equation modelling showed that shrubs had a direct positive effect on water flow under ponded conditions but also enhanced water flow, indirectly, through increased litter cover. Any positive effects of shrubs on water flow under low levels of grazing waned at high levels of grazing. Our results indicate that shrubs may reduce the adverse effects of grazing on soil properties. Specifically, shrubs could restrict access to livestock and therefore protect soils and plants beneath their canopies. Low levels of grazing are likely to ensure the retention of soil water and soil carbon and nitrogen in shrubland soils.

  20. Grassland Fire and Cattle Grazing Regulate Reptile and Amphibian Assembly Among Patches

    NASA Astrophysics Data System (ADS)

    Larson, Danelle M.

    2014-12-01

    Fire and grazing are common management schemes of grasslands globally and are potential drivers of reptilian and amphibian (herpetofauna) metacommunity dynamics. Few studies have assessed the impacts of fire and cattle grazing on herpetofauna assemblages in grasslands. A patch-burn grazing study at Osage Prairie, MO, USA in 2011-2012 created landscape patches with treatments of grazing, fire, and such legacies. Response variables were measured before and after the application of treatments, and I used robust-design occupancy modeling to estimate patch occupancy and detection rate within patches, and recolonization and extinction (i.e., dispersal) across patches. I conducted redundancy analysis and a permuted multivariate analysis of variance to determine if patch type and the associated environmental factors explained herpetofauna assemblage. Estimates for reptiles indicate that occupancy was seasonally constant in Control patches ( ψ ~ 0.5), but declined to ψ ~ 0.15 in patches following the applications of fire and grazing. Local extinctions for reptiles were higher in patches with fire or light grazing ( ɛ ~ 0.7) compared to the controls. For the riparian herpetofaunal community, patch type and grass height were important predictors of abundance; further, the turtles, lizards, snakes, and adult amphibians used different patch types. The aquatic amphibian community was predicted by watershed and in-stream characteristics, irrespective of fire or grazing. The varying responses from taxonomic groups demonstrate habitat partitioning across multiple patch types undergoing fire, cattle grazing, and legacy effects. Prairies will need an array of patch types to accommodate multiple herpetofauna species.

  1. Multisensor sampling of pelagic ecosystem variables in a coastal environment to estimate zooplankton grazing impact

    NASA Astrophysics Data System (ADS)

    Sutton, Tracey; Hopkins, Thomas; Remsen, Andrew; Burghart, Scott

    2001-01-01

    Sampling was conducted on the west Florida continental shelf ecosystem modeling site to estimate zooplankton grazing impact on primary production. Samples were collected with the high-resolution sampler, a towed array bearing electronic and optical sensors operating in tandem with a paired net/bottle verification system. A close biological-physical coupling was observed, with three main plankton communities: 1. a high-density inshore community dominated by larvaceans coincident with a salinity gradient; 2. a low-density offshore community dominated by small calanoid copepods coincident with the warm mixed layer; and 3. a high-density offshore community dominated by small poecilostomatoid and cyclopoid copepods and ostracods coincident with cooler, sub-pycnocline oceanic water. Both high-density communities were associated with relatively turbid water. Applying available grazing rates from the literature to our abundance data, grazing pressure mirrored the above bio-physical pattern, with the offshore sub-pycnocline community contributing ˜65% of grazing pressure despite representing only 19% of the total volume of the transect. This suggests that grazing pressure is highly localized, emphasizing the importance of high-resolution sampling to better understand plankton dynamics. A comparison of our grazing rate estimates with primary production estimates suggests that mesozooplankton do not control the fate of phytoplankton over much of the area studied (<5% grazing of daily primary production), but "hot spots" (˜25-50% grazing) do occur which may have an effect on floral composition.

  2. East Saint Louis and Vicinity, Illinois. Blue Waters Ditch Improvements. Final Environmental Statement.

    DTIC Science & Technology

    1978-06-01

    2.1.7 CLIMATOLOGICAL ELEMENTS OF THE AMERICAN BOTTOMS 2.1.7.1 General The climate of the American Bottoms and the Blue Waters area is that of the...land be sold by the owner for urban developnient. The older farmers express an intention to remain in the alea even in the event of farm loss. Each...land use is pastureland for grazing. Such livestock activities, though important in St. Clair County agriculture, are totally lacking in the Blue

  3. Principles of cost-benefit analysis for ERTS experiments, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The basic elements of a cost-benefit study are discussed along with special considerations for ERTS experiments. Elements required for a complete economic analysis of ERTS are considered to be: statement of objectives, specification of assumptions, enumeration of system alternatives, benefit analysis, cost analysis nonefficiency considerations, and final system selection. A hypothetical cost-benefit example is presented with the assumed objective of an increase in remote sensing surveys of grazing lands to better utilize available forage to lower meat prices.

  4. Non-grazing and gophers lower bulk density and acidity in annual-plant soil

    Treesearch

    Raymond D. Ratliff; Stanley E. Westfall

    1971-01-01

    The effects of non-grazing on Ahwahnee coarse sandy loam were studied at the San Joaquin Experimental Range in central California. An exclosure, on which there had been no livestock grazing for 34 years, had a lower surface bulk density and lower acidity than an adjacent range that had been grazed. Bulk density averaged 1.08 gm./cc. on the ungrazed range, and 1.43 gm./...

  5. Performance of Angus and Brangus cow-calf pairs grazing Alicia bermudagrass and common bermudagrass-dallisgrass pastures.

    PubMed

    Wyatt, W E; Gates, R N; Blouin, D C; Saxton, A M; Nelson, B D

    1997-07-01

    This research was designed to examine genotype x environment interactions in cow-calf growth performance of grazing animals. Angus and Brangus cow-calf pairs (minimum of six per breed) were allowed to rotationally graze (14-d intervals) treatment pastures from approximately May through early October in each of 2 yr. Treatment pastures contained relatively pure stands of Alicia bermudagrass (AP) or a mixed stand of common bermudagrass and dallisgrass (CDP). Forage allowance was equalized, using "put-and-take" cow-calf pairs, among forage and breed types at the initiation of each 14-d grazing interval. Forage samples were obtained in each paddock at the initiation of each grazing interval. Forage CP concentration was greater (P < .05; 13.5 vs 11.6%) and NDF concentration was less (P < .05; 63.8 vs 70.6%) for CDP than for AP. Daily weight loss was similar for Angus and Brangus cows, but it was greater (P < .05) for cows grazing AP than for cows grazing CDP. Calf ADG during the grazing season was 35% greater (P < .05) for CDP than for AP pastures and was 23% greater (P < .01) for Brangus than for Angus calves. Relative performance of Angus and Brangus cow-calf pairs was consistent between forages; no breed x forage interactions were observed.

  6. Concentrate Supplement Modifies the Feeding Behavior of Simmental Cows Grazing in Two High Mountain Pastures.

    PubMed

    Romanzin, Alberto; Corazzin, Mirco; Piasentier, Edi; Bovolenta, Stefano

    2018-05-16

    During grazing on Alpine pastures, the use of concentrates in dairy cows' diet leads to a reduction of the environmental sustainability of farms, and influences the selective pressure on some plant species. In order to minimize the use of concentrates, it is imperative to obtain data on the grazing behavior of cows. The aim of this study was to assess the effect of concentrate levels on the behavior of dairy cows during grazing. One hundred and ten lactating Italian Simmental cows, that sequentially grazed two pastures characterized by Poion alpinae (Poion) and Seslerion caeruleae (Seslerion) alliance, were considered. For each pasture, eight cows were selected and assigned to two groups: High and Low, supplemented with 4 kg/head/d, and 1 kg/head/d of concentrate respectively. Cows were equipped with a noseband pressure sensor and a pedometer (RumiWatch system, ITIN-HOCH GmbH) to assess grazing, ruminating, and walking behavior. In addition, the plant selection of the animals was assessed. On Poion, increased supplement intake caused a more intense selection of legumes, without affecting feeding and walking times. On Seslerion, grazing time was higher in Low than High. Grazing management in alpine region must take into account the great variability of pastures that largely differ from a floristic and nutritional point of view.

  7. Avian responses to late-season grazing in a shrub-willow floodplain

    USGS Publications Warehouse

    Stanley, T.R.; Knopf, F.L.

    2002-01-01

    Riparian vegetation in western North America provides important habitat for breeding birds and valuable forage for grazing livestock. Whereas a number of studies have documented the response of riparian vegetation to the removal of cattle, few have experimentally evaluated specific grazing systems. We evaluated the responses of vegetation and breeding birds to two cycles of late-season (August–September) grazing followed by 34 months of rest on the Arapaho National Wildlife Refuge, Colorado. We used a before-and-after control-impact (BACI) design, with two control (ungrazed) and two treatment ( grazed) pastures composing the experimental units. Vegetation characteristics and bird densities were quantified on sample plots prior to and following two cycles of the treatment. We found no statistical differences in vegetation change and few differences in bird-density change among pastures. Inspection of means for pastures, however, suggests that changes in shrub vigor and spatial pattern differed among ungrazed and grazed pastures and that changes in population density for three of the nine bird species and three guilds studied differed among pastures. Our results suggest that habitat for grazing-sensitive birds may be restored while still allowing late-season grazing, although the rate at which species are recovered will be slower than if all cattle are removed.

  8. Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China.

    PubMed

    Su, Rina; Cheng, Junhui; Chen, Dima; Bai, Yongfei; Jin, Hua; Chao, Lumengqiqige; Wang, Zhijun; Li, Junqing

    2017-02-28

    Grasslands worldwide are suffering from overgrazing, which greatly alters plant community structure and ecosystem functioning. However, the general effects of grazing on community structure and ecosystem function at spatial and temporal scales has rarely been examined synchronously in the same grassland. Here, during 2011-2013, we investigated community structure (cover, height, and species richness) and aboveground biomass (AGB) using 250 paired field sites (grazed vs. fenced) across three vegetation types (meadow, typical, and desert steppes) on the Inner Mongolian Plateau. Grazing, vegetation type, and year all had significant effects on cover, height, species richness, and AGB, although the primary factor influencing variations in these variables was vegetation type. Spatially, grazing significantly reduced the measured variables in meadow and typical steppes, whereas no changes were observed in desert steppe. Temporally, both linear and quadratic relationships were detected between growing season precipitation and cover, height, richness, or AGB, although specific relationships varied among observation years and grazing treatments. In each vegetation type, the observed community properties were significantly correlated with each other, and the shape of the relationship was unaffected by grazing treatment. These findings indicate that vegetation type is the most important factor to be considered in grazing management for this semi-arid grassland.

  9. A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    An analysis of the oscillatory fluid flow in the vicinity of a circular orifice with a steady grazing flow is presented. The study is similar to that of Hersh and Rogers but with the addition of the grazing flow. Starting from the momentum and continuity equations, a considerably simplified system of partial differential equations is developed with the assumption that the flow can be described by an oscillatory motion superimposed upon the known steady flow. The equations are seen to be linear in the region where the grazing flow effects are dominant, and a solution and the resulting orifice impedance are presented for this region. The nonlinearity appears to be unimportant for the usual conditions found in aircraft noise suppressors. Some preliminary conclusions of the study are that orifice resistance is directly proportional to grazing flow velocity (known previously from experimental data) and that the orifice inductive (mass reactance) end correction is not a function of grazing flow. This latter conclusion is contrary to the widely held notion that grazing flow removes the effect of the orifice inductive end correction. This conclusion also implies that the experimentally observed total inductance reduction with grazing flow might be in the flow within the orifice rather than in the end correction.

  10. Arizona Deafblind Project, 1995-1999. Final Report.

    ERIC Educational Resources Information Center

    Arizona State School for the Deaf and Blind, Tucson.

    This final report describes accomplishments of the four-year federally funded Arizona Deafblind Project which attempted to: (1) identify all deafblind children in Arizona; (2) deliver technical assistance to families; (3) deliver technical assistance to service providers; and (4) enhance community oversight, coordination, and collaboration with…

  11. Silvopastoral systems of the Chol Mayan ethnic group in southern Mexico: Strategies with a traditional basis.

    PubMed

    Pignataro, Ana Genoveva; Levy Tacher, Samuel Israel; Aguirre Rivera, Juan Rogelio; Nahed Toral, José; González Espinosa, Mario; Rendón Carmona, Nelson

    2016-10-01

    Silvopastoral systems combine trees and/or shrubs with grazing cattle. In the municipality of Salto de Agua, Chiapas, Mexico, some indigenous communities have developed silvopastoral systems based on their traditional knowledge regarding use of local natural resources. Through analysis of classification based on the composition of tree vegetation, two groups of grazing units were identified in the study area. Different attributes of tree and herbaceous vegetation, as well as of agricultural management and production, were compared between the two groups. Results indicate that at least two strategies of silvopastoral management exist. The first - LTD - is characterized by an average density of 22 adult trees ha(-1) in grazing units with an average surface area of 22.4 ha. The second - HTD - has an average of 54.4 trees ha(-1) in grazing units with an average surface area of 12.2 ha. Average richness per grazing unit for the LTD strategy was 7.2 species, and for HTD strategy it was 12.7 species. Average basal area for LTD was 1.7 m2 ha(-1), and for HTD 3.8 m2 ha(-1). Finally, the average level of fixed carbon for LTD was 2.12 mg ha(-1), and for HTD 4.89 mg ha(-1). For all variables, there was a significant difference between the two strategies. In addition, both strategies differ in prairie management. In the HTD strategy, growers spare their preferred spontaneously growing tree species by clearing around them. Many of these species, particularly those harvested for timber, belong to the original vegetation. In these prairies, average coverage of native grasses (60.8 ± 7.85) was significantly greater than in the LTD strategy (38.4 ± 11.32), and neither fertilizers nor fire are used to maintain or improve the pastures; by contrast, in HTD prairies, introduced grasses, principally Cynodon plectostachyus, have a higher average coverage (43.4 ± 13.75) than in the LTD prairies (17.08 ± 9.02). Regardless of the differences in composition of tree and herbaceous vegetation, in both types of grazing units a similar animal load is maintained. Many attributes of these silvopastoral strategies - based on traditional technology of the Chol farmers of the Tulija River Valley - concord with sustainable agriculture and provide a wide variety of services to the farmer and the environment. Diffusion of this technology in areas similar to that of this region could have a positive impact on the economy of conventional cattle raisers while generating environmental services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Low intensity, mixed livestock grazing improves the breeding abundance of a common insectivorous passerine.

    PubMed

    Evans, Darren M; Redpath, Stephen M; Evans, Sharon A; Elston, David A; Gardner, Charles J; Dennis, Peter; Pakeman, Robin J

    2006-12-22

    Livestock grazing is a major driver of ecosystem change and has been associated with significant declines in various bird species in Britain and worldwide. However, there is little experimental evidence to show how grazing affects bird populations. We manipulated livestock densities in a replicated field experiment and found that mixed sheep and cattle grazing, at low intensity, improved the breeding abundance of a common upland passerine, the meadow pipit Anthus pratensis, after two years. Plots stocked with sheep alone (at high or low density) or not stocked at all held fewer pipit territories. Despite a year-on-year decline in pairs of meadow pipits in intensively grazed plots, we found no effect of sheep number on breeding abundance. Our results support the hypothesis that mixed species of herbivores generate greater heterogeneity in vegetation structure, which modifies prey availability, resulting in a greater abundance of birds. The results of our study should inform the management of grassland areas and enhance the abundance of some bird species, particularly in areas that have seen significant shifts from mixed livestock grazing to grazing dominated by single species of animals.

  13. Hydrology and grazing jointly control a large-river food web.

    PubMed

    Strayer, David L; Pace, Michael L; Caraco, Nina F; Cole, Jonathan J; Findlay, Stuart E G

    2008-01-01

    Inputs of fresh water and grazing both can control aquatic food webs, but little is known about the relative strengths of and interactions between these controls. We use long-term data on the food web of the freshwater Hudson River estuary to investigate the importance of, and interactions between, inputs of fresh water and grazing by the invasive zebra mussel (Dreissena polymorpha). Both freshwater inputs and zebra mussel grazing have strong, pervasive effects on the Hudson River food web. High flow tended to reduce population size in most parts of the food web. High grazing also reduced populations in the planktonic food web, but increased populations in the littoral food web, probably as a result of increases in water clarity. The influences of flow and zebra mussel grazing were roughly equal (i.e., within a factor of 2) for many variables over the period of our study. Zebra mussel grazing made phytoplankton less sensitive to freshwater inputs, but water clarity and the littoral food web more sensitive to freshwater inputs, showing that interactions between these two controlling factors can be strong and varied.

  14. Effects of different grazing intensities of sheep on accumulated particulate organic matter (POM) and organic matter mineralization in low-alpine grassland soils in Norway.

    NASA Astrophysics Data System (ADS)

    Martinsen, V.; Mulder, J.; Austrheim, G.; Mysterud, A.

    2009-04-01

    Summer farming in mountain areas of Norway (e.g. livestock grazing and logging of fire wood) has reduced during the last century; however the number of sheep stayed relatively unchanged implying a translocation of grazing impact. Herbivores may affect both vegetation dynamics and nutrient cycling. Much information exists about the impact of cession of grazing, but little is known about the ecological effect of different grazing intensities. Using a controlled grazing experiment organized as total randomized block design (starting 2001), with three levels of grazing intensities by sheep (high, low and no sheep), effects of different grazing pressure on soil organic matter (SOM) mineralization and amount and quality of POM was studied in a low alpine region of Southern Norway. In a parallel study in situ measurements were conducted to determine biomass production rate and the quality of litter input. Soil samples from the O-horizon were incubated (determining C and N mineralization) and fractionated (free light POM fraction, density <1,8 g cm-3, size 20-2000 µm). It was hypothesized that high levels of grazing would induce (1) higher C and N mineralization rates and (2) less POM, due to physical (trampling) and chemical (input of faeces and urea) impact of sheep in addition to observed changes in vegetation cover. Results indicate that the amount of POM was in the order low>no sheep>high, indicating that low grazing intensity build up a potential larger mineralizable fraction compared with high and no sheep. The C content of POM was in the order no sheep>low>high and the N content of POM in the order low>no sheep>high. The C content of POM at high grazing intensity was significantly lower than at low grazing intensity and no sheep (ns. different). The low C content of POM at high grazing intensities (but not the N content) was the main reason for the observed CN ratios of the POM fraction being lowest at high densities (no sheep>low>high). Initial analysis of C and N mineralization suggest that the amount of CO2 evolved per g soil is highest in soil samples from low grazing pressure; however respiration rates expressed per g POM do not differ between treatments. Ammonium is the dominant form of inorganic N mineralized from SOM. By contrast, there is little or no accumulation of nitrate, suggesting low nitrification potentials in these soils. Differences between treatments in the amount and quality of POM and in mineralization rates indicate that there is a non linear response of grazing activity. Thus, change in management practice may have important consequences for feedback mechanisms controlling above and below ground productivity. At the conference more data on C and N mineralization in addition to a coupled stoichiometri of selected plants and SOM will be presented.

  15. Effects of precipitation on grassland ecosystem restoration under grazing exclusion in Inner Mongolia, China

    Treesearch

    Lu Hao; Ge Sun; Yongqiang Liu; Zhiqiu Gao; Junjie He; Tingting Shi; Bingjuan Wu

    2014-01-01

    China launched the ‘‘Returning Grazing Lands to Grasslands’’ project about a decade ago to restore severely degraded grasslands. Grassland grazing exclusion was one of the experimental approaches for achieving the grand goal. Here, we evaluate the long-term regional ecological effects of grassland grazing exclusion in the Xilingol region of Inner Mongolia, China. The...

  16. Nonlocal grazing in patterned ecosystems.

    PubMed

    Siero, E

    2018-01-07

    Many ecosystems exhibit gapped, labyrinthine, striped or spotted patterns. Important examples are vegetation patterns in drylands: these patterns are viewed as precursors of a catastrophic transition to a degraded state. A possible source of degradation is overgrazing, but many current spatially extended models include grazing in a local linear way. In this article nonlocal grazing responses are derived, taking into account (1) how many consumers there are (demographic response) (2) where they are (aggregative response) and (3) how much they forage (functional response). Different assumptions lead to different grazing responses, the type of grazing has a large influence on how ecosystems adapt to changing environmental conditions. In dryland simulations the different types of grazing are shown to alter the desertification process driven by decreasing rainfall. A sufficiently strong aggregative response leads to the suppression of vegetation patterns, nuancing their role as generic early warning signals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Revealing livestock effects on bunchgrass vegetation with Landsat ETM+ data across a grazing season

    NASA Astrophysics Data System (ADS)

    Jansen, Vincent S.

    Remote sensing provides monitoring solutions for more informed grazing management. To investigate the ability to detect the effects of cattle grazing on bunchgrass vegetation with Landsat Enhanced Thematic Mapper Plus (ETM+) data, we conducted a study on the Zumwalt Prairie in northeastern Oregon across a gradient of grazing intensities. Biophysical vegetation data was collected on vertical structure, biomass, and cover at three different time periods during the grazing season: June, August, and October 2012. To relate these measures to the remotely sensed Landsat ETM+ data, Pearson's correlations and multiple regression models were computed. Using the best models, predicted vegetation metrics were then mapped across the study area. Results indicated that models using common vegetation indices had the ability to discern different levels of grazing across the study area. Results can be distributed to land managers to help guide grassland conservation by improving monitoring of bunchgrass vegetation for sustainable livestock management.

  18. Direct effects of cattle on grassland birds in Canada.

    PubMed

    Bleho, Barbara I; Koper, Nicola; Machtans, Craig S

    2014-06-01

    Effects of grazing on grassland birds are generally thought to be indirect, through alteration of vegetation structure; however, livestock can also affect nest survival directly through trampling and other disturbances (e.g., livestock-induced abandonment). We extracted data on nest fates from 18 grazing studies conducted in Canada. We used these data to assess rates of nest destruction by cattle among 9 ecoregions and between seasonal and rotational grazing systems. Overall, few nests were destroyed by cattle (average 1.5% of 9132 nests). Nest destruction was positively correlated with grazing pressure (i.e., stocking rate or grazing intensity), but nest survival was higher in more heavily grazed areas for some species. Because rates of destruction of grassland bird nests by cattle are low in Canada, management efforts to reduce such destruction may not be of ecological or economic value in Canada. © 2014 Society for Conservation Biology.

  19. Joint Common Architecture Demonstration (JCA Demo) Final Report

    DTIC Science & Technology

    2016-07-28

    approach for implementing open systems [16], formerly known as the Modular Open Systems Approach (MOSA). OSA is a business and technical strategy to... TECHNICAL REPORT RDMR-AD-16-01 JOINT COMMON ARCHITECTURE DEMONSTRATION (JCA DEMO) FINAL REPORT Scott A. Wigginton... Modular Avionics .......................................................................... 5 E. Model-Based Engineering

  20. Hematological Changes Associated with Theileria orientalis Infection in Korean Indigenous Cattle

    PubMed Central

    Kim, Suhee; Yu, Do-Hyeon; Kang, Sung-Woo; Chae, Jeong-Byoung; Choi, Kyoung-Seong; Kim, Hyeon-Cheol; Park, Bae-Keun; Chae, Joon-Seok; Park, Jinho

    2017-01-01

    Tick-borne pathogens can cause serious problems in grazing cattle. However, little information is available on tick-mediated diseases in cattle grazing on mountains. Thus, this study aimed to understand the potential problems related to tick-borne diseases in grazing cattle through the investigation of prevalent tick-transmitted infections, and their associated hematological changes, in terms of season and grazing type in Korean indigenous cattle (=Hanwoo). Hanwoo cattle from 3 regions of the Republic of Korea (=Korea) were either maintained indoors or placed on grassy mountains from spring to fall of 2014 and 2015. Cattle that grazed in mountainous areas showed a greater prevalence of tick-borne infections with an increased Theileria orientalis infection rate (54.7%) compared to that in non-grazing cattle (16.3%) (P<0.001). Accordingly, the red blood cell (RBC) count and hematocrit (HCT) values of grazing cattle were significantly lower than those of non-grazing cattle throughout the season (P<0.05). Moreover, RBC, hemoglobin (Hb), and HCT of T. orientalis-positive group were significantly lower than those of T. orientalis-negative group (P<0.05). T. orientalis is a widespread tick-borne pathogen in Korea. Grazing of cattle in mountainous areas is closely associated with an increase in T. orientalis infection (RR=3.4, P<0.001), and with consequent decreases in RBC count and HCT. Thus, these findings suggest that the Hanwoo cattle in mountainous areas of Korea are at a high risk of infection by T. orientalis, which can lead to hematological alterations. This study highlights the necessity of preventive strategies that target T. orientalis infection. PMID:29103263

  1. Using Different Grazing Practices for Increasing Plant Biodiversity in the Dykes and Embankments Along the Rhône River (Southern France)

    NASA Astrophysics Data System (ADS)

    Moinardeau, Cannelle; Mesléard, François; Dutoit, Thierry

    2016-12-01

    Extensive grazing by domestic herbivores is a widespread management practice used since the 80s in many European agro-ecosystems such as semi-natural grasslands to maintain open habitats and to enhance biodiversity. Such grazing systems have principally been tested in cultural ecosystems of high nature value threatened by grazing abandonment. However, there have been few case studies of grazing management in very anthropized ecosystems, such as the new ecosystems created by urban or industrial conversions. In Southern France, the Rhône channeling for navigation and electricity production generated in the 1950s the construction of thousands of hectares of dams and dykes which were colonized naturally by diverse plant communities. Yet shrub encroachment and the consequent recourse to mechanical cutting to facilitate control and maintenance, raise the question of how best to maintain and manage these new habitats. Consequently, since 1999, different low-intensity grazing management systems using rustic breeds of cattle, horses and goats have been tested on a protected reserve of 1454 ha located in the lower part of the Rhône river. Extensive grazing, more than cutting or no management, positively modified vegetation heterogeneity (beta-diversity), the target open grassland species, but not plant species richness (alpha-diversity). However, the current monitoring shows that these benefits of grazing will be confirmed only if low-intensity grazing systems are sustained and if new adaptations can be also made, such as the use of mixed stocking and the establishment of multiyear contracts with breeders.

  2. Equine Grazing in Managed Subalpine Wetlands: Effects on Arthropods and Plant Structure as a Function of Habitat

    NASA Astrophysics Data System (ADS)

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-12-01

    Grazing management necessarily emphasizes the most spatially extensive vegetation assemblages, but landscapes are mosaics, often with more mesic vegetation types embedded within a matrix of drier vegetation. Our primary objective was to contrast effects of equine grazing on both subalpine vegetation structure and associated arthropods in a drier reed grass ( Calamagrostis muiriana) dominated habitat versus a wetter, more productive sedge habitat ( Carex utriculata). A second objective was to compare reed grass and sedge as habitats for fauna, irrespective of grazing. All work was done in Sequoia National Park (CA, USA), where detailed, long-term records of stock management were available. We sampled paired grazed and control wet meadows that contained both habitats. There were moderate negative effects of grazing on vegetation, and effects were greater in sedge than in reed grass. Conversely, negative grazing effects on arthropods, albeit limited, were greater in the drier reed grass, possibly due to microhabitat differences. The differing effects on plants and animals as a function of habitat emphasize the importance of considering both flora and fauna, as well as multiple habitat types, when making management decisions. Sedge supported twice the overall arthropod abundance of reed grass as well as greater diversity; hemipteran and dipteran taxa were particularly abundant in sedge. Given the greater grazing effects on sedge vegetation, greater habitat provision for terrestrial arthropods, and value as aquatic arthropod habitat, the wetter sedge assemblage is worthy of additional consideration by managers when planning for grazing and other aspects of land usage.

  3. Fire and grazing influence site resistance to Bromus tectorum through their effects on shrub, bunchgrass and biocrust communities in the Great Basin (USA)

    USGS Publications Warehouse

    Condon, Lea A.; Pyke, David A.

    2018-01-01

    Shrubs, bunchgrasses and biological soil crusts (biocrusts) are believed to contribute to site resistance to plant invasions in the presence of cattle grazing. Although fire is a concomitant disturbance with grazing, little is known regarding their combined impacts on invasion resistance. We are the first to date to test the idea that biotic communities mediate the effects of disturbance on site resistance. We assessed cover of Bromus tectorum, shrubs, native bunchgrasses, lichens and mosses in 99 burned and unburned plots located on similar soils where fires occurred between 12 and 23 years before sampling. Structural equation modeling was used to test hypothesized relationships between environmental and disturbance characteristics, the biotic community and resistance to B. tectorum cover. Characteristics of fire and grazing did not directly relate to cover of B. tectorum. Relationships were mediated through shrub, bunchgrass and biocrust communities. Increased site resistance following fire was associated with higher bunchgrass cover and recovery of bunchgrasses and mosses with time since fire. Evidence of grazing was more pronounced on burned sites and was positively correlated with the cover of B. tectorum, indicating an interaction between fire and grazing that decreases site resistance. Lichen cover showed a weak, negative relationship with cover of B. tectorum. Fire reduced near-term site resistance to B. tectorum on actively grazed rangelands. Independent of fire, grazing impacts resulted in reduced site resistance to B. tectorum, suggesting that grazing management that enhances plant and biocrust communities will also enhance site resistance.

  4. Using Different Grazing Practices for Increasing Plant Biodiversity in the Dykes and Embankments Along the Rhône River (Southern France).

    PubMed

    Moinardeau, Cannelle; Mesléard, François; Dutoit, Thierry

    2016-12-01

    Extensive grazing by domestic herbivores is a widespread management practice used since the 80s in many European agro-ecosystems such as semi-natural grasslands to maintain open habitats and to enhance biodiversity. Such grazing systems have principally been tested in cultural ecosystems of high nature value threatened by grazing abandonment. However, there have been few case studies of grazing management in very anthropized ecosystems, such as the new ecosystems created by urban or industrial conversions. In Southern France, the Rhône channeling for navigation and electricity production generated in the 1950s the construction of thousands of hectares of dams and dykes which were colonized naturally by diverse plant communities. Yet shrub encroachment and the consequent recourse to mechanical cutting to facilitate control and maintenance, raise the question of how best to maintain and manage these new habitats. Consequently, since 1999, different low-intensity grazing management systems using rustic breeds of cattle, horses and goats have been tested on a protected reserve of 1454 ha located in the lower part of the Rhône river. Extensive grazing, more than cutting or no management, positively modified vegetation heterogeneity (beta-diversity), the target open grassland species, but not plant species richness (alpha-diversity). However, the current monitoring shows that these benefits of grazing will be confirmed only if low-intensity grazing systems are sustained and if new adaptations can be also made, such as the use of mixed stocking and the establishment of multiyear contracts with breeders.

  5. Hematological Changes Associated with Theileria orientalis Infection in Korean Indigenous Cattle.

    PubMed

    Kim, Suhee; Yu, Do-Hyeon; Kang, Sung-Woo; Chae, Jeong-Byoung; Choi, Kyoung-Seong; Kim, Hyeon-Cheol; Park, Bae-Keun; Chae, Joon-Seok; Park, Jinho

    2017-10-01

    Tick-borne pathogens can cause serious problems in grazing cattle. However, little information is available on tick-mediated diseases in cattle grazing on mountains. Thus, this study aimed to understand the potential problems related to tick-borne diseases in grazing cattle through the investigation of prevalent tick-transmitted infections, and their associated hematological changes, in terms of season and grazing type in Korean indigenous cattle (=Hanwoo). Hanwoo cattle from 3 regions of the Republic of Korea (=Korea) were either maintained indoors or placed on grassy mountains from spring to fall of 2014 and 2015. Cattle that grazed in mountainous areas showed a greater prevalence of tick-borne infections with an increased Theileria orientalis infection rate (54.7%) compared to that in non-grazing cattle (16.3%) (P<0.001). Accordingly, the red blood cell (RBC) count and hematocrit (HCT) values of grazing cattle were significantly lower than those of non-grazing cattle throughout the season (P<0.05). Moreover, RBC, hemoglobin (Hb), and HCT of T. orientalis-positive group were significantly lower than those of T. orientalis-negative group (P<0.05). T. orientalis is a widespread tick-borne pathogen in Korea. Grazing of cattle in mountainous areas is closely associated with an increase in T. orientalis infection (RR=3.4, P<0.001), and with consequent decreases in RBC count and HCT. Thus, these findings suggest that the Hanwoo cattle in mountainous areas of Korea are at a high risk of infection by T. orientalis, which can lead to hematological alterations. This study highlights the necessity of preventive strategies that target T. orientalis infection.

  6. Using Social Media to Discover Public Values, Interests, and Perceptions about Cattle Grazing on Park Lands

    NASA Astrophysics Data System (ADS)

    Barry, Sheila J.

    2014-02-01

    In the western United States, livestock grazing often co-exists with recreation, cultural resource management and biodiversity protection on federal and state protected rangelands as well as on many local government open space areas. While the value of livestock grazing for managing rangeland vegetation to reduce fire fuel loads and improve wildlife habitat is increasingly recognized by resource management professionals, public concerns, and conflict between recreationist and livestock have led to reductions in public land grazing. Traditional public input methods yield a constrained picture of people's attitudes toward cows and public land grazing. Public meetings, hearings, and surveys, the most commonly used mechanisms for public land managers to solicit public opinion, tend to foster participation of organized special interests or, in the case of surveys, focus on a specific topic. General public input is limited. This study explored the use of personal photography in social media to gain insight into public perceptions of livestock grazing in public spaces. Key findings of this study include that many recreationist in grazed San Francisco Bay Area parks shared views, interests, and concerns about cows and grazing on the photo-sharing website, FlickrTM that seldom show up at a public meeting or in surveys. Results suggest that social media analysis can help develop a more nuanced understanding of public viewpoints useful in making decisions and creating outreach and education programs for public grazing lands. This study demonstrates that using such media can be useful in gaining an understanding of public concerns about natural resource management.

  7. INFLUENCE OF PROTOZOAN GRAZING ON CONTAMINANT BIODEGRADATION. (R825418)

    EPA Science Inventory

    The influence of protozoan grazing on biodegradation rates in samples from contaminated aquifer sediment was evaluated under aerobic and anaerobic conditions. Predator¯prey biomass ratios suggested that protozoan grazing might be influencing bacterial populations....

  8. 78 FR 24229 - Renewal of Agency Information Collection for Grazing Permits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...) approval for the collection of information for Grazing Permits authorized by OMB Control Number 1076- 0157... guarantee that we will be able to do so. III. Data OMB Control Number: 1076-0157. Title: Grazing Permits, 25...

  9. Cattle Grazing in Delta Forests

    Treesearch

    Robert L. Johnson

    1960-01-01

    What effects do grazing cattle have on the hardwood forests of the Mississippi Delta? What is the value of the forage to the cattle? To answer such questions, grazing studies were conducted in 1957 on the Delta Experimental Forest, near Stoneville.

  10. Effects of soils and grazing on breeding birds of uncultivated upland grasslands of the Northern Great Plains

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1982-01-01

    The principal use of uncultivated upland grasslands in the northern Great Plains is for livestock production. However, on lands set aside for wildlife or for scientific or recreational use, grazing by livestock may be used as a management measure to enhance populations of game species or to create conditions that increase the diversity of plant or animal species. To determine the effects of grazing on the avifauna of various types of Great Plains grasslands, we conducted bird censuses and plant surveys during 1974-78 on 615 plots of lightly, moderately, or heavily grazed native rangeland.Numbers of horned lark (Eremophila alpestris), western meadowlark (Sturnella neglecta), lark bunting (Calamospiza melanocorys), and chestnut-collared longspur (Calcarius ornatus) accounted for 65-75% of the total bird population, regardless of grazing intensity. For the entire area sampled (600,000 km2), horned lark, western meadowlark, and chestnut-collared longspur were the dominant birds. Major differences in composition of the dominant species and species richness occurred among the major soils. Increased mean annual soil temperature seemingly had a greater negative influence on avian species richness than did decreased soil moisture or organic matter content. Differences in total bird density were not significant among soils and among grazing intensities within most soils. For the area as a whole, light or moderate grazing resulted in increased species richness. Of the 29 species studied, 2 responded significantly to grazing for the area as a whole and 6 others to grazing on the soil in which peak densities occurred. Response of several other species to grazing effects evidently varied among strata.A list of plants with mean cover values of more than 1% in any of the 18 combinations of soils and grazing intensities contained less than 25 species, attesting to the relative simplicity of the grassland vegetation in the northern Great Plains. Agropyron spp. and Bouteloua gracilis were the dominant plants that provided greater than average cover on the best habitat for the most bird species. Optimum habitat for each bird species is given in terms of grazing, soils, and dominant plant species. Increased soil temperature probably had a negative effect on plant species richness, especially among soils with a high organic matter content that supported perennial grasses and other mesophytes.

  11. Using packrat middens to assess how grazing influences vegetation change in Glen Canyon National Recreation Area, Utah

    USGS Publications Warehouse

    Fisher, Jessica F.; Cole, Kenneth L.; Anderson, R. Scott

    2006-01-01

    The fossil and sub-fossil plant macrofossils and pollen grains found in packrat middens can serve as important proxies for climate and vegetation change in the arid Southwestern United States. A new application for packrat midden research is in understanding post-settlement vegetation changes caused by the grazing of domesticated animals. This work examines a series of 27 middens from Glen Canyon National Recreation Area (GLCA), spanning from 995 yr BP to the present, which detail vegetation during the periods just prior to, and following, the introduction of domesticated grazers. By comparing middens deposited before and after the start of grazing by domesticated sheep and cattle, the effect on the native plant communities through time can be determined. This analysis of change through time is augmented by measurements of change through space by contrasting contemporaneous middens from nearby similar grazed and ungrazed sites. These comparisons are only made possible by the presence of inaccessible ungrazed areas surrounded by steep cliffs. Multivariate ordinations of the plant assemblages from packrat middens demonstrated that even though all middens were selected from similar geologic substrates, soils, and vegetation type, their primary variability was site-to-site. This suggests that selecting comparable grazed versus ungrazed study treatments would be difficult, and that two similar sites several kilometers apart should not be assumed to have been the same prior to grazing without pre-grazing data. But, the changes through time on grazed areas, as well as the differences between grazed and ungrazed areas in the diversity of certain taxonomic groups, both suggest that grazing by domesticated ungulates has had a noticeable effect on the vegetation. The changes seen through time suggested that grazing lowered the number of taxa recorded and lessened the pre-existing differences within sites, homogenizing the resultant plant associations. Late Holocene pre-settlement middens, and modern middens from ungrazed areas, contained more native grasses, skunkbush sumac (Rhus trilobata), blackbrush (Coleogyne ramosissima), winterfat (Krascheninnikovia lanata), Utah serviceberry (Amelanchier utahensis), and roundleaf buffaloberry (Shepherdia rotundifolia) than modern middens from grazed areas. Pollen data supported the macrofossil data, recording decreases in pollen of the goosefoot family (Chenopodiaceae), grass family (Poaceae), and globemallow (Sphaeralcea spp.) from pre- to post-settlement.

  12. Restoration of the fire-grazing interaction in Artemisia filifolia shrubland

    USGS Publications Warehouse

    Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.

    2012-01-01

    Patterns of landscape heterogeneity are crucial to the maintenance of biodiversity in shrublands and grasslands, yet management practices in these ecosystems typically seek to homogenize landscapes. Furthermore, there is limited understanding of how the interaction of ecological processes, such as fire and grazing, affects patterns of heterogeneity at different spatial scales. We conducted research in Artemisia filifolia (Asteraceae) shrublands located in the southern Great Plains of North America to determine the effect of restoring the fire-grazing interaction on vegetation structure. Data were collected for 3years in replicated pastures grazed by cattle Bos taurus where the fire-grazing interaction had been restored (fire and grazing=treatment pastures) and in pastures that were grazed but remained unburned (grazing only, no fire=control pastures). The effect of the fire-grazing interaction on heterogeneity (variance) of vegetation structure was assessed at scales from 12??5m 2 to 609ha. Most measurements of vegetation structure within treatment pastures differed from control pastures for 1-3years after being burned but were thereafter similar to the values found in unburned control pastures. Treatment pastures were characterized by a lower amount of total heterogeneity and a lower amount of heterogeneity through time. Heterogeneity of vegetation structure tended to decrease as the scale of measurement increased in both treatment and control pastures. There was deviation from this trend, however, in the treatment pastures that exhibited much higher heterogeneity at the patch scale (mean patch size=202ha) of measurement, the scale at which patch fires were conducted. Synthesis and applications.Vegetation structure in A. filifolia shrublands of our study was readily altered by the fire-grazing interaction but also demonstrated substantial resilience to these effects. The fire-grazing interaction also changed the total amount of heterogeneity characterizing this system, the scale at which heterogeneity in this system was expressed and the amount of heterogeneity expressed through time. Land managers seeking to impose a shifting mosaic of heterogeneity on this vegetation type can do so by restoring the fire-grazing interaction with potential conservation benefits similar to what has been achieved in other ecosystems where historic cycles of disturbance and rest have been restored. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.

  13. Beef heifer growth and reproductive performance following two levels of pasture allowance during the fall grazing period.

    PubMed

    Bailey, B L; Griggs, T C; Rayburn, E B; Krause, K M

    2014-08-01

    The objective of this study was to compare heifer growth and reproductive performance following 2 levels of stockpiled fall forage allowance of orchardgrass (30.5%) and tall fescue (14.1%). Spring-born heifers (n = 203 and BW = 246 ± 28.9 kg) of primarily Angus background were allocated to 2 grazing treatments during the fall period (November 12 to December 17 in yr 1, November 7 to January 4 in yr 2, and November 7 to January 14 in yr 3) each replicated 3 times per year for 3 yr. Treatments consisted of daily pasture DM allowance of 3.5% of BW (LO) or daily pasture DM allowance of 7.0% of BW (HI) under strip-grazing management. Throughout the winter feeding period, mixed grass-legume haylage and soybean hulls were fed. Heifers were grazed as 1 group under continuous stocking after the winter period. Heifers in the LO group gained less than heifers in the HI group during the fall grazing period (0.12 vs. 0.40 kg/d; P < 0.0001). For each 1 10 g increase in NDF/kg fall pasture (DM basis), fall ADG decreased 0.14 kg (P = 0.01). During winter feeding, ADG was 0.30 and 0.39 kg/d for LO vs. HI heifers, respectively (P = 0.0008). During the spring grazing period (April 16 to May 24 in yr 1, April 22 to May 26 in yr 2, and April 5 to May 16 in yr 3), LO heifers had numerically greater ADG than HI heifers (1.38 vs. 1.30 kg/d; P = 0.64). Hip height (122.7 vs. 121.4 cm; P = 0.0055), BCS (5.8 vs. 5.6; P = 0.0057), and BW (356 vs. 335 kg; P < 0.0001) at the end of spring grazing was greater for HI than LO heifers. Heifers in the LO group compensated with greater summer ADG than heifers in the HI group (0.74 vs. 0.66 kg/d; P = 0.03). Total ADG from treatment initiation (November) through pregnancy diagnosis (August) was greater for HI than LO heifers (0.61 vs. 0.55 kg/d; P < 0.001) as was BW at pregnancy diagnosis (415 vs. 402 kg; P = 0.0055). Percentage of heifers reaching puberty by the time of AI was 34% for both groups (P = 0.93). Percentage of heifers becoming pregnant to AI tended (P = 0.13) to be greater for HI (44%) than for LO heifers (32%). Fall ADG across treatment groups affected the probability of a heifer becoming pregnant by AI (P = 0.01). Percentage pregnant by natural service (61% for LO vs. 59% for HI; P = 0.80) and final pregnancy rate (74% for LO vs. 77% for HI; P = 0.61) was not different for the 2 groups. These results indicate that altering fall forage allowance may delay the majority of BW gain until late in heifer development without negatively affecting overall pregnancy rates.

  14. 76 FR 80226 - Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... final rule, effective upon publication. Generally, the Administrative Procedure Act (APA) requires a.... Additionally, the APA requires that a final rule must have a delayed effective date of 30 days from the date of... delayed effective date requirement under the APA. 5 U.S.C. 553(d)(3). Again the technical change conforms...

  15. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woosley, Stan; Kasen, Dan

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  16. 76 FR 50202 - National Technical Assistance and Dissemination Center for Children Who Are Deaf-Blind; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... DEPARTMENT OF EDUCATION [CFDA No. 84.326T] National Technical Assistance and Dissemination Center for Children Who Are Deaf-Blind; Final Extension of Project Period and Waiver AGENCY: Office of Special Education Programs, Office of Special Education and Rehabilitative Services, Department of...

  17. TADS Final Evaluation Report, 1980-81. Appendix S.

    ERIC Educational Resources Information Center

    Suarez, Tanya M.; And Others

    The document contains the final report of the Technical Assistance Development System (TADS), a program which provided technical assistance (TA) services to 53 Handicapped Children's Early Education Program (HCEEP) demonstration projects and 13 State Implementation Grants (SIGs). The evaluation report is divided into five sections. Section 1…

  18. Grazed Riparian Management and Stream Channel Response in Southeastern Minnesota (USA) Streams

    NASA Astrophysics Data System (ADS)

    Magner, Joseph A.; Vondracek, Bruce; Brooks, Kenneth N.

    2008-09-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.

  19. Riparian Meadow Response to Modern Conservation Grazing Management

    NASA Astrophysics Data System (ADS)

    Oles, Kristin M.; Weixelman, Dave A.; Lile, David F.; Tate, Kenneth W.; Snell, Laura K.; Roche, Leslie M.

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  20. Riparian Meadow Response to Modern Conservation Grazing Management.

    PubMed

    Oles, Kristin M; Weixelman, Dave A; Lile, David F; Tate, Kenneth W; Snell, Laura K; Roche, Leslie M

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  1. Grazed riparian management and stream channel response in southeastern Minnesota (USA) streams

    USGS Publications Warehouse

    Magner, J.A.; Vondracek, B.; Brooks, K.N.

    2008-01-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response. ?? 2008 Springer Science+Business Media, LLC.

  2. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management decisions of salt marshes. In our study accretion rates were higher than the current SLR. Further research is needed to include grazing effects into sedimentation models, given the importance of grazing management in the Wadden Sea area.

  3. Livestock grazing and wildlife: developing compatabilities.

    Treesearch

    Martin Vavra

    2005-01-01

    Livestock grazing has been considered detrimental to wildlife habitat. Managed gazing programs, however, have the potential to maintain habitat diversity and quality. In cases in which single-species management predominates (sage-grouse [Centrocercus urophasianus] or elk [Cervus elaphus nelsoni] winter range), grazing systems...

  4. Real-Time Grazing Incidence Small Angle X-Ray Scattering Studies of the Growth Kinetics of Sputter-Deposited Silicon Thin Films

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander; Erdem, Gozde; Chinta, Priya; Headrick, Randall; Ludwig, Karl

    2012-02-01

    The fundamental kinetics of thin film growth remains an active area of investigation. In this study, silicon thin films were grown at room temperature on silicon substrates via both on-axis and off-axis plasma sputter deposition, while the evolution of surface morphology was measured in real time with in-situ grazing incidence small angle x-ray scattering (GISAXS) at the National Synchrotron Light Source. GISAXS is a surface-sensitive, non-destructive technique, and is therefore ideally suited to a study of this nature. In addition to investigating the effect of on-axis versus off-axis bombardment, the effect of sputter gas partial pressure was examined. Post-facto, ex-situ atomic force microscopy (AFM) was used to measure the final surface morphology of the films, which could subsequently be compared with the surface morphology determined by GISAXS. Comparisons are made between the observed surface evolution during growth and theoretical predictions. This work was supported by the Department of Energy, Office of Basic Energy Sciences.

  5. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    DOE PAGES

    Widmann, K.; Beiersdorfer, P.; Magee, E. W.; ...

    2014-09-19

    In this paper, we have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li + or Li 2 +, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li+ and 65 eV formore » the 135 Å Li 2 + lines. Finally, recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.« less

  6. Effects of a Long-Term Disturbance on Arthropods and Vegetation in Subalpine Wetlands: Manifestations of Pack Stock Grazing in Early versus Mid-Season

    PubMed Central

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-01-01

    Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response. PMID:23308297

  7. Effects of a long-term disturbance on arthropods and vegetation in subalpine wetlands: manifestations of pack stock grazing in early versus mid-season.

    PubMed

    Holmquist, Jeffrey G; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A

    2013-01-01

    Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response.

  8. Effects of nitrogen deposition and cattle grazing on productivity, invasion impact, and soil microbial processes in a serpentine grassland

    NASA Astrophysics Data System (ADS)

    Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.

    2010-12-01

    In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited the growth of exotic species and minimized the effects of cattle exclusion and N addition on species composition.

  9. Quantifying the effects of overgrazing on mountainous watershed vegetation dynamics under a changing climate.

    PubMed

    Hao, Lu; Pan, Cen; Fang, Di; Zhang, Xiaoyu; Zhou, Decheng; Liu, Peilong; Liu, Yongqiang; Sun, Ge

    2018-10-15

    Grazing is a major ecosystem disturbance in arid regions that are increasingly threatened by climate change. Understanding the long-term impacts of grazing on rangeland vegetation dynamics in a complex terrain in mountainous regions is important for quantifying dry land ecosystem services for integrated watershed management and climate change adaptation. However, data on the detailed long-term spatial distribution of grazing activities are rare, which prevents trend detection and environmental impact assessments of grazing. This study quantified the impacts of grazing on vegetation dynamics for the period of 1983-2010 in the Upper Heihe River basin, a complex multiple-use watershed in northwestern China. We also examined the relative contributions of grazing and climate to vegetation change using a dynamic grazing pressure method. Spatial grazing patterns and temporal dynamics were mapped at a 1 km × 1 km pixel scale using satellite-derived leaf area index (LAI) data. We found that overgrazing was a dominant driver for LAI reduction in alpine grasslands and shrubs, especially for the periods of 1985-1991 and 1997-2004. Although the recent decade-long active grazing management contributed to the improvement of LAI and partially offset the negative effects of increased livestock, overgrazing has posed significant challenges to shrub-grassland ecosystem recovery in the eastern part of the study basin. We conclude that the positive effects of a warming and wetting climate on vegetation could be underestimated if the negative long-term grazing effects are not considered. Findings from the present case study show that assessing long-term climate change impacts on watersheds must include the influences of human activities. Our study provides important guidance for ecological restoration efforts in locating vulnerable areas and designing effective management practices in the study watershed. Such information is essential for natural resource management that aims at meeting multiple demands of watershed ecosystem services in arid and semiarid rangelands. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Relationship between pastoralists' evaluation of rangeland state and vegetation threshold changes in Mongolian rangelands.

    PubMed

    Kakinuma, Kaoru; Sasaki, Takehiro; Jamsran, Undarmaa; Okuro, Toshiya; Takeuchi, Kazuhiko

    2014-10-01

    Applying the threshold concept to rangeland management is an important challenge in semi-arid and arid regions. Threshold recognition and prediction is necessary to enable local pastoralists to prevent the occurrence of an undesirable state that would result from unsustainable grazing pressure, but this requires a better understanding of the pastoralists' perception of vegetation threshold changes. We estimated plant species cover in survey plots along grazing gradients in steppe and desert-steppe areas of Mongolia. We also conducted interviews with local pastoralists and asked them to evaluate whether the plots were suitable for grazing. Floristic composition changed nonlinearly along the grazing gradient in both the desert-steppe and steppe areas. Pastoralists observed the floristic composition changes along the grazing gradients, but their evaluations of grazing suitability did not always decrease along the grazing gradients, both of which included areas in a post-threshold state. These results indicated that local pastoralists and scientists may have different perceptions of vegetation states, even though both of groups used plant species and coverage as indicators in their evaluations. Therefore, in future studies of rangeland management, researchers and pastoralists should exchange their knowledge and perceptions to successfully apply the threshold concept to rangeland management.

  11. 76 FR 80329 - Information Collection; Grazing Permit Administration Forms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... to another account Information on the allotment; number of cattle, horses, or sheep; Period range not... DEPARTMENT OF AGRICULTURE Forest Service Information Collection; Grazing Permit Administration... organizations on the extension with no revision of a currently approved information collection, Grazing Permit...

  12. MEASURING INVERTEBRATE GRAZING ON SEAGRASSES AND EPIPHYTES

    EPA Science Inventory

    The chapter describes methods to assess grazing rates, grazer preferences, and grazer impacts, by mobile organisms living in the canopy or in the rhizome layer in any seagrass system. One set of methods quantifies grazing activity in small to medium sized, mobile organisms livin...

  13. Livestock grazing supports native plants and songbirds in a California annual grassland.

    PubMed

    Gennet, Sasha; Spotswood, Erica; Hammond, Michele; Bartolome, James W

    2017-01-01

    Over eight years we measured the effects of plant community composition, vegetation structure, and livestock grazing on occurrence of three grassland bird species-Western Meadowlark (Sturnella neglecta), Horned Lark (Eremophila alpestris), and Grasshopper Sparrow (Ammodramus savannarum)-at sites in central California during breeding season. In California's Mediterranean-type climatic region, coastal and inland grassland vegetation is dominated by exotic annual grasses with occasional patches of native bunchgrass and forbs. Livestock grazing, primarily with beef cattle, is the most widely used management tool. Compared with ungrazed plots, grazed plots had higher bare ground, native plant cover, and vertically heterogeneous vegetation. Grazed plots also had less plant litter and shorter vegetation. Higher native plant cover, which is predominantly composed of bunchgrasses in our study area, was associated with livestock grazing and north-facing aspects. Using an information theoretic approach, we found that all three bird species had positive associations with native plant abundance and neutral (Western Meadowlark, Grasshopper Sparrow) or positive (Horned Lark) association with livestock grazing. All species favored flatter areas. Horned Larks and Western Meadowlark occurred more often where there were patches of bare ground. Western Meadowlarks and Grasshopper Sparrows were most common on north-facing slopes, suggesting that these species may be at risk from projected climate change. These findings demonstrate that livestock grazing is compatible with or supports grassland bird conservation in Mediterranean-type grasslands, including areas with high levels of exotic annual grass invasion, in part because grazing supports the persistence of native plants and heterogeneity in vegetation structure. However, conservation of low-lying grasslands with high native species presence, and active management to increase the abundance of native plant species are also likely to be important for sustaining grassland birds long-term.

  14. Comparing the Relative Importance of Water-Borne Cues and Direct Grazing for the Induction of Defenses in the Brown Seaweed Fucus vesiculosus

    PubMed Central

    Flöthe, Carla R.; John, Uwe; Molis, Markus

    2014-01-01

    Some seaweed species have been shown to release water-borne cues after herbivore attack, for example, to attract natural enemies of the herbivore. These cues may also be sensed by neighboring seaweeds and used to adjust their defenses in anticipation of a possible herbivore attack. Several studies indicated information transfer between seaweed individuals in the past, including the brown seaweed Fucus vesiculosus. Previous work showed induction of defenses in F. vesiculosus in response to water-borne cues released by isopod-grazed conspecifics. In contrast, another study on induced responses after exposure to cues from isopod-grazed neighbors using the same seaweed species yielded contradictory results. This study reassessed the ability of F. vesiculosus individuals to sense water-borne cues released by isopod-grazed neighbors in a series of experiments that monitored F. vesiculosus palatability in response to direct grazing by Idotea baltica and water-borne cues from isopod-grazed neighbors relative to unmanipulated seaweed pieces. Two-choice feeding assays were conducted with both fresh and reconstituted seaweed pieces. Direct grazing by I. baltica induced a chemical defense in F. vesiculosus, confirming results of previous studies. In contrast, evidence for increased herbivore resistance in seaweed pieces that were located downstream of isopod-grazed F. vesiculosus could not be provided. The lack of defense induction in response to grazing of conspecific neighbors may be explained by the environmental conditions and the scattered distribution of F. vesiculosus individuals in the intertidal zone of Helgoland, which may render resource investment in the emission and/or response to water-borne cues at this site unprofitable. PMID:25279662

  15. A two reservoir model to predict Escherichia coli losses to water from pastures grazed by dairy cows.

    PubMed

    Muirhead, R W; Monaghan, R M

    2012-04-01

    Animal agriculture has been identified as an important source of diffuse faecal microbial pollution of water. Our current understanding of the losses of faecal microbes from grazed pasture systems is however poor. To help synthesise our current knowledge, a simple two reservoir model was constructed to represent the faecal and environmental sources of Escherichia coli found in a grazed pastoral system. The size of the faecal reservoir was modelled on a daily basis with inputs from grazing animals, and losses due to die-off of E. coli and decomposition of the faecal material. Estimates were made of transport coefficients of E. coli losses from the two reservoirs. The concentration of E. coli measured in overland flow and artificial drainage from grazed plots, used for calibration of the model, showed a significant (P<0.0001) decrease with days since last grazing - up to 120 days. Modelled E. coli runoff concentrations calibrated well with the regression line from the measured data up to 120 days. Variability of E. coli concentrations in the source faecal material could account for the variability in the measured runoff concentrations. Measured E. coli concentrations in artificial drainage water from 120 to 1300 days since last grazing appeared to be greater than the model predicted. The longer term data clearly illustrated the need for an environmental reservoir of E. coli in models of grazed pasture systems. Research is needed to understand the behaviour and impact of this environmental reservoir. Scenario analysis using the model indicated that rather than manipulating the faecal material itself post defecation, mitigation options should focus on manipulating grazing management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    PubMed

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  17. Spatio-temporal optimization of sampling for bluetongue vectors (Culicoides) near grazing livestock

    PubMed Central

    2013-01-01

    Background Estimating the abundance of Culicoides using light traps is influenced by a large variation in abundance in time and place. This study investigates the optimal trapping strategy to estimate the abundance or presence/absence of Culicoides on a field with grazing animals. We used 45 light traps to sample specimens from the Culicoides obsoletus species complex on a 14 hectare field during 16 nights in 2009. Findings The large number of traps and catch nights enabled us to simulate a series of samples consisting of different numbers of traps (1-15) on each night. We also varied the number of catch nights when simulating the sampling, and sampled with increasing minimum distances between traps. We used resampling to generate a distribution of different mean and median abundance in each sample. Finally, we used the hypergeometric distribution to estimate the probability of falsely detecting absence of vectors on the field. The variation in the estimated abundance decreased steeply when using up to six traps, and was less pronounced when using more traps, although no clear cutoff was found. Conclusions Despite spatial clustering in vector abundance, we found no effect of increasing the distance between traps. We found that 18 traps were generally required to reach 90% probability of a true positive catch when sampling just one night. But when sampling over two nights the same probability level was obtained with just three traps per night. The results are useful for the design of vector monitoring programmes on fields with grazing animals. PMID:23705770

  18. 75 FR 29572 - Information Collection; Grazing Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... Control Number 1004-0019] Information Collection; Grazing Management AGENCY: Bureau of Land Management... submitted an information collection request to the Office of Management and Budget (OMB) for a 3-year... INFORMATION: Title: Grazing Management (43 CFR 4120). OMB Number: 1004-0019. Forms: 4120-6 (Cooperative Range...

  19. Cattle grazing and vegetation succession on burned sagebrush steppe

    USDA-ARS?s Scientific Manuscript database

    There is limited information on the effects of cattle grazing to longer-term plant community composition and productivity following fire in big sagebrush steppe. This study evaluated vegetation response to cattle grazing over seven years (2007-2013) on burned Wyoming big sagebrush (Artemisia triden...

  20. Does grazing management matter for soil carbon sequestration in shortgrass steppe?

    USDA-ARS?s Scientific Manuscript database

    Considerable uncertainty remains regarding the potential of grazing management on semiarid rangelands to sequester soil carbon. Short-term (less than 1 decade) studies have determined that grazing management potentially influences fluxes of carbon, but such studies are strongly influenced by prevail...

  1. Using NDVI to estimate carbon fluxes from small rotationally grazed pastures

    USDA-ARS?s Scientific Manuscript database

    Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northea...

  2. 78 FR 57264 - Final Waiver and Extension of the Project Period for the Technical Assistance Coordination Center

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ...: 84.326Z.] Final Waiver and Extension of the Project Period for the Technical Assistance Coordination... project period. SUMMARY: The Secretary waives the requirements in the Education Department General Administrative Regulations that generally prohibit project periods exceeding five years and extensions of project...

  3. 77 FR 16923 - Agreements and Memoranda of Understanding Between the Food and Drug Administration and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...: Direct final rule. SUMMARY: This direct final rule makes technical changes that will update a requirement that many of our written agreements and memoranda of understanding (MOUs) with other departments..., accordingly, eliminates it. We are making these technical changes to conserve Agency time and resources...

  4. 1988 Underground Storage Tanks; Technical Requirements; Final Rule and Underground Storage Tanks Containing Petroleum-Financial Responsibility Requirements and State Program Approval Objective; Final Rule

    EPA Pesticide Factsheets

    EPA's 1988 regulations concerning USTs are contained in 40 CFR Part 280, 40 CFR Part 281 and 40 CFR Parts 282.50-282.105 and divided into three sections: technical requirements, financial responsibility requirements, and state program approval objectives.

  5. PITTSBURGH TECHNICAL HEALTH TRAINING INSTITUTE DEMONSTRATION PROJECT. FINAL REPORT, VOLUME II.

    ERIC Educational Resources Information Center

    KISHKUNAS, LOUIS J.

    APPENDIXES TO THE "FINAL REPORT," VOLUME I (VT 005 511), ARE INCLUDED--(1) A SCHEMATIC REPRESENTATION OF CURRICULUM DEVELOPMENT, (2) TECHNICAL BEHAVIOR CHECKLISTS, (3) PERFORMANCE INVENTORY FORMS USED IN ON-THE-JOB OBSERVATIONS, (4) REPORT FORM FOR TYPICAL JOB BEHAVIOR OF EMPLOYEE, (5) COOPERATING AREA HEALTH INSTITUTIONS, (6) TABLES OF Z SCORES…

  6. Clipping and shading alter NH4+ uptake by plants in grazed and ungrazed Tibetan alpine grasslands

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Schleuss, Per; Li, Qianru; Yang, Baijie; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    The Kobresia pastures are the most common and most important vegetation type on the Tibetan Plateau as it occupies more than 35% the plateau area. These pastures have been remained stable for about one million years, but have been strongly changed by increased grazing in the recent decades which led to serious grassland degradation. Previous studies on the N cycling in alpine grasslands showed that plant growth was limited by low N availability due to low N mineralization caused by low temperature. However, the effect of grazing on N turnover processes and plant N uptake remains unclear. To clarify the grazing effect for a better understanding N mineralization and plant N uptake in these alpine grasslands, we conducted a 15N experiment in grazed and ungraded plots in these alpine grasslands. Because ammonium was a dominant N form, we used 15N-labeled ammonium so that we can also measure gross N mineralization. To explore the effect of root exudates on 15NH4+ uptake by plants and gross N mineralization, three treatments such as clipping, shading and control were used. Initially, all treatments were labeled by 15NH4+, with blank treatments no 15N tracer addition. Plant and soil samples were collected 7, 14 and 28 days after the labelling. 15NH4+ uptake by alpine plants almost did not change after clipping in the grazed plots, but its uptake was lower under the clipping treatment than under the control treatment in the ungrazed plots. 15N recovery in plants under the shading treatment remained the lowest level in grazed and ungrazed plots. Although clipping removed a part of aboveground biomass, subsequent stimulation of plant growth increased N uptake by plants. Likely, moderate grazing removed a part of aboveground biomass, but 15N recovery in plants was still compared to that in the ungrazed plots, indicating moderate grazing stimulate N uptake by plants through compensatory growth. Gross N mineralization under the shading treatment was higher than under the clipping treatment (shading vs clipping: 0.42 vs 0.34 mg N kg-1 h-1) in the grazed plot. In contrast, gross N mineralization was lower for shading treatment than for clipping treatment (shading vs clipping 0.47 vs 0.63 mg N kg-1 h-1) in the ungrazed plot. Gross N mineralization in the ungrazed soil was higher than in the grazed soil, suggesting that grazing greatly reduced the potential to provide available nitrogen for plants and microorganisms. Therefore, we concluded that low photosynthesis caused by shading, clipping and grazing can affect N transformation and therefore affect the format of soil organic matter.

  7. Invention and Writing in Technical Work: Representing the Object.

    ERIC Educational Resources Information Center

    Winsor, Dorothy A.

    1994-01-01

    Describes the way invention is relevant to the practice of technical writing. Studies three engineering students engaged in a real-world project. Shows how the students' technical work and invention for the final report were simultaneous activities. Claims that invention for and through writing overlaps with technical invention. (HB)

  8. Project T.E.A.M. (Technical Education Advancement Modules). Final Report.

    ERIC Educational Resources Information Center

    Greenville Technical Coll., SC.

    Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training, created an introductory technical training program and a consumer education package emphasizing the benefits of technical training. The curriculum and training focus of the project began with an assessment of employee needs in…

  9. Effects of rotational and continuous grazing on herbage quality, feed intake and performance of sheep on a semi-arid grassland steppe.

    PubMed

    Hao, Jun; Dickhoefer, Uta; Lin, Lijun; Müller, Katrin; Glindemann, Thomas; Schönbach, Philipp; Schiborra, Anne; Wang, Chengjie; Susenbeth, Andreas

    2013-02-01

    Compared to continuous grazing (CG), rotational grazing (RG) increases herbage production and thereby the resilience of grasslands to intensive grazing. Results on feed intake and animal performance, however, are contradictory. Hence, the objective of the study was to determine the effects of RG and CG on herbage mass, digestibility of ingested organic matter (dOM), organic matter intake (OMI) and live weight gain (LWG) of sheep in the Inner Mongolian steppe, China. During June-September 2005-2008, two 2-ha plots were used for each grazing system. In RG, plots were divided into four 0.5-ha paddocks that were grazed for 10 days each at a moderate stocking rate. Instead, CG sheep grazed the whole plots throughout the entire grazing season. At the beginning of every month, dOM was estimated from faecal crude protein concentration. Faeces excretion was determined using titanium dioxide in six sheep per plot. The animals were weighed every month to determine their LWG. Across the years, herbage mass did not differ between systems (p = 0.820). However, dOM, OMI and LWG were lower in RG than in CG (p ≤ 0.005). Thus, our study showed that RG does not improve herbage growth, feed intake and performance of sheep and suggests that stocking rates rather than management system determine the ecological sustainability of pastoral livestock systems in semi-arid environments.

  10. Assessing the production and economic benefits from preventing cows grazing on wet soils in New Zealand.

    PubMed

    Laurenson, Seth; Houlbrooke, David J; Beukes, Pierre C

    2016-10-01

    Intensive grazing by cattle on wet pasture can have a negative effect on soil physical quality and future pasture production. On a North Otago dairy farm in New Zealand, experimental plots were monitored for four years to assess whether preventing cow grazing of wet pastures during the milking season would improve soil structure and pasture production compared with unrestricted access to pastures. The DairyNZ Whole Farm Model was used to scale up results to a farm system level and ascertain the cost benefit of deferred grazing management. Soils under deferred grazing management had significantly higher total porosity, yet no significant improvement in macroporosity (values ranging between 0.112 and 0.146 m(3)  m(-3) ). Annual pasture production did not differ between the control and deferred grazing treatments, averaging 17.0 ± 3.8 and 17.9 ± 4.1 t DM ha(-1) year(-1) respectively (P > 0.05). Furthermore, whole farm modelling indicated that farm operating profit was reduced by NZ$1683 ha(-1) year(-1) (four-year average) under deferred grazing management. Deferring dairy cow grazing from wet Pallic soils in North Otago was effective in improving soil structure (measured as total soil porosity), yet did not lead to a significant increase in pasture production. Whole farm modelling indicated no economic benefit of removing cows from wet soils during the milking season. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Grazing behaviour and dry matter intake of llamas (Lama glama) and German black- head mutton sheep (Ovis orientalis forma aries) under Central European conditions.

    PubMed

    Stölzl, Anna Maria; Lambertz, Christian; Gauly, Matthias

    2015-01-01

    The aim of the present study was to assess the behaviour of llamas (Lama glama) and German blackhead mutton sheep (Ovis orientalis forma aries) when kept under Central European grazing conditions. In total, six adult female sheep and six adult female llamas were observed by direct observation during one week, in which each group was observed for a total time of 24 h. The animals were kept on the same pasture, but the species were raised in separate plots. Forage height before and after the experimental period were determined using a rising plate meter to calculate the average daily dry matter intake (DMI). Llamas had a daily DMI of 0.85%/BW and sheep of 1.04%/BW, respectively. The following behaviours were recorded by direct observation: grazing standing up, grazing lying down, ruminating standing up, ruminating lying down, lying down, lying down lateral and standing. Both species grazed for more than 50% of the time. Ruminating was predominantly performed while standing and lying by sheep (about 50% of the night and 12% of the day) and while lying by llamas (54% of the night and 10% of the day). In conclusion, sheep and llamas differed in grazing behaviour and daily biorhythm. These differences indicate that sheep and llamas may not synchronize their behaviour when co-grazed, though particularly in co-grazing studies the observation period should be extended.

  12. Biotic Interactivity between Grazers and Plants: Relationships Contributing to Atmospheric Boundary Layer Dynamics.

    NASA Astrophysics Data System (ADS)

    Dyer, M. I.; Turner, C. L.; Seastedt, T. R.

    1998-04-01

    During 1987 and 1988 First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) studies conducted in the tallgrass prairie of central Kansas, variations in ungulate grazing intensity produced a patchy spatial and temporal distribution of remaining vegetation. Equally variable plant regrowth patterns contributed further to a broad array of total primary production that resulted in a pronounced mosaic of grazing impacts. This regrowth potential, derived from a relative growth rate (RGR) equation comparing ungrazed and grazed plants, determines much of the ecosystem dynamics within and among the grazed pastures and between years. Rates of change in new plant growth (RGRg) ranged from 100% to +40%; however, 78% of the time in 1987 and 71% in 1988, productivity increased as a function of grazing intensity. Since plant growth potential in ungrazed (RGRug) and grazed systems (RGRg) have inherently different attributes, interactions with the abiotic environment may develop many uncertainties. Thus, changes in growth rates in grazed areas compared to ungrazed areas (RGRg) may impose major controls over system productivity and associated biological processes currently not accounted for in ecosystem models.Because FIFE microsite atmospheric boundary layer (ABL) studies did not directly incorporate grazing intensity into their design, Type I and Type II statistical errors may introduce significant uncertainties for understanding cause and effect in surface flux dynamics. As a consequence these uncertainties compromise the ability to extrapolate microsite ABL biophysical findings to other spatial and temporal scales.

  13. Top-down impact through a bottom-up mechanism: the effect of limpet grazing on growth, productivity and carbon allocation of Zostera marina L. (eelgrass).

    PubMed

    Zimmerman, Richard C; Kohrs, Donald G; Alberte, Randall S

    1996-09-01

    The unusual appearance of a commensal eelgrass limpet [Tectura depicta (Berry)] from southern California at high density (up to 10 shoot -1 ) has coincided with the catastrophic decline of a subtidal Zostera marina L. meadow in Monterey Bay, California. Some commensal limpets graze the chloroplast-rich epidermis of eelgrass leaves, but were not known to affect seagrass growth or productivity. We evaluated the effect on eelgrass productivity of grazing by limpets maintained at natural densities (8±2 shoot -1 ) in a natural light mesocosm for 45 days. Growth rates, carbon reserves, root proliferation and net photosynthesis of grazed plants were 50-80% below those of ungrazed plants, but biomass-specific respiration was unaffected. The daily period of irradiance-saturated photosynthesis (H sat ) needed to maintain positive carbon balance in grazed plants approached 13.5 h, compared with 5-6 h for ungrazed plants. The amount of carbon allocated to roots of ungrazed plants was 800% higher than for grazed plants. By grazing the chlorophyll-rich epidermis, T. depicta induced carbon limitation in eelgrass growing in an other-wise light-replete environment. Continued northward movement of T. depicta, may have significant impacts on eelgrass production and population dynamics in the northeast Pacific, even thought this limpet consumes very little plant biomass. This interaction is a dramatic example of top-down control (grazing/predation) of eelgrass productivity and survival operating via a bottom-up mechanism (photosynthesis limitation).

  14. Targeted livestock grazing to improve and restore rangelands

    USDA-ARS?s Scientific Manuscript database

    Targeted grazing is the application of a specific kind of livestock at the appropriate season, duration, and intensity to accomplish defined vegetation or landscape goals. Grazing by wild and domestic animals is a powerful natural force working in all ecosystems. The ability of selective herbivory t...

  15. Estimating influence of stocking regimes on livestock grazing distributions

    USDA-ARS?s Scientific Manuscript database

    Ungulates often concentrate grazing at small hotspots in the larger landscape, and dispersing livestock away from these intensively grazed areas is one of the central challenges in range management. We evaluated a technique based on shifting the stocking date to prevent overgrazing of small areas co...

  16. Evidence targeted grazing benefits to invaded rangelands can increase over extended time frames

    USDA-ARS?s Scientific Manuscript database

    Prescribed grazing uses livestock to address rangeland management issues such as woody plant encroachment, accumulations of flammable biomass and exotic weed invasions. Invasive weed responses to prescribed grazing have proven variable. For instance, a given livestock species can sharply reduce ab...

  17. Estimating overnight weight loss of corralled yearling steers in semiarid rangeland

    USDA-ARS?s Scientific Manuscript database

    Free-ranging livestock grazing native vegetation on rangelands are frequently gathered and confined overnight in a corral (sensu drylot) prior to weighing to determine periodic weight gains for grazing studies. Quantification of this overnight percent shrink across the grazing season could provide t...

  18. 36 CFR 222.53 - Grazing fees in the East-noncompetitive procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... current period's hay price index, less the value of any agency required range improvements. (ii) Grazing Fee Credits for Range Improvements. Any requirements for permittee construction or development of range improvements shall be identified through an agreement and incorporated into the grazing permit...

  19. Eighty years of grazing by cattle modifies sagebrush and bunchgrass structure

    USDA-ARS?s Scientific Manuscript database

    Grazing by cattle is ubiquitous across the sagebrush steppe, however, little is known about its effects on sagebrush and native bunchgrass structure. Understanding the effects of long-term grazing on sagebrush and bunchgrass structure is important because sagebrush is a keystone species and bunchgra...

  20. Mob grazing for dairy cows

    USDA-ARS?s Scientific Manuscript database

    Proponents of mob grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 lb/ac of beef cattle on small paddocks with rest periods up to 125 days. However, it is unclear if this management technique is appropriate for dair...

  1. The multi-year cumulative effects of alternative stocking rate and grazing management practices on pasture productivity and utilization efficiency.

    PubMed

    McCarthy, B; Delaby, L; Pierce, K M; McCarthy, J; Fleming, C; Brennan, A; Horan, B

    2016-05-01

    The production and utilization of increased quantities of high quality pasture is of paramount importance in pasture-based milk production systems. The objective of this study was to evaluate the cumulative effects of alternative integrated grazing strategies, incorporating alternative stocking rate (SR) and grazing severities, on pasture productivity and grazing efficiency over multiple years within farm systems using perennial ryegrass dominant pastures. Three whole-farm SR treatments were compared over 4 complete grazing seasons (2009 to 2012 inclusive): low (2.51 cows/ha; LSR), medium (2.92 cows/ha; MSR), and high (3.28 cows/ha; HSR). Each system had its own farmlet containing 18 paddocks and remained on the same treatment for the duration of the study. Stocking rate had a significant effect on all grazing variables with the exception of soil fertility status and sward density. Increased SR resulted in increased total annual net pasture accumulation, improved sward nutritive value, and increased grazed pasture utilization. Total annual net pasture accumulation was greatest in HSR [15,410kg of dry matter (DM)/ha], intermediate for MSR (14,992kg of DM/ha), and least for LSR (14,479kg of DM/ha) during the 4-yr study period. A linear effect of SR on net pasture accumulation was detected with an increase in net pasture accumulation of 1,164.4 (SE=432.7) kg of DM/ha for each 1 cow/ha increase in SR. Pregrazing pasture mass and height and postgrazing residual pasture mass and height were greatest for LSR, intermediate for the MSR, and lowest for the HSR. In comparison with the LSR, the imposition of a consistently increased grazing severity coupled with increased whole farm SR in MSR and HSR treatments arrested the decline in sward nutritive value, typically observed during mid-season. Incorporating the individual beneficial effects of SR on pasture accumulation, nutritive value, and utilization efficiency, total proportional energy (unité fourragère lait) utilization per hectare increased significantly with increasing SR (+0.026 and +0.081 for MSR and HSR, respectively). These results quantify the significant effect of grazing management practices on the feed production capability of modern perennial ryegrass pastures for intensive grazing dairy production systems. Furthermore, these results highlight the importance of consistently imposing grazing treatments over multiple years, and within integrated whole farm systems, to accurately assess the longer term effects of alternate grazing management practices on pasture productivity. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. 77 FR 39623 - Airworthiness Standards: Aircraft Engines; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...] Airworthiness Standards: Aircraft Engines; Technical Amendment AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; technical amendment. SUMMARY: This amendment clarifies aircraft engine... from applicants requesting FAA engine type certifications and aftermarket certifications, such as...

  3. Habitat type plays a greater role than livestock grazing in structuring shrubsteppe plant-pollinator communities

    USDA-ARS?s Scientific Manuscript database

    Livestock grazing is a prevalent grassland disturbance and can negatively impact biodiversity. Pollinators constitute a vital component of grassland ecosystems, but the impact of grazing on pollinator diversity has seldom been assessed in North America. We assessed vegetation structure, and pollinat...

  4. MICROTOPOGRAPHY AND GRAZING IN DESERT RANGE LAND: A LESSON IN STATISTICS VERSUS REALITY IN THE FIELD

    EPA Science Inventory

    This presentation summarizes two experiments on the effects of grazing on soil microtopography in a Chihuahuan Desert rangeland. In the first experiment, we measured the effect of three consecutive years of short duration <48 hours per year) intense grazing (20--40 yearling cows ...

  5. Semiarid rangeland is resilient to summer fire and post-fire grazing utilization

    USDA-ARS?s Scientific Manuscript database

    1. Most wildfires occur during summer in the northern hemisphere, the area burned annually is increasing, and fire effects during this season are least understood. Livestock grazing is a primary use of rangelands affected by wildfire, but post-fire grazing management is not well-supported with dat...

  6. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle

    USDA-ARS?s Scientific Manuscript database

    Methods to estimate intake in grazing livestock include using markers, visual observation, mechanical sensors that respond to jaw movement and acoustic recording. In most of the acoustic monitoring studies, the microphone is inverted on the forehead of the grazing livestock and the skull is utilize...

  7. Soil health as a transformational change agent for grazing lands management

    USDA-ARS?s Scientific Manuscript database

    Grazing lands (pastures and rangelands) provide an extensive suite of ecosystem goods and services for society. A shift in focus towards soil health can foster transformational changes for grazing management as well as provide a nexus for enhanced communication among producers, customers, and the ge...

  8. Community responses of arthropods to a range of traditional and manipulated grazing in shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    Livestock grazing has context-dependent impacts on grassland plant and animal communities. In grassland ecosystems that have evolved with large herbivores, such as the North American Great Plains with bison (Bison bison), responses of plants to grazing are better understood, and more predictable, th...

  9. Forages and pastures symposium: Animal performance and environmental efficiency of cool-and warm-season annual grazing systems

    USDA-ARS?s Scientific Manuscript database

    Annual forage crops can provide short-term grazing between crop rotations or can be interseeded into perennial pastures to increase forage quality and productivity. They also provide an opportunity to increase the economic and environmental sustainability of traditional grazing systems. Cool-season ...

  10. Economic viability of beef cattle grazing systems under prolonged drought

    USDA-ARS?s Scientific Manuscript database

    Prolonged drought in the Southern Great Plains of the USA in recent years has raised concerns about vulnerability of beef cattle grazing systems under adverse climate change. To help address the economic viability of beef grazing operations in the Southern Great Plains, this paper provides an econom...

  11. Grazing management for healthy watersheds

    Treesearch

    Karl Wood

    2008-01-01

    (Please note, this is an abstract only) New Mexico was historically grazed by many native and introduced ungulates, often called wildlife. Their distribution was limited especially in deserts until domestic animals were introduced and drinking water was provided. Plants respond to grazing with little resistance (black grama), to great resistance (blue grama), and to...

  12. Plant community dynamics in the shortgrass steppe 24 years after reversal of a grazing exclosure experiment

    USDA-ARS?s Scientific Manuscript database

    State and Transition Models are important decision-support tools for rangeland managers that suggest directional effects of both long-term grazing imposition and relaxation on plant community composition. However, most studies of the effects of grazing on semiarid rangelands evaluate only one direct...

  13. From the lab bench: A systematic approach to grazing cattle

    USDA-ARS?s Scientific Manuscript database

    A column was written to discuss the use of grazing systems to overcome challenges of managing grazed pastures. Kentucky cattlemen must manage around summer slumps in growth of cool-season perennial grasses, periodic drought, and cattle markets that do not always cooperate with pasture growth patter...

  14. EFFECTS OF FERTILIZER TYPE (CHICKEN LITTER VS. INORGANIC FERTILIZER) AND CATTLE GRAZING ON THE SOIL MICROBIAL COMMUNITY

    EPA Science Inventory

    Pasture plots included unharvested, hayed, light and heavy cattle grazing pressure, fertilized with either inorganic N-P-K or broiler litter. Total phospholipid fatty acids (PLFAs) followed a seasonal trend and were higher in grazed plots than hayed & unharvested plots. Fungi a...

  15. Nest Success and Cause-Specific Nest Failure of Grassland Passerines Breeding in Prairie Grazed by Livestock

    EPA Science Inventory

    This manuscript describes two years of field research on ground-nesting songbird species at Zumwalt Prairie Reserve, northeastern Oregon, USA. Cattle-grazing has long been suspected in declines of ground-nesting songbirds in grazed grassland, primarily due to increased trampling...

  16. Effects of buffer strips and grazing management on soil loss from pastures

    USDA-ARS?s Scientific Manuscript database

    Intensive grazing pressure can cause soil erosion from pastures causing increased sediment loading to aquatic systems. The objectives of this work were to determine the long-term effects of grazing management and buffer strips on soil erosion from pastures fertilized with broiler litter. Field stud...

  17. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  18. A look at dairy mob grazing in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Proponents of ultra-high stocking density (UHSD) grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 560,425 kg/ha of beef cattle on small paddocks with rest periods up to 125 days. However, it is unclear if this management te...

  19. Patch burn grazing management and grassland bird habitat in shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    Combining prescribed fire and grazing management has been recommended as a tool to generate a heterogeneous vegetation mosaic for grassland birds. Past studies addressing this interaction of fire and grazing have primarily focused on tallgrass prairies of the eastern Great Plains, while less is know...

  20. Heifer body weight gain and reproductive achievement in response to protein and energy supplementation while grazing dormant range forage

    USDA-ARS?s Scientific Manuscript database

    Heifers grazing winter range require supplemental nutrients to compliment dormant forage to achieve optimal growth and performance. A study was conducted to evaluate nutritional environment and effect of different supplementation strategies for developing heifers grazing dormant winter range. Eigh...

  1. Grazing effects on carbon fluxes in a northern China grassland

    USDA-ARS?s Scientific Manuscript database

    Grazing is a widespread use of grasslands in northern China, but if stocking rate exceeds grassland carrying capacity, degradation and desertification can occur. As a result, grazing management is critical and can play a significant role in driving C sink and source activity in grassland ecosystems...

  2. EFFECTS OF INTENSE, SHORT-DURATION GRAZING ON MICROTOPOGRAPHY IN A CHIHUAHUAN DESERT GRASSLAND

    EPA Science Inventory

    We measured the effects of short-term intense grazing by domestic cattle on the microtopography of a black-grama grass (Bouteloua eriopoda) dominated desert grassland. Plots were grazed during winter or summer for 24-36 hours by 20-40 yearlings in 1995 and 1996. Soil microtopogra...

  3. Keratinophilic fungi isolated from soils of long-term fold-grazed, degraded pastures in national parks of Slovakia.

    PubMed

    Javoreková, Soňa; Labuda, Roman; Maková, Jana; Novák, Ján; Medo, Juraj; Majerčíková, Kamila

    2012-09-01

    A total of 939 isolates of 11 genera representing 15 species of keratinophilic fungi were isolated and identified from the soils of three long-term fold-grazed pastures in national parks of Slovakia (Pod Ploskou, Strungový príslop, and Pod Kečkou) and one non-fold-grazed pasture in sierra Stolicke vrchy (Diel) using the hair-baiting technique. Keratinophilic fungi were present in all soil samples with a prevalence of Trichophyton ajelloi and Paecilomyces lilacinus. These fungi were more abundant in soil from fold-grazed pasture (Strungový príslop) compared to non-fold-grazed pasture (Diel). The occurrence of the other keratinophilic fungi was substantially lower, likely because of low pH in some soils.

  4. Modification of Classical SPM for Slightly Rough Surface Scattering with Low Grazing Angle Incidence

    NASA Astrophysics Data System (ADS)

    Guo, Li-Xin; Wei, Guo-Hui; Kim, Cheyoung; Wu, Zhen-Sen

    2005-11-01

    Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions. The project supported by National Natural Science Foundation of China under Grant No. 60101001 and the National Defense Foundation of China

  5. Numerical reproduction and explanation of road surface mirages under grazing-angle scattering.

    PubMed

    Lu, Jia; Zhou, Huaichun

    2017-07-01

    The mirror-like reflection image of the road surface under grazing-angle scattering can be easily observed in daily life. It was suggested that road surface mirages may occur due to a light-enhancing effect of the rough surface under grazing-angle scattering. The main purpose of this work is to explain the light-enhancing mechanism of rough surfaces under grazing-angle scattering. The off-specular reflection from a random rough magnesium oxide ceramic surface is analyzed by using the geometric optics approximation method. Then, the geometric optics approximation method is employed to develop a theoretical model to predict the observation effect of the grazing-angle scattering phenomenon of the road surface. The rough surface is assumed to consist of small-scale rough surface facets. The road surface mirage is reproduced from a large number of small-scale rough surface facets within the eye's resolution limit at grazing scattering angles, as the average bidirectional reflectance distribution function value at the bright location is about twice that of the surface in front of the mirage. It is suggested that the light-enhancing effect of the rough surface under grazing-angle scattering is not proper to be termed as "off-specular reflection," since it has nothing to do with the "specular" direction with respect to the incident direction.

  6. Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability

    USGS Publications Warehouse

    Jimenez, Aguilar A.; Huber-Sannwald, E.; Belnap, J.; Smart, D.R.; Arredondo, Moreno J.T.

    2009-01-01

    In Northern Mexico, long-term grazing has substantially degraded semiarid landscapes. In semiarid systems, ecological and hydrological processes are strongly coupled by patchy plant distribution and biological soil crust (BSC) cover in plant-free interspaces. In this study, we asked: 1) how responsive are BSC cover/composition to a drying/wetting cycle and two-year grazing removal, and 2) what are the implications for soil erosion? We characterized BSC morphotypes and their influence on soil stability under grazed/non-grazed conditions during a dry and wet season. Light- and dark-colored cyanobacteria were dominant at the plant tussock and community level. Cover changes in these two groups differed after a rainy season and in response to grazing removal. Lichens with continuous thalli were more vulnerable to grazing than those with semi-continuous/discontinuous thalli after the dry season. Microsites around tussocks facilitated BSC colonization compared to interspaces. Lichen and cyanobacteria morphotypes differentially enhanced resistance to soil erosion; consequently, surface soil stability depends on the spatial distribution of BSC morphotypes, suggesting soil stability may be as dynamic as changes in the type of BSC cover. Longer-term spatially detailed studies are necessary to elicit spatiotemporal dynamics of BSC communities and their functional role in biotically and abiotically variable environments. ?? 2009 Elsevier Ltd.

  7. Reducing Livestock Effects on Public Lands in the Western United States as the Climate Changes: A Reply to Svejcar et al

    NASA Astrophysics Data System (ADS)

    Beschta, Robert L.; Donahue, Debra L.; DellaSala, Dominick A.; Rhodes, Jonathan J.; Karr, James R.; O'Brien, Mary H.; Fleischner, Thomas L.; Williams, Cindy Deacon

    2014-06-01

    Svejcar et al. (Environ Manage, 2014) offered several perspectives regarding Beschta et al. (Environ Manage 51:474-491, 2013)—a publication that addressed the interacting ecological effects of climate change and domestic, wild, and feral ungulates on public lands in the western United States (US)—by largely focusing on three livestock grazing issues: (1) legacy versus current day impacts; (2) grazing as a fire reduction tool; and (3) the complexity of grazing. Regarding these issues, we indicate that (1) legacy effects to western ecosystems were indeed significant and contemporary livestock use on public lands generally maintains or exacerbates many of those effects; (2) livestock grazing has been a major factor affecting fire frequency, fire severity, and ecosystem trajectories in the western US for over a century; and (3) the removal or reduction of grazing impacts in these altered ecosystems is the most effective means of initiating ecological recovery. Svejcar et al. (Environ Manage, 2014) offer no evidence that livestock use is consistent with the timely recovery of grazing-degraded uplands, riparian areas, or stream systems. We thus conclude that public-land ecosystems can best persist or cope with a changing climate by significantly reducing ungulate grazing and related impacts.

  8. Effects of livestock exclusion on density, survival and biomass of the perennial sagebrush grass Hymenachne pernambucense (Poaceae) from a temperate fluvial wetland

    NASA Astrophysics Data System (ADS)

    Magnano, Andrea L.; Nanni, Analía S.; Krug, Pamela; Astrada, Elizabeth; Vicari, Ricardo; Quintana, Rubén D.

    2018-01-01

    In Argentina, the intensification of soybean production has displaced a substantial proportion of cattle ranching to fluvial wetlands such as those in the Delta of the Paraná River. Cattle grazing affects structure and dynamics of native forage plants but there is little information on this impact in populations from fluvial wetlands. This study addresses the effect of cattle ranching on density, survival, mean life-span and aerial biomass of Hymenachne pernambucense (Poaceae), an important forage species in the region. The study was carried out monthly for one year in permanents plots subject to continuous grazing and plots excluded from grazing in the Middle Delta of the Paraná River. In plots excluded from grazing, tillers showed significantly higher population density and survival, and a two-fold increase in mean life-span, while continuous grazing decreased survival of cohorts. The largest contribution to tiller density in ungrazed and grazed populations was made by spring and summer cohorts, respectively. Total and green biomass were significantly higher in the ungrazed population, with highest differences in late spring-early summer. Cattle grazing affected the relationship between tiller density and green biomass suggesting that cattle prefer sprouts because they are more palatable and nutritious than older tissue.

  9. High intensity, short duration rotational grazing on reclaimed cool season tall fescue/legume pastures: II. Forage production, soil and plant tissue comparisons between grazed and ungrazed pastures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, K.E.; Erickson, W.R.; Bonine, R.C.

    The Midway Mine is located 50 miles south of Kansas City, Kansas straddling the border of Kansas and Missouri. The Pittsburg & Midway Coal Mining Co. mined the area until 1989, when the mine was closed and reclaimed. Approximately 3,750 acres were topsoiled and revegetated with a cool season tall fescue/legume pasture. High intensity, short duration rotational grazing has become the preferred management practice on these pastures. This study evaluated soil and vegetation data collected on 1,250 acres of pasture which was grazed by about 550 cow/calf units. Ongoing monitoring programs are evaluating the effects of rotational grazing. Soil testingmore » includes macro-nutrients, micro-nutrients and microbial activity. Plant tissue analyses monitor levels of principal macro-nutrients and micro-nutrients. Vegetation monitoring consists of measuring forage production. Results were contrasted between pregrazing and postgrazing, and grazed and ungrazed pasture. Agronomic data from the grazed versus ungrazed treatments documented the following results: (1) higher levels of plant tissue nitrate, phosphorus, potassium, calcium, magnesium, sodium and sulfur; (2) higher microbial activity; (3) similar levels of soil nitrate, phosphorus, potassium, calcium, magnesium, sodium and sulfur; and (4) increased biomass production.« less

  10. Fatty acid profile in vertical strata of elephant grass subjected to intermittent stocking.

    PubMed

    Dias, Kamila M; Schmitt, Daniel; Rodolfo, Giselle R; Deschamps, Francisco C; Camargo, Guilherme N; Pereira, Raphael S; Sbrissia, André F

    2017-01-01

    The milk and meat from animals with a pasture-based diet have higher proportions of CLA and C18:3 and lower omega-6:omega-3 ratios than products from animals with diets based on corn silage and concentrate. However, most of the published studies have evaluated fatty acid profiles in temperate climate grasses and the literature with tropical grasses is scarce. Thus, the aim of this study was to evaluate the morphological and fatty acid compositions in the vertical strata of elephant grass (Pennisetum purpureum Schum.) swards subjected to grazing heights (90 or 120 cm pre-grazing heights) and levels of defoliation (50% or 70% removal of the initial pre-grazing height). There were no interactions among pre-grazing height, the level of defoliation and grazing stratum. However, higher proportion of C18:3 (58% and 63%) was found in the 90-cm swards and in the half upper stratum. A higher proportion of C18:3 was associated with a higher leaf proportion and crude protein content. Thus, the upper stratum of sward or a grazing management scheme (e.g. first-last stocking) resulting in a higher proportion of leaves and crude protein both provide higher proportions of C18:3 to animals grazing in elephant grass swards.

  11. Towards evenly distributed grazing patterns: including social context in sheep management strategies.

    PubMed

    di Virgilio, Agustina; Morales, Juan Manuel

    2016-01-01

    Background. A large proportion of natural grasslands around the world is exposed to overgrazing resulting in land degradation and biodiversity loss. Although there is an increasing effort in the promotion of sustainable livestock management, rangeland degradation still occurs because animals' foraging behaviour is highly selective at different spatial scales. The assessment of the ecological mechanisms modulating the spatial distribution of grazing and how to control it has critical implications for long term conservation of resources and the sustainability of livestock production. Considering the relevance of social interactions on animals' space use patterns, our aim was to explore the potential effects of including animals' social context into management strategies using domestic sheep grazing in rangelands as case study. Methods. We used GPS data from 19 Merino sheep (approximately 10% of the flock) grazing on three different paddocks (with sizes from 80 to 1000 Ha) during a year, to estimate resource selection functions of sheep grazing in flocks of different levels of heterogeneity. We assessed the effects of sheep class (i.e., ewes, wethers, and hoggets), age, body condition and time since release on habitat selection patterns. Results. We found that social rank was reflected on sheep habitat use, where dominant individuals (i.e., reproductive females) used more intensively the most preferred areas and low-ranked (i.e., yearlings) used less preferred areas. Our results showed that when sheep grazed on more heterogeneous flocks, grazing patterns were more evenly distributed at all the paddocks considered in this study. On the other hand, when high-ranked individuals were removed from the flock, low-ranked sheep shifted their selection patterns by increasing the use of the most preferred areas and strongly avoided to use less preferred sites (i.e., a highly selective grazing behaviour). Discussion. Although homogenization and segregation of flocks by classes are common practices to increase flock productivity, we are proposing an alternative that employs behavioural interactions in heterogeneous flocks to generate more evenly distributed grazing patterns. This practice can be combined with other practices such as rotational grazing and guardian dogs (to decrease mortality levels that may be generated by sheep grazing on more risky habitats). This does not imply any modifications of livestock stocking rates and densities or any additional investments for labour and materials. Considering livestock behaviour is critical for the design of sustainable management practices that balance landscape conservation and livestock productivity.

  12. Short communication: grazing pattern of dairy cows that were selected for divergent residual feed intake as calves.

    PubMed

    Gregorini, P; Waghorn, G C; Kuhn-Sherlock, B; Romera, A J; Macdonald, K A

    2015-09-01

    The aim of this study was to investigate and assess differences in the grazing pattern of 2 groups of mature dairy cows selected as calves for divergent residual feed intake (RFI). Sixteen Holstein-Friesian cows (471±31kg of body weight, 100 d in milk), comprising 8 cows selected as calves (6-8 mo old) for low (most efficient: CSCLowRFI) and 8 cows selected as calves for high (least efficient: CSCHighRFI) RFI, were used for the purpose of this study. Cows (n=16) were managed as a single group, and strip-grazed (24-h pasture allocation at 0800h) a perennial ryegrass sward for 31 d, with measurements taken during the last 21 d. All cows were equipped with motion sensors for the duration of the study, and jaw movements were measured for three 24-h periods during 3 random nonconsecutive days. Measurements included number of steps and jaw movements during grazing and rumination, plus fecal particle size distribution. Jaw movements were analyzed to identify bites, mastication (oral processing of ingesta) during grazing bouts, chewing during rumination, and to calculate grazing and rumination times for 24-h periods. Grazing and walking behavior were also analyzed in relation to the first meal of the day after the new pasture was allocated. Measured variables were subjected to multivariate analysis. Cows selected for low RFI as calves appeared to (a) prioritize grazing and rumination over idling; (b) take fewer steps, but with a higher proportion of grazing steps at the expense of nongrazing steps; and (c) increase the duration of the first meal and commenced their second meal earlier than CSCHighRFI. The CSCLowRFI had fewer jaw movements during eating (39,820 vs. 45,118 for CSCLowRFI and CSCHighRFI, respectively), more intense rumination (i.e., 5 more chews per bolus), and their feces had 30% less large particles than CSCHighRFI. These results suggest that CSCLowRFI concentrate their grazing activity to the time when fresh pasture is allocated, and graze more efficiently by walking and masticating less, hence they are more efficient grazers than CSCHighRFI. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effects of ewes grazing sulla or ryegrass pasture for different daily durations on forage intake, milk production and fatty acid composition of cheese.

    PubMed

    Bonanno, A; Di Grigoli, A; Mazza, F; De Pasquale, C; Giosuè, C; Vitale, F; Alabiso, M

    2016-12-01

    Sulla (Sulla coronarium L.) forage is valued for its positive impact on ruminant production, in part due to its moderate content of condensed tannin (CT). The duration of daily grazing is a factor affecting the feed intake and milk production of ewes. In this study, the effects of grazing sulla pasture compared with annual ryegrass, and the extension of grazing from 8 to 22 h/day, were evaluated with regard to ewe forage intake and milk production, as well as the physicochemical properties and fatty acid (FA) composition of cheese. During 42 days in the spring, 28 ewes of the Comisana breed were divided into four groups (S8, S22, R8 and R22) that grazed sulla (S) or ryegrass (R) for 8 (0800 to 1600 h) or 22 h/day, and received no feeding supplement. In six cheese-making sessions, cheeses were manufactured from the 48 h bulk milk of each group. Compared with ewes grazing ryegrass, those grazing sulla had higher dry matter (DM) intake, intake rate and milk yield, and produced milk that was lower in fat and higher in casein. Ewes grazing for 22 h spent more time eating, which reduced the intake rate, increased DM and nutrient intake and milk yield, and reduced milk fat. Due to the ability of CT to inhibit the complete ruminal biohydrogenation of polyunsaturated fatty acids (PUFA), the FA composition of sulla cheese was more beneficial for consumer health compared with ryegrass cheese, having lower levels of saturated fatty acids and higher levels of PUFA and n-3 FA. The FA profile of S8 cheese was better than that of S22 cheese, as it was higher in branched-chain FA, monounsaturated FA, PUFA, rumenic acid (c9,t11-C18:2), and had a greater health-promoting index. The effect of short grazing time on sulla was attributed to major inhibition of PUFA biohydrogenating ruminal bacteria, presumably stimulated by the higher accumulation of sulla CT in the rumen, which is related to a higher intake rate over a shorter eating time. Thus, grazing sulla improved the performance of ewes, thereby increasing, especially with short grazing time, the nutritional properties of cheese fat.

  14. Grazing intensity and driving factors affect soil nitrous oxide fluxes during the growing seasons in the Hulunber meadow steppe of China

    NASA Astrophysics Data System (ADS)

    Yan, Ruirui; Tang, Huajun; Xin, Xiaoping; Chen, Baorui; Murray, Philip J.; Yan, Yunchun; Wang, Xu; Yang, Guixia

    2016-05-01

    In this study, the effects of cattle grazing intensity on soil nitrous oxide (N2O) fluxes were examined in the Hulunber meadow steppe of north-eastern China. Six stocking-rate treatments (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha-1) with three replicates were established, and observations were conducted from 2010 to 2014. Our results showed that substantial temporal fluctuations in N2O flux occurred amongst the different grazing intensities, with peak N2O fluxes after natural rainfall. Grazing had a long-term effect on the soil N2O flux in the grasslands. After 4-5 years of grazing, the N2O fluxes under increased levels of grazing intensity began to decrease significantly by 31.4%-60.2% in 2013 and 32.5%-50.5% in 2014 compared to the non-grazing treatment. We observed a significant negative linear relationship between the soil N2O fluxes and grazing intensity for the five-year mean. The soil N2O flux was significantly affected each year in all of the treatments. Over the five years, the temporal coefficient of variation (CVs) of the soil N2O flux generally declined significantly with increasing grazing intensity. The soil N2O emission rate was significantly positively correlated with soil moisture (SM), soil available phosphorus (SAP), soil {{{{NH}}}4}+-N, soil {{{{NO}}}3}--N, above-ground biomass (AGB), plant ground cover and height and was negatively correlated with total soil nitrogen (TN). Stepwise regressions showed that the N2O flux was primarily explained by SM, plant height, TN, soil pH, and soil {{{{NH}}}4}+-N. Using structural equation modelling, we show that grazing significantly directly influenced the plant community and the soil environment, which then influenced the soil N2O fluxes. Our findings provide an important reference for better understanding of the mechanisms and identifying the pathways of grazing effects on soil N2O emission rates, and the key drivers plant community and soil environment within the nitrogen cycle that are mostly likely to affect N2O emissions in the Inner Mongolian meadow steppes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.

    Growth of CuO nanowires by annealing method has been studied in-situ by grazing incidence Energy Dispersive X-ray Diffraction (EDXRD) technique on Indus-2. It was observed that Cu slowly oxidized to Cu{sub 2}O and finally to CuO. The data was taken as a function of time at two annealing temperatures 500 Degree-Sign C where nanowires form and 300 Degree-Sign C where nanowires don't form. We found that the strain in the CuO layer may be a principal factor for the spontaneous growth of nanowires in annealing method.

  16. 7 CFR 652.36 - Appeal of decertification decisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technical service provider's written appeal, the Chief or his designee, will make a final determination, in... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE... of the State Conservationist's decertification determination, the technical service provider may...

  17. Capturing Cognitive Fingerprints for Active Authentication

    DTIC Science & Technology

    2014-10-01

    CAPTURING COGNITIVE FINGERPRINTS FOR ACTIVE AUTHENTICATION IOWA STATE UNIVERSITY OF SCIENCE & TECHNOLOGY OCTOBER 2014 FINAL TECHNICAL REPORT...REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) SEP 2013 – APR 2014 4. TITLE AND SUBTITLE CAPTURING COGNITIVE FINGERPRINTS FOR ACTIVE...The project ended before the IRB application was approved. 15. SUBJECT TERMS Active Authentication, Cognitive Fingerprints , Biometric Modalities

  18. Application of Communications Satellites to Educational Development. Final Technical Report, September 1, 1969-August 31, 1975.

    ERIC Educational Resources Information Center

    Morgan, Robert P.

    Research is summarized in a brief final report built around a four-section bibliography. The first section lists periodic progress reports and articles which provide an overview of the program, including articles which pertain primarily to educational rather than technical aspects of satellite utilization. Theses carried out in the fields of…

  19. Head Start Impact Study. Technical Report

    ERIC Educational Resources Information Center

    Puma, Michael; Bell, Stephen; Cook, Ronna; Heid, Camilla; Shapiro, Gary; Broene, Pam; Jenkins, Frank; Fletcher, Philip; Quinn, Liz; Friedman, Janet; Ciarico, Janet; Rohacek, Monica; Adams, Gina; Spier, Elizabeth

    2010-01-01

    This Technical Report is designed to provide technical detail to support the analysis and findings presented in the "Head Start Impact Study Final Report" (U.S. Department of Health and Human Services, January 2010). Chapter 1 provides an overview of the Head Start Impact Study and its findings. Chapter 2 provides technical information on the…

  20. Matching Community and Technical College Professional/Technical Education Capacity to Employer Demand. Final Report.

    ERIC Educational Resources Information Center

    Sommers, Paul; Heg, Deena

    A project was conducted to improve the state of Washington's community and technical college system by developing and using an improved occupational forecasting system to assess and respond to education and training needs. First, long-term occupational forecast data from Washington's Employment Security Department were matched with technical and…

  1. 75 FR 5784 - Guidance on Preparation of Market-Based Rate Filings and Electric Quarterly Reports by Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Preparation of Market-Based Rate Filings and Electric Quarterly Reports by Public Utilities; Notice of Technical Conference January 28, 2010. Take notice that Commission staff will convene a technical conference... final agenda of the technical conference. The March 3, 2010 technical conference will focus on the...

  2. A Revision of Technical Mathematics Based on the NCTM Standards. Final Report.

    ERIC Educational Resources Information Center

    Near, Barbara

    Between 1993 and 1996, Henry Ford Community College (Michigan) worked with business, industry, and technical instructors to revise their Technical Mathematics program in accordance with the National Council of Teachers of Mathematics (NCTM) Standards. The purpose of the project was to restructure the technical math curriculum and create a context…

  3. 76 FR 11327 - Technical Amendments to Rule 17a-8: Financial Recordkeeping and Reporting of Currency and Foreign...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... SECURITIES AND EXCHANGE COMMISSION 17 CFR Part 240 [Release No. 34-63949] Technical Amendments to...: Securities and Exchange Commission. ACTION: Final rule; technical amendments. SUMMARY: The Securities and Exchange Commission (``Commission'') is adopting technical amendments to Rule 17a-8 under the Securities...

  4. Final priority; technical assistance to improve state data capacity--National Technical Assistance Center to improve state capacity to accurately collect and report IDEA data. Final priority.

    PubMed

    2013-05-20

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2013 and later years. We take this action to focus attention on an identified national need to provide technical assistance (TA) to States to improve their capacity to meet the data collection and reporting requirements of the Individuals with Disabilities Education Act (IDEA). We intend this priority to establish a TA center to improve State capacity to accurately collect and report IDEA data (Data Center).

  5. Controls on vegetation structure in Southwestern ponderosa pine forests, 1941 and 2004.

    PubMed

    Bakker, Jonathan D; Moore, Margaret M

    2007-09-01

    Long-term studies can broaden our ecological understanding and are particularly important when examining contingent effects that involve changes to dominance by long-lived species. Such a change occurred during the last century in Southwestern (USA) ponderosa pine (Pinus ponderosa) forests. We used five livestock grazing exclosures established in 1912 to quantify vegetation structure in 1941 and 2004. Our objectives were to (1) assess the effects of historical livestock grazing on overstory structure and age distribution, (2) assess the effects of recent livestock grazing and overstory on understory vegetation, and (3) quantify and explain changes in understory vegetation between 1941 and 2004. In 1941, canopy cover of tree regeneration was significantly higher inside exclosures. In 2004, total tree canopy cover was twice as high, density was three times higher, trees were smaller, and total basal area was 40% higher inside exclosures. Understory species density, herbaceous plant density, and herbaceous cover were negatively correlated with overstory vegetation in both years. Most understory variables did not differ between grazing treatments in 1941 but were lower inside exclosures in 2004. Differences between grazing treatments disappeared once overstory effects were accounted for, indicating that they were due to the differential overstory response to historical livestock grazing practices. Between 1941 and 2004, species density declined by 34%, herbaceous plant density by 37%, shrub cover by 69%, total herbaceous cover by 59%, graminoid cover by 39%, and forb cover by 82%. However, these variables did not differ between grazing treatments or years once overstory effects were accounted for, indicating that the declines were driven by the increased dominance of the overstory during this period. Our results demonstrate that historical livestock grazing practices are an aspect of land-use history that can affect ecosystem development. Grazing history must be considered when extrapolating results from one site to another. In addition, the understory vegetation was more strongly controlled by the ponderosa pine overstory than by recent livestock grazing or by temporal dynamics, indicating that overstory effects must be accounted for when examining understory responses in this ecosystem.

  6. Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient.

    PubMed

    Smit, Christian; Vandenberghe, Charlotte; den Ouden, Jan; Müller-Schärer, Heinz

    2007-05-01

    Current conceptual models predict that an increase in stress shifts interactions between plants from competitive to facilitative; hence, facilitation is expected to gain in ecological importance with increasing stress. Little is known about how facilitative interactions between plants change with increasing biotic stress, such as that incurred by consumer pressure or herbivory (i.e. disturbance sensu Grime). In grazed ecosystems, the presence of unpalatable plants is reported to protect tree saplings against cattle grazing and enhance tree establishment. In accordance with current conceptual facilitation-stress models, we hypothesised a positive relationship between facilitation and grazing pressure. We tested this hypothesis in a field experiment in which tree saplings of four different species (deciduous Fagus sylvatica, Acer pseudoplatanus and coniferous Abies alba, Picea abies) were planted either inside or outside of the canopy of the spiny nurse shrub Rosa rubiginosa in enclosures differing in grazing pressure (low and high) and in exclosures. During one grazing season we followed the survival of the different tree saplings and the level of browsing on these; we also estimated browsing damage to the nurse shrubs. Shrub damage was highest at the higher grazing pressure. Correspondingly, browsing increased and survival decreased in saplings located inside the canopy of the shrubs at the high grazing pressure compared to the low grazing pressure. Saplings of both deciduous species showed a higher survival than the evergreens, while sapling browsing did not differ between species. The relative facilitation of sapling browsing and sapling survival - i.e. the difference between saplings inside and outside the shrub canopy - decreased at high grazing pressure as the facilitative species became less protective. Interestingly, these findings do not agree with current conceptual facilitation-stress models predicting increasing facilitation with abiotic stress. We used our results to design a conceptual model of facilitation along a biotic environmental gradient. Empirical studies are needed to test the applicability of this model. In conclusion, we suggest that current conceptual facilitation models should at least consider the possibility of decreasing facilitation at high levels of stress.

  7. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus slowing down C turnover, and indirectly changes microbial structure, namely relative fungal abundance, by reducing high-quality marine organic matter inputs.

  8. Interaction of historical and nonhistorical disturbances maintains native plant communities.

    PubMed

    Davies, K W; Svejcar, T J; Bates, J D

    2009-09-01

    Historical disturbance regimes are often considered a critical element in maintaining native plant communities. However, the response of plant communities to disturbance may be fundamentally altered as a consequence of invasive plants, climate change, or prior disturbances. The appropriateness of historical disturbance patterns under modern conditions and the interactions among disturbances are issues that ecologists must address to protect and restore native plant communities. We evaluated the response of Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh plant communities to their historical disturbance regime compared to other disturbance regimes. The historical disturbance regime of these plant communities was periodic fires with minimal grazing by large herbivores. We also investigated the influence of prior disturbance (grazing) on the response of these communities to subsequent disturbance (burning). Treatments were: (1) ungrazed (livestock grazing excluded since 1936) and unburned, (2) grazed and unburned, (3) ungrazed and burned (burned in 1993), and (4) grazed and burned. The ungrazed-burned treatment emulated the historical disturbance regime. Vegetation cover, density, and biomass production were measured the 12th, 13th, and 14th year post-burning. Prior to burning the presence of Bromus tectorum L., an exotic annual grass, was minimal (<0.5% cover), and vegetation characteristics were similar between grazed and ungrazed treatments. However, litter accumulation was almost twofold greater in ungrazed than in grazed treatments. Long-term grazing exclusion followed by burning resulted in a substantial B. tectorum invasion, but burning the grazed areas did not produce an invasion. The ungrazed-burned treatment also had less perennial vegetation than other treatments. The accumulation of litter (fuel) in ungrazed treatments may have resulted in greater fire-induced mortality of perennial vegetation in ungrazed compared to grazed treatments. Our results demonstrate that prior disturbances exert a strong influence on the response of plant communities to subsequent disturbances and suggest that low-severity disturbances may be needed in some plant communities to increase their resilience to more severe disturbances. Modern deviations from historical conditions can alter ecosystem response to disturbances, thus restoring the historical disturbance regime may not be an appropriate strategy for all ecosystems.

  9. Effects of previous grazing nutrition and management on feedlot performance of cattle.

    PubMed

    Drouillard, J S; Kuhl, G L

    1999-01-01

    Management strategies designed to improve grazing animal performance can influence feedlot performance and carcass traits both positively and negatively. In spite of the economic relevance of potential interactions between grazing and finishing performance, controlled experiments evaluating integrated production systems are limited in number. Effects of grazing treatments can result from, or be overshadowed by, changes in gut fill, thus making it difficult to assign precise costs to different phases of production. Published reports have considered the effects of stocking rate, duration of grazing, forage characteristics, supplementation, and growth-promoting implants on subsequent finishing performance. Improvements in cattle performance attributed to changes in stocking rate generally have been neutral to positive with respect to effects on finishing performance. Comparisons among forages have led to the suggestion that forage species may contribute to differences in gastrointestinal fill of grazing cattle, thereby influencing gain and efficiency during the subsequent finishing phase. Creep-feeding suckling calves generally has increased preweaning performance but has had relatively little influence on performance during the subsequent finishing phase. Grain supplementation of stocker cattle during the grazing period has improved grazing performance, but effects on subsequent feedlot performance have been inconsistent. Potential carryover effects from protein and mineral supplementation also have been inconclusive. Lack of congruence among studies is puzzling but may be the consequence of highly varied production systems, differences in experimental procedures, and changes in gut fill or mass of internal organs. Based on the studies reviewed, the expression or absence of compensatory growth during the finishing phase appears to be related to the nutritional quality of forages utilized in the grazing period, with higher quality forages tending to yield greater compensatory effects. The bulk of evidence with suckling cattle and stocker implants suggests that effects on subsequent finishing performance are minimal. Attention is drawn to the noticeable lack of research pertaining to integrated production systems. A more thorough understanding of the interactions among grazing nutrition and management, finishing performance, and carcass traits is needed to facilitate greater economic exploitation of these relationships.

  10. Tasco-Forage: III. Influence of a seaweed extract on performance, monocyte immune cell response, and carcass characteristics in feedlot-finished steers.

    PubMed

    Allen, V G; Pond, K R; Saker, K E; Fontenot, J P; Bagley, C P; Ivy, R L; Evans, R R; Brown, C P; Miller, M F; Montgomery, J L; Dettle, T M; Wester, D B

    2001-04-01

    Tall fescue (Festuca arundinacea Schreb.) infected with the endophyte Neotyphodium coenophialum ([Morgan-Jones and Gams] Glenn, Bacon, and Hanlin) causes fescue toxicosis in cattle grazing the forage, but effects of the endophyte were considered to be abated soon after removal of the animals from pastures. Tasco-Forage, a proprietary extract from the brown seaweed Ascophyllum nodosum, is a known source of cytokinins and has increased antioxidant activity in both plants and the animals that graze the forage. Tasco was applied at 0 and 3.4 kg/ha to infected and uninfected tall fescue pastures in Virginia and Mississippi. Forty-eight steers grazed the pastures at each location during each of 2 yr (n = 192) before being transported to Texas for feedlot finishing. On arrival at the feedlot, steers from Tasco-treated pastures had higher (P < 0.01) monocyte phagocytic activity and tended (P < 0.07) to have higher major histocompatibility complex class II expression than steers that grazed the untreated pastures. A depression (P < 0.05) in monocyte immune cell function due to grazing infected fescue was detected throughout the feedlot finishing period but was reversed by Tasco. Rectal temperatures were elevated (P < 0.07) in steers that had grazed the infected tall fescue when they arrived in Texas, but by d 14 no difference was detected. However, by d 28 the temperature effects of infected tall fescue were reversed. Steers that had grazed infected fescue had lower (P < 0.01) rectal temperatures on d 112 of the feedlot period, demonstrating a much longer-lasting effect of the endophyte on thermoregulatory mechanisms than previously thought. Steers that had grazed Tasco-treated pastures had higher (P < 0.01) rectal temperatures on d 56 than steers that had grazed untreated fescue. Steers that had grazed the Tasco-treated pastures had higher marbling scores (P < 0.05) regardless of the endophyte, but no effect of Tasco or endophyte on gain was measured. Our data suggest that Tasco application to tall fescue pastures alleviated some of the negative effects of tall fescue toxicity.

  11. Nest trampling and ground nesting birds: Quantifying temporal and spatial overlap between cattle activity and breeding redshank.

    PubMed

    Sharps, Elwyn; Smart, Jennifer; Mason, Lucy R; Jones, Kate; Skov, Martin W; Garbutt, Angus; Hiddink, Jan G

    2017-08-01

    Conservation grazing for breeding birds needs to balance the positive effects on vegetation structure and negative effects of nest trampling. In the UK, populations of Common redshank Tringa totanus breeding on saltmarshes declined by >50% between 1985 and 2011. These declines have been linked to changes in grazing management. The highest breeding densities of redshank on saltmarshes are found in lightly grazed areas. Conservation initiatives have encouraged low-intensity grazing at <1 cattle/ha, but even these levels of grazing can result in high levels of nest trampling. If livestock distribution is not spatially or temporally homogenous but concentrated where and when redshank breed, rates of nest trampling may be much higher than expected based on livestock density alone. By GPS tracking cattle on saltmarshes and monitoring trampling of dummy nests, this study quantified (i) the spatial and temporal distribution of cattle in relation to the distribution of redshank nesting habitats and (ii) trampling rates of dummy nests. The distribution of livestock was highly variable depending on both time in the season and the saltmarsh under study, with cattle using between 3% and 42% of the saltmarsh extent and spending most their time on higher elevation habitat within 500 m of the sea wall, but moving further onto the saltmarsh as the season progressed. Breeding redshank also nest on these higher elevation zones, and this breeding coincides with the early period of grazing. Probability of nest trampling was correlated to livestock density and was up to six times higher in the areas where redshank breed. This overlap in both space and time of the habitat use of cattle and redshank means that the trampling probability of a nest can be much higher than would be expected based on standard measures of cattle density. Synthesis and applications : Because saltmarsh grazing is required to maintain a favorable vegetation structure for redshank breeding, grazing management should aim to keep livestock away from redshank nesting habitat between mid-April and mid-July when nests are active, through delaying the onset of grazing or introducing a rotational grazing system.

  12. Effects of grazing and burning on densities and habitats of breeding ducks in North Dakota

    USGS Publications Warehouse

    Kruse, Arnold D.; Bowen, Bonnie S.

    1996-01-01

    Native grassland communities controlled by public agencies become increasingly important to the maintenance of many wildlife species as privately owned grasslands are destroyed or degraded for farming, mining, and development. In turn, wildlife on publicly owned grasslands are affected by the management techniques practiced by local managers. We studied the effects of grazing and prescribed burning on upland-nesting ducks and the structure and type of vegetation from 1980 to 1988 at the Lostwood National Wildlife Refuge (NWR) in northwestern North Dakota. Mallard (Anas platyrhynchos), the most abundant species at Lostwood NWR, had lower (P < 0.05) annual nest densities on experimental and control fields in the later years than in the early years of the study. Spring burning reduced (P = 0.016) nest densities of gadwall (A. strepera). Spring grazing reduced nest densities of gadwall (P = 0.014), and blue-winged teal (A. discors, P = 0.023). Nest density of gadwall increased (P = 0.018) after spring grazing was terminated. On the summer burn/spring graze fields, blue-winged teal had lower (P = 0.010) nest densities after treatments (1987-88) than before treatments (1980-81). Nest success was high (mallard 34%, gadwall 45%, blue-winged teal 31%) but was not influenced (P 0.16) by the burning and grazing treatments. During the study, the amount of grass/brush increased, whereas the amount of brush and brush/grass decreased on control and treatment fields. During the years with burning and grazing, short vegetation increased and tall vegetation decreased. On the spring graze fields, 1 year after grazing ended the vegetation was similar to that on the control fields. The spring burn and summer burn/spring graze fields recovered more slowly. Brushy species such as western snowberry (Symphoricarpos occidentalis) provided attractive nesting habitat for many upland-nesting waterfowl species, especially mallard, gadwall, American wigeon (A. americana), and northern pintail (A. acuta). Habitat needs of additional species of wildlife that depend on grasslands may need to be considered when deciding how to manage habitat.

  13. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  14. Final priority; Technical Assistance on State Data Collection--IDEA Data Management Center. Final priority.

    PubMed

    2014-08-05

    The Assistant Secretary for the Office of Special Education and Rehabilitative Services (OSERS) announces a priority under the Technical Assistance on State Data Collection program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to fund a cooperative agreement to establish and operate an IDEA Data Management Center (Center) that will provide technical assistance (TA) to improve the capacity of States to meet the data collection requirements of the Individuals with Disabilities Education Act (IDEA).

  15. Technical Topic 3.2.2.d Bayesian and Non-Parametric Statistics: Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling

    DTIC Science & Technology

    2016-05-31

    and included explosives such as TATP, HMTD, RDX, RDX, ammonium nitrate , potassium perchlorate, potassium nitrate , sugar, and TNT. The approach...Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2. d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2. d Bayesian and Non-parametric Statistics: Integration of Neural

  16. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  17. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    PubMed

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies (P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI (P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  18. Mixotrophy in Heterocapsa rotundata: A Mechanism for Dominating the Winter Phytoplankton Community

    NASA Astrophysics Data System (ADS)

    Millette, N.; Pierson, J. J.; Aceves, A.; Stoecker, D.

    2016-02-01

    Heterocapsa rotundata is a dinoflagellate that forms large winter blooms in estuaries and coastal ecosystems. Past research has focused on the mechanisms necessary for these winter blooms to form but it is unknown why H. rotundata consistently forms these blooms. H. rotundata is a known mixotroph, and we conducted grazing experiments with a non-axenic culture of H. rotundata containing bacteria to test what environmental conditions increase H. rotundata's community grazing rate. We used microspheres to confirm that H. rotundata was grazing. We measured the change of bacterial abundance in control (without grazers) and experimental groups over 24 hours to estimate H. rotundata's community grazing rate on bacteria at different irradiance levels and ammonium concentrations. There was a significant interaction between the effect of ammonium concentration and irradiance levels. As irradiance levels decreased, the effect of ammonium concentrations on H. rotundata grazing rates became less pronounced. At lower irradiance levels H. rotundata grazing rates remained high, regardless of the ammonium concentration. Overall, changes in irradiance levels had a larger impact on H. rotundata grazing rates than changes in ammonium concentration. The findings will be discussed in light of ongoing lab and field research. The winter season is known for limiting light levels that most likely have a negative impact on phytoplankton growth rates. Heterocapsa rotundata has adapted to low light levels by increasing grazing on bacteria to consume enough carbon to maintain growth. Heterocapsa rotundata's response to low light levels is likely the mechanism that provides the competitive advantage to form winter blooms under the right conditions over other phytoplankton species.

  19. Near grazing scattering from non-Gaussian ocean surfaces

    NASA Technical Reports Server (NTRS)

    Kim, Yunjin; Rodriguez, Ernesto

    1993-01-01

    We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.

  20. Mingled Mortality: the Interplay Between Protist Grazing and Viral Lysis on Emiliania huxleyi Cell Fate

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Bidle, K. D.; Johnson, M. D.

    2016-02-01

    The coccolithophore, Emiliania huxleyi plays a prominent role in global carbon cycling, as their calcite coccoliths account for a third of all oceanic calcite production. Mortality due to grazing by microzooplankton is the largest contributor to phytoplankton loss in the marine environment. However, viral infection of E. huxleyi is now thought to be as important as grazing pressure in contributing to its mortality. To understand the influence of viral infection on grazing dynamics, we examined the response of the dinoflagellate predator, Oxyrrhis marina to E. huxleyi infected with four different strains of the E. huxleyi virus (EhV). Grazing rate was significantly slower on E. huxleyi cultures that had been infected for 48 h compared to an uninfected control and this reduction in grazing rate was dependent on the strain identity of infecting EhVs. Additional experimentation indicated that grazing was the primary source of E. huxleyi loss ( 78-98%) during the first 24 h of exposure to both predator and virus. However, as viral infection progressed into the late lytic phase (48 h hour post infection), the relative contribution of grazing to total E. huxleyi mortality decreased ( 5-60%). These results suggest that mortality is partitioned along a gradient between predator-based consumption and virus-induced cell lysis, dependent on the timing of infection. Deciphering the relative importance and interactive nature of these alga-predator-viral interactions will help to elucidate the mechanisms that drive bulk measurements of phytoplankton loss, a necessary understanding to interpret and predict phytoplankton population dynamics and associated biogeochemical cycling.

  1. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be achieved with 32 microphones available for this purpose. Initial results indicate 32 microphones can provide acceptable measurements to support impedance eduction with this test rig.

  2. Effects of shade on welfare and meat quality of grazing sheep under high ambient temperature.

    PubMed

    Liu, H W; Cao, Y; Zhou, D W

    2012-12-01

    This study was conducted to evaluate the effects of providing shade on growth performance, welfare, and meat quality of grazing sheep under high ambient temperature. A total of 120 healthy male Ujumqin wool sheep (a local breed; BW = 18.7 ± 1.27 kg; 14 wk old) were randomly and equally divided into shaded and unshaded treatments with 3 pens per treatment. Sheep were grazed on an unshaded pastureland from 0600 to 1000 h and 1400 to 1800 h. During other times, sheep were confined in shaded or unshaded pens. Body weight was recorded on d 1 and 42 of the experiment. Rectal temperature and respiration rate were recorded on d 7, 14, 21, 28, 35, and 42. At end of the trial, sheep were blood sampled and slaughtered to collect meat samples. Respiration rate was greater (P < 0.05) in the unshaded sheep than shaded sheep on d 14, 21, 28, 35, and 42 of the trial whereas no significant differences were found on d 7. Moreover, no differences were observed in final BW, ADG, or rectal temperature throughout the trial. The pH at 24 h postmortem (pH(24)) and cooking loss were greater (P < 0.01) in unshaded than shaded sheep. On the contrary, lightness (L*), redness (a*) and yellowness (b*) values at 24 h postmortem were lower (P < 0.05) in unshaded versus shaded sheep. The sheep in the unshaded group had a greater (P < 0.05) cortisol concentration compared with the shaded group. Sheep in the shaded group had lower creatine kinase activity (P < 0.01) as well as observed for glucose (P < 0.05), triiodothyronine (P < 0.01), and thyroxine (P < 0.05) concentrations and white blood cell count (P < 0.05). Compared with the unshaded group, sheep in the shaded group had a greater lymphocytes (LYM) count (P < 0.05). In contrast, the opposite was true for neutrophils (NEU) count (P < 0.01) and NEU:LYM ratio (P < 0.01). In conclusion, the shade cloth, although not enhancing ADG, improved meat quality traits and certain stress parameters in grazing sheep reared under high ambient temperature.

  3. Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latkowski, J F; Meier, W R; Reyes, S

    1999-08-09

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less

  4. Impact of cattle grazing on soil and vegetation - a case study in a mountainous region of Austria

    NASA Astrophysics Data System (ADS)

    Bohner, Andreas; Foldal, Cecilie; Jandl, Robert

    2015-04-01

    In mountainous regions of Austria and of many other European countries, climate change may cause a further intensification of grassland management. Therefore, the effects of intensive cattle grazing on selected soil chemical and physical properties, above- and below-ground phytomass, forage quality, plant species composition and plant species richness at the scale of a representative paddock in a mountainous region of Austria were investigated. At the study site (Styrian Enns valley; 675 m a.s.l.), climate is relatively cool and humid, with a mean annual air temperature of 6.7°C and a mean annual precipitation of 970 mm, of which 66% falls during the vegetation period (April-October). The soil is a deep, base-rich Cambisol with a loamy sand texture. The paddock investigated has a total area of about 2 ha and had been grazed by dairy cows (Brown Swiss) five times per grazing season. The stocking density was 4 cows ha-1 during 180 days from early May to the end of October with a grazing time of about 8 hours per day. The strip grazed permanent pasture was manured annually for a long time, mostly with cattle slurry. Vegetation surveys were carried out using the method of Braun-Blanquet. Above- and below-ground phytomass, forage quality and mineral element concentration in the harvestable above-ground plant biomass were determined by using standard methods. During the grazing season surface soil samples (0-10 cm depth) for chemical analyses were collected before each grazing period (5 analyses of composite samples per site). At the beginning and the end of the grazing season also soil samples for physical analyses were taken from the topsoil (0-15 cm depth). Heavy cattle treading led to a substantial soil compaction especially in the 5-10 cm layer and to a deterioration of topsoil structure. The porous crumb structure was replaced by a compact platy structure. The topsoil was enriched with nutrients (mainly nitrogen, potassium, phosphorus and boron). The degree of phosphorus saturation was very high. Consequently, the risk of elevated nutrient losses via leaching and surface runoff is increased. This, in turn, may pose a threat to ground water, surface water and adjacent ecosystems. In the intensively grazed cattle pasture we observed considerable changes in plant species composition and species cover. Vegetation cover, plant species richness, pasture yield, forage quality and below-ground phytomass declined due to overgrazing. In contrast, the untrampled and unmanured habitat below the fence of the paddock can be regarded as a retreat area for many plant species which do not tolerate heavy trampling and manuring. Thus, in assessing biodiversity, this corridor should be taken into consideration. Within the paddock, we found a permanent transfer of soil nutrients and organic matter by grazing cattle, leading to a high spatial heterogeneity in some soil properties. Consequently, within intensively grazed paddocks differential manure-application rates and variations in grazing intensity are necessary.

  5. Grazing Stategy To Decrease Dietary Crude Protien Wastage In Stocker Calves Grazing Winter Wheat Pasture.

    USDA-ARS?s Scientific Manuscript database

    Annual cool-season grasses, primarily winter wheat, provide high quality forage for stocker calves during the fall, winter and spring grazing seasons for stocker enterprises in the southern Great Plains. The crude protein (CP) content of winter wheat pasture exceeds the stocker calf’s daily CP requi...

  6. 25 CFR 700.725 - Livestock trespass.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... according to the range unit Range Management Plan. (c) The grazing of livestock upon any land withdrawn from... approved by the Commissioner. (e) Grazing of livestock whose brand is not recorded in the range unit Range Management Plan. The owner of any livestock grazing in trespass on the New Lands is liable to a civil penalty...

  7. INTERACTIONS BETWEEN NUTRIENTS,PHYTOPLANKTON GROWTH AND MICROZOOPLANKTON GRAZING RATES IN A GULF OF MEXICO ESTUARY

    EPA Science Inventory

    Juhl, Andrew R. and Michael C. Murrell. Submitted. Phytoplankton Growth and Microzooplankton Grazing in a Gulf of Mexico Estuary. Aquat. Microb. Ecol. 38(1): 147-156, 2005.(ERL,GB 1214).

    Dilution grazing experiments were conducted on 9 dates over a 16-month period in Sant...

  8. How does targeted grazing with small ruminants influence subsequent patch use by mule deer and cattle?

    USDA-ARS?s Scientific Manuscript database

    Targeted grazing with small ruminants has been suggested as a means to control one-seed juniper encroachment (Juniperus monosperma Englem. Sarg) and enhance habitat for livestock and wildlife. We determined the short term influence of a localized targeted grazing treatment with goats and sheep cond...

  9. Long-term effects of grazing management and buffer strips on soil erosion from pastures

    USDA-ARS?s Scientific Manuscript database

    High grazing pressure can lead to soil erosion in pastures by compacting soil and increasing runoff and sediment delivery to waterways. Limited information exists on the effects of grazing management and best management practices (BMPs), such as buffer strips, on soil erosion from pastures. The obje...

  10. 25 CFR 700.725 - Livestock trespass.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Livestock trespass. 700.725 Section 700.725 Indians THE... Grazing § 700.725 Livestock trespass. The following acts are prohibited: (a) The grazing of livestock upon... Management Plan. The owner of any livestock grazing in trespass on the New Lands is liable to a civil penalty...

  11. 25 CFR 700.725 - Livestock trespass.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Livestock trespass. 700.725 Section 700.725 Indians THE... Grazing § 700.725 Livestock trespass. The following acts are prohibited: (a) The grazing of livestock upon... Management Plan. The owner of any livestock grazing in trespass on the New Lands is liable to a civil penalty...

  12. 25 CFR 700.725 - Livestock trespass.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Livestock trespass. 700.725 Section 700.725 Indians THE... Grazing § 700.725 Livestock trespass. The following acts are prohibited: (a) The grazing of livestock upon... Management Plan. The owner of any livestock grazing in trespass on the New Lands is liable to a civil penalty...

  13. 25 CFR 700.725 - Livestock trespass.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Livestock trespass. 700.725 Section 700.725 Indians THE... Grazing § 700.725 Livestock trespass. The following acts are prohibited: (a) The grazing of livestock upon... Management Plan. The owner of any livestock grazing in trespass on the New Lands is liable to a civil penalty...

  14. Sierra Nevada grasslands: interactions between livestock grazing and ecosystem structure and function

    Treesearch

    Barbara H. Allen-Diaz

    2004-01-01

    Livestock grazing plays an integral role in the grass-dominated ecosystems of the Sierra Nevada. Grazing has been asserted to influence such key ecological characteristics as water quality, net primary productivity, nutrient cycling, plant and animal diversity, wildlife habitat availability, and oak regeneration (Belsky and others 1999, Kauffmann and Krueger 1984)....

  15. An experimental analysis of grasshopper community responses to fire and livestock grazing in a northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    The outcomes of grasshopper responses to both vertebrate grazing and fire vary across grassland ecosystems, and are strongly influenced by local climactic factors. Thus, the possible application of grazing and fire as components of an ecologically-based grasshopper management strategy must necessari...

  16. Choosing cover crops for a fall grazing season

    USDA-ARS?s Scientific Manuscript database

    Forage brassicas are annuals that can be utilized as pasture during the spring, summer, and fall grazing seasons. They are quick maturing and can be grazed 60 to 120 days after planting. A 2-year study at the USDA-ARS PSWMRU showed that yield and total digestible nutrients of three brassica varietie...

  17. Forage intake and wastage by ewes in pea/hay barley swath grazing and bale feeding systems

    USDA-ARS?s Scientific Manuscript database

    Harvested feed costs, particularly during the winter, are traditionally the highest input associated with a ruminant livestock operation. Although swath grazing has been practiced for over 100 years and literature exists for cattle use of swath grazing, no published results are available on use of s...

  18. Grazing moderates increases in C3 grass abundance over seven decades across a soil texture gradient in shortgrass steppe

    USDA-ARS?s Scientific Manuscript database

    Questions: How does long-term grazing exclusion influence plant community composition in a semiarid grassland? Can spatial variation in the effects of grazing exclusion be explained by variation in soil texture? Location: The shortgrass steppe of northeastern Colorado, USA, located in the North Amer...

  19. Effects of livestock grazing on neotropical migratory landbirds in western North America

    Treesearch

    Carl E. Bock; Victoria A. Saab; Terrell D. Rich; David S. Dobkin

    1993-01-01

    Livestock grazing is a widespread and important influence on neotropical migratory birds in four major ecosystems in western North America: grasslands of the Great Plains and Southwest, riparian woodlands, Intermountain shrubsteppe, and open coniferous forests. We have reviewed available literature on avian responses to grazing in these habitats. Among 35 plains...

  20. Dairy farmers using mob grazing in Pennsylvania and New York

    USDA-ARS?s Scientific Manuscript database

    Proponents of ultra-high stocking density grazing emphasize increased forage use efficiency and soil improvement by grazing mature forage with stocking densities up to 500,000 lb per acre of beef cattle on small paddocks with rest periods up to 180 days. However, it is unclear if this management tec...

  1. Case study: dairies utilizing ultra-high stock density grazing in the northeast

    USDA-ARS?s Scientific Manuscript database

    Ultra-high stock density (UHSD) grazing (also loosely referred to as ‘mob grazing’) has attracted a lot of attention and press in the forage industry. Numerous anecdotal articles can be found in trade magazines that promote the perceived benefits of UHSD grazing. However, there is little credible re...

  2. Vegetation selection by Angus crossbred vs. Raramuri Criollo nursing cows grazing Chihuauan Desert rangeland in summer

    USDA-ARS?s Scientific Manuscript database

    We examined vegetation selection patterns of nursing Angus X Hereford crossbred (AH) and Raramuri Criollo (RC) cows grazing Chihuahuan Desert vegetation during the growing season. Eleven cows of each group grazed separately in two large pastures (1190ha, 1165ha) from mid-July until mid-August 2015 (...

  3. Milk from cows grazing on cool-season pastures provides an enhanced profile of bioactive fatty acids compared to those grazed on a monoculture of pearl millet.

    PubMed

    Bainbridge, Melissa L; Egolf, Emily; Barlow, John W; Alvez, Juan P; Roman, Joe; Kraft, Jana

    2017-02-15

    The demand for dairy products from grass-fed cows is driven, in part, by their more desirable fatty acid (FA) profile, containing more n-3 FA and conjugated linoleic acids (CLA) than conventionally produced dairy products. This study investigated the effects of pearl millet (PM) vs. cool-season pasture (CSP) on animal performance and milk FA in a grazing system. Eight Holstein dairy cows were used in a repeated measures design with four-week periods. Forage type had no effect on animal performance (estimated dry matter intake, milk production, fat, or protein). The contents of CLA and n-3 FA in a serving of whole milk (3.25% fat) increased when cows grazed CSP compared to PM. A serving of whole milk from cows grazing PM had a higher content of saturated FA and branched-chain FA. In conclusion, the contents of various bioactive FA were higher in milk fat of cows grazing a CSP compared to PM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Grazing effects on ecosystem CO2 fluxes differ among temperate steppe types in Eurasia.

    PubMed

    Hou, Longyu; Liu, Yan; Du, Jiancai; Wang, Mingya; Wang, Hui; Mao, Peisheng

    2016-07-01

    Grassland ecosystems play a critical role in regulating CO2 fluxes into and out of the Earth's surface. Whereas previous studies have often addressed single fluxes of CO2 separately, few have addressed the relation among and controls of multiple CO2 sub-fluxes simultaneously. In this study, we examined the relation among and controls of individual CO2 fluxes (i.e., GEP, NEP, SR, ER, CR) in three contrasting temperate steppes of north China, as affected by livestock grazing. Our findings show that climatic controls of the seasonal patterns in CO2 fluxes were both individual flux- and steppe type-specific, with significant grazing impacts observed for canopy respiration only. In contrast, climatic controls of the annual patterns were only individual flux-specific, with minor grazing impacts on the individual fluxes. Grazing significantly reduced the mean annual soil respiration rate in the typical and desert steppes, but significantly enhanced both soil and canopy respiration in the meadow steppe. Our study suggests that a reassessment of the role of livestock grazing in regulating GHG exchanges is imperative in future studies.

  5. Effects of finishing period length with vitamin E supplementation and alfalfa grazing on carcass color and the evolution of meat color and the lipid oxidation of light lambs.

    PubMed

    Ripoll, G; González-Calvo, L; Molino, F; Calvo, J H; Joy, M

    2013-04-01

    Indoor-kept concentrate-fed light lambs (n=54) were supplemented with 500 mg of dl-α-tocopheryl acetate/kg concentrate for 0, 10, 20 and 30 d before slaughtering at 22-24 kg BW. Simultaneously, 8 lambs with their dams were alfalfa-grazed and the lambs were slaughtered at the same weight. The age at slaughter and carcass characteristics were more affected by grazing than by supplementation with α-tocopherol. The grazing lambs had similar α-tocopherol levels to the lambs fed concentrate with dl-α-tocopheryl acetate for 10 days before slaughter. The length of the feeding period affected the evolution of the color, delaying the blooming and discoloration of the meat. Feeding lambs α-tocopherol enriched concentrate during the last 10 days of life or grazing them on alfalfa drastically diminished the lipid oxidation of the meat. Alfalfa grazing is a feasible alternative to increase light lamb meat shelf life without using additives. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Herbage intake, methane emissions and animal performance of steers grazing dwarf elephant grass v. dwarf elephant grass and peanut pastures.

    PubMed

    Andrade, E A; Almeida, E X; Raupp, G T; Miguel, M F; de Liz, D M; Carvalho, P C F; Bayer, C; Ribeiro-Filho, H M N

    2016-10-01

    Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.

  7. Comparison of aboveground vegetation and soil seed bank composition at sites of different grazing intensity around a savanna-woodland watering point in West Africa.

    PubMed

    Sanou, Lassina; Zida, Didier; Savadogo, Patrice; Thiombiano, Adjima

    2018-06-11

    Grazing removes a plant's aboveground vegetative and reproductive tissues and can modify the soil seed bank, potentially impacting the restoration of preferred species. Knowledge about aboveground vegetation and species composition of soil seed bank and the processes that contribute to vegetation recovery on and surrounding watering points subjected to grazing is lacking. Successful restoration strategies hinge on addressing these knowledge gaps. We assessed the effects of livestock grazing on aboveground vegetation and soil seed bank characteristics along a river bank and surrounding areas subject to different grazing intensities and draw implications for restoration. Plots (50 × 50 m) were established along five transects representing differing levels of grazing intensity. Soil samples were taken from three layers within each plot to determine soil properties and species composition of soil seed bank using the seedling emergence method. Heavy grazing resulted in the disappearance of perennial grasses, a reduction in species diversity and a decrease in soil nutrients with increased soil depth. Overall, the similarity between the extant aboveground vegetation and flora within the soil seed bank was low. The soil seed bank was dominated by herbaceous species and two woody species, suggesting that many woody species are not accumulating in the soil. With increasing soil depth, the seed density and richness declined. Canonical correspondence analyses (CCAs) showed that emerged seedlings from the soil seed bank were significantly influenced by soil carbon, organic matter, total nitrogen, total potassium and soil cation exchange capacity. This finding suggests that current grazing practices have a negative impact on the vegetation surrounding watering points; hence there is a need for improved grazing management strategies and vegetation restoration in these areas. The soil seed bank alone cannot restore degraded river banks; active transfer of propagules from adjacent undisturbed forest areas is essential.

  8. In situ provision of drinking water to grazing dairy cows improves milk production.

    PubMed

    Miglierina, M M; Bonadeo, N; Ornstein, A M; Becú-Villalobos, D; Lacau-Mengido, I M

    2018-01-01

    To determine the effect of providing water within the area grazed by dairy cows on milk yield and quality, compared to requiring cows to walk to a distant water trough, on a dairy farm in the Pampa region of Argentina during summer. Holstein dairy cows were allocated to two herds with similar parity, days in milk and milk production. They were grazed in one paddock that was divided in two, with a fixed water trough at one end. Cows were moved twice daily to grazing plots within the paddock. Control cows (n=66) could only access water from the fixed trough, whereas supplemented cows (n=67) also received water from a mobile trough within the grazing plot. Milk production of each cow, and water consumption of the two herds were measured daily over 62 days. Milk composition for each herd was determined weekly from Days 18 to 60 of the study, and grazing behaviour was observed between 08:00 and 16:00 hours on Days 11-15, 19-22 and 39-43. Over the 62 days of the study, supplemented cows produced 1.39 (SE 0.11) L/cow/day more milk than Control cows (p=0.027). Estimated mean daily water intake was 50.4 (SE 2.1) L/cow/day for supplemented cows and 58.2 (SE 2.7) L/cow/day for Control cows (p=0.004). Percentage total solids in milk was higher for supplemented (12.5 (SE 0.06)%) than Control (12.4 (SE 0.04)%) cows (p=0.047). During the periods of behavioural observation, a higher percentage of cows in the water supplemented than the Control herd were observed in the grazing area (p=0.012). This preliminary study demonstrated that provision of water to dairy cows within the grazing plot was beneficial for milk production and composition, and may be associated with longer periods spent within the grazing area, during hot weather in the Pampa region of Argentina.

  9. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Tan, Y.; Huang, L.; Hu, Z.; Ke, Z.

    2015-04-01

    To examine seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in oligotrophic tropical waters under the influence of seasonal reversing monsoon, dilution experiments were conducted during the summer 2009 (21 May to 9 June) and winter 2010 (9 to 18 November) in the southern South China Sea (SSCS). The results showed that environmental variables, phytoplankton biomass, phytoplankton growth rate (μ), microzooplankton grazing rate (m), and correlationship (coupling) between the μ and m, but the microzooplankton grazing impact on phytoplankton (m/μ) significantly varied between the two seasons. Higher relative preference index (RPI) for and m on the larger-sized (>3 μm) phytoplankton than pico-phytoplankton (<3 μm), indicating significant size-selective grazing by microzooplankton on the larger-sized phytoplankton, were also observed. The μ and m were significantly correlated with salinity and dissolved inorganic nutrients, which indicated that salient seasonal variations in the phytoplankton growth and microzooplankton grazing in the SSCS were closely related to the environmental variables under the influence of the East Asian monsoon. We propose that intermittent arrivals of the northeast winter monsoon could lead to the low μ and m, and the decoupling between the μ and m in the SSCS, through influencing nutrient supply to the surface water, and inducing surface seawater salinity decrease. The low m/μ (<50% on average) indicates low remineralization of organic matter mediated by microzooplankton and the increased importance of the phytoplankton-mesozooplankton grazing pathway, and thus probably accounts for part of the high vertical biogenic particle fluxes in the prevailing periods of the monsoons in the SSCS. The size-selective grazing suggests that microzooplankton grazing contributes to the pico-phytoplankton dominance in the oligotrophic tropical waters such as that of the SSCS.

  10. The impact of sheep grazing on the carbon balance of a peatland

    NASA Astrophysics Data System (ADS)

    Fred, F.; Clay, G. D.

    2012-04-01

    This study estimates the greenhouse gas (GHG) fluxes resulting from sheep grazing upon upland peat soils. Previous studies have been limited to individual flux pathways or to comparing the presence to the absence of sheep grazing. Therefore, this study combines a model of the physical impact of grazing with models of: biomass production; energy usage in sheep; and peat accumulation. These combined modelling approaches enables this study to consider the indirect and direct impacts of sheep upon the carbon and greenhouse gas balance of a peatland at different grazing intensities as well as the changes between states of grazing. The study considered four vegetation scenarios (Calluna sp., Molinia sp.; reseeded grasses, and Agrostis-Festuca grassland) and a mixed vegetation scenario based upon the vegetation typical of upland peat ecosystems in northern England. Each scenario was considered for altitudes between 350 and 900 m above sea level and for grazing intensities between 0.1 and 2 ewes/ha. The study can show that the total GHG flux at the vegetative carrying capacity tended to decline with increasing altitude for all vegetation scenarios considered except for Molinia sp. The average total GHG flux for all scenarios was 1350 kg CO2eq/ha/yr/ewe/ha, and on average 91% of the fluxes were directly from the sheep and not from the soil ,and are therefore not unique to a peat soil environment. The study suggests that emissions factors for upland sheep have been greatly underestimated. By comparing the total flux due to grazers to the flux to or from the soil allows the study to define a GHG carry capacity. i.e. the grazing intensity at which the flux due to grazing is equal to the sink represented by the peat soils, this GHG carrying capacity varies between 0.2 and 1.7 ewes/ha with this capacity declining with increasing altitude for all model scenarios.

  11. Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen

    PubMed Central

    Yusuf, Hasen M.; Treydte, Anna C.; Sauerborn, Jauchim

    2015-01-01

    High grazing intensity and wide-spread woody encroachment may strongly alter soil carbon (C) and nitrogen (N) pools. However, the direction and quantity of these changes have rarely been quantified in East African savanna ecosystem. As shifts in soil C and N pools might further potentially influence climate change mitigation, we quantified and compared soil organic carbon (SOC) and total soil nitrogen (TSN) content in enclosures and communal grazing lands across varying woody cover i.e. woody encroachment levels. Estimated mean SOC and TSN stocks at 0–40 cm depth varied across grazing regimes and among woody encroachment levels. The open grazing land at the heavily encroached site on sandy loam soil contained the least SOC (30 ± 2.1 Mg ha-1) and TSN (5 ± 0.57 Mg ha-1) while the enclosure at the least encroached site on sandy clay soil had the greatest mean SOC (81.0 ± 10.6 Mg ha-1) and TSN (9.2 ± 1.48 Mg ha-1). Soil OC and TSN did not differ with grazing exclusion at heavily encroached sites, but were twice as high inside enclosure compared to open grazing soils at low encroached sites. Mean SOC and TSN in soils of 0–20 cm depth were up to 120% higher than that of the 21–40 cm soil layer. Soil OC was positively related to TSN, cation exchange capacity (CEC), but negatively related to sand content. Our results show that soil OC and TSN stocks are affected by grazing, but the magnitude is largely influenced by woody encroachment and soil texture. We suggest that improving the herbaceous layer cover through a reduction in grazing and woody encroachment restriction are the key strategies for reducing SOC and TSN losses and, hence, for climate change mitigation in semi-arid rangelands. PMID:26461478

  12. A solar extreme ultraviolet telescope and spectrograph for space shuttle. Volume 1: Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.

    1978-01-01

    A scientific investigation of heating and mass transport in the solar corona that is currently planned for a future Shuttle/Spacelab flight is outlined. The instrument to be used is a near-normal incidence grating spectrograph fed by a grazing incidence Wolter Type 2 telescope. A toroidal grating design provides stigmatic images of the corona up to 8 arc min in extent over the spectral region from 225 A to 370 A. Spatial resolution of at least 2 arc sec and spectral resolution of 0.050 A is achievable throughout the central 4 arc min field or view. Primary scientific data are recorded on Schumann-type film. An H-alpha slit jaw monitor and zero order extreme ultraviolet monitor are also planned to support instrument operation.

  13. Grazing effects on plant community succession of early- and mid-seral seeded grassland compared to shortgrass steppe

    USGS Publications Warehouse

    Milchunas, Daniel G.; Vandever, Mark W.

    2013-01-01

    Conclusions: Grazing effects on particular functional groups and species were not the same across seral stages, were mixed in terms of speeding or slowing succession, and were generally not large at the community level. Evolutionary history of grazing may serve as a general guide but decisions on whether to graze successional grasslands may best be made after assessing whether tolerant perennial short grass species are significant components. Monitoring may then be necessary to determine species responses in particular community matrixes and effects on subsequent immigration of non-seeded native perennial species.

  14. An agent-based model of cattle grazing toxic Geyer's larkspur.

    PubMed

    Jablonski, Kevin E; Boone, Randall B; Meiman, Paul J

    2018-01-01

    By killing cattle and otherwise complicating management, the many species of larkspur (Delphinium spp.) present a serious, intractable, and complex challenge to livestock grazing management in the western United States. Among the many obstacles to improving our understanding of cattle-larkspur dynamics has been the difficulty of testing different grazing management strategies in the field, as the risk of dead animals is too great. Agent-based models (ABMs) provide an effective method of testing alternate management strategies without risk to livestock. ABMs are especially useful for modeling complex systems such as livestock grazing management, and allow for realistic bottom-up encoding of cattle behavior. Here, we introduce a spatially-explicit, behavior-based ABM of cattle grazing in a pasture with a dangerous amount of Geyer's larkspur (D. geyeri). This model tests the role of herd cohesion and stocking density in larkspur intake, finds that both are key drivers of larkspur-induced toxicosis, and indicates that alteration of these factors within realistic bounds can mitigate risk. Crucially, the model points to herd cohesion, which has received little attention in the discipline, as playing an important role in lethal acute toxicosis. As the first ABM to model grazing behavior at realistic scales, this study also demonstrates the tremendous potential of ABMs to illuminate grazing management dynamics, including fundamental aspects of livestock behavior amidst ecological heterogeneity.

  15. Nitrogen dynamics in an Alaskan salt marsh following spring use by geese

    USGS Publications Warehouse

    Zacheis, Amy B.; Ruess, Roger W.; Hupp, Jerry W.

    2002-01-01

    Lesser snow geese (Anser caerulescens caerulescens) and Canada geese (Branta canadensis) use several salt marshes in Cook Inlet, Alaska, as stopover areas for brief periods during spring migration. We investigated the effects of geese on nitrogen cycling processes in Susitna Flats, one of the marshes. We compared net nitrogen mineralization, organic nitrogen pools and production in buried bags, nitrogen fixation by cyanobacteria, and soil and litter characteristics on grazed plots versus paired plots that had been exclosed from grazing for 3 years. Grazed areas had higher rates of net nitrogen mineralization in the spring and there was no effect of grazing on organic nitrogen availability. The increased mineralization rates in grazed plots could not be accounted for by alteration of litter quality, litter quantity, microclimate, or root biomass, which were not different between grazed and exclosed plots. In addition, fecal input was very slight in the year that we studied nitrogen cycling. We propose that trampling had two effects that could account for greater nitrogen availability in grazed areas: litter incorporation into soil, resulting in increased rates of decomposition and mineralization of litter material, and greater rates of nitrogen fixation by cyanobacteria on bare, trampled soils. A path analysis indicated that litter incorporation by trampling played a primary role in the nitrogen dynamics of the system, with nitrogen fixation secondary, and that fecal input was of little importance.

  16. Grazing-Activated Production of Dimethyl Sulfide (DMS) by two clones of Emiliania huxleyi

    NASA Technical Reports Server (NTRS)

    Wolfe, Gordon V.; Steinke, Michael

    1996-01-01

    Emiliania huxleyi clones CCMP 370 and CCMP 373 produced similar amounts of dimethylsulfoniopropionate (DMSP) during axenic exponential growth, averaging 109 mM internal DMSP. Both clones had detectable DMSP lyase activity, as measured by production of dimethyl sulfide (DMS) during in vitro assays of crude cell preparations, but activities and conditions differed considerably between clones. Clone 373 had high activity; clone 370 had low activity and required chloride. For both strains, enzyme activity per cell was constant during exponential growth, but little DMS was produced by healthy cells. Rather, DMS production was activated when cells were subjected to physical or chemical stresses that caused cell lysis. We propose that DMSP lyase and DMSP are segregated within these cells and re-action only under conditions that result in cell stress or damage. Such activation occurs during microzooplankton grazing. When these clones were grazed by the dinoflagellate Oxyrrhis marina, DMS was produced; ungrazed cells, as well as those exposed to grazer exudates and associated bacteria, generated no DMS. Grazing of clone 373 produced much more DMS than grazing of clone 370, consistent with their relative in vitro DMSP lyase activities. DMS was only generated when cells were actually being grazed, indicating that ingested cells were responsible for the DMS formation. We suggest that even low levels of grazing can greatly accelerate DMS production.

  17. Final June Revisions Rule Significant Contribution Assessment TSD

    EPA Pesticide Factsheets

    This Technical Support Document (TSD) presents quantitative assessments of the relationship between the final February revisions to the Transport Rule, the final June revisions rule, and the original analysis conducted for the final Transport Rule.

  18. Develop a Comprehensive Technical Training and Data Collection Program for Structural Welders and Fitters: Technical Proposal

    DTIC Science & Technology

    2006-05-30

    implementation Final Report 4 TECHNICAL PLAN AND RESULTS Task 1: Initiate the Project Management System Two senior NGSS production management...1 Technical Plan and Results...Third the system is hosted on a handheld unit which provides the foremen with an efficient daily planning tool. The Pilot System which entails

  19. Laser Technician Associate Degree Program. A Proposal Submitted to Wisconsin State Board of Vocational, Technical, and Adult Education. (Curriculum Development.) Final Report.

    ERIC Educational Resources Information Center

    North Central Technical Inst., Wausau, WI.

    This final report contains the program proposal with supporting data for developing curriculum materials for and implementing an associate-degree laser technology program at the North Central Technical Institute. The proposal outline provides this information: (1) objectives for the program designed to prepare a technician to safely operate,…

  20. California Deaf-Blind Services Final Report, October 1, 1995-September 30, 1999 [and] October 1, 1999-June 30, 2000 (No Cost Extension).

    ERIC Educational Resources Information Center

    Goertz, Lori; Franklin, Barbara

    This final report describes the activities and outcomes of the California Deaf-Blind Services (CDBS) program, a regionally based, family focused technical assistance and training project designed to improve services to children with deaf-blindness. The project conducted the following activities: (1) provided technical assistance to families and…

Top